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Phenomenology and physical origin of shear-localization and shear-banding 

in complex fluids 

G. Ovarlez, S. Rodts, X. Chateau, P. Coussot 

Université Paris-Est, Laboratoire Navier, 2 Allée Kepler, 77420 Champs sur Marne, France 

 

Abstract: We review and compare the phenomenological aspects and physical origin of 

shear-localization and shear-banding in various material types, namely emulsions, 

suspensions, colloids, granular materials and micellar systems. It appears that shear-banding, 

which must be distinguished from the simple effect of coexisting static-flowing regions in 

yield stress fluids, occurs in the form of a progressive evolution of the local viscosity towards 

two significantly different values in two adjoining regions of the fluids in which the stress 

takes slightly different values. This suggests that from a global point of view shear-banding in 

these systems has a common physical origin: two physical phenomena (for example, in 

colloids, destructuration due to flow and restructuration due to aging) are in competition and, 

depending on the flow conditions, one of them becomes dominant and makes the system 

evolve in a specific direction.  

 

1. Introduction 

In recent years a lot of works evidenced shear-banding effects in complex fluids. This 

expression of shear-banding actually encovers a wide range of phenomena in which the shear 

rate profile in a flowing material exhibits an apparent discontinuity, i.e. at a given scale of 

observation the shear rate takes two significantly different values in two adjoining regions in 

which the shear stress is almost the same. This effect seems to occur with various types of 

systems ranging from fluids exhibiting a strongly non-Newtonian behavior (e.g. pasty fluids) 

to fluids with complex evolving structures (e.g. micellar solutions). There already exists a 

very consistent framework of knowledge concerning the physical origin and dynamical 

modelling of shear-banding in micellar systems. However the situation is quite different in the 

field of soft-jammed systems (colloids, emulsions, foams, gels) and granular pastes for which 

shear-banding has only recently emerged as an important issue. Several reviews on shear-

banding were recently published, focused on the theoretical models [Fielding 2007, Dhont 



and Briels 2008, Olmsted 2008], the experimental techniques and measurement problems 

[Manneville 2008], and the specific bringing-in of NMR velocimetry and spectroscopy 

[Callaghan 2008]. In this paper our purpose is to review this field with the aim of (i) covering 

a wider range of materials including in particular soft-jammed systems and granular materials 

and (ii) distinguishing and clarifying the main phenomenological trends of this shear-banding 

and suggesting the main physical process at the origin of these trends. As a consequence from 

a theoretical aspect this paper is far behind modelling developments of shear-banding 

[Fielding 2007, Dhont and Briels 2008, Olmsted 2008] but we think that for various dispersed 

systems it is necessary to first clarify the trends in order to identify which of the existing 

theories is appropriate. 

Let us recall that shear-banding was originally the word used to describe an effect observed 

with granular flows or soils [Nedderman 1992, Schofield and Wroth 1968]: either in simple 

shear or in a triaxial compression under an increasing force the soil or the granular mass is 

slowly deformed until a critical value beyond which it suddenly flows more rapidly with a 

shear localized in a thin region of thickness typically ranging from 5 to 10 grain sizes. 

Actually this is more generally a situation encountered with solid bodies [Cottrell 1964, Tabor 

1991]: beyond a critical deformation a brittle solid breaks and a ductile solid deforms along 

specific surface as a result of dislocations. In both cases the deformation is localized in a thin 

region so that the apparent shear rate is discontinuous at the usual scale of observation. In this 

context it is not so surprising that shear-banding also occurs in pasty materials which are 

materials intermediate between solids and fluids.  

In solid mechanics engineering science, shear banding is usually modelled as an instable 

response of the material leading to the apparition of discontinuity surfaces of the velocity or 

of the shear rate (Hill, 1952, Rice 1976). Rice (1976) has studied the conditions for the onset 

of shear-banding for many different constitutive laws, demonstrating that the existence of 

shear-banding cannot be related to a single feature of constitutive laws: they may present a 

minimum, a maximum, as well as a plateau. As an example, one can consider shear banding 

observed in thin sheets made up of ductile metals subjected to quasi-static uniaxial traction 

loading. In such a loading process, localization of deformation can appear just as well in the 

hardening regime (i.e. when the applied force is an increasing function of the prescribed 

displacement) as in the softening regime (i.e. when the applied force is a decreasing function 

of the prescribed displacement), depending on the material. Moreover, the condition for the 

onset of localization also depends on the boundary condition applied to the solid (prescribed 



displacements or prescribed forces) (Benallal et al 1989). It is also interesting to look at the 

situation of a thin sheet made up of a linear elastic ideal plastic material. When submitted to a 

increasing uniaxial elongation, the behaviour of this solid in a elongational strain-normal 

stress diagram is linear as long as the normal stress remains lower than the elastic yield stress 

and is described by a plateau when the normal stress reaches the elastic yield stress. While the 

solid deforms homogeneously in the elastic regime, it can be shown that non-trivial 

heterogeneous velocity fields can develop in the plastic regime, leading either to localized 

shear banding or to diffuse necked region. The nature of the localization of deformation 

actually depends on the shape of the elastic domain and the plastic flow rules, among others. 

Generally, it is observed that shear banding is favoured by elastic yield surface containing 

vertex (as Tresca or Mohr-Coulomb yield surface) and by non normal plastic flow rule. These 

features clearly indicate that conditions for the onset of shear banding relate to subtle features 

of the constitutive law of the material and that the tensorial nature of constitutive law 

describing continuous media’s behaviour has to be taken into account to accurately model this 

phenomenon. 

