-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by HAL-Ecole des Ponts ParisTech

HAL

archives-ouvertes

On the capacity achieving covariance matrix for
frequency selective MIMO channels using the
asymptotic approach
Florian Dupuy, Philippe Loubaton

» To cite this version:

Florian Dupuy, Philippe Loubaton. On the capacity achieving covariance matrix for frequency
selective MIMO channels using the asymptotic approach. TEEE Transactions on Informa-
tion Theory, Institute of Electrical and Electronics Engineers, 2011, 57 (9), pp.5737 - 5753.
<10.1109/TIT.2011.2162190>. <hal-00621967>

HAL Id: hal-00621967
https://hal-upec-upem.archives-ouvertes.fr /hal-00621967
Submitted on 23 Jul 2012

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francgais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://core.ac.uk/display/48345387?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal-upec-upem.archives-ouvertes.fr/hal-00621967

On the Capacity Achieving Covariance Matrix for
Frequency Selective MIMO Channels Using the
Asymptotic Approach

Florian Dupuy and Philippe Loubatofellow, IEEE

Abstract—In this contribution, an algorithm for evaluating In the context of the so-called Kronecker model, it has been
the capacity-achieving input covariance matrices for frequency shown by various authors (see, e.dl] for a review) that
selective Rayleigh MIMO channels is proposed. In contrast {hq gigenvectors of the optimal input covariance matrix must

with the flat fading Rayleigh case, no closed-form expressions . . . . - .
for the eigenvectors of the optimum input covariance matrix coincide with the eigenvectors of the transmit correlation

are available. Classically, both the eigenvectors and eigenvaluesmatrix. It is therefore sufficient to evaluate the eigenealof
are computed numerically and the corresponding optimization the optimal matrix, a problem which can be solved by using
algorithms remain computationally very demanding. In this standard optimization algorithms. Similar results haverbe
paper, it is proposed to optimize (w.rt. the input covariance qnhiained for flat fading uncorrelated Rician channef)([

matrix) a large system approximation of the average mutual - . . T
information derived by Moustakas and Simon. The validity of this In this paper, we consider this EMI maximization problem

asymptotic approximation is clarified thanks to Gaussian large in the case of popular frequency selective MIMO channels
random matrices methods. It is shown that the approximation (see, e.g., 3], [4]) with independent paths. In this context,

is a strictly concave function of the input covariance matrix and the eigenvectors of the optimum transmit covariance matrix
that the average mutual information evaluated at the argmax of have no closed-form expressions, so that both the eigeswalu

the approximation is equal to the capacity of the channel up to . .
a O (1/t) term, where ¢ is the number of transmit antennas. An and the eigenvectors of the matrix have to be evaluated

algorithm based on an iterative waterfilling scheme is proposed nNumerically. For this, it is possible to adapt the approath o
to maximize the average mutual information approximation, and [5] developed in the context of correlated Rician channels.
its convergence studied. Numerical si_mulation r_esults show that, However, the corresponding algorithms are computatignall
even for a moderate number of transmit and receive antennashe ey demanding as they heavily rely on intensive Monte-€arl

new approach provides the same results as direct maximization _. . . .
approaches of the average mutual information. S|mglat|ons. We therefc_:re propose to optimize the approxi-

mation of the EMI, derived by Moustakas and Simo4])[

in principle valid when the number of transmit and receive
antennas converge to infinity at the same rate, but accuwate f
realistic numbers of antennas. This will turn out to be a $mp

I. INTRODUCTION problem. We mention that, while4] contains some results

When the channel state information is available at both tfglated to the structure of the argument of the maximum of
receiver and the transmitter of a MIMO system, the probleff€ EMI approximation,4] does not propose any optimization
of designing the transmitter in order to maximize the (Gau&gorithm. _
sian) mutual information of the system has been addressedVe first review the results of4] related to the large
successfully in a number of papers. This problem is, howevéyStem approximation of the EMI. The analysis d@f fs
more difficult when the transmitter has the knowledge ¢taseéd on the so-called replica method, an ingenious trick
the statistical properties of the channel, the channek stjfhose mathematical relevance has not yet been established
information being still available at the receiver side, areno Mathematically. Using a generalization of the rigorousyesis
realistic assumption in the context of mobile systems. Ia thof [6], we verify the validity of the approximation of4]
case, the mutual information is replaced by the averageahut@"d Provide the convergence speed under certain technical
information (EMI), which, of course, is more complicated t&SSUmptions. Besides, the expression of the approximation
optimize. depends on the solutions of a non linear system. The existenc

The optimization problem of the EMI has been address@d the uniqueness of the solutions are not addressed].in |

extensively in the case of certain flat fading Rayleigh clegsin AS OUr optimization algorithm needs to solve this system, we
clarify this crucial point. We show in particular that thestgm
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Therefore it is relevant to optimize the EMI approximatian ttime n respectivelyn(n) is an additive Gaussian noise such

evaluate the capacity achieving covariance matrix. WelfinathatE (n(n)n(n)?) = o2I. H(z) denotes the transfer function

present our maximization algorithm of the EMI approximatio of the discrete-time equivalent channel defined by

It is based on an iterative waterfilling algorithm which, in I

some sense, can be seen as a generalizatior] difoted to H(z) = ZH(z) L—(=1) )

the Rayleigh context and o8], [9] devoted to the correlated Pt

Rician case: Each iteration will be devoted to solve the abov

mentioned system of nonlinear equations as well as a standgagh coefficientH") is assumed to be a Gaussian random

waterfilling problem. It is proved that the algorithm coryes Mmatrix given by

towards the optimum input covariance matrix as long as it 1

convergek HO = —
The paper is organized as follows. Sectibnis devoted

to the presentation of the channel model, the underlyighere W, is ar x ¢ random matrix whose entries are inde-

assumptions, the problem statement. In sectibnwe rig- Pendent and identically distributed complex circular Garss

0r0us|y derive the |arge system approxima’[ion of the EMﬁndom Val’iables,~ with zero mean and unit variance. The

with Gaussian methods and establish some properties of fatricesC”) and C() are positive definite, and respectively

asymptotic approximation as a function of the covarian@ccount for the receive and transmit antenna correlatibrs T

matrix of the input signal. The maximization problem of th&orrelation structure is called a separable or Kroneckereeo

EMI approximation is then studied in sectié. Numerical lation model. We also assume that for edch~ I, matrices

ﬁ(c(l>)1/2Wz((~3(”)l/27 ()

results are provided in section. H® and HY are independent. Note that our assumptions
imply that H() # 0 for I = 1,..., L. However, it can be
Il. PROBLEM STATEMENT checked easily that the results stated in this paper renadith v

if some coefficient H®"),_, _; are zero.

In this article the channel matrices are assumed perfectly
known at the receiver side. However, only the statisticshef t
(HW),—;. 1, i.e. matricesCH, CW),_, ., are available
at the transmitter side.

A. General Notations

In this paper, the notations, x, M, stand for scalars,
vectors and matrices, respectively. As usugl]| represents
the Euclidian norm of vectok, and |[M||, p(M) and |[M|
respectively stand for the spectral norm, the spectralissaind
the determinant of matri®d. The superscripts.)” and (.)?
represent respectively the transpose and transpose edejudC. Ergodic Capacity of the Channel.

The trace ofM is denoted byTr(M). The mathematical | gt Q(e2™) be thet x ¢ spectral density matrix of the
expectation operator is denoted By:). We denote byd; ; transmit signak(n), which is assumed to verify the transmit
the Kronecker delta, i.e}; ; = 1 if i = j and 0 otherwise. power condition

All along this paper; andt stand for the number of receive

and transmit antennas. Certain quantities will be studied in 1/1 Tr(Q(e%””))dl/ —1 ()
the asymptotic regimeé — oo, » — oo in such a way that tJo -
t/r — ¢ € (0,00). In order to simplify the notationg, — oo
should be understood from now on a&s—+ oo, r — oo and
t/r — ¢ € (0,00). A matrix M; whose size depends dnis .
said to be uniformly bounded iup, | M,| < cc. _

Several variables used throughout this paper depend oIn(Q(')) =Ew UO log
various parameters, e.g., the number of antennas, the noise . .
level, thepcovariance mgtrix of the transmitter, etc. Ineort W?wereEW[.] = Ew),_, . L. The ergodic capacity of the

o . . MIMO channel is equal to the maximum &{Q(.)) over the
simplify the notations, we may not always mention all these . . A .
dependencies. set of all spectral density matrices satlsfylng the coingtra

(4). The hypotheses formulated on the statistics of the cHanne
allow however to limit the optimization to the set of positiv
B. Channel Model matrices which are independent of the frequemcyThis is

We consider a wireless MIMO link with transmit andr  because the probability distribution of matri(e?™) is
receive antennas corrupted by a multipath propagationneian clearly independent of the frequenecy More precisely, the
The discrete-time propagation channel between the tratesmitnutual informationI(Q(.)) is also given by
and the receiver is characterized by the input-output émuat

Then, the (Gaussian) ergodic mutual informatié(Q(.))
between the transmitter and the receiver is defined as

1+ LHOQUHO! ], @

' 1 ,
1(Q(.)) =En [/0 log |I, + ?HQ(GQWV)HH

L du} ,
y(n) = > HOs(n—1+1)+n(n) = [H(z)ls(n) +n(n), (1)
=1 whereH = Y H) = H(1). Using the concavity of the
where s(n) = [s1(n), ..., s¢(n)]T and y(n) = [y1(n), logarithm, we obtain that
.., yr(n)]T represent the transmit and the receive vector at ) 1
1(Q(.)) <En {log I.+SH </ Q(e%w)du> HHH :
o 0

INote however that we have been unable to prove formally itsergence.




