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Noise Covariance Properties in Dual-Tree

Wavelet Decompositions

Caroline ChauxMember, IEEE Jean-Christophe Pesqu&gnior Member, IEEENd

Laurent Duval,Member, IEEE

Abstract

Dual-tree wavelet decompositions have recently gained much poputagtyly due to their ability to provide an
accurate directional analysis of images combined with a reduced radeyydNVhen the decomposition of a random
process is performed — which occurs in particular when an additives nisorrupting the signal to be analyzed —
it is useful to characterize the statistical properties of the dual-tree wasadéficients of this process. As dual-tree
decompositions constitute overcomplete frame expansions, correlatictuges are introduced among the coefficients,
even when a white noise is analyzed. In this paper, we show that it is ossilprovide an accurate description
of the covariance properties of the dual-tree coefficients of a widsesstationary process. The expressions of the
(cross-)covariance sequences of the coefficients are derived iontihand two-dimensional cases. Asymptotic results
are also provided, allowing to predict the behaviour of the second-ondenents for large lag values or at coarse
resolution. In addition, the cross-correlations between the primal aaldwhwvelets, which play a primary role in our
theoretical analysis, are calculated for a number of classical waweetelids. Simulation results are finally provided

to validate these results.

Index Terms

Dual-tree, wavelets, frames, Hilbert transform, filter banks, ccoseelation, covariance, random processes,

stationarity, noise, dependence, statistics.

I. INTRODUCTION

The discrete wavelet transform (DWT) [1] is a powerful toolsignal processing, since it provides “efficient”
basis representations of regular signals [2]. It neveedgebuffers from a few limitations such as aliasing effatts i
the transform domain, coefficient oscillations around siadgties and a lack of shift invariance. Frames (see [3],
[4] or [5] for a tutorial), reckoned as more general signgresentations, represent an outlet for these inherent

constraints laid on basis functions.
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Redundant DWTs (RDWTSs) are shift-invariant non-subsampiaché extensions to the DWT. They have proved
more error or quantization resilient [6]—[8], at the prickam increased computational cost, especially in higher
dimensions. They do not however take on the lack of rotatiwariance or poor directionality of classical separable
schemes. These features are particularly sensitive toeraad video processing. Recently, several other types of
frames have been proposed to incorporate more geometticdsaaiming at sparser representations and improved
robustness. Early examples of such frames are shiftabléscale transforms or steerable pyramids [9]. To hame
a few others, there also exist contourlets [10], bandelkt$, [curvelets [12], phaselets [13], directionlets [14] or
other representations involving multiple dictionaries][1

Two important facets need to be addressed, when resortitfietmherent frame redundancy:

1) multiplicity: frame decompositions or reconstructions are not uniqugeireral,

2) correlation transformed coefficients (and especially those relatenbtse) are usually correlated, in contrast

with the classical uncorrelatedness property of the cormaptsnof a white noise after an orthogonal transform.

If the multiplicity aspect is usually recognized (and often addressed viagimgreechniques [6]), theorrelation
of the transformed coefficients have not received much denaiion until recently. Most of the efforts have been
devoted to the analysis of random processes by the DWT [18]—[1 should be noted that early works by
C. Houdg et al. [20], [21] consider the continuous wavelet transform ofd@am processes, but only in a recent
work by J. Fowler exact energetic relationships for an églitoise in the case of the non-tight RDWT have been
provided [22]. It must be pointed out that the difficulty toachcterize noise properties after a frame decomposition
may limit the design of sophisticated estimation methoddenoising applications.

Fortunately, there exist redundant signal representt@iowing finer noise behaviour assessment: in particular
the dual-tree wavelet transform, based on the Hilbert toams whose advantages in wavelet analysis have been
recognized by several authors [23], [24]. It consists of thassical wavelet trees developed in parallel. The second
decomposition is refered to as the “dual” of the first one,olihis sometimes called the “primal” decomposition.
The corresponding analyzing wavelets form Hilbert pair§, [B.198 sq]. The dual-tree wavelet transform was
initially proposed by N. Kingsbury [26] and further invegsted by I. Selesnick [27] in the dyadic case. An
excellent overview of the topic by I. Selesnick, R. Baranarid N. Kingsbury is provided in [28] and an example
of application is provided in [29]. We recently have genieed this frame decomposition to th&/-band case
(M > 2) (see [30]-[32]). In the later works, we revamped the cartsion of the dual basis and the pre-processing
stage, necessary in the case of digital signal analysis [33] and mandatory to accurate directional analysis
of images, and we proposed an optimized reconstructiors, daldressing the first important facet of the resulting
framemultiplicity. The M-band (\/ > 2) dual-tree wavelets prove more selective in the frequecyain than their
dyadic counterparts, with improved directional seletyids well. Furthermore, a larger choice of filters satigfyin
symmetry and orthogonality properties is available.

In this paper, we focus on the second faaatrelation by studying the second-order statistical properties, in
the transform domain, of a stationary random process undeyca dual-treel/-band wavelet decomposition. In

practice, such a random process typically models an additdise. Preliminary comments on dual-tree coefficient
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correlation may be found in [35]. Dependencies between tiedficients already have been exploited for dual-tree
wavelet denoising in [36], [37]. A parametric nonlinearimsttor based on Stein’s principle, making explicit use of
the correlation properties derived here, is proposed if. [88first, we briefly recall some properties of the dual-
tree wavelet decomposition in Section I, refering to [3@f fore detail. In Section Ill, we express in a general
form the second-order moments of the noise coefficients d¢h é&e, both in the one and two-dimensional cases.
We also discuss the role of the post-transform — often peréor on the dual-tree wavelet coefficients — with
respect to (w.r.t.) decorrelation. In Section 1V, we pravidpper bounds for the decay of the correlations existing
between pairs of primal/dual coefficients as well as an asgtigpresult concerning coefficient whitening. The
cross-correlations between primal and dual wavelets pipgiikey role in our analysis, their expressions are derived
for several wavelet families in Section V. Simulation réswudre provided in Section VI in order to validate our
theoretical results and better evaluate the importancheotorrelations introduced by the dual-tree decomposition
Some final remarks are drawn in Section VII.

Throughout the paper, the following notations will be usgd:Z*, N, N*, R, R*, R, andR? are the set of
integers, nonzero integers, nonnegative integers, pesittegers, reals, nonzero reals, nonnegative reals aitivpo

reals, respectively. Le¥ be an integer greater than or equal t&Ng; = {0,...,M —1} andN}, = {1,..., M —1}.

Il. M-BAND DUAL-TREE WAVELET ANALYSIS

In this section, we recall the basic principles of aftband [39] dual-tree decomposition. Here, we will focus on
1D real signals belonging to the spacé(R) of square integrable functions. L&t be an integer greater than or
equal to 2. An)M-band multiresolution analysis @f?(R) is defined using one scaling function (or father wavelet)
o € L2(R) and (M — 1) mother wavelets),, € L?(R), m € N},. In the frequency domain, the so-called scaling

equations are expressed as:

~

VmeNy, VM (Mw) = Hy, (w)tho(w), (1)

wherea denotes the Fourier transform of a function

I
IE e

R S e
& Mo e ]
G1 |—>|lM|—> —-|TM|—-| G

i Hor ~[iHe ]

Fig. 1. A pair of primal (top) and dual (bottom) analysis/syasis M/-band para-unitary filter banks.

June 28, 2007 DRAFT



IEEE TRANSACTIONS ON INFORMATION THEORY, 2007 4

In order to generate an orthonormil-band wavelet bas@meNRmeZ{M*j/me(M*jt—k), k € Z} of L3(R),

the following para-unitarity conditions must hold:

M-—1
Y(m,m') € N3,, pz:% Hpp(w +p%) a(w +p2ﬁﬂ) = Mbm_m, @)

whered,, = 1 if m = 0 and O otherwise. The filter with frequency resporgg is low-pass whereas the filters
with frequency responsél,,,, m € {1,...,M — 2} (resp.m = M — 1) are band-pass (resp. high-pass). In this
case, cascading th&/-band para-unitary analysis and synthesis filter banksesepted by the upper structures in
Fig. 1, allows us to decompose and to perfectly reconstrugiven signal.

A “dual” M-band multiresolution analysis is built by defining anothei-band wavelet orthonormal basis
associated with a scaling functiaf! and mother waveletg.l, m € N%,. More precisely, the mother wavelets are

the Hilbert transforms of the “original” oneg,,, m € N},. In the Fourier domain, the desired property reads:
X H N ; n
Vm € NJWa wm (w) = 1 Slgn(‘”)"ﬁm (w)a (3)

wheresign(+) is the signum function. Then, it can be proved [31] that thal dgaling function can be chosen such

that
Vk € Z, Yw € [2km,2(k + Dr),  9H(w) = (~DFem 2 gy(w)  if k>0 @)
(—1)k+leu(d+3)w o (w)  otherwise,
where d is an arbitrary integer delay. The corresponding analygighesis para-unitary Hilbert filter banks are
illustrated by the lower structures in Fig. 1. Conditionsdesigning the involved frequency responégs, m € Ny,
have been recently provided in [32]. As the union of two onitianal basis decomposition, the global dual-tree

representation corresponds to a tight frame analysis?@R).

IIl. SECOND-ORDER MOMENTS OF THE NOISE WAVELET COEFFICIENTS
In this part, we first consider the analysis of a one-dimeraiaeal-valued, wide-sense stationary and zero-mean
noisen, with autocovariance function

Y(r,z) € R?, I (7) = E{n(z + 7)n(x)}. (5)

We then extend our results to the two-dimensional case.

A. Expression of the covariances in th® case

We denote by(n; . [k])kez the coefficients resulting from BD M-band wavelet decomposition of the noise, in
a given subbandj,m) wherej € Z andm € N,,. In the (j,m) subband, the wavelet coefficients generated by
the dual decomposition are denoted (bgéfm[k;])kez. At resolution levelj, the statistical second-order properties

of the dual-tree wavelet decomposition of the noise areatitarized as follows.
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Proposition 1: For all (m,m’) € N3, ([nm[k] n}l,[k])rez is @ wide-sense stationary vector sequence. More

precisely, for all(, k) € Z?, we have

e T

E{nj,m[k + ﬂnj,m’ [k}} = Fnj,m,njrm/ V] = / Fn(x) 7¢m7¢m/ (W - E) dx (6)
H H > r

B+ Ol ) =T e 0= [ T o, (57 — Odo ™

H = €
E{njmlk + Onf K]} =Ty on (0= [ Tu@)ry, gn, (575 —¢) da (®)
where the deterministic cross-correlation function of meal-valued functiong’ andg in L2(R) is expressed as
VreR = [ - do (©)
Proof: See Appendix I. [ ]

The classical properties of covariance/correlation fiomst are satisfied. In particular, since for all € Ny, ¢y,
and,: are unit norm functions, for allm, m’) € N},, the absolute values ofy,, ., Vyn 41 andy, ,u are

upper bounded by 1. In addition, the following symmetry mnigs are satisfied.

