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Abstract

This dissertation explores the use of grazing bifurcations in impacting mechanical systems as a useful means

of creating fast-acting limit switches. Using analytical, numerical, and experimental techniques, the transient

and asymptotic responses of several example vibro-impacting systems undergoing the onset of low-relative-

velocity contact are investigated. It is argued that the rapid transients and distinct asymptotic dynamics

distinguishing pre- and post-grazing attractors provides an advantageous mechanism on which to base a

limit switch design. Further, it is shown that these changes, which originate due to the mechanical interac-

tions, can be detected in coupled electrical systems through both electromagnetic and electrostatic coupling

mechanisms. The dissertation concludes with a realization in a prototype microelectromechanical systems

(MEMS) design in which a grazing bifurcation may trigger snap-through in a parallel plate capacitive ac-

tuator. The results of these studies indicate that a switch based on the proposed nonsmooth fold scenario

would outperform one that relies on a smooth bifurcation, such as the cyclic-fold bifurcation, in terms of

switching speed and sensitivity.
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Chapter 1

Introduction

1.1 Application and framework of prior art

The work contained in this dissertation is part of an effort to develop a novel class of ultrafast limit switch

sensors. The performance benefit over existing designs is derived from fundamental insights into the behavior

of the underlying nonlinear systems which describe the dynamics of these sensors. Emphasis is focused on

sudden and possibly dramatic changes in system transient and steady-state response following the onset

of low-relative-velocity, grazing mechanical contact. Specifically, the effort explores the practical use of

such changes as signatures of the change of a system parameter across a predetermined threshold value in

limit-switch design.

Limit switches constitute a class of input-output devices that change operating state in reaction to

the crossing of a threshold value of their input [56]. They can be used as indicators, control devices, or

commonly both, and provide signal transduction from the energy domain being sensed to the energy domain

of observation. As indicators, limit switches provide logic outputs (true or false) depending on the level

of their input [9]. These are used to monitor critical values of physical quantities, such as temperature,

voltage, and pressure, in both consumer and industrial settings [11, 26, 27, 40]. As control devices, limit

switches provide the simplest form of feedback: discrete on/off states in response to input. The switch

might be permanent, such as when a fuse burns out, or capable of being reset, such as with a circuit breaker.

Resettable limit switches often include hysteresis to prevent hunting near the threshold. Their use enables

the safe, reliable operation of many everyday household items, such as coffee makers, electric circuit breakers,

and water heaters.

Of particular interest in the present context are limit switches whose function relies on a snap-like action

[9, 46]. Limit-switch sensors based on this phenomenology are examples of so-called bifurcation amplifiers

[70, 71]. Here, the internal state of the switch transitions abruptly between two dissimilar steady-state

behaviors as a result of a small change in the value of a system parameter [49]. Specifically, as the parameter

exceeds the critical value, there is an associated loss of stability or disappearance of the original steady-state
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behavior. This leaves the switch no choice but to evolve to a different steady-state attractor. Examples

of such bifurcations include fold and subcritical pitchfork bifurcations of equilibria and are exploited in

previously documented limit-switch devices (e.g., [27, 79]).

In many of these cases, parameter hysteresis results from the persistence of the target steady-state

behavior even as the system parameter is reduced below the original threshold value. The speed of the

transients following the bifurcation and the nature of the input dynamics determine the reaction of the switch

to excursions past the threshold. As an example, a slow-blow fuse is designed to pass overload currents for

a short amount of time to allow for start-up transients in electrical machinery. A lag in switching speed is

thus critical to the successful operation of the slow-blow. In contrast, in the case of protection for a circuit

board containing delicate components, a similar lag in switching speed would be disastrous.

In a larger context, this work is part of a nascent effort in nonlinear dynamics that will transform the field

from a tool for modeling and analysis of observed behavior to a tool of intentional synthesis of engineered

systems (e.g., [67]). In the past, the field of nonlinear dynamics has primarily focused on documenting and

predicting phenomena in existing systems and devices. There is now a growing interest from the applied

technology community to seek ways of exploiting system nonlinearities for improved performance rather than

to constrain operation to parameter regions in which such phenomenology can be avoided. Examples of other

such efforts are micro-oscillator mass sensors [79] designed to exhibit hardening parametric resonance curves

and to trigger near smooth fold bifurcations; broadband, dissipative mechanisms [33] realized experimentally

in macroscopic devices through the purposeful introduction of so-called essential nonlinearities; switching

controllers [3] that rely on corner-collision bifurcations in piecewise-smooth systems for nonlinear stabilization

of limit cycles in smooth systems; and radio-frequency microresonators [41] that rely on high-velocity impacts

for a sustained broadband response.

1.2 Modeling contact

As suggested above, the sudden and possibly dramatic changes in system transient and steady-state response

following the onset of low-relative-velocity, grazing mechanical contact is a possible operating principle for

a novel class of limit switches. By definition, a grazing occurs when a periodic solution trajectory of a

dynamical system tangentially intersects a discontinuity surface in the state space of the system. Systems

with discontinuities in the time evolution of the state vector or vector field are typicall modeled as having

continuous-in-time dynamics interrupted by discrete-in-time events. These models are formally known as

hybrid dynamical systems, and in the context of mechanical systems, such models are commonly used, for
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example, in the description of gear trains, oilwell drill strings, and impact actuators [15, 29, 31, 39, 83].

The continuous-in-time dynamics, or smooth time evolution, of hybrid systems is typically described by

ordinary differential equations whose variables represent the system state. These equations are usually cast

as collections of first-order differential equations, which lend themselves to many readily available numerical

integration schemes. For mechanical systems described using lumped-parameter approximations, these ordi-

nary differential equations follow directly from the physical modeling. For physical systems described using

partial differential equations, a weak form must first be obtained using some discretization scheme before

the dynamics can be represented approximately as a system of ordinary differential equations.

The discrete-in-time events which interrupt the smooth dynamics of the system are coarsened models

of dynamical features whose timescales are much shorter than the characteristic timescale of the overall

dynamics. In electrical systems, the change in position of a switch might be modeled as a discrete-in-time

event, i.e. the time required for the switch to change state is very small compared to dominant natural

periods or time constants present in the system.

In later chapters, the onset of contact in a mechanical system is considered as a discrete-in-time event.

A typical scenario involves the evolution of the position of two bodies in relative motion such that contact

occurs between the two at some time. At the onset of contact, the system is modeled as changing discretely

in time to account for the interaction between the bodies. Depending on how the contact is modeled, the

discrete change might be described as a change in state or as a change in the governing vector field.

In the case of non-compliant contact models, the contact is assumed to be instantaneous and the entirety

of the interaction between the contacting bodies is captured by a discrete change in the state of the system.

A simple and popular example of this type of model is the kinematic coefficient of restitution impact law.

This model describes the post-impact relative velocities of the system as proportional to the pre-impact

relative velocities. The proportionality constant may vary between 0 and 1, where 0 indicates a complete

loss of kinetic energy in the system (a perfectly plastic impact), and 1 represents perfect conservation of

kinetic energy (a perfectly elastic impact).

Contact mechanics and finite element methods exist which can be used to calculate estimates for the

coefficient of restitution based on problem-specific parameters. These methods demonstrate dependence on

material properties, impact velocities, and geometry at the contact interface. A recent paper by Katta et

al [32] also discusses additional considerations when dealing with oblique collisions. For a fascinating and

more complete discussion of contact models, the book by Stronge [62], also provides a good reference.

The kinematic coefficient of restitution is used in this dissertation to describe the interaction between

rigid bodies undergoing collinear contact. In this work, the values for the coefficient of restitution used in
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numerics are obtained directly from its empirical definition using experimental data for pre- and post-impact

relative velocities. As shown in Chapters 4 and 5, the agreement between numerical and experimental results

shows that this contact law provides a reasonable approximation for the parameter regions considered here.

Compliant contact models are used to describe contact in systems where the duration of contact is

relatively long, or where the mechanical system requires a continuum description. Some popular compliant

contact models include a simple conservative spring as well as the Kelvin-Voight and Maxwell element models

[62].

A Kelvin-Voight element consists of a linear spring and damper placed in parallel. This model allows for

complete restitution of the contact element, but for non-zero initial relative velocities between the contacting

bodies, it generates a non-zero, finite force at the onset of contact. For systems being modeled as continua,

this discontinuous forcing function could be argued as violating the basic continuum modeling assumption.

The Maxwell element, which consists of a linear spring and damper in series, overcomes the discontinuous

forcing issue present in the Kelvin-Voight model, but does not allow for full restitution of the element.

The conservative spring model makes up for the shortcomings of both the Kelvin-Voight and the Maxwell

elements, but provides no mechanism for additional dissipation of energy during the contact phase. This

spring element is used in Chapter 3 of this dissertation to describe the interaction between a continuous

beam and an obstacle. The purpose of that study is to explore the effects of contact stiffness on the number

of mechanical modes required to capture the changes in system behavior due to the onset of contact.

1.3 Content of remaining chapters

To evaluate the potential of the grazing bifurcation for use in ultrafast limit switches, an integrated approach

is adopted which makes use of theoretical, numerical, and experimental techniques. This approach is applied

to a set of mechanical and electromechanical systems to explore the behavior of the grazing bifurcation and

draw conclusions about its viability for use as a limit switch operational phenomenology. These results are

then combined with observations of the dependence on length scale of governing parameter to argue for

miniaturization of such systems for further performance improvements.

Through the use of examples, the first two chapters discuss techniques used to analyze hybrid dynamical

systems. In particular, Chapter 2 presents a study of a microimpact actuator built by Mita et al [48]. This

example demonstrates a formalism for dealing with hybrid system trajectories and presents a bifurcation

analysis utilizing the computational toolbox tc-hat (t̂c). Significant portions of this chapter are taken

from the paper Bifurcation analysis of a microactuator using a new toolbox for continuation of hybrid system
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trajectories by Kang, Thota, Wilcox, and Dankowicz [30]. Dr. Phanikrishna Thota wrote the computational

toolbox with guidance from Prof. Harry Dankowicz. Bryan Wilcox collaborated with Wonmo Kang in

performing the numerics. The paper was written jointly.

Chapter 3 goes on to study a microscale Euler-Bernoulli beam which may contact a flexible barrier at a

point along its span. The partial differential equation which describes its behavior is discretized and a series

of reduced order models are examined. Some observations on the modeling of contact are included. These

elucidate the choice of contact law and inform discussion in later chapters. The content of this chapter was

published in the 2009 ASME International Design Engineering and Technical Conference paper Response

of Electrostatically Actuated Flexible MEMS Structures to the Onset of Low-velocity Contact by Wilcox,

Dankowicz, and Lacarbonara [75]. Bryan Wilcox performed the analysis and numerics with guidance from

Prof. Dankowicz and Prof. Lacarbonara. Bryan Wilcox presented the paper at the conference. The paper

was written jointly.

In Chapter 4, a simple example of a grazing bifurcation is considered, where increases in the amplitude

of a periodically oscillating shaker head result in the onset of low-relative-velocity contact between the head

and a suspended mass. When the contact is modeled using a kinematic coefficient of restitution impact

law, the discontinuity mapping technique pioneered by Nordmark predicts a square-root growth term in the

map describing the local evolution of the solution trajectory [52]. Under certain, computable conditions,

this results in a rapid, discontinuous transition to a post-grazing behavior that is very distinct from the pre-

grazing response. This theoretical result is demonstrated, then subsequently confirmed both numerically

and experimentally. The content of this chapter was published in the paper titled Transient growth rates

of near-grazing impact velocities: Theory and experiments by Wilcox, Svahn, Dankowicz, and Jerrelind [76].

Fredrik Svahn and Bryan Wilcox planned and performed the experiments jointly with feedback and guidance

from Prof. Harry Dankowicz and Prof. Jenny Jerrelind. Fredrik Svahn and Harry Dankowicz performed the

theoretical analysis. Bryan Wilcox wrote and ran the numerical routines which simulated the system and

processed the experimental data. The paper was written jointly.

A coupled electromechanical system is considered in Chapter 5 to explore the possibility of detecting the

grazing bifurcation by observing only the coupled electrical signal [73, 74]. In this system, a ferromagnetic

mass is suspended relative to an electromagnet, which is excited by a periodic voltage input. The system

is interrogated via current, velocity, and position sensors to collect data about the evolution of the state of

the system. Through a series of experimental and numerical studies, it is shown that jumps to post-grazing

attractors which have distinct amplitude and frequency content from the pre-grazing trajectories can indeed

be detected by observing only the coupled electrical signal, which in this case is the current in the electrical
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circuit. This work will appear as an invited paper titled An experimental testbed for investigating nonsmooth

bifurcations in an electromechanical system by Wilcox and Dankowicz, published as part of a special issue

on Experiments in Dynamics and Control in the Journal of Vibration and Control [74]. Bryan Wilcox was

solely responsible for this work, which was overseen by Prof. Harry Dankowicz. The paper was written

jointly.

Considering these behaviors in the context of limit switches, the rapid transitions between distinct pre-

and post-grazing states could be very advantageous for an application requiring extremely fast switching

response. However, we must now distinguish between absolute and relative speed. It is shown in Chapter 4

that the rapid transients of a system undergoing a grazing bifurcation are of the same order as the period of

oscillation of the pre-grazing trajectory. If the period of oscillation is very long, it follows that the absolute

transition time would be quite long. However, if the period of oscillation can be made very short, the

absolute response time of a sensor based on this mechanism would be very fast.

