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Abstract 

The results of a macro-scale experimental study of the effect of heating on a fluid-saturated 

hardened cement paste are analysed using a multi-scale homogenization model. The analysis of the 

experimental results revealed that the thermal expansion coefficient of the cement paste pore fluid is 

anomalously higher than the one of pure bulk water. The micromechanics model is calibrated using 

the results of drained and undrained heating tests and permits the extrapolation of the 

experimentally evaluated thermal expansion and thermal pressurization parameters to cement pastes 

with different water-to-cement ratios. It permits also to calculate the pore volume thermal expansion 
coefficient φα  which is difficult to evaluate experimentally. The anomalous pore fluid thermal 

expansion is also analysed using the micromechanics model. 
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1. Introduction 

A better understanding of the effects of undrained heating and induced thermal pressurization 

phenomenon is an important point to properly understand the behaviour and evaluate the integrity 

of an oil well cement sheath submitted to rapid temperature changes. Temperature increase in 

saturated porous materials under undrained conditions leads to volume change and pore fluid 

pressure increase. This thermal pressurization is due to discrepancy between thermal expansion 

coefficients of the pore fluid and of the pore volume. This pore pressure increase induces a 

reduction of effective mean stress and can lead to shear failure or hydraulic fracturing. Indeed the 

geomaterials are pressure sensitive and the maximum shear stress depends on the effective mean 

stress. On the other hand, when pore pressure is higher than maximum principal stress (positive in 

compression) the material may undergo tensile failure. The thermal pressurization phenomenon is 

important in petroleum engineering where the reservoir rock and the well cement lining undergo 

sudden temperature changes, as for example when extracting heavy oils by steam injection 

methods. This rapid temperature increase could damage cement sheath integrity of wells and lead to 

loss of zonal isolation. Within this context, a macro-scale experimental program of drained and 

undrained heating tests is performed on a fluid-saturated hardened oil-well cement paste. The 

results of this study are presented in [1] and show some important aspects of behaviour of this 

material when submitted to rapid temperature changes. The thermal pressurization coefficient, 

defined as the pore pressure increase due to a unit temperature increase in undrained conditions, is 

evaluated to about 0.6MPa/°C which is a relatively high value comparing to other geomaterials (see 

[2] for a review). In accordance with results of Valenza and Scherer [3], the analysis of the 

undrained heating test revealed that the thermal expansion coefficient of cement paste pore fluid is 

anomalously higher than the one of pure bulk water. This experimental study was a part of a larger 

study on the thermo-poro-mechanical behaviour of a hardened cement paste [1][4][5][6]. The 

experimental program consisted by drained, undrained and unjacketed compression tests, as well as 

drained and undrained heating tests and permeability evaluation tests. This experimental program is 

performed on a particular cement paste, prepared with class G cement at a water-to-cement ratio 

equal to 0.44. The poroelastic parameters are then extrapolated to cement pastes with different 

water-to-cement ratios by means of micromechanics modelling and homogenization technique [7]. 

This is done using a multi-scale micromechanics model, originally proposed by Ulm et al. [8], 

which is calibrated on the experimental results [7]. The predictive capacity of the micromechanics 

model is verified by comparing the parameters with some experimental results from literature. In 

the continuity of the approach used in [7], the micromechanics model is used here in association 

with the results of drained and undrained heating tests presented in [1]. The model has been already 

calibrated in [7] for the poroelastic parameters, but a second calibration step should be performed 

for the thermal behaviour. This permits also to study the thermal expansion of the pore fluid in 

different parts of the microstructure. The calibrated model will then be used to calculate thermal 
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expansion and thermal pressurization parameters for cement pastes with different water-to-cement 

ratios. 

The paper is organized in six sections and one appendix. After this introduction, the second section 

presents the microstructure of the cement paste and discusses the anomalous thermal expansion of 

its pore fluid. The third section presents the theoretical framework of macro- and micro-thermo-

poroelasticity and homogenization method. The results and analysis of drained and undrained 

heating tests are presented briefly in the fourth section. The homogenization of thermal expansion 

and thermal pressurization properties is presented in the fifth section. First the calibration of the 

model is completed on the basis of the results of drained and undrained heating tests and then, the 

homogenization model is used to extrapolate these experimental results for the cement pastes with 

different water-to-cement ratios. The last section is dedicated to concluding remarks. Appendix A 

presents the developments of micro-thermo-poroelasticity equations. 

2. Microstructure of cement paste 

The cement clinker is composed of four main phases: C3S, C2S, C3A and C4AF where in the 

standard cement chemistry the notation C stands for CaO, S for SiO2, A for Al2O3 and F for Fe2O3. 

The setting and hardening of cement paste are the results of complex reactions, called hydration 

reactions, between clinker phases and water. The cement paste has a very complex microstructure 

which varies with cement composition, time and hydration conditions. In a simplified view, the 

main phases of the microstructure are calcium-silicate-hydrate (C−S−H) which is the main binding 

phase of all Portland cement-based materials, Portlandite (CH), Aluminates (AL), cement clinkers 

(CK) and macro-porosity. C−S−H is the main hydration product which is a porous phase with an 

amorphous and colloidal structure and a variable chemical composition. The CH often occurs as 

massive crystals but is also mixed with C−S−H at the micron-scale. CH and cement clinker can be 

considered as non-porous solid phases. Because of its colloidal and amorphous nature and the 

variability of its chemical composition, the structure of C−S−H matrix and its solid phase are not 

clearly known. Since a few decades different models have been proposed in the literature for the 

structure of this material. Most of these models consider a layered structure for C−S−H and also the 

existence of an important quantity of chemically bonded or adsorbed water. Jennings [9][10] 

proposed a microstructural model for C−S−H in which the amorphous and colloidal structure of the 

C−S−H is organized in elements, called ‘globules’. The globule, with a size of about 4nm, is 

composed of solid C−S−H sheets, intra-globule porosity filled with structural water and a 

monolayer of water on the surface. The structure of C−S−H in Jennings’ model contains small gel 

pores in the space between adjacent globules and larger gel pores between the groups of several 

globules. Jennings’ model distinguishes two types of C−S−H, called low density (LD) and high 

density (HD) C−S−H. The globules are considered to be identical in LD and HD C−S−H and the 

difference between these two types of C−S−H is in the gel porosity of about 0.24 for HD C−S−H 

and 0.37 for LD C−S−H. A more detailed description of the microstructure of the hardened cement 
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paste is presented in [7]. For the purpose of micromechanics modelling the microstructure of the 

cement paste is divided into the following three scale levels: 

− Level 0 (10-9−10-8m, the C−S−H solid): Solid phase of C−S−H matrix. 

− Level 1 (10-8−10-6m, the C−S−H matrix): High density and low density C−S−H. 

− Level 2 (10-6−10-4m, the cement paste): C−S−H matrix, Portlandite (CH), Alluminates (AL), 

cement clinker (CK) and water. 

2.1. Active porosity 

The analysis of the test results of Ghabezloo et al. [4] revealed that the active porosity of the cement 

paste in poromechanics tests is smaller than its total porosity. A pore volume can be considered to 

be active if under the effect of a pressure gradient, the pore fluid can exchange with the fluid filling 

the pore volume situated in its neighbourhood. From the poromechanics point of view, the inactive 

pore volume and the pore fluid filling it should be considered as a part of the solid phase. Scherer et 

al. [11] and Sun and Scherer [12][13] also argued that a part of the pore fluid in the microstructure 

of cement paste is inactive. Accordingly, these authors reduced the total porosity of cement paste 

and mortar samples for the effect of inactive porosity. 

The distribution of the active pore volume within the total pore volume of cement paste is not 

accurately known, but is important for homogenization of the poroelastic properties. Considering 

the microstructure of the hardened cement paste, it seems reasonable to assume that the inactive 

porosity is entirely situated in HD C−S−H. A detailed discussion of this assumption is presented in 

[7]. Consequently, the active porosity consists of the porosity in LD C−S−H and the macro-

porosity. Assuming that the porosity in HD C−S−H is not active from the poromechanics point of 

view means that in the time-scale of the applied loads, the mass of the pore fluid in HD C−S−H 

porosity is constant. Consequently the HD C−S−H behaves like a porous material in undrained 

conditions. 

2.2. Anomalous pore fluid thermal expansion 

There are experimental evidences showing that the thermal expansion coefficient of cement paste 

pore fluid is higher than the one of pure bulk water [3][1]. This phenomenon is mainly attributed to 

confinement of pore fluid in very small pores of the microstructure. It is known that the thermal 

expansion coefficient of fluids when confined in very small pores, smaller than 15nm, is 

anomalously higher than that of the bulk fluid. This is confirmed by experimental evaluations of 

thermal expansion of water and salt solutions in porous silica glasses [14][15][16][17] showing that 

the thermal expansion of confined fluid increases with decreasing pore size. Moreover, the ratio of 

the thermal expansion of confined fluid to that of bulk fluid decreases with temperature increase.  