Proposition 2: For all (m,m’) € Ny, with m = m' = 0 or mm/ # 0, we haveyus yu = vy, 4, .- AS @

consequence,
]-—‘nj‘m,njmb/ = FnH ’nH ;" (10)
Whenmm' # 0, we have
VT S Ra ’ywm,wi, (T) = _rywm/ﬂ/}ﬁ (_T) (11)
and, consequently,
Ve e Z, Dot ) ==T o [ (12)

j,m gm/ T, m

Besides, the functiorywwg is symmetric w.r.t—d — 1/2, which entails thal’ is symmetric w.r.td+1/2.

"/1,07”?,0
Proof: See Appendix II. ]

As a particular case of (10) when = m/, it appears that the sequendes ., [k])xez and (nfm[k])kez have

the same autocovariance sequence. We also deduce fromZPtiogt, for allm # 0, v, , »u is an odd function,

and the cross—covariand% i IS an odd sequence. This implies, in particular, that fomaH 0,
Moty m

Lpj it [0] = 0. (13)

The latter equality means that, for all # 0 andk € Z, the random vectofn; ,, [k] nﬁm[k}] has uncorrelated
components with equal variance.

The previous results are applicable to an arbitrary statipnoise but the resulting expressions may be intricate
depending on the specific form of the autocovariahge Subsequently, we will be mainly interested in the study
of the dual-tree decomposition of a white noise, for whicttable expressions of the second-order statistics of the

coefficients can be obtained. The autocovariance isfthen given byl",, (z) = o2 §(x), whered denotes the Dirac
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distribution. As the primal (resp. dual) wavelet basis ithonormal, it can be deduced from (6)-(8) (see Appendix

1) that, for all (m,m’) € N2, and/ € Z,

Fnj,m’nj,m/ [E] = F'n]}.l,m,n?lm, [E] = U2§mfm’5€ (14)
Fnjdn;n;l’,m/ [)6]7 = 0—2%ﬂmﬂflﬁ/ (_é) ’ (15)

where (0x)rez is the Kronecker sequencé,(= 1 if £ = 0 and O otherwise). Thereforén,; ,[k])rez and
(n},.[k)rez are cross-correlated zero-mean, white random sequentes/avianceo?.
The determination of the cross-covariance requires thepotation of~,, ,u . We distinguish between the

mother (»’ # 0) and father {»’ = 0) wavelet case.

« By using (3), form’ # 0, Parseval-Plancherel formula yields
1 o ~ .
Vot (T) :%/ V(W) (Y (W)H)* exp(awT) dw

S % Im{ /000 &m(w)@m/ (w))* exp(wwT) dw}, (16)

wherelm{z} denotes the imaginary part of a complex

« According to (4), form’ = 0 we find, after some simple calculations:

s 2(k+1)m =N .
Vit (T) = %Re{ Z(—l)k /k Ym (W) (Yo(w)) ™ exp (w (% +7+d)) dw}, a7)
k=0 2

whereRe{z} denotes the real part of a complex

In both cases, we have

|’Y’¢)m,’¢)§b, (T)| S %/OO |72’\m(w)1//;m/ (W)| dw (18)

0

For M -band wavelet decompositions, selective filter banks ameeonly used. Provided that this selectivity property
is satisfied, the cross terf,, (w), (w)| can be expected to be close to zero and the upper bound inq18) t
take small values whem # m/. This fact will be discussed in Section VI-C based on nunaniesults. On the
contrary, whenn = m/, the cross-correlation functions always need to be evaduatore carefully. In Section V,

we will therefore focus on the functions:

Yo (7)== = [ @) sinr) dw, m 0 19)
e 2(k+1)m =N
Po, 2t (T) =% kZ:O(—l)k /%T |o(w)[? cos (w (% +7+d)) dw. (20)

Note that, in this paper, we do not consider interscale tatioms. Although expressions of the second-order
statistics similar to the intrascale ones can be deriveqljegces of wavelet coefficients defined at different regwolut

levels are generally not cross-stationary [18].
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B. Extension to th&D case

We now consider the analysis of a two-dimensional noisevhich is also assumed to be real, wide-sense

stationary with zero-mean and autocovariance function
Y(T,x) € R? x R? (1) = E{n(x+ 7)n(x)}.

We can proceed similarly to the previous section. We dengtéb., [k])xcz2 the coefficients resulting from 2D
separablel/-band wavelet decomposition [39] of the noise, in a givenbsmol (j, m) € Z x N2,. The wavelet
coefficients of the dual decomposition are denotedry,,, [k])«cz>. We obtain expressions of the covariance fields

similar to (6)-(8): for allj € Z, m = (my,mz) € N3,, m’ = (m},m}) € N3,, £ = (¢1,02) € Z? andk € Z2,

Loy o [€) = E{; mll + 2 (K]}

/ / Lo (w1, 22)vy,,, R (% — 61) Vo Y (% — 62) dxidzs (21)
Pt st 10 = E{njn k + gy, (K]}

/ / n(T1, T2 ’ngbww,}i (% 14 )’melb,}i (% —62) dridxs (22)
Loy st 1] = E{1j mlk + €] [K]}

/ / n(21, T2 'Wml wE, (]\1‘41] 51) Vo 01, <% —fg) dridzs. (23)

From the properties of the correlation functions of the vetgeand the scaling function as given by Prop. 2, it can

be deduced that, whem = m)| = 0 or mym} # 0) and (na = m, = 0 or mgam}, # 0),

Fn]mn]m

Some additional symmetry properties are straightforwaatitained from Prop. 2. In particular, for ath € N*%2,

the cross-covariancEnj,m,njnym is an even sequence. An important consequence of the latipeies concerns
the 2 x 2 linear combination of the primal and dual wavelet coeffitsewhich is often implemented in dual-tree
decompositions. As explained in [31], the main advantagrioh a post-processing is to better capture the directional
features in the analyzed image. More precisely, this ansotmperforming the following unitary transform of the

detail coefficients, fom € N%2:

Vk€Z2,  wjmlk] = %(nj,m{k] Tl [K]) (25)
k] = %mm[k} ol K]). (26)

(The transform is usually not applied when, = 0 or ms = 0.) The covariances of the transformed fields of noise

coefficients(w; m[k])kezz and (wﬁm[k])kezz then take the following expressions:

June 28, 2007 DRAFT
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Proposition 3: For allm € N37 and ¢ € Z2,

Lo sy on (€] = T o m [€] + LR 4] (27)

Fw;{m,w?m [e] - Fnj,ma”j,m[E] - Fn_77m,n§1m [2] (28)

wj m,wi [E] =0. (29)

Proof: See Appendix IV. ]

This shows that the post-transform not only provides a belitectional analysis of the image of interest but also
plays an important role w.r.t. the noise analysis. Indeedlows to completely cancel the correlations between
the primal and dual noise coefficient fields obtained for a&givalue of(j, m). In turn, this operation introduces
some spatial noise correlation in each subband.

For a two-dimensional white noisg,,(x) = o* d(x) and the coefficient$n; m [k|)xez> and (n}',, [k])kez> are
such that, for alle = (¢y,¢5) € 72,

r

nj,mvnj,m/[

H [ﬂ = 025m1—m’1 6m2—m’2 80,00, (30)
I1'”']’,m-,n§1,m/ [e] = U2’Y’¢’m1 ﬂbfi/ (_El)vwm ,wfi/ (_62) : (31)

As a consequence of Prop. 2, in the case when0, we conclude that, fofm; # 0 or ms # 0) andk € Z?2,
the vectorin; m[k] n}',,[k]] has uncorrelated components with equal variance. Thisepippolds more generally

for 2D noises with separable covariance functions.

IV. SOME ASYMPTOTIC PROPERTIES

In the previous section, we have shown that the correlatafnthe basis functions play a prominent role in
the determination of the second-order statistical pragexf the noise coefficients. To estimate the strength of the
dependencies between the coefficients, it is useful to mé@terthe decay of the correlation functions. The following
result allows to evaluate their decay.

Proposition 4: Let (Ny, ..., Ny—1) € (N*)M~! and defineNy = min,,ens, N,,. Assume that, for alin € Ny,
the function|zZm|2 is 2N,,, + 1 times continuously differentiable dR and, for allg € {0,...,2N,, + 1}, its ¢-th
order derivativeq|i,,|?)@ belong toL!(R).! Further assume that, for ath # 0, ¢, (w) = O(w™™) asw — 0.
Then, there exist§’ € R, such that, for alln € Ny,

. C
VTERY, Yy (T)] < (7PNt (32
and
X C
VT ERY, |y, un ()] < [P (33)
Proof: See Appendix V. |

1By convention, the derivative of order 0 of a function is thmdtion itself.
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Note that, for allm € Ny, the assumptions concerni|1r£jm|2 are satisfied iszm is 2N,, + 1 times continuously
differentiable onR and, for allq € {0,...,2N,, + 1}, its ¢-th order derivatives},(f{) belong toL?(R). Indeed,
if zZm is 2N,,, + 1 times continuously differentiable oR, so is|zZm|2. Leibniz formula allows us to express its

derivative of orderg € {0,...,2N,, + 1} as
q

15, =Y (1) @) 0T

=0
Consequently, if for alt € {0,...,q}, %% € L2(R), then (|t [2)@ € L1 (R).

Note also that, for integrable wavelets, the assumptigiiw) = O(w™=) asw — 0 means that the wavelet,,,
m # 0, hasN,,, vanishing moments.

Therefore, the decay rate of the wavelet correlation famstiis all the more important as the Fourier transforms
of the basis functions),,, m € Ny, are regulari(e. the wavelets have fast decay themselves) and the number
of vanishing moments is large. The latter condition is uséfuensure that Hilbert transformed functions!
have regular spectra too. It must be emphasized that Proparhgtees that the asymptotic decay of the wavelet
correlation functions ist most|r|~2V=~1. A faster decay can be obtained in practice for some wavatetlies.

For example, wheny,,, is compactly supportedy,, »,, also has a compact support. In this case howeygr,
cannot be compactly supported [32], so that the bound in @3gins of interest. Examples will be discussed in
more detail in Section V.

It is also worth noticing that the obtained upper bounds an dbrrelation functions allow us to evaluate the
decay rate of the covariance sequences of the dual-tredetaeefficients of a stationary noise as expressed below.