Due to scaling characteristics relating mass and stiffness in mechanical systems, as devices are made

smaller their natural frequencies increase. This suggests that to make an ultrafast limit switch based on a

mechanical system undergoing a grazing bifurcation, one should make the physical size of the mechanism as

small as possible. This miniaturization provides other benefits as well having to do with power consumption,

packaging, and space requirements, among others. This reasoning leads to the material in Chapter 6, which

presents a microelectromechanical systems (MEMS) implementation of a grazing-bifurcation-enabled limit

switch. This limit switch is a MEMS-based version of a crowbar, circuit-protection device which might be

used to short-circuit dangerous currents around the components being protected [28, 73]. The portions of

this chapter pertaining to modeling work were presented at the 2009 ASME International Design Engineering

and Technical Conference in a paper titled Design of Limit-Switch Sensors Based on Discontinuity-Induced

Nonlinearities by Wilcox and Dankowicz [72]. This paper received first prize in the IDETC-VIB student

paper contest and has appeared as a full journal article titled Limit-switch sensor functionality based on

discontinuity-induced nonlinearities in the Journal of Computational and Nonlinear Dynamics. BryanWilcox

was solely responsible for the work with oversight and feedback given by Prof. Harry Dankowicz. The paper

was written jointly. Dr. Bruce Flachsbart provided feedback and suggestions on processing, fabrication, and

design of the MEMS device.
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Chapter 2

Numerical Analysis of an Example
MEMS Impact Actuator

2.1 Introduction

Hybrid dynamical systems, which are characterized as having continuous-in-time dynamics interrupted by

discrete-in-time events, serve as mathematical models of many real-world phenomena, for example, in the

description of gear trains, oilwell drill strings, and impact actuators [13, 15, 29, 31, 39, 83]. Since the work

presented in this dissertation is concerns the behavior of oscillatory mechanical systems near the onset of

low-velocity contact, hybrid systems theory is a suitable framework.

The complexity of hybrid dynamical systems necessitates the use of numerical techniques for quantitative

insight into system dynamics. As in the study of smooth dynamical systems, methods based on forward time

integration are time consuming and primarily restricted to the study of transient dynamics and steady-state

attractors. They fail to provide information about unstable recurrent behaviors or bifurcation sequences

involving such unstable recurrent motions. Techniques that rely on a combination of iterative solvers for

nonlinear algebraic equations and numerical shooting provide a useful alternative, at least in the study of

periodic solutions. Indeed, such methods easily handle unstable motions as well as characteristic bifurcations

involving periodic solutions.

The software application tc-hat (t̂c), developed by Dr. Phanikrishna Thota and Prof. Dankowicz, is a

general purpose toolbox for the study and continuation of periodic trajectories of hybrid dynamical systems

and their bifurcations. It leverages the advantages of the Boundary-Value-Problem approach implemented in

auto 97 [17] for pseudo-arclength-based continuation of periodic trajectories (auto 97 is a popular program

used to perform bifurcation analysis of smooth dynamical systems and is capable of performing parameter

continuation of periodic trajectories and their associated bifurcations). In particular, it implements this

boundary-value-problem formulation for one-parameter continuation of periodic trajectories including mul-

tiple distinct solution segments and two-parameter continuation of saddle-node, period-doubling, and grazing

bifurcation points corresponding to such trajectories. Further detail on the formulation of the corresponding

boundary-value problems and their implementation in t̂c may be found in [63].

7



The numerical bifurcation analysis of an impact microactuator presented here extends similar analyses

reported in the literature (cf. Zhao et al. [82, 83, 81] and Dankowicz et al. [15]), and performed using

problem-specific continuation algorithms, to previously unexplored regions of parameter space. This enables

a more comprehensive analysis of the actuator dynamics that might aid in the design of an optimized

operating regime for the actuator in a particular application. The analysis also reveals suggestive patterns

of self-similarity in its dynamic behavior across the parameter space, particularly in the organization of

bifurcation curves for trajectories with different number of segments.

The next section of this chapter discusses the mathematical modeling of hybrid dynamical systems,

introduces a formalism for handling the different segments making up hybrid trajectories, and describes how

these features are translated into t̂c. Section 2.3 introduces the sample microactuator and the mathematical

model which describes its behavior. A bifurcation analysis is performed which illustrates the use of t̂c to

explore the behavior in the parameter space of the microactuator. The chapter concludes in Sec. 2.4 with a

discussion of some interesting features present in the bifurcation diagrams and suggests the possible use of

these features in application.

2.2 Mathematical Preliminaries

2.2.1 Hybrid Dynamical Systems

Here, a hybrid dynamical system assumes the existence of an n-dimensional state space X and an associated

vector-valued function fI : X → X known as the vector field, parameterized by an index vector I in some

set F. To each value of the index vector I associate a smooth event function hI : X → R and a smooth

state jump function gI : X → X. Then, a solution trajectory to the hybrid dynamical system is a sequence

{xj : [tj−1, tj ] → X}mj=1 of m smooth curve segments and an associated sequence of index vectors {Ij}mj=1,

such that

I (t) = Ij , t ∈ (tj−1, tj ] (2.1)

and

1. The corresponding tangent vector at xj (t) equals fIj (xj (t)), i.e., in the case of X = R
n

d

dt
xj (t) = fIj (xj (t)) (2.2)
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2. The j-th segment terminates at an intersection with the event surface

{
x | hIj (x) = 0, hIj,x (x) · fIj (x) ≤ 0

}
(2.3)

such that

hIj (xj (tj)) = 0 (2.4)

3. The connectivity between the j-th and j + 1-th segments is given by the function gIj , i.e.,

gIj (xj (tj)) = xj+1 (tj) (2.5)

The sequence Σ = {Ij}mj=1 of values of the index vector is called the solution’s signature (cf. [44]). Here, we

allow for the possibility of infinite solution sequences and the replacement of m by ∞.

A periodic solution of a hybrid dynamical system is a solution with a periodic signature of base length

m, such that

x1 (t0) = gIm (xm (tm)) (2.6)

The period of the solution then equals

T =
m∑

j=1

(tj − tj−1) = tm − t0 (2.7)

The terminal point xj (tj) on the j-th solution segment is a transversal event if

hIj ,x (xj (tj)) · fIj (xj (tj)) < 0 (2.8)

and a grazing event otherwise. Grazing events may also occur at non-terminal points along a solution

segment. In this case, there exists a time t ∈ (tj−1, tj ], such that

hJ,x (xj (t)) · fIj (xj (t)) = 0 (2.9)

for some index vector J. The occurrence of grazing events is characteristic of grazing bifurcations in hybrid

dynamical systems.
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2.2.2 TC-HAT (T̂C)

The study of dynamical systems with discontinuities is mostly confined to numerical investigations involving

direct numerical integration of the corresponding differential equations, or the maps that model them. This

approach is used extensively in later chapters to investigate transient behaviors. Such numerical schemes,

based on the time evolution or forward iterates of a system, can only locate stable orbits and fail to give any

information about the unstable orbits or associated bifurcations. There is thus a need for novel continuation

methods, similar to those used in the bifurcation analysis of smooth dynamical systems, to enable a rigorous

study of the bifurcations in hybrid dynamical systems.

tc-hat (t̂c)–Toolbox for Continuation of Hybrid Trajectories–is a Fortran-based software application

that partially automates bifurcation analysis of periodic solution trajectories in the general class of hybrid

dynamical systems described above, e.g., vibro-impact oscillators with or without friction. t̂c functions as a

driver to a modified version of auto 97 [17], a Fortran-based software application for the bifurcation analysis

of smooth dynamical systems. In particular, t̂c exploits auto 97’s Boundary-Value-Problem formulation

to locate and continue periodic trajectories of hybrid dynamical systems and a subset of associated co-

dimension-one bifurcation points under variations in system parameters. In particular, t̂c can detect co-

dimension-one bifurcations associated with the crossing of one or several eigenvalues across the unit circle,

including saddle-node, period-doubling bifurcations, and Neimark-Sacker bifurcations.

The modifications to auto 97 further enable t̂c to continue, in two free parameters, saddle-node and

period-doubling bifurcation curves through the simultaneous solution of the associated first variational equa-

tions for an eigenvector of the monodromy matrix corresponding to an eigenvalue equal to 1 and −1, respec-

tively. In addition, continuation in two free parameters is also possible of solution trajectories that achieve

grazing contact or that cross an intersection of two event surfaces at the terminal point of the first solution

segment. For further detail regarding the boundary-value formulations associated with these two-parameter

continuation problems, see [63] and [65].

The discussion below highlights those features of the use of t̂c that distinguish it from auto 97. Specif-

ically, in order to perform bifurcation analysis using t̂c, three text files are provided to the program. The

t̂c function file contains the system vector fields, the system event functions, and the system state jump

functions and the connectivity information that associates values of the index vector with combinations of

vector field, event function, and state jump function. As with auto 97, the t̂c constants file contains nu-

merical values for a variety of parameters governing the continuation algorithm, such as initial, maximum,

and minimum values for the pseudo-arclength continuation parameter. More importantly, the constants

file includes the desired signature of the periodic trajectory to be continued as well as information about
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additional event surfaces with which grazing events should be detected during continuation. Finally, in the

case of initializing continuation from a solution obtained by other means (e.g., forward-time simulation), a

data file is provided that contains the values of the state vector sampled at discrete moments in time along

the solution trajectory. Each time interval [tj−1, tj ] is discretized by a segment-independent partition of the

interval [0, 1] (contained in the first column of the data file) scaled to the length of the segment. The time

history of the i-th state variable along the j-th segment is then contained in the 1+n (j − 1)+ i-th column,

where n is the state-space dimension of the hybrid dynamical system.

As with auto 97, the initial solution for single-parameter continuation of a periodic trajectory may be

obtained from a data file, as described above, or from a periodic trajectory obtained through a previous one-

or two-parameter continuation run. Similarly, continuation of saddle-node or period-doubling bifurcations

requires restarting the continuation from the output data obtained during a one-parameter continuation.

In contrast, in the case of continuation of trajectories with grazing events, the initial data may be derived

directly from the output data of a previous one-parameter continuation or by providing a data file containing

a resegmented version of previously obtained output data ensuring that the grazing event terminates the

first solution segment.

The methodology described here enables a wide exploration of parameter space initialized at the outset

with a single initial solution guess. In particular, the continuation process is able to handle multisegment

solution trajectories with relatively large values of m limited only by the memory needs of the auto imple-

mentation.

2.3 The Impact Microactuator

2.3.1 Mechanical Model

The actuating mechanism under consideration is adapted from a design originally published by Mita et al.

[48]. The actuator consists of two inertial masses capable of relative motion, one suspended within the other

as shown in Fig. 2.1. The outer mass, termed the frame, rests on or is held against a substrate. The second

mass, termed the impactor, is suspended within the frame. Its motion relative to the frame is excited by a

parallel-plate capacitive drive. Clearances between the frame and impactor are such that collisions between

the two may occur with sufficient displacement of the impactor relative to the frame. The actuator is said to

be in stick if the frame is stationary relative to the substrate and in slip otherwise. Specifically, the actuator

is in positive slip when the motion of the frame would result in an increased capacitor gap in the case that

the impactor was kept stationary, and in negative slip otherwise.
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Figure 2.1: A schematic of the impact microactuator, in which the impactor is shown in its equilibrium
position in the absence of excitation and the electrostatic excitation is represented by the voltage amplitude
V . Figure modified from [82] and reproduced with permission from the publisher.

The effects of the contact between the frame and the substrate on the motion of the frame is assumed

to be captured by dry friction and modeled by Amonton’s law in stick and Coulomb friction in slip. In

addition to the electrostatic excitation, interactions between the frame and impactor transmitted through

the suspension are modeled with a combination of a linear elastic and a linear dissipative element. Finally,

collisions between the frame and the impactor are modeled as instantaneous impacts that, through the

imposition of conservation of momentum and Newton’s law of restitution, result in discontinuous-in-time

changes in the velocities of the frame and impactor.

Transitions from stick to slip are triggered by two distinct types of events. In the first case, the net force

on the frame from its interactions with the impactor exceeds the maximum available frictional force between

the frame and the substrate. Here, the velocity of the frame relative to the substrate is continuous across

the transition from stick to slip. Additionally, slip may also result from a collision between the impactor

and the frame resulting in a nonzero momentum of the frame relative to the substrate subsequent to the

collision.

Transitions from slip to stick may also be triggered by two distinct types of events. In both cases, subse-

quent to the frame reaching zero velocity relative to the substrate, the friction force adjusts instantaneously

to completely cancel the effects of the other forces applied to the frame. In the first case, the zero relative

velocity between the frame and the substrate occurs as a result of the dissipative nature of the friction

force. Here, again, the velocity of the frame relative to the substrate is continuous across the transition.

In contrast, for non-generic pre-transition velocities, zero-relative velocity may also result from a collision

between the impactor and the frame resulting in a zero momentum of the frame relative to the substrate
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subsequent to the collision. In this case, the velocity is clearly a discontinuous function of time across the

transition.

