
c© 2011 by Xiao Li. All rights reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4833955?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


DYNAMICS OF BANKRUPT STOCKS

BY

XIAO LI

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Mathematics

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2011

Urbana, Illinois

Doctoral Committee:

Professor Renming Song, Chair
Professor Richard Sowers, Director of Research
Assistant Professor Robert Edward Lee DeVille
Assistant Professor Liming Feng



Abstract

In this thesis, we study the behavior of bankrupt stocks. Bankrupt stock is a special case of

the Hard-to-Borrow stocks. Besides the general nice feature of the Hard-to-borrow feedback

for the buy-in demand, the bankrupt stocks could exclude the diffusive effects. This nice

property would modify the Marco Avellaneda and Mike Lipkin’s jump-diffusion model for

the Hard-to-Borrow stocks into the pure jump systems with stochastic intensity. Under

this main assumption, our model is a two-dimensional integrate-and-fire model which is

recursively tractable. By investigating the dynamics of the model, we could capture the

self-reinforcing aspect of the buy-ins and subsequent crashes of the stock price.

Having the recursively explicit dynamics of the stock prices and buy-in rate on hand,

we can calibrate the model under the physical measure by error minimization. One way to

justify the fit of the calibration results is to compare the sample path and the real prices.

On the other hand, we match the option pricing theory against observed behavior of the

options to see how the periodic buy-ins would act to cover the the cost of the short position,

which gives the mechanism of the essential feedback of the Hard-to-Borrowness.
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Chapter 1

Introduction

1.1 Motivation

The intuition for this research is from Marco Avellaneda and Mike Lipkin’s introduction

to the hard-to-borrow stocks [1]. The Hard-to-Borrow Stock category is an interesting case

in the real world now, which could illustrate plenty of market phenomena.

In general, hard-to-borrow stocks refers to those, which are either subject to the short-

selling restrictions or having limited floats available. For those stocks, a big concern will be

the short interest, which is the percentage of the float currently held short in the market.

As the short interest increases, the stock becomes even harder to borrow, and at some

extreme occasion, the clearing firm will require the trader with the short position to forcibly

repurchase the stocks to the short holdings. These buy-ins will artificially drive up the stock

price, and after the buy-ins complete, there’s no price support, then the stocks will drop down

immediately. Sometimes, it will lead to illusion of the stock dynamics. For example, at the

end of 2002, United Airlines field for Chapter 11 bankruptcy protection and its assets were far

exceeded by its debts. It will be reasonable to expect that the stock price should go to zero

within a short period. Nevertheless, it was traded as high as $4 and even above $1 for more

than one year. As Lipkin said this illusion could be illustrated by the Hard-to-Borrowness

feedback mechanism. Indeed, in his paper [1] with Avellaneda, they had constructed the

model for the Hard-to-Borrow stocks to capture most of the properties. Though they have

also used that model to explain the effective dividends and option pricing, the main weakness
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of the model is that it is too complicate to investigate the full dynamics. Then we take a

look into the Bankrupt Stocks, which provides important insights into markets but could be

easier for dynamics checking.

One feature of bankrupt stocks which we are focusing on is that their price will always

decrease in the long run. The market naturally takes advantage of this fact by shorting

the stock or buying puts. Prohibitions on naked shorting require access to the inventory

of available stocks, and it is this feature we wish to model and study. Since the available

inventory is finite, increasing demand for the stock leads to buy-ins, which temporarily drive

up the price of the stock. Therefore, when the price support for the stock vanishes, the price

crashes downward, and the cycle repeats. All those reveals that bankrupt stocks are the

special case of the Hard-to-Borrow Stocks.

Moreover, the great advantage we could take for investigating the bankrupt stocks is that

for the bankruptcy model we can remove the diffusive effects, and we claim that the dominant

dynamics are indeed the buy-ins. Diffusivity in valuation can be interpreted as an expression

of a wide range of beliefs about future behavior. One of the interesting consequences of this

is that we can explicitly convert from the physical measure to the risk-neutral measure, since

there is only one source of randomness.

Our goal here is to re-model for hard-to-borrow stocks [1] to understand the dynamics of

bankrupt stocks. We claim that in many cases, the dominant behavior of bankrupt issues is

the hard-to-borrowness and corresponding buy-ins needed to cover positions with negative

delta exposure. Our model posits a type of integrate-and-fire dynamics for the dynamics of a

coupled system which consists of price and short interest ; we use the short interest as a proxy

for the hard-to-borrowness. The stochasticity in this model is the time of crashes, when price

support vanishes after a run-up in the short interest. Since our model allows fairly explicit

calculations, calibration against real data is reasonably straightforward. Furthermore, we

study pricing of options and compare our results to empirical options prices.
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1.2 Several Examples for the Bankrupt Stocks

To start, let’s consider several examples which single out the dynamics we wish to study.

We look at prices for CJHBQ (Champion Enterprises, bankruptcy file November 15, 2009)

MTLQQ (General Motors Liquidation, bankruptcy file June 1, 2009), LEHMQ (Lehman

Brothers, bankruptcy filing September 15, 2008), and SRLMQ (Sterling Mining, bankruptcy

filing March 3, 2009). In Figures 1.1 we plot the log prices of these issues (normalized to

S0) against time for a year’s worth of time starting a month after bankruptcy filing (e.g., for

CJHBQ, December 15, 2009–December 15, 2010).

Figure 1.1: Prices of CJHBQ, MTLQQ, LEHMQ, and SRLMQ
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For both CJHBQ and MTLQQ, there are recurring periods where the price trends down-

ward, followed by sharp spikes up, and then crashes downward. Volume increases at these

spikes and crashes. In our model, these sharp spikes upward are modeled by an unstable

feedback loop in the buy-in-rate. The dynamics of LEHMQ and SRLMQ are a bit more

challenging to model via (2.3), but we claim that the proposed dynamics are still valid.

1.3 Structure of the Thesis

We start with a quick review of the Avellaneda and Lipkin’s work [1] for the hard to borrow

stocks in Section 2.1, and explained how they set up the model parameters. Before our new

bankrupt model, We talk a bit with the asymptotic property of the single jump model as a

preparation for the Chapter 3, in which We will fully discussed the asymptotic dynamics of

the bankrupt stocks. In Section 2.3, We elaborate our mathematics model for the bankrupt

stocks and also give some parameter assumptions to support our model.

The main work We’ve done in the Chapter 3 is to explicitly solve the dynamics of the stock

price and short interest in a recursive way. Those details are really important for further

calibration and option pricing. And in Section 3.2, we carefully discuss the asymptotic

behavior for the bankrupt stocks evolutions. Those fundamental work justify our significant

assumption for the bankrupt stocks—in the long term view, both the stock price and short

interest will vanish for sure.

In Chapter 4, we show how we could use the dynamics of the model we get from Chapter

3 to calibrate the parameter. We use the data source around 1 trading year for Lehman

Brother’s stocks as an example to illustrate how the stock prices and short interest interact

each other. In the Section 4.2.4, we attach a comparison figure between the real data and

the calibration results to reveal how our calibration methods from Section 4.1 to Section 4.2

fit the real world.
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The last main research work is to study the option pricing for the bankruptcy in Chapter

5. We started from Section 5.1.1 to give the Black-Scholes like equations for the European

style options by replication methods. Also the conversion of the physical model to the risk

neutral model is discussed here. Later on in Section 5.2, we discuss the least-squares method

introduced by Longstaff and Schwats [5] to simulate the American put options.