The origin of this anomalous thermal expansion is not clearly known but is attributed to surface 

effects resulting in higher pressure of the fluid in the close vicinity of solid surface [18] or the 
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disturbance of the structure of water molecules in a thin layer adjacent to the solid surface [19]. 

Considering the pressure dependency of thermal expansion of water, the higher pore pressure at the 

vicinity of the pore wall results in an average thermal expansion of fluid in a small pore that is 

different from the one of bulk fluid. Figure (1) presents the thermal expansion of pure bulk water as 

a function of pressure at various temperatures [20]. We can see that for temperatures below 50°C 

the thermal expansion increases with pressure, while above 50°C it decreases with pressure 

increase. At 50°C the thermal expansion of water shows almost no pressure dependency. From 

these observations, the average thermal expansion of water in a pore for temperatures below 50°C is 

higher than the one of bulk water, and the thermal expansion anomaly decreases with pore size and 

temperature increase. This analysis for temperature below 50°C is therefore compatible with the 

experimental results on the behaviour of confined fluids mentioned above. A similar compatibility 

can also be observed for the results of the analysis performed by Garofalini et al. [19]. 

 

 
Figure (1): Pressure dependency of thermal expansion of pure bulk water at different temperatures 

 

Valenza and Scherer [3] were the first who noticed the anomalous thermal expansion of cement 

paste pore fluid when comparing permeability measurements using two different methods: 

thermopermeametry and beam bending. According to these authors, to bring the two measurements 

into agreement, the pore fluid should have a thermal expansion coefficient about one and a half 

times larger than the one of bulk fluid. This is confirmed by experimental study of Ghabezloo et al. 

[1], presented in section 4, who showed that the pore fluid thermal expansion is greater than the one 

of pure bulk water and has a lower rate of increase with temperature.  

In addition to confinement in small pores, it seems that the presence of dissolved ions in the pore 

fluid of cement paste influences its thermal expansion. It is known that the presence of dissolved 

ions in a fluid increases its thermal expansion in both bulk and confined conditions [21][17]. 
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Typical concentrations in the pore fluid of a high alkali cement paste for Na+, K+ and OH- are 

respectively 0.16mol/l, 0.55mol/l and 0.71mol/l after 180 days [22]. Accordingly Ghabezloo et al. 

[1] argued that the anomalous thermal expansion of cement paste pore fluid is partly due to the 

presence of dissolved ions in the pore fluid. 

2.3. Volume fractions 

The volume fractions of different phases of the microstructure of cement paste can be evaluated by 

knowing cement composition, water-to-cement ratio and degree of hydration. Using the method 

proposed by Bernard et al. [23], presented in details in [7], one can evaluate the volume fractions of 

C-S-H, Portlandite, unhydrated clinker and macro-porosity. These volume fractions are denoted 
respectively by CSHf , CHf , CKf  and Vf . The volume fractions that are calculated by assuming the 

complete hydration are presented in Table (1). The parameter LD
CSHf  gives the volume fractions of 

HD and LD C-S-H as LD
LD CSH CSHf f f=  and ( )LD

HD CSH CSH1f f f= − . It is assumed that the Aluminates 

phase has the same properties as the C−S−H phase [7], consequently the volume fraction of C−S−H 

in Table (1) is equal to the sum of volume fractions of Aluminates and C−S−H. The volume 

fractions presented in Table (1) are used in a micromechanics model to evaluate the macroscopic 

properties of the hardened cement paste and to analyse the results of macro-scale drained and 

undrained heating tests. The needed theoretical framework for doing this analysis is presented in the 

following section.  

 

C−−−−S−−−−H level Pore fluid Cement paste level 
Parameter Value Parameter Value Parameter Value 

sk  Calibrated 
(25.0 GPa)* ,HDfα  calibrated CSHf  0.71 

sg  Calibrated 
(18.4 GPa) * ,LDVfα  calibrated CHf  0.18 

sα  calibrated   Vf  0.11 

HDφ  0.24   CKf  0.00 

LDφ  0.37   LD
CSHf  0.60 

    CHk  32.5 GPa 

    CHg  14.6 GPa 

    
CHα  7×10-5 (°C)-1 

* Calibration presented in [7] 

Table (1): Homogenization model parameters 
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3. Theoretical framework 

This paper associates the results of a macro-scale experimental study with the tools of micro-

mechanics theory and homogenization method. It is therefore necessary to present the theoretical 

framework used in the macro-scale experimental study, the one used for the micromechanics 

modelling, as well as the link between the parameters in these two scales. The theoretical 

framework is the same as the one presented in [7], but is extended here to take into account the 

temperature effect. 

3.1. Macro-thermo-poroelasticity 

The theoretical framework is presented for the macroscopic thermo-elastic volumetric behaviour of 

a porous material which is heterogeneous at the micro-scale. This framework is presented in 

different papers and textbooks, e.g. [24][25][26][27][28], and is recalled briefly in the following. 

More details about the definitions of the parameters introduced in this section and the relations 

between these parameters can be found in [1][4][7]. 

The variations of the total volume V  and of the pore volume Vφ  of an elementary volume introduce 

six parameters:    

 
0

1 1
d d

d s

dV
d dp dT

V K K
Σ α− = + −  (1) 

 
0

1 1
d

p

dV
d dp dT

V K K
φ

φ
φ φ

Σ α− = + −  (2) 

where p  is the pore pressure, T  is the temperature, 1 3 :Σ = Σ 1 is the isotropic stress which is 

positive in compression and d pΣ Σ= −  is the differential pressure that is equivalent to Terzaghi 

effective stress. The macroscopic volumetric strain increment is defined as 0dE dV V= −  

( :E = E 1). dK  is the drained bulk modulus and sK  is the unjacketed modulus. pK  and Kφ  are two 

moduli related to the pore volume. Using Betti’s reciprocal theorem it can be shown that 

0 1 1p d sK K Kφ = − [29]. dα  is the volumetric drained thermal expansion coefficient that can be 

measured in a drained heating test and φα  is the pore volume thermal expansion coefficient. Like 

for Kφ , the direct experimental evaluation of φα  is very difficult [1]. In the case of a micro-

homogeneous and micro-isotropic porous material d mφα α α= =  and s mK K Kφ= = , where mα  and 

mK  are respectively thermal expansion coefficient and bulk modulus of the single solid constituent 

of the material.  

The macro-scale experimental study of thermo-poromechanical behaviour of the hardened cement 

paste in [1][4][5][6] was based on the constitutive laws (1) and (2). The derivation of the equations 

of micro-thermo-poroelasticity, presented in section 3.2 and in Appendix A, is done more 

commonly based on an alternative set of parameters. These alternative parameters can be obtained 
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by writing the variations of Lagrangian porosity and total stress from equations (1) and (2). The 
variation of Lagrangian porosity 0V Vφφ =  is given by: 

 0

1
; dd bdE dp QdT Q b

N φφ α φ α= − + − = −  (3) 

where b  is Biot’s effective stress coefficient and N  is Biot’s skeleton modulus. The parameter Q  

gives the variations of the porosity with temperature when strains and pore pressure are constant. 

The total stress increment is given by: 

 ;d d dd K dE bdp dT KΣ κ κ α= + + =  (4) 

The parameter κ  gives the variations of the total stress with temperature when the strains and the 

pore pressure are constant. The equations of micro-thermo-poroelasticity in the following section 
are presented in terms of dK , b , N , κ  and Q . 

An important part of the experimental study in [1][4] was based on undrained compression and 

heating tests. The analysis of the performed undrained heating test needs the introduction of the 
parameters Λ  and uα  that are measured in this test. The variation of the fluid content 0f fm φ ρ=  in 

the undrained conditions is equal to zero ( 0fdm = ). The pore pressure variation in the undrained 

conditions is given by: 

 0

2
0

;
1

f d

f d

Q b
dp Bd dT

b

N K K

φ α α
Σ Λ Λ

φ
+ −

= + =
+ +

 (5) 

where Λ  is the thermal pressurization coefficient and B  is Skempton’s coefficient. fα  and fK  are 

respectively the fluid thermal expansion coefficient and compression modulus. The volumetric 

strain in undrained conditions is given by: 

 
1

;u u d
u d

b
dE d dT

K K

ΛΣ α α α= − = +  (6) 

where uα  is the undrained thermal expansion coefficient and uK  is the undrained bulk modulus. In 

laboratory experiments, the most commonly performed tests are drained, undrained and unjacketed 
compression tests as well as drained and undrained heating test which yield dK , pK , uK , B , sK , 

dα , uα  and Λ . On the other hand, the homogenization of thermo-poro-elastic parameters is more 

commonly done using dK , b , N , κ  and Q . The presentation of the complete set of parameters 

permits to establish the link between the parameters that are easier to evaluate experimentally and 

the ones used more commonly in micromechanics theory. 