Proposition 5: Let n be a 1D zero-mean wide-sense stationary random processmadhat either is a white

noise or its autocovariance function is with exponentiatage that is there exist € R, anda € R* , such that
VreR, [T, ()] < Ae eI,

Consider also functiong,,, m € N, satisfying the assumptions of Prop. 4. Then, there eﬁsﬁﬂ&r such that

forall j € Z, m € Ny, and/? € Z*,

C
LI ] T[N (34)
C
|F77’J'.,mvn§{m [£]| g W (35)
Proof: See Appendix VI. ]

The decay property of the covariance sequences readilydti®o the 2D case:

Proposition 6: Let n be a 2D zero-mean wide-sense stationary random field. Asshateeithern is a white
noise or its autocovariance function is with exponentiataye that is there existt € R, and (aq, az) € (R%)?,
such that

Y(71,72) € R?, T (71, 72)| < Ae~almil=azlml, (36)

June 28, 2007 DRAFT
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Consider also functiong,,, m € N, satisfying the assumptions of Prop. 4. Then, there eﬁ’s@ﬂh such that
for all j € Z, m € N2, and£ = ({1, 45) € 72,

C

T ] < (1 + 12N 1) (1 + | £o]2Nm 1) @37)

|Fm,mm§-‘,m[£]| < (1+ |g1|2Nm+1§1 T [lo2Nm 1) (38)
Besides, for allj € Z, m € N2 and £ = ({1, (3) € Z?,

Loyl S (PRt TP )

|Fw§fmﬂvfm[£]| S (1+ |g1|2Nm+12)?1 F [l 2Nm 1) (40)

Proof: Due to the separability of the 2D dual-tree wavelet analy88) and (38) are obtained quite similarly
to (34) and (35). The proof of (39) and (40) then follows froBTY and (28). [ ]
The two previous propositions provide upper bounds on tleaydeate of the covariance sequences of the dual-
tree wavelet coefficients, when the norm of the lag variabler(¢) takes large values. We end this section by
providing asympotic results at coarse resolution {as o).
Proposition 7: Let n be a 1D zero-mean wide-sense stationary process with eoearifunction’,, € L*(R) N
L2(R). Then, for all(m,m’) € N3,, we have

~

JEH;O Fnjym,nj,m/ [ﬂ = Fn(o) 5m—m’5€ (41)
lim T, [0 =T0(0) 7y, 40, (—0). (42)
J—00 ’ J,m m

Proof: See Appendix VII. [ ]

In other words, at coarse resolution in the transform dopastationary noise with arbitrary covariance function
I',, behaves like a white noise with spectrum denﬁmo). This fact further emphasizes the interest in studying
more precisely the dual-tree wavelet decomposition of aevhoise. Note also that, by calculating higher order
cumulants of the dual-tree wavelet coefficients and usiogrigiues as in [18], [40], it could be proved that, for all
(m,m’) € N3, and (k, k) € Z2, [nm(k) nll . (k)] is asymptotically normal ag — co. Although Prop. 7 has

been stated for 1D random processes, we finally point outghis¢ similar results are obtained in the 2D case.

V. WAVELET FAMILIES EXAMPLES

For a white noise (see (14), (15), (30) and (31)) or for aabjtwide-sense stationary noises analyzed at coarse
resolution (cf. Prop. 7), we have seen that the cross-atival functions between the primal and dual wavelets
taken at integer values are the main features. In order terbetaluate the impact of the wavelet choice, we will

now specify the expressions of these cross-correlationdifferent wavelet families.

A. M-band Shannon wavelets

M-band Shannon wavelets (also called sinc wavelets in theatiire) correspond to an ideally selective analysis

in the frequency domain. These wavelets also appear as tack®e for many wavelet families, e.g. Daubechies'’s
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or spline wavelets. We have then, for all € N,,,

dJm (w) = 1]—('rrL+1)7r,—m7r]U['rnTr,(m—i—l)ﬂ'[(w)7

where 1s denotes the characteristic function of the Set R:

1 fwes
Is(w) =
0 otherwise.
In this case, (20) reads:
1 /" 1
V1 € R, Vapo, i (T) = ;/ cos ((5 +d+ T)u})du}
0
-1 d )
( 1) cos (1) lfT;«é—d—%
_ ! n(z+d+7)
1 otherwise.
For m € N3,, (19) leads to
1 (m+1)7
V1 € R, Voot (T) = —;/ sin (wT)dw

cos ((m + 1)77) — cos(mmr)

if 7#0

= T

0 otherwise.

We deduce from the two previous expressions that, fof allZ,
(71)(d+2)

Vot (0) = —————13 (43)
Vo ¥s m(d+ 0+ 1)
_(_1\¢
(fl)(mﬂ)f& if ¢+£0
¥m#0, vy, n(l) = mt (44)
0 otherwise
We can remark that, for allm,m’) € N%2,
Vot () = (Do, (0) (45)

and-y,, . 4u (£) = 0, when/ is odd. Besides, the correlation sequences decay pretiysts ¢~1. We also note
that, as the functiong,,, m € Nj;, have non-overlapping spectra, (6)-(8) (resp. (21)-(28pw us to conclude
that, dual-tree noise wavelet coefficients correspondaspectively to subbandg,m) and (j, m’) with m # m/

(resp.(j, m1,m2) and (5, m}, mb) with m; # m/ or ms # m}) are perfectly uncorrelated.

B. Meyer wavelets

These wavelets [41], [42, p. 116] are also band-limited bith wmoother transitions than Shannon wavelets.

The scaling function is consequently defined as

1 if 0<|w|<7(l—¢)
o(w) = W(M_ 176) if 7(1—¢) < |w| < 7(1+¢) (46)
2me 2e
0 otherwise,
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where0 < e <1/(M + 1) and

with v : [0,1] — [0, 1] such that
v(0)=0 47
Vo el0,1], v(1—-0)=1-uv(0).

Then, it can be noticed that
v € 0,1], W2(1—0)=1-W?30). (48)

A common choice for thes function is [42, p. 119]:

v e [0,1], v(0) = 0*(35 — 8460 + 706% — 206%). (49)
Form € {1,..., M — 2}, the associated/-band wavelets are given by
i@y (Mol O < Lol <

e W( 5 27re) if (m—eée)r<|w<(m+er
~ e¥m (w) if (im+er<|w<(m+1—er
Ym(w) = w| m4+1-—c¢ (50)

e"”"(“)W(— - 7) if (m+1—er<|w<(m+l+em

27e 2e
0 otherwise

while, for the last wavelet, we have

M-1+e¢ |w .
“’]]W—l(w) - @ ' — — < < -
. W( N 2m) it (M—1-er<|w<(M-1+er
VI 1(w) if (M —1+er<|w|<M(1—en

a1 (w) = (51)

-1 (@) (L"' = 1_6) if M(1 - < M(1
e w Y 5 lI-enr<|w| <MA+en

0 otherwise.

Hereabove, the phase functions, m € N%,, are odd functions and we have
Yw e (Mm, M(1+ €)r), Nyv—1(w) = —ny—1(2Mm —w) mod 27.
In addition, for the orthonormality condition to be satidfi¢he following recursive equations must hold:
Yw € ((m —e)m, (m + e)m), Nm(w — 2mm) — Pp—1(w — 2m7m) = N (W) — P—1(w) + © mod 2.

by setting:Vw € R, no(w) = 0. Generally, linear phase solutions to the previous eqoatie chosen [43].
Using the above expressions, the cross-correlations keettte Meyer basis functions and their dual counterparts

are derived in Appendix VIII. It can be deduced from theseilitesthat:V ¢ € Z,

Yoo gt (0) = ) (=1)*+ T, (d+ (+ 1) (52)
vt = T T ‘ 2/’
where )
146
Va € R, I(z) = 26/ WQ(%) sin (mex) df. (53)
0
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For the wavelets, we have when € {1,...,M — 2}:
(D= (1) (5 0] e
Vot (£) = T (54)
0 otherwise
whereas
( 1)W(1 — (1) + (=1) I(0) — Inre(0)) i L#£0
- - 5 - € — I Me
Yors 1y, () = mt (55)
0 otherwise.

Similarly to Shannon wavelets, f@rn,m’) € {1,..., M —2}?, (45) holds andy,, ,u (¢) = 0, when/ is odd. As
expected, we observe that the previous cross-correlatiomgerge point-wise to the expressions given for Shannon
wavelets in (43) and (44), as we let— 0.

Besides, let us make the following assumpti®fi? is 2¢ + 2 times continuously differentiable o, 1] with
q € N* and, for all/ € {0,...,2¢g — 1}, (W?))(1) = 0. This assumption is typically satisfied by the window
defined by (49) with; = 4. From (48), it can be further noticed that, for &lE {1,...,q¢+1}, (W?)29(1/2) = 0.
Then, whenx #£ 0, it is readily checked by integrating by part that

! 1+6 1 (—1)0= L (W2)2) (1)
“/ 2 —_— 1 =
/0 ( 2 ) sin (mez) df 2mex + 224(mrex)?at! cos(me)

(=)t /1(W2)(24+2) (1%0> sin (mexh) db.

22(1"!‘2 (7'('63:*)2(]"!‘2 0

(=DW?) ()
220+1 (7reg)20+2

sin(mex) +

This shows that, age| — oo,

1 (Drtw)Eo)

—t S 2ati a0 cos(mex) + O(x*2q72)' (56)

I(z) =

For example, for the taper function defined by (49), we get

i 385875
rx  ArTedxd

I(x) = cos(mex) + O(x~10).

Combining (56) with (52), (54) and (55) allows us to see thet tross-correlation sequences decay &3 —!
when |¢| — co. Eq. (56) also indicates that the decay tends to be fasten whe large, which is consistent with
intuition since the basis functions are then better loedlin time. Note that, as shown by (50) and (51), under the
considered differentiability assumptiorj&Am|2 is 2¢— 1 times continuously differentiable dh Wherea&Zm(w) =0

for m € N}, and|w| < m — e. Prop. 4 then guarantees a decay rate at least eqUgits*! (here,N,, = ¢ —1).

In this case, we see that the decay rate derived from (56) ie mcurate than the decay given by Prop. 4.

C. Wavelet families derived from wavelet packets

1) General form:One can generat&/-band orthonormal wavelet bases from dyadic orthonormaklea packet
decompositions corresponding to an equal subband analisare consequently limited to scaling factavé

which are power oR. More precisely, letv,,)nen be the considered wavelet packets [44], for Blle N* an
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orthonormal)M -band wavelet decomposition is obtained using the basistiums (1., )o<m< s With M = 2F. In

this case, the basis functions satisfy the following twaksaelations: for alln € N,
V20 (2w) = Ag(w)thm (w) (57)
V2o 11(2w) = A1 (@)t (@), (58)

where Ay and A; are the frequency responses of the low-pass and high-ptes fif the associated two-band
para-unitary synthesis filter bank. We can infer the follogviesult.