Finally, we list the future work we will continuous on the research, and also list all the

numerical codes for this dissertation in the Appendix.
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Chapter 2

Mathematics of the Model

In this Chapter, we will elaborate the main idea to set up our model for the Bankrupt

Stocks from the idea of the Hard-to-Borrow Stocks. First of all, we will briefly review how

Avellaneda and Lipkin [1] present the model for Hard-to-Borrow Stocks in 2009. Secondly,

we will simply take a look into the constant intensity version to see that we should expect

the stock price will tend to zero for the compensate poisson model with proper parameter,

which will guide us to get the asymptotic property of our generalized model for the bankrupt

stocks. In the last of this chapter, we will discuss the mathematics conjecture of our bankrupt

stock model.

2.1 Review of the Hard-to-Borrow Stocks Model

As we talked before in the introduction, Avellaneda and Lipkin [1] believe that for the hard

to borrow stocks, the demand of the buy-ins (or forcibly purchasing requirement) will give

positive feedback to the stock price. And once the buy-ins have finished, the stock price will

crash down immediately. Hence, if we denote St and λt be the stock price and buy-in rate

respectively, they have the following system of coupled equations [1]:

dSt
St−

= σdWt + γλtdt− γdNλt(t)

dλt
λt−

= κdZt + α(λ̄− λt)dt+ β
dSt
St−

(2.1)
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2.1.1 Parameter Illustration for the HTB Model

Observe the above coupled system, we have the equations follows the jump-diffusion processes

with correlated stochastic intensity:

Lemma 2.1.1. Wt,Zt are independent Brownian motion for the diffusion parts

Since Wt drives the stock price while Zt drives the buy-in rate fluctuation with totally

different future behavior believes, they should be independent of each other. Moreover σ

and κ are the volatilities respectively.

Lemma 2.1.2. dNλt(t) denotes the increment of a standard Poisson Process with stochastic

intensity λt over the interval (t, t+dt), and γ is the price elasticity of demand due to buy-ins.

As we discussed before, without the support of the buy-in demand, the stock price will

have a sharp drop, so it is reasonable here to capture this crash by a jump process. Also the

frequency of the jump occurs depends on the buy-in rate, so we should explain this rate by

setting up the intensity to follow the buy-in rate process.

Lemma 2.1.3. β is positive.

The more frequent the buy-ins, the higher the stock price will be driven by the market

effect. And right after the disappear of the buy-in demand, the stock price will drop down.

This conjecture shows that the stock price and buy-in rate are positively correlated. (β

denotes the correlation)

Lemma 2.1.4. λ̄ is the stationary (long term) value for the buy-in rate

2.1.2 Further Discussion of the HTB Model

This model gives us the features of the Hard-to-Borrow stocks, which shows the feedback

mechanism of the buy-in rate to the stock price.And Avellaneda and Lipkin [1] using this
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Model in their paper show how to calculate the effective dividends to cover the short position.

But the main weakness of this model is that for the jump-diffusion system [3] with stochastic

intensity, the process evolution is difficult to track, which also made the parameter calibration

really complicated. In order to reduce the complexity and make the process tractable, we

investigate the bankrupt stocks, which are definitely hard-to-borrow. But since bankrupt

stocks will certainly go to zero, there’s no wide range of beliefs about future behavior. In

this sense, we could exclude diffusive effects for the bankrupt stocks, which will yield the

complicate Hard-to-Borrow Stocks Model by Avellaneda and Lipkin [1] to a solvable system.

(We will discuss this new model in Chapter 2.3).

2.2 Asymptotic behavior of the simple jump model

Before we go to have our mathematics model of bankrupt stocks, let’s take a look at the

asymptotic behavior of the simple jump model(Geometric Poisson Process [8]). Since as

a main assumption for the bankrupt stocks, the price will eventually vanish. And also as

we talked above, the main force to drive the stock price down is the downward jump. To

guarantee this important assumption, we should check the asymptotic behavior of our stock

models. And as a preparation for the later check for our model, let’s investigate the simple

jump model:
dSt
St−

= γλdt− γdNλt

S0 = So

(2.2)

Theorem 2.2.1. if 0 < γ < 1, then we could have St → 0, when t→ +∞.

By Itô-Doeblin Formula [8] for One Jump Process:

We could solve: St = So exp[γλt+ ln(1− γ)Nλt], for all t ≥ 0.

Lemma 2.2.2. The strong law of large numbers for Poisson Process [2]: Nλt
t
→ λ, as

t→ +∞.

8



Meanwhile: St = So exp[(γλ+ ln(1− γ)Nλt
t

)t], then:

lim
t→+∞

γλ+ ln(1− γ)
Nλt

t
= γλ+ ln(1− γ)λ

= (γ + ln(1− γ))λ

Lemma 2.2.3. if 0 < γ < 1, γ + ln(1− γ) < 0

denote f(x) = x+ ln(1− x), then for 0 < x < 1:

f ′(x) = 1 +
1

x− 1

=
x

x− 1

< 0

Hence, f(x) < f(0) = 0 for all 0 < x < 1. Finally Lemma 2.2.3 together with the equation

above shows that:

lim
t→+∞

St = lim
t→+∞

So exp[(γ + ln(1− γ)λ)t]

= 0

We will later guarantee that our stock price has the similar asymptotic behavior and

satisfies the important feature that the bankrupt stock will go to zero eventually.

2.3 Mathematical Model for the Bankrupt Stocks

In this section, we will use the non-diffusive feature of the bankrupt stocks to reset the

equations system for Hard-to-Borrow stocks in (2.1) to our pure jump system. Then After

removing the diffusion parts and adding the buy-in rate feedback, our basic model is two-
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dimensional system:
dSt
St−

= (αq + αhλt)dt− γdNκq+κhλt
t

dλt
λt−

= (βq + βhλt)dt+ ρ
dSt
St−

S0 = So

λ0 = λo

(2.3)

2.3.1 Parameter Explanation

In this modified model:

The Process St still represents the stock prices process, which is driven by the time drift

and the instantaneous jump caused by the disappearance of the buy-in demand.

The λt is the short interest rate(the number of shares sold short divided by the daily

volume),which represents the strength of Hard-to-Borrowness. Though this is a different

item from the buy-in rate, they do vary in the exactly the same direction: it is obviously

that the greater the short interest, the more difficult to borrow, then the more frequent

the buy-ins will occur. While there’s no need for the buy-in demand, the desired the short

positions has been covered, this also lower the short interest. Hence we may assume that

those two things could be proportional to each other. And at the modeling level, we can

replace these two without losing the essential feedback.

αq,βq,κq are the quiescent rates of growth, while αh,βh,κh capture the exposure to the

Hard-to-Borrowness which reflects the feedback mechanism.

−γdNκq+κhλt
t denotes the downward jumps with jump size γ corresponding to crashes.

ρ is the correlation between the stock price and the short interest, which is supposed to

be positive.

10



2.3.2 Model Reformulation and Discussion

Replacing the dSt
St−

from the first equation in (2.3) to the second part, we could rewrite our

system as:

dSt = (αq + αhλt)Stdt− γSt−dNκq+κhλt
t

dλt = (β̃1λt + β̃2λ
2
t )dt− γ̃λt−dN

κq+κhλt
t

(2.4)

Remark 2.3.3. For the drift part, the t− is replaced by t, since this part is continuous, with

new coefficients:

β̃1
def
= βq + ραq β̃2

def
= βh + ραh and γ̃

def
= ργ.