We denote bye the cone of non negative hermitian matriced8) at the bottom of the page, whe(&, (Q),...,5.(Q))T =
and by ©; the subset of all matrice® of € satisfying d(Q) and (6,(Q),...,0.(Q))” = 8(Q) are the positive
%Tr(Q) = 1. If Q is an element 0€,, the mutual information solutions of the system ¢f. equations:

I(Q) reduces to

1 i )
1(Q) = Ex {log I + —HQH" } : (6) Fi= ik, Q) ot
Q — I(Q) is strictly concave on the convex s€i and with k = (k1,...,x.)" and& = (&1, ...,%z)7, and with
reaches its maximum at a unique elemént< C;. Itis clear
that if Q(e?™) i1$ any spectral density matrix satisfying)( filk) = +Tr [COT(R)],
H 2imy i ~ ~ N 10
then the matrixf, Q(e )dlz/ is an element o€, . Therefore, ik, Q) = 1Te [Ql/QC(l)Ql/QT(K’ Q)] . (10)
1 .
Eg|log I, + —H Hmydy | 7Y _ o
H[ o8 |1r + o? </0 Qe™™) V) H The r x r matrix T(k) and thet x ¢t matrix T(k, Q) are
respectively defined by:
g]EH[log IT+12HQ*HHH. P y y
g L 1
In other words, T(k) = [02 (IT +Y° f?ajC(j)) ; (11)
1(Q(.) < 1(Q.) j=1
-1
for each spectral density matrix verifying)( This shows that - 5 = 1/2&40) (1/2
the maximum of functiod over the set of all spectral densities Tk, Q)= |o° | L+ Z“J’Q c7Q - (12
j=1

satisfying @) is reached on the sét;. The ergodic capacity
Cp of the channel is thus equal to

Ill. DERIVING THE LARGE SYSTEM APPROXIMATION
Cp = Juax 1(Q). )
€Cy

_ . A. The Canonical Equations
We note that property7] also holds if the time delays of

the channel are non integer multiples of the symbol period, !N [4], the existence and the uniqueness of positive solutions
provided that the receiving filter coincides with the idedP (9) is @ssumed without justification. Moreover no algorithm
low-pass filter on thé— L, -] frequency interval, wherg IS 9iven for the calculation of thg, andé;, [ =1,...,L. We

denotes the symbol period. If this is the case, the transfBerefore clarify below these important points. We consitle
function HL(e2™) is equal toH (¢2™) = Zszl HO—2imvr caseQ = I in order to simplify the notations. To address the

wherer; is the delay associated to pdtfor [ = 1,..., L. The Qenefa'l c2a§(el)it ils2sufficient_ to change matri¢es"),_,,....r
probability distribution offI(e2"*) does not depend anand 1Nt (Q 2CQY?) -y, in what follows. . .
this leads immediately to7}. Theorem 1:The system of equations9)( admits unique

If the matrices(C®),_; _, all coincide with a matrix POSitive solutions(d;);=1,..... and (d)=1....., which are the
C, matrix H follows a Kronecker model with transmit andlimits of the following fixed point algorithm:

receive covariance matrices >~ ", C() and C respectively - Initialization: 5{” > 0, 5 > 0,1=1,..., L.

[10Q]. In this case, the eigenvect(o%rs o{ the ((l))ptimum maix - Evaluation of the 5l(n+1) and gl(n—O—l) from 6™ =
coincide with the eigenvectors gf >, ; C'". The situation (n) (n)\T S(n) — (5(n) S(n)\T.

is similar if the transmit covariance matricé€")),_; (O 0,7)7 ande O o)
coincide. In the most general case, the eigenvector€)of 5l("+1) = f1(6(™),

have however no closed-form expression. The evaluation of { S(n1) _ 7 (a(n) (13)
Q. and of the channel capaciyg is thus a more difficult J = fi(6™.1).

problem. A possible solution consists in adapting the Vi oot \we prove the existence and uniqueness of positive
Paulraj approach §]) to the present context. However, theyqtions.

algorithm presented irf] is very demanding since the needed
evaluations of7(Q) gradient and Hessian require intensivgh
Monte-Carlo simulations.

1) Existence: Using analytic continuation technique, we
ow in AppendixA that the fixed point algorithm introduced
converges to positive coefficients and - 1,...,L. As
o functionsi — f;(%) andk — f;(k,I) are clearly continuous,
D. The Large System Approximation KiQ) the limit of (6(™), (™)) whenn — oo satisfies §). Hence, the

Whent andr converge tox whilet/r — ¢, ¢ € (0,00), [4]  convergence of the algorithm yields the existence of a pesit
showed that/(Q) can be approximated by(Q) defined by solution to @).

L
1(Q) =log I + > 5(Q)C"| +log
=1

L L
I +Q (Z 51(Q)C<l>> ‘ ~ o’ (Z 5z(Q)5z(Q)> ®)
=1 =1



2) Uniqueness:: Let (8,8) and (8’,4’) be two solutions Lemmal (i) in AppendixC implies thatp(c*A(T)A(T)) <
of the canonical equatior®) with Q = I. We denote(T,T) 1 andp(c*A(T/)A(T’)) < 1, so that 19) finally implies:
and (T, T’) the associated matrices defined hy)(and (2),
where (k, &) respectively coincide witHd,48) and (¢’,4"). pIM) < p(P) < 1.
Introducinge = & — &' = (e1,...,er)” we have: This completes the proof of Theorein O

e = [C(”T (T'~! T_l)T’}

t2 I B. Deriving the Approximation of (Q = I,) With Gaussian
=230 -8 (cOTe®T). (14) Methods
(it We consider in this section the ca@= I,. We notel =

I(1;), T = I(I;). We have proved in the previous section the
consistency of (Q) definition. To establish the approximation

2 L PR of 1(Q), [4] used the replica method, a useful and simple
- o k . ) )
k= 2(52 — 0T (C( 'TC! )T/> : (15)  trick whose mathematical relevance is not yet proved in the
=1 . present context. Moreover, no assumptions were specified fo
And (14) and (5) can be written together as the convergence af(Q) towardsI(Q). However, using large
1 o2A(T, T’) e random matrix techniques similar to those 6f &nd [8], it is
[ o2A (T, T') I ] [ } =0, (16) possible to prove rigorously the following theorem, in whic

T the (mild) suitable technical assumptions are clarified.
where L x L matricesA(T,T') and A(T,T’) are defined  Theorem 2:Assume that Supt [C@)| < +oo,

by Ap(T,T) = ;Tr (CHWTCHT) and Ap(T,T') = sup, |CP| <  +oo, inf, (I TrC(j)) > 0 and
%Tr(C(k):I‘(;(DNT'). We will now prove thap(M) < 1, with inf, (1T C1)) > 0, for anyj € {1,...,L}. Then,
M = ¢*A(T, T')A(T, T’). This will imply that the matrix
governing the linear systenil®) is invertible, and thus that I=T+40 () )
e =&=0, i.e. the uniqueness. ¢
Sketch of proof: The proof is done in three steps:
1) In a first step we derive a large system approximation of
Eg|[TrS], whereS = (HH” + ¢21,.)~! is the resolvent
of HH" at point —o2. Nonetheless the approximation
<@ Z (17) is expressed with the terms = 1En [Tr.(C“)S)], [ =
., L, which still depend on the entries @fz[S].
Using Cauchy-Schwarz inequalitfir(AB)|2 < Tr(AAX).  2) A second step refines the previous approximation to

M| = ‘ ZTF (€C®TcUT)TH(CYTCHOT)

Tr(CHTCYT)| | Tr(CYTCOT)].

Tr(BB), we have: obtain an approximation which this time only depends
1 o - on the variance structure of the channels, i.e. matrices
(€W DEOT)| < /Ay (T, T)Ag (T, T), (C)ieqr,....ry and (CW)icq 1y
t 3) The previous approximation is used to get the asymptotic
% ‘Tf(c(j)TC(l)T/) < \/Ajl(T7 T)A; (T, T). behavior of mutual information by a proper integration.

Proof: We now sketch the three steps stated above. We provide

Using these two inequalities il7) gives the missing details in the Appendix.