3.2. Micro-thermo-poroelasticity and homogenization method 

The aim of classical homogenization method is to replace an actual heterogeneous complex body by 

a fictitious homogeneous one that behaves globally in the same way. The theoretical framework of 

micromechanics modelling and homogenization method has been presented in different papers and 
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textbooks, e.g. [8][30][31][32][33][34][35]. The principles and main equations of this framework 

are presented briefly in the following. A detailed derivation of homogenization equations is 

presented in Appendix A. 

The volume 0V  of the REV of a heterogeneous material is composed of n different phases with 

volumes rV , 1r n= … , and volume fractions 0r rf V V= . We consider that there is only one porous 

phase with volume Vφ  and porosity 0V Vφφ = . The number of solid phases is therefore 1m n= −  

with total volume sV . The tensors of elastic moduli and thermal expansion coefficients of each 

phase are denoted respectively by rc  and rα . 

The equations of micro-thermo-poroelasticity and homogenization of thermo-poroelastic properties 

can be derived on a REV submitted to a homogeneous strain boundary condition and two 

eigenstresses, as presented in appendix A. The tensor of the effective elastic moduli homC  is given 

by: 

 hom

1

: :
r

n

r rV V
r

f
=

= =∑C c A c A  (7) 

Where 
rV

A  is the volume average of the strain localization tensors over the phase r  (see appendix 

A). The tensor of effective Biot’s coefficients b  is expressed as: 

 hom
0

1

: :
r

m

rV V
r

f
φ

φ
=

 = = − 
 
∑b 1 A 1 I A  (8) 

The tensor of effective solid moduli hom
sC  can be identified by writing the relation between the 

average local stresses and strains over the solid volume: 

 
1hom hom: ; : :

s s s s
s sV V V V

−′ ′= =σ C ε C c A A  (9) 

Vφ
A  and 

sV
A  are the volume average of the strain localization tensors respectively over the pore 

volume and the solid volume. The effective Biot’s skeleton modulus homN is given by: 

 ( )1
hom

1

1
: : :

r

m

r r V
r

f
N

−

=
= −∑1 c 1 1 A  (10) 

The effective thermal parameter hom
κ  and the effective thermal expansion hom

dα  are given by: 

 ( ) 1hom hom hom hom: : ; :dV

−
= =κ c α A α C κ  (11) 

The effective thermal parameter homQ  is obtained as: 

 ( )hom

1

: :
r

m

r r V
r

Q f
=

= −∑1 α I A  (12)  

3.2.1. Multi-scale porous material  

Considering the multi-scale microstructure of the hardened cement paste presented in section 2, the 

homogenization of the macroscopic properties should be performed in two steps. The pore volume 
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of the hardened cement paste manifests itself at two different scales. The scale I corresponds to the 

gel porosity of HD and LD C-S-H, and the scale II corresponds to the macro-porosity. The 

homogenization of the macroscopic properties of such materials can be done using a multi-step 

homogenization method [8][35]. This method is explained briefly in the following for a two-scale 
porous material in which the pore volume exhibits two different scales I and II ( I IIV V Vφ φ φ= + ). This 

material is composed of l  ( l m≤ ) porous phases with the porosities I
rφ , m l−  solid phases and a 

pore volume with the porosity IIφ . The pore volumes are connected and there is one homogeneous 

pore pressure. The total porosity is given by: 

 I II

1

l

r r
r

fφ φ φ
=

= +∑  (13) 

At the level I of the microstructure of the cement paste LD and HD C-S-H are composed of one 

solid phase and one porous phase with nanometer size pores. At the level II the cement paste is 

composed of LD and HD C-S-H, Portlandite, unhydrated clinker and macro-porosity. Standard 

homogenization equations, as presented in the previous section, give the poroelastic properties of 
the l  porous phases of level I (Irc , I

rb , I
rN , I

src , I
rα , I

rQ ). The effective parameters homC  and hom
κ  

can be evaluated respectively from equations (7) and (11). The other effective parameters homb , 
homN  and homQ  for level II are given in the following equations. 

 ( )( )hom I

1

:
r

m

r rV
r

f
=

= − −∑b 1 A 1 b  (14) 

 ( ) ( ) ( )1I I
hom I

1

1 1
: : :

r

m

r sr rV
r r

f
N N

−

=

 
= − − + 

 
∑ 1 c I A 1 b  (15) 

 ( ) ( )( )hom I I I

1

: :
r

m

r r r rV
r

Q f Q
=

= − − +∑ α I A 1 b  (16) 

A detailed derivation of these equations is presented in Appendix A. It can be easily verified that 
when all solid phases are non-porous (I 0r =b , I1 0rN = , I

sr r=c c , I 0rQ = ), equations (14), (15) and 

(16) reduce respectively to equations (8), (10) and (12). 

4. Experimental evaluation of thermal expansion and thermal 
pressurization parameters 

The experimental program for evaluation of the poroelastic parameters at ambient temperature is 

presented in [4][6] and is briefly recalled in [7]. To study the effect of temperature, drained and 

undrained heating tests have been performed under constant confining pressure. The results are 

presented in details in [1] and are briefly recalled in the following. 

The tests were performed on cylindrical samples with 38mm diameter and 76mm length, made from 
class G oil well cement at w c=0.44. The samples were cured for at least three months in a bath 

containing an equilibrated fluid under a controlled temperature of 90°C. This temperature was 
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chosen to reproduce the curing conditions of a cement lining installed in a deep (~2 km) oil well. 

The porosity of the samples was studied by two methods: oven drying and mercury intrusion 
porosimetry. The total porosity was measured equal to 0.35φ =  by drying the samples at 105°C 

until a constant mass is achieved. Mercury intrusion porosimetry was performed with a maximum 
intruding pressure of 200MPa and the porosity is equal to 0.26φ = . The maximum intruding 

pressure of 200MPa corresponds to a minimum pore diameter of about 6nm. 

A drained heating test was performed under a constant confining pressure of 1.5 MPa and a 

constant pore pressure of 1.0 MPa. During the test, the temperature was increased from 18 °C to 87 

°C at a rate of 0.08 °C/min. The volumetric strain-temperature response is almost linear and results 

in a drained thermal expansion coefficient with negligible temperature dependency, equal to 

( ) 156 10 °C
−−× . The thermal pressurization phenomenon was studied in an undrained heating test 

under a constant confining pressure. In the beginning of the test the confining pressure was 

increased up to 19 MPa in drained conditions. After the stabilization of creep strains, the 

temperature was increased at a rate equal to 0.1 °C/min in undrained conditions and the pore 

pressure changes were monitored. The heating phase was continued until a point where the pore 

pressure reached the confining pressure at about 60°C. The heating of the sample was stopped at 

this point and the cooling phase was started. The measured pore pressure was corrected for the 

effect of the dead volume and thermo-mechanical deformations of drainage system of the triaxial 

cell using a simple method presented in [2][39]. The average thermal pressurization coefficient Λ  

is found equal to 0.62 MPa/°C for heating phase and 0.57 MPa/°C for cooling phases. The analysis 

of test results showed that the variations of thermal pressurization coefficient is less that what is 

expected from the variations of thermal expansion of water with temperature. Moreover, the value 

of coefficient Λ  particularly at lower temperatures is higher than what can be evaluated by 

knowing other thermo-poro-elastic parameters. This unexpected thermal pressurization response is 

attributed to the anomalous thermal expansion behaviour of the cement paste pore fluid. This 

anomalous behaviour is discussed in details in section 2.2. The back analysis of pore pressure and 

volumetric strain responses of the undrained heating test permitted to evaluate the thermal 

expansion coefficient of pore fluid. The analysis showed that for temperatures between 25 and 55°C 

the pore fluid thermal expansion is greater than the one of pure bulk water and has a lower rate of 

increase with temperature. The analysis is performed on the cooling phase of the test, because of the 

less importance of the creep strains. For the same reason, the calibration of the micromechanics 

model in section 5.2 is done also on the cooling phase. For the sake of simplicity, the corrected pore 

pressure-temperature curve of the cooling phase is approximated by a hyperbolic equation, which 

gives the following linear expression for the measured thermal pressurization coefficient as a 

function of the temperature: 

 ( )MPa °C 0.4 0.0046 25°C 55°CT TΛ = + ≤ ≤  (17) 

This equation is used in section 5.2 for calibration of the homogenization model. 
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5. Homogenization of thermal expansion and thermal pressurization 
properties  

The classical homogenization procedure is to calculate the homogenized macroscopic properties by 

knowing the microscopic parameters. In the method used in [7] and in this work, the macroscopic 

properties are already known for a particular cement paste and will be used to calibrate the 

unknown microscopic parameters, thermo-elastic parameters of C-S-H solid and thermal expansion 

of pore fluid in HD and LD C-S-H. The model will then permit to calculate the same macroscopic 

parameters for a cement paste having different water-to-cement ratio. A part of this procedure 

concerning the mechanical properties has been already done in [7]. 

5.1. Homogenization equations 

Considering the multi-scale microstructure of the cement paste, the homogenization of the 

macroscopic parameters is done in two steps, first for HD and LD C−S−H and then for the cement 

paste. A micromechanics representation of the REVs of C−S−H and cement paste which are used in 

the homogenization model is given in [7]. 

