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ABSTRACT 

 The objective of this research is to accelerate the Physical Optics - Shooting and 

Bouncing Ray (PO-SBR), an asymptotic computational electromagnetics (CEM) method, 

on the recently emerged general purpose graphics processing unit (GPGPU) using 

NVIDIA’s CUDA environment.  In modern engineering, simulation programs are used 

to aid the development of advanced devices, and this is where CEM plays the important 

role of simulating the propagation of electromagnetic (EM) waves and fields using mod-

ern computers.  In this thesis, CUDA on NVIDIA’s GPU is used to accelerate the 

PO-SBR method, which greatly reduces the computational time required for various 

problems. 

 Starting with the theoretical background, we introduce the PO-SBR method, includ-

ing the ray tracing and the electromagnetic aspects of the method.  Next, we discuss its 

implementation using the standard CPU C++ language and point out the computationally 

parallel nature of the method.  NVIDIA GPU’s hardware architecture is then described 

to show the portability of the method onto GPU devices.  Then, NVIDIA’s GPU pro-

gramming environment, CUDA, is introduced for the implementation of the part of the 

method to be parallelized.  Finally, this thesis presents a novel and flexible method of 

implementation which fully exploits the hardware architecture of the GPU devices, while 

at the same time remaining flexible and intelligent enough to be able to optimize itself 

even on different NVIDIA GPU hardware platforms.  The acceleration reaches more 
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than 50 times speedup as compared to the traditional CPU version of the code, and it is 

believed that a higher speedup can still be achieved with problems of increasing com-

plexity. 
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CHAPTER 1 

INTRODUCTION 

 This chapter provides an overview for the background and the general approach dis-

cussed in the thesis.  For electrically small problems, where the size of the structures 

under study is relatively small compared to the wavelength of the fields, full wave me-

thods are good computational electromagnetic (CEM) methods to accurately calculate the 

field distribution on the structures.  However, when the problems are electrically large, 

for example, the scattering of radar cross section (RCS) of transportation carriers, or the 

computation of signal strength from the telecommunication towers to the whole city, full 

wave methods are extremely time-consuming to the extent that the computational process 

becomes practically impossible.  Various analytical methods have been proposed in the 

past as alternative solutions to the problem [1]-[4].  However, the analytical approaches 

often rely heavily on the simplicity and the symmetry of the structures, such as 

open-ended circular cylinders.  These approaches are not able to solve structures with 

more complexity. 

 To address electrically large problems, asymptotic methods are developed to ap-

proximate electromagnetic propagation, using the optical properties of very high fre-

quency EM waves.  One of these methods is the Physical Optics - Shooting and Bounc-

ing Ray (PO-SBR) method [5].  It is a method combining the method of Geometric Op-
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tics (GO) [6]-[9] and Physical Optics (PO) [9].  In Geometric Optics, electromagnetic 

propagation is first represented with the reflection, refraction, and divergence of optical 

rays. The electromagnetic properties of magnitude, direction, and phase are then added on 

top of the ray traces to mimic the properties of waves.  In Physical Optics, incident elec-

tromagnetic waves are converted into equivalent surface currents on the scattering sur-

faces of the structure under study, using the surface equivalence principles.  The current 

is then integrated and re-radiated as electromagnetic waves towards the observation 

points everywhere in the computational domain. 

 Combining Geometric Optics and Physical Optics methods, PO-SBR begins the 

computation by launching numerous rays from the sources, usually antennas or regions of 

plane waves.  The magnitude of the rays is dependent upon the pattern of the source.  

Each ray then propagates through the computational domain and bounces between the 

target surfaces under study using the GO method.  Next, the electromagnetic fields at 

each hit point are converted into surface currents using the PO methods and re-radiated 

towards all observation points.  Finally, the fields at each observation point are summed 

up to represent the final electromagnetic field computed at the corresponding location of 

the computational domain.  Although the optical approximation is not a precise electro-

magnetic theory compared to the full wave methods, asymptotic methods are able to pro-

vide a very fast and reasonable estimation of the field strength in presence of electrically 

large structures. 

 It can be seen that the PO-SBR method described above can still be computationally 
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expensive in terms of computation time.  For the ray tracing part of the method, modern 

rendering programs such as Physically Based Rendering Technique (PBRT) [10] are ad-

vanced enough with many built-in ray tracing accelerators.  Also, since the majority of 

the PO-SBR applications focus on target structures whose shapes are relatively simple for 

the ray tracers, the majority of the computational time taken is due to the steps dealing 

with the electromagnetic aspect of the method, where the fields found at each hit point 

need to be converted into surface currents, then integrated and re-radiated towards all ob-

servation points.  Moreover, computing fields from different source frequencies involves 

going through the entire process separately, and thus further increasing the overall com-

putation time. 

 To accelerate PO-SBR method, the parallel nature of the method is carefully studied.  

It can be easily seen that the electromagnetic information carried in a given ray is inde-

pendent of that carried in another.  In other words, the field distribution of the computa-

tional domain is merely a summation of the fields resulting from different initial rays.  

These rays bounce, induce the currents, and re-radiate without interference with each 

other, and thus are highly parallel in terms of the electromagnetic computation.  Tradi-

tionally, parallel computation is done through many-core clusters of CPU processors, 

which are expensive and space-consuming.  Alternatively, there have been numerous 

attempts in the recent past to utilize the graphics processing units (GPU) for their mul-

ti-core nature on personal computers [11].   While GPU hardware is originally con-

structed for graphical purposes, researchers exploit libraries and frameworks designed for 
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graphical purposes for general computation purposes.  However, extensive modifica-

tions and translations of the original codes need to be developed to fit the graphical libra-

ries and frameworks, thus making the applications of GPGPU difficult.  A turning point 

came recently when NVIDIA released CUDA, an environment specifically designed for 

GPGPU programming purposes.  This has eased the use of GPU for general purpose 

computation, and GPU parallelization has quickly been adapted for electromagnetic 

computational methods [12].  

 Starting with the theoretical background, we introduce the PO-SBR method, includ-

ing the ray tracing and the electromagnetic aspects of the method in this thesis.  To sim-

plify the code to its most basic elements for parallelization, only PEC target structures are 

considered in this thesis.  Next, we discuss its implementation using the standard CPU 

C++ language and point out the computationally parallel nature of the method.  NVIDIA 

GPU’s hardware architecture is then described to show the portability of the method onto 

GPU devices.  Then, NVIDIA’s GPU programming environment, CUDA [13], is intro-

duced for the implementation of the part of the method to be parallelized.  Finally, this 

thesis presents a novel and flexible method of implementation which fully exploits the 

hardware architecture of the GPU devices, while remaining flexible and intelligent 

enough to be able to optimize itself even on different NVIDIA GPU hardware platforms.  