A quick observation tells that the system (2.4) is triangular, which means the stock prices

depend on the short interest but not vice versa. So we can first solve for λ and then solve

for S. Also, before the jumps, we have the system is only ODE dynamics, which makes the

model is explicitly solvable. This nice feature will yield our main approach for this problem

later on that we could first determine the dynamics of the model before the crash, and after

the crash we just restart the system, and solve the dynamics iteratively.

Hence, it is straightforward for us to check the dynamics of the coupled system within

the first crash cycle before we generalized to the full dynamics model.

Let’s take a look into the ODE for the short interest before the crash, and define:

f(`)
def
= β̃1`+ β̃2`

2 (2.5)

for all ` ∈ R, we can solve

λ̇t = f(λt) t > 0

λ0 = λ◦

(2.6)

To find the first random crash time τ , let e be an exponential(1) random variable, and
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define

τ
def
= inf

{
t ≥ 0 :

∫ t

s=0

(κq + κhλs) ds ≥ e

}
. (2.7)

Define λτ
def
= λτ− {1− γ̃}, which is the short interest right after the crash decay.

Similarly, the dynamics of S can be solved as:

St = S◦ exp

[
αqt+ αh

∫ t

s=0

λsds

]
0 ≤ t < τ (2.8)

and define Sτ = Sτ− {1− γ} for the stock price immediately after the steep drop .

At time τ we restart the system.

Furthermore, let’s give two assumptions here to validate the model:

Assumption 2.3.4. We require that γ ∈ (0, 1) and γ̃ ∈ (0, 1).

Then both λ and S are positive at τ . Thus both λ and S remain positive for a whole

cycle, and thus for all time.

Assumption 2.3.5. We assume that αq ≤ 0 and that βq, κq, αh, βh, and κh are all in R+.

We want the stock to have a downward trend (i.e., we allow αq < 0). Similarly, if the short

rate is very small, we want to have nonnegative short interest and baseline jump frequency

(i.e., βq ≥ 0 and κq ≥ 0). We also naturally want an increase in the short interest to increase

the price (αh ≥ 0), cause more buy-ins (to cover shorts; i.e., βh ≥ 0), and to cause more

frequent crashes (κh ≥ 0).

Since f is smooth and f(0) = 0, the dynamics of (2.6) and Assumption 2.3.5 ensure that

λt > 0 for all t ∈ [0, τ).

Finally, we should notice that this model has an important aspect we will use later on to

calculate the dynamics and solve the calibration problem is that our model is Markovian [7].

12



The generator [7] of (S, λ) is

(Lϕ)(S, λ)
def
= {αq + αhλ}S

∂ϕ

∂S
(S, λ) +

{
β1λ+ β2λ

2
} ∂ϕ
∂λ

(λ)

+ {κq + κ2λ} {ϕ ((1− γ)S, (1− γ̃)λ)− ϕ(S, λ)}
(2.9)

for all f ∈ C2(R). For any c > 0, we then have (Ŝt, λ̂t)
def
= (Sct, λct) is also Markovian, and

has generator

c(Lϕ)(S, λ) = {cαq + cαhλ}S
∂ϕ

∂S
(S, λ) +

{
cβ1λ+ cβ2λ

2
} ∂ϕ
∂λ

(λ)

+ {cκq + cκ2λ} {ϕ ((1− γ)S, (1− γ̃)λ)− ϕ(S, λ)}

Thus the dynamics are closed under rescaling with the constant c.

13



Chapter 3

Dynamics of the Bankruptcy Model

3.1 General System Evolution

First notice that (2.6) is a Bernoulli’s Equation [10], which could be explicitly solved. But

from Assumption 2.3.5, we know that β̃2 > 0 will make f(`) ≈ β̃1`
2 for `� 1. This quadratic

dominant part will lead the ODE to explosion in finite time. Then based on this observation,

if we denote φ`(t) to be the solution to the equation (2.6) with the initial condition φ`(0) = `

and also t∗` is the finite explosion time constraint, we will have the explicit form in the

following lemma:

Lemma 3.1.1. t∗` = 1
β̃1

ln β̃1+β̃2`

β̃2`
, and for 0 ≤ t < t∗` , we have φ`(t) = β̃1`eβ̃1t

β̃1−β̃2`(eβ̃1t−1)

Proof. from (2.6) we have:

φ̇`(t) = β̃1φ`(t) + β̃2φ`(t)
2

φ`(0) = `.

(3.1)

Divided φ`(t)
2 from the both sides of the first equation in (3.1):

φ̇`(t)

φ`(t)2
=

β̃1

φ`(t)
+ β̃2

This yields:

−(
1

φ`(t)
)′ = β̃1

1

φ`(t)
+ β̃2

14



Multiplies the Integrate Factor eβ̃1t for both side to the above equation:

(
eβ̃1t

φ`(t)
)′ = −eβ̃1tβ̃2

then

eβ̃1t

φ`(t)
= −eβ̃1t β̃2

β̃1

+ C

together with the initial condition φ`(0) = `, we can solve:

φ`(t) =
β̃1`e

β̃1t

β̃1 − β̃2`
(
eβ̃1t − 1

) (3.2)

To get the explosion constraint, we could get this easily by setting the denominator of the

solution above to be zero:

β̃1 − β̃2`
(
eβ̃1t − 1

)
= 0

This gives:

t∗` =
1

β̃1

ln
β̃1 + β̃2`

β̃2`

Using Lemma 3.1.1, we can also derive the stock price explicitly before the crash, just

define:

Φ`(t)
def
=

∫ t

s=0

φ`(s)ds =
1

β̃2

ln
β̃1

β̃1 − β̃2`
(
eβ̃1t − 1

) 0 < t < t∗` . (3.3)

And similar to what we defined the first crash time as in the (2.7), Let {en}n∈N be an

i.i.d. collection of exponential(1) random variables. And denotes Jn to be the interarrival
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times, and τn to be the crash times

τ1 = J1
def
= inf {t ≥ 0 : κqt+ κhΦλ0(t) ≥ e1}

λτ1− =
β̃1`e

β̃1τ1

β̃1 − β̃2`
(
eβ̃1τ1 − 1

)
τn+1

def
=

n+1∑
i=1

Ji n ≥ 1

Jn+1
def
= inf

{
t > τn : κqt+ κhΦ(1−γ̃)λτn−(t) ≥ en

}
n ≥ 1

λt− = φ(1−γ̃)λτn−(t− τn) n ≥ 1 τn < t ≤ τn+1

(3.4)

Iterative in the system (3.4), we will have the full dynamics of the short interest.

And once we know the evolution of the λt, we can construct S in the mean time:

St− =

 S0 exp [αqt+ αhΦλ0(t)] , if 0 ≤ t ≤ τ1;

(1− γ)Sτn− exp
[
αq(t− τn) + αhΦ(1−γ)λτn−(t− τn)

]
, if τn < t ≤ τn+1 n ≥ 1;

(3.5)

The equations (3.5) track all the evolutions of the stock price, and by using (3.4) and (3.5),

the asymptotic of the stock price is approachable.

3.2 Asymptotic Behavior of the System

With the explicit calculation for the crash cycle in Section 3.1, we can find the long-term

dynamics of Stock price S and λ.

As we discussed before, for bankrupt stocks, we should expect that the stock price will

go to zero eventually, so in the long term, few trading will incur in those stocks. Under this

idea, no perpetual buy-in demands are needed. Hence, we need to adjust the parameter

16



coefficients in our model to have:

lim
t→∞

λt = 0

lim
t→∞

St = 0

(3.6)

And since the asymptotic of the stock price is determined by the short interest by the

triangular property of the system, let’s first check the long term effect of the λ.

