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Abstract. Starting from the relationship between the Bouc model and the endochronic theory and by
adopting some new intrinsic time measures, the thermodynamic admissibility of the Bouc-
Wen model is proved, in the univariate case as well as in the tensorial one. Moreover, the
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1. Introduction

Among the smooth univariate hysteresis models, the Bouc model [1] and the Bouc-Wen model [2] are
the most popular ones in structural dynamics. They are employed, in particular, in seismic engineering
as analytical tools to represent the cyclic behaviour of structural members, structural joints and isolation
devices (see, among others, [3] and [4]). However, it is often argued that these models do not respect
the Drucker’s postulate [5], while the study of their thermodynamic admissibility is faced only for some
particular parameter choices [6] [7] [8]. The aim of this note is to prove the thermodynamic admissibility
of the Bouc-Wen model in a more general framework, using a tensorial formulation and taking into account
the so-called strength degradation effect [9]. Our approach makes use of ideas introduced by Valanis [10]
in his endochronic theory of plasticity. The proposed proof is based on the choice of suitable intrinsic time
scales, more general than the ones usually adopted in the standard endochronic theory.

2. Bouc and Bouc-Wen type models

Among the different univariate models of hysteresis proposed by Bouc [1], the simplest one is :{
w (t) = A0 u (t) + z (t)
z (t) =

∫ ϑ(t)

0
µ (ϑ (t)− ϑ′) du

dϑ′ dϑ′
(1)

whereu andw are two time-dependent functions, with the role of input and output respectively. Moreover,
A0 > 0 and µ = µ (ϑ) is the so-calledhereditary kernel. The time functionϑ is positive and non-
decreasing, and it is namedinternal or intrinsic time. One of the definitions ofϑ proposed by Bouc is the
total variation ofu :

ϑ (t) =
∫ t

0

∣∣∣∣du

dτ

∣∣∣∣ dτ or, equivalently, dϑ = |du| , with ϑ (0) = 0. (2)

This choice implies the existence almost everywhere of the derivative of the input functionu with respect
to ϑ and the rate-independence ofϑ. As a result,z andw are in turn rate-independent.

Bouc defined the hereditary kernelµ as a continuous, bounded, positive and non-increasing function on
the intervalϑ > 0, having a bounded integral. In particular, the special case of an exponential kernel has
been discussed

µ (ϑ) = Ae−βϑ with A, β > 0 (3)

since, under the assumption (2), the following differential formulation of (1) can be deducted{
w = A0 u + z
dz = A du− β z |du| (4)

This is the most popular version of the Bouc model in the civil engineering field and in particular in seismic
structural engineering. The input has usually the meaning of a relative displacement between two structural
elements, while the outputw plays the role of a structural restoring force, defined as the sum of a linear
hardening term and a hysteretic termz. We observe that the forcez is confined to the interval(−zu, zu),
where the limit valuezu is equal toA/β and represents a maximum strength value of the hysteretic model.

Bouc [11] also proposed a more general formulation of (4)2 :

dz = A du− β z |du| − γ |z| du with γ < β (5)

while Wen [2] suggested a further modification introducing the positive exponentn :

dz = A du− (β sign (z du) + γ) |z|n du (6)
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Thermodynamic admissibility of Bouc-Wen type hysteresis models

Wen did not impose any condition on theγ value and assumed thatn is integer. Nevertheless, it is straight-
forward to prove that all the real positive values ofn are admissible. Baber and Wen [9] introduced the
so-calledstiffnessandstrength degradation effectsin the Bouc-Wen model (6). Only the strength degrada-
tion case is considered here:

dz = Adu− ν (β sign (z du) + γ) |z|n du (7)

whereν was defined in [9] as a positive and increasing function of the energy dissipated by the system.
Provided thatβ + γ > 0, the strength valuezu becomes in this case

zu =
(

A

ν (β + γ)

) 1
n

and the degradation effect due toν is evident. A tensorial generalization of (6) was suggested by Karray
and Bouc [8] for isotropic materials with elastic hydrostatic behaviour:{

σd = A0εd + z
dz = A dεd − β z ‖z‖n−2 |z :dεd| − γ z ‖z‖n−2 (z :dεd)

(8)

whereεd andσd are the deviatoric part of the small strain tensor and of the Cauchy stress tensor, respec-
tively; z is the tensor defining the hysteretic part of the stress, while‖·‖ is the standardL2−norm. Casciati
[5] discussed the use of the model (8) in the framework of non-linear stochastic dynamics.