The acceleration reaches more than 50 times speedup as compared to the traditional CPU 

version of the code, and it is believed that a higher speedup can still be achieved with 

problems of increasing complexity. 
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CHAPTER 2 

PO-SBR THEORY 

 This chapter describes the PO-SBR method by breaking the method into a few com-

ponents.  Section 2.1 describes the ray tracing aspect of SBR.  Section 2.2 describes the 

electromagnetic aspect of SBR.  Section 2.3 describes the Physical Optics.  The ver-

sion of the PO-SBR used by this thesis is detailed by the derivations of equations and the 

explanation of their meanings and choices, and the overall picture is shown in Figure 2.1.  

First, SBR traces the hit points and updates the incident electromagnetic fields from the 

source onto those hit points.  Next, PO paints the equivalent surface current using the 

surface equivalence theory.  The re-radiations of the surface currents from all hit points 

are then collected and summed at the desired observation points.  And finally, the source 

radiates directly towards the observation points using SBR, and the resulting fields are 

added on top of the summation from the surface currents to become the final field solu-

tion at the observation points. 

2.1 Shooting and Bouncing Rays - Ray Tracing 

 This section describes the ray tracing aspect of SBR.  The ray tracing aspect of the 

PO-SBR theory is fairly simple and straightforward.  It consists of bundles of rays ra-

diating from sources in the computational domain, whether they are antennas positioned 

in the space or plane waves propagating towards the target structures. 
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There are many different methods to launch the rays, and here three common methods are 

described (consultation with SAIC, August 2010).  The first method is the burst method, 

in which the rays are launched in equal degree spacing throughout the entire antenna rad-

iation pattern or plane wave front, as shown in Figure 2.2.  This is the most straightfor-

ward way to launch the rays, in that it does not require sophisticated treatments on how to 

distribute the rays.  However, this crude way will most likely generate excess rays in the 

computational domain that will never be incident upon the target structures, and thus it is 

a drawback in terms of computational resources. 

 A more advanced method is the bounding box method, which first encloses the target 

structure in a volume.  Then, rays are generated at equal spacing on the volume and 

launched towards the volume, as shown in Figure 2.3.  This is a more dynamic way of 

generating the rays, in that it can guarantee that all of the generated rays will be able to be 

incident at the structure.  While being a more advanced method than the previous one, 

there are still spaces for improvement.  For one, the rays are still generated in equal de-

gree spacing without considering the detailed geometry of the structure.  That is, some 

parts of the target structure might be large and flat, where the field information can be 

easily obtained using sparse rays.  On the other hand, some parts of the target structure 

might be intricate, where dense rays need to be generated to capture the signature of the 

complexity. 

 Therefore, the most sophisticated method is the surface mesh method, where the rays 

are generated according to the triangular facets of the target structure mesh, as shown in 
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Figure  2.4.  This is the most optimal method in terms of accurately capturing the geo-

metry of the target structure, and the field information resulting from the unevenly spaced 

rays will yield a more precise solution than any of the previous methods. 

 Notice that the maximum spacing between rays in any of the above methods is not 

arbitrary.  The ray tracing result should provide sufficient initial hit points to correctly 

mimic the impact of the electromagnetic wave front.  The surface mesh method is natu-

rally an efficient method, where only a few rays need to be generated to mimic the impact 

on large flat surfaces, and more rays are needed to model the impact on curvy surfaces.  

As for the burst method and the bounding box method, since the rays are generated in 

equal angles, the angular spacing of the rays needs to be small enough to capture the 

curvy surfaces, and thus the computational efficiency is sacrificed by the extra rays on the 

flat surfaces.  Since perfect precision is not a concern for the asymptotic methods, the 

practice in industry is to find convergence to the problem through initial guess and trial 

and error. 

 Once the rays have been successfully generated, they will propagate independently 

through the computational domain until incident upon the target structure surfaces.  At 

this point the rays behave analogously to light.  For perfect electric conductor (PEC) 

surfaces, the rays bounce off with angles equal to that of the incident field, as described 

with laws of reflection.  For dielectric surfaces, the rays refract into the target structure 

using Snell’s law. 

 After the first hit points, the subsequent reflected and refracted rays will continue to 
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propagate independently within the computational domain until the following.  1. The 

ray propagates out of the computation environment; 2. The ray has bounced far enough to 

lose its corresponding electromagnetic intensity; 3. The ray is caught in a cavity and is 

bouncing back and forth between a set of repeating hit points.  At this point, the rays are 

then terminated to avoid unnecessary tracings, and the electromagnetic information is 

ready to be added on top of the rays. 

 For simplicity, the burst method is used in this thesis to launch the rays into the 

computational domain, with a variable angular spacing radiance, denoted spacingRad. 

2.2 Shooting and Bouncing Rays - Electromagnetics 

 This section describes the electromagnetic aspect of SBR on top of the ray tracing.  

From the previous section, the ray tracing procedure has provided the computational do-

main with numerous hit points, caused by the emission of rays from the sources.  The 

ray tracing procedure will output the necessary information required for the calculation of 

the electromagnetic aspect of the field, namely, the ray depth of bounces, the coordinates 

of the hit points, the normal vector n̂ of the respective surface elements, and the propaga-

tion constant k̂  of the reflected or refracted ray at the hit points.  Once the step is com-

plete, the electromagnetic aspect of SBR is ready to be added on top of the ray traces. 

 Starting from the sources, the field distribution of the sources is represented onto the 

electromagnetic aspect of the rays with varying magnitudes.  If the source is simply a 

plane wave incident into the computational domain, each ray then carries the same initial 
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magnitude and phase.  On the other hand, if the source is an antenna in the computa-

tional domain, each ray still carries the same initial phase with the magnitudes varying 

according to the antenna field directivity, power directivity, or simply according to the far 

or near field distribution equation.  In this thesis, the Hertzian dipole is used as the 

source, with a field distribution equation of: 

 
sin

4

jkrkIdl e
E j

r









 , (1.1) 

where two kinds of radiation from the source need to be computed.  One of them is the 

direct line-of-sight radiation from the source to the observation points.  This radiation 

represents the direct Geometric Optics contribution to the final field at the observation 

points.  The other is the Physical Optics contribution to the final field at the observation 

points through the equivalent surface currents on the hit points.  These currents and their 

resulting re-radiating fields can be obtained through the following steps. 

