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Abstract. Starting from the relationship between the Bouc model and the endochronic theory and by
adopting some new intrinsic time measures, the thermodynamic admissibility of the Bouc-
Wen model is proved, in the univariate case as well as in the tensorial one. Moreover, the
proposed proof encompasses the cases where a strength degradation term@ppeats.
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1. Introduction

Among the smooth univariate hysteresis models, the Bouc model [1] and the Bouc-Wen model [2] are
the most popular ones in structural dynamics. They are employed, in particular, in seismic engineering
as analytical tools to represent the cyclic behaviour of structural members, structural joints and isolation
devices (see, among others, [3] and [4]). However, it is often argued that these models do not respect
the Drucker’s postulate [5], while the study of their thermodynamic admissibility is faced only for some
particular parameter choices [6] [7] [8]. The aim of this note is to prove the thermodynamic admissibility
of the Bouc-Wen model in a more general framework, using a tensorial formulation and taking into account
the so-called strength degradation effect [9]. Our approach makes use of ideas introduced by Valanis [10]
in his endochronic theory of plasticity. The proposed proof is based on the choice of suitable intrinsic time
scales, more general than the ones usually adopted in the standard endochronic theory.

2. Bouc and Bouc-Wen type models
Among the different univariate models of hysteresis proposed by Bouc [1], the simplest one is :

{ w(t) = Agu(t) + z (¢)

2= J)0 (0 () — ) dqo

1)

whereu andw are two time-dependent functions, with the role of input and output respectively. Moreover,
Ap = 0andu = p(9) is the so-callechereditary kernel The time functiony is positive and non-
decreasing, and it is namétternal or intrinsic time One of the definitions of proposed by Bouc is the
total variation ofu :

| du

dr or, equivalently, dd = |du|, with(0) = 0. 2

This choice implies the existence almost everywhere of the derivative of the input functiiih respect
to ¢ and the rate-independencefAs a resultz andw are in turn rate-independent.

Bouc defined the hereditary kernels a continuous, bounded, positive and non-increasing function on
the intervald > 0, having a bounded integral. In particular, the special case of an exponential kernel has
been discussed

p(9) = Ae™ with A, >0 3

since, under the assumption (2), the following differential formulation of (1) can be deducted

w=Agu+z
{dz:Adu—ﬁz|du| @)

This is the most popular version of the Bouc model in the civil engineering field and in particular in seismic

structural engineering. The input has usually the meaning of a relative displacement between two structural

elements, while the output plays the role of a structural restoring force, defined as the sum of a linear

hardening term and a hysteretic teemWe observe that the forceis confined to the interval—z,, z,,),

where the limit value:,, is equal toA/ 5 and represents a maximum strength value of the hysteretic model.
Bouc [11] also proposed a more general formulation of (4)

dz=Adu—pz |du| —v]|z| du with v < (8 (5)
while Wen [2] suggested a further modification introducing the positive expanent

dz = Adu— (8 sign (z du) + ) |2|" du (6)
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Wen did not impose any condition on thevalue and assumed thais integer. Nevertheless, it is straight-
forward to prove that all the real positive valuesrofire admissible. Baber and Wen [9] introduced the
so-calledstiffnessandstrength degradation effecits the Bouc-Wen model (6). Only the strength degrada-
tion case is considered here:

dz = Adu — v (8 sign (z du) +7) |z|" du @

wherer was defined in [9] as a positive and increasing function of the energy dissipated by the system.
Provided tha3 + v > 0, the strength value, becomes in this case

and the degradation effect dueutas evident. A tensorial generalization of (6) was suggested by Karray
and Bouc [8] for isotropic materials with elastic hydrostatic behaviour:
o4 = A0€d + z (8)
dz = Adeyg— Pz ||z||n_2 |z :deg| — v z ||z||"_2 (z :deq)

wheree,; andoy are the deviatoric part of the small strain tensor and of the Cauchy stress tensor, respec-
tively; z is the tensor defining the hysteretic part of the stress, Whjles the standard.; — norm. Casciati
[5] discussed the use of the model (8) in the framework of non-linear stochastic dynamics.