In fluids, shear-banding was first observed with micellar solutions then more recently with 

colloids (Fielding 2007). In parallel, in the continuity of the knowledge for granular materials 

the possibility of shear-banding was discussed for granular flows (Mueth et al. 2000) or foam 

flows (Kabla and Debrégeas 2003). It is now also a matter of discussion with concentrated 

suspensions of non-colloidal particles (Huang et al. 2005, Ovarlez et al. 2006) and emulsions 

(Becu et al. 2004). Actually this subject has taken advantage of the developments of new 

techniques for observing flow field inside transparent or non-transparent materials such as 

rheo-optical tools, scattering techniques and MRI (Magnetic Resonance Imaging) velocimetry 

(Manneville 2008, Callaghan 2008, Rodts et al. 2004).  

However shear-banding may also be mistaken for another effect due to the strong non-

linearity of the rheological behavior of some materials. More specifically this concerns yield 

stress fluids, which can exhibit a yielding (flowing) and an unyielded (static) regions in the 

same sample under various flow conditions such as Couette or capillary flows, leading to the 

well-known effect of “plug flow” in some regions where the stress is sufficiently small (Bird 

et al., 1982). At first sight this effect gives the appearance of two regions of very different 

shear rates, one in which the fluid is sheared and the other one where it is not sheared at all, 

which could be described as a kind of shear-banding. So here one of the main point of this 



paper is to clarify the differences and common features of these behavior types (i.e. shear-

banding and solid/liquid coexistence due to yielding).   

According to the above definition of shear-banding, if two regions flowing at different shear 

rates coexist in the same sample while the shear stress is not significantly heterogeneous the 

flow curve of the materials contains two parts associated with very different shear rates but 

with almost the same stress. This situation is represented in Figure 1 in the following way: in 

the region [ ]cττ ;1  the shear rate is close to 1γ ; in the region [ ]2;ττ c  the shear rate is close to 

2γ . In order to ensure the continuity of the curve there should be a region in which the stress 

decreases as the shear rate increases (see Figure 1). This situation is in fact unrealistic: a flow 

curve with a decreasing part cannot describe the rheological behavior of a single material in 

steady-state because the corresponding flows are necessarily unstable, as may be shown from 

a simple linear stability analysis [Tanner 1988, Coussot 2005]. Another possibility, which is 

in fact an asymptotic case of the previous situation, is that the flow curve takes the form of a 

plateau for cττ = . In that case, in theory, various velocity fields can be obtained for the same 

imposed stress distribution. In practice one can expect that such a plateau would not be 

perfectly horizontal but anyway one may wonder whether this situation corresponds to a 

single state of matter and how the flow history can play a role on the possible evolutions of 

this state. This explains why it is so important to detect and understand shear-banding: (1) it 

may greatly influence the apparent flow properties (apparent flow at various velocities but 

almost constant stress) and (2) it can reflect time and spatial variations of the state of matter.  

 

Figure 1: Need for a curve with a decreasing part (dotted line) (or a plateau 
(dashed line)) for connecting two parts associated with two different shear rates 
and a similar shear stress as a result of shear-banding. 



Considering the critical role of stress in the definition of shear-banding we deduce that in 

order to analyze in depth shear-banding it is critical to control the stress distribution within the 

material. This is not the case for experiments with cone and plate geometry: the stress is 

generally almost uniform but we do not control the slight heterogeneities in the stress 

distribution, so that one can appreciate qualitatively the existence of shear-banding but one 

can hardly extract further information about the rheological behavior of the material. By 

contrast, with Couette flow, i.e. coaxial cylinders in relative rotation around their axis, the 

shear stress distribution is heterogeneous but well controlled. Under usual assumptions the 

shear stress is related to the torque M  applied to the inner cylinder and the distance r  from 

the axis: 22)( hrMr πτ =  in which h  is the fluid height in contact with the inner cylinder. 

In the following we start by considering the phenomenon of coexistence of static and flowing 

regions in yield stress fluids and examine its difference with shear-banding. Then we review 

the characteristics of shear-banding in various material types, i.e. pastes, granular pastes, 

micellar solutions, and in each case we review the observed trends, the basic modelling 

approaches and the probable physical origin. Note that concerning the modelling aspects we 

shall consider only the flow curve of the materials as it makes it possible to analyze and 

compare the different materials on a common basis but in some cases much more can be said 

on the dynamics modelling and the reader is referred to the reviews by Fielding (2007) and 

Olmsted (2008) for more details and references.  

 

2. Shear rate heterogeneity in yield stress fluids 

2.1 Observations 

It is well-known that in many pasty materials flowing in a straight conduit one can observe an 

unsheared region far from the wall (the so-called plug) and a sheared region along the wall 

(see for example Figure 2). This is a typical trend observed with yield stress fluids [Bird et al. 

1982]. At first sight this situation looks as a shear-banding: there is a flowing region and a 

rigid region and since the shear rate in the solid region is apparently equal to zero it can 

strongly differs from some average shear rate of the flowing region, which obviously differs 

from zero.  

 



 

Figure 2: View from above of the free surface of a kaolin suspension flowing 
(here from left to right) in steady-state in an inclined, rectangular, open channel. 
A pepper line was dropped upstream perpendicularly to the flow direction. It now 
appears deformed due to the shear along the walls, and undeformed in the central 
plug region. Remark that the slight “dunes” at the free surface were formed far 
upstream at the hopper exit and do not play any role. [reproduced with Courtesy 
from APS, Coussot et al. 2002a] 

 

However, conduit flows are also characterized by a strongly heterogeneous shear stress 

distribution. As a consequence, this separation between a liquid and a solid region may simply 

reflect the shear stress variation through the sample. In order to conclude for the presence or 

absence of shear banding, one has to look more precisely at the variation of the shear rate at a 

local scale in the sample, particularly at the approach of the interface between the liquid and 

the solid regions. 

Such local measurements can be obtained thanks to MRI velocimetry in another geometry 

characterized by a strongly heterogeneous shear stress distribution: the Couette geometry. 