 The fields at the first hit point of each ray can be obtained from the field distribution 

of the source and the distance between the source and the first hit points.  Since only 

PEC target structures are considered in this thesis, only the magnetic field incH


 at the 

first hit points needs to be calculated for the conversion to surface current. While travel-

ing further onto subsequent hit points, only three aspects of the field change their value: 

direction, phase, and magnitude.  Upon incidence on the first hit points, the fields will 

bounce away following the path of the respective ray trace, and propagate toward the next 

hit points, as shown in Figure 2.5.  The field at the new hit points can be obtained from 
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the previous hit points from Equation (1.2) and Equation (1.3): 

 ˆ ˆ,      (2 )inc ref jkd ref inc inc

prevE E e E n n E E   
    

, (1.2) 

 ˆ ˆ,      (2 )inc ref jkd ref inc inc

prevH H e H H n n H   
    

, (1.3) 

where d is the distance between the current and previous hit points.  First, the incident 

fields at the current hit points are flipped of their direction, using the laws of reflection.  

Then, the resulting reflected fields at the current hit points propagate toward the follow-

ing hit points, found by the ray tracing procedure described in Section 2.1.  The fields 

then become the incident fields for the following hit points, and the procedure repeats un-

til the respective rays die out, which can be either hard fixed to a certain number of 

bounces, or when the magnitude of the field drops to a certain desired level.   At this 

point, the direction and phase of the field are updated at all hit points. 

 Notice that the electromagnetic fields of the sources are continuous but the initial 

rays are discreet.  Each ray is responsible for carrying the electromagnetic information 

of a patch of the radiating sphere of the source as ray tubes.  These patches will also 

follow the path of their respective ray traces and transform into rectangular footprint 

areas for the painted currents.  The patches will first travel the computational domain 

along with the respective rays until projected upon the target surface mesh, where an ini-

tial footprint size can be found. Based on the ray distribution of the burst method, the 

corresponding patch size of each ray is integrated as a function of ray angle and distance 

to the hit point, as shown in Equation (1.4): 
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
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        

    




, (1.4) 

since 

 cos cos 2sin sin
2 2

a b a b
a b

    
      

   
, (1.5) 

 2

0Area 2sin sin
2

r 
 

 
   

 
. (1.6) 

Thus, the length l  of the initial patch size is just the square root of the patch area: 

 

 2 sin sin
2

o

SpacingRad
l r SpacingRad 

 
     

 
. (1.7) 

Since electromagnetic waves diverge with distance, the initial footprint size will expand 

with subsequent bounces to reflect ray tube divergence, as shown in Figure 2.5, where the 

rate of expansion is proportional to the total distance traveled,
totald , as denoted by Equa-

tion (1.8): 

 2 1

0

totald
l l

d

 
  
 

, (1.8) 

where
1l and 

2l  are respectively the current and next patch length, and 
0d  is the distance 

from the source to the initial hit point. 

 

 As the footprints expand to represent the area of the eventual painted currents, power 

conservation is also needed for each incident field at the hit points.  To conserve energy, 

the magnitude of the fields must now be inversely proportional to the total distance tra-
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veled, as will be described in the following section.  At this point, the magnitude of the 

field is updated, and the fields have been radiated from the source to all hit points. 

2.3 Physical Optics 

 This section describes the process of Physical Optics after the process of SBR is 

completed.  Once the incident field at each hit point is found through SBR, it is con-

verted into the surface painted current using the surface equivalence principle, with the 

area equivalent to the projected footprint by the incident ray tube.  Equation (1.9) is used 

to convert incident magnetic fields into surface painted currents on PEC surfaces: 

 
ˆ

ˆ2
ˆ| |

inc
inc

inc

k n
J n H

k n

 
  




 

 . (1.9) 

Notice that the sign correction at the end of Equation (1.9) is added as an extra guarantee 

to the normal direction of the corresponding surface mesh, since the normal vector n̂ ob-

tained from the ray tracing might not be on the correct side of the mesh.  The region of 

the footprint of the surface currents is represented by vectors u


and v


on the corres-

ponding surface mesh, as shown in Figure 2.6, where 

 
ˆ

ˆ ˆ,      
ˆ

ref

ref

n k
v l v v

n k


  






 , (1.10) 

where v̂  is the unit surface vector of one side of the footprint obtained by the normalized 

cross product of n̂  and 
ref

k


, and 

 ˆ ˆ ˆ ˆ,      
ˆ| |ref

l
u u u v n

n k
   



  , (1.11) 

where û  is the unit surface vector of one side of the footprint obtained by the cross 
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product of v̂  and n̂ .  The factor ˆ| |refn k


 is divided from the magnitude of u


 to 

take into account only the tangential component of the incident wave. 

 While Equation (1.9) is applicable to derive the surface painted current throughout 

the entire area of the corresponding footprint, it will only result in correct phasing at the 

hit point, the center of the footprint, where incH


is used.  To correct the phasing due to 

the field approximation, Equation (1.12) is used to adjust the phase of the center current

centerJ


at the hit point to represent the current everywhere in the corresponding footprint: 

 
inccenter jk sJ J e 

  
, (1.12) 

where 
inck


is the unit incident wave vector and s


is the vector from the hit point to cur-

rent locations on the footprint, as shown in Figure 2.6. 

 After footprints of painted surface current have been found everywhere on the target 

structure’s surface, they will re-radiate back into the computational domain, as described 

by physical optics.  Specifically, every painted current at every hit point will re-radiate 

towards every observation point, the locations in the computational domain where the 

strength of the field is of interest.  Then, the fields re-radiated from all hit points toward 

the same observation point are summed, and become the PO part of the final field at the 

observation point. 

 Green’s function is introduced to calculate the field at the observation points.  In 

general, if there exists a wave equation in the form of 

 2 2( ) ( ) ( )k f r s r  
 

, (1.13) 

in which ( )f r


 is the unknown, then it can be solved using Green’s theorem where 
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 ( ) ( , ) ( )f r g r r s r dr   
    

, (1.14) 

where 

 ( , ) ,     | |
4

jkRe
g r r R r r

R



   
   

 (1.15) 

is a Green’s function satisfying 

 2 2( ) ( ) ( )k f r r r     
  

. (1.16) 

For the re-radiation problem, the equation for the fields can be formulated using the wave 

equation.  Start from Maxwell’s equations, where 

 E j H  
 

, (1.17) 

 H J j E  
  

. (1.18) 

The equations can be combined to form 

 
2

( )

              

E j J j E

j J E

 

  

   

  

  

 
.

