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Abstract

In magnetic resonance imaging (MRI), accuracy and precision with which

brain structures may be quantified are frequently affected by the partial vol-

ume (PV) effect. PV is due to the limited spatial resolution of MRI compared

to the size of anatomical structures. Accurate classification of mixed vox-

els and correct estimation of the proportion of each pure tissue (fractional

content) may help to increase the precision of cortical thickness estimation

in regions where this measure is particularly difficult, such as deep sulci.

The contribution of this work is twofold: on the one hand, we propose a

new method to label voxels and compute tissue fractional content, integrat-

ing a mechanism for detecting sulci with topology preserving operators. On

the other hand, we improve the computation of the fractional content of

mixed voxels using local estimation of pure tissue intensity means. Accu-

racy and precision were assessed using simulated and real MR data and

comparison with other existing approaches demonstrated the benefits of our

method. Significant improvements in gray matter (GM) classification and
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cortical thickness estimation were brought by the topology correction. The

fractional content root mean squared error diminished by 6.3% (p < 0.01)

on simulated data. The reproducibility error decreased by 8.8% (p < 0.001)

and the Jaccard similarity measure increased by 3.5% on real data. Further-

more, compared with manually-guided expert segmentations, the similarity

measure was improved by 12.0% (p < 0.001). Thickness estimation with

the proposed method showed a higher reproducibility compared with the

measure performed after partial volume classification using other methods.

Keywords: Brain tissue segmentation, Partial volume classification,

Magnetic resonance imaging, Topology correction, Sulci detection, Cortical

thickness estimation

1. Introduction1

Accurate segmentation of Magnetic Resonance (MR) images into different2

brain tissues, namely gray matter (GM), white matter (WM), and cerebro-3

spinal fluid (CSF), can allow in-vivo quantification of structural modifications4

appearing during neurodegenerative diseases. However, MR-related artifacts,5

such as intensity inhomogeneity, noise and partial volume (PV) effects, can6

hamper the precision of this task. Inhomogeneities can be characterized by a7

low frequency multiplicative bias field and are mostly due to the sensitivity of8

the receiver coils and, in some cases, to non-homogeneous tissue MR proper-9

ties. The noise is Rician distributed and it has be shown to strongly affect the10

tissue classification (Van Leemput et al., 2003). Finally, PV effects appear11

when the size of anatomical features being imaged is comparable to the voxel12

size, causing blurring at the interfaces between tissues. In some cases, e.g.13

with opposed banks of GM in deep sulci, misclassification problems appears,14

affecting further processings such as cortical thickness estimation.15
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Topological operators and constraints have been widely used to correct16

and achieve accurate cortical tissue segmentations (Ségonne, 2008; Bazin and17

Pham, 2005; Han et al., 2002; Kriegeskorte and Goebel, 2001). It has been18

assumed that the cerebral cortex is a folded sheet of GM built upon the19

WM, which would have the topology of a hollow sphere if the midline hemi-20

spheric connections were artificially removed. Due to MR artifacts, the seg-21

mentation process cannot guarantee this assumption, generating deviations22

from the true anatomy of the structures of interest. Proposed approaches23

that address this issue can be classified in two categories: methods that in-24

clude topological constraints directly into the segmentation process, based on25

active contours (Ségonne, 2008), topology adaptive snakes (McInerney and26

Terzopoulos, 1999), digital topology models (Bazin and Pham, 2005, 2007)27

or segmentation by registration to an atlas (Kriegeskorte and Goebel, 2001);28

and retrospective techniques that correct the topology after the segmentation29

process (Han et al., 2002). Those approaches are focused on ameliorating the30

topology of the segmented tissues, working directly on a voxel or on a mesh31

(surface) space. Voxel-based methods operate directly on the volumetric tis-32

sue segmentations, by removing or adding voxels according to topological33

constraints. However, remotion or addition of a whole voxel in thin struc-34

tures such as the GM may considerably modify the measure of thickness35

(ranging between ± 1 voxel) if any mechanism such as partial volume is not36

used to compensate for the structural modifications. In contrast, mesh-based37

techniques requires an initial 3D reconstruction (triangular mesh) of the vol-38

umetric segmentations. The approaches for segmentation and cortical thick-39

ness estimation operating directly with the surfaces, such as CLASP (Kim40

et al., 2005), BrainVISA (Mangin et al., 1995) or Freesurfer (Dale et al., 1999;41