L —— ~ 1) A First Large System Approximation Bfg[Tr S]: We
M| <0* > \/Akj(T)Akj(T/)Ajl(T)Ajl(T/)v introduce vectorsy = o, ...,a.)” anda = [dy, ..., az]7
J=1 defined by
where matricesA (T) and A(T) are defined by o) = 1Tr [COEg(S]]
1 . l A, forl=1,...,L, (20)
A(T) = ;Tr(C( 'TCYT) = Ay (T, T), a; = ;Tr[CYR]
18 o i ~
Akl(T) _ %’I‘I‘(c(k)’i‘é(l)i‘) _ Akl(i‘,’i‘) ( ) WhLeret >~<(t) m:’:lltl’lx R IS def|ned byR(a) : [02 (It +
>;—1;CY)] 7. Using large random matrix techniques
Using Cauchy-Schwarz inequality then yields: similar to those of ¢] and [8], the following proposition is
M| < P proved in AppendixB.
kil = Tkb Proposition 1: Assume that, for everyj e {1,...,L},

where P is the L x L matrix whose entries are defined byup, ||CY)| < 400, sup, |[CP| < +oo. ThenEg(S] can
Py = \/(04A(T)A(T))M\/(J4A(T/)A(T’))M. Theorem be written as
8.1.18 of [L1] then yieldsp(M) < p(P). Besides, Lemma Eu[S] =R+, (21)

5.7.9 of [12] used on the definition oP gives: where matrixY is such that%Tr(TA) _— (%2) for any
uniformly bounded matrixA and where matribR. is defined

pP) <\ [p (HAMAM) o (4ATIAT)). (9 by'Rid) = (ar(1, 4 S0 6 O0)]




One can check that the entries of matfi are O (5% );

This equality clearly justifies the search of a large system

nevertheless this result is not needed here. It follows froeguivalent of Eg [Tr S] done in the previous sections. The

Propositionl that, for anyr x » matrix A uniformly bounded
inr,

%]EH[Tr(SA)] = %Tr(RA) +0 <t12> . (22)
Taking A =1 gives a first approximation dfg [Tr S]:
H[TrS]:TrRJrO(D. (23)

Nonetheless matriR depends orfg[S] through vectora.

2) A refined large system approximationTof[Tr S]: We
first recall from Sectionlll-A that T is_the matrix defined
by (11) associated to the solution®,d) of the canonical
equation 9) with Q = I,: T = (o*(L + X, §CO -
We introduce the following proposition which will lead toeth
desired approximation dEg[Tr S]:

Proposition 2: Assume that, for everyj € {1,...,L},
sup, [|CY || < +o0, sup, ||CY|| < 400, inf, (+T C(J)) >0
andinf, (1TrC)) > 0. Let A be ar x r matrix uniformly
bounded inr, then

%T&(RA) _Inray+o (;) .
The proof is given in AppendidxC. It relies on the simi-
larity of the systems of equations verified by tlie;, a;)
and the (0, ;). Actually, taking A = C® in (22) yields
o = +Tr(CYR) + O (%) and therefore

(24)

[0+ S, 609 ] v o ()
%Tr[C(” [o?(T+ 3052, 0, €U )]_1}

L. Taking A = 1, in (24) together with 23)

fori=1,...,
leads to

Eg[TrS] = Tr T+ O (1) (25)

3) The resulting large system approximation bf The

ergodic mutual information can be written in terms of the

resolventS:

I =Eg {log

H
I+ H:g” =En [log |JQS(02)|_1] .

As the differential ofy(A) = log |A| is given byg(A+0A) =
g(A) + Tr[A~15A] + o(||0A||), we obtain:
dar {Tr[S(az)HHH]]

- _E
do? H o
{Tr[Ir -

_]EH

)

ozs<o2>1]

o2

term under the integral sign can be written as

L

”’ ~

= —Eu [TrS] = ¢ Y~ 86 + Ext [Tr (T - S)],
=1

as% —TrT = Tr[((0?T) ' ~L)T] = Tr[(3, 6CV)T] =
t>°, 8,6, We need to integrate(t,0?) = Eg [Tr (T — S)]
with respect too? on (p > 0,+00). We therefore introduce
the following proposition:

Proposition 3: (t, 02) Eg [Tr (T — S)] is integrable
with respect tos? on (p > 0, +00) and

/m e(t,0%)do? = O (1) .

Proof: We prove in AppendiD that there existg, such that,
for t > to, [e(t,0?)| < = P (J), whereP is a polynomial
whose coefficients are real positive and do not depend?on
nor ont. Thereforefp+Oo e(t,0?)do? =0 (7).

O

We now prove that the term), 816, corresponds to the
derivative ofI (o2) with respect tar?. To this end, we consider
the functionVy(c?, k, &) defined by

)= 2tzl€zf€z7

whereC(k) = Y/ 1/<;lCl> andC(k) = S 1/<czC D). Note
that Vy(02,8,8) = I(02). The derivative ofl(¢2) can then
be expressed in terms of the partial derivative§’pf

Vo(o?, k, k) = log [I+C(&)|+log [T+ C(k

dI 8V0 (9V0 2 do;
do? ~ 9o? U 66 Zanl 0,0 ﬁ
L
Ny, 5 o = dé,
0,0) —=.
+2 57, 0%6.8) 55

It is straightforward to check that

88%( (K, R) = —0*t(fulk, 1) — &),
" (27)
g\;? (0'27 K, INQ) = —O'Qt(fl(l%) — Kl).

Both partial derivatives are equal to zero at pcﬂn?,é,g),
as (4, 9) verifies by definition 9) with Q = I,. Therefore,

where the last equality follows from the so-called resotven

identity
0?8(0?) =1, — S(o (26)
The resolvent identity is inferred easily from the definitiof

S(0?). As I(0? = +o00) = 0, we now have the following
expression of mutual information:

/O:W <; — B [Tr S(p)]) dp.

HHHAY.

I(0?)

which, together with Propositio8, leads tol =1+ O (1).
O

C. The Approximatiorn (Q)

We now consider the dependency @ of the approxima-
tion 1(Q). We previously considered the ca€g = I,; to
address the general case it is sufficient to change matrices



(CO)—y. pinto (QY2CWQY?),—;  inlll-A andlll-B. maximization of 7(Q) is equivalent to the maximization of
Hence the following Corollary of Theore 1(Q) over Gy, up to a0 (%) term.

Corollary 1: Assume that, for everyj € {1,...,L}, Proposition 4: Assume that for everyy € {1,...,L},
sup, |[CY)|| < +o0, sup, |[CY|| < +oo, inf; (3TrCW) >0 sup, [CP|| < 400, sup, |CD| < +oo, inf; Amin(CH)) > 0
and inf; Amin(C¥)) > 0. Then, forQ such assup, Q|| < andinf; Ay, (CY)) > 0. Then

- rQ)=7@+o(;). 1@ =1@)+0 (7).

Note that the technical assumptions on matrl(c@@)l Lo L Proof: The proof is very similar to the one 08, Proposition
are slightly stronger than in Theore®in order to ensure that 3]- Assuming thasup, [|Q, || < +oco andsup, Q.|| < +oo
inf, ( Tr [QC(J)D > 0. we can apply Theorert on Q, andQ., hence

We can now state an important result about the concavity o{ R T7e O\ _T
the functionQ +— 1(Q), a result which will be highly needed Q) I(Q*)> + (I(Q*) I(Q*))
for its optimization in sectionV.

- - — — 1
Theorem 3:Q — 1(Q) is a strictly concave function over - (I(Q*) B I(Q*)) + (I(Q*) B I(Q*)) =0 (t) '
Q.) >

the compact set;. Besides/(Q.) — I(Q,) > 0 and I(Q,) — I( 0, as

Proof: We here only prove the concavity éfQ). The proof -
of the strict concavity is quite tedious, but essentially same Q(ba?d_Q (ées)p_ectlv(alil maX|m|zé’(Q) and/(Q). Therefore

as in [B] section IV (see also the extended versi@®).[It is
therefore omitted.

Denote by® the Kronecker product of matrices. Let u
introduce the following matrices:

One can proveup, ||Q, || < +oc using the same arguments
as in B, Appendix Ill]. It essentially lies in the fact that

. Is the solution of a waterfilling algorithm, which will
be shown independently from this result in next section (see

AV =1, 0cW AO=1,oCY Q=1,2Q. Proposition?).
. O 0 Concerningsup, ||Q«|| < +oo, the proof is identical to
We (”ZV(\Q))dl%‘VO‘tfe(HA(Z)))l/Q Zh HW 2 with HO = [8 Appendix Ill], one just needs to replacﬁA by
where is arm x tm ma-
F (1)\1/2 (1)\1/2 1 1/2 1/2
trix whose entries are independent and identically digted f Zl— (102 ) V‘i (?2 ) and\/ \[C WCy "~ by
complex circular Gaussian random variables with variahce W, (CM)Y/2 in the deflnltlon ofH. ThenS;,
Introducing,,,(Q) the ergodic mutual information associatedﬁf'mad in B, (134)], can be written a2@) at the bottom of the
with channelH(z): page, wherdR ; has the same definition as i8]] z; ; is thejth
L column of matrlel(C(l))l/2 andz; = z; ; = u] +u;" with
S HQH u; the conditional expectation; = E[zl |(21,6) 1<k <t k5] -
I — Fw loo | T J J J #J
m(Q) m 108 |2+ o2 ’ As the vectoruL is independent fromR; and fromz,,
. k=1,...,t 1= 2 , L, we can easily prove that the first
where H = H(1) = Y ,H®. Using the results of 4] y P

4 Th | n 4 term of the right- hand side of26) is a O (1). The second
and T .eoramz_n is clear thatl,,(Q) admits an asymptotic term of the rlght hand side o28) is moreover close from; =
approximation/,,, (Q). Due to the block-diagonal nature ofy [(C(l)) ] Tr(R C). In fact it is possible to prove that
matricesA ("), A1) andQ it is straightforward to show that ¢

5(Q) = 51(Q) 5.(Q) = &,(Q) and that, as a consequence, there exists a constarit; such thatE [(S; — p;)?] < <t (see
) [8] for more details).