Proposition 8: For all - € R andm € N*, we have

e}
Vet (T) = Yao [0 27) + D Yoo K] (T 08t (27 + B) + 9, g1 (27 — B)) (59)
k=1
Pyl/)2m+1,1/)§m+1 (T) = Ya: [O]Vwmﬂﬁ?n (27—) + Z Yaa [k] (’wim’l/)?n (27— + k) + Vepm pTE (2T - k)> ) (60)
k=1

where, for alle € {0,1}, (va.[k])kez is the autocorrelation of the impulse resporiagk])rcz of the filter with

frequency responsd.:

oo

VkeZ,  qalkl= ) acldaclg— k.
Proof: See Appendix IX. quoo ]
It is important to note that (59) and (60) are not valid far= 0. These two relations define recursive equations
for the calculation of the cross—correlatio(rﬁpmwg”)m>1, provided tha%,w has been calculated first.
For this specific class of/-band wavelet decompositions, it is possible to relate theayg properties of the
cross-correlation functions to the number of vanishing raots of the underlying dyadic wavelet analysis.
Proposition 9: Assume that the filters with frequency responggand A; are FIR andA; has a zero of order

N € N* at frequency 0 (or, equivalentlyly has a zero of ordeN at frequencyl/2). Then, there exist§y € R,

such that
vr € R*, Yyo,pin ()] < Colr| 72N (61)
In addition, for allm € N*, let (1, €a,...,¢:) € {0,1}", r € N*, be the digits in the binary representationrof
that is -
m = Z €20 L (62)
1=1

Then, there exist§’,,, € R, such that

Vr e R*, |,y¢"“w$’£ (7_)| < Cm|7_|—2N(ZE.=1 Gi)_l. (63)
Proof: The filters of the underlying dyadic multiresolution beintRKFinite Impulse Response), the wavelet
packets are compactly supported. Consequently, theiiéfduansforms are infinitely differentiable, their detivas

of any order belonging td.?(R). In addition, the binary representation @f € N* being given by (62), Egs. (57)

and (58) yield . P
Y (w) = Jog%) 11 (;5 Ae (;)) 11 (;5 AO(;’))

i=1 i=r+1
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that is H,,,(w) = Hf;l A, (2P77w). Moreover, by assumptiod; (w) = O(w) asw — 0, whereasA,(0) = /2
and [¢(0)| = 1. This shows that, whem # 0, 1, (w) = O(wN(Ei=1¢)) asw — 0. From (33), we deduce the
upper bound in (63). Furthermore, by applying Prop. 4 wiién= 2, we have thenVy, = N; = N and (61) is
obtained. [ |
We see that the cross-correlatign  ,n decays all the more rapidly as the number of 1's in the binepyesentation
of m is large?

2) The particular case of Walsh-Hadamard transforithe casel/ = 2 corresponds to Haar wavelets. In contrast

with Shannon wavelets, these wavelets lay emphasis onsfirat#l localization. We consequently have:

io(w) = sinc(%) e ' (64)
P1(w) =1 blnc(%) sin(%) e s, (65)
where )
i CO N
sinc(w) = w
1 otherwise.

After some calculations which are provided in Appendix X, al®ain for all7T € R,
[e.e]

1 1
gy gt (1) = 3 (—1)F (5 Sk(3+2d+27) = Sp(1+2d+27) + 5 Su(—1+2d+ 27)), (66)
k=0

where, for allk € N and for allz € R,

(k4+1)mz
Sp(z) =2 / sinc(u) du.
k

T

Furthermore, we have (adopting the conventiohi(0) = 0):
1 1 1 1
Ty, (7)) =67 |7[ + (7+1) In[r+1| + (r—1)In|T—1|— 4 (T+§) In ‘7’—|—§‘ —4 (7—5) In ‘7—5’. (67)

For M = 2" with P > 1, the cross-correlationg,, ,u, m € {2,...,27 —1}, can be determined in a recursive

manner thanks to Prop. 8. For Walsh-Hadamard wavelets, we ha

1 if k=0
vee 0.1y, vheZ, ol =10 = (68)
0 otherwise
and, consequently, for ath £ 0 andr € R,
1
’Y,LZ)Z"“wIz»Im (’7’) = ’Yﬂjmﬂllg (27') + 5 (Py’ébmﬂ[’f,[,, (27’ + ].) + ’71/)7”’,4/,71;11 (2’7’ — 1)) (69)
1
Vom0l o1 (1) = %m,w:},,(27) ~3 (’Ywm,wﬁn 27+ 1)+ Vb o1 (2T — 1)) (70)

From (67), it can be noticed that,, ,u(7) = 1/(8773) + O(r=?) when |r| > 2, which corresponds to a faster

asymptotic decay than with Shannon wavelets. The asynstetiaviour ofy,,  ,u (), m > 2, can also be deduced
2The characterization of the sum of digits of integers remaim®pen problem in number theory [45], [46].
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from (67), (69) and (70). The expressions given in Table liarperfect agreement with the decay rates predicted

by Prop. 9.
m 1 2 3 4 5 6 7 8 9 10 11 12
gmwtt (7) || 3555 | 3573 | —57y5 | 3755 | —ao5 | —3Tis | arier | gog3 | —origs | —amss | piber | —aregs
TABLE |

ASYMPTOTIC FORM OFy,, 11 () AS |T| — 00 FOR WALSH-HADAMARD WAVELETS.
’ m

D. Franklin wavelets

Franklin wavelets [47], [48] correspond to a dyadic orthonal basis of spline wavelets of order 1 [42, p. 146
sg.]. With the Haar wavelet, they form a special case of Bdtdmaré wavelets [49], [50]. The Fourier transforms

of the scaling function and the mother wavelet are given by:

~ 3 1/2 o (W

- i Z 71
Yolw) <1+20082(w/2)> SHe (2) (71)

1/2

~ 3(1 + 2sin?(w/4)) Lo (WY . o W w

=— - - —1—). 72
V1) ((1+2c052(w/2))(1+20082(w/4)) - (4>smc (4>exp( 22) (72)

The expression of the cross-correlation of the scalingtfans readily follows from (20):
6 o0
wowi (T) = =) (—=1)*Tx(1
VrER, vy, un(7) szo( VT (14 2d + 27),

where, for allk € N andz € R,

(D™ gine? (u)
Ty (z) = e .
k() /}m T+ 2082 () cos(uz) du

The expression of the cross-correlation of the mother vetvedn be deduced from (19) and (72) and resorting to
numerical methods for the computation of the resultinggrag but it is also possible to obtain a series expansion
of the cross-correlation as shown next.

Taking the square modulus of (72), we find
2041 (2w)]” = [ A1 (@) [R()P, (73)

where

~ - 6(2 — cos(w)) 2 . (sin® (w/2)\?2
Arlw) = ((1+2cos2(w))(2+cos(w))> ’ X(w) = ( w/2 ) '

Let (a1[k])rez (resp.x) be the sequence (resp. function) whose Fourier transferpﬁli(resp.@. Similarly to

(60), (73) leads to the following relation

VIER, Yy () = 7m0 7n (27) + 3 a K] (et @7 4 R) 4 pn @7 = R)), (74)
k=1

June 28, 2007 DRAFT



IEEE TRANSACTIONS ON INFORMATION THEORY, 2007 17

where (vz, [k]) ez denotes the autocorrelation of the sequefiGgk])xcz.

We have then to determing, = and (vya, [k])ren. First, it can be shown (see Appendix XI for more detail) that

4

3yt (T) = o |7 + > gp (T +p)° |7 + p| + (7 — p)* n |7 — p|), (75)
p=1
where
35 7 7 1 1
qo = —

T67 q1:Z7 (I2:—§, q3217 CI4:—§

Secondly, the sequendes, [k])xen can be deduced frord; (w)|? by using z-transform inversion techniques

(calculations are provided in Appendix XI). This leads to

28] = 220 - VB (-1 42— VB
Vk € N, 9 83 (76)
Ve [2k +1] = —=(2 - V3F((-1)F(1 = v3) = (2 = V3)*).
Equations (74), (75) and (76) thus allow an accurate nurmleeicaluation Of%l,w{‘- Since
YyexH (T) ~ —3/(2w7°) as|r| — o 77)
and
va, [k] = O((2 = V3)¥/?)  ask — oo (78)

the convergence of the series in (74) is indeed pretty fast.
From Prop. 4, we further deduce thgf i (7) and~,, ,u(7) decay agr|~® (here, we haveV, = N; = 2).

The decay rate Ofwl,w{‘ can be derived more precisely from (74). Indeed, we have

EEY \7'cz1[7f]||%<,><H(27—/f)lS1 Y Ia K127 = P + K1) by (27 — B)
2

k=—o00 k=—o00

o0

< (sup(uli o ()) + sup b on(@]) 37 (1K), K] < o0, (79)

k=—o00
where the convexity of.|> has been used in the first inequality and the last inequality consequence of (77)

and (78). It can be deduced from the dominated convergermein that

\7—1|1Lnoo 7—5%111,1[1{1 (1) = Z Va1 [k] \Tl|igloo TS’Yx,xH (21 — k)
k=—oc0
3 = 3~ 1
=— a k] = —=—]A1(0)]* = ——.
647 > va k] g1 410l 327

k=—o0

Finally, we would like to note that similar expressions canderived for higher order spline wavelets although the

calculations become tedious.
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VI. EXPERIMENTAL RESULTS
A. Results based on theoretical expressions

At first, we provide numerical evaluations of the expressiofhthe cross-correlation sequences obtained in the
previous section when the lag variable (denoted’byaries in{0, 1,2, 3}. The cross-correlations for lag values in
{-3,—2,—1} can be deduced from the symmetry properties shown in Selitidn We notice that cubic spline
wavelets [51] have not been studied in Section V, so that lile& tross-correlation values have to be computed
directly from (19) and (20). The results concerning the dyathse are given in Table Il. They show that the
cross-correlations between the noise coefficients at thpubwf a dual-tree analysis can take significant values
(up to 0.64). We also observe that the wavelet choice hasaa tiluence on the magnitude of the correlations.
Indeed, while Meyer wavelet leads to results close to then&bra wavelet, the correlations are weaker for the Haar
wavelet. As expected, spline wavelets yield intermediatsszcorrelation values between the Meyer and the Haar
cases.

Our next results concern the/-band case withl/ > 3. Due to the properties of the cross-correlations, the study
can be simplified as explained below.

« Shannon wavelets: due to (45), thé-band cross-correlations are, up to a possible sign chags| to the

dyadic case cross-correlations (see Table II).

o Meyer wavelets: still due to (45), the firdf — 2 cross-correlations of the wavelets are easily deduced from
the first one. So, we only need to specify, ,u, v, yu and~y,,, , ,u . Tables Il and IV give the related
values whenM ranges from 3 to 8, the parameter being set to its possible maximum valie+ 1)1,

o Walsh-Hadamard wavelets: wheWd = 2771, P € N*, (¢,)o<m<my2 IS the set of basis functions of the
(M /2)-band wavelet decomposition. In this way, the results indaballow us to evaluate the cross-correlation
values forM € {2,4,8}.

As shown in Tables IIl and 1V, the cross-correlations in theyldr case remain significant, their magnitudes being
even slightly increased as the number of subbands beconws.|dable V shows that the cross-correlation of

Walsh-Hadamard wavelets are much smaller and that theylase t zero when the subband indexis large.