Two examples of velocity profiles inside yield stress fluids are shown in Figure 3 and 4. For 

this geometry the shear stress decreases by a factor 2.25 from the inner to the outer cylinder. 

In Fig. 3, we see that in a Carbopol gel, the shear rate, which is indirectly related to the slope 

of the tangential velocity profile via rrVr ∂∂= )/(γ  in a Couette geometry, progressively 

decreases towards zero in the sheared region and then remains almost constant around zero in 

the apparently unsheared region. This defines respectively a liquid and a solid region, but 

there is no shear-banding as the shear rate progressively decreases from a finite value to zero 

and has the same value (zero) on both sides of the interface between the two regions: we have 

a coexistence of static and flowing regions. 



Actually in order to have a strict appreciation of this continuous transition from the liquid to 

the solid region we would need to have a look at any scale, which obviously is not realistic, in 

particular because this would necessarily fail at the scale of the basic elements of the fluid. 

Thus, as usual in continuum mechanics we must appreciate the continuity of the shear rate at a 

scale sufficiently large for the continuum equation to be valid. This implies that the continuity 

of the shear rate likely fails at the approach of the scale of the material elements. 

In the example of Figure 3 we show (see inset) that we get a similar aspect of the velocity 

when we decrease significantly the scale of observation, which confirms the continuity of the 

shear rate in our range of observation. Note that in this case anyway it was not realistic to go 

down to a smaller scale relevantly as this would fall below the resolution of the velocimetry 

technique. 
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Figure 3: Steady-state velocity profile for Carbopol gel inside the gap of a Couette 
rheometer (inner diameter (including roughness): 8.3cm; outer diameter: 12cm) 
for a rotation velocity of the inner cylinder rpm3=Ω (see experimental procedure 
in Coussot et al. (2009)). The inset shows the same data at a smaller scale, at the 
approach of the unsheared region. The continuous line (in the inset and the main 
figure) is a single Herschel-Bulkley model ( nkf γ=  in equation (1)) fitted to the 
data with 45.0=n . 

 



By contrast, we observe a discontinuity in the slope of the velocity profile measured during 

the flows of a cement paste in a Couette geometry in Figure 4: the velocity profile has an 

almost constant slope over a length significant with regards to the sample dimension, then, at 

a certain distance, the slope of the velocity vs distance curve abruptly drops to almost zero 

and keeps this value for larger distances. We still have the coexistence of a solid and a liquid 

region in such a flow. However here there is a discontinuity of the shear rate at the interface 

between the two regions: the shear rate is equal to a critical shear rate cγ  in the liquid region, 

and equal to zero in the solid region. This behavior is closer to what is usually described as 

shear-banding.  

 

2.2 Modelling 

The behavior of yield stress fluids in simple shear is generally modelled in the following way: 

)(  ; 0 γτττγττ fcc =⇒>=⇒<          (1) 

in which τ  and γ  are the shear stress and shear rate magnitudes, and cτ  the yield stress. We 

might also use a 3D description (see for example Bird et al. 1982) but for the sake of 

simplicity we will assume simple shear only, which in fact does not limit the generality of the 

purpose. In this formulation we have also left apart other aspects of the behavior of yield 

stress fluids such as the possible viscoelastic and thixotropic effects in the liquid and in the 

solid regimes. This is reasonable as we are dealing with steady-state flows. 

In this context, coexisting static-flowing regions in geometries with heterogeneous shear 

stress distributions is simply the consequence of the existence of a yield stress. When the 

stress is larger than the yield stress within all the sample it is in its liquid regime everywhere 

and the shear rate continuously varies within the sample. By contrast, when somewhere the 

stress is smaller than the yield stress the material is in its solid regime (i.e. the deformation is 

limited) in this region and in its liquid regime in the rest of the sample. Finally the absence or 

the existence of shear banding associated with this coexistence of static and flowing regions 

only depends on the form of the flow function f . In the case of simple yield stress fluids 

0)(1 =−
cf τ , and f  is a continuous increasing function. Then the shear rate at the interface is 

zero on both sides of the interface. For complex yield stress fluids experiencing shear 



banding, there must be a discontinuity in the flow curve, i.e. 0)(1 >=−
ccf γτ . These two 

types of curves are represented on Figure 11. 

2.3 Physical origin 

The coexistence of static and flowing regions is associated with the existence of a yield stress. 

From a physical point of view a great variety of materials such as concentrated emulsions, 

foams, colloidal suspensions or physical polymeric gels can be considered as jammed systems 

[Liu and Nagel 1998] since they are made of a great number of elements (droplets, bubbles, 

particles, polymer chains) in strong (direct or at distance) interaction in a limited volume of 

liquid. From a mechanical point of view they can be considered as yield stress fluids, in the 

sense that they cannot flow in steady state unless the stress applied to them overcome a 

critical, finite value. This property results from the existence of a continuous network of 

interactions (i.e. jammed structure) between the elements, which has to be broken for flow to 

occur. The yield stress of the material is thus related to the strength of this network. This 

picture will be refined in Section 3 in order to explain why some yield stress fluids experience 

shear banding while others do not. 
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Figure 4: Velocity profiles under different rotation velocities in a Couette 
geometry (same as in Figure 3) for a cement paste (see experimental procedure 
in Jarny et al. 2005). 

 



3. Shear-banding in soft-jammed materials 

3.1 Observations 

Shear-banding in steady-state 

For various material types made of a high concentration of elements interacting at distance 

and thus exhibiting a yield stress (clay suspensions (Raynaud et al. 2002, Coussot et al. 2002a, 

Bonn et al. 2002), cement pastes (Jarny et al. 2005), emulsions (Bertola et al. 2003), foams 

(Lauridsen et al. 2004, Rodts et al. 2005)) we observe a discontinuity in the slope of the 

velocity profile in a Couette geometry. An example of this effect is shown in Figure 5: the 

velocity profile has an almost constant slope over a significant distance, then it drops to 

almost zero and remains around this value for larger distances. As a consequence the 

corresponding flow curve has the form of a curve truncated below a critical shear rate ( cγ ) 

associated with a critical shear stress ( cτ ): for a stress below cτ  no steady flow can occur, and 

for a stress larger than cτ  the shear rate is necessarily larger than cγ  (see example in Fig. 11).  