Repeated transitions from stick to slip and back again result in a stepwise motion of the microactuator

along the substrate. By controlling the nature and timing of transitions between stick and slip a versatile,

precise position actuator may be realized. Large gross displacements of the actuator can be attained through

the composition of many small, stepwise displacements. These characteristics of high driving power, small

precise displacements, and long driving distances make the impact microactuator an interesting candidate

for a variety of technical applications [25].

2.3.2 Mathematical Model

Following [15, 66, 82, 83, 81], the dynamics of the impact microactuator may be formulated as a hybrid

dynamical system in the following way. Denote the state vector by x, where x1 is the displacement of the

frame of mass m1 relative to the substrate, x2 is the velocity of the frame relative to the substrate, x3 is

the displacement of the impactor of mass m2 relative to the undeformed length of the linear spring, x4 is

the velocity of the impactor relative to the frame, and x5 is the instantaneous phase of the excitation. In

particular, the actuator is in positive slip when x2 > 0, in stick when x2 = 0, and in negative slip otherwise.

Three distinct vector fields are required to describe the rate of change of the state vector with respect to

time during stick, positive slip, and negative slip, respectively, namely

fstick (x) =




0

0

x4

F
m2

ω




(2.10)

fslip± (x) =




x2

−F±µdN
m1

x4

F
m2

+ F±µdN
m1

ω




(2.11)

where

F =
αV 2 sin2 x5

(d− x3)
2 − cx4 − kx3 (2.12)

13



α is related to the permittivity of free space, d is the zero-voltage gap between the electrodes (such that

d−x3 equals the capacitor gap), k is the spring constant, c is the damping coefficient, V is the amplitude of

the sinusoidally varying voltage applied between the electrodes, µd is the coefficient of dynamic friction, N

is the normal reaction experienced by the frame from the ground (here taken to equal (m1 +m2) g, where

g is the acceleration of gravity), and ω is the frequency of excitation. Here, the upper sign corresponds to

positive slip and the lower sign corresponds to negative slip in Eqn. (11).

Transitions between distinct phases of motion are governed by the six event functions

hfront (x) = δ − x3 (2.13)

hback (x) = δ + x3 (2.14)

hstick± (x) = ±F + µsN (2.15)

hslip± (x) = ±x2 (2.16)

where µs is the coefficient of static friction, δ is the equilibrium clearance between the frame and the impactor;

and the two state jump functions

gimpact (x) =




x1

x2 +m2
(1+e)

m1+m2
x4

x3

−ex4

x5




(2.17)

gidentity (x) = x (2.18)

where e is the kinematic coefficient of restitution. For purposes of concise data collection, we consider the

additional event function

hPoincaré (x) = x4 (2.19)

such that the corresponding event surface corresponds to points of local maxima in the extension of the

spring.
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Now let

Zf = {stick,slip+,slip-} (2.20)

Zh =





front,back,stick+,stick-,

slip+,slip-,Poincaré





(2.21)

Zg = {impact,identity} (2.22)

and suppose that F is the subset of Zf × Zh × Zg corresponding to the connectivity graph in Fig. 2.2

showing the relationship between a given vector field, the event functions that are monitored during forward

simulation with the corresponding vector field, and the state jump function associated with a given event

function. For example, I = (stick,front,impact) corresponds to a trajectory segment governed by the vector

field fstick, terminating on the event surface corresponding to hfront, and connected to the next trajectory

segment by the state jump function gimpact. Each segment of a trajectory of the hybrid dynamical system

describing the impact microactuator then corresponds to one of the following index vectors

J1 = (stick,front,impact)

J2 = (stick,back,impact)

J3 = (stick,stick+,identity)

J4 = (stick,stick-,identity)

J5 = (stick,Poincaré,identity)

J6 = (slip+,front,impact)

J7 = (slip+,back,impact)

J8 = (slip+,slip+,identity)

J9 = (slip+,Poincaré,identity)

J10 = (slip-,front,impact)

J11 = (slip-,back,impact)

J12 = (slip-,slip-,identity)

J13 = (slip-,Poincaré,identity)

In particular, the (cyclic) signature of a periodic trajectory is given by the periodic repetition of a finite

sequence
{
Jkj

}m
j=1

for some finite sequence {kj}mj=1. As an example, a periodic trajectory with base signature
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Figure 2.2: The connectivity graph corresponding to the impact microactuator. Each segment of a trajectory
of the corresponding hybrid dynamical system is represented by one of the index vectors shown here.

{J1,J8} corresponds to the boundary-value problem

ẋ1 (t) = fstick (x1 (t)) , t ∈ [t0, t1] (2.23)

ẋ2 (t) = fslip+ (x2 (t)) , t ∈ [t1, t2] (2.24)

hfront (x1 (t1)) = 0 (2.25)

hslip+ (x2 (t2)) = 0 (2.26)

and

x2 (t1) = gimpact (x1 (t1)) (2.27)

x1 (t0) = gidentity (x2 (t2)) (2.28)

2.3.3 Numerical Results

The numerical bifurcation analysis reported in this section follows a general pattern. First, single-parameter

continuation is performed of branches of periodic trajectories of a given signature. During such continuation,

changes in linear stability characteristics associated with saddle-node and period-doubling bifurcations as

well as the occurrence of grazing events are monitored and detected within the numerical accuracy of the

implementation. Two-parameter continuation is then used to trace the corresponding period-doubling,
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saddle-node, and grazing bifurcation curves. In particular, it is shown how the grazing bifurcation curve can

be continued using alternative signatures and associated trivial changes in segment structure. These reflect

the signature and character of the post-grazing family of periodic trajectories emanating from such grazing

bifurcation points.

Table 2.1 shows the parameter values used in the numerical results reported here. Specifically, results

are presented only for periodic orbits of period T = π
ω corresponding to the fundamental period of the vector

fields. In the figures below, SN denotes saddle-node bifurcations, PD denotes period-doubling bifurcations,

and G-n denotes grazing bifurcation points of periodic orbits with n impacts per period. Unless stated

otherwise, solid and dashed curves represent branches of stable and unstable periodic solution trajectories,

respectively.

Parameter Value

m1 5
m2 1
k 1
c 0.04
d 1
δ 0.5
e 0.8
µs 0.4
µd 0.27
α 1
N 58.86

Table 2.1: Nondimensionalized parameter values used in the numerical computations presented in this paper.
These were obtained from [15] with the additional assumption (consistent with numerical simulations in [15])
that m2/kd ≈ 1 m/s2 in SI units.

A unique, small-amplitude periodic solution (modulo absolute translations of the frame relative to the

substrate) with base unit signature {J5} may be found for ω ≈ 0.9189 and V ≈ 0.01. The result of a single-

parameter continuation of the corresponding branch of periodic trajectories under variations in V is shown

in the upper panel of Fig. 2.3. The lower panel of Fig. 2.3 shows the grazing periodic trajectory obtained

for V ≈ 0.5876, for which grazing contact is detected with the event surface corresponding to hfront.

The period-doubling and grazing bifurcation curves through the bifurcation points marked PD and G-1

in the upper panel of Fig. 2.3 are shown in Fig. 2.4. It follows, for example, that the minimum driving

voltage corresponding to a grazing periodic solution is attained at ω ≈ 0.4878, slightly below the linear

resonance frequency due to the softening nonlinearity associated with the electrostatic interaction.

As a starting solution for the two-parameter continuation of the grazing bifurcation curve, it is possible to

use the single-segment grazing periodic trajectory with signature {J5} found in the above single-parameter
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Figure 2.3: (upper panel) A branch of periodic solution trajectories with base unit signature {J5} obtained
from a one-parameter continuation with varying V for ω ≈ 0.9189. (lower panel) The grazing periodic
trajectory corresponding to G-1 obtained for V ≈ 0.5876 in the one-parameter continuation. The terminal

point of the J5 segment is given by x ≈
(
. . . 0 0.5 0 6.264

)T
. Here, and in the later figures, ‖x‖2

represents a signature-dependent solution norm implemented in Auto 97.

continuation; the identical single-segment trajectory but with signature {J1}; or a two-segment periodic

solution with base signature {J1,J8} obtained by appending to the grazing solution segment an additional

zero-time segment coincident with the point of grazing contact. The latter possibility is consistent with

the existence of a post-grazing branch of two-segment periodic trajectories with one stick phase terminated

through impact and one slip phase per period of excitation shown in the upper panel of Fig. 2.5. Here, the

length of the J8 segment increases from zero as V is changed away from the parameter value corresponding

to grazing. The lower panel of Fig. 2.5 shows the grazing periodic solution obtained for V ≈ 0.7305 that

attains a grazing contact with the event surface corresponding to hfront along the J1 segment.

It is clear from this figure that the periodic orbits immediately after grazing are linearly unstable. In

fact, as documented in [15], one of the corresponding Floquet multipliers grows in magnitude beyond all

bounds as the G-1 point is approached along this branch, but is here found to be bounded on any segment

of the branch not containing the G-1 point.

As a starting solution for a two-parameter continuation of the grazing bifurcation curve through the point
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Figure 2.4: Period-doubling (dotted) and grazing bifurcation (solid) curves obtained in a two-parameter
continuation with signature {J5}. The initial periodic solutions for these continuations are obtained from
the one-parameter continuation shown in the upper panel of Fig. 2.3.

marked G-2 in the upper panel of Fig. 2.5, it is possible to use a three-segment periodic trajectory with

signature {J1,J1,J8} obtained by splitting the J1 segment of the grazing periodic trajectory at the point

of grazing contact. Alternatively, again reflecting the signature and structure of the post-grazing family

of periodic trajectories emanating from the grazing bifurcation, the starting solution may be given by a

four-segment periodic solution with base signature {J1,J8,J1,J8} where an additional zero-time segment

coincident with the point of grazing contact has been inserted in between the two J1 segments.

The corresponding single-parameter branch of four-segment periodic trajectories with signature

{J1,J8,J1,J8}, i.e., with two stick phases terminated through impact and two slip phases per period of

excitation, is shown in the upper panel of Fig. 2.6. The lower panel of Fig. 2.6 shows the grazing periodic

solution for V ≈ 0.8095 that attains a grazing contact with the event surface corresponding to hfront along

one of the J1 segments.

Reference to the upper panels of Fig. 2.5 and Fig. 2.6 show a discontinuity in the tangent direction to

the branch of periodic trajectories at the point G-2. This is again consistent with the discontinuity-mapping

based analysis in [15, 81].

In a similar fashion, the procedure outlined here can be implemented for the continuation of multisegment

periodic solutions of the microactuator hybrid dynamical system with multiple stick and slip phases per

period of excitation (cf. upper and lower panels of Fig. 2.7). The results of such an analysis for large

variations in V and ω are shown in the bifurcation diagram in Fig. 2.8.
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Figure 2.5: (upper panel) A branch of periodic solution trajectories with base unit signature {J1,J8} obtained
from a one-parameter continuation in V for ω ≈ 0.9189. (lower panel) The grazing periodic trajectory
corresponding to G-2 obtained for V ≈ 0.7305 in the one-parameter continuation. The terminal point of the

J1 segment is given by x ≈
(
. . . 0 0.5 0.674 3.846

)T
.

2.4 Discussion

The latter part of this chapter has illustrated the use of a computational toolbox for the continuation

of periodic solution trajectories of hybrid dynamical systems by applying it to the bifurcation analysis of

an example impact microactuator. In particular, branches of multisegment periodic solution trajectories

with several distinct signatures have been continued under variations in a single parameter. Furthermore,

bifurcation curves corresponding to the locus of period-doubling, saddle-node, and grazing bifurcation points

have been continued under variations in two parameters. The discussion has demonstrated the ease with

which the results of one-parameter continuations may be used to seed two-parameter continuations and the

alternative descriptions for the continuation of grazing bifurcation curves that reflect the transition between

distinct solution signatures.

Grazing bifurcation curves have here been characterized solely in terms of a condition of tangential contact

of a solution segment and a subsequent resegmentation for continuation past this condition. The numerical

results have demonstrated that transitions across such bifurcation curves are, nevertheless, associated with
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Figure 2.6: (upper panel) A branch of periodic solution trajectories with base unit signature {J1,J8,J1,J8}
obtained from a one-parameter continuation in V for ω ≈ 0.9189. (lower panel) The grazing periodic
trajectory corresponding to G-3 obtained for V ≈ 0.8095. The terminal point of the longest J1 segment is

given by x ≈
(
. . . 0 0.5 0.794277 3.509

)T
.

changes in the linear stability characteristics (cf. branches terminating at points G-1 in Figs. 2.3 and 2.5)

as well as the number of periodic solution trajectories of period equal to that of the excitation (cf. branches

terminating at points G-2 inf Figs. 2.5 and 2.6). Indeed, in impact oscillators, multiple solution branches

of periodic trajectories of period equal to a multiple of that of the excitation may also emanate from such

grazing bifurcation points (cf., [55]). These observations justify the use of the terminology grazing bifurcation

curves to denote the locus of parameter values corresponding to tangential contact.

The bifurcation behavior documented may provide impetus to the design of the actuator for specific

applications. For instance, to achieve a consistent step size with minimum input voltage and a maximum

tolerance to deviations in that input, ω can be tuned near resonance (ω ≈ 0.4878), where an asymptotically

stable behavior exists for a relatively large range of excitation amplitudes. Similar observations regarding

the distribution of bifurcation curves in parameter space may be used to tune system parameters so as to

achieve a desirable response of the actuator.