5.1.1. Level 1: C−−−−S−−−−H matrix 

HD and LD C-S-H are constituted by one solid phase and one porous phase. The homogenization of 

poroelastic properties of C−S−H matrix can therefore be done using equations presented in section 

3.2. The only difference between HD and LD C−S−H is in their packing density or porosity. The 
needed parameters are the porosities, LDφ  and HDφ  and the elastic parameters and the thermal 

expansion of the C−S−H solid, sk , sg  and sα . The homogenized drained bulk modulus and the 

shear modulus can be evaluated from equation (7) considering one solid phase and one porous 

phase. The subscript X represents LD or HD. 

 ( ) ( )hom hom
X X s s,X X X s s,X1 ; 1v dK k A G g Aφ φ= − = −  (18) 

Assuming an Eshelbian type morphology with spherical shapes for solids and pores, the strain 
localization tensor parameters, r,X

vA  and r,X
dA , of each phase can be estimated using equation (A.10) 

considering a solid and a porous phase, ( ), r s φ= . Note that this homogenization approach only 

uses the volume fractions of different phases for estimation of the thermo-poro-elastic properties 

and the grains size and the pore size distribution are not taken into account. Considering the self-
consistent scheme we should take hom

0 Xk K= , hom
0 Xg G=  and the parameters 0α  and 0β  are given by 

following relations: 

 
( )
( )

hom homhom
X XX

0 0hom hom hom hom
X X X X

6 23
;

3 4 5 3 4

K GK

K G K G
α β

+
= =

+ +
 (19) 
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Considering these expressions, the evaluation of hom
XK  and hom

XG  from equation (18) should be done 

using iterative calculations. The homogenized thermal parameters can be calculated from equations 

(11) and (12): 

 ( )hom hom
X X s s s,X d,X s1 ;vk Aκ φ α α α= − =  (20) 

 ( )( )hom
X X s,X1 1 v

sQ Aα φ= − −  (21) 

The expressions of the other homogenized poroelastic parameters hom
Xb  and hom

XN , presented in [7], 

can be obtained respectively from equations (8) and (10). 

As mentioned in section 2.1, we assume that the porosity in HD C−S−H is not active so that the HD 

C−S−H behaves like a porous material in the undrained conditions. Consequently, in the second 

homogenization step the undrained bulk modulus and thermal expansion coefficient of HD C−S−H 

should be used. The following relations are used to calculate these parameters. 

 
( )2hom hom hom hom

HD HD ,HD HD ,HDhom hom hom hom
,HD HD ,HD ,HD hom

HD homHD HD
hom HDhom hom
HD

HD HD

;
1 1

f d
u u d

f
f

b Q b
K K

K
bN K b N K

φ α α
α αφ φ

+ −
= + = +

 + + +  
 

 (22) 

where ,HDfα  is the thermal expansion coefficient of the pore fluid in HD C-S-H. Considering the 

anomalous thermal expansion of confined fluids, two different thermal expansion coefficients are 

considered for the pore fluid in HD C-S-H and the one in LD C-S-H and macro pores, denoted by 

,LDVfα . We assume the same pore fluid compression modulus fK  for all parts of the 

microstructure. 

5.1.2. Cement paste 

The microstructure of the cement paste for second homogenization step is constituted by five main 

phases: HD and LD C−S−H, Portlandite, anhydrous clinker and the macro-porosity. These phases 

are respectively represented by HD, LD, CH, CK and V subscripts. Among these phases, 

Portlandite crystals and anhydrous clinker can be considered as non-porous solids, while LD and 

HD C−S−H are porous solids. However, we assumed that in the poromechanics tests the porosity in 

HD C−S−H was not active and so the only porous phase in the microstructure is the LD C−S−H. 

Consequently the homogenization of the poroelastic properties at this step should be performed 

using the framework presented in section 3.2.1 for multiphase porous materials. The homogenized 

drained bulk modulus and shear modulus can be evaluated from equation (7): 

 hom hom hom
CP LD LD LD,CP HD ,HD HD,CP CH CH CH,CP CK CK CK,CP

v v v v
uK f K A f K A f k A f k A= + + +  (23) 

 hom hom hom
CP LD LD LD,CP HD HD HD,CP CH CH CH,CP CK CK CK,CP

d d d dG f G A f G A f g A f g A= + + +  (24) 

Assuming spherical shapes for solids and pores, the strain localization tensor parameters, r,CP
vA  and 

r,CP
dA , of each phase can be estimated using equation (A.10) considering four solid phases and a 
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pore volume, ( )HD, LD, CH, CK, r φ= . For HD C−S−H the homogenized undrained bulk modulus 
hom
,HDuk  should be used. Considering the self-consistent scheme we should take hom

0 CPk K= , hom
0 CPg G=  

and the parameters 0α  and 0β  are given by following relations: 

 
( )
( )

hom homhom
CP CPCP

0 0hom hom hom hom
CP CP CP CP

6 23
;

3 4 5 3 4

K GK

K G K G
α β

+
= =

+ +
 (25) 

The homogenized thermal parameter κ  can be obtained from equation (11): 

 
hom hom hom hom hom
CP LD ,LD LD LD,CP HD ,HD ,HD HD,CP

CH CH CH CH,CP CK CK CK CK,CP

v v
d u u

v v

f K A f K A

f k A f k A

κ α α

α α

= +

+ +
 (26) 

The drained thermal expansion coefficient is then calculated as hom hom hom
,CP CP CPd Kα κ= . The 

homogenized thermal parameter Q  can be evaluated from equation (12): 

 
( )( )( ) ( )

( ) ( )

hom hom hom hom
CP LD LD,CP LD LD HD ,HD HD,CP

CH CH CH,CP CK CK CK,CP

1 1 1

1 1

v v
s u

v v

Q f A b Q f A

f A f k A

α α

α

= − − + + −

+ − + −
 (27) 

The active porosity is calculated as act
CP LD LD Vf fφ φ= + . The expressions of the other homogenized 

poroelastic parameters hom
CPb  and hom

CPN , presented in [7], can be obtained respectively from 

equations (14) and (15). By evaluation of the homogenized parameters and the active porosity, the 
remaining parameters (Ku, Ks, Kφ, B, Λ , uα , φα ) can be evaluated. The homogenized thermal 

pressurization coefficient homΛ  which is used for the model calibration is calculated as: 

 
( )

hom act hom hom
,LDVhom

2homact

hom hom

1

f d

f d

Q b

b

N K K

φ α α
Λ

φ

+ −
=

+ +

 (28)  

5.2. Model calibration 

The model parameters are summarized in Table (1). The properties of the microstructure phases are 

the same as the ones used by Ulm et al. [8]. The volumetric thermal expansion coefficient of 

Portlandite CHα  is taken equal to ( ) 157.0 10 °C
−−×  [40]. Note that assuming the complete hydration 

of the cement paste (CK 0f = ), the properties of the clinker phase are not required. The principal 

unknown parameters are sk , sg , sα , ,HDfα  and ,LDVfα . The calibration of these parameters is done 

by minimizing the error between the experimentally evaluated parameters and the results of the 

homogenization model using a least-squares method. From the calibration of the mechanical 
properties in [7] we have 25.0 GPask =  and 18.4 GPasg = . The known macroscopic parameters 

are ( ) 1exp 56 10 °Cdα −−= ×  and expΛ  given by equation (17). The calibration procedure is done in 

three steps. Note that ,HDfα  and ,LDVfα  are different and can vary with temperature but sα  is 

assumed to be constant. In section 2.2 we have seen that the thermal expansion of confined fluids 
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increases with decreasing pore size. Knowing that the size of pores in HD C-S-H is smaller than the 
pores in LD C-S-H [41][42], it seems that ,HDfα  should be greater than ,LDVfα . The first calibration 

step is performed at 50°C assuming that at this temperature ,HD ,LDVf fα α= , i.e. the pore fluid 

thermal expansion is no more influenced by confinement in nanoscale pores. Based on the 

discussion in section 2.2, this assumption is compatible with the negligible pressure dependency of 

water thermal expansion at this temperature and also with the experimental results of Xu et al. 
[15][16]. The calibration of sα  and ,HD ,LDVf fα α=  at 50°C is done by minimizing the error defined 

below: 

 
2 2exp hom exp hom

exp exp
d d

r
d

E
α α Λ Λ

α Λ
   − −= +   

  
 (29) 

The calibration is done using a computer program which calculates the homogenized properties and 
the error for different combinations of sα  and ,HD ,LDVf fα α= . The minimum error is found for 

( ) 154.2 10 °Csα −−= ×  and ( ) 14
,HD ,LDV 4.8 10 °Cf fα α −−= = ×  (Figure (2-a)).  The calibrated pore fluid 

thermal expansion coefficient at 50°C is very close to the one of pure bulk water at the same 

temperature that is ( ) 144.57 10 °C
−−× . This is compatible with the assumption made above 

concerning the negligible effect of the confinement in nanoscale pores at 50°C. The small 

difference of about 5% between the two thermal expansion coefficients can be attributed to the 

effect of dissolved ions. 