We nameBouc-Wen type modelsthe hysteresis models defined by Eqs. (4) - (8). All of them were origi-
nally defined without any thermodynamic analysis. Moreover, the link between the differential formulations
of the Bouc-Wen type models (5) - (8) and the original integral formulation (1) due to Bouc, as well as the
admissibility intervals for theγ parameter, are not discussed in the aforementioned papers. These topics
will be studied in the following sections, where it will be proved that both scalar and tensorial Bouc-Wen
type models can be formulated within the thermodynamic framework of the endochronic theory.

3. Thermodynamic principles and thermodynamic potential

Under the assumptions of isothermal conditions and small transformations, the first principle of thermo-
dynamics and the Helmholtz free energy density can be written as (see, among others, [12]):

Ė = σ : ε̇, Ψ = Ψ(ε, χ1, χ2, ..., χN ) (9)

where the superposed dot indicates the time derivative;E is the internal energy density;ε is the small strain
tensor;σ is the Cauchy stress tensor; whileχi, i = 1, N are internal variables.

The Helmholtz free energy densityΨ has the role of thermodynamic potential. A quadratic convexΨ
function is considered here, depending on the strain tensorε and on a single internal variableχ of tensorial
character:

Ψ =
1
2
ε : C : ε + ε : B : χ +

1
2
χ : D : χ (10)

whereC, B andD are symmetric fourth order tensors. By assuming an isotropic behaviour, one can set:

C = C11⊗ 1 + C2I, B = B11⊗ 1 + B2I, D = D11⊗ 1 + D2I (11)

where1 is the second order identity tensor;I is the fourth order identity tensor; and⊗ represents the tensor
product. The convexity conditions forΨ can be written as follows:

C1, D1, C2, D2 > 0, B2
1 6 C1D1, B2

2 6 C2D2. (12)
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In order to have coupling between the deviatoric parts of the strain and the internal variables, it is also
assumedB2 6= 0. By virtue of (11), the thermodynamic potential (10) becomes:

Ψ =
C0

2
tr (ε)2 +

C2

2
εd: εd + B0tr (ε) tr (χ) +B2εd: χd +

1
2
D0tr (χ)2 +

1
2
D2χd: χd (13)

whereεd andχd indicate the deviatoric parts of the strain tensorε and of the internal variable tensorχ,
while C0 = C1+C2/3, B0 = B1 + B2/3 andD0 = D1 + D2/3 .

The classical expression of the second principle for small isothermal transformations is :

Φ1 (t) = σ : ε̇− Ψ̇ > 0 (14)

and it states that theintrinsic (or mechanical) dissipationΦ1 has to be non-negative.
By substituting (9)2 in the inequality (14) and knowing thatΨ depends by assumption on a single internal

variable, it follows that :

Φ1 (t) = −∂Ψ
∂χ

dχ

dt
= −τ : χ̇ >0 , σ =

∂Ψ
∂ε

, τ =
∂Ψ
∂χ

. (15)

where Eq. (15)2 is the so-called state equation, while Eq. (15)3 defines the thermodynamic forceτ associ-
ated to the internal variableχ. Under the assumption (13), the state equation reads

σ =
tr (σ)

3
1 + σd = (C0 tr (ε)+B0 tr (χ))1 + C2εd + B2χd (16)

while the thermodynamic force becomes

τ =
tr (τ)

3
1 + τd = (B0 tr (ε) +D0 tr (χ))1 + B2εd + D2χd. (17)

The quantitiesτ and χ̇ have to be correlated, otherwise a particular evolution ofχ could exist which
violates the inequality (15)1. Therefore, some additionalcomplementarity ruleshave to be introduced. A
classical method is to assume the existence of a convex positive functionϕ(χ̇), called pseudo-potential,
which is zero at the origin and to associate to it anormality condition,namely that the opposite of the
thermodynamic forceτ belongs to the sub-differential ofϕ(χ̇) :

τ ∈ −∂ϕ (χ̇) .

4. Intrinsic time and endochronic theory

Valanis [10] proposed a theory of viscoplasticity without a yield surface, suggesting for it the name of
endochronic theory. The basic concept of the Valanis’ theory is the existence of the so-calledintrinsic time
scaleor simply intrinsic time,i.e. an ordering variable other than clock-time which governs the behaviour
of the material. The intrinsic timeϑ > 0 is defined as a non-decreasing function, which directly depends
on the strain and/or the stress tensors.

The typical definition of the intrinsic time increment is :

dϑ =
√

dε : p : dε (18)

wherep = p (σ, ε) is a positive definite fourth order tensor. Assuming an isotropic behaviour, the hydro-
static and the deviatoric responses can be uncoupled, leading to intrinsic time definitions as, for instance,
the following one :

dϑ =
√

dεd : p : dεd with p = p (σd, εd) positive definite (19)
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whereϑ depends only on deviatoric tensors. In both cases, the intrinsic time definitions possess the rate-
independence property.