The numerical analysis has demonstrated that the period-doubling and saddle-node bifurcation curves

terminate on grazing bifurcation curves at co-dimension-two bifurcation points in the (ω, V ) parameter
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Figure 2.7: (upper panel) The grazing periodic trajectory obtained for V ≈ 0.8559 in the one-parameter
continuation of a six-segment solution with base unit signature {J1,J8,J1,J8,J1,J8}. (lower panel) The
grazing periodic trajectory obtained for V ≈ 0.8819 in the one-parameter continuation of an eight-segment
solution with base unit signature {J1,J8,J1,J8,J1,J8,J1,J8}.

space. For example, the saddle-node and period-doubling bifurcation curves corresponding to a two-segment

periodic solution intersect at ω ≈ 0.6136 and V ≈ 0.5816, which also corresponds to a grazing bifurcation

point. A similar phenomenon can be observed at ω ≈ 0.4878 and V ≈ 0.1710 (see Fig. 2.8). This observation

supports the analysis performed on such co-dimension-two bifurcation points in recent work by members of

Prof. Dankowicz’s group ([15, 66, 81]).

Two distinct limiting behaviors corresponding to ω ≪ 1 and ω ≫ 1 were observed here. In particular,

as seen in Fig. 2.9, for ω ≪ 1 all grazing bifurcations curves converge to V ≈ 0.385. This agrees with the

static pull-in voltage for a parallel-plate capacitor given by

Vpull-in =
2d

3

√
kd

3α
(2.29)

(cf. [42]).

For ω ≫ 1, the grazing bifurcation curves tend to become horizontal and separated by a frequency-

independent distance. To investigate the apparent accumulation of these bifurcation curves, denote by Vi

22



Figure 2.8: Bifurcation diagram showing period-doubling, saddle-node and grazing bifurcation curves cor-
responding to periodic solutions with one or several segments. Here, PD-n, SN-n, and G-n represent the
period-doubling, saddle-node and grazing bifurcation curves corresponding to periodic solutions with n im-
pacts per period. Dotted, dashed and solid curves represent period-doubling, saddle-node, and grazing
bifurcation curves, respectively.

Figure 2.9: Grazing bifurcation curves obtained through two-parameter continuation.

the voltage for which a periodic trajectory with i impacts per period attains grazing contact with the event

surface corresponding to hfront, and let

λi =
Vi+2 − Vi+1

Vi+1 − Vi

For example, for ω ≈ 2.0056, we find V1 ≈ 0.5275, V2 ≈ 0.6664, V3 ≈ 0.7494, V4 ≈ 0.7990, V5 ≈ 0.8271,

V6 ≈ 0.8424, V7 ≈ 0.8503, and V8 ≈ 0.8543, and thus λ1 ≈ 0.5978, λ2 ≈ 0.5968, λ3 ≈ 0.5686, λ4 ≈ 0.5417,

λ5 ≈ 0.5191, and λ6 ≈ 0.5038. This near-self-similarity observed in the spacing of the grazing bifurcation

curves for large ω appears to also be sustained for mid-range values of ω. Indeed, for ω ≈ 0.9189, we find

λ1 ≈ 0.5528, λ2 ≈ 0.5873, and λ3 ≈ 0.5603. Similarly, [83] reported λi ≈ 0.5 for the case when ω = 0.5.

These results argue for the existence of a limiting bifurcation curve corresponding to periodic orbits

of infinitely many impacts per period accumulating from the left on the final point of grazing contact,

i.e., the onset of chatter. Although the shape of this chatter bifurcation curve would be expected to be

sensitive to the introduction of higher modes of natural oscillations of the impactor/suspension structure

(the model description presented here is an approximation based on the fundamental mode of vibration of
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the impactor/suspension structure), it would be interesting to investigate the rate of convergence toward

this curve and its dependence on system parameters. This could be an interesting topic for future work.

We return to the MEMS context in Chapter 6, where a modified version of the Mita device is discussed. A

design is proposed which places the stops such that, under suitable driving conditions, a grazing bifurcation

triggers snap-through of the parallel-plate drive. This creates a MEMS implementation of a limit-switch

sensor which closes a circuit as a result of reaching a critical value of the input signal.

The next chapter goes on to consider grazing contact in the context of an electrostatically actuated

microbeam. In this example, the beam is modelled as a continuum that is subsequently descretized using

the method of assumed modes. Intermittent contact with a barrier at a point along the span of the beam

is modelled as compliant contact with a stiff, conservative spring. A series of reduced order models are

then considered which explore responses with different contact stiffnesses and different numbers of retained

modes.
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Chapter 3

Grazing-Induced Dynamics in a
Unilaterally-Constrained Beam

3.1 Introduction

Where the last chapter studied a lumped-parameter model of a mechanical system, this chapter presents

a study of an electrostatically-actuated, microscale Euler-Bernoulli beam whose behavior is described by a

partial differential equation. This PDE is discretized using the Galerkin method and a sequence of reduced-

order models are considered. This example demonstrates numerical simulation techniques used in later

chapters and discusses the choice of contact law.

In the next section, an electromechanical model is developed of a simple parallel-plate capacitor design

in which a deformable, doubly-clamped, slender beam constitutes one of the electrodes. The model includes

leading-order geometric nonlinearities as well as corrections to the leading electrostatic interaction due

to the fringe effects from the finite width and thickness of the beam. The model also accounts for a

localized mechanical interaction with a low-compliance stop that limits the lateral deflection of the beam

at the location of the stop. Section 3.3 reviews the characteristic features of grazing-induced bifurcations

in mechanical systems with rigid impact and compliant contact. Section 3.4 presents numerical results

from simulations of reduced-order models with different numbers of mechanical modes and demonstrates the

changes in system response associated with the onset of low-relative-velocity contact. The chapter concludes

with a discussion of the main observations and implications for future study.

3.2 Model Development

Electrostatic interactions between parts of a MEMS device at different electric potentials are a dominant

contributor to the mechanical load and provide a useful mechanism for actuation. A common implementation

is a simple parallel-plate capacitor in which one of the plates is suspended and capable of motion relative

to the other plate. This configuration includes the possibility of snap-through and subsequent sustained

contact between the two plates when the voltage excitation exceeds a critical pull-in value.
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In Batra et al. [6] (see also [10, 36, 35]), the pull-in voltage characteristic of a fold in the equilibrium man-

ifold for electrostatically actuated microbeams is investigated when accounting for geometric nonlinearities

in the beam dynamics due to large deflections, large rotations, but small strains, and nontrivial corrections

to the effective capacitance due to fringe effects from finite beam width and thickness. Specifically, the

equilibrium equations are projected onto a subset of mechanical modes and conditions for criticality are

investigated numerically. Here, a similar model is adopted for the study of grazing-induced changes in the

beam dynamics following the onset of low-velocity contact with a low-compliance mechanical element. A

representation of this model is shown in Fig. 3.1.

g0

w (x; t)

x
x0

k

+ ¡
V

¡

t
¢

jdj

Figure 3.1: Schematic of an electrostatically actuated doubly-clamped microbeam with deflections limited
by the presence of a low-compliance mechanical element at x = x0.

3.2.1 Beam Dynamics

Consider a uniform microbeam of length l, width b, and thickness h. Let ρ represent the mass density per

unit volume and I the area moment of inertia about the principal inertia axis normal to the assumed plane

of flexure. Finally, denote by E the Young’s modulus of the beam. Following Batra et al. [6] (see also [38]),

let w (x, t) denote the lateral deflection of the beam at longitudinal coordinate x and time t (cf. Fig. 3.1).

Then, in the absence of axial load in the undeformed configuration, the governing equation of motion is

given by

ρbhwtt + EIwxxxx − Ebh

2l
wxx

∫ l

0

w2
xdx = F (w) , (3.1)
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where F denotes the distributed force per unit length due to the electrostatic and mechanical interactions.

Here, subscripts denote partial derivatives with respect to space and time. Finally, assuming a doubly-

clamped beam, the boundary conditions are

w,wx|x=0,l = 0. (3.2)

3.2.2 Electrostatic Interactions

Denote by g the pointwise distance separating the deformed beam from a stationary electrode, such that

g ≡ g0 in the undeformed configuration. For narrow microbeams with 0.2 ≤ h/b ≤ 2 and 0.4 ≤ h/g ≤ 5 the

electrostatic attraction toward the electrode is approximately given by the expression

Fe (w) =
ε

2

bV 2

(g0 − w)
2F , (3.3)

where the nontrivial terms in

F = 1 +

[
0.204 + 0.6

(
h

b

)0.24
](

g0 − w

b

)0.76

(3.4)

represent fringe effect corrections due to the finite width and thickness of the beam [5] (see also [4]). Here,

ε is the electrical permittivity of the dielectric separating the beam and the electrode and V is the voltage

difference between the beam and the electrode.

3.2.3 Mechanical Interactions

With the inclusion of a localized mechanical stop at an interior point x = x0 and displaced laterally relative to

the undeformed configuration of the beam by d (see Fig. 3.1, corresponding to a case where d < 0), mechanical

interactions occur for signum(d) w|x=x0
≥ |d|. Here, for simplicity, these are modeled as resulting from a

linear restoring force with stiffness k, such that

Fc (w) = −k (w − d) δ(x− x0) (3.5)

where δ is the Dirac delta function. This treatment avoids violating the continuum modeling assumptions.

A non-compliant contact law which prescribes a change in velocity at a discrete point of contact, as used in

the last chapter, is inconsistent for this situation, where a continuous velocity field is assumed to exist. For

other studies of microbeam dynamics in the presence of contact see, for example, [2, 69, 68, 77].
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3.2.4 Non-Dimensional Representation

The substitution

w (x, t) = lw̃

(
x

l
,

√
EI

ρbhl4
t

)
(3.6)

yields the non-dimensionalized beam equation

w̃t̃t̃ + w̃x̃x̃x̃x̃ − γ

2
w̃x̃x̃

∫ 1

0

w̃2
x̃dx̃ = F̃ (w̃) (3.7)

and boundary conditions

w̃, w̃x̃|x̃=0,1 = 0 (3.8)

where

F̃ (w̃) =
l3

EI
F (lw̃) (3.9)

and

x̃ =
x

l
, t̃ =

√
EI

ρbhl4
t, γ =

bhl2

I
. (3.10)

Here,

l3

EI
Fe (lw̃) =

Ṽ 2

(g̃0 − w̃)
2 F̃ (3.11)

where

F̃ = 1 +


0.204 + 0.6

(
h̃

b̃

)0.24


(
g̃0 − w̃

b̃

)0.76

(3.12)

and

g̃0 =
g0
l
, b̃ =

b

l
, h̃ =

h

l
, Ṽ 2 =

εV 2bl

2EI
. (3.13)

Similarly,

l3

EI
Fc (lw̃) = −k̃

(
w̃ − d̃

)
δx̃0

(3.14)

where

d̃ =
d

l
, x̃0 =

x0

l
, k̃ =

kl3

EI
. (3.15)

3.2.5 Projection

For a reduced-order description, we decompose the lateral deflection according to

w̃
(
x̃, t̃
)
= qi

(
t̃
)
φi (x̃) (3.16)
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where a repeated index implies summation from 1 to some integer N and φi denotes a set of sufficiently

smooth trial functions that satisfy the boundary conditions. Substitution into Eqn. (3.1) and integration

over x with weight φm then yields

q̈iΛim + qiΛ
′′
im +

γ

2
qiqjqkΛ

′
imΛ′

jk =

∫ 1

0

F̃ (qiφi)φmdx̃ (3.17)

using integration by parts and the boundary conditions (3.2), where

Λij =

∫ 1

0

φiφjdx,Λ
′
ij =

∫ 1

0

φ′
iφ

′
jdx,Λ

′′
ij =

∫ 1

0

φ′′
i φ

′′
j dx. (3.18)

In particular, in a single-mode approximation

q̈Λ11 + qΛ′′
11 +

γ

2
q3Λ′2

11 =

∫ 1

0

F̃ (qφ)φdx̃ (3.19)

For example, with the trial function

φ (x) = 16g̃0x̃
2 (x̃− 1)

2
(3.20)

found in Batra et al. [5] to approximate the static beam shape under small constant voltages it follows that

Λ11 =
128g̃20
315

,Λ′
11 =

512g̃20
105

,Λ′′
11 =

1024g̃20
5

. (3.21)

Alternatively, in the case that the trial functions are chosen as the first N spatial eigenmodes of the

doubly-clamped Euler-Bernoulli beam normalized such that Λij = δij , it follows that Λ′′
ij = ω2

i δij (no sum

over i), where ωi is the i-th modal frequency (see Table 3.1). Moreover, from symmetry Λ′
ij = 0 for i and j

of unequal parity. In contrast, for i and j of equal parity, Table 3.1 shows the corresponding values of Λ′
ij

for N = 5. Similarly, symmetry implies that the odd subspace q2 ≡ q4 ≡ . . . ≡ q2⌊N/2⌋ ≡ 0 is invariant in

the absence of mechanical contact or when x̃0 = 1/2.