Furthermore, observing the equation (3.1), we know that during the crash cycle the λ

should be monotonic, and decay right after the crash, this property tell us that investigating

on the asymptotic of the λ at the crash time is enough to have the full picture of the whole

short interest process.

Theorem 3.2.1. If limn→∞ λτn = 0, then κq > 0.

This Lemma shows that the quiescent rate support for the jump is significant to vanish the

short interest rate. Intuitively, you will see, if κq = 0, then together with limn→∞ λτn− = 0,

in the wide long range, the short interest rate will be dominated by the positive drift speed,

this will yield a positive long term short interest, which is a contradiction.

Proof. Let’s assume κq = 0, then apply this to evolutions (3.4), for n > 1 :

λτn = (1− γ)λτn−

= (1− γ)φλτn−1
(Jn)

= (1− γ)φλτn−1
(Φ−1

λτn−1
(en/κh))

From equation (3.3), we could solve:

Φ−1
` (x) =

1

β̃1

ln
β̃1 + β̃2`− β̃1e

−β̃2x

β̃2`
(3.7)
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Then replacing (3.2) and (3.7) into the above evolution we can get:

λτn = (1− γ̃)
β̃1λτn−1

β̃1+β̃2λτn−1−β̃1e
−β̃2(en/κh)

β̃2λτn−1

β̃1 + β̃2λτn−1 − β̃2λτn−1

β̃1+β̃2λτn−1−β̃1e
−β̃2(en/κh)

β̃2λτn−1

= (1− γ̃)
β̃1 + β̃2λτn−1 − β̃1e

−β̃2(en/κh)

β̃2e−β̃2(en/κh)

=
(1− γ̃)

β̃2

(β̃1e
β̃2(en/κh) + β̃2λτn−1e

β̃2(en/κh) − β̃1)

Apply Recursion algorithm, we could figure out that:

λτn = (1− γ̃)n(
β̃1

β̃2

+ λ0)e
β̃2
κh

n∑
k=1

ek
+
β̃1γ̃

β̃2

n−1∑
k=1

(1− γ̃)ke

β̃2
κh

k∑
j=1

en+1−j
− β̃1

β̃2

(1− γ̃) (3.8)

denote:

I1 = (1− γ̃)n(
β̃1

β̃2

+ λ0)e
β̃2
κh

n∑
k=1

ek

I2 =
β̃1γ̃

β̃2

n−1∑
k=1

(1− γ̃)ke

β̃2
κh

k∑
j=1

en+1−j

I3 =
β̃1

β̃2

(1− γ̃)

(3.9)

Lemma 3.2.2. If β̃2
κh
< − ln(1− γ̃), then I1 → 0, as n→∞

Actually I1 = exp[−n(− ln(1− γ̃)− β̃2
κh

n∑
k=1

ek

n
)]

Since en are i.i.d exponential(1) random variables, strong law of large numbers tells us:
n∑
k=1

ek

n
→ 1 as n→∞.

So when β̃2
κh
< − ln(1− γ̃), we have − ln(1− γ̃)− β̃2

κh

n∑
k=1

ek

n
> 0 as as n→∞.

Then the exponential decay will drive I1 → 0, for n→∞.

Lemma 3.2.3. limn→∞ I2 − I3 > 0, a.s

It is trivial that the continuity and nonnegativity of the exponential random variables
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yield that ∀k > 0, we always have ek > 0 a.s, and also use the I.I.D property so:

lim
n→∞

I2 ≥ e
β̃2
κh
e1 β̃1γ̃

β̃2

∞∑
k=1

(1− γ̃)k

= e
β̃2
κh
e1 β̃1

β̃2

(1− γ̃)

> I3 a.s

(3.10)

Lemma 3.2.2 shows us the one cumulative part of the short interest might approach to

zero in the long term, while Lemma 3.2.3 indicates that another part will make the long

term short interest greater than zero almost surely. This contradicts our assumption that

limn→∞ λτn = 0. Hence we should have κq > 0 to avoid this contradiction.

Remark 3.2.1. Under the naive case κq = 0, if 1 > γ̃ > β̃2
κh
> 0 we will have:

lim
n→+∞

E[λτn ] =
β̃1(1− γ)

γκh − β̃2

> 0

This give us the stationary sense of the short interest.

Proof. Using the facts ei are i.i.d exponential-1:

E[λτn ] = E[(1− γ̃)n(
β̃1

β̃2

+ λ0)e
β̃2
κh

n∑
k=1

ek
+
β̃1γ̃

β̃2

n−1∑
k=1

(1− γ̃)ke

β̃2
κh

k∑
j=1

en+1−j
− β̃1

β̃2

(1− γ̃)]

= (1− γ̃)n(
β̃1

β̃2

+ λ0)E[e
β̃2
κh
e1 ]n +

β̃1γ̃

β̃2

n−1∑
k=1

(1− γ̃)kE[e
β̃2
κh
e1 ]k − β̃1

β̃2

(1− γ̃)

= (1− γ̃)n(
β̃1

β̃2

+ λ0)(
κh

κh − β̃2

)n +
β̃1γ̃

β̃2

(

(1−γ̃)κh
κh−β̃2

[1− ( (1−γ̃)κh
κh−β̃2

)n]

1− (1−γ̃)κh
κh−β̃2

)− β̃1

β̃2

(1− γ̃)

Let n→ +∞, we have:

lim
n→+∞

E[λτn ] =
β̃1(1− γ)

γκh − β̃2

> 0

19



Remark 3.2.2. After we obtain the important feature that the quiescent rate κq > 0, then

if we consider the discussion above for the simple Poisson Jump Model 2.2.1. We could

understand that this quiescent rate will guarantee that the jump always occurs at the positive

rate, then just control the relationship between the drift rate and the quiescent rate as we did

before for the simple jump model, we could also get limn→∞ λτn− = 0. Hence without proving

the existence of this asymptotic, we just use this as an assumption to find the necessary

conditions we need to validate this.

Theorem 3.2.4. When κq > 0, then limn→∞ λτn− = 0, only if:

β̃1

κq
< ln

1

1− γ̃
.

Proof. Let’s proceed similarly as we did before with the system evolutions (3.4).

For each ` and E in (0,∞), let τ̄E(`) solve

κq τ̄E(`) + κhΦ(1−γ̃)λτn−(τ̄E(`)) = E (3.11)

(this is uniquely possible since t 7→ Φ`(t) is nondecreasing). Then

λτn+1− = φ(1−γ̃)λτn−(τen+1((1− γ̃)λτn−)). (3.12)

We want to see what happens to this recursion when λτn− � 1.

When ` is really small and E is of order 1 (E represents the exponential(1) variable).