 

Figure 5: Typical flow curve obtained for some pasty materials under imposed, 
apparent shear rate: the solid line corresponds to the rheological behavior of the 
material in steady-state homogeneous flow; the dotted lines correspond to the 
various apparent steady-state flow curves that can be observed in practice for 
shear rate below the critical value ( cγ ), but which do not correspond to an 
effective bulk behavior of the material (see text). The drawings show the 
qualitative aspect of the velocity profile within the gap of the shear geometry in 
these apparent steady-state flows. 

 



With such a material let us now consider the case of a slightly heterogeneous stress 

distribution centered around the mean value τ . A steady flow is obtained only when in some 

region the stress is larger than cτ . In that case, since everywhere the stress is only slightly 

different from cτ  we have cγγ ≈  in some region and 0=γ  in the rest of the material. This 

situation is typically that usually associated with shear-banding. 

Let us now consider the situation for which an apparent shear rate γ , smaller than cγ , is 

imposed to such a material in a geometry (with a gap H ) in which the stress is almost 

homogeneous (typically a cone and plate geometry). The apparent stress will adjust so as to 

obtain a situation similar to that described in the previous paragraph: τ  smaller than cτ  in 

some region, and larger than cτ  in the rest of the material; and the total thickness of the 

sheared regions is h  such that hH cγγ = , which makes it possible to get the imposed apparent 

shear rate. We get the picture presented in Figure 5. Such a result (with a cone and plate 

geometry) was obtained with different clay suspensions (Pignon et al. 1996, Coussot et al. 

2002a) and with a silica gel (Moller et al. 2008).  

A detailed illustration of this effect as it occurs with a bentonite suspension in a cone and 

plate geometry is shown in Figures 6 and 7: for a rotation velocity larger than a critical value 

the bands of shear for the different levels occupy the whole sample; for a smaller rotation 

velocity the bands of shear occupy only a limited thickness in the gap. Also the thickness of 

the sheared layer is constant for cγαγ >Ω=  and decreases proportionally to γ  for cγγ <  

(see inset of Figure 7). 
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Figure 6: Velocity distribution in the gap of a cone and plate geometry (cone 
angle : 4.5°, diameter: 12cm) as observed by MRI velocimetry for a bentonite 
suspension (see technique, procedure and material characteristics in Raynaud et 
al. 2002). The vertical and horizontal scales are in centimetres. The material was 
initially presheared at a high velocity (say 110rpm) then the rotation velocity was 
fixed at a given level and the velocity distribution was measured during 5min 
after 10min of flow at this level. It was checked from other measurements at 
larger times that the steady-state had been reached. The left side shows the typical 
aspect of the velocity distribution (with a uniform shear) for a rotation velocity 
larger than 25rpm (here 80rpm) and the right side the typical aspect (with a 
localization of the shear in a band along the cone surface) for a rotation velocity 
smaller than 25rpm (here 10rpm). The successive bands from bottom to top 
represent the regions of velocities in 11 ranges of equal thickness and covering 
the complete range, i.e. [ ] [ ];102,10 ;10,0 MMM VVV  etc, in which MV  is the 
maximum velocity (along the cone surface). 
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Figure 7: Local data for the experiments described in Figure 6 for different 
rotation velocities of the cone (stars: 80rpm; circles: 40rpm; triangles: 20rpm; 
crossed squares: 10rpm; squares: 5rpm): dimensionless height (with H  the gap 
thickness) above the plane as a function of the velocity scaled by the maximum 
velocity. The inset shows the sheared thickness (scaled by the gap) as a function 
of the rotation velocity. 



Discrete regime 

In general shear-banding does not have a significant effect from a macroscopic point of view 

as long as the sheared region is not too small: the apparent shear rate varies in a wide range 

while the apparent shear stress remains around cτ , a situation globally similar to that observed 

for a simple yield stress fluid. The situation is quite different when 0→γ  since in that case h  

tends to zero and finally reaches a value of the same order as the size of the elements 

composing the material. In that case the continuum assumption is no longer valid, since the 

flowing region has a size not much smaller than the element size. It follows that the apparent 

behavior, i.e. the relationship between the apparent shear rate and the resulting shear stress, 

doesn’t reflect the behavior of a single, homogeneous material, but more likely the behavior 

of a discrete material, i.e. which likely cannot be considered as a continuum material. This 

effect was observed with foams [Herzhaft et al. 2002, Rodts et al. 2005, Gilbreth et al. 2006], 

laponite suspensions [Pignon et al. 1996], emulsions [Ragouilliaux et al. 2006] and depending 

on the material structures either an increasing or a decreasing apparent flow curve were 

observed in the very low shear rate region (see Figure 5).  

Note that more generally, a complex effect may be observed in all shear rate conditions if the 

flow is enforced in a small confined region. Actually, Goyon et al. (2008) have recently 

studied in detail this discrete regime, through the flows of emulsions confined in a 

microchannel. They observed that no local constitutive law can account for the flows of their 

system: the local behaviour of the emulsion seems to depend on the boundary conditions; they 

show that this may be the signature of a nonlocal constitutive law. This effect was observed in 

zones of extent that increase with the degree of jamming (the droplet volume fraction in this 

case) and that may involve up to 100 particles. Finally the physical origins and possible 

similarities with the “discrete” effects observed (see above) in the apparent flow properties 

still need to be clarified. 