For the mechanical interaction with the compliant stop,

∫ 1

0

F̃c (qiφi)φmdx̃ = −k̃
(
qi φi|x̃=x̃0

− d̃
)
φm|x̃=x̃0

. (3.22)

The contribution from the electrostatic interaction to the integrand on the right-hand side of Eqn. (3.17),

however, is a non-polynomial expression in the modal amplitudes and trial functions. To enable efficient

numerical implementation of the projected equations of motion, it becomes necessary to consider suitable
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Table 3.1: Values of ωi and λ′
ij rounded off to 3 significant digits for i ≤ j and even i− j in the case of the

first 9 spatial eigenmodes of the doubly-clamped Euler-Bernoulli beam.

ω1 22.4 Λ′
11 12.3 Λ′

33 98.9 Λ′
59 −38.0

ω2 61.7 Λ′
13 −9.73 Λ′

35 −24.3 Λ′
66 376

ω3 121 Λ′
15 −7.62 Λ′

37 −23.0 Λ′
68 −44.7

ω4 200 Λ′
17 −6.11 Λ′

39 −20.9 Λ′
77 508

ω5 299 Λ′
19 −5.07 Λ′

44 172 Λ′
79 −51.2

ω6 417 Λ′
22 46.1 Λ′

46 −31.3 Λ′
88 660

ω7 555 Λ′
24 −17.1 Λ′

48 −30.6 Λ′
99 836

ω8 713 Λ′
26 −15.2 Λ′

55 264
ω9 891 Λ′

28 −13.1 Λ′
57 −38.0

approximations that reduce the evaluation of the integral to that of a polynomial approximant or to a fixed-

step quadrature approximant. In the first case, the expression for the electrostatic interaction, assuming

w̃ ≪ 1, could be expanded to some desired order. Approximation errors would be due to the order of

truncation in the Taylor expansion whereas the integrals for each monomial could be obtained off-line with

arbitrary accuracy.

Alternatively, retaining the full nonlinear form of the integrand, but replacing the integral by a linear

combination of the integrand evaluated at selected interior points of the integration domain allows for larger

values of w. Here, approximation errors would be due to the resolution of the partition of the integration

domain. In this initial investigation, we adopt Simpson’s rule

∫ 1

0

F̃e (qiφi)φmdx̃ =
2

3n




∑n
2
−1

k=1 F̃e (qiφi)φm

∣∣∣
x̃=2k/n

+2
∑n

2

k=1 F̃e (qiφi)φm

∣∣∣
x̃=(2k−1)/n


 , (3.23)

for some even integer n.

Finally, in the numerical simulations reported below, viscous modal damping was introduced into the

projected equations of motion (3.17) with an identical damping factor of ζ for each mechanical mode.

3.3 Grazing Bifurcations

The mechanical model developed above falls into the general class of piecewise-smooth dynamical systems

characterized by the existence of state-space surfaces associated with discontinuities in the governing vec-

tor field. Such systems are known to exhibit complex behavior, including the coexistence of steady-state

solutions, a variety of bifurcation phenomena, and chaos. Of particular interest in the present context are
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bifurcations that occur in the immediate vicinity in parameter space to parameter conditions corresponding

to the existence of a periodic steady-state trajectory that achieves tangential contact with the discontinuity

surface given by

h (q)
def
= qi φi|x=x0

− d̃ = 0. (3.24)

Specifically, the analysis emphasizes so-called discontinuity-induced bifurcations that would not have occurred

for nearby parameter values in the absence of the discontinuity.

3.3.1 Rigid Impacts

In mechanical systems with rigid impacts, the corresponding discontinuity surfaces are associated with

instantaneous jumps in the velocity state of the mechanism. A periodic steady-state trajectory that achieves

tangential, grazing contact with such a discontinuity surface then corresponds to an oscillation of the system

in which mechanical contact occurs with zero relative velocity at some moment during the oscillation. The

local dynamics in the vicinity of the corresponding state-space trajectory are significantly different from

those in the absence of the discontinuity (see, e.g., [7, 12, 19, 21, 24, 23, 52, 53, 54]).

In particular, let the zero-level surface of himpact represent the discontinuity surface such that only

himpact > 0 is accessible to the system dynamics. Denote by x∗ the point of grazing contact of the steady-

state trajectory, such that himpact (x
∗) = 0. Suppose that the grazing trajectory is a member of a family

of periodic trajectories of the mechanical system in the absence of impacts, which is parametrized by a

parameter µ and denote by x (µ) the local extremum in the distance to the discontinuity surface, such that

x (µ∗) = x∗. Finally, suppose that

d

dµ
himpact (x (µ))

∣∣∣∣
µ=µ∗

< 0, (3.25)

corresponding to a transversal crossing of x (µ) with himpact = 0. Then, for µ > µ∗, the local dynamics

necessarily include repeated impacts.

In fact, as follows from the discontinuity-mapping methodology originally introduced by Nordmark [52],

the local dynamics in the vicinity of the grazing trajectory are governed by a characteristic nonsmooth normal

form in the deviation from grazing. In particular, for initial conditions that lead to impact, the normal form

is dominated by terms proportional to the square root of the deviation from the grazing trajectory. The

destabilizing influence of these terms due to recurrent impact may or may not be compensated for by

stabilizing features of the global dynamics away from impact. In the former case, the resultant steady-state

response for µ > µ∗ exhibits a sequence of discontinuity-induced bifurcations that accumulate on the initial

grazing bifurcation at µ = µ∗. This scenario includes the possibility of robust chaos over open intervals of
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values of µ, period-adding sequences, and an infinite collection of additional grazing bifurcations.

In contrast, in the case that the global dynamics fails to compensate for the effects of recurrent impacts,

the system response necessarily transitions through a rapid sequence of impacts of increasing relative velocity

to a distinct steady-state behavior. This corresponds to a loss of the local attractor and a possibly dramatic,

and clearly very sudden, change of system response [15, 81]. This particular behavior will be considered in

detail in Chapter 4.

3.3.2 Compliant Collisions

The mechanical model developed previously is one in which the contact condition is modeled through an

additional mechanical element that yields a zero contribution to the load in the absence of contact and

a load that is proportional to the penetration in the presence of contact (cf. [16, 43, 80]. Here, again, a

periodic steady-state trajectory that achieves grazing contact with a discontinuity surface corresponds to an

oscillation that exhibits zero-relative-velocity mechanical contact at some moment during the oscillation. In

this case, however, the effects of the additional contribution to the force field due to the contact stiffness does

not immediately dominate the system response as was the case in the presence of rigid impacts. Instead,

for finite, but large values of the contact stiffness, it is expected that the pre-grazing branch of periodic

trajectories persists over some small, but nonzero interval of µ near µ∗.

To analyze the occurrence of near-grazing, discontinuity-induced bifurcations in a piecewise-smooth dy-

namical system with continuous, but not continuously differentiable vector fields, denote by f (x∗, µ∗) the

vector field at the point of grazing contact when µ = µ∗. It follows that

∂xhimpact (x
∗) · f (x∗, µ∗) = 0 (3.26)

corresponding to tangential contact of the corresponding state-space trajectory with himpact = 0. Let

hturning (x, µ) = ∂xhimpact (x) · f (x, µ) (3.27)

and assume that

∂xhturning (x
∗, µ∗) · f (x∗, µ∗) > 0 (3.28)

such that x∗ is a local minimum in the value of himpact along the corresponding state-space trajectory.

Finally, denote by δx the deviation from x∗ of the intersection with hturning = 0 of a near-grazing trajectory

segment governed by the non-contact vector field. From [47] it follows that, for large values of the contact
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stiffness, near-grazing periodic trajectories with a single intersection with hturning = 0 correspond to negative

roots of the cubic polynomial

g (τ) = ατ3 + τ2 + β (3.29)

where α is a constant that can be evaluated based on the system characteristcs at the point of grazing

contact and along the grazing trajectory, β depends linearly on µ− µ∗, and τ2 is linear in δx.

Now suppose that α < 0. It follows that β is an increasing function of τ along g (τ) = 0, i.e., that there

exists one negative root for β < 0 and no negative roots for β ≥ 0. In contrast, for α > 0, β attains the

local minimum βfold = − 4
27α2 as a function of τ for τfold = − 2

3α . It follows that there exist no negative

roots of g when β < βfold, a single negative root when β = βfold and β ≥ 0 and a pair of coexisting roots for

βfold < β < 0.

The root manifold of g restricted to τ < 0 is shown in Fig. 3.2. It follows from this that, while the family

of steady-state periodic trajectories persists on the domain of validity of the corresponding normal form in

the case when α < 0, this is no longer the case when α > 0. Here, instead, the bifurcation branch under

variations in µ exhibits a discontinuity-induced fold bifurcation when β = βfold and the associated loss of a

local attractor. The near-grazing dynamics necessarily transition to a distinct steady-state behavior, much

as was the case in the limit of rigid impacts considered in the previous section.

®
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g (¿) = 0
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Figure 3.2: Root manifold of the cubic polynomial g(τ) for τ < 0. here, a single root is found for α < 0 and
β < 0. In contrast, for α > 0 a fold occurs in the root manifold under variations in β corresponding to a
discontinuity-induced loss of a local attractor and a transition to a distinct steady-state behavior.
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3.4 Numerical Results

Numerical simulations were performed to investigate the steady-state response of the electrostatically actu-

ated microbeam for excitation voltages given by

Ṽ
(
t̃
)
=





Ṽamp mod
(
t̃, 2π

ω

)
∈
[
0, π

ω

)

0 mod
(
t̃, 2πω

)
∈
[
π
ω ,

2π
ω

) (3.30)

corresponding to pulse trains of period 2π/ω and amplitude Ṽamp. Emphasis was placed on changes in the

response associated with the onset of low-velocity contact with the mechanical stop at x̃ = x̃0 for excitation

amplitudes in the vicinity of some critical value Ṽ ∗
amp. In all cases reported below, γ = 3 × 104, h̃ = 0.02,

b̃ = 0.01, g̃0 = 0.04, ω = 28, and x̃0 = 0.5. While the results shown were obtained with n = 20, selected

results were validated with n = 100.

Suppose that d̃ = −0.004. With a single-mode approximation given by the lowest-order fundamental

mode shape of the Euler-Bernoulli beam, a grazing periodic steady-state trajectory is found for Ṽ ∗
amp ≈

0.03. The corresponding variations in mid-span deflection and velocity are represented by the dotted closed

curve in Fig. 3.3. A grazing, periodic steady-state trajectory may similarly be found with the inclusion

of additional mechanical modes with an apparent convergence in modal contributions (errors ∼ 10−7) and

critical parameter value already for N ≥ 1.
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Figure 3.3: A single-mode approximation of the grazing periodic steady-state trajectory (dotted) along a
branch of low-penetration oscillations that terminates at a cyclic fold bifurcation for Ṽamp ≈ 0.033 and the
periodic steady-state trajectory (solid) along the coexisting branch of high-penetration oscillations found for
Ṽamp = 0.033.

Figure 3.4 shows the variations in the penetration, max
(
d̃− w̃|x̃=x̃0

)
, for the single-mode model under
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changes in the excitation voltage near Ṽ ∗
amp in the case that k̃ = 100. The bifurcation diagram shows the

coexistence, over a range of post-grazing excitation amplitudes, of a branch of asymptotically stable periodic

steady-state trajectories with relatively small values of penetration and a branch of asymptotically stable

periodic steady-state trajectories with relatively large values of penetration. Indeed, whereas the former

branch terminates at a cyclic fold bifurcation at Ṽamp ≈ 0.033, the latter persists for values of the excitation

amplitude below the critical value and terminates at a cyclic fold bifurcation at Ṽamp ≈ 0.023.
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Figure 3.4: Variations in penetration for the single-mode model under changes in the excitation voltage Ṽamp

in the case that k̃ = 100.

The transition of the steady-state response from the low-penetration to the high-penetration branch

is accompanied by a dramatic change in overall oscillation amplitude as well as mid-span velocity at the

moment of contact. Figure 3.5 shows the variations in the contact velocity under changes in the excitation

voltage near Ṽ ∗
amp. Indeed, as further illustrated by the solid closed curve in Fig. 3.3, the contact velocity

along the high-penetration branch is similar in magnitude to the maximum mid-span velocity throughout

the oscillation.

That the transition from the low-penetration to the high-penetration branch is induced by the onset of

low-velocity contact is supported by a bifurcation analysis performed in the case that k̃ = 0, corresponding

to the absence of the mechanical stop. Here, the low-penetration branch (where penetration is again defined

by the above expression) persists for larger changes in Ṽamp and terminates at a cyclic fold bifurcation

near Ṽamp ≈ 0.036. In this case, the transient dynamics appear to result in an unbounded growth in mid-

span velocity in the direction of the stationary electrode corresponding to a snap-through transition to an

electrostatically singular contact between the electrodes.

The high-amplitude, high-penetration response includes measurable contributions from higher-order me-

chanical modes that modify the amplitudes of lower-order modes. Specifically, for N = 9, the ratios of the

35



~w
~ t
j ~x

=
~x
0

0:7

0:6

0:5

0:4

0:3

0:2

0:1

0
0:02 0:025 0:03

~Vamp

~V ¤

amp

0:035

Figure 3.5: Variations in contact velocity for the single-mode model under changes in the excitation voltage
Ṽamp in the case that k̃ = 100.

maximum magnitude of the amplitude of the higher-order modes to that of the lowest-order mode equal 3%

for i = 3, .6% for i = 5, .1% for i = 7, and .05% for i = 9. Moreover, the case when N = 1 predicts a value

of maxt q1 (t) within 3% of that obtained in the case when N = 9. This error is reduced to .1% for N ≥ 5.