The second step concerns the calibration of ,HDfα . Knowing the value of sα  which is assumed to be 

constant, the only unknown variable for evaluation of hom
dα  at each temperature is ,HDfα . This 

parameter is needed for evaluation of hom
,HDuα  from equation (22). Neglecting the variations of exp

dα  

with temperature between 25 and 50°C, ,HDfα  should also remain constant equal to 

( ) 144.8 10 °C
−−× . 

The last calibration step is performed for ,LDVfα . Knowing sα  and ,HDfα  from the previous steps, 

,LDVfα  for different temperatures can be evaluated by minimizing the error between homΛ  from 

equation (28) and expΛ  from equation (17). The variations of the error between homΛ  and expΛ  for 

three different temperatures are presented in Figure (2-b).  
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Figure (2): (a) Contour plot of calculated error for different values of thermal expansion coefficients sα  and 

, ,=LDV HDf fα αα αα αα α  at 50°C. The minimum error is equal to . 0−× 71 88 1  for ( ) 154.2 10
−−= × °Csαααα  and 

( ) 14
, , 4.8 10

−−= = × °HD LDVf f Cα αα αα αα α . (b) Variations of error for evaluation of ,LDVfαααα  for different 

temperatures. 

 

The calculated ,HDfα  and ,LDVfα  are presented in Figure (3) and compared with the thermal 

expansion coefficients of pure bulk water and 0.5 mol/l NaOH bulk solution. We can see that ,HDfα  

and ,LDVfα  are greater than the thermal expansions of bulk fluids. This anomalous thermal 

expansion of the cement paste pore fluid is due to the confinement in the nanoscale pores and the 

presence of dissolved ions. The effect of confinement can be analysed by calculating the confined 
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/bulk ratio of thermal expansion. This ratio reflects the effect of pore structure on the thermal 

expansion and is almost independent of presence of dissolved ions in the case of cement pore fluid 

which is mainly composed of univalent ions [1][17]. The confined/bulk ratio for the cement paste 

pore fluid can be calculated by assuming that the thermal expansion of the bulk fluid in the cement 

paste is equal to the thermal expansion of 0.5mol/l NaOH solution [1]. The results are presented in 

Figure (4) and compared with the confined/bulk ratio for pure water confined in 5.0 nm and 7.4 nm 

pores of silica glass [15][16]. We can see that the confined/bulk ratio for HD C-S-H is greater than 

the one of 5.0 nm pores, meaning that the average pore size in HD C-S-H should be smaller than 5.0 

nm. This is compatible with the estimation of pore sizes in HD C-S-H from the results of mercury 

intrusion porosimetry. The mercury intrusion porosimetry does not basically permit to differentiate 

between LD and HD C-S-H porosity. However, a simple evaluation may be done assuming that the 

mercury can not access HD C-S-H porosity. This is similar to the assumption made by Tennis and 

Jennings [43] for evaluation of the volume fraction of LD C−S−H by analysing the results of 

surface area measurements by nitrogen sorption. These authors assumed that none of the pores in 

HD C−S−H are accessible to nitrogen. The empirical relation obtained using this assumption for 

volume fraction of LD C−S−H is widely used in the literature. Assuming that HD C-S-H is not 

accessible to mercury, from the results of this test as presented in section 4, it seems that HD C-S-H 

is composed of pores smaller than 6 nm. The confined/bulk ratio for LD C-S-H is smaller than the 

one of 5.0 nm pores and is closer to the one of 7.4 nm pores. 

 

 
Figure (3): Calibration of thermal expansion of cement paste pore fluid. Comparison with the thermal 

expansions of pure bulk water and 0.5 mol/l NaOH bulk solution 
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Figure (4): Thermal expansion anomaly for cement paste pore fluid. Comparison with experimental results of 

Xu et al. [15][16] for thermal expansion anomaly of pure water confined in the pores of silica glass 

 

By calibration of necessary parameters, now we can proceed with extrapolation of the 

experimentally evaluated thermal expansion and thermal pressurization parameters to cement pastes 

with different water-to-cement ratios. 

5.3. Effect of water-to-cement ratio 

The lower w/c limit is chosen equal to 0.4 as this is approximately the lowest w/c for which a 
complete hydration can be obtained. Figure (5) presents the variations of dα  and φα  with w/c. The 

pore volume thermal expansion φα  is calculated as ( )hom hom hom hom act
db Qφα α φ= − . Like for the 

modulus Kφ  presented in [7], the possibility of evaluation of φα  is a considerable advantage of the 

presented association between the results of macroscopic experimental study and the 

homogenization method, as experimental evaluation of these parameters is very difficult. We can 
observe the decrease of dα  and more significant decrease of φα  with w/c. This decrease of thermal 

expansion coefficients by increasing w/c is mainly due to the decrease of Portlandite volume 

fraction in the microstructure, as presented in Figure (6). Note that Portlandite thermal expansion 

( ) 15
CH 7.0 10 °Cα −−= ×  , evaluated in [40] using time-of-flight neutron diffraction, is greater than the 

calibrated thermal expansion of C-S-H solid ( ) 15
s 4.2 10 °Cα −−= × . Consequently a reduction of the 

Portlandite fraction results in a decrease of the homogenized thermal expansion coefficients. Figure 

(6) shows also the increase of active porosity with w/c increase. This is mainly due to increase of 

the quantity of remaining water after the complete hydration of cement clinker. The available water 

is completely consumed in hydration reactions for w/c close to 0.4. For higher w/c a quantity of 

water is not consumed and forms the macro-porosity of the cement paste. For w/c lower than 0.56, 
the evaluated φα  is greater than dα  but becomes smaller than dα  for higher w/c. The difference 

between these parameters is smaller than 11% and shows that the assumption dφα α=  made in [1] 
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for back analysis of the undrained heating test is acceptable. The induced error on evaluation of the 
thermal pressurization coefficient Λ  assuming dφα α=  is smaller than 1%. This is mainly due to 

significant difference between the thermal expansion of water and the ones of the material, dα  and 

φα . The assumption dφα α=  is commonly made in the literature due to the difficulty of 

experimental evaluation of φα . It should be mentioned that the coefficients dα  and φα  in Figure (5) 

do not vary with temperature, because the calibrated pore fluid thermal expansion for HD C-S-H is 
constant. This is due to the measured dα  which shows negligible temperature dependency. 

 

 
Figure (5): Effect of water-to-cement ratio on drained thermal expansion dα  and pore volume thermal 

expansion φα  

 

Figure (6): Variations of Portlandite volume fraction and active porosity with water-to-cement ratio 

 

Figure (7) shows the variations of undrained thermal expansion coefficient uα  and the thermal 

pressurization coefficient Λ  with w/c for two different temperatures, 25°C and 40°C. Both 
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parameters increase with temperature due to the increase of thermal expansion coefficient of the 
pore fluid. A higher w/c results in a higher Λ  and a lower uα , mainly due to the significant 

reduction of dK  and the resulting increase of b  with w/c increase. dK  reduces from 9.81 GPa at 

w/c=0.4 to 3.97 GPa at w/c=0.65 and results in an increase of b  from 0.54 to 0.81 [7]. The 
significant increases of the terms 2

db K  in equation (28) and db K  in equation (6) cause the 

reduction of Λ  and increase of uα  with w/c increase. The reduction of dK  with w/c increase is 

mainly due to the increase of porosity with w/c, as presented in Figure (6). It would be ideal to 

compare these predictions of thermal expansion and thermal pressurization parameters with 

experimentally evaluated values, but unfortunately such experimental results for different w/c are 

not currently available. 