Since Φ is nonnegative, (3.11) implies that τ̄E(`) ≤ E/κq. Thus for small `, we have that

β̃2`(e
β̃1τ̄E(`) − 1) ≈ 0;
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This shows that:

Φ`(τ̄E(`)) =
1

β̃2

ln
β̃1

β̃1 − β̃2`(eβ̃1τ̄E(`) − 1)

≈ 1

β̃2

ln
β̃1

β̃1

= 0

(3.13)

in other words,

τ̄E(`) ≈ E

κq
(3.14)

for `� 1 This then implies that:

φ(1−γ̃)`(τ̄E((1− γ̃)`)) =
β̃1(1− γ̃)`eβ̃1τ̄E((1−γ̃)`)

β̃1 − β̃2(1− γ̃)`(eβ̃1τ̄E((1−γ̃)`) − 1)

≈ (1− γ̃)`e
β̃1E
κq

(3.15)

Thus if λτn− � 1, together with equations (3.12) and (3.15), we should approximately have

lnλτn+1− ≈ lnλτn− + ln(1− γ̃) +
β̃1

κq
en+1

Recursively, we will have

lnλτn−
n

≈ ln(1− γ̃) +
β̃1

κq

∑
en
n

The strong law of large numbers shows that
∑
en
n
→ 1 almost surely. Thus if limn→∞ λτn− = 0,

we get:

lim
n→∞

lnλτn−
n

= ln(1− γ̃) +
β̃1

κq

And by the fact λτn− � 1, we know that lnλτn− < 0, this yields:

ln(1− γ̃) +
β̃1

κq
< 0 (3.16)

Inequality (3.16) justify our main condition that: β̃1
κq
< ln 1

1−γ̃
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Also because the dynamics of the stock price is fully determined by the evolutions of the

short interest, based on our discussion for the asymptotic property for λ, it’s straightforward

to get:

Theorem 3.2.5. if limn→∞ λτn− = 0, then limn→∞ Sτn− = 0, and:

lim
n→∞

lnSτn−
n

= ln(1− γ) +
αq
κq

Proof. Using results (3.5) and set-up (3.11), we could derive the approximation for the stock

price:

lnSτn+1− = lnSτn− + ln(1− γ) + αq τ̄E(`) + αhΦ(1−γ̃)λτn−(τ̄E(`)) (3.17)

Plug in the approximation (3.13) and (3.14) back to the above equation, we would have:

lnSτn+1− ≈ lnSτn− + ln(1− γ) +
αq
κq

en+1

This approximation is guaranteed by the fact that limn→∞ λτn− = 0. Recursively we could

obtain:

lnSτn+1−

n
≈ ln(1− γ) +

αq
κq

∑
en
n

Apply the strong law of large numbers for exponential(1) variables again, we could have:

lim
n→∞

lnSτn−
n

= ln(1− γ) +
αq
κq

Furthermore by Assumption 2.3.4 and Assumption 2.3.5, we know that 0 < γ < 1 and αq 6 0.

Together with Theorem 3.2.1, we have κq > 0. These conditions make ln(1 − γ) + αq
κq
< 0,

therefore:

lim
n→∞

Sτn− = lim
n→∞

exp[n(ln(1− γ) +
αq
κq

)]

= 0
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Theorem 3.2.5 tells us that the subsets of the stock price and short interest on the crash

time will vanish eventually. And the nice feature of the evolutions will guide us to our main

requirements (3.6) that for bankrupt stocks both the stock prices and short interest will

finally turn down to zero in the long term. And with this on mind, to remove the diffusive

parts from the original Hard-to-Borrow Model does make sense.
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Chapter 4

Parameter Calibration and Real Data
Analysis

In this Chapter, we will focus on using the dynamics of the bankrupt stocks we established

in Chapter 3 to calibrate the parameters in the model.

The naive approach would be to start with the Markov property and use a discrete-time

approximation of (2.9). Instead, we would like to find a calibration procedure which better

reflects what the model attempts to capture. Namely, the evolution of S and λ between

crashes is deterministic, and the crashes occur with a clock which depends on λ.

4.1 Calibration Set Up

Taking stock of what we know, we have a sequence {tj}Jj=1 of times at which we have

observations. We assume of course that 0 = t0 < t1 . . . tJ . At each tj, we can observe Sob
tj−

and the short interest λob
tj−. We are careful in that we observe the left-continuous limits of

these processes at the observation times since the processes in the model are right-continuous,

but the model is designed to only approximate the behavior right after the crashes. By

identifying times when the price hits a maximum when volume is high, we can observe the

times of the crashes; i.e., a sequence {τn}Nn=1. Since these are of course observation times,

we have that {τn}Nn=1 ⊂ {tj}Jj=1.

For the calibration, our goal is to find a vector ṽ = (αq, αh, β̃0, β̃1, κq, κh, γ, γ̃) ∈ S
def
=

R− × R5
+ × [0, 1]2 which best fits the model (2.4) to data. We can then recover the original
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model (2.3) by setting

βq = β̃1 − αq
γ̃

γ
βh = β̃2 − αh

γ̃

γ
ρ

def
=
γ̃

γ

Between the crashes, the evolutions are deterministic, then we could use least square mini-

mization to find ṽ which gives the smallest square error. This approach could apply to both

the stock price and short interest. In order to have a better sense for the calibration, let’s

expand the notations of Section 3.1 here. For ṽ = (αq, αh, β̃0, β̃1, κq, κq, κh, γ, γ̃) ∈ S, define:

tṽ,∗`
def
=

1

β̃1

ln
β̃1 + β̃2`

β̃2`

φṽ` (t) =
β̃1`e

β̃1t

β̃1 − β̃2`
(
eβ̃1t − 1

) 0 ≤ t < tṽ,∗`

Φṽ
` (t)

def
=

1

β̃2

ln
β̃1

β̃1 − β̃2`
(
eβ̃1t − 1

) 0 < t < tṽ,∗`

Hence by using the results of (3.4) and (3.5), The best values of ṽ should be given by

minimizing

I1(ṽ)
def
=

1

2
(
∑

0≤tj≤τ1

∣∣∣φṽλob0 (tj)− λob
tj−

∣∣∣2 +
∑

1≤n≤N

∑
1≤j≤J

τn<tj≤τn+1

∣∣∣φṽ(1−γ̃)λobτn−
(tj − τn)− λob

tj−

∣∣∣2)

I21(ṽ)
def
=

1

2

∑
0≤tj≤τ1

∣∣∣αqtj + αhΦ
ṽ
λob0
tj − ln(Sob

tj−/S
ob
0 )
∣∣∣2

I22(ṽ)
def
=

1

2

∑
1≤n≤N

∑
1≤j≤J

τn<tj≤τn+1

∣∣∣ln(1− γ) + αq(tj − τn) + αhΦ
ṽ
(1−γ̃)λobτn−

(tj − τn)− ln(Sob
tj−/S

ob
τn−)

∣∣∣2

I2(ṽ)
def
= I21(ṽ) + I22(ṽ)

(where for convenience we set τJ+1
def
= ∞) We want to minimize these functions over the
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set

S∗
def
=
{
ṽ ∈ S : τn+1 − τn ≤ tṽ,∗

λobτn−
for all 1 ≤ n ≤ N

}
. (4.1)

Since we want to avoid the system explosive within the finite time.

Finally, let’s minimize over the crash times; these are the only source of randomness in

the model. We note here that if {Ft}t≥0 is the filtration generated by the system (2.3), then

if the parameters are indeed given by ṽ, we have that by using the Markov Property:

P
{
τn+1 − τn ≥ t

∣∣Fτn

}
= exp

[
−
∫ t

s=0

{
κq + κhφ

ṽ
(1−γ̃)λobτn−

(s)
}
ds

]

so the τn+1 − τn has conditional (on Fτn) density with respect to Lebesgue measure of the

form

f(t) =
{
κq + κhφ

ṽ
(1−γ̃)λobτn−

(t)
}

exp
[
−κqt− κhΦṽ

(1−γ̃)λobτn−
(t)
]

Then take the log form to be more convenient for the calculation

f(t) = ln
{
κq + κhφ

ṽ
(1−γ̃)λobτn−

(t)
}

+
[
−κqt− κhΦṽ

(1−γ̃)λobτn−
(t)
]

We can then find maximum-likelihood estimates of ṽ by minimizing over

I3(ṽ)
def
=
∑
τn≤T

(κq (τn+1 − τn)− κhΦṽ
(1−γ̃)λobτn−

(τn+1 − τn)− ln
{
κq + κhφ

ṽ
(1−γ̃)λobτn−

(τn+1 − τn)
}

).