Fischl et al., 1999; Fischl and Dale, 2000), incorporate mechanisms to pre-42
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vent self-intersection of surfaces or topology correction, imposing also some43

smoothness constraints. Mesh-based approaches are however computation-44

ally more expensive, because of the needed additional reconstruction step.45

Overall, after or during the mesh generation, most of the methods tackle the46

elimination of tunnels and handles (Fischl et al., 1999; Florent Ségonne and47

Fischl, 2007; Jaume et al., 2005; Zhou et al., 2007).48

On the other hand, PV estimation has received considerable attention49

in the last few years and different approaches have been proposed for clas-50

sification and computation of fractional content (Santago and Gage, 1993;51

Laidlaw et al., 1998; Shattuck et al., 2001; Noe and Gee, 2001; Van Leemput52

et al., 2003; Tohka et al., 2004; Chiverton and Wells, 2008). Most techniques53

model voxel intensity as a linear combination of the intensity distributions of54

the possible tissue types within each voxel (Choi et al., 1991; Noe and Gee,55

2001). Computing the fractional content of voxels therefore requires both56

pure and mixed voxels to have been previously classified. Shattuck et al.57

(2001) implemented a maximum a posteriori (MAP) classifier, which com-58

bined a tissue measurement model with a prior model of the local spatial59

interactions to obtain six tissue types: three pure and three mixed. The60

fractional content for the mixed voxels was calculated based on the global in-61

tensity mean of pure tissue types. Tohka et al. (2004) proposed an algorithm62

which used statistical estimators, based on the MAP estimation (Shattuck63

et al., 2001). Recently, Chiverton and Wells (2008) presented a local adaptive64

Gradient-controlled spatial regularizer (GSR) using a Markov Random Field65

to model the class membership and a Markov chain Monte Carlo (MCMC)66

simulation to adapt the model to the observed data. The labelling error may67

remain high because the intensity inhomogeneities (not explicitly modelled)68

and the noise may lead to misdetection of mixed voxels mainly in tight sulci,69
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representing a portion of GM/CSF/GM within the same voxel.70

The approaches previously presented have been focused on solving either71

the PV estimation or the topology correction. Our contribution consists72

in demonstrating that better results and performance are obtained if both73

strategies are combined together with a spatial intensity variation modeling.74

In this paper, we propose a new method aimed at improving both PV classi-75

fication and fractional content computation, working at a voxel level in order76

to be accurate and computationally efficient. The improved classification77

is achieved by imposing topological constraints to the binary segmentation78

and thus detecting hidden mixed voxels in zones of tight sulci. The accurate79

fractional content estimation is attained by computing the fractional content80

as a linear relation between robust local intensity averages of pure tissue81

voxels. The spatially dependent averaging helps to overcome the problems82

of intensity inhomogeneity for a given tissue across the image.83

In the next section we describe our methods, followed by experiments84

using simulated and real data. We also compare the results with other pre-85

viously proposed methods. We demonstrated the utility of our approach by86

integrating the whole process to our voxel-based cortical thickness estimation87

pipeline.88

2. Methods89

The proposed strategy follows the steps depicted in Figure .1: Firstly, an90

initial classification of voxels into pure tissues WM, GM and CSF and mixed91

tissues WM/GM and GM/CSF is performed. Secondly, topology-constraints92

are introduced in the classification assuming that the GM is a continuous93

layer covering the WM. A topology preserving dilation of the WM over GM94

adds robustness to the delineation of mixed voxels GM/CSF in deep sulci.95

5



Finally, the estimation of fractional content for mixed voxels is adaptively96

performed based on a local averaging of the pure tissue voxels.97

INSERT FIGURE .1 HERE98

2.1. Pure tissue segmentation99

A first segmentation of pure brain tissues into GM, WM and CSF is per-100

formed based on an implementation of the expectation-maximisation (EM)101

segmentation method as in (Van Leemput et al., 1999). Here, the Colin atlas102

and associated priors are first affinely registered to the data using a robust103

block matching approach (Ourselin et al., 2001), followed by a diffeomorphic104

Demons non-rigid registration (Vercauteren et al., 2007). Probabilistic tissue105

maps associated with the atlas were used to initialize the EM segmentation106

and enforce spatial consistency throughout the segmentation. The probabil-107

ity density functions of the tissues are modelled with 6 Gaussians (WM, GM,108

CSF and 3 for non brain tissues, skull and background). Finally, hard seg-109

mentations are obtained after the EM segmentation by labelling each voxel110

with the most probable tissue.111

2.2. Initial partial volume labelling112

Using the hard segmentations, a first labelling of partial volume voxels113

are identified within the hard segmentations and along the interfaces of pure114

tissues. Three pure tissue classes and two mixture classes are considered115

Γ = {GM, CSF, WM, CSF/GM, GM/WM}. A maximum a posteriori classi-116

fication (MAP) is made and labels the voxels as belonging to the set Γ. This117

procedure, relying on both intensity and spatial information, extends the118

method proposed by (Shattuck et al., 2001), but we assume that each voxel119

contains at most two tissues (Santago and Gage, 1993), and PV classification120

is restricted to the region formed by a dilated GM region (radius 2) because121
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only the cortical thickness is sought. To take into account dependency on the122

neighbouring tissue types, a Markov prior that models local spatial interac-123

tions was implemented using a Potts model in order to perform the labelling.124

As in (Shattuck et al., 2001; Tohka et al., 2004; Kim et al., 2005), we use the125