We nameBouc-Wen type modellse hysteresis models defined by Egs. (4) - (8). All of them were origi-
nally defined without any thermodynamic analysis. Moreover, the link between the differential formulations
of the Bouc-Wen type models (5) - (8) and the original integral formulation (1) due to Bouc, as well as the
admissibility intervals for they parameter, are not discussed in the aforementioned papers. These topics
will be studied in the following sections, where it will be proved that both scalar and tensorial Bouc-Wen
type models can be formulated within the thermodynamic framework of the endochronic theory.

3. Thermodynamic principles and thermodynamic potential

Under the assumptions of isothermal conditions and small transformations, the first principle of thermo-
dynamics and the Helmholtz free energy density can be written as (see, among others, [12]):

E:UZé, \I!:\II(67X17X27~"aXN) (9)

where the superposed dot indicates the time derivakiVis;the internal energy density;js the small strain
tensor;o is the Cauchy stress tensor; whilg i« = 1, N are internal variables.

The Helmholtz free energy densify has the role of thermodynamic potential. A quadratic conzex
function is considered here, depending on the strain tenand on a single internal variabjeof tensorial
character:

1 1
\11:55:C:€+5:Bzx+§xzD:X (20)
whereC, B andD are symmetric fourth order tensors. By assuming an isotropic behaviour, one can set:
C=Ci11®1+CI B=B11®1+BI, D=D11®1+ D>l (11)

wherel is the second order identity tensdiis the fourth order identity tensor; andrepresents the tensor
product. The convexity conditions fdr can be written as follows:

C1,Dy,C3, D2 >0, B} <CiDy, B3 < C2Ds. (12)

3
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In order to have coupling between the deviatoric parts of the strain and the internal variables, it is also
assumed3; # 0. By virtue of (11), the thermodynamic potential (10) becomes:
C C 1 1
U = 70757“ (5)2 +?2sd: eq + Botr () tr (x) +B2ea: xq + §D0tr (x)2 + §D2Xd3 Xd (13)
whereey and x, indicate the deviatoric parts of the strain tens@nd of the internal variable tensgt
while Co = 01+02/3, By =B, + 32/3 andDO =D+ D2/3 .
The classical expression of the second principle for small isothermal transformations is :

O (t)=0:6—-V >0 (14)

and it states that thiatrinsic (or mechanicgl dissipation®; has to be non-negative.
By substituting (9) in the inequality (14) and knowing thét depends by assumption on a single internal
variable, it follows that :

U d
<I>1(t):—a——X:—T:)'<>O,

o o
Ox dt oy

T

g = g ’ 8X (15)

where Eqg. (15) is the so-called state equation, while Eq. gl8&fines the thermodynamic foreeassoci-
ated to the internal variable. Under the assumption (13), the state equation reads

t
o =$1 +0a=(Cotr(e)+Botr(x)) 1+ Coeq+ Baxa (16)
while the thermodynamic force becomes
t
T = %1 + 74 = (Botr(e)+Dgtr(x)) 1+ Baeg + Daxa. a7

The quantitiesr and x have to be correlated, otherwise a particular evolutiory @buld exist which
violates the inequality (1%) Therefore, some additionabmplementarity rulebave to be introduced. A
classical method is to assume the existence of a convex positive furgtion called pseudo-potential,
which is zero at the origin and to associate to i@mality condition,namely that the opposite of the
thermodynamic force belongs to the sub-differential ¢f(x) :

TE—=0p(X).

4. Intrinsic time and endochronic theory

Valanis [10] proposed a theory of viscoplasticity without a yield surface, suggesting for it the name of
endochronic theoryThe basic concept of the Valanis’ theory is the existence of the so-gaft@tsic time
scaleor simplyintrinsic time,i.e. an ordering variable other than clock-time which governs the behaviour
of the material. The intrinsic timé > 0 is defined as a non-decreasing function, which directly depends
on the strain and/or the stress tensors.