We now combine things. We calibrate by minimizing

Ī(ṽ)
def
= I1(ṽ) + I2(ṽ) + I3(ṽ) (4.2)

over all ṽ ∈ S∗.
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4.2 Real Data Analysis and Numerical Problems

4.2.1 Data Choices

In this section We will pick LEHMQ (Lehman Brothers Holdings Inc.) as an example to

illustrate how we calibrate the model parameters numerically.

We choose the market data for LEHMQ from 12/10/2009 to 11/23/2010 [11] containing

241 trading days as a whole trading year cycle. LEHMQ files Chapter 11 Bankruptcy

protection in Sep.2008, after several months trading, in the period we pick, it is extremely

hard-to-borrow, which means this is a good example to study.

So let’s set 0 = t0 <
1

241
= t1 < ... < t240 = 1, with time increments ∆t = 1

241

Before we use the Calibration Set-Up in Section 4.1, we need to have the crash time

observation first. The idea to get this is from the feedback mechanism of the buy-ins: the

greater the short interest, the even harder to short, then more frequent buy-ins occurring,

which will finally drive up the stock price. And immediately without this buy-in support,

the stock price will crash down. With this in mind we could denote the crash time to be the

time, when both the stock price and the trading volume hits the local maximal, and also

the volume should reach a LARGE amount. (Let’s say state here ”LARGE” as 1 standard

deviation larger than the mean)

The Matlab codes in Appendix A Section 6 will gives us the crash time for the LEHMQ

data source above. The results shows within these 241 trading dates, only 5 significant

crash observed, at position: 52,65,83,88,218. Let’s take a look into the figure 4.1 for the

comparison of the trading volume (which is rescale by 1
109

to have the same size order of

the stock price) and stock price. This figure clearly shows that the stock price and trading

volume has almost exactly the on-going trends. Especially they attain their local peaks at

the close time range. And marking the 5 crash times on the picture, you will see, before

those times, the stock price continuously goes up, and right after it, there’s a huge drop,
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which does capture the main feature of the Hard-to-Borrowness.

Figure 4.1: Stock Price VS Trading Volume
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Before we go to the general Calibration Methods, just put the comparison graph of the

stock price and utilization(the placement for the short interest) here to see how they interact

each other.

Figure 4.2: Stock Price VS Utilization
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4.2.2 Calibration Methods

The main Calibration Procedure is to find the minimizer for the objective function (4.2).

And to simplify the problem, let’s first neglect the nonlinear explosive time constraint (4.1).

Then our numerical work reduced to a unconstraint minimization problem. And in Matlab,

we do this by using function: fminsearch, which is used to finds the minimizer of several

variables for a scalar value function, and given the initial start estimation. The way to use it

is to put calibrationresults = fminsearch(@Objective, initial); in the main script, which

means that the computer will use the Nelder-Mead algorithm [6] finding a local minimum

calibration results for the self-defined desired Objective functions.

The Objective Functions we constructed for this calibration problem is totally determined

by the structure of Ī(ṽ), which could be found in Section 4.1. And the details for this

Objective Function could be found in Section 6 of Appendix A.

4.2.3 Minimization Initialization

Besides the Objective Function mentioned in Section 4.2.2, another important issue for

the minimization search is the initial start. A bad initial condition will result in imprecise

result, hence we need to carefully choose the initialization to have the problem converge into

a reasonable range.

As a reasonable place to start searching for values of ṽ, let’s consider the case where

κh = 0, which means no interaction between jump time and short interest. This should

give us an idea of the order of magnitude of things. If κh = 0, then the shocks occur at

exponential times. In other words,

τ = inf {tκq ≥ e} =
e

κq
.

In other words, τ is exponential(κq). Thus E[τ ] = 1
κq

. One might thus take an an initial
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guess of κq the reciprocal of the average empirical time between crashes.

Then for βq and βh should be the order of the inverse or the regular trading dates and

several weeks separately. We could just set βq = 252 and βh = 252/20.

Furthermore, also neglect the short interest impact to the stock evolution drift speed,

so we could set αh = 0. (but in the codes, in order to avoid some unexpected numerical

problems, we will use some small number instead of zero),then:

Sτ1− = S0e
αqτ1 and ln

Sτn+1−

Sτn−
= ln(1− γ) + αqτ

so

Sτ1− = S0e
αqτ1 and E

[
ln
Sτn+1−

Sτn−

]
= ln(1− γ) +

αq
κq

(4.3)

By solving (4.3), the initialization for αq and γ are ready.

Finally for γ̃, just try some value from (0, 1) as the set-up for short.

4.2.4 Results Analysis

Section 4.2.1,4.2.2 and 4.2.3 together will give us the calibration results in the following

tables:

Table 1

αq αh β̃1 β̃2 κq κh γ γ̃

-1.1759 0.005 0.0934 0.0002 5.5191 0.0108 0.2028 0.0472

First of all, this gives us β̃1
κq
≈ 0.016 < 0.02 ≈ ln 1

1−γ̃ , which corresponds with Theorem

3.2.4

Also by using this result, we could plot the piecewise calibrated stock prices compared

to the real values in figure 4.3. The View of the calibration figure tells us plenty of things.
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Though not that exactly matching all the real stock price, the calibration does capture all

the main trend of the evolution: like when to jump and how the jump follows, which really

reflects the hard-to-borrow feedback mechanism. Also on the other hand, this is a way shows

the fit of our model to the real market.

Figure 4.3: LEHMQ Calibration
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Chapter 5

Option Pricing for Calibrating
Validation

In the last part of Chapter 4, we have already used the comparison between the real stock

data and the calibration results to show that our model fits really well. In this chapter we

will convince us again the validation of our calibration by another way, which is to match

the theory against the behavior of the option pricing things.

5.1 European Option Pricing for the Bankruptcy

Model

Let’s first understand the options pricing four European style. Since we can only

trade S, we would normally not have a unique risk-neutral probability measure for the

two-dimensional pair (S, λ). However, since there is in fact only one source of noise; the

en’s, we can in fact proceed. Since one of the important aspects of the model of (2.1) is

that the hard-to-borrowness leads one to an effective dividend rate which quantifies the cor-

rect risk-neutral cost of the crashes for a trader, we shall initially allow the stock to have a

time-varying dividend rate δt.

5.1.1 Deriving the PIDE by Replication Strategy

Let V be the option price process. Since we have already excluded the diffusions, and the

only uncertainty here is the jump time, so it’s enough for us to hedge it with a combination
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of stock and a bond (which we assume to have interest rate r). We thus assume that:

Vt = w
(1)
t St + w

(2)
t Bt. (5.1)

And also by the feature of the Hard-to-Borrowness, we should have this portfolio is self-

financing [9] with an effective dividend yield to cover the short position cost. Then we

get:

dVt = w
(1)
t (dSt + δtStdt) + w

(2)
t dBt. (5.2)

On the other hand Itô-Doeblin Theorem for Jump Process together with system (2.4) shows

that:

dVt =
∂Ṽ

∂t
(t, St, λt)dt+ {αq + αhλt}St

∂Ṽ

∂S
(t, St, λt)dt+

{
β̃1λt + β̃2λ

2
t

} ∂Ṽ
∂λ

(t, St, λt)dt

+
{
Ṽ (t, St−(1− γ), λt−(1− γ̃))− Ṽ (t, St−, λt−)

}
dN

κq+κhλt
t

(5.3)

Matching equation (5.2) and (5.3), we have:

∂Ṽ

∂t
(t, St, λt)dt+ {αq + αhλt}St

∂Ṽ

∂S
(t, St, λt)dt+

{
β̃1λt + β̃2λ

2
t

} ∂Ṽ
∂λ

(t, St, λt)dt

+
{
Ṽ (t, St−(1− γ), λt−(1− γ̃))− Ṽ (t, St−, λt−)

}
dN

κq+κhλt
t

= w
(1)
t

{
{αq + αhλt}Stdt− γSt−dNκq+κhλt

t + δtStdt
}

+ rw
(2)
t Btdt.