 (1.19) 

 

Using the vector identity of  

 

 2( )A A A   
  

, (1.20) 

Equation (1.19) can be rewritten as 

 

 2 2( )E E jk J k E     
   

, (1.21) 

then reordered into 

 2 2 1
E k E jk J 


    

  
. (1.22) 

For free space propagation, since the patches only contain uniform surface current with-

out charge density source, the second term of Equation (1.22) can be omitted, reducing 
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the equation into 

 2 2E k E jk J  
  

, (1.23) 

which is in the form of Equation (1.13).  The unknown electric field can then be solved 

using Equation (1.14) and is written as 

 ( , )
s

E jk g r r Jds   
  

, (1.24) 

with the current J


 expressed as in Equation (1.12).  The distance variable R  in the 

Green’s function expressed in Equation (1.15) can be approximated as shown in Figure 

2.7, with 

 obskR kd k s  
 

, (1.25) 

 R d , (1.26) 

and approximating the Green’s function as 

 
4 4

obsjkR jkd jk se e e
g

R d 

  
 

 

. (1.27) 

Substituting Equation (1.12) and Equation (1.15) into Equation (1.24) yields 

 
 

4

obs incjkd
j k k sscat center

s

jk e
E J e ds

d






 

  
   

. (1.28) 

Notice that the double integral in Equation (1.28) integrates the current distribution across 

the whole footprint area. With s


 being the vector from the hit point to current locations 

on the footprint, it can be split and integrated separately by vectors u


 and v


.  Using 

the integral equation of 
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sin
2
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jkx
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e
e dx a

kajk
 

 
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 
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Equation (1.28) can be written as 

 

   

4

ˆ ˆ                          sinc sinc
2 2

jkd
scat center

obs inc obs inc

jk e
E J

d

u v
A k k u k k v







  

    
        

   

 

   

,

 (1.30) 

 

and this is the equation for the electric field used for re-radiation from all hit points to all 

observation points.  Note that the theoretical re-radiated far fields of the currents are 

plane waves orthogonal to the traveling direction.  Since approximations have been 

made on the electric field equation, it is desired to take out the erroneous computed field 

parallel to the traveling direction.  Equation (1.30) thus becomes 

 ( )scat scat scat obs obs

finalE E E k k  
   

, (1.31) 

and this is the final re-radiated electric field equation.  The final re-radiated magnetic 

field equation is then simply 

 
1scat obs scat

final finalH k E


 
 

. (1.32) 
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2.4 Figures 

 

Figure 2.1 PO-SBR overall picture [14]. 

 

 

Figure 2.2 Burst ray launching method. 
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Figure 2.3 Bounding box ray launching method. 

 

 

Figure 2.4 Surface mesh ray launching method. 
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Figure 2.5 Field phase update and surface current expansion. 

 

 

 

Figure 2.6 Equivalent surface painted current. 
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Figure 2.7 Re-radiation of the surface current towards the observation point. 
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CHAPTER 3 

GPU IMPLEMENTATION 

 This chapter describes the GPU implementation of the PO-SBR.  Section 3.1 pro-

vides the background and the architecture of GPU.  Section 3.2 introduces CUDA as the 

interface to implement codes on GPU.  Section 3.3 lays out the proposed method used 

for GPU implementation of the PO-SBR. 

3.1 NVIDIA’s GPU Architecture 

 This section provides the background and the architecture of the GPU from NVIDIA.  

In contrast to a modern CPU which has few cores operating at high frequency, a modern 

GPU has numerous cores operating at a slightly lower frequency.  While CPU specia-

lizes in serial information processing, GPU operates much faster in massively parallel 

information processing. 

To compare the processing capability of the processors, floating point operations 

per second (FLOPS) are used, and the FLOPS comparison between Intel’s CPUs and 

NVIDIA’s GPUs is shown in Figure  3.1, where the peak number of flops of the GPUs 

exceeds that of the CPUs, with a trend of an ever increasing difference.   Another im-

portant factor in the overall processing speed is the memory bandwidth.  According to 

Figure  3.2, it can be seen that the same trend can be found with the memory bandwidth 

in the CPU-GPU memory bandwidth comparison. 
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Although GPUs have higher flops and memory bandwidth than those of CPUs, 

they serve a completely different purpose and thus cannot easily be exchanged or re-

placed.  As stated above, CPUs have very few cores, but with each core operating at a 

high frequency.  This is especially suitable for normal operating system software 

processing and computation, as most programs and tasks are serial and thus single 

threaded.  CPUs are especially adapted to this, with high frequency processing units and 

large cache, as shown in Figure 3.3.  However, with the increasing popularity of com-

puter graphics and physics simulation, GPU architectures are introduced specifically to 

target these tasks, where massive information can be processed in parallel using numer-

ous processing units in the GPU, as shown in Figure 3.4, where the size of the cache is 

shrunk due to the relatively little information carried by each individual processing unit. 

The hardware specification of NVIDIA’s GPUs is shown in Figure 3.5.  Each 

GPU contains a number of streaming multiprocessors (SM), each of which is a little 

cluster of several scalar processors (SP) executing in groups.  Each SM carries its own 

shared memory, which is cached upon initial access.  Each SM also carries its own con-

stant and texture cache, and is read-only during the GPU processing phase.  The memo-

ry and the caches are shared among the SPs in the same SM, and are not communicable 

to other SMs.  Each of the SPs carries its own small number of register units, which is 

not communicable to other SPs.  On top of the local memories and processing units, 

there is a global memory residing outside the GPU chip but still on the GPU card.  Its 

access is slow and not cached, but it has a large capacity and is communicable to all the 
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processing units. 

 NVIDIA’s Quadro FX5800 is used as the GPU for this thesis, with a Compute Capa-

bility of version 1.3.  The hardware architecture is determined by the version of the 

Compute Capability, as shown in Table 3.1.  To put the specific hardware architecture of 

the graphics card in numbers, FX5800 is clocked at 1.3 GHz, with 4 GB of global mem-

ory and 64 kB of constant memory.  It has 30 SMs, each of which contains 8 SPs, 16 kB 

of registers, and16 kB of shared memory. 

3.2 Compute Unified Device Architecture Environment 

 This section introduces CUDA as the interface to implement codes for the GPU. 

While the hardware architecture of the GPU is specified, it is up to the software architec-

ture to control the GPU for parallel processing.  The Compute Unified Device Architec-

ture (CUDA) from NVIDIA is a platform which acts as an interface between the regular 

CPU computer language and the GPU hardware. 

 On the CUDA level, the GPU computing units are grouped in smaller partitions.  

The computation process is shown in Figure 3.6 as follows: the serial part of the program 

is first run on the CPU, denoted as the “host.”  Then, the GPU, denoted as the “device,” 

is initiated to prepare for parallel computation.  Each parallel computation, denoted as a 

kernel, will invoke a grid, which contains a maximum of 2 dimensions of blocks; each 

block contains a maximum of 3 dimensions of threads, where each thread is an individual 

processing unit analogous to a single scalar processor, and is capable of carrying out one 
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instruction at a time.  With enough threads declared in the kernel and carrying out the 

same instructions simultaneously, it is not hard to see that parallelism can be achieved 

through the numerous threads.  To access these threads, a set of intrinsic variables are 

provided for the x, y and z coordinate of each block in the grid and each thread in a block.  