 

Time-effects 

In fact the effects observed above do not develop instantaneously in the materials: time-

effects play an important role. Let us consider a material exhibiting a critical shear rate as 

described above and in its liquid regime, i.e. the shear stress is everywhere larger than cτ . 

Then, at a given time we impose a shear stress smaller than cτ : the shear rate progressively 



decreases towards zero so that the material apparently stops flowing. In contrast, if the stress 

imposed is larger than cτ  a steady flow is obtained, but at a shear rate larger than cγ . This 

effect was described as a viscosity bifurcation [Coussot et al. 2002b] since instead of a 

progressive increase towards infinity as the stress is decreased towards cτ  the apparent 

viscosity reaches a finite value, i.e. cc γτ , just before the liquid/solid transition. 

For such a fluid it is thus possible to obtain, at least transiently, a flow at a shear rate smaller 

than the critical value, simply by observing the flow as it is coming to a stop. This effect was 

observed under controlled shear stress by Ragouilliaux et al. 2007 via MRI velocimetry of an 

emulsion loaded with clay particles giving rise to attractive forces between the droplets. It can 

be appropriately represented in a rheogram through the time evolutions of the apparent 

(instantaneous) flow curve, i.e. )(   vs)( tt γτ  (see Figure 8): (i) in a first stage the apparent 

flow curve a short time after preshear is more or less that of a power-law fluid (dashed plus 

continuous lines on the right of Figure 8), (ii) the points in the continuous part of the initial 

curve correspond to steady state flows, in this rheogram they remain almost fixed in time, (iii) 

the points situated in the dashed part of the initial curve do not correspond to steady-state 

flows, for a stress imposed in this range the shear rate progressively decreases towards very 

low values, so that after a sufficient time the apparent shear rate is zero, finally the flow curve 

in steady state in this range of stresses is the vertical, continuous line on the left in Figure 8.  

 

Figure 8: Typical flow curve obtained for some pasty materials (see text) under 
imposed, apparent shear stress: the continuous line corresponds to the effective 
(steady-state) flow curve; the dashed line is the apparent (transient) flow curve 
obtained after just a preshear at a high shear rate; the dotted arrows show the 
shear rate evolution from the apparent flow curve for different given shear stress 
values below the yield stress. 



A slightly different evolution can be observed under controlled (apparent) shear rate (Rogers 

et al. 2008). In that case, after a strong preshear the initial apparent flow curve corresponds to 

that observed initially under controlled shear stress (cf Figure 8). Then for apparent shear rate 

larger than cγ  the stress remains almost fixed, this corresponds to the continuous line in 

Figure 8, i.e. homogeneous steady-state flows; for apparent shear rate smaller than cγ  the 

stress more or less rapidly increases towards the yield stress plateau (or to another value if the 

sheared thickness in the shear-band is too small (cf. § Discrete regime)) as shown in Figure 5. 

We thus get an apparent flow curve moving vertically from its initial value (dashed line of 

Figure 8) to its final value as shown in the case of granular pastes in Figure 9. However we 

emphasize that in that case, i.e. under controlled (apparent) shear rate, we get an apparent 

steady-state flow curve for which steady state flows below cγ  actually corresponds to 

heterogeneous flows (with shear-bands) and the apparent shear rate does not correspond to the 

local shear rate. 

 

3.2 Modelling 

In comparison with micellar systems (see below) modelling the rheological behavior of pastes 

with the aim of representing the above effects has been the subject of relatively few published 

works. One reason is that the phenomenon has only recently emerged. Another reason is that 

the structures of the systems exhibit a great variety, so that it is difficult to suggest a model at 

the same time sufficiently general and accurate.  

For modelling steady-state it seems that the most natural way is to use a model similar to 

equation (1) but now with a function f  such that 0)(1 >=−
ccf γτ . Such a model effectively 

implies that no steady flows can be obtained below the critical shear rate cγ . In order to 

reflect the time-effects described above it is necessary to introduce a structure parameter 

which will represent some physical characteristics of the instantaneous structure state. In this 

picture, the constitutive law depends on this structure parameter, and the structure parameter 

evolution is driven by some kinetic equation. Then various thixotropy models can be 

suggested which predict the flow instability below cγ  [Coussot et al. 1993, Cheng 2003, 

Roussel et al. 2004]. These models predict that when the material has been presheared its 

structure parameter is low, so that an apparent flow curve as shown in Figure 8 can be 



obtained. Then under controlled stress above the yield stress the structure parameter reaches a 

steady-state value and a steady-state flow is obtained, whereas below the yield stress the 

structure parameter increases, so that the shear rate decreases, and eventually tends towards a 

large value for which no flow occurs. 

 

3.3 Physical origin 

The different trends above finally suggest a physical explanation for the viscosity bifurcation 

effect: usually the thixotropic character of these fluids is represented via a structure parameter 

which evolves as a result of a competition between restructuration effects (which are for 

example clearly observed at rest, the apparent viscosity increases in time) and destructuration 

effects due to the flow; it is reasonable to consider that for a sufficiently low stress this 

competition is won by the restructuration effects, which tend to decrease the shear rate, 

decreasing further the destructuration effects; on the contrary, for larger stress the competition 

is won by destructuration effects, so that the shear rate can increase, further destructuring the 

material until a steady-state is reached. Such a scheme should be general for jammed 

materials, and thus would be expected for any yield stress fluid since these materials have 

some structure in their solid regime which requires some characteristic time to form or break. 

However, as described in the previous section, there seems to exist some fluids for which 

these effects are not observable under usual flow conditions, i.e. the critical shear rate, if it 

exists, is very low. Finally it was recently suggested (Coussot et al. 2009) that two types of 

jammed materials can be distinguished: systems with mostly repulsive interactions between 

the elements and systems with mostly attractive interactions between the elements. 

The analysis is as follows. In Carbopol gels (Coussot et al. 2009), repulsive latex suspensions 

(Wassenius and Callaghan 2005) and non-adhesive emulsions (Becu et al. 2006, Ovarlez et al. 