Iterated Conditional Modes (ICM) algorithm as explained in (Besag, 1986)126

to search for the optimal labelled image. According to this, every voxel is127

updated once per iteration until no label changes occur between iterations.128

This model favors classification of contiguous regions of GM, WM and CSF129

and encourages configurations of voxels that make physical sense such as130

GM/CSF or GM/WM voxels adjacent to GM.131

2.3. A topology preserving segmentation132

After the MAP labelling, some of the sulci may be misdetected, as the133

intensity of buried PV GM/CSF voxels is close to that of the GM. In order to134

refine the segmentation and identify such buried GM/CSF voxels, we used a135

homotopic dilation of the consolidated WM = {WM, WM/GM} constrained136

by the GM, leading to a better delineation of deep sulci. To preserve this137

folds during dilation, the set WM is corrected first to assure that shares the138

topology of a filled sphere.139

The homotopic transformations that we used are topology-preserving pro-140

cedures that consist of sequentially deleting or adding single points (voxels)141

as described in (Bertrand and Malandain, 1994). The algorithms used are142

detailed in Appendix A. Our topology preserving segmentation of the WM143

consists in performing a homotopic dilation of a seed set of voxels, called S,144

constrained to only add voxels from the set WM, knowing that S is topo-145

logically equivalent to a filled sphere. The result of this operation is denoted146

by SWM. For example, S could be made of single voxels chosen in the white147

matter, but we describe below a way to obtain a seed that is closer to the148
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expected result, and thus leads to a more robust segmentation.149

To obtain the seed S, we first compute a surface skeleton SK of WM, by150

dilating using Algorithm 2 as described in Appendix A. Then, we perform151

an homotopic erosion, constrained by SK, of a full cuboid that includes SK.152

Finally, we perform an homotopic dilation of the same seed set S, constrained153

by the set SWM ∪ GM to only add GM and WM voxels, and we substract154

SWM from the result to obtain the corrected GM.155

This method is performed on 3D sets, but for clarity we illustrate it on156

a 2D reduced example in Figure .2. Notice that small black components in157

Figure 2(b) can correspond to tunnels in the 3D image, thus simple connected158

component filtering would not give the correct region. Figures .3 and .4 show159

further examples in 3D.160

INSERT FIGURE .2 HERE161

INSERT FIGURE .3 HERE162

INSERT FIGURE .4 HERE163

2.4. Partial volume relabelling and fractional content164

The main contribution of the topology is the relabelling of missegmented165

GM voxels in hidden sulci as mixed GM/CSF. Once the topologically cor-166

rected WM, GM, CSF, WM/GM and GM/CSF segmentations are obtained,167

the portion of pure tissue, called here fractional content F , is computed for168

each mixed voxel by estimating the local contribution of each pure tissue.169

We assume that each voxel contains at most two tissues and the new la-170

belling corresponds only to the mixed voxels WM/GM and GM/CSF. For171

each mixed voxel, the fractional content F ranges between [0, 1] depending172

on the amount of pure tissue. Thus, for pure tissue voxels the fractional173
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content Fj are set to 1 for the class j and 0 otherwise. For mixed voxels174

(x ∈ WM/GM, GM/CSF ), the fractional content Fj/k between both pure175

tissues j and k is computed using the intensity I(x) of the image and the176

robust local averages of the closest pure tissue voxels µj(x) and µk(x), such177

that:178

Fj/k(x) = U

(

µk(x) − I(x)

µk(x) − µj(x)

)

(1)

where U(·) is a limiter restricting the range of the fractional content to [0, 1].179

Unlike (Shattuck et al., 2001), which uses the same linear relation between180

global means of tissues to compute fractional content, we compute µk and µj181

as robust local averages rather than global means. This is done by computing182

the mean of the median 50% of pure tissue intensities (interquartile mean)183

within a 5mm radius sphere, thus rejecting local outliers, over a denoised184

version of the original MR image. The noise is removed by applying the185

optimized non-local means method proposed in (Coupe et al., 2008).186

Pure tissue voxels are selected by eroding pure tissue segmentations using187

a 2mm radius, therefore reducing the influence of any mixed voxel. Finally,188

the computed averages are propagated back towards the location of the mixed189

voxels x, resulting in values of µj(x) and µk(x) that represent the average of190

the closest pure tissue voxels (Figure .5). The GM fractional content map191

is eventually defined as FGM/WM ∪ FGM ∪ FGM/CSF. Using a robust local192

mean overcomes issues related to intensity inhomogeneities and variations of193

pure tissue signal across the image, weighting accordingly the signal when194

computing the fractional content.195

INSERT FIGURE .5 HERE196

INSERT FIGURE .6 HERE197
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Regional differences in the cell structure and the distribution of different198

layers of the cortex result in variation of regional intensity differences for199

the same tissue across the brain. These differences produces local variation200

of contrast between the tissues that might be pronounced with ageing Salat201

et al. (2009). Whereas global homogeneity assumptions will bias the voxel202

fractional content estimation, a local computation of intensity averages for203

pure tissue yields a more accurate value, which accounts for the changes in204

cytoarchitecture visibles in MR. A local estimate allows also to overcome the205

issues of intensity inhomogeneities due to the artifacts during the acquisition.206