Various thread arrangement schemes can be achieved by combinations of these variables. 

 While the threads are used for massive parallel computation, the number of thread 

declarables is limited.  Specifically, only a certain number of blocks are allowed to be 

declared in a grid, and a certain number of threads in a block.  To put these into numbers 

for Quadro FX5800, the maximum dimension of a grid is 65535×65535 blocks, and the 

maximum dimension of a block is 512×512×64 threads, with a maximum of 512 threads 

per block. 

 Mapping CUDA’s software architecture to the device’s hardware architecture, one 

can see that since an individual thread is analogous to a scalar processor, the accessibility 

of different memory then varies by the different thread groupings, as shown in Figure 3.7.  

Each thread will be provided with a number of registers, which are only accessible 

through the respective thread and not the others.  Similarly, a block of threads is ana-

logous to a streaming multiprocessor, which is able to utilize its own private portion of 

the on-chip shared memory.  As for the top level grid, all of the blocks and therefore 

threads are able to access the global memory without any constraints. 

 A key difference in the analogy between the hardware and the software architecture 

is how the GPUs actually carry out the computation.  In the usual situation, there will be 
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many more threads declared than the number of scalar processors, and many more blocks 

declared than the number of streaming multiprocessors.  As a result, blocks and threads 

are brought onto the processing units and are computed sequentially.  A streaming mul-

tiprocessor is able to take in one or more blocks at a time, providing that the total amount 

of shared memory used for the blocks is less than the total amount of shared memory 

available for one streaming multiprocessor.  The threads are then divided into groups of 

32 threads, called warps.  The 8 scalar processors in the streaming multiprocessor ex-

ecute the same instruction sets on one warp at a time, until all the warps have been taken 

care of. 

 The general flow of the computation process in CUDA is as follows: once the pro-

gram reaches the parallel portion, CUDA commands will be used to initiate the device.  

Next, the data on the host memory which is to be parallel computed are sent to the dif-

ferent memory locations in the device using CUDA malloc and memory copy functions.  

Then, CUDA will use the various thread arrangement schemes to distribute the threads to 

the streaming multiprocessors and the scalar processors for parallel computation.  The 

result of the computation is then transferred back from the device memory to the host 

memory, completing the parallel computation portion of the program. 

3.3 PO-SBR Implementation with CUDA 

 This section lays out the proposed method used for the GPU implementation of the 

PO-SBR method.  To implement the PO-SBR method on the GPU using CUDA, the 



 26 

parallel nature of the method needs to be utilized.  From Chapter 2, it can be seen that 

nearly all steps of the method involve separate rays of Geometric Optics and Physical 

Optics computed independently.  While the ray tracing part of the SBR could be paralle-

lized using NVIDIA’s newly developed OptiX, modern ray tracing programs already have 

many built-in accelerators which dramatically speed up the ray tracing process on the 

CPU.  Moreover, since the electromagnetic process of the method is much more com-

putationally expensive than the ray tracing process, the parallelization of ray tracing is 

not considered in the scope of this thesis. 

 In the electromagnetic process of the method, three chunks of wave propagation 

processes can be identified for parallelization: from the source to all hit points, from all 

hit points to all observation points, and from the source to all observation points.  Mul-

tiple frequencies also need to be considered for parallelization. 

 The PO-SBR computation starts up with using a modified version of the image ren-

dering program Physically Based Rendering Technique (PBRT) for ray tracing through 

the computation domain.  The geometry of the target object is meshed into a facet for-

mat file, and is fed into the ray tracer along with the source coordinates.  The burst me-

thod is used to launch initial rays from the source in equal degree of spacing towards all 

directions.  The ray tracer then returns the ray depth, the hit point coordinates, the nor-

mal vector n̂ , and the propagation constant k̂  upon completion.  The obtained hit 

points are stored in the host memory for the later electromagnetic computation. 

 At this point, CUDA commands are used to initialize the device. The data on the host 
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memory, which is to be parallelly computed, are sent to the different memory locations in 

the device using CUDA functions.  The large amount of data for the hit points are first 

sent to the global memory.  Smaller constant data, such as the number of hit points, the 

number of observation points, the number of frequencies, spacing between the rays in ra-

diance, and propagation constants, are sent to the cached constant memory for repeating 

access. 

 Before invoking the kernels for parallel computation, threads must be allocated in a 

way that utilizes the hardware and software architectures of the device.  First, each 

block calculates one or more hit or observation points, depending on the amount of 

shared memory available per streaming multiprocessor.  Also, it is known that the equa-

tions for computing different frequencies are exactly the same.  Therefore, different fre-

quencies on the same hit or observation point should be placed together in the same block, 

with common information about the points stored in the shared memory for fast cached 

access.  A total of three kernels are invoked: from source to all hit points, from all hit 

points to all observation points, and from source to all observation points.  The design 

strategy for each kernel is as follows: first, the total number of threads declared is distri-

buted evenly to each streaming multiprocessor.  Each streaming multiprocessor will then 

handle one block at a time.  Depending on the available amount of the shared memory 

per streaming multiprocessor, each block will contain a fixed number of maximum 

threads per block.  It was found that with the amount of shared memory used per thread, 

the maximum number of threads per block will never exceed 512, which is the intrinsic 
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CUDA limitation for the size of a block. 

3.3.1 Radiation from Source to All Hit Points 

 Radiation from source to all hit points is the first electromagnetic process of the 

PO-SBR method.  The incident field from the source needs to be computed at every ini-

tial ray hit point, and then its phase updated for all subsequent ray bounces in order to 

find the surface currents.  This is when complete parallelization is not possible, since the 

electromagnetic information at the subsequent hit points depends on the previous hit 

points.  Therefore, a thread is declared for each of the Nhit ray hit points, as shown in 

Figure 3.8.  The threads for the initial hit points are computed first; then those for the 

subsequent hit points are computed sequentially on the GPU using the computed field 

values at the previous hit points.  The following is carried out in this kernel: 

 A 2D grid of blocks is allocated (2D is to avoid grid dimensional limit).  

 Each block in the grid computes the incident field at L ray hit points for all Nfreq 

frequencies.  

 Loops over all hit points and all frequencies. 

 The exact number of ray hit points per block is based on the amount of shared 

memory available per block.  



 29 

 For a single frequency simulation this is around 110 hits per block. More frequen-

cies require more memory and therefore allow fewer ray hits per block.  

 Each thread within the block (maximum of 512) computes the incident field for 

one combination of frequency and hit point.  

 The field values for all frequencies and all hit points are stored in device global 

memory to be used by the next step.  