 

 

Figure (7): Effect of water-to-cement ratio on undrained thermal expansion uα  and thermal pressurization 

coefficient Λ  

 

6. Conclusions 

This paper is presented in the continuity of the approach introduced in [7] for association of the 

results of a macro-scale experimental study with the micromechanics modelling and 

homogenization technique. This approach is applied here to the results of drained and undrained 

heating tests performed on a hardened class G cement paste with w/c=0.44 [1]. The main purpose is 

to extrapolate the experimentally evaluated thermal expansion and thermal pressurization 

parameters to cement pastes with different water-to-cement ratios. The used multi-scale model is 

capable of predicting the macroscopic thermo-poroelastic parameters of a hardened cement paste by 

knowing the volume fractions and the thermo-elastic properties of the constituents of its 

microstructure. The model calibration for thermal parameters is performed by means of some 

simplification assumptions, but revealed interesting information about the anomalous thermal 

expansion behaviour of cement paste pore fluid. The calculated thermal expansion anomaly for the 
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pore fluid in HD C-S-H and also in LD C-S-H and macro-porosity show a good compatibility with 

the experimental results of Xu et al. [15][16][17] on thermal expansion of confined fluids. The 

calibrated model permits to calculate the thermal expansion and thermal pressurization parameters 

for cement pastes with different w/c. Moreover, it permits to evaluate the pore volume thermal 
expansion coefficient φα  which is very difficult to measure experimentally. This capacity of 

parameter prediction for different conditions and the better understanding of the results of the tests, 

as also presented in [7], clearly demonstrate the advantages of the association of macroscopic 

laboratory experiments and micromechanics modelling. This approach reduces significantly the 

number of laboratory tests needed to characterize the complete set of thermo-poroelastic parameters 

of a cement paste. This is a great advantage for experimental studies, as due to the very low 

permeability of the material, the laboratory tests are usually long. 
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8. Appendix A: Homogenization of thermo-poroelastic parameters 

This appendix is dedicated to derivation of the equations of micro-thermo-poroelasticity and 

homogenization method. The aim of classical homogenization techniques is to replace an actual 

heterogeneous complex body by a fictitious homogeneous one which behaves globally in the same 

way. Continuum micromechanics is mainly concerned with statically homogeneous materials for 

which it is possible to define a representative elementary volume (REV). Over the REV, the 

average values of local stress and strain fields in the actual heterogeneous body are equal to the 

macroscopic values of stress and strain fields derived by solving the boundary value problem of a 

homogeneous body constituted by this fictitious homogeneous material [31]. This requires that, for 

the mechanical behaviour under investigation, the characteristic length d of the considered 

heterogeneity and deformation mechanism to be much smaller than the size l of the studied volume 

element. Moreover, l must be sufficiently smaller than the characteristic dimension L of the whole 

body. 

After the scale separation, the three steps of homogenization method as mentioned by Zaoui [31] 

are: description (or representation), concentration (or localization) and homogenization (or 

upscaling). The description step deals with identification of different “mechanical” phases of the 

microstructure in the REV of the considered heterogeneous material, and both geometrical and 

mechanical characteristics of these phases. A phase, in the sense of continuum micromechanics, is a 

material domain that can be identified, at a given scale, with on-average constant material 

properties. The concentration step is concerned with the mechanical modelling of the interactions 

between the phases and the link between the local stress and strain fields within the REV and the 

macroscopic quantities of stress and strain. The last step deals with the homogenization of the 

macroscopic properties by combining the local constitutive equations, averaging the stresses and the 

strains over the REV and the concentration relations. Homogenization delivers estimated values of 

macroscopic poroelastic properties of the REV as a function of the geometrical and mechanical 

properties of different phases of the microstructure of the material. 

8.1. Representation 

The volume 0V  of the REV of a heterogeneous material is composed of n different phases with 

volumes rV , 1r n= … , and volume fractions denoted by 0r rf V V= . We consider that there is only 

one porous phase with volume Vφ  and porosity 0V Vφφ = . The number of solid phases is therefore 

1m n= −  with total volume sV . The tensor of elastic moduli of each phase is denoted by rc . In the 

case of isotropy of the solid phases, the tensor of elastic moduli can be written as the sum of a 

volumetric and a deviatoric part: 

 3 2r r rk g= +c J K  (A.1) 
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where rk  and rg  are the bulk modulus and shear modulus of the phase r respectively. 

1 3ijkl ij klδ δ=J  is the volumetric part of the fourth-order symmetric unit tensor I  and = −K I J  is 

the deviatoric part. I  is defined as ( )1 2ijkl ik jl il jkδ δ δ δ= +I  and ijδ  stands for Kronecker delta. The 

tensor of thermal expansion coefficients of each phase is denoted by rα  which is reduced to rα 1  in 

the isotropic case with ij ijδ=1 . 

8.2. Concentration 

The concentration problem is presented by assuming homogeneous boundary conditions on the 

REV [36][37]. Homogeneous stress boundary conditions correspond to prescribed surface tractions 
T  on the boundary V∂ of the REV: 

 on :V T n∂ = ⋅Σ  (A.2) 

where Σ  is the macroscopic stress tensor and n  is the unit outward normal at the boundary. From 

(A.2) it can be shown that the macroscopic stress Σ  is equal to the volume average of the 
microscopic equilibrated (i.e., divergence free) stress field ( )xσ  in the REV [31].  

 
V

=Σ σ  (A.3) 

where ( ) ( )1 d
V V

z V z x V= ∫  stands for the volume average of quantity z over domain V. 

Similarly, homogeneous strain boundary conditions are associated to prescribed displacements u  at 

the boundary: 

 on :V u x∂ = ⋅E  (A.4) 

where x  is the microscopic position vector and E  is the macroscopic strain tensor which is equal to 

the volume average of the microscopic compatible (i.e., derived from a displacement field) strain 
field ( )xε  in the REV [31].  

 
V

=E ε  (A.5) 

For the homogeneous boundary conditions (A.2) or (A.4) Hill’s lemma is presented in the following 

form [30][31]: 

 : : := =σ ε σ ε Σ E  (A.6) 

The Hill lemma is relevant for any stress and strain compatible with either a homogeneous stress 

boundary condition (A.2) or a homogeneous strain boundary condition (A.4), irrespective of a link 

between σ  and ε  through a constitutive law. 

In the framework of linear elasticity, the local strain and stress fields, ( )xε  and ( )xσ , are related to 

macroscopic strain and stress, E  and Σ , through fourth-order localization tensors ( )xA  and ( )xB  

respectively: 

 ( ) ( ) ( ) ( ): ; :x x x x= =ε A E σ B Σ  (A.7) 



Ghabezloo: Micromechanics analysis of thermal expansion and thermal pressurization of a hardened cement paste 

 

 

 

 

24 

By inserting equation (A.7) in equations (A.5) and (A.3), the following relations for localizations 

tensors are obtained: 

 ;
V V

= =A I B I  (A.8) 

For a heterogeneous material composed of homogeneous phases, a linear phase strain localization 

tensor can be introduced [8]: 

 
1

: ;
r r r

n

rV V V
r

f
=

= =∑ε A E A I  (A.9) 

In the isotropic case 
rV

A  is reduced to 
r

v d
r rV

A A= +A J K  where v
rA  and d

rA  are volumetric and 

deviatoric strain localization coefficients. For an Eshelbian type morphology [38], i.e. an spherical 

inclusion embedded in a reference medium, an estimate of the strain localization tensor of phase r, 

assuming the isotropy of the local and the reference medium is given by [31]: 

 
( )( )

( )( )
( )( )

( )( )

1 1

0 0 0 0

1 1

0 0 0 0

1 1 1 1
;

1 1 1 1

r rv d
r r

r r r r
r r

k k g g
A A

f k k f g g

α β

α β

− −

− −

+ − + −
= =

+ − + −∑ ∑
 (A.10) 

With 

 
( )
( )

0 00
0 0

0 0 0 0

6 23
;

3 4 5 3 4

k gk

k g k g
α β

+
= =

+ +
 (A.11) 

where 0k  and 0g  are bulk modulus and shear modulus of the reference medium. According to the 

choice of the reference medium in these equations one can distinguish two different 

homogenization schemes: the Mori-Tanaka scheme [44] in which the reference medium is chosen 

to be the matrix phase; the Self-consistent scheme [45] in which the reference medium is the 

homogenized medium. The Mori-Tanaka scheme is mostly adapted to the composite materials in 

which the continuous matrix plays a prominent morphological role in the behaviour of the material. 
In this case, 0k  and 0g  are taken equal to the elastic parameters of the material phase which is 

considered as the reference medium. The Self consistent scheme is adequate for materials, such as 

polycrystals, whose phases are dispersed in the RVE so that none of them plays any specific 
morphological role [31]. In the case of self-consistent scheme, 0k  and 0g  are taken equal to the 

homogenized elastic properties which are unknown in advance. This point is further explained in 

section 8.3.1. 

8.3. Homogenization 

The equations of micro-poroelasticity and the homogenization of the poroelastic properties can be 

derived on a REV submitted to a homogeneous strain boundary condition and two eigenstresses p
σ  

and T
σ  corresponding respectively to application of a pore pressure and a temperature variation. 

The constitutive relation in the microstructure is given in the form: 
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 ( ) ( ) ( ) ( ) ( ): p Tx x x x x= + +σ c ε σ σ  (A.12) 

where ( )xc  is the tensor of local elastic moduli which is equal to zero in the pore volume: 

 ( ) ( ) in

0 in
r sx V

x
Vφ

= 


c
c  (A.13) 

( )p xσ  is an eigenstress applied to the pore volume of the material: 

 ( )
0 in

in
sp

V
x

p Vφ


= 


σ
1

 (A.14) 

( )T xσ  is an eigenstress applied to the solid phase of the material: 

 ( ) ( ) in

0 in
sT

x T V
x

Vφ

= 


κ
σ  (A.15) 

where :=κ c α . The linear elastic nature of the microscopic behaviour allows decomposing the 

problem in three sub-problems. In the first sub-problem the eigenstresses pσ  and T
σ  are equal to 

zero and the REV is submitted only to the homogeneous strain boundary conditions.  The 

displacement on the boundary of the REV is equal to zero in the second and third sub-problems and 

the system is subjected to the eigenstresses p
σ  and T

σ  respectively. These three sub-problems are 

denoted respectively by ( )′ , ( )′′ and ( )′′′  superscripts. 