The typical definition of the intrinsic time increment is :

dy =/de:p:de (18)

wherep = p (o, ¢) is a positive definite fourth order tensor. Assuming an isotropic behaviour, the hydro-
static and the deviatoric responses can be uncoupled, leading to intrinsic time definitions as, for instance,
the following one :

d¥ = \/deq : p: deg with p = p (04,£4) positive definite (29)
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whered depends only on deviatoric tensors. In both cases, the intrinsic time definitions possess the rate-
independence property.

According to the Valanis’ formulation, the second principle inequality {i§yewritten by introducing

:
77:%%:77:)2%20 (20)

The non-negativity ofiy has been imposed by definition. Therefore, in order to satisfy the inequality (20),
it is sufficient to assume the existence of a positive convex dissipation potentiap (), with ¢ :j—f‘,

and a normality condition :

dd . .
=20 p=9(X) =0, ©(0) =0, T € —=0p(X)- (21)

Dy (t) =

The hypotheses (21) have the role of complementarity rules for the endochronic theory, in the sense that
they are sufficient to ensure that the second principle is fulfilled.

Assuming that the hydrostatic partssoéndr have an elastic behaviour, a dissipation potential depending
quadratically on the deviatoric part §f is considered :

0 iftr(y)=0

oo elsewhere (22)

¢ =9 (D) = ot (D) + 2 [l with b >0 and 1 or (9) = {
wherel, (tr (¥)) is the indicator function of the s& = {x |tr (x) = 0} .
We should emphasize that this pseudo-potential is rate independent, even though it is not a homogeneous
function of order 1, as in classical plasticity. The rate-independence is ensured by the use of the internal
time derivativey instead ofy.
The dual dissipation potential* is obtained by the Legendre-Fenchel transformatiop of

. X by o ba 7a|?
¢ (r) =sup (75(-0) = o or () = 2 [al? ) =sup (s (~0) = 2 1017 = 32 (o)
X Xd 2

while thedual normality conditions read :

Td

:E.

The first condition implies that the hydrostatic part of the internal variable remains constant: it is equal to
zero if it is assumed that (x (0)) = 0. Therefore, referring to (17), one has(7) = 3 By tr (¢), which
describes an elastic hydrostatic response. The linear relationt{gdyeeny, andr; simply derives from
the quadratic form of the deviatoric partof.

From the deviatoric part of (17) one obtains

tr () =0, — Xd (24)

Td = Baegq + Daxa (25)

The positivity condition assumed in (19) means thats continuous as a function of the intrinsic time
¥ and that its derivative exists almost everywhere. Hence, by deriving (25) and substitutingn(e
obtained expression, the following differential equation is found :

D
#4 = Body — IT;” (26)

If 74 (0) = 0, then the solution of (26) has the form:

v /

, , D

T4 = By / P G >66571§39)d19’ with 8 = 172 > 0. (27)
0 2
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Hence, by substituting Egs. (25) and (27) in (16), the following expression for the deviatoric stress tensor
is obtained:

_ B3 By B3 B; [V —p(v—0) Oea ()
O'd—(CQ—D2>Ed+D27d—(CQ—D2 Ed+D72/O\ (& 90’ dy’. (28)

The term proportional te, introduces a linear hardening effect, whereas the integral term corresponds to a
smooth hysteretic behaviour, typical of the endochronic theory.
5. Endochronic theory and Bouc-Wen type models

In order to investigate the relationship between the endochronic theory and the Bouc-Wen type models,
the following parameters are introduced :

B3 B3
= - —= > = —=
Ag=0C D, > 0 and A Dy >0 (29)
The corresponding inequalities are related to the convexity conditions (12). The expression (28) becomes
B v ! .
oq = Aoeq + jod = Apeq + / w9 —19") 88;539 )dﬁl with p(9) = Ae P (30)
2 0

Itis the tensorial generalization of (1) for the case of an exponential kernel. Therefore, the previous analysis
shows that the exponential form of the hereditary kernel can be determined in a consistent thermodynamic
framework. In addition, itz denotes the integral term in the previous equation, the following differential
form of (30) is obtained:
oqg=Agcq+z
{dz:Adsd—Bzdﬁ (31)