To illustrate the spatial differences in signal, GM intensity was measured207

over the population of 20 young adults scans, acquired as described in Sub-208

section 3.3. Figure .6 shows the local average intensity of GM across the209

brain for an individual. In this example, precentral gyrus presented a higher210

average value than the temporal or occipital lobe. The same pattern appear211

in average in all the healthy individuals. The contrast between the tissues212

has been also measured using the Equation 2 as213

FContrast =
µWM − µGM

µGM − µCSF
(2)

where µWM, µGM and µCSF are the regional averages of WM, GM and CSF214

respectively, which can be considered as a measure of the contrast between215

WM and GM normalized by the CSF. Figure .7 shows the regional differences216

for the population of 20 young controls.217

INSERT FIGURE .7 HERE218

3. Experiments219

10



To evaluate our method, named hereafter as Topologically-corrected Par-220

tial Volume (TPV), we used different brain MR data sets including simulated221

and real images. The purpose was twofold, firstly to illustrate the effect of the222

topology correction in the estimation of fractional content for mixed voxels,223

and secondly to compare the obtained results with those publicly available in224

the area. After that, the method was integrated to our voxel-based cortical225

thickness estimation pipeline. Experiments demonstrated that the overall226

method showed a better estimate of thickness and a high reproducibility on227

real data.228

3.1. Simulated MR data229

A set of 15 simulated MR brain images was obtained from the BrainWeb230

Simulated Brain Database, maintained by the McConnell Brain Imaging Cen-231

tre at the Montreal Neurological Institute (Cocosco et al., 1997) and avail-232

able at www.bic.mni.mcgill.ca/brainweb. Each simulation was a 1mm3
233

isotropic T1-weighted MRI volume with dimensions 181 × 217 × 181, gen-234

erated with varying noise level and intensity inhomogeneity. We tested our235

method on each combination of 1%, 3%, 5%, 7% or 9% noise levels together236

with 0%, 20% or 40% intensity nonuniformities. BrainWeb also provides the237

fuzzy tissue membership volumes, one for each tissue class, together with a238

discrete anatomical model of the simulated normal brain.239

3.2. Manually segmented real MR data240

20 normal MR brain data sets and their manual segmentations were ob-241

tained from the Internet Brain Segmentation Repository (IBSR), provided242

by the Center for Morphometric Analysis at Massachusetts General Hospi-243

tal and available at www.cma.mgh.harvard.edu/ibsr. The data sets were244

acquired along the coronal axis with slice dimension of 256× 256 and 1mm2
245
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resolution. Interslice distance is 3mm and the number of slices for each vol-246

ume varies between 60 and 65. The data sets have various levels of artifacts,247

as low contrast and relatively large intensity gradients, that further affects248

performance of the algorithm. CMA also provides expert tissue labellings of249

each brain into WM, GM, and CSF, together with reference similarity values250

for some classification techniques.251

3.3. Cross sectional series of real MR scans252

20 young healthy subjects (12 female, 8 male; age between 19 - 34 years),253

who underwent 4 scans at baseline and 4 more scans during a subsequent254

session after a short delay (less than 90 days), were randomly selected from255

the Open Access Series of Imaging Studies (OASIS) database (Marcus et al.,256

2007), available at www.oasis-brains.org. For each session, an average257

motion-corrected image (co-registered average of all available data) was used258

for our tests. The scans were T1-weighted Magnetization Prepared RApid259

Gradient Echo (MP-RAGE) in sagittal orientation with isotropic 1mm3 res-260

olution (256×256×128 pixels). This data was used to assess the precision of261

the method when classifying partial volume voxels. We also tested the robust-262

ness when the method was integrated in our voxel-based cortical thickness263

estimation pipeline (Acosta et al., 2009), particularly when the detection of264

deep sulci was improved.265

3.4. Error and similarity measures266

To quantitatively evaluate performance of the method over both simu-

lated and real MR data sets and compare these results with other well-known

results, we used two different metrics: the root mean square (RMS) error for

comparison of PV classification maps, and the Jaccard similarity measure for

comparison of the corresponding crisp tissue segmentations. The RMS error
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was used to quantify the differences between the fractional content calcu-

lated for each tissue and the corresponding values in the ground truth fuzzy

membership images. As in (Shattuck et al., 2001), the RMS error between

two images X and Y is calculated as

eRMS(X, Y ) =

√

1

|Ω|

∑

k∈Ω

|yk − xk|2

were Ω is the brain region, xk and yk are the image intensities at position k.267