(2008)), the elements interact via different types of forces: colloidal forces between latex 

particles, forces due to surface energy storage between emulsion droplets, and elastic forces 

due to blob deformation in the gel. All these forces give rise to repulsive interactions when 

two neighbouring elements tend to get closer to each other, so that beyond a certain 

concentration of elements in the liquid they are jammed against each other: due to the 

interactions with its neighbours each element is in a potential well from which it can be 

extracted only by applying a force larger than a finite value. This structure starts to flow when 

somewhere in the material one element gets out of its potential well. After such an event the 



whole structure rapidly rearranges under the action of the local, elastic, repulsive forces. 

Remark that this picture corresponds to that suggested within the frame of the SGR (Sollich et 

al. 1997) or the STZ (Falk and Langer 1998) models. Thus a macroscopic deformation 

involves a succession of such local events followed by an almost instantaneous global 

rearrangement, which should, on average, leads to a homogeneous deformation. Finally the 

material apparently does not give rise to any shear-banding beyond the yield stress at least in 

our usual range of observation of shear rates. 

Let us now consider systems with significant attractions between elements (colloidal 

suspensions, foams (since the bubbles are somewhat stuck to each other via very thin liquid 

film)). When they are dispersed at random in the liquid the elements develop some 

interactions with their neighbours so that, similarly to the case of materials with repulsive 

interactions, they can be considered as in a potential well due to their interactions with the 

surrounding elements. However, here the spatial distribution may significantly evolve in time 

under the combined action of thermal agitation and attractive forces. The elements may 

eventually find an arrangement in which they are linked to the others by attractive forces. In 

this new arrangement the potential well is in general significantly deeper than in the initial 

disordered dispersion. A macroscopic flow implies that some links are broken somewhere in 

this structure, but now the corresponding elements are for some time in a shallow potential 

well from which they can more easily escape than the elements still linked with their 

neighbours. Thus the broken links form weaker regions which can be more easily deformed 

subsequently and a shear-banding develops in these regions of lowest viscosity.  

At last note that another trend was observed with more or less similar systems, i.e. crowded 

colloidal star polymer, which also exhibit an apparent yield stress: time fluctuations in the 

velocity profile varying with the flow history. It was suggested that these fluctuations are due 

to intermittent changes due to jamming/unjamming transitions (Holmes et al. 2004). This 

effect, which is reminiscent of those observed within shear-banding micellar systems (see 

Section 5), suggests that there might be some analogy in the physical origin of shear-banding 

in micelles and pasty materials.  

 

 

 



4. Granular pastes 

4.1 Observations 

Interestingly similar effects apparently occur with a system in which the particles in 

suspension do not develop any interaction others than hydrodynamic forces and contact 

forces. From a macroscopic point of view, these dense suspensions of noncolloidal particles 

seem to behave as simple yield stress fluids (cf. steady state flow curve in Figure 9). 

However, experiments performed in a controlled stress mode reveal that they undergo a 

viscosity bifurcation (Huang et al. 2005, Ovarlez et al. 2006) below the apparent yield stress: 

no flow seems to be allowed below a critical shear rate. This is confirmed by local 

measurements of the velocity profiles in a Couette geometry: when the apparent shear rate (or 

rotational velocity) falls below the critical shear rate evidenced in the viscosity bifurcation 

experiments, the flow is localized near the inner cylinder to ensure that the shear rate is higher 

than the critical shear rate in the flowing region (Huang et al. 2005, Ovarlez et al. 2006). 
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Figure 9: Torque vs. rotational velocity for the flows of a non-colloidal 
suspension in a Couette geometry (see material and procedure in Ovarlez et al. 
2006). Open circles: steady state. Stars: torque measured instantaneously after a 
velocity step from a velocity of 100 rpm. The inset shows the velocity profile in 
time when the rotation velocity is changed from 9rpm to 0.2rpm at 0=t . The 
profiles shown correspond to 66.7s 29.9s; 16.1s; 6.9s; s;3.2=t . 

 



The way shear localization develops is reminiscent of the observations made in pasty 

materials: from MRI it was shown that when the velocity of the inner cylinder is abruptly 

decreased below its critical value, the flow progressively stops in a region near the outer 

cylinder (Ovarlez et al. 2006) (see Figure 9). In parallel, the torque increases up to its plateau 

value corresponding to the yield stress. Thus, here again no flow is allowed below a critical 

shear rate and the constitutive equation in steady state should be written as a “truncated” 

viscous law. It has to be noted that the torque value at the onset of localization is proportional 

to the inner cylinder rotational velocity whatever this velocity (Ovarlez et al. 2006): this 

suggests that the behaviour of the flowing material is that of a purely viscous material, 

without any signature of a yield stress. Note that this contrasts with the observations with 

some pasty materials (see above) in which the apparent behavior just after preshear seems to 

be already that of a yield stress fluid [Ragouilliaux et al. 2007].  

4.2 Physical origin 

As the only interactions between particles may be hydrodynamic interactions and contact 

forces, we can give the following sketch: in the flowing region, the hydrodynamic interactions 

dominate as the behaviour is basically purely viscous; on the other hand, there must be a 

contact network (with frictional contacts between the particles) in the jammed zone as this 

zone must be able to sustain a minimum shear stress without flowing. The shear banding 

instability observed in these materials is thus likely the signature of a change in the nature of 

the interactions between particles. It has to be noted however that, thanks to the MRI display, 

concentration measurements were performed during the flows of these materials, and that no 

macroscopic sedimentation was observed during shear localization (Ovarlez et al. 2006). This 

would mean that the transition occurs at the contact scale between lubricated close contacts 

and frictional contacts. The shear banding instability would then occur when the force due to 

lubrication is lower than the force due to gravity, leading to the formation of contacts; this is 

reminiscent of the shear resuspension mechanism (Acrivos et al. 1993). This would require 

imperfect density matching between the particles and the fluid: this was confirmed by (Fall 

2009). This mechanism is also reminiscent of the behavior of pasty materials in which shear 

banding is associated with the creation/destruction of adhesive contacts: here it is associated 

with the creation/destruction of frictional contacts. 