8.3.1. Sub-problem 1 

In the first sub-problem the eigenstresses are equal to zero and the local strain is given using 

equation (A.7): 

 ( ) ( ) ( ) ( ) ( ): ; :x x x x x′ ′ ′= =σ c ε ε A E  (A.16) 

The macroscopic stress ′Σ  is equal to the volume average of the microscopic equilibrated stress 
field 

V
′ ′=Σ σ . By inserting equation (A.16) in this relation the following expression is obtained 

where homC  can be viewed as the tensor of the overall effective moduli of the heterogeneous porous 

material. 

 hom hom

1

: ; : :
r

n

r rV V
r

f
=

′ = = =∑Σ C E C c A c A  (A.17) 

In the isotropic case homC  can be presented in the following form: 

 hom hom hom3 2dK G= +C J K  (A.18) 

The homogenized bulk and shear moduli in the isotropic case are calculated using following 

relations: 

 hom hom

1 1

;
n n

v d
d r r r r r r

r r

K f k A G f g A
= =

= =∑ ∑  (A.19) 
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In the case of an Eshelbian type morphology, the strain concentration coefficients vrA  and d
rA  can 

be evaluated using equation (A.10). The self-consistent homogenization scheme is associated with 
the choice of  hom

0 dk K=  and hom
0g G=  which are unknown in advance. Consequently, equation 

(A.19) can not be solved directly and the homogenized elastic properties should be calculated using 

iterative calculations. 

The porosity change 0dφ φ φ= −  can be calculated from the average volumetric strain in the pore 

volume, ( ) 0 :
V

d
φ

φ φ′ ′= − 1 ε . By using equation (A.16) in this equation we can identify the tensor 

of effective Biot’s coefficients homb : 

 ( ) hom hom
0

1

: ; : :
r

m

rV V
r

d f
φ

φ φ
=

 ′ = − = = − 
 
∑b E b 1 A 1 I A  (A.20) 

For the isotropic case, Biot’s coefficient is obtained from the following simplified equation: 

 hom

1

1
m

v
r r

r

b f A
=

= −∑  (A.21) 

The average local stress in the solid phase is obtained using equation (A.16) equal to 
: : :

s s sV V V
′ ′= =σ c ε c A E . From equation (A.9) the average local strain in the solid phase is 

equal to :
s sV V

′ =ε A E . Using these equations the relation between the average local stress and 

strains in the solid phase permits to evaluate the tensor of effective solid moduli hom
sC : 

 
1hom hom: ; : :

s s s s
s sV V V V

−′ ′= =σ C ε C c A A  (A.22) 

In the isotropic case the expression of effective unjacketed modulus is written as: 

 hom

1 1

m m
v v

s r r r r r
i i

K f k A f A
= =

=∑ ∑  (A.23) 

From equations (A.17) and (A.13) we have ( )hom
01 :

sV
φ= −C c A . Moreover, from equation (A.8) 

we have ( )0 01
sV Vφ

φ φ= − −A I A . Inserting these relations in equation (A.22) and using equation 

(A.20) we can obtain the following expression for the tensor of effective Biot’s coefficients: 

 ( )( )1hom hom hom: : s

−
= −b 1 I C C  (A.24) 

In the isotropic case this relation is reduced to the well-known relation hom hom hom1 d sb K K= − . 

8.3.2. Sub-problem 2 

In the second sub-problem the displacement on the boundary of the REV is equal to zero 
( 0

V
′′ ′′= =E ε ) and the system is subjected to the eigenstress p

σ  defined in equation (A.14). The 

local stress tensor is given by: 

 ( ) ( ) ( ) ( ): px x x x′′ ′′= +σ c ε σ  (A.25) 
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The macroscopic stress tensor for this sub-problem is calculated by application of Hill’s lemma, 

equation (A.6), on the stress field of second sub-problem ′′σ  and the strain field of first sub-problem 
′ε :   

 : : : : : p

V V V
′′ ′ ′′ ′ ′′ ′= = +E Σ ε σ ε c ε ε σ  (A.26) 

Using equation (A.16) and then, by application of Hill’s lemma the first term in the right-hand side 

of equation (A.26) is found to be equal to zero: 

 : : : : 0
V V V

′ ′′ ′ ′′ ′ ′′= = =ε c ε σ ε Σ ε  (A.27) 

Now by introducing equation (A.16) in the second term of the right-hand side of equation (A.26) 

and then, using equation (A.14) one finds the following equations which permit to identify the 

tensor of effective Biot’s coefficients, as presented in equation (A.20): 

 hom
0: :p

VV
p p

φ
φ′′ = = =Σ σ A 1 A b  (A.28) 

Knowing that 0
V

′′ ′′= =E ε , the variation of the porosity is given by following expression: 

 ( ) ( ) 1
0 0

1

: 1 : : :
s r

m

r rV V V
r

d f
φ

φ φ φ −

=

′′ ′′ ′′ ′′= − = − = ∑1 ε 1 ε 1 c σ  (A.29) 

The average local stress in the REV is given by  

 0
1

;
r

m

rV V V V
r

f
φ

φ
=

′′ ′′ ′′ ′′ ′′= + =∑σ σ σ σ Σ  (A.30) 

Using equations (A.20), (A.28) and (A.30) and knowing that 
V

p
φ

′′ =σ 1  we find: 

 ( ) ( )hom
0

1 1

:
r r

m m

r rV V
r r

f p p fφ
= =

′′ = − = −∑ ∑σ b 1 1 I A  (A.31) 

From this equation we can obtain the average strain over a phase of the solid volume [8]: 

 ( ):
r rV V

p′′ = −σ 1 I A          in Vs (A.32) 

Inserting equation (A.32) in equation (A.29) we obtain the following expression for the effective 

Biot skeleton modulus homN : 

 ( ) ( )1
hom hom

1

1
; : : :

r

m

r r V
r

p
d f

N N
φ −

=

′′ = = −∑1 c 1 1 A  (A.33) 

In the isotropic case this relation is reduced to: 

 
( )

hom
1

11
vm

r r

r r

f A

N k=

−
=∑  (A.34) 
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8.3.3. Sub-problem 3 

In the third sub-problem the displacement on the boundary of the REV is equal to zero 
( 0

V
′′′ ′′′= =E ε ) and the system is subjected to the eigenstress T

σ  defined in equation (A.15). The 

local stress tensor is given by: 

 ( ) ( ) ( ) ( ): Tx x x x′′′ ′′′= +σ c ε σ  (A.35) 

The macroscopic stress tensor for this sub-problem is calculated by application of Hill’s lemma, 

equation (A.6), on the stress field of the third sub-problem ′′′σ  and the strain field of first sub-

problem ′ε :   

 : : : : : T

V V V
′′′ ′ ′′′ ′ ′′′ ′= = +E Σ ε σ ε c ε ε σ  (A.36) 

Using equation (A.16) and then, by application of Hill’s lemma the first term in the right-hand side 

of equation (A.26) is found to be equal to zero: 

 : : : : 0
V V V

′ ′′′ ′ ′′′ ′ ′′′= = =ε c ε σ ε Σ ε  (A.37) 

By introducing equation (A.16) in the second term of the right-hand side of equation (A.36) and 

then, using equation (A.15) one finds the following equations which permit to identify the tensor of 

effective coefficients hom
κ : 

 hom hom

1

: ; : :
r

n
T

r rV VV
r

T f
=

′′′ = = = =∑Σ σ A κ κ κ A κ A  (A.38) 

Knowing that 0
V

′′′ ′′′= =E ε , the variation of the porosity is given by following expression: 

 ( ) 0
1

: :
r

m

rV V
r

d f
φ

φ φ
=

′′′ ′′′ ′′′= − = ∑1 ε 1 ε  (A.39) 

Using equations (A.35) and (A.15) the average local stress in the REV is given by: 

 
1 1

: ;
r

m m

r r r rV V V
r r

f T f
= =

′′′ ′′′ ′′′ ′′′= + =∑ ∑σ c ε κ σ Σ  (A.40) 

Using equation (A.38) in equation (A.40) we obtain: 

 ( )
1 1

: :
r r

m m

r r r rV V
r r

f T f
= =

′′′ = − −∑ ∑c ε κ I A  (A.41) 

Knowing that 1 :−=α c κ  we can evaluate the average strain in a phase of the solid volume: 

 ( ):
r r

rV V
T′′′ = − −ε α I A          in Vs (A.42) 

Inserting equation (A.42) in equation (A.39) we obtain the following expression for the effective 
coefficient homQ : 

 ( ) ( )hom hom

1

; : :
r

m

r r V
r

d Q T Q fφ
=

′′′ = − = −∑1 α I A  (A.43) 

In the isotropic case this relation is reduced to: 
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 ( )hom

1

1
m

v
r r r

r

Q f Aα
=

= −∑  (A.44) 