According to the Valanis’ formulation, the second principle inequality (15)1 is rewritten by introducing
ϑ:

Φ1(t) = −τ :
dχ

dϑ

dϑ

dt
= −τ : χ̂

dϑ

dt
> 0 (20)

The non-negativity ofdϑ has been imposed by definition. Therefore, in order to satisfy the inequality (20),
it is sufficient to assume the existence of a positive convex dissipation potentialϕ = ϕ (χ̂), with χ̂ =dχ

dϑ ,
and a normality condition :

dϑ

dt
> 0, ϕ = ϕ (χ̂) > 0, ϕ (0) = 0, τ ∈ −∂ϕ (χ̂) . (21)

The hypotheses (21) have the role of complementarity rules for the endochronic theory, in the sense that
they are sufficient to ensure that the second principle is fulfilled.

Assuming that the hydrostatic parts ofσ andτ have an elastic behaviour, a dissipation potential depending
quadratically on the deviatoric part of̂χ is considered :

ϕ = ϕ (χ̂) = I0 (tr (χ̂)) +
b2

2
‖χ̂d‖2 with b2 > 0 and I0 (tr (χ̂)) =

{
0 if tr (χ̂) = 0
∞ elsewhere

(22)

whereI0 (tr (χ̂)) is the indicator function of the setE = {χ̂ |tr (χ̂) = 0} .
We should emphasize that this pseudo-potential is rate independent, even though it is not a homogeneous

function of order 1, as in classical plasticity. The rate-independence is ensured by the use of the internal
time derivativeχ̂ instead ofχ̇.

The dual dissipation potentialϕ∗ is obtained by the Legendre-Fenchel transformation ofϕ :

ϕ∗ (τ) = sup
χ̂

(
τ : (−χ̂)− I0 (tr (χ̂))− b2

2
‖χ̂d‖2

)
= sup

χ̂d

(
τd: (−χ̂d)−

b2

2
‖χ̂d‖2

)
=
‖τd‖2

2b2
, (23)

while thedualnormality conditions read :

tr (χ̂) = 0, − χ̂d =
τd

b2
. (24)

The first condition implies that the hydrostatic part of the internal variable remains constant: it is equal to
zero if it is assumed thattr (χ (0)) = 0. Therefore, referring to (17), one hastr (τ) = 3 B0 tr (ε), which
describes an elastic hydrostatic response. The linear relation (24)2 between̂χd andτd simply derives from
the quadratic form of the deviatoric part ofϕ∗.

From the deviatoric part of (17) one obtains

τd = B2εd + D2χd (25)

The positivity condition assumed in (19) means thatεd is continuous as a function of the intrinsic time
ϑ and that its derivative exists almost everywhere. Hence, by deriving (25) and substituting (24)2 in the
obtained expression, the following differential equation is found :

τ̂d = B2ε̂d −
D2

b2
τd (26)

If τd (0) = 0, then the solution of (26) has the form:

τd = B2

∫ ϑ

0

e−β(ϑ−ϑ′) ∂εd (ϑ′)
∂ϑ′

dϑ′ with β =
D2

b2
> 0. (27)
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Hence, by substituting Eqs. (25) and (27) in (16), the following expression for the deviatoric stress tensor
is obtained:

σd =
(

C2 −
B2

2

D2

)
εd +

B2

D2
τd =

(
C2 −

B2
2

D2

)
εd +

B2
2

D2

∫ ϑ

0

e−β(ϑ−ϑ′) ∂εd (ϑ′)
∂ϑ′

dϑ′. (28)

The term proportional toεd introduces a linear hardening effect, whereas the integral term corresponds to a
smooth hysteretic behaviour, typical of the endochronic theory.

5. Endochronic theory and Bouc-Wen type models

In order to investigate the relationship between the endochronic theory and the Bouc-Wen type models,
the following parameters are introduced :

A0 = C2 −
B2

2

D2
> 0 and A =

B2
2

D2
> 0 (29)

The corresponding inequalities are related to the convexity conditions (12). The expression (28) becomes

σd = A0εd +
B2

D2
τd = A0εd +

∫ ϑ

0

µ (ϑ− ϑ′)
∂εd (ϑ′)

∂ϑ′
dϑ′ with µ (ϑ) = A e−βϑ (30)

It is the tensorial generalization of (1) for the case of an exponential kernel. Therefore, the previous analysis
shows that the exponential form of the hereditary kernel can be determined in a consistent thermodynamic
framework. In addition, ifz denotes the integral term in the previous equation, the following differential
form of (30) is obtained: {

σd = A0 εd + z
dz = A dεd − β z dϑ

(31)

One can remark that the choice of the internal time incrementdϑ in Eq. (31) is still open. This additional
degree of freedom can be exploited to link the endochronic formulation (31) and the Bouc-Wen type models.
The simplest choicep = I in (19) leads todϑ = ‖dεd‖. Hence, by substituting in (31)2, one obtains

dz = A dεd − β z ‖dεd‖ (32)

which is the standard endochronic model [13]. In an univariate structural modelling framework, the changes
of variablesεd → u , z →z andσd→w can be made and the Bouc formulation (4)2 is found again.