(5.4)

Equating the coefficients of dN
κq+κhλt
t , we have that

w
(1)
t = − Ṽ (t, St−(1− γ), λt−(1− γ̃))− Ṽ (t, St−, λt−)

γSt−
. (5.5)
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Equating the dt terms and using the fact that w
(2)
t Bt = Ṽ (t, St, λt)− w(1)

t St, we have that

∂Ṽ

∂t
(t, St, λt) + {αq + αhλt}St

∂Ṽ

∂S
(t, St, λt) +

{
β̃1λt + β̃2λ

2
t

} ∂Ṽ
∂λ

(t, St, λt)

= w
(1)
t {αq + αhλt + δt}St + r

{
Ṽ (t, St, λt)− w(1)

t St

}
. (5.6)

Replacing w
(1)
t by (5.5) back to (5.6), we have the Black-Scholes like equation as follows:

∂Ṽ

∂t
(t, S, λ) + {αq + αhλ}S

∂Ṽ

∂S
(t, S, λ) +

{
β̃1λ+ β̃2λ

2
} ∂Ṽ
∂λ

(t, S, λ)

+
1

γ
{αq + αhλt + δt − r}

{
Ṽ (t, S(1− γ), λ(1− γ̃))− Ṽ (t, S, λ)

}
= rṼ (t, S, λ).

(5.7)

5.1.2 Risk Neutral Model and Effective Dividend

In reality, when we want to calculate the option price, we only care about the risk neutral

process, since under the risk neutral measure, the discount process is a martingale, which is

comfortable for the calculation. Let’s now get the risk-neutral model by setting δ ≡ 0. Then

the Black-Scholes equation is

∂Ṽ

∂t
(t, S, λ) + {αq + αhλ}S

∂Ṽ

∂S
(t, S, λ) +

{
β̃1λ+ β̃2λ

2
} ∂Ṽ
∂λ

(t, S, λ)

+
1

γ
{αq + αhλt − r}

{
Ṽ (t, S(1− γ), λ(1− γ̃))− Ṽ (t, S, λ)

}
= rṼ (t, S, λ).

Unwinding this, let’s define

κ̃q
def
=
αq − r
γ

and κ̃h
def
=
αh
γ
.
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Then the risk-neutral dynamics are given by

dSt = {αq + αhλt}Stdt− γSt−dN κ̃q+κ̃hλt
t

= rStdt+ γ {κ̃q + κ̃hλt}Stdt− γSt−dN κ̃q+κ̃hλt
t

dλt =
{
β̃1λt + β̃2λ

2
t

}
dt− γ̃λt−dN κ̃q+κ̃hλt

t

(5.8)

The second representation of the dynamics of S characterizes the stock price in the usual

way; a combination of interest rate and a martingale. Note that we can again write the

dynamics of λ as the second equation of (2.3). One of the key insights of (5.8) is that the

risk-neutral cost of holding a short delta position at time t is the product of the crash size

and the instantaneous likelihood of a crash. In particular, if a trader is short a share at time

t, the value of the crash is

γ × {κ̃q + κ̃hλt} = αq − r + αhλt.

Thus the clearing firm can demand a payment of αq−r+αhλt for a short share at that time.

Thus, let’s set the dividend rate to

δt
def
= αq − r + αhλt = γ {κ̃q + κ̃hλt} . (5.9)

Note that if our position is short delta, then w
(1)
t < 0 so a positive dividend rate implies that

w
(1)
t δtSt < 0, corresponding to a payment made by the trader. Note also that then

1

γ
{αq − r + αhλt + δt} = 2κ̃q + 2κ̃hλt.

Thus the Black-Scholes equation for a European option is given by (5.7) with δt given by
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(5.9). Note that the Feynman-Kac formula for this uses the process

dŜt = {αq + αhλt} Ŝtdt− γŜt−dN2κ̃q+2κ̃hλt
t

= {r − δt} Ŝtdt+ γ {2κ̃q + 2κ̃hλt}Stdt− γŜt−dN2κ̃q+2κ̃hλ̂t
t

dλ̂t =
{
β̃1λt + β̃2λ̂

2
t

}
dt− γ̃λ̂t−dN2κ̃q+2κ̃hλ̂t

t .

(5.10)

Again, the second equation of (2.3) gives the dynamics of λ.

Note that since the only randomness occurs in the jumps (as opposed to the diffusion),

the dividend-adjusted dynamics of S is not equivalent to the risk-neutral dynamics with a

dividend discount; i.e., the dynamics of (5.10) is not the same as

St exp

[
−
∫ t

s=0

δsds

]

with S given by (5.8).

5.2 Numerical Approach for American Option Pricing

Let’s next consider pricing American puts (which represent a significant portion of trading

activity in bankrupt stocks). Since the only source of randomness in our model is the

crash times, several well-known methods are likely to have numerical challenges. Fourier

methods, for example, depend in various ways on smoothing properties (like that of the heat

kernel), which are not available here. In the same vein, a numerical implementation of a

something like a differential inequality would suffer from non-local effects. We will develop

an algorithm which is suited to the fact that the only source of randomness in our model

is the crash times. As is usual in pricing American options, the challenge is to functionally

approximate the risk-neutral expectation operator.

Back to our model here, from the dynamics we know that, the evolutions for both the
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stock price is determined and the uncertainty is due to the jump time. Hence, with the

calibration results on hand, it will be really easy to generate the sample path (See the Code

in Appendix 6 for details). Then the efficient way came into our mind is the Monte Carlo

simulation, which is used to generate the sample path first and then apply the least square

estimation terminology introduced by Longstaff and Schwartz [5] to numerically calculate

the desired American Put price.

However due to the limitation of the short interest data, the empirical results for this

option validation will be done in the future work, which will be discussed later in the next

Chapter.
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Chapter 6

Future Research

As we showed above in the Chapter 4, the calibration results we obtained by using the

utilization data is in some extent catch the hard to borrowness mechanism. However those

stock evolution is generated upon each crash period piecewisely, which would result in non-fit

when generated in the whole period randomly. Hence in Chapter 5 we mentioned that this

would yield the difficulty to calculate the option price. The main reason We observed is that

the utilization data within that range has some conflicts with our main assumption and also

doesn’t match the stock evolution well enough, which could be seen from Figure 4.2.