At very low shear rates, the flow is strongly localized and the flowing region is a few particles 

wide. Then the behaviour resembles that of a concentrated granular paste (Ancey and Coussot 



1999), and might be considered as a “discrete regime” as described in section 3.1. It is also 

reminiscent of the behavior of dry granular materials or foams which in Couette systems 

(Mueth et al. 2000, Da Cruz 2004, Gilbreth et al. 2006) exhibit velocity profiles localized 

along the inner cylinder while some residual motions are observed farther. In that case an 

original trend is the similarity of the profiles when the velocity is scaled by the maximum 

velocity (along the inner cylinder). It was shown recently (Rodts et al. 2005) that when this 

scaling occurs the material behavior in simple shear should follow a power-law model, which 

is not consistent with the apparent behavior of such granular materials at a macroscopic scale. 

Thus that case has a strong analogy with the discrete regime of pasty materials since no 

consistent constitutive equation can represent the apparent behavior. 

Note that another source of shear localization exists in non-colloidal suspensions. When the 

volume fraction is too high, it was observed that the material separates into two zones, 

whatever the rotational velocity: a jammed zone of concentration higher than a maximum 

packing fraction (equal to 60.5% in monodisperse suspensions of spherical particles) near the 

outer cylinder, and a flowing zone of concentration lower than this maximum packing fraction 

near the inner cylinder (Ovarlez et al. 2006). In this case the structural change associated with 

shear banding is thus a change in the volume fraction. No critical shear rate can be defined in 

this case: the shear rate at the interface between the flowing zone and the jammed zone can 

take any value (which should still be above the critical shear rate evidenced above for the 

formation of frictional contacts) as the jammed zone can apparently never be enforced to 

flow. 

 

5. Micellar systems 

5.1 Observations 

The flow curve of various wormlike micelle or lamellar phase solutions (Rehage and 

Hoffmann 1991, Roux et al. 1993, Cappelaere et al. 1997, Hernandez-Acosta et al. 1999, 

Holmqvist et al. 2002) was shown to exhibit a stress plateau in the shear stress vs shear rate 

curve at a particular stress value, i.e. the stress appears to remain almost constant in a certain 

range of shear rates. In fact the stress may slightly increase in this region but this increase 

appears negligible in comparison with its variations at shear rates out of this range (see Figure 

9). Under controlled stress experiments, when progressively increasing the stress level, one 



observes around a critical value ( cτ ) a large increase of the resulting shear rate which rapidly 

turns from a small value ( 1γ ) to a much larger value ( 2γ ) associated to the end of the plateau. 

If the slow flow at shear rates smaller than 1γ  has not been detected the fluid may seem to 

start to flow abruptly at cτ . In several cases it has also been shown that the position of the 

plateau is not precisely defined: in a portion of flow curve before the plateau and a portion 

after the plateau the flows are extremely stable, but at the approach of the plateau different 

shear stress vs shear rate data may be obtained depending on flow history (Bonn et al. 1998, 

Salmon et al. 2002) (see Figure 9). This in particular implies that flow curves obtained under 

an increasing or a decreasing ramp of stress may differ around the plateau. It was suggested 

that the flow curve of such material has a S-shape (as shown in Figure 1). Let us recall that for 

a S-shape curve a flow can be obtained either in the first or the second increasing part of the 

flow curve, but no stable flow can be obtained in the decreasing part.  

Various techniques (Small Angle Neutron Scattering, Small Angle X-ray Scattering, 

birefringence,..) have been used to study the suggested structural transition in wormlike 

micelles exhibiting this peculiar rheological behavior. The observations in general led to the 

conclusion that the plateau is associated to a phase transition, such as the transition between 

isotropic and nematic phases in wormlike micelles (Schmitt et al. 1994, Berret et al. 1994), 

the coexistence of the lamellar phase and onions in other surfactant mixtures (Partal et al. 

2001) or the coexistence of different orientational structures (Holmqvist et al. 2002). Since 

such measurements concerned the whole material or at least all the material in a volume 

across the gap, they provided a global information and it could be conceived that the phase 

transition was progressive in time but approximately homogeneous in the bulk at any time. 

However, from observations by flow birefringence on wormlike micelles it was finally 

noticed that this transition occurred in space (Cappelaere et al. 1997): in a Couette system the 

second phase appears at the first critical shear rate ( 1γ ) and progressively invades the gap as 

the apparent shear rate (γ ) increases, until completely occupying the gap for 2γγ = . With 

similar techniques and analogous materials it was confirmed that the shear rates in the two 

phases strongly differ [Cappelaere et al. 1995, Decruppe et al. 1995, Makhloufi et al. 1995, 

Berret et al. 1997].    

These observations have encouraged people to focus on the velocity field within flows of soft 

jammed systems with the help of different techniques (NMR, light scattering, simple 

microscopy). All the results show that "shear-banding" develops, in particular in the plateau 



region (Mair and Callaghan 1997, Britton and Callaghan 1997, Salmon et al. 2003, Holmes et 

al. 2003). 