Moreover, the differential formulation (31)2 is still valid when the tensorp , which defines the intrinsic
time incrementdϑ according to (19), is positive definite in a non-strict sense. Therefore, the assumption
p = a⊗ a , with a = a (σd, εd) second order tensor different from zero almost everywhere, is admissible.
In this case, one has

dϑ =
√

dεd : a⊗ a : dεd or, equivalently, dϑ̃ := a : dεd, dϑ :=
∣∣∣dϑ̃

∣∣∣ (33)

wheredϑ is zero not only fordεd = 0, but also whendεd⊥a anda = 0. The definition (33) can be
generalized as follows:

dξ̃ := a : dεd with a = a (σd, εd) 6= 0 a.e.

dϑ = f
(
sign

(
dξ̃

)) ∣∣∣dξ̃
∣∣∣ with f > 0

(34)

By assuming in (34)

dξ̃ := (z : dεd) ‖z‖n−2 with z = σd −A0εd

dϑ = f
(
sign

(
dξ̃

)) ∣∣∣dξ̃
∣∣∣ with f = 1 + γ

β sign
(
dξ̃

)
> 0

(35)
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with n, β > 0, then the following expression of the intrinsic time increment is obtained :

dϑ =
(

1 +
γ

β
sign (z :dεd)

)
|z : dεd| ‖z‖n−2 with − β 6 γ 6 β (36)

The inequalities involving theγ parameter are sufficient to guarantee the non-negativity ofdϑ. On the other
hand, it can be proved that they are necessary to fulfil the second principle inequality (14). By substituting
the expression (36) in Eq. (31)2, the formulation (8)2 of the Karray-Bouc-Casciati model is obtained, which
reduces to the Bouc-Wen model (6) in the univariate case. The thermodynamic formulation provided here
for these two hysteretic models constitutes a proof of their thermodynamic admissibility, in the sense that
they fulfil the second principle inequality. These results extend those concerning the caseγ = 0 , discussed
in [7] for the univariate Bouc model and in [6] for the Karray-Bouc-Casciati model. Moreover, the analysis
developed in [8] concerning the caseγ = β is supplemented.

An even more general class of hysteresis models can be defined by extending the intrinsic time definition
given in (34):

dξ̃ := a : dεd with a = a (σd, εd) 6= 0 a.e.

dϑ = ν (η) f
(
sign

(
dξ̃

)) ∣∣∣dξ̃
∣∣∣ with f > 0 and ν > 0

dη = f1 (σd, εd) dϑ with f1 > 0

(37)

whereη is an intrinsic time variable governing the strength degradation, whileν is a positive and increasing
function ofη. In particular, one can set

dξ̃ := (z : dεd) ‖z‖n−2 with z = σd −A0εd

dϑ = ν (η) f
(
sign

(
dξ̃

)) ∣∣∣dξ̃
∣∣∣ with f = 1 + γ

β sign
(
dξ̃

)
> 0

(38)

and

dη := z :dεp =
β z : z
A0 + A

dϑ = f1 (εd, σd) dϑ > 0 with dεp := dεd −
dσd

A + A0
(39)

In this case the quantityη is the dissipated hysteretic energy. With the assumptions (38)-(39) for the intrinsic
time incrementdϑ, Eq. (31)2 reads

dz = A dεd − ν (η) z (z : dεd) (γ + β sign (z :dεd)) ‖z‖n−2 (40)

which defines a generalized Karray-Bouc-Casciati model with an additional strength degradation term
ν = ν (η). In the univariate case Eq. (7) is retrieved and the thermodynamic admissibility of the related
hysteretic model is proved.

6. Conclusions

A general proof of thermodynamic admissibility of the Bouc-Wen type models has been proposed, which
encompasses the cases where a strength degradation term appears, and provides the intervals of thermody-
namically consistent values of theγ parameter for both univariate and tensorial models. Work is in progress
to extend the proof to the cases with more than one internal variable and with a stiffness degradation term.
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