—I,(Q) = I1(Q), The rest of the proof of§, Proposition 3 (ii)] can then
m follow.
and thus ) O

IV. MAXIMIZATION ALGORITHM

As Q — I,(Q) is concave, we can conclude thatQ) i proposition4 shows that it is relevant to maximizEQ)
concave as a pointwise limit of concave functions. [ gyere,. In this section we propose a maximization algorithm
As I(Q) is strictly concave or€; by Theorem3, it admits for the large system approximatidi{Q). We first introduce
a unique argmax that we deno@,. We recall that/(Q) is some classical concepts and results needed for the optiariza

strictly concave onC; and that we denote®®. its argmax. of Q — I(Q).
In order to clarify the relation betwee®, and Q. we Definition 1: Let ¢ be a function defined on the convex set
introduce the following proposition which establishestitiee C;. Let P, Q € C;. Then¢ is said to be differentiable in the

L
S; = 2Re { ~u H(cW) 'R (Z (c") Y2 (C(l))1/2u3> } + %ug‘lH(C(l))l/QRj(C(l))l/%f (28)
=2



Géateaux sense (or Gateaux differentiable) at p@nin the
direction P — Q if the following limit exists:

i YQEAP Q) —(Q)

1m .

A—0+ A

In this case, this limit is notedy’(Q),P — Q).

Note that¢(Q + A(P — Q)) makes sense fok € [0,1], as
Q-+ AP —-Q)=(1-))Q+ AP naturally belongs t®;. We
now establish the following result:

Proposition 5: For eachP, Q € C4, functionsQ — §;(Q),
Q+— 6(Q), 1=1,...,L, as well as functiolQ — 1(Q) are
Géteaux differentiable &b in the directionP — Q.

Proof: See AppendiE. |

In order to characterize matriQ, we recall the following
result:

Proposition 6: Let ¢ : ¢; — R be a strictly concave
function. Then,

(i) ¢ is Géateaux differentiable &) in the directionP — Q

for eachP,Q € €,
(i) Qopt is the unique argmax op on C; if and only if it
verifies:

VQ € C1, (#'(Qopt): Q — Qopt) < 0. (29)
This proposition is standard (see for exam8, [Chapter 2]).

In order to introduce our maximization algorithm, we con-

sider the functiorV(Q, , k) defined by:
V(Q, k, &) =log|L, + C(&)| + log |I; + QC(k)|

L
—Uztzmkl. (30)
=1

We recall thatC(k) = >, ;,C?Y and C(k) = 3, 5 C®.
Note that we havé’(Q, §(Q),4(Q)) = 1(Q). We then have
the following result: ~

Proposition 7: Denote byé, andd. the quantitiess(Q,)

~

Similarly to (27), partial derivatives 9¥(Q, x, %)
_U2t(fl (K’a Q) - Rl) and %(Qv K, E‘") = _O—zt(fl(’?"“) N
are equal to zero at poifQ, §(Q),5(Q)), as(4(Q),4(Q))

verifies @) by definition. Therefore, letting) = Q,. in (32
yields:
I'@Q.),P-Q.) = (V'(Q.,5(Q,),5(Q.),P-Q,).
O

Proposition7 shows that the optimum matrix is solution
of a waterfilling problem associated to the covariance matrix
C(4.,). This result cannot be used to evalu&@e, because
the matrixé(é*) itself depends of,. However, it provides
some insight on the structure of the optimum matrix: the
eigenvectors ofY, coincide with the eigenvectors of a linear
combination of matrice€ ", thed;(Q. ) being the coefficients
of this linear combination. This is in line with the result[df
Appendix VI].

We now introduce our iterative algorithm for optimizing
1(Q):

o Initialization: Qo = L.
« Evaluation ofQj, from Q,_;: (6%, () is defined as
the unique solution of9) in whichQ = Q;_1. ThenQy

is defined as the maximum of functiod® — log |I; +

QC(5™)| on €.

We now establish a result which implies that, if the al-
gorithm converges, then it converges towards the optimal
covariance matrixQ, .

Proposition 8: Assume that

k=D = Jim 6% — 6D = .

k—o0

Jim. otk — (33)

Then, the algorithm converges towards matgy.
Proof: The sequencgQy) belongs to the sef;. As C;

and 5(6*)- Matrix Q, is the solution of the standard wa-IS compact, we just have to verify that every convergent

terfilling problem: maximize overQ € €; the function
1Og |It + QC(é*)I

Proof: We first remark that maximizing functiolQ
log |I + QC(4.)| is equivalent to maximizing functio) —

subsequencéQx))ren extracted from(Qyp)ren converges
towards Q.. For this, we denote by, , the limit of the
above subsequence, and prove that this matrix verifies gyope
(29) with ¢ = T. Vectors §¥(¥)+1 and §¥(*)+1 are defined

V(Q, 5.,4.) by (30). The proof then relies on the observatioS the solutions of9) with Q = Q). Hence, due to

hereafter proven that, for eadh € €,

<T/(Q*)1P _6*> = <V,(6*76*78*)7P _6*>a (31)

the continuity of functionsQ — §/(Q) and Q — &(Q),
sequencegs’ M +1), oy and (6¥ M) 1),y converge towards
6V =6(Q,,) andd¥* = 6(Q,, ) respectively. Moreover,

where(V'(Q,,d.,8.),P — Q,) is the Gateaux differential of (§%*,8%"*) is solution of system) in which matrix Q

functionQ — V(Q, 4., 4.) at pointQ, in directionP — Q,.
Assuming 81) is verified, Q9) yields that(V'(Q,, d.,6.), P—

Q.) < 0 for each matrixP € ;. And as the functiorQ —

V(Q, ., 4,) is strictly concave or;, its unique argmax on

€, coincides withQ, .
It now remains to prove3l). ConsiderP, Q € C;. Then,

T'(Q),P-Q)=(V(Q.Q),5Q)),P-Q)
L
+3 £ (Q.6(Q).5(Q)((Q).P - Q)

L
2
=1

5 (Q.0Q.5Q)EQ.P-Q). @2

coincides withQ,, ... Therefore,

v oY
OR;

) Yo SUx) ) Yo SYF)
am (Qw,*vd a6 ) - (Qw,*va 36 ) *0
As in the proof of Propositior?, this leads to

T(Qy.).P=Qy.) = (V(Qy. 850 05.), P - Q)

(34)
for every P € C;. It remains to show that the right-hand
side of B4) is negative to complete the proof. For this, we
use thatQ, ) is the argmax overC; of function Q +—

V(Q,8¥™®), 5. Therefore,

V' (Quk)s O(k)s Ou()) P — Quiy) <0 VP € €. (35)



By condition @3), sequences(d, ) and (Sw(k)) also
converge towardsd¥-* and 6%-* respectively. Taking the
limit of (35 when k¥ — oo eventually shows that ——- I
(V'(Qyas 05, 0y4), P — Q) <0 as required. O 15 . I
To conclude, if the algorithm is convergent, that is, if the__,
sequence ofQx)ren converges towards a certain matrix, thenE
the 5 = 6,(Qs_1) and thes™™ = 5,(Qx_1) converge as
well when k& — oo. Condition @3) is then verified, hence,
if the algorithm is convergent, it converges towa@s. Al-
though the convergence of the algorithm has not been proved, 5¢
this result is encouraging and suggests that the algorithm i 7
reliable. In particular, in all the conducted simulatiore t

—— I(I;) (no optimization)

) (presented optimization) *

6*
Q*

) (Vu-Paulraj optimization) g

5 101
o
o)

algorithm was converging. In any case, conditi@3)(can be 0 ‘ ‘ ‘
easily checked. If it is not satisfied, it is possible to mgdif 0 5 10 15 20
the initial point Q, as many times as needed to ensure the SNR [dB]
convergence. @r=t=4
V. NUMERICAL RESULTS a0l 1(1,) (no optimization) ]
We provide here some simulations results to evaluate the _ entted obtimiati

performance of the proposed approach. We use the propagatio — = 1{Q.) (presented optimization) _*

. . . . [l . I . -~ 7
model introduced in3], in which each path corresponds to a * 1(Q,) (Vu-Paulraj optimization) P

scatterer cluster characterized by a mean angle of deﬁartuw
a mean angle of arrival and an angle spread for each of thes\E
two angles. D 45l

In the featured simulations for Fid.(a) (respectively Fig. _8'

1(b)), we consider a frequency selective MIMO system with 10t
r =t = 4 (respectivelyr = ¢t = 8), a carrier frequency of ]
2GHz, a number of pathé = 5. The paths share the same 5L

power, and their mean departure angles and angles spreads ar

given in Tablel in radians. In both Figl(a)and1(b), we have 0 \ \ \

represented the EMI(I,) (i.e. without optimization), and the 0 5 10 15 20
optimized EMI I(Q,) (i.e. with an input covariance matrix SNR [dB]

maximizing the approximatiod). The EMI are evaluated by byr=t=8

Monte-Carlo simulations, witl2 - 10* channel realizations.