Similarly, the relative error in the value of maxt q3 (t) is 2% in the case when N = 3 and less than .5% for

N ≥ 5.

Substantial contributions from higher-order mechanical modes occur in the post-grazing response as k is

increased. Figure 3.6 shows the variations in penetration for the single-mode model and the nine-mode model

under changes in the excitation voltage near Ṽ ∗
amp in the case that k = 500. In this case, the pre-grazing

branch of asymptotically stable, periodic, steady-state trajectories appears to terminate in close conjunction

to the critical excitation amplitude. Here, again, a branch of high-penetration, high-amplitude oscillatory

responses is found over an interval of values of Ṽamp near Ṽ ∗
amp. In this case, for N = 9, the ratios of the

maximum magnitude of the amplitude of the higher-order modes to that of the lowest-order mode equal 5%

for i = 3, .4% for i = 5, .2% for i = 7, and .05% for i = 9. Moreover, the case when N = 1 again predicts

a value of maxt q1 (t) within 3% of that obtained in the case when N = 9. This error is reduced to .1% for

N ≥ 5. Similarly, the relative error in the value of maxt q3 (t) is .2% in the case when N = 3 and less than

.002% for N ≥ 5.

The qualitative features of the bifurcation diagram for k = 500 persist in the case that k = 5000 (cf.

Fig. 3.7). In this case, for N = 9, the ratios of the maximum magnitude of the amplitude of the higher-order

modes to that of the lowest-order mode equal 11% for i = 3, 2% for i = 5, .5% for i = 7, and .2% for i = 9.

Moreover, the case when N = 1 predicts a value of maxt q1 (t) within 5% of that obtained in the case when

N = 9. This error is reduced to .1% for N ≥ 7. Similarly, the relative error in the value of maxt q3 (t) is 6%
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Figure 3.6: Variations in penetration for the single-mode model and the nine-mode model under changes in
the excitation voltage Ṽamp in the case that k̃ = 500.

in the case when N = 3 and less than .2% for N ≥ 7.
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Figure 3.7: Post-grazing, high-amplitude steady-state response using the single-mode and nine-mode ap-
proximations for Ṽamp = 0.03 and k̃ = 5000.

3.5 Discussion

The results in the previous section document grazing-induced, dramatic changes in system response of the

beam dynamics across small intervals containing the critical parameter value. In agreement with the theory

of grazing bifurcations in systems with compliant contact, the onset of low-velocity contact has been found

to result in the termination of a pre-grazing branch of periodic steady-state oscillations through a cyclic fold

bifurcation. The loss of a local attractor has been shown to result in a transition to a branch of high-amplitude
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steady-state oscillations. While the pre-grazing solution is dominated by the lowest-order mechanical mode,

the high-amplitude post-grazing response includes measurable contributions from higher-order mechanical

modes that cannot be neglected in the limit of small compliance.

As was mentioned in Sec. 3.3, the system response to a grazing bifurcation is expected to be quite

dramatic. The next chapter investigates in detail the transient response of a mechanical system undergoing

a grazing bifurcation. Analytical, numerical, and experimental results are presented which indicate that as

the bifurcation point is approached, the system response rate grows without bound. It is this behavior which

suggests using the grazing bifurcation as a mechanism for a fast-acting limit switch sensor.

38



Chapter 4

Transient Behavior Near a
Nonsmooth Fold Bifurcation

4.1 Introduction

In this chapter analytical, numerical, and experimental methods are employed to investigate the near-grazing

transient behavior in a representative, rigid-body mechanical system. It is shown that the rate of growth of

successive impact velocities increases beyond all bounds as the threshold parameter value is approached. A

limit switch based on the proposed nonsmooth fold scenario would thus be expected to outperform one that

relies on a smooth bifurcation, such as the cyclic-fold bifurcation, in terms of switching speed and sensitivity.

Generalizations to periodic steady-state attractors of the snap-like action due to saddle-node bifurcations

of equilibria have been proposed recently for limit-switch design using nonlinear circuitry as well as paramet-

rically excited microelectromechanical devices [1, 49, 51, 60, 67, 70, 71, 78, 79]. The corresponding cyclic-fold

bifurcation is characterized by the mutual annihilation of a stable and unstable periodic trajectory beyond

the threshold value. Using center-manifold theory and the theory of normal forms, the local dynamics in

the vicinity of a cyclic-fold bifurcation may be described by the discrete map

xn+1 = xn + µ+ x2
n, (4.1)

where µ denotes the deviation of the system parameter from the threshold value and xn and xn+1 parametrize

the deviation from the periodic trajectory at µ = 0 upon successive intersections of a state-space trajectory

with a suitably defined Poincaré surface [37]. Here, xn+1 = xn = x∗ for some µ corresponds to a periodic

response of the continuous state of the device. In particular, it follows that there exist two such periodic

responses with x∗ ≈ 0 for µ . 0, one when µ = 0, and none for µ & 0. Specifically, for 0 < µ, |x0| ≪ 1

deviations away from the original periodic trajectory grow linearly with n , for sufficiently small n.

The purpose here is to investigate the nonsmooth fold associated with a grazing bifurcation in a vibro-

impacting mechanical system for use in limit-switch design [58, 82]. As demonstrated below, this alternative

compares favorably with the cyclic-fold bifurcation in terms of the growth rate of deviations away from
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the original periodic trajectory, indicating the potential to ensure a quicker switch response. Here, at the

critical threshold value, there exists a periodic oscillation of an internal element of the device that achieves

zero-relative-velocity (grazing) contact with a rigid obstacle at some phase of the oscillation. Computable

conditions distinguish between the case in which a steady-state attractor persists in the neighborhood of

the grazing periodic oscillation for nearby parameter values and the case of interest here, in which the

disappearance of a local attractor results in a rapid transition to a distinctly different steady-state behavior.

Indeed, as shown using the theory of discontinuity mappings [15, 52] and rederived here in terms of successive

values of the relative velocity at impact, the growth rate of deviations away from the grazing oscillation

increases beyond all bounds as the threshold parameter value is approached.

The chapter is organized as follows. Section 4.2 describes an experimental setup used to explore the near-

grazing dynamics and, specifically, the growth of relative velocity at successive impacts. An approximate

map describing the relationship between successive values of the relative impact velocity is rigorously derived

and validated against numerical simulations in Section 4.3. Section 4.4 reports on collected experimental

data and compares the observed behavior to the theoretical predictions. Finally, the chapter concludes with

a discussion summarizing key findings.

4.2 Phenomenology

4.2.1 Experimental apparatus

An experimental impacting mechanical system, shown schematically in Fig. 4.1, was chosen to investigate

the transient dynamics following the onset of low-velocity impacts (cf. [7, 19, 23, 43, 57, 61]). The system

consists of a spherical steel ball attached to the end of a cantilevered beam. The ball and beam assembly

is in turn clamped to a support and oriented as shown in Fig. 4.1 with the ball resting in front of the head

of a Brüel and Kjær Type 4809 electromagnetic shaker. When the shaker is excited (a signal generator and

a Brüel and Kjær Type 2706 power amplifier were used), the head moves relative to the body, which is

stationary relative to the support. With sufficient excitation amplitude, the head of the shaker will impact

the ball resulting in the behavior of interest.

A Polytec PDV100 laser vibrometer was used to gather velocity data. The laser was mounted on a tripod

and aimed axially with the motion of the ball. The laser beam was passed through small holes in the support

so as to reflect off the objects of interest on the other side (the head and ball), as shown in Fig. 3.1. Signal

generation, data acquisition, and signal processing were performed using a Spectral Dynamics SigLab Model

20-42 Dynamic Signal Analyzer and SigLab software (running in Matlab). For further discussion regarding
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Figure 4.1: Schematic of the experimental apparatus used for investigating near-grazing transient dynamics.
The system consists of a spherical steel ball (1) attached to the end of a cantilevered beam (2), clamped
to a base (3) through a rigid support (4), and oriented such that the ball rests in front of the head of an
electromagnetic shaker (5).

the experimental apparatus, see [18].

4.2.2 Experimental procedure and data processing

To investigate the transient behavior experimentally, a sinusoidal signal was generated using the Virtual

Function Generator (VFG) supplied with SigLab. The output from the VFG was routed into an amplifier,

then from the amplifier to the inputs of the shaker, again shown schematically in Fig. 4.1. The shaker

was started from rest and the gain of the amplifier increased manually until the amplitude of the shaker

oscillations brought the head of the shaker close to the ball.

To get as close as possible to grazing contact, the input signal was then incremented quasi-statically using

the digital controls within SigLab until impacting behavior was observed. The amplitude of the increments

was the minimal amount possible within SigLab, corresponding to approximately 0.26% of the full-scale

input. Subsequent to the onset of impacts, data was sampled at 12.8 kHz for approximately 30 cycles of

the excitation. A characteristic time evolution is shown in Fig. 4.2(b) and demonstrates the anticipated

dramatic growth of the ball velocity over time.

4.2.3 Mathematical model

Consider, for simplicity, a lumped parameter model of the experimental apparatus in which the ball and

beam assembly is represented by a massive particle constrained to straight-line motion and affected by a
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Figure 4.2: Characteristic time evolutions for the ball velocity subsequent to the onset of impacts. (a)
numerical simulation; (b) experiment.

linear restoring force and damping. Specifically, let q be the displacement of the particle away from its

equilibrium position and suppose that −b + a sinωt, where a, b, ω > 0, represents the displacement of the

shaker head relative to the particle’s equilibrium position.

Let

x =

(
q q̇ θ = ωtmod2π

)T

(4.2)

denote the state of the corresponding hybrid dynamical system with continuous dynamics governed by the

smooth vector field

f (x) =

(
q̇ −2ζωnq̇ − ω2

nq ω

)T

(4.3)

as long as

himpact (x)
def
= q + b − a sin θ ≥ 0, (4.4)

and discrete jumps given by

x 7−→ g (x) =

(
q −eq̇ + (1 + e) aω cos θ θ

)T

(4.5)

triggered by transversal crossings of the zero-level surface of h impact. Here, ζ is the damping factor, ωn is

the natural frequency of the system, and e represents a coefficient of restitution. In particular,

hturning (x)
def
= ∂xhimpact (x) · f (x) = q̇ − aω cos θ (4.6)
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denotes the rate of change of himpact along trajectories of the smooth vector field, i.e., the relative velocity

between the particle and shaker. From the expression for g it follows that

hturning (g (x)) = −ehturning (x) (4.7)

and thus that trajectories that reach himpact = 0 at incoming points with hturning < 0 are connected to

trajectories based at outgoing points on himpact = 0 with h turning > 0.

4.2.4 Numerical simulations

A free vibration test of the ball and beam assembly was completed to characterize the damping factor ζ

and natural frequency ωn . The ball was given an initial displacement and released from rest. The transient

dynamics of the system were then captured as the system settled to equilibrium. From experimental data

averaged over 10 runs and using the method of logarithmic decrement, ζ was estimated at 0.0881 and ωn

was estimated at 25.2 rad/s.

As the collected data was limited to the absolute velocity of the ball, it was necessary to rely on indirect

methods for determining a suitable numerical estimate of the coefficient of restitution e. Specifically, e was

estimated at 0.55 so as to result in close agreement between the resultant simulated velocity data (shown in

Fig. 4.2(a)) and the experimental data (shown in Fig. 4.2(b)).

4.3 Theoretical analysis

4.3.1 Near-grazing dynamics

As long as a ≤ b,

x (t) =

(
0 0 ωtmod2π

)T

(4.8)

describes a smooth periodic trajectory of the hybrid dynamical system. In particular, for a = a∗
def
= b a

simple tangential (grazing) contact occurs between this trajectory and himpact = 0 at

x∗ =

(
0 0 π

2

)T

. (4.9)

In particular, hturning (x
∗) = 0. Of interest in the subsequent analysis is the dynamics of nearby initial

conditions for a ≈ a∗.
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Specifically, let a− a∗ = εδa and consider the initial condition

x0 = x∗ + ε

(
δa δq̇ δhturning−δq̇

bω

)T

+O
(
ε2
)

(4.10)

such that himpact (x0) = O
(
ε2
)
and hturning (x0) = εδhturning + O

(
ε2
)
, where δhturning < 0 (cf. Fig. 4.3).

It follows that

x1 = g (x0) = x∗ + ε

(
δa δq̇ − (1 + e) δhturning

δhturning−δq̇
bω

)T

+O
(
ε2
)

(4.11)

such that himpact (x1) = O
(
ε2
)
and hturning (x1) = −εeδhturning +O

(
ε2
)
.
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Figure 4.3: Schematic illustrating the sequence of points introduced in the derivation of Eqn. (4.24) and the
growth in order in ε of the value of hturning at successive impacts.