3.3.2 Radiation from All Hit Points to All Observation Points 

 Radiation from all Nhit hit points to all Nobs observation points is the Physical Optics 

part of the PO-SBR method. The induced surface current at each hit point needs to be 

re-radiated towards every observation point in order to find its contribution towards the 

total scattered field at the respective observation points.  A thread is declared for each 

observation point, as shown in Figure 3.9.  This is the process which takes up the major-

ity of the computation time, since the process loops through all hit points, observation 

points, and frequencies.  Kernels of different hit points are invoked and looped to com-

pute the fields at all observation points due to the surface current of each hit point.  The 

following is carried out in each kernel: 

 A 2D grid of blocks is allocated (2D is to avoid grid dimensional limit).  
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 Each block in the grid computes the scattered field at M observation points for all 

Nfreq frequencies.  

 Loops over all hit points, all observation points, and all frequencies. 

 The exact number of observation points per block is based on the amount of 

shared memory available per block.  

 For a single frequency simulation this is around 290 observation points per block. 

More frequencies require more memory and therefore allow fewer observation 

points per block.  

 Each thread within the block (maximum of 512) computes the induced current 

and scattered field for one combination of frequency and observation point.  

 This requires the host calling kernels sequentially for each hit point, looping 

through each hit point to accumulate the field values at all observation points in 

device global memory to be used by the next step.  

3.3.3 Radiation from Source to All Observation Points 

 Radiation from source to all observation points is the last electromagnetic process of 

the PO-SBR method.  The incident field from the source needs to be computed at every 

observation point in order to compute the contribution of the direct line-of-sight field to 

the total field at the Nobs observation points.  The equations involved are almost identical 
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to the finding of initial hit points for radiation from source to all hit points.  A thread is 

declared for each observation point, as shown in Figure 3.10.  The following is carried 

out in this kernel: 

 A 2D grid of blocks is allocated (2D is to avoid grid dimensional limit).  

 Each block in the grid computes the incident field at M observation points for all 

Nfreq frequencies.  

 Loops over all observation points and all frequencies. 

 The exact number of observation points per block is based on the amount of 

shared memory available per block.  

 For a single frequency simulation this is around 290 observation points per block. 

More frequencies require more memory and therefore allow fewer observation 

points per block.  

 Each thread within the block (maximum of 512) computes the induced current 

and incident field for one combination of frequency and observation point.  

 The field values for all frequencies and all observation points are added to the 

scattered field values in device global memory before transferring the result back 

to the host machine for visualization.  
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 Notice that the fields at the observation points are accumulated at the same place in 

the global memory for the hit point loops and for the line-of-sight field.  Only the final 

accumulated fields at the observation points need to be transferred from the device back 

to the host.  This is especially important for CUDA implementation, since memory 

transfer speed is a potential bottleneck.  Therefore the amount of memory transferred 

needs to be minimized. 
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3.4 Figures and Table 

 

 

Figure 3.1 Floating point operations per second (FLOPS), CPU vs. GPU. 

 

 

Figure 3.2 Memory bandwidth, CPU vs. GPU. 
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Figure 3.3 CPU hardware architecture. 

 

 

 
Figure 3.4 GPU hardware architecture. 
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Figure 3.5 Detailed NVIDIA GPU architecture. 
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Figure 3.6 The computation process flow chart. 
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Figure 3.7 Memory accessibility of the thread divisions. 
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Figure 3.8 Thread declaration of kernel “Radiation from source to all hit points.” 
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Figure 3.9 Thread declaration of kernel “Radiation from source to all hit points.” 

. 
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Figure 3.10 Thread declaration of kernel “Radiation from source to all hit points.” 
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Table 3.1 Compute Capability version and the corresponding hardware specifications. 

.
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CHAPTER 4 

NUMERICAL RESULT AND 

COMPARISON ANALYSIS 

 This chapter provides examples of the original and the accelerated PO-SBR method.  

Section 4.1 validates the version of the PO-SBR method described in this thesis by com-

paring the computational result with a known analytical result.  Section 4.2 gives an 

example of the scattering field computation.  Section 4.3 gives an example of the radia-

tion pattern computation. 

4.1 Result Validation 

 This section validates the version of PO-SBR described in this thesis.  The PO-SBR 

method is asymptotic and thus lacks precision compared to the full wave methods.  

Moreover, different approximations and assumptions can be freely made to construct dif-

ferent versions of the PO-SBR method. Since it is difficult for asymptotic methods to ob-

tain a very precise solution of the fields, result validation will be made, based on the si-

milarity rather than the numerical error, of the resulting field strengths between analytical 

and numerical solutions.  To obtain an analytical solution of the field of an antenna in 

presence of an object, simple geometry is employed. 
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4.1.1 Hertzian Dipole with Infinite Plate 

 The PO-SBR method described in this thesis is validated through the comparison of 

an existing analytical solution, where a hertzian dipole of 10 GHz, located at 

 0,0,0.1 m , is placed on top of an infinite PEC plate on the x-y plane, as shown in Fig-

ure 4.1.  The field is calculated at a distance of 10 m away from the plate.  The magni-

tude of the ẑ  component of the electric field is plotted for validation, with an analytical 

equation of 

sin cos( cos )
2

jkrj kIl
E kh e

r



 



  .                 (4.1) 

Figure 4.2 shows the comparison between the analytical and the numerical radiation pat-

tern of the 90   plane at 5 mr   away from the origin.  The resulting analytical 

field strength of x-y plane at 10 mz   is shown in Figure 4.3, and the numerical field 

strength is shown in Figure 4.4.  Figures 4.5 and 4.6 show the analytical and numerical 

field strength of the 0   plane. Notice that although the details of the field strength 

differ slightly between the two plots, the general shape of the field strength remains the 

same, and thus the PO-SBR method described in this thesis is validated. 

4.2 Scattering Field Problems 

 This section gives an example of the scattering field computation.  The scattering 

field problems are used to obtain the field scattering signatures of target objects.  The 

solution shows the field distribution and distortion of the incident field in presence of an 
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object. 

 In the following scattering field example, three parameters of the effect of computa-

tional speedup are examined and analyzed.  The parameters are the number of observa-

tion points, the number of hit points, and the number of frequencies. 

4.2.1 Scattering Field: 1982 Porsche 

 Using CUDA for acceleration, the speedup in computation timing of the PO-SBR 

method is documented and compared.  Following is a scattering field problem where a 

hertzian dipole antenna radiates towards a 1982 Porsche from a distance of 4.5 meters 

away from the head of the car at 10 GHz, as shown in Figure 4.7.  The ray tracing with 

an angular spacing of 0.1° resulted in a total of 18,184 hit points.  The scattered field is 

computed at 0 mz   around the car, and is plotted in dB and shown in Figure 4.8 with a 

varying number of 100, 2,500, 10,000, and 250,000 observation points. 