Therefore, we are thinking of looking into other source of data to work out the option

pricing issue. One way we try to investigate is to use the implied dividend yield from the

put-call conversion [1], such that dimp(K,T ) ≡ Ppop(K,T )−Cpop(K,T )+KRT

ST
. For here, dimp is

the implied dividend yield from the option market, and Cpop,Ppop represents the premium

over parity for call/put separately. As Mike Lipkin suggests, this dividend is the key index

when he trades the option on Hard-to-Borrow Stocks, which would replace the role for the

short interest. In order to see how this works, we plot the historical stock prices VS the

implied dividend yield for the 01/22/11 options on equity MTLQQ(general motors) from

period July.2009-Jan.2011 for example in Figure 6.1. We shall see just within the 1 year’s

bankrupt(from 06.2009), the dividend yield might be used as a good reference to catch the

short interest. And as the time elapse, when the value of the stocks approach zero, the

dividend yield looks like irrelated. Hence, it is reasonable for us to drop the tail range of the

stocks and investigate the inverse effect of the dividend yield to justify the validation of the
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stock price. We will also try to find some ways nice enough to implement the put price.

After we finish the above research work, our next step would be naturally get into some

more complicate model. Since as we talked in the beginning, bankrupt stocks are only the

special case of the Hard-to-Borrow stocks. We choose them as our interested topic is based

on their tractability, but good enough to show the Hard-to-Borrowness feedback. However,

in the real market there are lots of limitations on the bankrupt stocks. For example, few

people will have interest to trade the bankrupt stocks, and then after the stock died, the

historical data will also hard to extract from the database. So, based on the mechanism we

got from the bankrupt stocks, it might be more interesting to investigate the general Hard-

to-Borrow stocks, which means we need to add the diffusivity part back into our model. This

should be a challenging but attractive problem in the future.

Finally,the macro picture of this research work is built on a feedback mechanism, which

might be a good guide for us to have the insight into other market phenomena.
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Figure 6.1: MTLQQ0122
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Appendix A Codes for finding the
crash time

The data source for the codes is stored in a txt files, which contains trading volume, stock

price and utilization (short interest).

%% This sub-function is used to find the crash time

global time tau lambda S lambda_0 Stock_0 delta_t crash_position;

load databankruptstock.txt;

datastock=databankruptstock;

J=max(size(datastock));

delta_t=1/J;

time=1/J:delta_t:1;

volume=datastock(:,1);

S=datastock(:,2);

lambda=datastock(:,3);

lambda_0=lambda(1);

Stock_0=S(1);

[pks_stock,locs_stock]=findpeaks(S);

[pks_volume,locs_volume]=findpeaks(volume);

mean_volume=mean(volume);

std_volume=std(volume);

j=1;

k=1;

temp=0;
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n=max(size(locs_stock));

m=max(size(locs_volume));

tau=zeros(min(m,n),1);

for i=1:n

while (j<=m)&&(locs_stock(i)~=locs_volume(j))

j=j+1;

end

if j<=m

if volume(locs_volume(j))>(mean_volume+std_volume)

tau(k)=locs_volume(j);

k=k+1;

end

temp=j;

elseif temp~=0

j=temp;

else j=1;

end

end

N=k-1;

tau=tau(1:N,1).*delta_t;

crash_position=tau/delta_t;

43



Appendix B Codes for Objective
Function

%x(1)=\alpha_q: quiescent rates of growth for stocks

%x(2)=\alpha_h: exposure to HTB for stocks

%x(3)=\tilde{\beta}_1

%x(4)=\tilde{\beta}_2

%x(5)=\kappa_q: rate of growth for intensity

%x(6)=\kappa_h: exposure to HTB for intensity

%x(7)=\gamma: jump size;

%x(8)=\tilde{\gamma}=\gamma*\rho

%\rho: correlation of buy-in rate and stock change rate.

%I_i: objective function i, i=1,2,3

%y=I_1+I_2+I_3

%intensity: deterministic intensity during the crash

function y=Objective(x)

global time tau lambda S lambda_0 Stock_0 delta_t crash_position I_2

global I2 I1 I3

N=max(size(tau));

J=max(size(time));

I_1=zeros(J,1);

I_2=zeros(J,1);

initial_lambda=zeros(N+1,1);

initial_stock=zeros(N+1,1);
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%construct cycle between crashes

increaments=zeros(N+2,1);

increaments(1)=0;

increaments(2:(N+1),1)=crash_position;

increaments(N+2,1)=J;

%generate initial lambda condition for each cycle

jump_lambda=lambda(crash_position);

initial_lambda(1)=lambda_0;

initial_lambda(2:(N+1),1)=(1-x(8))*jump_lambda;

%generate initial stock price condition for each cycle

jump_stock=S(crash_position);

initial_stock(1)=Stock_0;

initial_stock(2:(N+1),1)=(1-x(7))*jump_stock;

%time within the cycle

time_difference=zeros(J,1);

for n=1:(N+1)

time_difference((increaments(n)+1):increaments(n+1),1)=

time((increaments(n)+1):increaments(n+1),1)-increaments(n)*delta_t;

I_1((increaments(n)+1):increaments(n+1),1)=

x(3)*initial_lambda(n)

*exp(x(3)*(time_difference((increaments(n)+1):increaments(n+1),1)))

./(x(3)-x(4)*(exp(x(3)

*(time_difference((increaments(n)+1):increaments(n+1),1)))-1));

I_2((increaments(n)+1):increaments(n+1),1)=log(initial_stock(n))

+x(1)*time_difference((increaments(n)+1):increaments(n+1),1)+

x(2)*log(x(3)./(x(3)-x(4)*initial_lambda(n)*

(exp(x(3)

*time_difference((increaments(n)+1):increaments(n+1),1))-1)))/x(4);
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end

I1=sum((I_1-lambda).^2);

I2=sum((I_2-log(S)).^2);

%Maximum-likelihood Estimation:

crash_cycle=(increaments(2:(N+1),1)-increaments(1:N,1))*delta_t;

I_3=x(5)*crash_cycle-x(6)*log(x(3)./(x(3)-x(4)*initial_lambda(1:N,1).*

(exp(x(3)*crash_cycle)-1)))/x(4)-log(x(5)

+x(6)*x(3)*initial_lambda(1:N,1).*exp(x(3)*crash_cycle)

./(x(3)-x(4)*initial_lambda(1:N,1)

.*(exp(x(3)*crash_cycle)-1)));

I3=sum(I_3);

y=I1+I2+I3;

end
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Appendix C Codes for Simulating
Sample Path

global time tau lambda exponential calibration_result previous_start

N=max(size(time));

L=max(size(tau));

Sample_Number=1;

y=zeros(Sample_Number,N);

time_difference=zeros(1,N);

time=time’;

%calibration_result=calibration;

crash_time=-log(rand(Sample_Number,10));

for i=1:Sample_Number

sample_crash=0;

previous_start=lambda(1);

S_initial=S(1);

count=1;

start=1;

while count<11

guess=tau(min(count,L));

exponential=crash_time(i,count);

crash_time(i,count)=fsolve(’crash_moment’,guess);

sample_crash=sample_crash+floor(crash_time(i,count)/time(1,1));

if sample_crash>N
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break

end

time_difference(i,start:sample_crash)=

time(1,start:sample_crash)-time(1,start);

y(i,start:sample_crash)=S_initial*exp(calibration_result(1)

*time_difference(i,start:sample_crash)

+calibration_result(2)*(calibration_result(3)

*previous_start*exp(calibration_result(3)

*(time_difference(i,start:sample_crash)))

./(calibration_result(3)-calibration_result(4)*previous_start

*(exp(calibration_result(3)

*(time_difference(i,start:sample_crash)))-1))));

S_initial=(1-calibration_result(7))*y(i,sample_crash);

previous_start=(1-calibration_result(8))*phi(crash_time(i,count));

start=sample_crash+1;

count=count+1;

end

end
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