Yo, R
Wavelets\ ¢ | 0 1 2 3 1 2 3
Shannon 0.63662 -0.21221 0.12732 —9.0946 x 10~2 || 0.63662 0 0.21221

Meyere = 1/3 || 0.63216 -0.19916 0.10668 —6.4166 x 10~2 || 0.59378 | —4.1412 x 102 0.11930
Splines order 3|| 0.62696 -0.18538 8.8582¢102 -4.6179% 102 0.55078 | -5.8322<10~2 8.2875¢102
Splines order 1|| 0.60142 -0.12891 3.4815 x 1072 | —9.2967 x 10~3 || 0.38844 | —5.7528 x 10~2 | 1.8659 x 102

Haar 0.51288 | —1.1338 x 10~2 | —1.0855 x 1073 | —2.6379 x 10—% || 0.10816| 5.6994 x 10~3 1.5610 x 103

TABLE I
THEORETICAL CROSSCORRELATION VALUES IN THE DYADIC CASE(d = 0).
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Vo, vl Yy ,pH
Wavelets \ ¢ ‘ 0 ‘ 1 ‘ > ‘ 3 1 ‘ , ‘ 3

Meyer 3-bande = 1/4 0.63411 | -0.20478 | 0.11530 | -7.4822x102 0.62662
Meyer 4-bande = 1/5 0.63501 | -0.20742 | 0.11950 | -8.0293<10~2 0.63020 0.19367
Meyer 5-bande = 1/6 0.63550 | -0.20887 | 0.12184 | -8.3419< 102 0.63216 0.19917

0 | 0.18391
0
0
Meyer 6-bande = 1/7 0.63580 | -0.20975 | 0.12327 | -8.5357x 102 0.63334 | 0 | 0.20255
0
0

Meyer 7-bande = 1/8 0.63599 | -0.21033 | 0.12421 | -8.6637 102 0.63411 0.20478
Meyer 8-bande = 1/9 0.63612 | -0.21072 | 0.12486 | -8.7525¢<10~2 0.63463 0.20632

TABLE Il

THEORETICAL VALUES FOR THE FIRST TWO CROSSORRELATION SEQUENCES IN THEM -BAND MEYER CASE(d = O).

B. Monte Carlo simulations

A second approach for computing the cross-correlationsistsin carrying out a Monte Carlo study. More
precisely, a realization of a white standard Gaussian neéspience of lengtih, = M"L%j (with J = 3) is
drawn and itslD dual-tree decomposition ovef resolution levels is performed. Then, the cross-covadarfor
each subband can be estimated by their classical samptaadssi. In our experiments, average values of these
cross-correlations are computed over 100 runs.

This Monte Carlo study allows us to validate the theoretiegbressions we have obtained for several wavelet
families in Section V. In addition, this approach can be mubto wavelets whose Fourier transforms do not take
a simple form. For instance, we are able to compute the @ogsiation values for symlets [42][p.259] associated
to filters of length 8 as well as fot-band compactly supported wavelets (here designated asag€tjciated to
16-tap filters [52].

Table VI shows the estimations of the cross-correlatiortainbd in the dyadic case, while the results in Afeband
case withM > 3 are listed in Tables VII and VIII. By comparing these resuwli¢h the ones in Tables V, Ill and
IV, a good agreement is observed between the theoreticaévand the estimated ones for Shannon, Meyer and
cubic spline wavelets. For less regular wavelets such askknaor Haar wavelets, the agreement remains quite
good at coarse resolutiony & 3) but, at fine resolutionj(= 1), it appears that the correlations are stronger in
practice than predicted by the theory. The fact that we usis@ale decomposition instead of the classical analog
wavelet framework may account for these differences. ldde® use the implementation of thié-band dual-tree
decomposition described in [32], which requires some digtefilters. The selectivity of these filters is inherited
from the frequency selectivity of the scaling function. Aside effect, the noise is colored by these prefilters.
Some comments can also be made concerning symlets 8 andl4Akawavelets. We see that the symlets behave
very similarly to Franklin wavelets whereas AC waveletsviale intermediate correlation magnitudes between the

M-band Meyer and Hadamard cases.
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PyTPMflwa;I_l

Wavelets \ ¢ ‘ 1 2 3

-0.58918 | -6.0378<10~2 | -0.11965
0.58555 | -7.0840<10~2 | 0.11961
-0.58278 | -7.735%102 | -0.11940
0.58063 | -8.1773<10~2 | 0.11914
-0.57893 | -8.4944<10~2 | -0.11888
0.57755 | -8.7324<10~2 | 0.11863

Meyer 3-bande = 1/4
Meyer 4-bande = 1/5
Meyer 5-bande = 1/6
Meyer 6-bande = 1/7
Meyer 7-bande = 1/8
Meyer 8-bande = 1/9

TABLE IV

THEORETICAL VALUES FOR THE LAST CROSSCORRELATION SEQUENCE IN THEM -BAND MEYER CASE(d = 0).

] 1 2 3
Vgt || 60560 x 1072 | 15848 x 107% | 4.0782x 107*
Vgt || —49162x 1072 | —3.0109 x 107* | —3.4205 x 10~°
Vg 1 3.2069%<102 4.0952¢10~* 1.0319% 1074
Vs ol -2.8899<1072 -8.0753¢<1075 -8.7950¢ 1076
Vgl -2.4899<102 -2.607% 1075 -2.4511x10°
Yy sl 2.4297x 1072 1.0608<10~° 4.8118<10~7

TABLE V

THEORETICAL CROSSCORRELATION VALUES IN THE WALSH-HADAMARD CASE.

C. Inter-band cross-correlations

Although the cross-correlations between primal/dual oésnctions corresponding to different subbands have
not been much investigated in the previous sections, weigedn this part some numerical evaluations for them.
More precisely, we are interested in study(mg,m’wi/ (€))eez with m # m/, which represents the inter-band cross-
correlations. We are able to compute them thanks to (16) aigd Numerical results are given in Table IX.

Some symmetry properties can be observed, which can be edduom (16), (17) and the specific form of
the considered wavelet functions. Most interestingly,aih de noticed that the inter-band cross-correlations often
have a significantly smaller amplitude than the correspupdhitra-band cross-correlations. As expected, the more

frequency-selective the decomposition filters, the mogigible the values of the inter-band cross-correlations.

D. Two-dimensional experiment

We aim here at comparing the obtained theoretical expressid the two-dimensional cross-covariances with
Monte Carlo evaluations of these second-order statisfits.consider a two-dimensional 3-band Meyer dual-tree
wavelet decomposition of a white standard Gaussian fieldzef&6 x 756. The Monte Carlo study is carried out

over 10000 realizations. The decomposition is performed ayet 2 resolution levels and the results are provided at

June 28, 2007 DRAFT



IEEE TRANSACTIONS ON INFORMATION THEORY, 2007

21

Vg, 0l Vyq, 0l
wavelets | j\¢ || 0 1 2 3 0 1 2 3

1 0.63538 -0.21134 0.12586 -9.1515¢10 2 9.97x107° 0.63680 -1.7137% 10~ % 0.21165

Shannon 2 0.63558 -0.21347 0.12970 -8.7908< 102 2.6426<10~¢ 0.63404 7.0561x 10~ 0.21210

3 0.63467 -0.20732 0.13168 -9.0116<10~2 || -1.0078<10~* 0.63846 -1.2410¢1073 0.20975

1 0.63091 -0.19828 0.10517 -6.4650¢ 102 1.825710~° 0.61092 -1.2433¢ 1072 0.15307

Meyer 2 0.63112 -0.20043 0.10903 -6.1060<10~2 || -7.5431x10~¢ 0.59115 -4.0881x 102 0.11888

e=1/3 3 0.62971 -0.19391 0.11084 -6.3378x10 2 4.0868x10~ %4 0.59522 -4.2624x 102 0.11651

1 0.62587 -0.18459 8.7088x10~2 | -4.6635¢10~2 || -1.4511x10~* 0.58458 -1.2651x 102 0.12557
Splines 2 0.62606 -0.18679 9.1068x102 | -4.3124x10~2 1.9483 104 0,54841 -5.8083<10~2 | 8.2386x10~?2
order3 3 0.62398 -0.17984 9.2793x 1072 | -4.5682¢x10~2 1.2400¢10 73 0.55204 -5.9368<10"2 | 8.0105¢<10~2
1 0.60016 -0.12749 3.2975¢1072 | -9.7419<107° || -4.5287 10~ 0.47691 1.6224<10~2 | 6.9681x 102
Splines 2 0.60059 -0.13045 3.7613<1072 | -6.5441x1073 6.6358<10 % 0.38507 -5.7502<1072 | 1.8042102
order 1 3 0.59771 -0.12303 3.9388x102 | -9.3208<10~2 || 2.2725%x10~3 0.38958 -5.8143x10~2 | 1.6160¢<10~2
1 0.50297 | -3.3557x 1073 | -1.1706<10~2 | 2.7788<10~% 3.8368x10 4 0.22455 7.2451x1072 | 4.6418<1072
Haar 2 0.50966 | -1.0083x1072 | 7,2357107° 150871073 -1.2135¢1072 | 9.9745¢1072 | 5.1371x1073 | 1.0847 1073
3 0.51023 | -8.3267x 1073 | 2.7936x103 7.0343<10° 1.2329¢10~3 0.10703 6.7651x 1073 | 2.2422¢1073
1 0.59822 -0.12059 2.3566<1072 | -3.3325¢1073 -5.0189<10~* 0.46392 2.1155¢1072 | 6.1137x 102
Symlets 8| 2 0.59899 -0.12432 2.8865<10~2 | -2.8960¢<10~4 6.7795¢10 % 0.36368 -5.7692x102 | 9.7533«107°
3 0.59654 -0.11703 3.0357x 102 | -2.8071x10~3 1.8568<10 3 0.37012 -5.8376x1072 | 6.9416¢107°

TABLE VI

CROSSCORRELATION ESTIMATES IN THE DYADIC CASE(d = 0).

the coarsest resolution. The covariance fields are depictEdy. 2 as well as the ones derived from (31), (52)-(55).

For more readibility, a dashed separation line between tbbands has been added (foB-®and decomposition,

9 covariance fie|difn],m,n§1m[£])eezz have to be computed wham € {0,1,2}2). We compute these fields for

£ € {0,1,2,3}2, thus resulting inl6 covariance values for each subband. Succinctly, each gmeitscaled square

represents the intensity of the cross-covariance in a gsudabbandm at spatial positiorf. Comparing theoretical

results with numerical ones (left and right sides of Fig.espectively), it can be noticed that they are quite similar.

In addition, we observe that, due to the separability of thheadance fields and (13), for ath = (m4,ms) and

H

L= (l,05), (T [€])ecz2 vanishes when eithern(; # 0 and¢; = 0) or (mg # 0 and{y = 0).

Tg,myT5

VIl. CONCLUSION

In this paper, we have investigated the covariance pragseofi theM -band dual-tree wavelet coefficients of wide-
sense stationary 1D and 2D random processes. We have statatitzer of results helping to better understand
the structure of the correlations introduced by this fraraeathposition. These results may be useful in the design
of efficient denoising rules using dual-tree wavelet decositipns, when the noise is additive and stationary. In
particular, if a pointwise estimator is applied to the pdipamal/dual coefficients at the same location and in the
same subband, we have seen that the related componentsrafisieeare uncorrelated. On the contrary, if a block-

based estimator is used to take advantage of some spatifboehood of the primal and dual coefficients around
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CROSSCORRELATION ESTIMATES IN THEM -BAND CASE (d = 0).