In the case that ζ < 1, the smooth flow corresponding to the vector field f is given by

φ (t, x̃) =




e−tζωn

Ω

(
q̃ΩcosΩt+

(
˙̃q + q̃ζωn

)
sinΩt

)

e−tζωn

Ω

(
˙̃qΩcosΩt− ωn

(
˙̃qζ + q̃ωn

)
sinΩt

)

θ̃ + ωt




, (4.12)
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where Ω = ωn

√
1− ζ2. In particular, with

t1
def
=

1

bω2


δq̇ − δhturning −

e−2nπζωn/ω

Ω




(δq̇ − (1 + e) δhturning) Ω cos 2nπΩ
ω

−ωn (ωnδa+ δq̇ζ − (1 + e) ζδhturning) sin
2nπΩ

ω





 (4.13)

for some positive integer n, it follows that

hturning

(
φ

(
2nπ

ω
+ εt1 +O

(
ε2
)
,x1

))
= O

(
ε2
)

(4.14)

and

himpact

(
φ

(
2nπ

ω
+ εt1 +O

(
ε2
)
,x1

))
= δhimpactε+O

(
ε2
)
, (4.15)

where

δhimpact = −δa+
e−2nπζωn/ω

Ω




Ωδa cos 2nπΩ
ω

+(ωnζδa+ δq̇ − (1 + e) δhturning) sin
2nπΩ

ω


 . (4.16)

Let n be the smallest integer1 such that δhimpact is negative and set

x2 = φ

(
2nπ

ω
+ εt1 +O

(
ε2
)
,x1

)
. (4.17)

It follows that a transversal crossing of himpact must have occurred prior to the trajectory reaching x2. In

particular, with

t2
def
= −

√
−2δhimpact

bω2
(4.18)

it follows that

himpact

(
φ
(√

εt2 +O (ε) ,x2

))
= O

(
ε2
)

(4.19)

and

hturning

(
φ
(√

εt2 +O (ε) ,x2

))
= −

√
−2bω2δhimpact

√
ε+O (ε) , (4.20)

whereas

φ̇2

(√
εt2 +O (ε) ,x2

)
= O (ε) (4.21)

corresponding to the value of absolute velocity, q̇, at this location (see Fig. 4.3).

The above analysis demonstrates that for sufficiently small ε, repeated iterations of the three steps

described above yield a value of hturning that eventually deviates from 0 by O (
√
ε) while δq̇ remains O (ε).

1Such an integer is guaranteed to exist in the underdamped case ζ < 1.
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It follows that δa and δq̇ terms in the expression for δhimpact may eventually be ignored yielding

δhimpact = − (1 + e) δhturning
e−2nπζωn/ω

Ω
sin

2nπΩ

ω
(4.22)

and the map

δhturning 7−→ −
√
2bω2 (1 + e) δhturning

e−2nπζωn/ω

Ω
sin

2nπΩ

ω
(4.23)

from one impact to the next, where n is the smallest integer that guarantees that the argument of the radical

is positive.

From Eqn. (4.5), it follows that the jump ∆q̇ in absolute velocity due to impacts is proportional with

coefficient − (1 + e) to the relative velocity δhturning at impact, thus yielding the map

∆q̇ 7−→ c (e, ω, b, ωn, ζ)
√
∆q̇, (4.24)

where

c (e, ω, b, ωn, ζ) = ω (1 + e)

√
−2b

e−2nπζωn/ω

Ω
sin

2nπΩ

ω
. (4.25)

4.3.2 Numerical results

To validate the approximations made in the derivation of the discrete map, Eqn. (4.24), a series of numerical

experiments were performed in which data for several successive low-velocity impacts were collected and the

value of ∆q̇ at one impact was graphed against the value at the previous impact. The Matlab code used

to execute these simulations is shown in Appendix A. Specifically, simulations were performed with the

numerical values of ζ, ωn, and e previously estimated, with b = 0.65 mm, and f = ω
2π = 6, 10, 14, 18, and 22

Hz. For each set of parameter values, a large number of runs were performed with random initial conditions

near x = 0 and with a range of values of a near b. For each run, data was collected for successive impacts

as long as ∆q̇ did not exceed 50 mm/s.

Figure 4.4 shows a log-log plot of the collected data for the five different excitation frequencies. In each

case, a linear regression fit was performed on the all data with ∆q̇ ∈ (0.01, 1) mm/s. The corresponding

values of the slope and intercept are shown in tabular form in Table 4.1. The table further contains predicted

values for the slope and intercept (i.e., log c (e, ω, b, ωn, ζ)) as obtained from Eqn. (4.24) and Eqn. (4.25).

The results confirm the validity of the discrete map in predicting the near-grazing transient dynamics.
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Figure 4.4: Numerically simulated ∆q̇i+1 vs. ∆q̇i at successive impacts for ∆q̇ ≤ 50 mm/s. Here, straight
lines represent linear regression fits performed in the log-log representation using ∆q̇i ∈ (0.01, 1) mm/s
corresponding to 77 points for f = 6 Hz, 67 points for f = 10 Hz, 63 points for f = 14 Hz, 57 points for
f = 18 Hz, and 35 points for f = 22 Hz.

Numerical Results Mapping Results
ω/2π (Hz) Slope Intercept Slope Intercept

6 0.5015 1.0140 0.5 1.0116
10 0.4990 1.2373 0.5 1.2387
14 0.5005 1.2404 0.5 1.2396
18 0.4986 1.4869 0.5 1.4887
22 0.5017 1.3456 0.5 1.3441

Table 4.1: Comparison of slope and intercept describing the linear fit shown in Fig. 4.4 and predicted values
obtained using Eqns. (4.24-4.25) with b = 0.65. Here, n = 1 when ω = 12π, n = 2 when ω = 20π and 28π,
and n = 3 when ω = 36π and 44π.
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4.4 Experimental results

Experiments were performed following the protocol described in Section 4.2.2 and data was collected and

processed in the same manner as described in Section 4.3.2 with the proviso that for each excitation frequency,

the value of b was adjusted to maintain the excitation voltage within an allowable range.

Figure 4.5 shows a log-log plot of the collected data for the five different excitation frequencies. In each

case, the behavior predicted from Eqn. (4.24) is represented by the included straight lines (where b = 0.65 for

f = 6 Hz and 14 Hz, b = 0.67 for f = 10 Hz, b = 0.59 for f = 18 Hz, and b = 0.54 for f = 22 Hz). The results

again confirm the validity of the discrete map in predicting the near-grazing transient dynamics (although

a noticeable discrepancy is noticed in the intercept in the case that f = 22 Hz). Indeed, the experimental

data conforms with the predicted value of the integer n, i.e., the smallest integer that guarantees that the

argument of the radical in Eqn. (4.25) is positive.
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Figure 4.5: Experimentally measured values of ∆q̇i+1 vs. ∆q̇i collected for three successive impacts. Here,
straight lines represent predicted relationship as obtained from Eqn. (4.24).

It was observed that the limitations imposed by the measurement hardware and the method for extracting

jumps in the absolute velocity made it difficult to collect accurate data for extremely low-relative-velocity

impacts (cf. the leftmost impact in Fig. 4.6). Indeed, while the discontinuity in the data is still somewhat
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apparent, the nature of the discontinuity is not as abrupt as in the case of the latter impacts shown in

Fig. 4.6. For this reason, a lower limit was imposed on the values of ∆q̇ included in the analysis.
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Figure 4.6: “Soft” impacts with ∆q̇ below the discernible limit were not included in the processed data.

4.5 Discussion

The experimental, analytical, and numerical results presented here demonstrate clearly the near-grazing

transient behavior that supports the proposed reliance on the nonsmooth fold bifurcation in vibro-impacting

systems as the operating principle of a novel class of limit switches. In particular, the increase beyond all

bounds of the transient growth rate of near-grazing impact velocities as the threshold parameter value is

approached suggests a high sensitivity and rapid switching speed of a corresponding limit switch. In con-

trast, for limit switches that rely on saddle-node bifurcations of equilibria or smooth cyclic-fold bifurcations

of periodic oscillations, the corresponding growth rate would fall off to zero as the threshold value was

approached.

Recent work on the control of near-grazing dynamics in vibro-impacting systems suggest a mechanism for

regulating the limit switch response [13, 14]. With the inclusion of additional feedback, the nonsmooth fold

bifurcation associated with near-grazing dynamics can be replaced with the persistence scenario in which

a steady-state attractor persists in the vicinity of the threshold parameter value. Such a regulator would

enable the inclusion of a secondary fail-safe mechanism that would first need to be triggered in order to

enable the limit switch. This would enhance the ability to adjust the sensitivity of the switch to noise and
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is a suggested topic for further study.

Although other investigators have explored the near-grazing dynamics of vibro-impact oscillators, pre-

vious work has primarily focused on the form of steady-state attractors and not on the transient behavior

following the initial onset of low-relative-velocity impacts [7, 19, 23, 43, 57, 59, 61]. As the emphasis here has

been on the immediate response of a limit switch following the crossing of the threshold value, only transient

results have been included in the analysis. The study of the steady-state behaviors to which the internal

state of the switch would be attracted following the initial transient would provide insight into the overall

switch design. The following chapter addresses these questions, as well as suggesting a means by which

the switch in state might be intrinsically detected via the electrical signals in a coupled electromechanical

system.
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Chapter 5

A Discontinuity-Enabled Sensing and
Actuation Testbed

5.1 Introduction

As alluded to in the introductory chapter, microelectromechanical systems have of late become a popular

choice for sensor and actuator device designs, due to a number of favorable characteristics affecting their

fabrication and deployment, including size and power requirements [45]. As these devices feature inherent

coupling, for example between mechanical and electrical energy domains, they may be purposefully designed

to take advantage of integrated transduction mechanisms for simultaneous actuation and sensing. For

example, excitation of the electrical degrees of freedom may be transduced to excite the mechanical elements

of such a device. At the same time, difficult-to-observe phenomena in the mechanical degrees of freedom

may manifest themselves in measurable dynamics in the electrical elements.

With miniaturization and multiple interacting physical domains comes the potential of significant in-

fluence of nonlinearities, for example due to large mechanical deflections or electrostatic actuation. Such

nonlinearities offer novel opportunities for enhanced functionality across wider parameter ranges than their

linear counterparts. While challenging to analyze and often eliminated through overly conservative designs,

the purposeful introduction of nonlinearities may desensitize device designs to parameter uncertainty and/or

dramatically improve sensor gains.

The strongly nonlinear phenomenon of intermittent contact and, in particular, the dramatic changes in

dynamic response of mechanical systems at the onset of impulsive contact have been proposed in the previous

chapters as a fundamental operating principle for a high-gain sensor. Similar transitions in non-impacting

systems have been proposed in the design of microelectromechanical mass sensors [67, 78, 79], there relying

on nonlinearities associated with parametric excitation.

In light of these observations, it is of interest to explore the possibility of a microelectromechanical imple-

mentation of the above-mentioned operating principle, relying on discontinuous transitions in the mechanical

response, excited by the electrical system and induced by the onset of contact, and transducing this response

into directly observable changes in the electrical characteristics of the device. The relatively short transients
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combined with the high natural frequencies of the micromechanical system suggest that a sensor designed

according to these principles would exhibit an ultrafast response.

There are, however, significant challenges with pursuing such microdevice designs at an initial exploratory

stage, primarily associated with fabrication and testing [45]. A compromise, therefore, is to explore device

designs at millimeter scale that retain some of the essential characteristics of the microscale devices, primarily

the multidomain coupling and impact-induced transitions, while enabling repeated experimentation at a

reasonable expense in money and time.

To this end, the discussion in this chapter details the design, construction, experimental investigation,

theoretical modeling, and numerical exploration of a macroscale device, which includes the possibility of

recurrent mechanical contact and exploitable signal transduction between the mechanical and electrical

degrees of freedom. It is not the primary goal to document the presence of particular classes of changes

in steady-state system response associated with the onset of mechanical contact, as this has been well

documented in the existing literature [12, 15, 19, 21, 24, 23, 50, 57, 59, 61, 66, 64, 81]. Nor is it the goal

to establish the rapidity of the transient dynamics immediately following the onset of contact, since this

was just established in the preceding chapter. Rather, the goal is to illustrate the use of inductive coupling

between the mechanical and electrical degrees of freedom to actuate the mechanical system and transduce

the changes in the mechanical response due to the onset of contact into a measurable change in the oscillatory

behavior of the device current.

In particular, it is desireable to show that changes in the dynamical behavior that originate in the

mechanical system can be detected in the coupled response of the electrical system used to actuate the

device. This is clearly important to enable a useful sensor design [22]. If changes in these dynamics are to be

relied upon as an indicator mechanism in a sensor, it is desirable to be able to detect those changes without

large, expensive, and complicated data acquisition equipment or an excessive number of additional stages

of transduction. Usually this information should be available via an electrical signal which is conducive

to processing using integrated circuits and/or digital computers. As an example, while changes in the

mechanical response typically will result in changes in the amplitude content of the current signal, it may

be more desirable to design the device so as to have the onset of contact result in observable changes in the

signal’s frequency content.

The remainder of the chapter is organized as follows. Section 5.2 outlines the principal design elements

introduced in the device in order to support the desired multidomain coupling and contact-related dynamics.