The EMI optimized with Vu-Paulraj algorithm5] is also Fig. 1. Comparison with Vu-Paulraj algorithm

represented for comparison. TABLE |
Vu-Paulraj’'s  algorithm is composed of two PATHS ANGULAR PARAMETERS(in radians)
nested iterative loops. The inner loop evaluates
- argmax {I(Q) + kparmier 10g |Q|} thanks to the l=1]1l=2]1=3]1l=4]1=5

mean departure angle 6.15 3.52 4.04 2.58 2.66
departure angle spread 0.06 0.09 0.05 0.05 0.03
mean arrival angle | 4.85 3.48 1.71 5.31 0.06
arrival angle spread | 0.06 0.08 0.05 0.02 0.11

Newton algorithm with the constrain%TrQ = 1, for a
given value of kpamier @nd a given starting poinQ(()").
Maximizing I(Q) + kparrier log |Q| instead of(Q) ensures
that Q remains positive semi-definite through the steps of th
Newton algorithm; this is the so-called barrier interiaig
method. The outer loop then decreasgs..i.; by a certain
constant factor, and gives the inner loop the next startin

point QénJrl) — Q™. The algorithm stops when the desire .adlen_t and of the Hessian 6fQ) needs h_eavy Monte-Carlo
.0 4 . -~ simulations. Tablell gives for both algorithms the average
precision is obtained, or, as the Newton algorithm requirés

heavy Monte-Carlo simulations for the evaluation of tthGCUtIOﬂ time in seconds to obtain the Input covariance

gradient and of the Hessian d{Q), when the number of matrix, on a 3.16GHz Intel Xeon CPU with 8GB of.RAM,
iterations of the outer loop reaches a given nUMB&[,. for a number of pathd, = 3, L = 4 and L = 5, given
As in [5] we to0k Nyax = 10, g = 100, 2 - 10* trials for the ' — t=4.
Monte-Carlo simulations, and we started Wk, rier = Wlo.

Both Fig. 1(a) and 1(b) show that maximizingl(Q) over VI. CONCLUSION
the input covariance leads to significant improvement for In this paper we have addressed the evaluation of the
I1(Q). Our approach provides the same results as Vu-Paulraapacity achieving covariance matrices of frequency fetec
algorithm. Moreover our algorithm is computationally muctMIMO channels. We have first clarified the definition of

g‘wore efficient: in Vu-Paulraj’s algorithm, the evaluatiofitioe
r



TABLE I

; 2 2
AVERAGE EXECUTION TIME (in seconds) (iv) s(=c*) >0 for o° >0,

V) |s(2)] < #5 for 2 € C — R,

L=3 L=4 L=5 , 4 . L
Vi R™) = lim —iy s(iy).
Vu-Paulraj 681 884 1077 V) p(R) yoeo Y (iy)
New algorithm | 7.0-10=3 | 7.4-10~3 | 8.3-1073 Proof: All the stated properties are standard material, see e.g.

Appendix of [L4]. a
o ) Conversely, a useful tool to prove that a certain function
the large system approximation of the EMI and r'gorOUSIMelongs toS(R+) is the following proposition:

proved its expression and convergence speed with Gauss'aﬁroposition 10:Let s be a function holomorphic on
methods. We have then proposed to optimize the EMI throu@wi RT '

this approximation, and have introduced an attractivetitera )
algorithm based on an iterative waterfilling scheme. Nuragric () Tm(s(z)) > 0 if Im(z) > 0,
results have shown that our approach provides the samesresif) Im(zs(z)) > 0 if Im(z) > 0,
as a direct approach, but in a more efficient way in terms &fi) sup |iy s(iy)| < oo.

which verifies the three following properties:

computation time. Y

APPENDIXA
PROOF OF THE EXISTENCE OF A SOLUTION

To study @), it is quite useful to interpret functiong;
and f; as functions of the parameteroc? € R~, to extend
their domain of validity fromR~ to C — R™, and to use
powerful results concerning certain class of analytic fioms.
We therefore define the functiong)(2) andg(v)(z), with

91(¢)(2) g1(¢)(2)
» 9(P)(2) = ;
9r(¥)(2) gr(¥)(z)
%'l:r [C(l)T¢~(z)], G()(z) = 1Tr [CU)'iW(z)]. Matrices
T¥(z) and T¥(z) are defined by

9(®)(z)

¥(2) = [1(2), -, YL ()] () = [¥1(2), . L (2)], as
where functionsy;(¢») and g,(¢) are defined by (v)(z) =

TY(z) = {— z<Ir + ilq/?j(z)c@ﬂ 71, (36)

T%(2) = [ z<1t + ZL:I%(Z)CUN 71. (37)

Then s € §(R™), and if u represents the corresponding
positive measure, them(R*) = li_>m (—iy s(iy)).
Y—>00

Proof: see Appendix of 14]. O

Now that we have recalled the notion of Stieltjés transforms
and its associated basic properties we can introduce the
following proposition:

Proposition 11: Let (wl,z/?l)lzl ,,,,, . € 8(RT). We define
functionsy;(z) and@;(z),1=1,...,L, as

LTy [COTY (2)],

ei(z) = ¢
Gi(z) = 1Tr[COTY (2)].

Then we have the following results:

(i) T¥, T¥ are holomorphic orC — R,

(i) 11T ()] < gkeey IT¥(2)] < qrzfesy ONC — R,

(i) ¢, € §(RT) with the corresponding magsg verifying
pu(RT) = $TrCW, 3, € §(RT) with the corresponding
massji; verifying fi;(R*) = +Tr CV.

Proof: For item {) we only have to check that(I,. +

Zle ¥;(2)CW) is invertible for every: € C — R* to prove

thatT¥ is holomorphic orC — R*. The key point is to notice

that, for any vectow, for z such thatim(z) > 0,

In order to explain the following results, we now have to

introduce the concept of Stieltjes transforms.

Definition 2: Let ;2 be a finité positive measure carried by

R*. The Stieltjes transform of; is the functions(z) defined
dp(A)

for z ¢ C—RT by
s(z) [RJrA_Z'

In the following, the class of all Stieltjés transforms ofitién
positive measures carried " is denotedS(R*). We now
state some of the properties of the element§(@™).
Proposition 9: Let s(z) € S(R'), and p its associated
measure. Then we have the following results:
(@) s(z) is analytic onC — R,
(i) Im(s(z)) > 0 if Im(z) > 0, and Im(s(z)) < O if
Im(z) < 0,
(i) Im(zs(z))
(2)

Im(z) <0,

(38)

> 0 if Im(z) > 0, andIm(zs(z)) < O if
z

Zfinite means thap(R1) < oo

w009}

L
=Im{z}vv + ZIm {mﬁ](z)} vicWy > 0.

j=1

A similar inequality holds folm(z) < 0, and the case € R~
is straightforward.

Item (iii) can easily be proved thanks to Propositiih

As for item (i), the proof is essentially the same as the proof
of Proposition 5.1 item 3 in15], and is therefore omitted.]

We consider the following iterative scheme:

{ o = st
=g

P (2) = gy ™) (2),

with a starting point(4(© (2), % (2)) in (S(RF))*". Item
(iif) of Proposition11 then ensures that, for each > 1,

(39)



™ (z) and (™ (z) belong to(S(RT))~
@ =) (2)]

1)) = gu(w " )(2)|

s L LIOR SO

. Moreover,

(40)

where matrice®' (") (z) andT () (z) are defined byT'(™) (z) =
T%" (), T™(z) = T¥" (z). Note that in the following we
may not always mention the dependencyzinf T(™), T,
w;”) and zﬁj(") for reading ease. Using the equality— B =
A (B! — A~1) B, we then obtain:

T _ -1

— 7™ ( ZZ( n—1) _ (n)) C(j))rr(n—l). (41)
Using @1) in (40) then yields:

‘wl(n+1) _ ,¢(”)

e Z

t
j=1

(W D @L)) Tr [Ca)T(n)C(j)T(nfl)} ‘

~

<
-1

1;5")

Tr [C<Z>T<n>c<j>T<nfl>} ‘ ,

Jj=1
The trace in the above expression can be bounded with
help of Cryax = max; {[|C, [CY|}:

‘wl(n+1) _wln)

o o >\ ICONITCD T

1
< 2|02 0 ||T (1)

Forz e C— R*

less than-—— by item (i) of Propositionll Therefore,

Az R+

(" =) (2)

7“02

max

ST W
A similar computation leads to

(@D = ) (=)

|z| -
22’( l(n)_

=1

(n— 1)(2)‘. (42)

2
C'm ax

P )| @

We now introduce the following maximum:
= max {| (0§~ ) @) (@ =) @)}
Equations 42) and @3) can then be combined into:

MO(2) < e(:)MD(2),

M(n) (Z)

T (z) andT(*~1)(z) have a spectral norm (I = 1,... .,

10

wheree(z) = W, max {%,1}. We

now define the following domain = {z € C,d(z,R") >
2}?7(1(2‘ R‘<+) < 2}, with 0 < K < 1. On this domamU we
have M (™ (z) < KM™=1(z). Hence, forz € U, ¢ (z)
and ’(ZJ](-n)(Z) are Cauchy sequences and, as such, converge.
We denote byy;(z) and;(z) their respective limit.