'szo ~¢SI 71&1 ﬂbi{

[ wavelets | j\¢ | 0 1 2 3 0 1 2 3
Meyer 1 0.63337 -0.20549 0.11431 -7.1877 10”2 || -6.8977 10~ * 0.62533 -1.3630x10~* 0.18236
3-band 2 0.63284 -0.19932 0.11938 -7.5331x10~2 || -1.7781x10~* 0.63013 128301072 0.18409

e=1/4 3 0.63886 -0.19987 0.11763 -6.6380x 102 || -3.9622<10~* 0.61503 8.4042<10~* 0.17519
Meyer 1 0.63383 -0.20856 0.12176 -7.7150¢ 102 2.1961x10~° 0.62739 7.6636<10* 0.19339
4-band 2 0.63648 -0.19903 0.11757 -7.7337x 10~ 2 4.8821x 10~ * 0.62676 3.8876x10° 0.18683

e=1/5 3 0.64642 -0.19651 0.12202 -6.9984x 102 2.3054x 103 0.63384 -1.6254¢x10 3 0.19233
Meyer 1 0.63338 -0.20818 0.12534 -8.0594x 102 8.6373x10~* 0.62902 8.3871x10~* 0.1981
5-band 2 0.64020 -0.20288 0.12135 -7.3844x 1072 5.3607x 10 % 0.62230 4.6651x 104 0.19093

e=1/6 3 0.6566 -0.19609 0.12891 -7.6061x10~2 || -2.8654x10~2 0.62281 -4.7324¢1073 0.19364
Meyer 1 0.63403 -0.20818 0.12711 -8.2124x 102 4529310 % 0.63229 -1.9919x 103 0.20228
6-band 2 0.64471 -0.20716 0.13141 -8.4914x 102 3.7150x10~* 0.62450 6.5942<10~ % 0.20313

e=1/7 3 0.66409 -0.19532 0.14401 -9.3486x 102 2.0490x 103 0.63619 1.5614¢ 102 0.17595
Meyer 1 0.63323 -0.20781 0.12663 -8.3335¢ 102 1.5731x 1073 0.63528 -8.6821x 10~ % 0.20509
7-band 2 0.64286 -0.20057 0.12881 -8.1995¢10~2 || -1.6505¢<10~4 0.62782 -7.9119< 1073 0.20007

e=1/8 3 0.68445 -0.1845 0.12065 -9.0295¢10~2 || -5.9955¢10~3 0.62572 -5.3033 102 0.17409
Meyer 1 0.63426 -0.20592 0.12928 -8.6766x10~2 || -2.1756<10~* 0,63658 -1.3977 1073 0.20385
8-band 2 0.64743 -0.19970 0.12725 -7.7096x 102 1.4856¢10~° 0.63725 -2.4313x1073 0.20396

e=1/9 3 0.69342 -0.20505 0.11257 -6.0075¢10~2 || -3.6363x10~3 0.61590 1.3830¢ 102 0.22112

1 0.59148 -0.11001 1.9635¢102 | 2.4318<10~3 -6.6559¢ 10 ¢ 0.36856 -6.0858<10"2 | 8.4608<10~°
AC 2 0.59855 -0.10412 1.6012¢ 102 1.8921x 10~ % -7.1462¢1073 0.37379 -5.8026<102 | -4.4309<103
4-band 0.60057 -9.5335¢1072 | 2.0094x10~2 7.6430¢1073 2.5313¢10~3 0.37514 -5.6207x 10~ 2 | 6.8164x10~3

L Toa o [ Yo 0l
1 -1.9012¢10~* -0.34054 5.5692¢< 102 4.6899<10~° -5.5011x 102 0.36755 4.1274x102 5.6594x 102
AC 2 1.0139%¢ 103 -0.32275 541371072 | -6.7903<10~3 3.6460¢103 0.18371 -4.1645¢1072 | 6.8637x 103
4-band 3 6.8587x 103 -0.32199 4.5083x10°2 | -9.7023x10~3 8.3037 103 0.19070 -3.7675¢1072 | -4.5919¢10%
1 2.4712<10~% 0.20479 6.9476<10°2 | 4.4200¢1072 -1.8669< 10”4 | -6.1810x1072 | -1.2677 1072 | 2.4199<10~°
Hadamard | 2 3.5680x 102 5.9530x1072 | -5.3171x10~2 | 4.3827 102 6.2437x 10~ * | -5.0635¢1072 | 4.6773x 10~ % | -8.7358<10~>
3 1.1391x 10~ 2 5.9541x 102 8.3376<10~ % | -1.4604x10~3 1.9009<10~2 | -55798x1072 | -5.7086x107° | -1.1253¢ 102

TABLE VII

some given position in a subband, noise correlations giyenaist be taken into account. Recently, this fact has

been exploited in the design of an efficient image denoisiethod using Stein’s principle, yielding state-of-the-art

performance for multichannel image denoising [38], [53].future work, it would be interesting to extend our

analysis to other classes of random processes. In paniaulsimilar study could be undertaken for self-similar

processes [54], [55] and processes with stationary inanesr@1], [56].

Finally, we would like to note that the expressions of thessroorrelations between the primal and dual wavelets

which have been derived in this paper may be of interest foeroproblems. Indeed, let
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Ton 1l
wavelet | j\¢ | 0 I 2 3
1 5.2467x10~% | 0.63606 | 2.0952<10~3 | 0.21261
Shannon 2 5.9145¢10° 0.63592 | -4.1893<10~2 | 0.21083
4-band 3 -1.2667x 10~ % | 0.62746 | -5.7616<103 0.2020
Meyer 1 4.1334¢<10~* | -0.60986 | -2.5395¢10"2 | -0.16095
3-band 2 3.9059x10~* | -0.58694 | -6.1089%x 10”2 | -0.11754
e=1/4 3 3.5372<10~2 -0.5879 | -5.1057 102 | -0.11499
Meyer 1 3.9730x 104 0.60845 | -2.9936x10~2 | 0.16111
4-band 2 -1.3788<10~% | 0.58530 | -7.5797 1072 | 0.11985
e=1/5 3 1.0644x10~3 | 057418 | -7.6790<10~2 | 0.10690
Meyer 1 -7.2077x10~°% | -0.60862 | -3.4588¢<1072 | -0.16162
5-band 2 -3.2301x10~° | -0.58482 | -8.6826x1072 | -0.11844
e=1/6 3 -8.8877 103 | -0.56937 | -9.3811x10~2 | -0.11512
Meyer 1 8.2632¢<10~* | 0.60806 | -3.7209x10~2 | 0.16215
6-band 2 -1.2448<10~2 | 0.58023 | -8.3257x 1072 | 0.11022
e=1/7 3 5.5425¢107% | 0.58196 | -8.4671x10~2 | 0.12368
Meyer 1 2.7863x10~* | -0.60863 | -3.9804x102 | -0.16443
7-band 2 -5.9703<10~3 | -0.57749 | -9.9056x10~2 | -0.11228
e=1/8 3 1.8490¢10~2 | -0.58901 | -6.4289%<10~2 | -0.13516
Meyer 1 -2.5084x10~* | 0.60811 | -4.1611x10~2 | 0.16612
8-band 2 1.0345¢10~2 | 0.57216 | -9.4172<10~2 | 0.12014
e=1/9 3 -1.0777 102 | 0.56259 -0.12183 0.10776

TABLE VI

ESTIMATION OF THE LAST CROSSCORRELATION SEQUENCE FORV/-BAND SHANNON AND MEYER WAVELETS.

denote the dual-tree wavelet decomposition wheréresp. DY) is the primal (resp. dual) wavelet decomposition.
The studied cross-correlations then characterize thediaffjonal” terms of the operator

I D(DW*
DH D~ I

Tr* =

where A* denotes the adjoint of a bounded linear operatoiThe operatofl’T* is encountered in the solution of

some inverse problems.

APPENDIX |

PROOF OFPROPOSITION1

The M-band wavelet coefficients of the noise are given by

e 1 x
VYm € Ny, Vk € Z, nj7m[k] = / n(x) Wq/;m(m

—0o0

—k)dx

> 1
otk = [ nte) it - B
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Wavelets \ ] -3 2 1 0 1 2 3
Meyer 2-band| v, ,u(f) | 9.1502<10~2 -0.10848 0.11800 -0.11800 0.10848 -9.1502¢10~2 | 7.0491x10~2
e=1/3 Yy o (0) | -8.1258 102 0.10073 -0.11434 0.11924 -0.11434 0.10073 -8.1258<102
Splines Vo1 (£) | -8.2660 102 0.13666 -0.18237 0.18237 -0.13666 8.2660x10~2 | -4.5433<10~2
order3 Yy pui(O) | 61604 10—2 -0.10838 0.16319 -0.18941 0.16319 -0.10838 6.1604< 102
Haar Vit (O) | 292323 10~3 | -2.2034x10~2 -0.16656 0.44127 -0.16656 -2.2034<10~2 | -9.2323«10~3
Yyt (0) | -3.1567 1073 | -1.9621x 102 0.35401 -0.35401 1.9621x1072 | 3.156% 1073 | 1.0758<10~3
Meyer Vg (£) | -8.4807 1072 | 8.8904x10~2 | -8.8904x10~2 | 8.480710~2 | -7.7120x10~2 | 6.6763<10~2 | -5.4904x10~2
3-band Ty (¢) | 6.0944x10~2 | -7.2206x10~2 | 8.1363x 1072 | -8.734% 1072 | 8.9428<1072 | -8.7347 1072 | 8.1363« 102
e=1/4 Ty u(f) | -6.3891x1072 | -7.4738 1072 | -8.3192<10~2 | -8.8252<1072 | -8.9297 1072 | -8.6196<10~2 | -7.9333« 102
Meyer Vot (O) | 85090<107% | -6.9156<1072 | 7.1274102 | -7.1274<107 | 6.9156<10"> | -6.5090¢10"* | 5.9394x10*
4-band Yy it (£) | -6.2421x 1072 | 6.7350<1072 | -7.0473<1072 | 7.1543<1072 | -7.0473<10-2 | 6.7350x10~2 | -6.2421x10~2
e=1/5 Yy i () | 6.094% 1072 | 6.6274x1072 | 6.9878<10~2 | 7.1475<1072 | 7.093% 1072 | 6.8312x10~2 | 6.3804<10~2
Vi 11 (¢) | -6.5090<1072 | 6.9156<1072 | -7.1274<10~2 | 7.1274x10~2 | -6.9156x1072 | 6.5090x10~2 | -5.9394x 102
TABLE IX

INTER-BAND CROSSCORRELATION VALUES FOR SOME WAVELET FAMILIES WE RECALL THAT PROPERTY(lZ) HOLDS AND THAT, FOR

M-BAND MEYER WAVELETS7,, ,u IS ZERO WHEN|m — m/| > 1.
moll,

For all (m,m’) € N3, and (k, k') € Z?, we have then

E{nj,mlk]njm

-

/ E{n(x

)}M]/me(Mj -

)M7/2wm (

— k)dx d2’ .