The Jaccard similarity metric, also known as the Tanimoto coefficient,

measures the amount of overlap (agreement) between two images X and Y

by taking the ratio between the size of their intersection and the size of their

union:

J(X, Y ) =
|X ∩ Y |

|X ∪ Y |

This metric yields values between 0 and 1, where 0 means complete dissimi-268

larity and 1 stands for identical images.269

4. Results and discussion270

4.1. BrainWeb271

Performance of our TPV method was firstly assessed on the simulated272

brain images from BrainWeb. One example of the resulting PV maps for273

WM, GM and CSF, compared with the available ground truth, on the syn-274

thetic brain volume, 3% noise level and 20% bias field, is depicted in Figure .8.275

Comparisons between our method and a classical MAP approach are shown in276

Figure .9 for the computed GMPVC fractional content map. It must be noted277

that compared to a classical MAP approach as in (Shattuck et al., 2001), the278

sulci were better delineated by introducing the topological constraints (Fig-279

ure 9(g)). In this example, a deep sulci voxel with similar intensity to the280

average GM, will be classified as GM and not as a mixed GM/CSF voxel281
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unless anatomical constraints are introduced. The mean RMS error of frac-282

tional content over the entire BrainWeb data set significantly decreased to283

6.1% (p < 0.01) for the obtained GMPVC map, as compared with the results284

reported in (Shattuck et al., 2001). Overall, a good agreement was shown285

between the computed PV maps and the ground truth, available as fuzzy286

tissue membership volumes. RMS errors for different noise and intensity287

nonuniformity levels are shown in Table .1. As expected, the computed error288

was robust to the bias field, which additionally validates the local averaging289

approach rather than the global one.290

INSERT FIGURE .8 HERE291

INSERT FIGURE .9 HERE292

INSERT TABLE .1 HERE293

The variability between different regions in the brain may affect the per-294

formance of PV classifiers (Chiverton and Wells, 2008). To illustrate this295

effect, we used the automated anatomical labeling (AAL) template (Tzourio-296

Mazoyer et al., 2002) to calculate the RMS error within each region as297

in (Chiverton and Wells, 2008). Averaged results for different levels of noise298

are shown in Figure .10. As a low variability with respect to the bias field299

was observed, the depicted value corresponds to the average over all the bias300

field levels (0%, 20% and 40%). The smallest errors appeared in the amyg-301

dala (42xx), the insula (30xx), the supplementary motor area (24xx) and302

the olfactory (25xx); while lower agreement was found in the basal ganglia303

(70xx), the middle occipital (52xx) and the parietal superior (61xx).304

INSERT FIGURE .10 HERE305
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INSERT FIGURE .11 HERE306

We also compared our TPV method with the results reported by Chiver-307

ton and Wells (2008) (GSR) and Shattuck et al. (2001) (SMAP). The results308

are depicted in Figure .11. Evidence suggests that the local average intensity309

strategy makes the classification more robust to bias field variations, and on310

average performs better than other methods for low levels of noise (1% to311

7%) and bias field of 20%. We point out the fact that GSR does not explic-312

itly take into account the bias field, hence its effect appears in the reported313

results.314

4.2. Real MR Data315

4.2.1. OASIS316

The reproducibility was measured by applying the method to two of the317

MR scans from the same individual from the OASIS database. We compared318

the results with the MAP classifier as in (Shattuck et al., 2001). Significant319

improvements in GM PV estimation were brought by the topology correc-320

tion. The reproducibility error decreased by 8.8% in GM and 8.5% in WM321

(p < 0.001), measured as the RMS between the PV maps obtained on the322

rigidly registered baseline and repeat scans. Likewise, when comparing the323

crisp segmentations obtained by thresholding by 0.5 the baseline and repeat324

GM PV maps, the Jaccard similarity measure increased by 3.5% in GM. To325

compute crisp segmentations, each mixed voxel was assigned to the tissue326

class with the highest fractional content and the obtained segmentation were327

subsequently compared.328

4.2.2. IBSR329

Our method was also compared with both TMCD (trimmed minimum330

covariance determinant) (Tohka et al., 2004) and MMC (mixture model clus-331
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tering) (Noe and Gee, 2001) on the IBSR data sets. Since the ground truth332

is available as manual segmentations performed by clinical experts, we com-333

pared the segmentations obtained from the crisped PV maps. Figure .12334

shows an example of the ground truth provided by IBSR and a hard segmen-335

tation calculated after applying our method. Figure 13(b) depicts the results336

of the comparison for the GM in the 20 normal subjects. As in (Chiverton337

and Wells, 2008), results of manual expert segmentation and pure tissue class-338