One wants to extend this convergence resulttbr R*.
We first notice that, asbl(") is a Stieltjes transform whose
associated measure has mads C") by Proposition11 item
(iii), item () of Proposition9 implies

%TrC(l)
<
A N 35

with ¢, = LC?

max

™

The w(") are thus bounded on any compact set included in
C — R*, uniformly in n. By Montel's theorem,( ("))nEN

is a normal family. Therefore one can extract a subsequence
converging uniformly on compact sets @f- R™, whose limit

is thus analytic overlC — R™. This limit coincides withi,

on domainU. The limit of any converging subsequence of
(wl(”)) thus coincides withy; on U. Therefore, these limits all
coincide onC—R* with a function analytic ol —R*, that we

still denote;. The converging subsequences(aﬁf")) have
thus the same limit. We have therefore showed the conveegenc
of the whole sequencéy™) _ on C — R* towards an
analytic functioni;. Moreover, as one can check thaf
me&ﬂes Propositionl0, we havey;(z) € $(R*). The same
arguments hold for the(z).

We have proved the convergence of iterative sequed@e (
Taking z = —o? then yields the convergence of the fixed
point algorithm .3). Note that the starting poir@(®), §(®)
only needs to verifyy” > 0,45 >0 (@ =1,...,L), as any
positive real number can be interpreted as the value at point
z = —o? of some element(z) € §(RT). Moreover, the limits
Ui(2), Yi(2) (L =1,..., L) of the iterative sequenc89) are
positive for anyz = —o? by item (v) of Proposition9, as
they all are Stieltjes transforms. Therefore, the limits 5
L) are positive.

APPENDIXB
A FIRST LARGE SYSTEM APPROXIMATION OFE[Tr S| —
PROOF OFPROPOSITION1

In this section, ifz is a random variable we denote hy
the zero mean random variabte= x — E(z).

We will prove Propositionl by deriving the matrixY
defined by 21), before proving that it satlsf|e§Tr (TA)

O (;) for any uniformly bounded matrixA. To that end

as the entries of matriced(!) are Gaussian, we can use the
classical Gaussian methods: we introduce here two Gaussian
tools, an Integration by Parts formula and the Nash-Poincaré
inequality, both widely used in Random Matrix Theory (see
e.g. [16]).

We first present an Integration by Parts formula which
provides the expectation of some functionals of Gaussian
vectors (see e.gl[)).

Theorem 4:Let £ = [&,..., &) a complex Gaussian
random vector such tha@[¢] = 0, E[¢¢7] = 0 andE[¢¢!] =



11

Q. If T =T(&¢%) is aCl complex function polynomially Summing overi, [ and!’ then leads to:

bounded together with its derivatives, then 1 . = (1)
En [(SH),,;H;, | :Z ;EH[(SC( ))pq]Cjk

M
or
B L= Y 0l |G @ . 1
ml . m _chnEH[ Zk(SH)pn;Tr(SC(l))]
In the present context we considér being the vector of n,l

H l
the stacked columns of matricdd "), where the channels 14 geparate the terms under the last expectation, we denote
H® are independent and follow the Kronecker model, L& — 1lmsc®) = a; + 7, wherea; = Epuln]. We
t ! '

Ry _ (OFS10)] .
Ex [H;; Hyin | = 01,7C;,, Cj,p- Then @4) becomes can then writeBg [H?, (SH),nmi)| = cvEa [H, (SH) 0| +
Ex [HE;-)F((H(Z))Z:L...,L)] Ex [H;, (SH),.1], hence
oot 1 -
L g or Ext [(SH),;H,] =3 2En[(SCV),,)E
=2 > > CLClEn L{) (l)*} . (45) Em[(SH),H] zl: L En[(SC)p]Cj
m=1n=1 mn
() * =(P,q)
The second useful tool is the Poincaré Nash inequality _Zo‘lcanH [(SH)anqk] _“jiq’
which bounds the variance of certain functionals of Gaussia ol 48
vectors (see e.g1f), [6]). (48)
Theorem 5:Let £ = [&1,..., &) a complex Gaussian where=®? — 5~ R [5H* (SHEOT) 1. We here notice
random vector such thakl¢] = 0, E[¢¢T] = 0 and Ik 2 B [ H Jpi]

Ele€"] — Q. If T — T(£, £7) i5 a €l complex function poly- the presence o]EH[(SH)p_I({j;k)] on both sides of equation
: ? P.q) _ *

nomially bounded together with its derivatives, then, mgti (48 Hence, let us denot& i = Eq [(SH),,;H, ]. Then

Vel = [2L OL 1T and VeI = [(?TF* ) oL \T (48) becomes

08177 O&m IS VE
o) _N 1 Oy 160
var(L(€)) <E [Vel(€)” 0 VeT(@)] ALY =2 BRlSCOnIC;

+E [VeT(6)" QVeT(€)].  (46) _ (Zazé(”A“”‘”) — g,
In the following we will use the Nash-Poincaré inequalityttwi l an

& being the vector of the stacked columns of independeRt, . jing thatik — (o2(1 GO this leads to
matricesH("), where the channelH(") follow the Kronecker g (2L + 2, CD))

model. Then 46) can be written under the forn4q) at the AP0 — ;2 Z E]EH[(SC(’)),,Q}RC(” _ S2RECD)
t
l

bottom of the page.

Using these two Gaussian tools we now prove Proposition .
In order to derive the matrif defined byEg[S] = R+ Y VYe now come Back to the calculation dis [%Ipq] =
we study the entries dEg[S]. Using the resolvent identity o2 (Ir — En[SHH™]),, by noticing thatEe[(SHH™),,] =

(26) we haves?Ex[S,,] = (I Ex[SHH"]),,. We evaluate 2-; B [(SH),;Hy;| = Tr(A9). Therefore

Ex[(SHHH),,] by first studyingE [S,,HH)*]. Calcu- | )
H[( . )pq]. Y . y. g[S, " (z%k ] Enu[Sp,] = O _ ZdzEH[(SC(l))pq] + Tr (RE(”"’)) ,
lation begins with an integration by parts &k, (49): o2 l
En {Spngé)Hfj,;)*} recalling from @0) that &, = Tr(RC("). Coming back to
(') the definition of matrix2(*-%), we notice thaflr (RE("9)) =
_ }ZCQ) COE, O(SpiHyy ) > Eu [ (SHCOTRTHHA),,]. Hence matrixEy [S] can be
t o= mimen oW written as
1
1 0 &0 (')« OSpi EulS] =—1, — En[S] ) &C®
= > Ci)ClER |Spid i 6g.mOkn + Hy, ool B o2 ZI:
7 . + 3 Ew [nSHCOTRTH!| |
0Spi 1 o .
As o = 7<S%%S)m — —(SH),,S,:, we obtain l { }
, ~ And finally, Eg[S] = R + Y, where we recall thaR =
O] — La®ao , H ~
En [SPiHij How } = {Ciq Cji Er[Spilori (e (L + 3, &CcW)) ' and where matrixt is defined as
IS ao @) ! R
—=>_Cj.En HU (SH), (CU8)] Y =0*Y Ey [aSHCOTRTHI| R, (49)
n 1

r t L
var (T((H(l))z:1 ..... L)) < ! Z Z ZCEQLCEQEH

i,m=1j,n=11[1=1

or ( or >*+ or '\ ar )
oH() \oH(), oH\* ) oHy):

|
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To end Propositionl proof, we now need to prove thatThe hypotheses of Propositidnensure that’y,, < +oco0. We
1Tr (YA) = 0 (4) for any uniformly bounded matrixA. now prove thaf [1Tr (HH)| = O (1). Using the fact that
Let A bear xr matrix uniformly bounded in. Using @9), the channeld# () are independent and follow the Kronecker
model, that isEy [H{ H{)Y| = 6,1 Cl) €Y

7Tr('I'A ZEH [mTr (SHC( )TRTHHRA)} tm g
1
2 . En [tT&« (HH" )}
o . (DT 1 -
= — Eg |7 Tr(SHCYWTRTH"RA)|. _ ! (k) n OPI0)
We can now bound:Tr (YA) thanks to Cauchy-Schwartz 1.
k S Oy GO 2
inequality =3 zl:TrC TrCcW < LCsup
Tr(YA) ‘ Therefore we proved thaty [1Tr (HH)] = O (1). Coming

back to 63) givesvar(n;) < & ( 20

2
] 0 (%).
We evaluate similarly the behavior of the second
term of the right-hand side of 50) and we obtain
UZ\/var (m var(Tr(SHC(l)TRTHHRA)>, (50) Var(Tr(SHC(l)TRTHHRA)) < %(14_%) JA[> =
t 5 O (1), wherek does not depend on? nor ont. Hence we
eventually have:

2
: Uip) hencevar (1) =

Tr(SHCYWTRTHYRA)

<23 [Ba ] [

l

asEn| |m| = var (x) for any random variable:. We now
prove thatvar(n) = O (%). The Nash-Poincaré inequality ETT(TA) _ 0 1
(47) states that t 2

(&g o om \" which completes the proof of Propositidn
var(in) Z Cim C; [aH(k) (6H§,’§21> Remark 1:Note that, asvar(n;) < W (2zC§, L2) and
Y. var(Tr(SHCU)TRTHHRA)) < i (KA (1 +4)),
(a Om ) . Om } (51) (50) leads to}Tr(TA) < P (2 2), whereP is a polyno-

L]mnk

> Ustz

Hff)* H ] mial with real positive coefficients which do not depend on
2
k _ k o nor ont.
As 6Spq/6Hz('j) = —(S(98 1£8H1('j))s)13q = _Spi<HHS)jq
the partial derivativedn, /8H§j) can be written as APPENDIXC
any 1 oS 9S A REFINED LARGE SYSTEM APPROXIMATION OFEg[Tr S| —
iy ® Z pa_c(0) P P 2
(k) n (k) (k) ROOF OFFPROPOSITION
OH,! oH,; ; OH,. N . 1
/ 1 / J We prove in this section tha} Tr(RA) = 1Tr(TA) +
——(H7scs);;. O (+) for any r x r matrix A uniformly bounded in r. We
t " first note that the differencé Tr (RA) — 1Tr (TA) can be
Similarly we obtainam/aH * 1(SC(SH);;. There- written as

fore (61) leads to $2) at the bottom of the page. Both traces of | 1 o .
(52) can be upper bounded thanks to inequdlity B1B,)| < 7Tf((R —TA) = ;Tr (R(T™'-R™')TA)

|IB1]/Tr B2, whereB,, is non-negative hermitian, o2 ~
9 . = Z(@l — &) Tr(RCYTA). (55)
var(n) < |2 Y IC)| E [I8]*Tr (HC®OTHT ) |
k

As ||T| < % and||R| < 2, equation §5) yields

2 -

Zc®))2 (k) (k) 4 H
< 5l E ICHIC™ ] E [Is|*Tr (HH™)] L (® - TIA)| < TCsupHAH Z’
¢

&,  (56)

<1 2LC§UPE cTr HHY 53
=2 g8 ( ) ’ (53) where Cy,, < 400 is defined by $4). We derive similarly

the differencel Tr(RA) — LTr(TA) for any ¢ x ¢ matrix A
uniformly bounded in t.

%Tr((f{—’i‘);&)‘ BUPHA”ZW 5 (57)

where the second mequallty follows frof$|| < —; and from
the definition ofCqyyp:

Csup = sup Cpnax = Sup {max{|(3(k)||7 ||C(k)||}} . (54)
t t k

1
var(n;) —3

S E [ (HHSC(US)CW(HHsc<l>S)Hé<k‘>T) +T&r(é<k>T(SC(l>SH)Hc<k>(sc<l>SH))} (52)
k
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Taking A = C® in (56), A = C®) in (57) and using wheree is a L x 1 vector whose entries defined ky, =
Propositionl gives 1Tr (CWY) verify e, = 0 (%), k= 1,..., L, by Proposi-
o2 tion 1, and where matriN(R, T, R, T) is defined by
r ~ 1
ok — 0] < 5 ;;P2|dl_5l|+o<t2>, (58) ., 0 BRT
. z NRTRT =0’ |gp g o | 6
~ T sup
s — 0] < o2 XZ: o =i, 9 yhere matrices B(R,T) and B(R,T) are L x L
) matrices whose entries are defined By,(R,T) =
which leads to %Tr (C(l)TC(k)R) and Bkl(ﬁ’ 'i‘) — %Trgé(l)'i‘(j(k) R).
r Ot L2 1 Besides, takinpA = COTC® in (62) and A = COTCH)
<1 7 Ui ) Z loe — 6| <O <t2> . in (63) leads to
k

Therefore it is clear that there exist§ such thatja, — 6| =
0 (%) for o* > o for any k € {1,...,L}. In particular,
| — 6| == 0 for 0% > o3. We now extend this result to we now introduce the following lemma:

anyo® > 0. To this end, similarly to AppendiR, itis usefulto | emma 1:Let T, T be the matrices defined by and
considera; and?; as functions of the parametero®) € R~ (1) with (4, 3) verifying the canonical equatio®)with Q =
and to extend their domain of validity froR~ to C—R* in | et A(T) and A(T) be theL x L matrices whose entries
order to use the results about Stieltjes transforms. Thetifbm 5,6 defined byA,(T) = 1Tr (C(k)TC(l)T) and A (T) =

0:(z) then corresponds to the fu_ncti(m(z) of AppendixA %TY(C(IC)TC(Z)T) andM(T, T) the matrix defined by
and therefore belongs t&(R™) with an associated measure"

t— o0 (66)

Bu(R,T) %% 1Ty (COTCHT),
Bu(R,T) = 1Ty (COTCHT).

of massiTrC®, for | = 1,...,L. It is easy to check - ,[ 0 A(T)
¢ . . M(T,T)=0" |+ ~ .
that functiona,(z) also belongs t&(R™) with an associated ' A(T) 0
measure of mas$Tr C() for any! € {1,..., L}. Hence, by "
Proposition9 (v), we can upper bound the Stieltjés transform@SSume tha},(l)for everyl ¢ _{17-~1~7L}1(Z)S‘1Pt [CY] <
a(z) and§;(z) on C — R*, yielding: .Jroovlsupg ICY] < +oo, infy (_?TI"C ) > 0 and
) o inf, ($Tr CV) > 0. Then there existé > 0 and k; < oo
+TrC O i 2
on(2) — 61(2)| < 25(; o < 2d(tz Ri)' both independent of“ such trlat
’ ’ (i) sup, [p(M))] <1 - 5455 <1,

The (a;(z) — di(2))ten are thus bounded on any com- o pod )2
pact set included inC — R*, uniformly in ¢. Moreover (i) sup, [P (U4A(T)A(T)>} < (1 - W) <1,
(ar(z) — 01(2))ten is a family of analytic functions. Using ... N (024ky)?
Montel's theorem similarly to Appendi¥, we obtain that (iil) sup, HH(I% —M(T, T)) ’HOJ S Thot

t—o00
|O‘l(z? - 51(?)| —= 0onC—R" foranyl e {1,...,L}, where || - ||, is the max-row¢; norm defined by||P|| _ =
thus in particular max;e(1,..., M} Zszl |P ;x| for a M x N matrix P.
oy — &) 22 0 (60) Proof: Using the expression o' = o*(L, + 37, 0,C™"),

0; can be written as:
foranyo? > 0,1 € {1,...,L}. And (59) then yields 1
6 = ;Tr(C(”TT‘lT)

& — &) 2% 0 (61) :
0'2 0'2 >~
for any o > 0, [ € {1,...,L}. Using 61) in (56) and 60) = —Tr(CUTT) + — 5 Tr(COTCHT).
in (57) gives k=1
1 - Similarly 4, verifies
STr(A(R - T)) 25, (62) Y ) 2
Lo - 59 olCLN 9 Mok
%Tr (A(R_T)) too0, () (63) 0= —Te(CYUTT) + - zk:ékTr(C TCWT).
We now refine §2) and 63) to prove that these two Thus,
traces ared (). Taking A = C in (55) leads tooy, — [é] _ 9 P 0 A(T)} m N {w}
0k = % (0~ a)Tr (COTCHR) +LTx (CHY), where 4 A(T) 0 J[o] |w]’
Y = EulS| — R, and similarly 6, — ar = %G 3,(w — where w and w are L x 1 vectors such thatw, =
§)Tr(COTCWR). We can rewrite these two equalitiesiiTr(C(l)TT) and w, = "%Tr(é(”’i"i‘)_ This equality is
under the following matrix form: of the formu = M(T, T)u + v, with u = [6T7ST]T and
- 20 [a—68] (e v = [wT,\?vT]T, the entries ofu andv being positive, and
(12L B N(R’T’R’T)) [S— ”} - {0} 6% e entries of M(T, T) non-negative. A direct application



of Corollary 8.1.29 of 11] then implies p(M(T,T)) <
1y .

We first considersup, { maxw;}. As u = [§7,6"] we
need to upper bound}, andd;. As ||T|| < & and||CY|| <
Csup We have

1 r
S (k) <
5k tTI‘ (C T) S O'thsup. (67)
Similarly, as|T|| < % and ||CY|| < Cuyp,
. 1 ~ -~ 1
= - FT) < —C,
= 5 Tr (c T) < —Coup- (68)

t—o00

As t/r —— ¢ > 0 we have thatsup, [r/t] < +oc.
Therefore sup, {maxw} < 28 < +4oo, where \y =
Csup max {1, sup, [r/t]}.