After the variable change = x — 2/, using the definition of the autocovariance of the noise i \{& find that

which readily yields

E{nm K] (K]} = /

— 00

E . s )} = [

—00

o0

oo

L[ smmety — Do

— T

.
Lo (T) Ve e (M +k —k)dr.

k’)dm) dr

Note that, in the above derivations, permutations of thegral symbols/expectation have been performed. For these

operations to be valid, some technical conditions are reduiFor example, Fubini’s theorem [57, p. 164] can be

invoked provided that

e T
/m Lt (MW w1 (7 + K = k) dT <00,

wherel'},,| is the autocovariance df|.

Relations (7) and (8) follow from similar arguments.
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my my

Fig. 2. 2D cross-correlations using-band Meyer wavelets. Theoretical results (left); expentakresults (right).

APPENDIXII

PROOF OFPROPOSITION2

For all (m,m’) € N2,

1 > * _1WT
V7 € R, %/ @i(w)(zzg,(w)) e dw = Vol pH, (7).

Since the Fourier transform defines an isometryL3(R), it can be deduced from (80) thatu ,u s in L3(R)
and its Fourier transform is — ¢! (w) (8, (w))*. 3 According to (3) and (4), whem = m/ = 0 or mm’ # 0,
the latter function is equal te — Jm(w) (ﬁm/(w))*, thus showing thaty,u ,u =y, 4, .. The equality of the
covariance sequences defined by (6) and (7) straightfolyéstiows.

Whenmm' # 0, the Fourier transform of,, ,u is equal tow — zsign(w)zﬂm(w)zz;“n, (w) whose conjuguate
is the Fourier transform of-y,, , ,u. This proves (11), which combined with (8) leads to

o x
VEEZ, T, 1=~ / T ()7, g (‘W n e) dz.

m —o0
After a variable change and using the fact thatis an even function, we obtain (12).
Consider now the Fourier transfora — zZO(w)(ng(w))* of 7y, 1. For allw > 0, there existsi € N such as

w € [2km,2(k + 1)m) and, from (4), we get

Do (W) (H(W))* = (—1)ked+ D |y (w)[2 = D@y, (—w) (Pl (—w))*.
3 As {8, (t — k), k € Z} is an orthonormal family oL?(R), we have|$)!, (w)| < 1 and %L (¥1,)* € L2(R).

m
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For symmetry reasons, the equality between the first anddesis extends to alb € R. Coming back to the time

domain, we find
V7 € R, 71/)0!/)(1){ (’7—) = 71/1071/)[?(—7 —2d — 1)

This shows the symmetry ofwwbgl w.rt. —d — 1/2. Eq. (8) then yields

e T
VEL, Ty, = [ T ()Y, it (’M Y0 2d— 1) dz

o
xZ
- / L@y (777 +¢—20—1) da

— Fnj,o,ng.{o [0+ 2d + 1].
APPENDIXIII

WHITE NOISE CASE

Recall that a white noise is not a process with finite variabhoea generalized random process [58], [59]. As such,
some caution must be taken in the application of (6)-(8). éMjrecisely, ifn is a white noise, its autocovariance

can be viewed as the limit as> 0 tends to O of

0.2 7_2
ﬁ exp(—@),
Formula (8) can then be used, yielding for ath,m') € N2, and (j,¢) € Z2,

Fné (T) = T E R.

> 1 z? €x
5 o €] = 0—2/ NeT exp(—j) Veprm H, <M - £> dx.

Since,, and+, are in L2(R), Yy 8, 1S @ bounded continuous function. By applying Lebesgue dated

m

r

convergence theorem, we deduce that

. 5 [ 1 z? €x
F”:‘,mv“’;{,m/ 4] = ll_r,% F"E,W”ﬁn/ (] =0 NG exp(—g) ehl% Vo 08, (M - é) dz

—00
e’} 1 Z‘Q
= Uz’mm,wﬁ/ (—0) / Wer exp(—?)dx

which leads to (15). Equations (14) are similarly obtaingdflwrther noticing that, due to the orthonormality

property,vy,,, ., (=) = vyu yu (=€) = 6m—mde.

m? Ty

APPENDIX IV

PROOF OFPROPOSITION3

From (25) and (26) defining the unitary transform appliedtie tetail noise coefficient&; m[k])kez2 and

(0} K] icez2:
E{w;,m[kJw;m[k']} = %(E{"g‘,m[k]ny‘,m[k/]} + E{nj m[k]n}  [K']}

o E{n o K] KT} + E{n ! K €]} )
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Using (24) and the evenness Bﬁj,m,@‘m! one can easily deduce (27). Concerning (28), we proceekeirsame
way, taking into account the relation:
1
E{w]im K] [K T} = 5 (E{nj,m[k]nj,m[k’]} — E{njm[K]njm K]}
— E{n K]y m (K]} + E{nfl Knf, K} ).

Finally, noting that
E oty 0 T} = 2 (B0 T} — I ]}

o E{n o K] K} — E{nfl e Kt K} )

and, invoking the same arguments, we see thaf k] andw}', [k'] are uncorrelated random variables.

APPENDIXV

PROOF OFPROPOSITION4

Since,, € L2(R), we have
1 [
VrER ()= o [ [Bm@)e d
Furthermore|,,|2 is 2N,, + 1 times continuously differentiable and for afle {0, ...,2N,, + 1}, (|m|>)@ €
LY(R). It can be deduced [60][p. 158-159] that

1 RPN
VT c R, (_ZT)2Nm+1fY’L[)7,L,’LZJm (7-) — 27/ (|wm|2)(2Nm+1)(w) e%wr dw
T J -
which leads to

1 [, ~

VreR, [P, 0 < oo [ (08P w) do. (80)

Let us now consider the cross-correlation functions, ,u with m # 0. Similarly, whenm # 0, we have
1 [ ~
VreR ()= [ al@lin)Pe do, (81

where a(w) = usign(w). The functionw — oz(u;)|z$m(w)|2 is 2N,,, + 1 times continuously differentiable oR*,

where its derivative of ordeg € {0,...,2N,, + 1} is
(@)D =@ (|| (82)

Due to the fact thate,, (w)|?> = O(w? =) asw — 0, we have for ally € {0,...,2N,, — 1}, (|t |?)@(0) = 0.
From (82), we deduce that the functi()n|$m|2)(q> admits limits on the left side and on the right side of 0, which
are both equal to 0. This allows to conclude tmﬂmﬁ is 2N,,, — 1 times continuously differentiable dR, its

2N,, — 1 first derivatives vanishing at 0. Besidésy|,,,|2)?V=~1) is continuously differentiable ofi—occ, 0] and
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n [0, o) ((a@mP)(?NW) may be discontinuous at 0). Using the same arguments as;for;, ., this allows us to

claim that

1 [ ~
VreR, (o, () = oo [ a@)(aP) N w)e do

2 J_ o
_ ! / T (B2)2¥) () sin () dis. (83)
T Jo

We can note thatim,, ., (|¢m[?) V) (w) € R as it is equal to(|¢,|2) 2™ (0) + I (|2 Nm 4D (1) d
Where(|$,,b|2)fN"")(O) denotes the right-hand side derivative of ordé¥,, of |¢,,|2 at 0. Since(|¢,,[2)2Nm) e
L1([0,)), the previous limit is necessarily zero. Using this fact amegrating by part in (83), we find that, for
all 7 e R,
T/ ([ [*) PN (w) sin(wr) do = (|zZm|2><me>(0>+/ ([t ) BN (w) cos(wr) dew.
0 0

Combining this expression with (83), we deduce that

Ly [ -~ ~ N,
vreR B, 01 (108 @)+ (5B 0). (@

Let us now study the case whem = 0. Eq. (81) still holds, but as shown by (4),takes a more complicated

form:

(=Dkerdt)e if >0
Vk € Z, Yw € [2k7,2(k + 1)7), a(w) =
(—1)FLled+a)e  otherwise.

So, the functior as well as its derivatives of any order now exhibit discamties at2km wherek € Z*. However,
from (1) and the low-pass conditioﬁ)(o) =1, we have, for allm # 0,

H,,(w) = O(wNm), asw — 0.

As a consequence of the para-unitary condition (2), we get

M—1
D Hpw)? =M
m=0

and
M—1

2T
S IHo(w+p2r)P = M

p=0

which allows to deduce that

2
Vpe Ny,  Ho(w +pM7T) = O(w™).
From (1), it can be concluded that
Vk € Z*, tho(w + 2k7) = O(w™°), asw — 0. (85)

The derivatives of ordeg € {0,...,2Ny + 1} of oz|7:b\0|2 overR\ {2km, k € Z*} are given by

(el =3~ (i) () (|4,

£=0
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where

(—1)kf(d+ L)t eldta)e if k>0
Vk € Z, Yw € (2km,2(k + D)7),  oO(w) =
(—1)F 1t (d + L)t 2w otherwise.

We deduce that, for alj € {0, ...,2N + 1}, (a|do|?)@ € L1(R). Furthermore, combining (85) with (86) allows
us to show that, for aly € {0,...,2Ny, — 1}, the derivative of ordey of a|7$0|2 at 2km, k € Z*, is defined
and equal to 0. Consequently|¢|? is 2N, — 1 times continuously differentiable dR while (c|¢|?)@No—1) is
continuously differentiable ot,cz(2km, 2(k + 1)7). Similarly to the casen # 0, this leads to
1 [ ~
N N WT
VreR, (im0, () = 5o [ (@IBHE ) e do

o] 2(k+1)m =R
= > / (althol*) BN (w) 7 duw. (86)
2k

=—o00

By integration by part, we deduce that

vreR (Pt () = 5o ([ (@RBE @) e b+ 5) ®7)
B=3" ((alpo) ) (2km) — (aliol?) ) (2Kkm)) €27, (88)

kez*
where(a@o\?)fl\“)(wo) (resp.(a\@oﬁ)(_w”)(wo)) denotes the right-side (resp. left-side) derivative afev2 N,

of a|y|? atwy € R4 We conclude that

1

Vr eR, ‘T|2No+1w%7wg(7)| = %(/ ’(a‘$0|2)(2N0+1)(w)] dw + |6|). (89)

In summary, we have proved that (32) and (33) hold, the canhstabeing chosen equal to the maximum value of
the left-hand side terms in the inequalities (80), (84) a81@).(

APPENDIX VI

PROOF OFPROPOSITIONS

Let m € Ny. Since,, is a unit norm function ofL?(R), the functionvy,,, 41 is upper bounded by 1. As
Yy fUrther satisfies (33), it can be deduced that

1+C
vrER by (NS T Em (90)

The same upper bound holds g, ...

For a white noise, the property then appears as a straiglafdrconsequence of the latter inequality and Egs. (14)
and (15).