sification presented by Ibrahim et al. (2006) (HMM, hidden Markov model)339

were included for reference. Significant improvements in GM classification340

were demonstrated using the TPV, compared to a MAP classifier. The sim-341

ilarity measure (Jaccard) was improved by 8.7% in GM and 2.6% in WM342

(p < 0.001).343

INSERT FIGURE .12 HERE344

Poor similarity results were obtained in 5 cases, which exhibited strong345

shading artifacts that impeded a reliable GM and WM classification. Simi-346

lar findings were presented in (Noe and Gee, 2001), who excluded them from347

the analysis. We also observed that the anisotropy in the images biased the348

computation of the local averages. Table .2 summarizes the mean (± stan-349

dard deviation) of the Jaccard similarity values for each method, excluding350

the volumes with too severe intensity inhomogeneity. In average, our TPV351

method performed better for WM and GM compared to the others, except-352

ing averaged GM segmentation against (Noe and Gee, 2001). It must be353

noted that when the PV maps were used to generate the crisp segmenta-354

tions, the mixed GM/CSF voxels in deep sulci with fractional content above355

0.5 might be wrongly reclassified as GM. Under those conditions, the con-356

tribution of topology correction in the segmentation can not be fully and357
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accurately validated with this experiment. Nonetheless, we report these re-358

sults for completeness.359

INSERT TABLE .2 HERE360

INSERT FIGURE .13 HERE361

4.3. Computational performance362

On each image of the BrainWeb data set, after the initial MAP segmenta-363

tion, the topology correction and PV fractional content estimation takes less364

than 10 minutes. For the OASIS data sets, the procedure takes about 9 min-365

utes, while for the IBSR images the topology correction and PV fractional366

content estimation takes less than 4 minutes. Operations were encoded in a367

single-thread application and then executed in a standard Intel Core 2 Duo368

(3.00GHz, 2 GB RAM) machine running Linux.369

4.4. Deep sulci cutting and cortical thickness estimation on real data370

We integrated the proposed sulci detection and improved partial volume371

classification methods to our cortical thickness estimation pipeline (Acosta372

et al., 2009), as depicted in Figure .14. Then, we computed the thickness, at373

two different acquisition times, for the same 20 young healthy subjects from374

the OASIS database (Marcus et al., 2007) used in the experiment described375

in Section 3.3. The reproducibility was assessed by using the Pearson cor-376

relation coefficient for each Region Of Interest (ROI) of the AAL template377

(Tzourio-Mazoyer et al., 2002), excluding the cerebellum and subcortical nu-378

clei from the analysis.379

INSERT FIGURE .14 HERE380
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Thickness estimation with the proposed method (TPV) showed a higher381

reproducibility compared with the measure performed after partial volume382

classification using (Shattuck et al., 2001). As can be seen in Figure .15, the383

differences in cortical thickness between scans were reduced after applying the384

TPV. The Pearson correlation coefficient was 0.915 in average and a paired t-385

test did not reveal any significant differences between the two measurements386

(p < 0.1). Also, the difference between scans was decreased by 13.7% in387

average, as shown in Table .3.388

INSERT FIGURE .15 HERE389

INSERT TABLE .3 HERE390

By using the proposed method, we found a mean (± std. dev.) cortical391

thickness over the whole brain of 2.08mm (± 0.11) for all the subjects, which392

is within the accepted range of cortical thickness for healthy young adults.393

In previous studies, when the PV is not taken into account as in (Yezzi394

and Prince, 2003), the computed mean thickness for the same population395

was 4.69mm (± 0.11). And when the PV classification method proposed396

by (Shattuck et al., 2001) is used, without any topology correction, the com-397

puted mean thickness was 3.06mm (± 0.25); using those same PV maps, but398

correcting the topology problems, decreases the mean thickness to 2.75mm399

(± 0.17).400

INSERT FIGURE .16 HERE401

Fig. .16 depicts in histograms the impact of the topology correction and402

the accurate PV estimation on the cortical thickness calculation task. The403

higher thickness values produced after the first PV classification dissapeared404

when the topology of GM is corrected and the accurate PV value is computed405
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with the TPV. Fig. 16(a) shows the histogram of the average thickness for406

the 20 MR subjects before any topological modifications, after the topology407

correction and with TPV. Fig. 16(b) depicts the differences for each of the408

cortical thickness histograms between Step 1 and Step 2, illustrating the409

improvement after the TPV. The number of voxels above 4mm in average410

has beed dramatically reduced. Fig. 16(c) shows the differences between411

topology corrections and TPV, in average in this further step the number of412

voxels above 2.5mm has been reduced.413

5. Conclusion414

We have described a simple and fast technique to improve PV estimation415

of brain tissues from T1W MRI. It improves the detection of hidden mixed416

voxels in deep sulci by correcting for the topology errors in the segmentation417