5.2 Modelling 

Assuming that we can leave apart time effects a simple means to represent these observations 

is to consider that the fluid in steady state flow can either be in a state (i) with a behavior in 

simple shear of the form: )(γτττ fc =⇒< ; or in a state (ii) with a behavior of the form: 

)(γτττ gc =⇒> ; in which f  and g  are two increasing, positive functions such that 

)()( 1
21

1
cc gf τγγτ −− =<= . The apparent flow curve of such a fluid has a plateau between 

1γ  and 2γ  like that described in Figure 10. Indeed, let us consider a situation for which some 

shear rate is imposed to the fluid while the shear is approximately homogeneous (for example 

in a cone and plate geometry). For an apparent shear rate γ  in the range [ ]21;γγ , the stress is 

necessarily equal to cτ  otherwise the shear rate would be given by one of the above 

constitutive equations and would be outside the range [ ]21;γγ . The shear rates of the material 

in state (i) and (ii) are respectivey  1γ  and 2γ  and the sample develops two parallel bands in 

the state (i) and (ii) of respective thicknesses 1h  and 2h . The relative velocity of the 

boundaries may then be written γγγ HhhV =+= 2211 , from which we deduce that, in the 

absence of wall slip or other perturbating effects, the corresponding relative gap fractions of 

the material in state (i) and (ii), respectively Hh11 =ε  and Hh22 =ε , should respect the 

relation: 

2211 γεγεγ +=           (2) 

This is the so-called “lever rule”.  

 



 

Figure 10: Schematic aspect of the velocity profiles for micellar solutions in 
Couette flows under different rotation velocities of the inner cylinder as observed 
by Salmon et al. (2003) and corresponding state of the material (in two possible 
phases). The continuous lines correspond to the velocity profiles averaged over 
some time and the dotted lines to the “instantaneous”   velocity profiles. Below 
corresponding flow curve with the plateau phenomenon: the position of the 
plateau and the values of the critical shear rate may depend on flow history, 
leading to apparent flow curves situated between the continuous and the dashed 
lines. 

 

5.3 Physical origin 

The above results have been obtained under the assumption that the stress is perfectly 

homogeneous within the gap. In reality there always remain some sources of heterogeneity, 

which will determine the spatial distribution of the regions (i) and (ii). The state (i) thus 

preferentially localizes in the regions of smaller stresses and the state (ii) in the other regions. 

For micellar solutions, in contrast with pasty materials, the two coexisting regions appear to 

contain two materials of very different mesoscopic structures (Salmon et al. 2003) and various 

recent studies have suggested that the phenomena were more complex than the simple, stable 

shear-banding as described above. For example it has been shown that the band stability is 

questionable, the localization of shear in the regions of larger stresses does not seem obvious 

for all systems (Fischer and Callaghan 2000), and the “lever rule” implies an extreme 

localization of shear at low velocities, which is not in agreement with birefringence 

observations. Generally speaking the shear-banding has been shown to be a dynamical 

process (Decruppe et al. 2001), with an evolution depending on the flow history. For 



wormlike micelles it was also observed (Lerouge et al. 2000) from the study of the spatial 

distribution of the transmitted light intensity through the gap that in one band the flow can be 

inhomogeneous at a small scale (say 150 mμ ): the band is made of small sub-bands closely 

aligned in the flow direction. Finally the most complete studies (Salmon et al. 2003, Holmes 

et al. 2003) on this subject showed that the shear-banding is stable only when averaging the 

velocity profiles over sufficiently long times, but instantaneous velocity profiles (taken over 

about one second) appear to significantly fluctuate around this mean value. In particular the 

position of the interface between the two regions significantly varies in time (see Figure 10). 

 

6. Conclusion 

Here we suggested a clarification of the difference between shear-banding, for which there is 

an apparent discontinuity in the shear rate vs shear stress curve and the coexistence of static-

flowing regions for which there is a continuous variation from two regions of different mean 

shear rates with a zero shear rate in one of them (see Figure 11). In this context, the perfect 

plastic behavior is situated at the interface (see Figure 11) between these two behavior types: 

for a critical stress the apparent shear rate can take any value so that it is not possible to 

decide whether or not we have a discontinuity of the shear rate. 

 
Figure 11: Main qualitative aspects of the shear rate vs shear stress curve for 
materials giving rise to shear-localization or shear-banding. The continuous line 
corresponds to a simple yield stress fluid in which a static region coexists with a 
flowing region. The dashed line corresponds to shear-banding. The vertical line 
corresponds to a perfect plastic behavior, intermediate between both behavior types. 



Apparently various physical phenomena are at the origin of shear-banding in the different 

materials we reviewed. Actually if we look at them from a very global point of view there 

appears some analogies: the spontaneous restructuration within a colloidal system, which can 

overcome the destructuration due to shear for sufficiently low stresses; the formation of 

contacts due to sedimentation in granular pastes which is counterbalanced by hydrodynamic 

resuspension, but may ultimately lead to a jamming of the structure at low shear rates; the 

phase changes in micellar systems leading to regions of very different viscosities. In all these 

systems there are at least two physical phenomena which are in competition and depending on 

the flow conditions one of them becomes dominant and make the system evolve in a specific 

direction. In some sense this is consistent with the general description of Olmsted (2008): 

“When an imposed shear rate exceeds a characteristic structural relaxation time, the fluid can 

attain a nonequilibrium state whose structure is qualitatively different from that of the 

quiescent state”. 

However there exists some distinction between the physical trends occurring with micellar 

systems and with jammed systems (soft-jammed systems, granular pastes). Indeed for 

micellar systems the underlying phenomenon is a priori a kind of physical phase change, 

which occurs more or less immediately under given, local conditions. In contrast, with 

appropriate flow history jammed systems are able to flow homogeneously at any shear rate, at 

least over short duration, without developing shear-banding. These are the specific boundary 

conditions which lead them to develop shear-banding in time, as a result of the progressive 

temporal evolution of some structural characteristics of the material. 

Finally shear-banding occurs in a wide variety of materials which exhibit a strongly non-

linear rheological behavior or/and a complex structure. This suggests that for such materials 

shear-banding is not an exotic phenomenon but an almost general natural consequence, and 

that for complex, strongly non-linear materials this is the absence of shear-banding which is 

unexpected. 
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