The computational time taken for the ray tracing of PO-SBR on CPU is 4.5 seconds 

at an angular spacing of 0.10° with 18,184 hit points.  The computation time and the 

speedup taken for the electromagnetic aspects of the PO-SBR method on both CPU and 

GPU are shown in Table 4.1, with a varying number of 100, 2,500, 10,000, and 250,000 

observation points.  By varying the number of observation points, the looping sizes in-

crease in the processes of “from all hit points to all observation points” and “from source 

to all observation points.”  As discussed in Section 3.3, since the majority of the com-

putation time is taken in the process of “from all hit points to all observation points,” in-
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spection of the computational timing on this process is sufficient. Since the increasing 

number of observation points in the process is parallelized in the GPU, it can be seen that 

as the number of observation points increases, the speedup increases. 

Table 4.2 shows the computation time and the speedup taken with a varying number 

of 7,155, 10,719, 18,184, 36,988, and 112,807 hit points.  By varying the number of hit 

points, looping sizes increase in the processes of “from source to all hit points” and “from 

all hit points to all observation points.”  And again only the process of “from all hit 

points to all observation points” is inspected.  Since the hit points are looped in GPU 

with separate kernels, no sufficient speedup is found. 

Table 4.3 shows the computation time and the speedup taken with a varying number 

of 1, 2, 3, 4, and 5 frequencies.  No clear pattern is shown by varying the number of 

frequencies.  The reason might be caused by the increasing usage of shared memory 

with an increasing number of frequencies.  The increasing amount of shared memory 

required per thread decreases the number of threads per block, and thus decreases the 

overall speedup. 

4.3 Radiation Pattern Problems 

 This section gives an example of the radiation pattern computation.  The radiation 

pattern problems are used to map out the field distribution of antenna sources emitted in 

their residing environment.  Usually, antennas are designed with a certain desired stan-

dalone radiation pattern.  However, antennas are used in different environments and 
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mounted onto a platform, i.e. the antenna tower and car roof, which could alter the radia-

tion pattern of the antennas.  The study of radiation pattern using PO-SBR can provide a 

rough but quick view on how a given structure affects the radiation pattern of the standa-

lone antennas. 

 In the following radiation pattern example, three parameters of the effect of compu-

tational speedup are examined and analyzed.  The parameters are the number of obser-

vation points, the number of hit points, and the number of frequencies. 

4.3.1 Radiation Pattern: 1964 Thunderbird 

 Using CUDA for acceleration, the speedup in computation time of the PO-SBR me-

thod is documented and compared.  Figure 4.9 shows a radiation pattern problem where 

a hertzian dipole antenna is mounted on top of a 1964 Thunderbird at 10 GHz.  The ray 

tracing with an angular spacing of 5° resulted in a total of 28,321 hit points.  The radia-

tion pattern is computed at 0 mz   around the car, and is plotted in dB and shown in 

Figure 4.10 with a varying number of 100, 2,500, 10,000, and 250,000 observation 

points. 

 The computation time and the speedup taken for the electromagnetic aspects of 

PO-SBR on both CPU and GPU are shown in Table 4.4 with a varying number of 100, 

2,500, 10,000, and 250,000 observation points.  It can be seen that the trend of speedup 

is similar to the above scattered field problem described in Section 4.2.  Since the in-

creasing number of observation points in the process is parallelized in the GPU, it can be 
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seen that as the number of observation points increases, the speedup increases. 

 Table 4.5 shows the computation time and the speedup taken with a varying number 

of 13,952, 19,699, 28,321, 44,314, and 78,751 hit points.  It can be seen again that the 

increasing number of hit points does not increase the speedup, since different hit points 

are looped by declaring different kernels. 

 Table 4.6 shows the computation time and the speedup taken with a varying 

number of 1, 2, 3, 4, and 5 frequencies.  Again no clear pattern is shown by varying the 

number of frequencies.  The reason might be that the increasing amount of shared 

memory required per thread decreases the number of threads per block, and thus decreas-

es the overall speedup. 
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4.4 Figures and Tables 

 

Figure 4.1 Infinite plate with hertzian dipole source located at (0,0,0.1 m). 

 

 

Figure 4.2 Y-Z plane radiation pattern of hertzian dipole in presence of an infinite plate. 
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Figure 4.3 Analytical X-Y plane radiation pattern of hertzian dipole in presence of an in-

finite plate. 

 

 

Figure 4.4 Numerical X-Y plane radiation pattern of hertzian dipole in presence of an in-

finite plate. 
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Figure 4.5 Analytical X-Z plane radiation pattern of hertzian dipole in presence of an in-

finite plate. 

 

 

Figure 4.6 Numerical X-Z plane radiation pattern of hertzian dipole in presence of an in-

finite plate. 
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Figure 4.7 1982 Porsche with hertzian dipole source located at (10 m,0,0). 

 

 

 

 

 

(a) 

Figure 4.8 Scattering field with a varying observation points: (a) 100 (b) 2,500 (c) 10,000 

and (d) 250,000 observation points. 
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(b) 

 

(c) 

Figure 4.8 (continued) 
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(d) 

Figure 4.8 (continued) 

 

 

 
Figure 4.9 1964 Thunderbird with hertzian dipole source located at (-3 m,0,1 m). 
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(a) 

 

(b) 

Figure 4.10 Radiation pattern with a varying observation points: (a) 100 (b) 2,500 (c) 

10,000 and (d) 250,000 observation points. 
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(c) 

 

(d) 

Figure 4.10 (continued). 
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Table 4.1 GPU vs. CPU computational time comparison of electromagnetic aspect of 

PO-SBR, with 18,184 hit points, 1 frequency, and varying observation points. 

Number of  

Observation Points 
CPU time (sec) GPU time (sec) Speedup (×) 

100 1.61 0.63 2.55 

2,500 37.36 0.86 43.44 

10,000 147.65 2.39 61.78 

250,000 3,697.97 47.41 78.00 

 

 

 

 

 

 

Table 4.2 GPU vs. CPU computational time comparison of electromagnetic aspect of 

PO-SBR, with 10,000 observation points, 1 frequency, and varying hit points. 

Number of Hit Points / 

 Ray Degree Spacing 
CPU time (sec) GPU time (sec) Speedup (×) 

7,155 / 0.16° 59.02 1.03 57.30 

10,719 / 0.13° 89.98 1.45 62.06 

18,184 / 0.10° 147.65 2.39 61.78 

36,988 / 0.07° 300.17 4.87 61.63 

112,807 / 0.04° 905.49 14.56 62.20 
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Table 4.3 GPU vs. CPU computational time comparison of electromagnetic aspect of 

PO-SBR, with 10,000 observation points, 18,184 hit points, and varying frequencies. 