and uses local averages to better estimate the fractional content. We show418

that fractional tissue content estimation can be improved for low levels of419

noise and regardless the intensity inhomogeneity, resulting in superior brain420

tissue segmentations.421

Topology correction improved the classification of mixed voxels in op-422

posed banks of buried sulci by assuming GM as a continuous layer following423

the WM, with the topology of a filled sphere. Local modelling of tissue inten-424

sities helps to overcome the issues related with local intensity inhomogeneity425

and tissue MR properties across the image. Even with a preprocessing stage426

to correct the intensity inhomogeneities, pure cortical tissues show differ-427

ent intensity levels in the MRI. This suggests that the tissue properties are428

different depending on the region of the brain. Accuracy and precision were429

demonstrated and comparisons with other methods showed comparative per-430

formance with simulated and real MR data.431
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We demonstrated the usefulness of the method to improve the accuracy432

of the cortical thickness estimation. By labelling mixed GM/CSF voxels in433

deep sulci and by recomputing a spatially compensated PV map, the measure434

of thickness in difficult regions is improved. Our method showed a high435

reproducibility on real data, with an extremely good agreement between the436

baseline and repeat scans. The computed values of thickness for young adults437

are similar to the ones reported previously in the literature. In the future,438

we plan to use our technique on clinical data to study cortical atrophy in439

Alzheimer’s disease and other neurodegenerative diseases. We intend also to440

develop voxel-based techniques for inter-subject comparisons, a challenging441

issue given the large anatomical variability between patients.442
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AppendixA443

Topology preservation and homotopic transformations444

445

Homotopic transformations are topology-preserving procedures that con-446

sist of sequentially deleting or adding simple points. This operation works447

only on binary images, such as the pure tissue segmentations, where each448

voxel is considered as a point. Informally, a simple point of an object X is a449

point that can be added or removed from X without changing the topological450

characteristics of X. It is possible to locally characterize simple points in 3D451

using two topological numbers T and Tb (Bertrand and Malandain, 1994).452

Thus, skipping some technical details, let A(x) be the set of points of453

X \ {x} lying in a neighborhood of x, and let Ab(x) be the set of points of454

the complement of X (background) lying in a neighborhood of x. Then, T (x)455

(resp. Tb(x)) is the number of connected components of A(x) (resp. Ab(x)).456

A point x is simple if and only if T (x) = Tb(x) = 1. Topological numbers457

are useful for classifying points of an object X based on local topological458

characteristics: for example, a point x such that Tb(x) > 1 characterizes459

a region of the object which separates (locally) its background into several460

parts.461

Based on these notions, given an object X, a subset I of X and a priority462

function P , Algorithm 1 computes an homotopic erosion of X constrained by463

I, that is, an object that is topologically equivalent to X, that contains I and464

that has no simple point outside I. In this algorithm, the priority function465

P is usually chosen as the inverse of the distance to I, in order to select in466

the first place the points that are farthest to the set I. This choice will be467

assumed in the remaining operations.468

Applying Algorithm 1 to the complementary sets of X and I, then in-469
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Algorithm 1 Homotopic erosion of X constrained by I
repeat

Select x ∈ X \ I such that P (x) is minimal

if x is simple for X then

X = X \ {x}

end if

until stability

verting the result, yields an homotopic dilation of X constrained by I. In a470

similar way, Algorithm 2 (Bertrand and Couprie, 2007) computes a surface471

skeleton of X which contains medial surfaces of the original object (provided472

that the priority function P is a distance map of X).

Algorithm 2 Surface skeleton of X

Let C be a null image

repeat

Select x ∈ X such that x is simple for X, C(x) == ∅ and P (x) is

minimal

X = X \ {x}

for all y in the neighborhood of x do

if Tb(y) > 1 then

C(y) = 1

end if

end for

until stability

473
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Tables585

Intensity inhomogeneity

0% 20% 40%

Noise WM GM WM GM WM GM

1% 0.129 0.130 0.129 0.131 0.125 0.132

3% 0.139 0.142 0.140 0.141 0.140 0.142

5% 0.174 0.174 0.172 0.171 0.170 0.171

7% 0.214 0.216 0.210 0.213 0.208 0.212

9% 0.251 0.261 0.245 0.258 0.242 0.256

Table .1: Fractional content RMS error on BrainWeb.

MMC (Noe and Gee, 2001) TMCD (Tohka et al., 2004) TPV

WM 0.648 (± 0.198) 0.696 (± 0.050) 0.701 (± 0.042)

GM 0.753 (± 0.120) 0.697 (± 0.064) 0.708 (± 0.045)

Table .2: Mean (± standard deviation) of Jaccard similarity index for each method.