One can remark that the choice of the internal time increni@in Eq. (31) is still open. This additional
degree of freedom can be exploited to link the endochronic formulation (31) and the Bouc-Wen type models.
The simplest choice = I'in (19) leads talY = ||ds4||. Hence, by substituting in (34,)one obtains

dz = Adeg— Bz |deq (32)

which is the standard endochronic model [13]. In an univariate structural modelling framework, the changes
of variabless; — u , z —z andog—w can be made and the Bouc formulationy(#) found again.

Moreover, the differential formulation (34)s still valid when the tensop , which defines the intrinsic
time incrementdy according to (19), is positive definite in a non-strict sense. Therefore, the assumption
p=a®a,witha=a(o4,¢4) second order tensor different from zero almost everywhere, is admissible.
In this case, one has

d0 = \/deg:a®a:dey  orequivalently,  di:=a:deg, d¥ = ’dﬁ’ (33)

wheredd is zero not only forde; = 0, but also wherdey; La anda = 0. The definition (33) can be
generalized as follows:

dé = a:deg with a = a (04,24) # 0 a.e.
a9 = f (sign (dé)) ’df‘ with f >0 (34)
By assuming in (34)
dé := (z: deg) ||z)|" with z = 04 — Apeq
49 = f (Sign (dé)) ldé‘ with f =1+ 7% sign (dé) >0 (35)
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with n, 5 > 0, then the following expression of the intrinsic time increment is obtained :

dy = (1 + % sign (z :dsd)) |z : deg] HZH"_2 with — <~y (36)
The inequalities involving the parameter are sufficient to guarantee the non-negativifyyoOn the other
hand, it can be proved that they are necessary to fulfil the second principle inequality (14). By substituting
the expression (36) in Eq. (33 the formulation (8) of the Karray-Bouc-Casciati model is obtained, which
reduces to the Bouc-Wen model (6) in the univariate case. The thermodynamic formulation provided here
for these two hysteretic models constitutes a proof of their thermodynamic admissibility, in the sense that
they fulfil the second principle inequality. These results extend those concerning theasediscussed
in [7] for the univariate Bouc model and in [6] for the Karray-Bouc-Casciati model. Moreover, the analysis
developed in [8] concerning the cage= (3 is supplemented.

An even more general class of hysteresis models can be defined by extending the intrinsic time definition
given in (34):

dé == a: deg witha = a(04,eq4) # 0 a.e.
49 =v(n) f (sign (dé)) ‘df ‘ with f>0andv >0 37)
d’l7 = f1 (Ud,Ed) dd with f1 >0

wheren is an intrinsic time variable governing the strength degradation, wtige positive and increasing
function of7. In particular, one can set

dé = (z:deg) HZH"_2 with z = o4 — Agey 38
=v((n sign [ = 3 sign >
dd=v(n) f d¢)) |dé with f=1+2 dé) =0 (38)
and 3 p
D Z:Z _ > . p._ _ 0d
dn =z :de AT Ad19 f1(eq,0q) dd =0 with  deP := degy 114, (39)

In this case the quantityis the dissipated hysteretic energy. With the assumptions (38)-(39) for the intrinsic
time incrementiy, Eq. (31) reads

dz=Adeqg—v(n) z (z:deq) (v + B sign (z :deq)) ||z > (40)

which defines a generalized Karray-Bouc-Casciati model with an additional strength degradation term
v = v (n). In the univariate case Eq. (7) is retrieved and the thermodynamic admissibility of the related
hysteretic model is proved.

6. Conclusions

A general proof of thermodynamic admissibility of the Bouc-Wen type models has been proposed, which
encompasses the cases where a strength degradation term appears, and provides the intervals of thermody-
namically consistent values of theparameter for both univariate and tensorial models. Work is in progress
to extend the proof to the cases with more than one internal variable and with a stiffness degradation term.
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