Number of Frequencies / 

Frequencies (GHz) 
CPU time (sec) GPU time (sec) Speedup (×) 

1 / 10 147.65 2.39 61.78 

2 / 10, 20 303.88 3.93 77.32 

3 / 10, 20, 30 447.70 6.31 70.95 

4 / 10, 20, 30, 40 611.58 6.55 93.37 

5 / 10, 20, 30, 40, 50 769.42 10.27 74.92 

 

 

 

 

 

 

 

Table 4.4 GPU vs. CPU computational time comparison of electromagnetic aspect of 

PO-SBR, with 28,321 hit points, 1 frequency, and varying observation points. 

Number of  

Observation Points 
CPU time (sec) GPU time (sec) Speedup (×) 

100 2.71 0.96 2.82 

2,500 64.00 1.33 48.12 

10,000 249.29 3.79 65.78 

250,000 6356.93 78.02 81.29 
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Table 4.5 GPU vs. CPU computational time comparison of electromagnetic aspect of 

PO-SBR, with 10,000 observation points, 1 frequency, and varying hit points. 

Number of Hit Points / 

 Ray Degree Spacing 
CPU time (sec) GPU time (sec) Speedup (×) 

13,952 / 7° 126.83 1.85 68.56 

19,699 / 6° 176.18 2.59 68.02 

28,321 / 5° 249.29 3.79 65.78 

44,314 / 4° 385.26 5.82 66.20 

78,751 / 3° 676.01 10.26 65.89 

 

 

 

 

 

 

 

Table 4.6 GPU vs. CPU computational time comparison of electromagnetic aspect of 

PO-SBR, with 10,000 observation points, 28,321 hit points, and varying frequencies. 

Number of Frequencies / 

 Frequencies (GHz) 
CPU time (sec) GPU time (sec) Speedup (×) 

1 / 10 249.29 3.79 65.78 

2 / 10, 20 508.51 5.98 85.04 

3 / 10, 20, 30 796.53 9.65 82.54 

4 / 10, 20, 30, 40 1078.78 9.83 109.74 

5 / 10, 20, 30, 40, 50 1350.1 15.63 86.38 
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CHAPTER 5 

CONCLUSION 

 This thesis describes a numerical tool based on the PO-SBR method that is capable 

of computing the fields of electrically large structures or distances, with the computation 

accelerated using CUDA on NVIDIA’s GPU. 

 Chapter 2 describes the methodology of the PO-SBR method, and derives a step by 

step version of the method used in this thesis.  In Chapter 3, NVIDIA’s GPU architec-

ture is introduced and its advantage pointed out in accelerating the method through its 

parallel computing capability.  CUDA is then used as the software interface to control 

the threads declared in the GPU to distribute the independent calculations onto computa-

tion units of the GPU.  In Chapter 4, the validation and speedup examples of scattering 

field and radiation pattern are demonstrated.   

 Of course, the version of the method described above is far from being perfect.  The 

drawbacks are the lack of dielectric computing capability and the inflexibility of the ray 

tracing method.  Moreover, the acceleration technique employed on CUDA can be im-

proved by a more careful distribution of the threads.  Specifically, the looping of hit 

points through different kernels can be eliminated by distributing them in the same kernel, 

then using schemes of parallel reduction to sum the fields caused by those different hit 

points on the same observation point. 

Future work includes the addition of dielectric structures and advanced ray tracing 
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method using a surface mesh.  Distribution of the threads in CUDA can also be re-

viewed and improved to achieve higher speedups in all situations.  This thesis has pro-

vided a starting point for a complete, higher accuracy PO-SBR method accelerated by 

GPU. 



 61 

REFERENCES 

 

[1] S. Chang and T. B. A. Senior, “Scattering by a spherical shell with a circular aperture,” 

Air Force Weapons Lab., Albuquerque, NM, Interaction Note 141, Apr. 1969. 

 

[2] C. S. Lee, S. W. Lee and R. Chou, “RCS reduction of a cylindrical cavity by dielectric 

coating,” in Int. IEEE/Antennas Propagat. Soc. Dig., Philadelphia, June 1986, pp. 

305-308. 

 

[3] R. W. Ziolkowski and W. A. Johnson, “Plane wave scattering from an open spherical 

shell: a generalized dual series approach,” in Nat. Radio Sci. Meet. Dig., 1984, p.162. 

 

[4] W. A. Johnson and R. W. Ziolkowski, “The scattering of an H-polarized plane wave 

from an axially slotted infinite cylinder: A dual series approach,” Radio Sci., vol. 19, no. 

1, pp. 275-291, 1984. 

 

[5] H. Ling, R. Chou, and S. W. Lee, “Shooting and bouncing rays: Calculating the RCS 

of anarbitrarily shaped cavity,” IEEE Trans. on Antennas and Propagat., vol. 37, no. 2, 

pp. 194-205,1989. 

 

[6] G. A. Deschamps, “Ray techniques in electromagnetic,” Proc. IEEE, vol. 60, pp. 

1022-1035, Sept. 1972. 

 

[7] S. W. Lee, P. Cramer Jr., K. Woo, and Y. Rahmat-Samii, “Diffraction by an arbitrary 

subreflector: GTD Solution,” IEEE Trans. Antenna Propagat., vol. 27, pp. 305-316, May 

1979. 

 

[8] S. W. Lee, M. S. Sheshadri, V. Jamnejad and R. Mittra, “Reflection at a curved di-

electric interface: geometrical optics solution,” IEEE Trans. Microwave Theory Tech., vol. 

MTT-30, pp. 12-19, Jan. 1982. 

 

[9] C. A. Balanis, Advanced Engineering Electromagnetics. New York, NY: Wiley, 1989. 

 

[10] M. Pharr and G. Humphreys, Physically Based Rendering: From Theory to Imple-

mentation. San Francisco, CA: Morgan Kaufmann, 2004. 

 

[11] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E. Lefohn and T. J. 

Purcell. “A survey of general-purpose computation on graphics hardware,” Computer 



 62 

Graphics Forum, vol. 26, no. 1, pp. 80-113, March 2007. 

 

[12] E. Dunn, N. Smith, R. Hoare, H. T. Meng and J. Jin, “Hardware acceleration of elec-

tromagnetic field profile computation: A case study using the PO-SBR method,” in Pro-

ceedings, High Performance Embedded Computing (HPEC) Workshop, Lexington, MA, 

September 2010. 

 

[13] NVIDIA CUDA programming guide, version 3.0, Feb. 2010. [Online]. Available: 

http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_CUDA_

ProgrammingGuide.pdf. 

 

[14] H. T. Meng, J. Jin. and E. Dunn, “Acceleration of asymptotic computational elec-

tromagnetics Physical Optics - Shooting and Bouncing Ray (PO-SBR) using CUDA,”  

poster session presented at the GPU Technology Conference, San Jose, CA, September 

2010.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  