Correlation coefficient Differences between scans

Brain lobule SMAP TPV SMAP TPV

Frontal 0.922 0.930 0.090 0.090

Limbic 0.901 0.883 0.158 0.121

Occipital 0.902 0.904 0.101 0.063

Parietal 0.906 0.920 0.058 0.060

Temporal 0.932 0.938 0.105 0.106

Average 0.912 0.915 0.102 0.088

Table .3: Pearson correlation coefficient and differences between scans for the OASIS

dataset, grouped by brain lobules.
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Figures and Legends586

Figure .1: Overall process for topology-corrected PV estimation in MR images
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure .2: (a): original grayscale image. (b): segmented white matter (set WM). (c):

segmented white and gray matter (set WM ∪ GM). (d): surface skeleton of WM (set

SK). (e): seed set (set S). (f): corrected white matter (set SWM). (g): corrected white

and gray matter formed by further homotopic dilation. (h): corrected gray matter (final

result) formed by substracted images (g) and (f).

30



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure .3: First row (a) - (d): Different initial configurations of a synthetic phantom.

Second row (e) - (h): Corresponding topologically corrected WM-GM segmentations.
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(a) (b)

(c) (d)

Figure .4: (a) Initial and (b) topologically corrected WM-GM segmentations, highlighted

within the rectangle; (c) marching cubes reconstruction of GM before and (d) after the

topology correction procedure.
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Figure .5: Schematic view of the local tissue averages for a given mixed voxel, where d1

and d2 relates to the closest voxels in the pure tissues.

Figure .6: Averaged intensity within the connected components of the pure GM, com-

puted as the interquartile mean (IQM) within a 5mm radius sphere on an OASIS example

data, normalized by the Maximum of intensity. The differences between the regions clearly

appear. Thus, GM tissue intensity will be different between the regions and global homo-

geneity assumptions will slightly bias the computation of partial volume.
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Figure .7: AAL template showing the regional differences incontrast between WM and

GM over the surface, by calculating the ratio µWM−µGM

µGM−µCSF
. Darkest colours indicate bigger

ratios, light colours indicate small values. Left: lateral and Right: medial views.

(a) (b) (c)

(d) (e) (f)

Figure .8: Partial volume segmentation of a simulated BrainWeb volume (3% noise, 20%

bias field). PV maps for (a) WM, (b), GM (c) and CSF. Ground truth: (d) WM, (e), GM

and (f) CSF.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure .9: Example of PV estimation of a simulated BrainWeb volume (3% noise, 20% bias

field). (a),(e) Original image, (b),(f) MAP PV estimation, (c),(g) Topologically-corrected

PV, (a),(h) ground truth. In the detailed views we can observe the improvement in deep

sulci, (g) relative to (f), brought by the topology correction.
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(a) WM

(b) GM

Figure .10: RMS error per AAL region (a) WM and (b) GM regions, for different noise

levels using the same labels as (Chiverton and Wells, 2008).
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(a) WM

(b) GM

Figure .11: PV estimation errors for (a) WM and (b) GM on BrainWeb, for different noise

and bias field levels. (SMAP results for 1% noise not publicly available)
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(a) (b) (c)

Figure .12: (a) IBSR Ground truth pure tissue classification. (b) Estimated PV maps

(blue: GM/CSF, white: GM, yellow: GM/WM) and (c) computed crisp segmentation.
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(a) WM

(b) GM

Figure .13: Jaccard similarity results for WM (a) and GM (b).
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(a) (b) (c)

(d) (e) (f)

Figure .14: Example of cortical thickness estimation from MR. (a) Original T1-W MRI,

(b) GM segmentation, (c) Topologically-corrected GM PV map. Cortical thickness maps

(d) without any topology modifications, (e) after topology correction only, (f) after TPV.

In the detailed views we can observe the improvement brought by the topology to delineate

deep sulci zones, which allows an accurate measurement of the cortical thickness.
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(a) (b)

(c) (d)

Figure .15: Surface representation of cortical thickness, computed at different steps for

two scans of a single subject (OASIS). Top row: Scan 1, Bottom row: Scan 2. (a),(c)

Without topology modifications, and (b),(d) with topologically-corrected GM PV map

(TPV). Overall, we can observe the high values of thickness corrected with the TPV

method.
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(a)

(b) (c)

Figure .16: (a) Histogram of the average thickness for the 20 MR before topology correction

(step 1), after topology correction (step 2) and with TPV. It is shown how the number

of higher thickness voxels was reduced. (b) Differences in cortical thickness histograms

between steps 1 and 2 for the 20 MR. This figure depicts the improvement after the

topology. The number of voxels above 4mm in average has been dramatically reduced.

(c) Differences between topology and TPV, in average the number of voxels above 2.5mm

has been reduced consolidating the average thickness around 2.5 mm (typical value for

young adults).
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