8.3.4. Macroscopic equations 

The summation of the macroscopic stresses and porosity variations of the three sub-problems 

permit to retrieve the equations of macro-poroelasticity. From equations (A.17), (A.28) and (A.38) 

we have: 

 hom hom hom: p T′ ′′ ′′′= + + = + +Σ Σ Σ Σ C E b κ  (A.45) 

Similarly, from equations (A.20), (A.33) and (A.43) we find: 

 ( ) ( ) ( ) hom hom
hom

:
p

d d d d Q T
N

φ φ φ φ′ ′′ ′′′= + + = − + −b E  (A.46) 

8.4. Multi-scale porous material  

A particular situation, mentioned by Ulm et al. [8] and Dormieux et al. [35], which is not addressed 

directly in the standard micro-poroelasticity as presented in the previous section is the case of a 

porous material in which the pore volume manifests itself at two or several different scales. These 

two pore volumes are connected and there is one homogeneous pore pressure in all parts of the pore 

volume. The homogenization of poroelastic properties of such a porous material needs a multi-step 

homogenization technique. The first step of this procedure is the homogenization of the porous 

phases which have the smallest-length scales porosity. This step is performed using the standard 

homogenization equations as presented in the previous section. The next step of homogenization 

procedure is concerned with a heterogeneous material composed of some porous phases, some solid 

phases and a pore volume with a greater length scale than the one inside the porous phases. Let us 

consider a two-scale porous material in which the pore volume exhibits two different scales I and II 
( I IIV V Vφ φ φ= + ), i.e. a micro-porosity and a macro-porosity. This material is composed of l  ( l m≤ ) 

porous phases with the porosities I
rφ , m l−  solid phases and a pore volume with the porosity IIφ . 

The total porosity of the material is therefore given by: 

 I II

1

l

r r
r

fφ φ φ
=

= +∑  (A.47) 

Standard homogenization permits to evaluate the poroelastic properties of the l  porous phases of 
level I ( I

rc , I
rb , I

rN ). Referring to the sub-problems defined in the previous section, using equations 

(A.47) and (A.46), the variation of the porosity in the first sub-problem is given by: 

 ( ) ( ) ( ) II
I II I II

0
1 1

: :
r

l l

r r r r V V
r r

d f d d f
φ

φ φ φ φ
= =

′ ′′ ′ ′= + = − −∑ ∑ b ε 1 ε  (A.48) 

Using equations (A.9) and knowing that I 0r =b  for the non-porous phases, equation (A.48) can be 

re-written as: 
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 ( ) I

1 1

: : :
r r

m m

r r rV V
r r

d f fφ
= =

 ′ = − − − 
 

∑ ∑b A E I A E  (A.49) 

Consequently the homogenized tensor of Biot effective stress coefficients is found to be: 

 ( ) ( )( )hom hom I

1

: ; :
r

m

r rV
r

d fφ
=

′ = − = − −∑b E b 1 A 1 b  (A.50) 

It can be verified that equation (A.50) is reduced to equation (A.20) when all solid phases are non-
porous ( I 0r =b ), i.e. the porosity is taking effect in a single length scale. For the isotropic case 

equation (A.50) is presented in the following simplified form: 

 ( )( )hom I

1

1 1
m

v
r r r

r

b f A b
=

= − −∑  (A.51) 

The variation of the porosity for the second sub-problem can be obtained using equations (A.47) 

and (A.46): 

 ( ) ( ) ( ) II
I II I II

0I
1 1

: :
r

l l

r r r r V V
r r r

p
d f d d f

N φ
φ φ φ φ

= =

 ′′ ′′′′ ′′ ′′= + = − + − 
 

∑ ∑ b ε 1 ε  (A.52) 

Using the right-hand side equality of equation (A.29) in equation (A.52) and noting that I 0r =b  and 
I1 0rN =  in the non-porous phases, the following expression can be obtained: 

 ( ) ( )I
I

1

:
r

m

r r V
r r

p
d f

N
φ

=

 ′′ ′′= − + 
 

∑ 1 b ε  (A.53) 

From equation (A.45) for the first homogenization step of each solid phase we have: 

 ( ) ( )1I I:
r r

r rV V
p

−
′′ ′′= −ε c σ b          in Vs (A.54) 

The average local stress in the phase r of the solid phase can be evaluated using equations (A.28) 

and (A.30) and homb  of multiscale porous material from equation (A.50):  

 ( )I: :
r r r

rV V V
p′′ = − +σ 1 1 A b A          in Vs (A.55) 

This relation is equivalent to equation (A.32) for simple porous materials. Replacing equations 

(A.55) and (A.54) in (A.53) and using the relation ( ) ( ) ( )1 1I I I: :r r sr

− −
− =1 b c 1 c  from (A.24) we 

obtain: 

 ( ) ( ) ( ) ( )1I I
hom hom I

1

1 1
; : : :

r

m

r sr rV
r r

p
d f

N N N
φ

−

=

 ′′ = = − − + 
 

∑ 1 c I A 1 b  (A.56) 

When all solid phases are non-porous (I 0r =b , I1 0rN = , I
sr r=c c ), equation (A.56) is reduced to 

(A.33). For the isotropic case (A.56) can be re-written as: 

 
( )( )I

hom I I
1

1 11 1
vm
r r

r
r sr r

A b
f

N k N=

 − −
 = +
 
 

∑  (A.57) 

The porosity variation for the third sub-problem is obtained using (A.47) and (A.46): 
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 ( ) ( ) ( ) ( ) II
I II I I II

0
1 1

: :
r

l l

r r r r rV V
r r

d f d d f Q T
φ

φ φ φ φ
= =

′′′ ′′′′′′ ′′ ′′= + = − − −∑ ∑ b ε 1 ε  (A.58) 

Using the right-hand side equality of (A.39) in (A.58) and noting that I 0r =b  and I 0rQ =  in the non-

porous phases, the following expression can be obtained: 

 ( ) ( )( )I I

1

:
r

m

r r rV
r

d f Q Tφ
=

′′′ ′′′= − −∑ 1 b ε  (A.59) 

Using (A.45) for the first homogenization step of each solid phase and equations (A.38) and (A.40) 

the average local strain in phase r of the solid phase is evaluated as: 

 ( )I :
r r

rV V
T′′′ = − −ε α I A          in Vs (A.60) 

This relation is equivalent to (A.42) for simple porous materials. Replacing (A.60) in (A.59) we 

obtain: 

 ( ) ( ) ( )( )hom hom I I I

1

; : :
r

m

r r r rV
r

d Q T Q f Qφ
=

′′′ = − = − − +∑ α I A 1 b  (A.61) 

When all solid phases are non-porous (I 0r =b , I 0rQ = ), equation (A.61) is reduced to equation 

(A.43). 
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10. List of symbols 

A  Strain localization tensor 
vA  Volumetric strain localization coefficient 

dA  Deviatoric strain localization coefficient 

b  Biot’s effective stress coefficient 

b  Tensor of Biot’s effective stress coefficients 

B  Skempton’s coefficient 

c  Microscopic tensor of elastic moduli 

sc  Microscopic tensor of solid moduli 

C  Macroscopic tensor of elastic moduli 

sC  Macroscopic tensor of solid moduli 

E  Macroscopic strain tensor 

E  Macroscopic volumetric strain 

f  Volume fraction of microstructure phase 

g  Microscopic shear modulus 

G  Shear modulus 

k  Microscopic bulk modulus 

dK  Drained bulk modulus 

pK  Drained pore volume modulus 

sK  Unjacketed modulus 

Kφ  Unjacketed pore volume modulus 

u
K  Undrained bulk modulus 

fK  Pore fluid bulk modulus 

m  Number of solid phases 

n  Number of phases 

N  Biot’s skeleton modulus 

p  Pore pressure 

Q  Thermal porosity change coefficient 

T  Temperature 

V  Total volume 
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Vφ  Pore volume 

sV  Solid volume 

x  Position vector 

dα  Drained thermal expansion coefficient 

φα  Pore volume thermal expansion coefficient 

uα  Undrained thermal expansion coefficient 

fα  Pore fluid thermal expansion coefficient 

α  Tensor of thermal expansion coefficients 

ε  Microscopic strain tensor 

φ  Lagrangian porosity 

actφ  Active porosity 

κ  Thermal stress coefficient 

Λ  Thermal pressurization coefficient 

σ  Microscopic stress tensor 
p
σ  Eigenstress related to pore pressure 

T
σ  Eigenstress related to temperature 

Σ  Macroscopic mean stress 

dΣ  Macroscopic Terzaghi effective stress 

Σ  Macroscopic stress tensor 

CH Subscript for Portlandite 

CK Subscript for cement clinker 

CP Subscript for cement paste 

HD Subscript for high density C-S-H 

LD Subscript for low density C-S-H 

CSH Subscript for C-S-H 

s Subscript for C-S-H solid 

V Subscript for macro porosity 

hom Superscript for homogenized parameter 

exp Superscript for experimentally evaluated parameter 

  