We now consider inf; {min;v;}. As minv; =
miny, { ZTr(CHTT), ZTr(CHTT)}, we need to
lower bound Z-Tr(C*)TT) and Z-Tr(C*TT). We use
the Cauchy-Schwarz inequality:

Tr(AB)| < \/Tr(AAH) \/T(BBH). (69

Taking A = (C(l))l/QT andB = (C(l))l/2 in (69) leads to
2 2(1 OTY))? o257
9 ) o? (;Tr (CV'T)) _
T (CUTT) > oo~ Tron (70

We now need to lower bound}. Using again inequality69)

with A = (C(l))l/2 T'/? andB = T-1/? (C(l))l/2 yields
1y c0)?
B 0 ( TrC )
ICE rcor )y (Y

Thanks to 68), | T!|| = [lo?(I,+>, 6,CY)|| < 0?+LC2,,.
Hence {1) leads to
lTr(j(l) lTr c®
"2 Z eI, 72
Eventually, using 72) in (70) gives
az%Tr c®

(02 4 LCEUP)2 .

U;Ty (C(’)TT> > 73)

Similarly, we prove that

2 B o 21T C(l)
Cr?Tr (C(Z)TT) > —r2
(02 + 5LC2,)°
Therefore inf, { min; v;} > (U;‘Jriklm where \; =

minl{mft [fTrC(l)] mft[ C(l)]} > 0 and k& =
LCZ,, max {1,inf[r/t]} = LC’Sup)\o < +o0. Noting ky =

A(l) > 0 we can now conclude about statemeajbf the lemma:

k’00'4

(0% k)2
As for statemenn() of the lemma, we note th$M ’i‘
M| = ]a“A )A(T) — A1 |. Hencep(o* A (T)A( ))

(p(M(T, T)))? < (1- 42 5)" < 1.

'i‘)) <1 inf; (min; v;) <1 koot

sup p(M(T,
tpp( ( sup, (max; u;) ~
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Concerning statementiii), the proof is the same as
in [18, Lemma 5.2]. Nonetheless we provide it here for
the sake of completeness. AgM(T, T)) < 1, the se-
ries > .oy M(T, T)* converges, matrixI,;, — M(T,T)
is invertible and its inverse can be written e(igL —
M(T,T)) ™" = ZkEN (T, T). Therefore the entries of
(Lop — M(T,T)) are non-negative. Hence,

2L

we = [(Ter ~ M(T, )|

=1

Vi
kl

2L

> mliIl(Vl) Z |:(12L — M(T,T))*l}

=1

Kl

max; (u;)
kil = ming(vy)

Therefore max; leil (I — M(T,’i‘))fl}
and it eventually follows that:

sup [ (122~ M. D)) || < St

< (0’2 + ]{71)2
- koot ’

sup, (max; u;)

]

Remark 2:Lemmal (i) is used in the proof of Theoreth
for the uniqueness of solutions t8)( but we took care not to
use any consequences of this uniqueness in the proof above;
this proof only requires the existence of solutions @ (

Remark 3:Unfortunately assumptionisif, (+Tr C(V) > 0
and inf, (1TrC?) > 0 made in Lemmal cannot be
restrained, as;Tr(CWTT) < L ($TrC") and similarly
1Tr(COTT) < L (31 CO).

Equation 66) shows that the entries oB(R,T) and
E(R T) respectively converge to the entries Af(T) and
A(T). Hence there exists such that, fort > to,

o the matrixIy;, — N(R, T, R, T) is invertible,

o sup, [[[(Te - NR, TR, T) Y| | < 25500
Then, fort > ¢y, (64) yields

a—0 -~ -~ \"1l[g
[5 - d} - (12L ~ N(R,T,R, T)) [o] . (74
Hence max; {|oy — - &} < @ -
N(R,T,R,T))"!||_ max; |e|, and ase; = Tr (COY) =
O () fori=1,..., L, we eventually have that
< 1
a—6=0 (t2> (75)

Using (75) in (56) completes the proof of Propositich

APPENDIXD
INTEGRABILITY OF Ey [Tt (T — S)] -
PROPOSITION3

We first consideig [Tr (R — S)], which is equal tolr Y

by Propositionl. As noted in Remark. of Appendix B, we

have [{ Tr(YA)| < -z P (Z), where P, is a polynomial

with real positive coefficients which do not depend@hnor
on t. Therefore

P (52)

o8t

PROOF OF

B [Tr (R = S)]| <

(76)



We now considefTr (R — T). We showed in AppendiC
that there exists, such that, fort > o, I,, —N(R, T, R, T)
is invertible and such thaf (I, — N(R, T,R, T))"!||__ <
2o tk)? wherekq, andk; are given by Lemmad.. Equation

k00-4 Ll

(64) then implies
oy — 51| < ’H(IQL ~N(R, TR, T))flm Hll?X|€k|
< 2(0’2 + k1)2
k00'4
whereg;, = Tr (C¥)Y). Besides, Remartt of Appendix B
ensures thate,| < P (Z), where P, is a polynomial

with real positive coefficients which do not dependohnor
ont. Hence, fort > tg,

rnkax|€k|7

Py (57) 2(0% + k1)’

ost? koot
foranyl € {1,...,L}. Using (/7) in (56) with A = I, then
gives, fort > to,

la — o] < (77)

1 (ko k1)’ 1
e -mis g () 7 () 09
whereks = le%supt{r/t} < +o00.

Eventually, 76) and (8) yield |Ex[Tr(T — S)]| <
P (&
oSt o
P(L) = R(&) + 50+ %)QPl(ﬁ) are real positive
coefficients and do not depend of nor ont. This completes
the proof of PropositiorB.

APPENDIXE _
DIFFERENTIABILITY OF Q — 6(Q), Q — 6(Q) AND
Q — I(Q) — PROOF OFPROPOSITIONS

We prove in this section that for alP, Q € C; functions
d andé are Gateaux differentiable at poi@} in the direction
P — Q, whered, § are defined as the solutions of systei (
The proof is based on the implicit function theorem.

Let P,Q € €. We introduce the functiofr : R% x RZ x
[0,1] — R2L defined by

<. 8 — f(6)
FOON=15 j5.QiaP-q) |
with f(8) = [fi(d),.... f2(8)]" and f(5,Q) =

[f1(6,Q), ..., fr(d, Q)]T, where thef; and thef, are de-
fined by (L0). Note thatd(Q+\(P—Q)) andd(Q+A(P—Q))

are defined b)T(é,S,)\) = 0. We want to apply the implicit
theorem on a neighbourhood af= 0; this requires the dif-

ferentiability of I" on this neighbourhood, and the invertibility [5]

of the partial Jacobiab ; s, (T'(8,6, X)) at point\ = 0.
We first note thaf; : § +— = Tr[CO(L+3, SkC(’“))_j
is clearly continuously differentiable oR%. Concerningf;,
we first need to use the matrix equality + AB)"'B =
B(I+BA) !, with A = QY/? andB = CQ'/2:

£1(8,Q) = %Tr |:Q1/2C(Z)Q1/2 (It n Ql/zé(é)Q1/2)1:|

1y [C(Z)Q(It + C(é)Q)*l} : (79)

o2t
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Recall thatC(d) = 3, 6,C*). Function(8, \) — f(8,Q +
AP — Q)) is therefore clearly continuously differentiable on
R% x [0,1]. Nevertheless, as we want to use the implicit
theorem for\ = 0, we need to enlarge the continuous
differentiability on an open set including = 0. Note that
for A < 0, Q + A\(P — Q) might have negative eigenvalues.
Yet, det[I; + C(8)(Q + A(P — Q))] > 0 for § = §(Q) and

A = 0. Therefore it exists a neighbourhodd of (6(Q),0)

on which det[I, + C(6)(Q + A(P — Q))] > 0. Defining

fi by (79), the functions(d,)\) — fi(6,Q + A(P — Q))
are continuously differentiable of. Hence,T'(d,4,)) is
continuously differentiable oft” x V.

We still _have to check that the partial Jacobian
D55 (I'(8,6,1)) is invertible at the poinf = 0.
Dy 5T is 50 = FL‘Dﬁf(& ~Ds 1) ]
(8,8)" (5.:8.0) —Dsfs0 I —Dsfs
- IL —O'QA(T) _ ~
- l:_U2A(T) IL - M(Ta T)7
where Ay(T) = 1Ty (CWTCOT) and Ay(T) =

1Tr(Q/2CMQ!/2TQY/2CQ!/?T), and with T =
T(6(Q)) and T = T(6(Q)) respectively defined bylQ)

and @2). Matrices A(T), A(T) and M(T,T) correspond

) for t > to, where the coefficients of the polynomialto those defined in Lemma, but in which C() is replaced

by Q/2C(H Q2. Lemmal item () therefore gives the
invertibility of D 51 at pointA = 0.

We now are in position to apply the implicit function
theorem, which asserts that functiohs— 6(Q + A(P — Q))
and A — 6(Q + A\(P — Q)) are continuously differentiable
on a neighbourhood of). Hence,d and § are Gateaux
differentiable at poin&Q in the directionP — Q. As 1(Q) =
log [T, + 3,6(Q)CY| + log [T, + Q(X,5(Q)CY)| —
o?t(>,6:(Q)%(Q)) it is clear thatQ — I(Q) is as well
Gateaux differentiable at poir@ in the directionP — Q.
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