Let us next turn our attention to processes with exponédytitcaying covariance sequences. From (8), (34) and
(90), we deduce that

00 67a|:1:\

Ve Z, Loyt (O] < AL+ 0)/ (91)

o 1+ [M iz — (PNt dz.

4The series in (88) is convergent since all the other terms T 48e finite.
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As the left-hand side of (91) corresponds to an even funabioh, without loss of generality, it can be assumed

that/ > 0. We can decompose the above integral as

S e—a\w\ p 00 e—ax p o e—ow i
/_OO 1+ [M—iz — (2Nt x_/o 1+ (M-iz + £)2Nnt1 “/0 1+ [M—iz — (2Nm+1 0
The first integral in the right-hand side can be upper bouradetbllows

oo

oo 670417
. dr < (1 + 2Nm+1 —1/ —aw g — o~1(] 4 p2Nm+1)—1
/o 14+ (M~Jx + £)2Nm+1 v < (14 ) ; e r=a (14 )

Lete € (0,1) be given. The second integral can be decomposed as

oo e—0T eMI¢ e—ox 0o e—om
- dxr = , d . dx.
/0 14 [MTz — (a1 /O 1+ (6= M Jz)2Nntt x+/€Mu 1+ M Iz — (PNt 0

Furthermore, we have

e e N 2N, 1 M
- dr < (1 1— mJFl[ m+1\— / —ax g
/(; 1 + (Z - lw _-7,’1,‘)2Nm+1 > ( + ( 6) ) 0 € X

IN

a (1 =) 2Nl (1 4 2Nmt )71 (92)

— 1 — J
e~ dr — o 16 ae]V[l.

IN

oo e—am oo
/ = N1 4t
eMit 1+ ‘M Jx — €| m eMilt

From the above inequalities, we obtain

V0 € N*, |F M]l < A(l + C)Oc_l((l + (1 _ 6)—2N7n_1)(1 +£2Nm+1)—1 + e—aeMjé)-

) H
g, myTy

AS limy_ oo (1 + (2NmF1)e=aeM’L — it readily follows that there exist§’ € R, such that (35) holds.

The left-hand side of (91) being also an upper bound|far, [4]], ¢ # 0, (34) is proved at the same time.

,msTg,m

APPENDIXVII

PROOF OFPROPOSITION7

Let us prove (42), the proof of (41) being quite similar. Westfinote that@m(@n,)* and thereforey,, ,u
belong toL?(R) (see footnote 3). Applying Parseval's equality to (8), weagbfor all £ € Z,

1 REEPN ~ ) ‘ ;
”?.m/ [ = o I (w) Mjwrn(MJw)@l(Mjw)ezM W,

1 oo

Nj,m,

= w " “H 1w
or | Tn(m) @i @ede
As T, € L!(R), the spectrum densitfn is a bounded continuous function. According to Lebesgueidated

convergence theorem,

. o 1 > . - w " H Ww
Jim Loy = o /_ Ooj@go Fn( Mj) (W)U (w)e"™ dw
fT O > s ww T
=50 [ @i @ = a0y, un, (0.
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APPENDIX VIII

CROSSCORRELATIONS FORMEYER WAVELETS

Substituting (46) in (20), we obtain, for all € R,
1 m(l—e¢) 1 7(14¢€) 1— 1
(/0 cos(w(d+§+7))dw+/ Wz(i— QGE)COS(w(d+§+7))dUJ

Yo, (T) =
"/’07"/’0 T 71'(1—6)

=(1- E)SinC(ﬂ'(l —e€)(d+ % + T)) + 6/11 W2(1 er 9) cos (7r(60 +1)(d+ % + T))d@. (93)

Using (48), we get
1

[1W2<1;0) cos <7T(€9+1)(d+%+7')>d9:/0 cos (7‘(’(69—1)(d—|—%—|—7‘))d9
—/ W2(1;Lo>cos(7r(60—1)(d+%+7’))d0. (94)

0

This allows us to rewrite (93) as

Vapo i (T) = sinc(w(d—i— % + T)) —sin (w(d—i— % + T))IE (d+ % + T). (95)

After simplification, (52) follows.

According to (19) and (50), we have for alt € {1,..., M — 2} andr € R*,

m(m+1l—¢)

1 7(m-+e) m+ e w . |
Vi pH (1) =— 7T</7r(m_€) W2< S TTIT) sin(wT)dw + /Tr(m+6) sin(wt)dw
m(m+14€)
2w _mAlocy
- /Tr(m+1—€) W (27T€ %€ )SIH(WT)dw)
== (rm 1= ) = cos {m + )7) + 6/ w? (1 ; 0) sin (7 (0 — m)7)do
-1

T
—e/ W2(1+9)sin(w(69+m+l)r)d9.
) 2

By proceeding similarly to (93)-(94), we find

Yot (1) = (cos(m(m + 1)7) — cos(wmr)) (7?17 ~ 1(7)).

Whenr is an integer, this expression further simplifies in (54).

Finally, whenm = M — 1, we have, for allr € R*,
TM(1—¢)

1 m(M—1+e) M-1+e w
=—— W2 ———— d i d
Vepns 1t (T) - (/ﬂ(]w—l—e) ( 5 ~ 5 )sm(u}T) W+ /(]W—l—‘,—s) sin(wt)dw
wM(1+e€) w 1—¢
W (Grerr ~ 3 ) siner)a)
+/WM(1€) - 5 sin(wT)dw

_cos (TM (1 —€)7) —cos(7r(M—1—|—e)T) +E/ WQ(l;rf)) sin (e — M + 1)7)d

feM/ W2 sm (mM(ef + 1)7)df

oo rdr)  co WM =) cos (1M = 1)7)1.(r) = cos(mMT) (7).
DRAFT
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This yields (55).

APPENDIXIX

PROOF OFPROPOSITION8

Let m € N*. Given (19), (57) leads to
it ()= [ an(@) sinr) do
= [ 140 Pl (@) sin(zor) (96)
Furthermore, we have

|Ap(w Z%O exp(—tkw)

= Y4, [0 +22’ya0 ] cos(kw).

Combining this equation with (96) and using classical tnigmetric equalities, we obtain

sty (1) =900l0] [ @) sin(or)as S 0y 1( [ [Bneo)?sin (27 K)o
0 =1 0

+ / |thm (w)[? sin (27 + k)w)dw)
0
which, again invoking Relation (19), yields (59). Eqg. (6@ncbe proved similarly starting from (58).

APPENDIX X

CROSSCORRELATIONS FORHAAR WAVELET

Knowing the expression of the Fourier transform of the Hazalisg function in (64) and using the cross-

correlation formula (20), we obtain:
2(k+1)m

VT € R, Vo, (T) = 1 i(—l)k/ Sincz(%) cos (w (% +74d)) dw
n 2k

™

(k+1)m
— Z / o Slny2(y) cos (v (1427 +2d)) dv. (97)

By integration by part, we find: for alla, 3,7) € R3,
B 2 ;2 . ;2 2
/ sin”(w) cos(1w) da _sin () cos(na)  sin”(3) cos(np) N 4(2 N )/ sin ((2 + n)w )dw

w2

o Ié) w
n sin(nw) 1 sin ((2 — n)w)
= ——dw+ —(2— 77)/ ek Nl i 7
2/a w 4 o w
_ sin®(a) cos(na) sinz(ﬂ) cos(npB) n 1(7 +9) /B("+2) sin(v) v
« ﬁ 4 7 a(n+2) 14
Bn B(n=2)
N sin(v) 1 sin(v)
2 /(x’r/ v — W 407 2) /u(n—Q) v v

Combining this result with (97) leads to (66).
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On the other hand, according to (65) and (19), we have

V1 € R, Vop 11 (T) = 7%/0 sin&(%) sin? (%) sin(w7) dw .

In [61, p.459], an expression gf” sin® (aw) sin® (92) sin (2n2)de iy (o, B,m) € (R%)3 is given. Using this relation

xT

yields (67) whenr > 0. The general expression farc R follows from the oddness Ofwl,w-

APPENDIX XI
CROSSCORRELATION FOR THEFRANKLIN WAVELET

We have, for allr € R,

1 [ 5 .
Yax (T) = - [X(w)]” sin(wT)dw
0
) 00 Li..8
= —7/ S iw) sin(2wT)dw.
™ Jo w
After two successive integrations by part, we obtain
4 > sin’ (w) cos(w) sin(2wT) * sin®(w) cos(2wT)
T (1) == = (4/0 - dw + T/O wa)
__ 2 (28 /0Q sin®(w) cos? (Qw) sin(2wT) do — 22+ 7%) /OO sin®(w) s;n(2w7') o
3m 0 w 0 w
16 /oo sin” (w) cosu(;u) cos(2wT) dw). (98)
0

Standard trigonometric manipulations allow us to write:
sin®(w) cos? (w) sin(2w7) :% sin® (w)(sin(?nu) - %Sin (2(7 + 2)w) — %Sin (2(r — Q)w))
sin®(w) sin(2w7) :%6 sin®(w) ( sin (2(7 + 2)w) + sin (2(r — 2)w) — 4sin (2(7 + 1)w)
— 4sin (2(r — 1)w) + 651n(27w)>
sin’ (w) cos(w) cos(2wT) :1% sin®(w) ( sin (2(7 — 2)w) — sin (2(7 + 2)w) + 2sin (2(7 + 1)w)
— 2sin (2(7 — 1)w) ).
Inserting these expressions in (98) yields
31 Yy 1 (T) = Qo(7)J(7) = Qu(T)J (T + 1) = Qu(=7)J (T = 1) + Qa2(7) J (T + 2) + Q2(—7)J (T = 2),  (99)

where (see [61, p. 459])

oo _:. 4
Vo € R, J(x):2/ sin” (w

2 ) sin(2wz)dw
0

3 2 2 —
:_§x1n|x\+(1+x)1n|1+x\_(1_x)1n|1_x\_¥1n|2+x|+ i

In|2 — x|

and
3 2

SPoe Q=Taaral Qun) = a2

Qo(7) 1
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Simple algebra allows us to prove that (99) is equivalent/s).(
On the other handA; (w)|? can be viewed as the frequency response of a non causal dtgltés filter whose

transfer function is

6(2 — z=tz)
242112 z+z—1
(1+2(=5-))2+=5-)
B 2\/3( 42+V3)  42-VB) N T2+V3) —4(1+V3)z 7(2—\/3)—4(1—\/3)2')
9 \z4+2+V3 z+2-V3 2242443 2242-4/3 '
We next expand{g1 (z) in Laurent series on the holomorphy domain containing thie aircle, that is

V3-1 12 \/§+1}
7\/5 <z<7\/5 .

We thus deduce from the partial fraction decompositiongf (z) that

PZI (Z) =

DPAIZ{zGC |

P = 22 (1 30 (1t - VBT 3 (C - VA

k=—o0 k=—o0

(1= VE) D (-1 - VBE( g ),
k=0
By identifiying the latter expression with. .~ __ vs, [k]z~*, (76) is obtained.
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