This is followed by a detailed discussion of the device construction and experimental setup used to produce the

experimental data reported in this section. A periodically excited three-dimensional mathematical model
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of the coupled electromagnetic and mechanical systems is developed in Section 5.3. This section further

presents a system-identification procedure used to associate numerical values with model parameters and

simulation results obtained with these values under numerical experiments designed to mimic the physical

experiments. A concluding discussion in Section 5.4 highlights some particularly interesting features of

the steady-state response on a neighborhood of the parameter values associated with the onset of contact,

including such changes in the frequency response of the electrical current mentioned previously.

5.2 Experimental testbed

5.2.1 Device design

As outlined in the introduction, two fundamental objectives form the basis for the device design. First, the

device should allow for intermittent contact between an oscillatory mechanical element and a fixed obstacle.

As per the extensive literature on the topic of vibro-impact oscillators, such contact and, in particular,

its onset under parameter variations, is known to be associated with strong nonlinearities and sudden and

dramatic bifurcations in system response. Second, the device should allow for the transduction of the

mechanical response to a coupled electrical system and vice versa. This affords a mechanism for actuating

the mechanical system while simultaneously detecting changes in the dynamics of the mechanical system

through observation of the electrical response.

Clearly, the possibility of mechanical contact is easily achieved through the introduction in the device

geometry of a physical stopper that limits the oscillatory motion of the mechanical element in one direction.

This would also likely be the way in which this feature would be introduced in a microscale device, although

contact there might be more diffuse and less impulsive.

Several alternatives exist for transduction between the mechanical and electrical domains [22]. For

example, the mechanical element could constitute the movable part of a potentiometer, whereby changes in

the mechanical displacement would be observed through variations in the resistance in a coupled electrical

circuit. Measurements of the circuit current for a given voltage could then be used to estimate the resistance

and to back out the mechanical response characteristics. This transduction mechanism is entirely one-way,

in that no force is generated on the mechanical system from changes in the electrical circuit, so this coupling

can therefore not serve as a means of actuating the mechanical system. Finally, it is far from obvious how

an analogous implementation could be developed at the microscale.

A more appealing alternative is to allow the mechanical element to constitute a movable part of a parallel-

plate capacitor (a subject taken up in the next chapter), whereby changes in the mechanical displacement
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Figure 5.1: Schematic representations of the mechanical and electrical systems. The filled circles in the
circuit schematic refer to the input terminals of the actual device.

would be observed through variations in the capacitance in a coupled electrical circuit. Here, again, mea-

surements of the circuit response to given voltage variations could be used to estimate the capacitance and

to back out the mechanical response characteristics. In contrast to the resistive design, this transduction

mechanism is two-way, in that a force acting on the mechanical element results from a circuit voltage. This

coupling can therefore serve as a means of actuating the mechanical system while allowing the state of the

system to be interrogated through the circuit response. Capacitive sensing and actuation is straightforward

to realize at the microscale, but the actuation property scales poorly in the macroscale, where other forces

dominate.

Consider, instead, the possibility of allowing the mechanical element to constitute a movable part of

an electromagnetic circuit, whereby changes in the mechanical displacement would be observed through

variations in the circuit inductance. Analogously to the capacitive design, this transduction mechanism is

two-way, in that the circuit flux depends on the mechanical displacement while inducing a mechanical force

on the movable element. This coupling can therefore serve the dual objective of actuation and sensing.

Moreover, the force applied to the mechanical element resembles that obtained in the capacitive case, in

that it is proportional to the square of a circuit quantity, namely the current (voltage in the case of the

parallel-plate capacitor), and inversely proportional to the square of a separation distance (the plate gap

in the case of the capacitor). Finally, inductive sensing and actuation is straightforward to realize at the

macroscale, but scales poorly in the microscale where electrostatic interactions dominate.

A schematic of a testbed relying on the inductive transduction mechanism and explored throughout this

paper is shown in Fig. 5.1. The device consists of a movable ferromagnetic bar suspended coplanarly and

opposite to a U-shaped electromagnet built from a ferromagnetic core with an inductive coil wrapped around
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the midpoint. As suggested previously, oscillations of the bar, here constrained to the direction toward and

away from the electromagnet, induce variations in the magnetic reluctance (and effective resistance) of the

electromagnetic circuit. These, in turn, result in variations in the magnetic flux through the ferromagnetic

core and corresponding variations in the coil current, assuming an ideal voltage source. The circuit current,

in turn, generates a magnetic flux through the electromagnet which imposes an attractive force (in the

direction toward the magnet) on the suspended bar.

5.2.2 An electromagnetically forced vibro-impactor

1

2
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4 4

5

5

5

5
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Figure 5.2: Photograph of the experimental testbed. Labeled parts are described in the main text.

A photograph of the experimental apparatus is shown in Fig. 5.2. Key elements of the device have been

labeled for clarity. Parts 1 and 2, which are separated by an air gap, are approximately 2.54 cm thick

laminated stacks of 0.356 mm M19 non-oriented electrical steel with C5 core plating. These parts, which

have the same cross-sectional area, make up the ferromagnetic cores of the electromagnet. The choice of

material was guided by a desire to minimize magnetic hysteresis and eddy current losses in the cores. All

parts in close proximity to the ferromagnets were made of aluminum or nonmagnetic stainless steel so as to

minimize disturbances to the flux paths within the cores.

Part 2 is securely pinned and bolted to an aluminum baseplate, which is largely obscured by a black

cloth used to provide contrast for the photograph. This plate was in turn bolted to a Newport sealed top

optical table. Wrapped around part 2 is a 200 turn, hand-wound coil made of 16 AWG copper magnet wire,
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labeled 3. Part 1 is clamped between two aluminum endpieces, marked 4, on either end of which there is

a pair of linear ball bearings which ride on horizontal shafts. Concentric to the shafts are four coil springs,

labeled 5, which suspend the oscillating assembly. The bearings and shafts were precisely machined and

adjusted to eliminate any noticeable freeplay. This constrains the motion of part 1 to pure translation in

the horizontal plane in a direction parallel to the shafts.

Limiting the linear motion of the oscillating assembly are two independently adjustable stops, labeled 6

and 7. These stops were either used in tandem to clamp the oscillating mass in place for system identification

purposes, as discussed in a later section, or with stop 7 removed and stop 6 adjusted to provide a fixed

obstacle in the path of the oscillating assembly with which recurrent impacts could occur.

The velocity response of the oscillating assembly was measured with a Polytec PSV300U laser vibrometer,

not shown in the photograph. The displacement response of the oscillating assembly was measured using

a NAiS LM200 laser controller with a NAiS ANL2500A laser displacement sensor. The laser displacement

sensor is partially visible in the upper part of the photo, labeled 8.

An Ohmite model L100J1ROE, 1 Ω, 100 W power resistor (represented by R in Fig. 5.1) was connected

in series with the coil. By measuring the voltage drop across the power resistor, the current (represented by

I in Fig. 5.1) in the circuit can be calculated using Ohm’s law. The system was excited by a voltage source

(represented by V in Fig. 5.1), not shown in the picture, consisting of an HP33120A digital function generator

providing a low power waveform to a Techron 5530 power supply amplifier. The output terminals of the

amplifier were connected to the input terminals of the device (shown as two filled circles in the schematic

circuit diagram in Fig. 5.1). Voltage signals were measured and acquired using a National Instruments USB-

6211 data acquisition board with twisted-pair wiring connecting all terminals. Data was recorded either

with National Instruments SignalExpress software or using Matlab with the Data Acquisition Toolbox. The

HP33120A was either controlled manually or through the RS232 serial interface using the Instrument Control

Toolbox in Matlab. The applied voltage was measured at the input terminals of the device, across the series

connected coil and power resistor. Typical input voltage amplitudes ranged from ≈ 2 − 8 V with current

response on the order of one to several Amps, so as to generate a sufficient attractive force on the suspended

oscillating assembly.

5.2.3 Experimental results

To generate the experimental data reported below, the digital function generator was set to produce a

harmonic, low-power signal which was subsequently amplified by the power supply to provide a sinusoidal

voltage across the input terminals of the device. The displacement, velocity, and electric current time
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histories were acquired simultaneously along with the input voltage. Sampled phase section data was then

extracted through post-processing of the acquired time histories. To generate the experimental bifurcation

diagrams, the process of setting the inputs, letting the system settle, and acquiring the time history of the

system variables was automated using a Matlab script and the RS232 interface to the function generator.

The script is shown as DENSAT acquire swpV.m in Appendix B, along with other scripts used to process the

experimental data. Each sweep was accomplished by fixing the input frequency and successively incrementing

the amplitude of the generated signal from low to high and back to low in very small steps. For each

amplitude, the system was allowed to settle for 20 s and data was then acquired for ≈ 10 s at a sampling

rate of 1 kHz. A sample time evolution of the system is shown in Fig. 5.3. This procedure was repeated

for each frequency investigated. In all the cases reported here, the equilibrium gap distance between the

oscillating assembly and the ferromagnetic core was set at 4.79 mm and the equilibrium separation between

the oscillating assembly and the stopper was set at 1.11 mm.

Each point in the bifurcations diagrams below corresponds to a sampled value of the velocity or current

plotted against the average input voltage amplitude V0 across the entire 10 s acquisition time. Specifically,

phase section data was collected at zero-crossings of the oscillating input voltage. Data corresponding to

zero-crossings in the increasing direction are shown as blue dots in the figures below. To accommodate an

anticipated symmetry in the system response (see discussion in Sec. ??), data corresponding to zero-crossings

in the decreasing direction, shown as red dots, are also included in the same diagrams after negating the sign

on the current values. Consequently, for each input amplitude, the bifurcation diagrams include two points

per period of excitation. In the event that these two points coincide, the response is said to be symmetric.

Figures 5.4-5.6 below show some typical sweeps of the input amplitude at excitation frequencies below

and above mechanical resonance (f ≈ 15 Hz), bearing in mind that the mechanical forcing originating in the

magnetic field is proportional to the squared current. Specifically, Fig. 5.4 shows the experimental bifurcation

diagram obtained when sweeping the amplitude of the signal generator voltage at an excitation frequency

of f = 6.1 Hz. Panels (a) and (c) show the sampled velocities for each period of excitation when increasing

the voltage amplitude (a) and decreasing the voltage amplitude (c). Starting with a symmetric periodic

orbit for low input amplitude, the onset of low-velocity contact is induced at an input amplitude near 5 V,

after which the system settles onto a noisy, apparently period-three, nonsymmetric attractor. The figure

clearly illustrates the hysteretic nature of the response about the point of onset of contact, as this period-

three attractor persists far below the initial parameter value associated with the onset of contact. Panels

(b) and (d) show the corresponding sampled currents for each period of excitation, again for increasing (b)

and decreasing (d) values of the input voltage amplitude. Although the change in frequency characteristics
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Figure 5.3: Experimental time evolution of the system over three periods of the input for f = 6.1 Hz. Panel
(a) shows the input voltage, panel (b) shows the current response, panel (c) shows the position respon se,
and panel (d) shows the velocity response. Here and in all subsequent figures reporting on experimental
results, blue circles/dots indicate data taken at zero-crossings of the input voltage as it is rising and red
circles/dots indicate data taken at zero-crossings of the input voltage as it is falling.

subsequent to the onset of contact is again visible in the current response, this is somewhat obscured by the

greater degree of variability in the current measurements.

A similar bifurcation diagram is shown in Fig. 5.5 for an excitation frequency of f = 7 Hz, i.e., still below

resonance. Here, the transition following the onset of contact (near 3.6 V) again involves a discontinuous

transition from the nonimpacting period-one response to a distinct steady-state attractor, here irregular and

apparently chaotic. As seen from a comparison between panels (a) and (c), there again exists a (relatively

small) interval of parameter hysteresis. It is also interesting to note the existence of windows of (possibly

periodic) attractors of period three (near 4.8 V), period four (near 4.3 V), and possibly period five (near 4

V). Again, due to the noisiness of the current measurements, it is distinctly more difficult to make out the

changes in the response in panels (b) and (d). As the attractor is irregular, the frequency content is clearly

broadband in this case.

Finally, Fig. 5.6 shows the bifurcation diagram obtained in the case of an excitation frequency of f = 8

Hz (above resonance). Here, the response before and after the onset of contact is period-one and symmetric

with a significant interval of coexistence of the corresponding steady-state solutions. Although there is thus

no change in the frequency content as a result of the onset of contact, panels (b) and (d) show a sudden
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Figure 5.4: Experimental bifurcation diagrams for f = 6.1 Hz. Panels (a) and (c) show sampled velocities
for sweeps in the up and down directions, respectively. Panels (b) and (d) show sampled electrical current
for sweeps in the up and down directions, respectively.
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change in the measured current values.

5.3 Mathematical model

We proceed to derive an approximate dynamical systems model of the coupled electromechanical system,

which respects the constrained dynamics of the movable mechanical element corresponding to parts 1 and

4 in Fig. 5.2 and the response of the electromagnetic circuit.

With reference to the schematic in Fig. 5.1, let the oscillating assembly be modeled by a single-degree-of-

freedom particle of mass m, connected to the inertial frame through a parallel arrangement of an equivalent

linear spring of stiffness mω2
0 and linear dashpot with damping coefficient 2mω2

0ζ. Here, ω0 is the natural

frequency of the undamped spring-mass system and ζ denotes the damping ratio. Let q, d and δ denote the

displacement of the particle relative to its equilibrium position, the equilibrium gap in the electromagnetic

circuit, and the equilibrium separation between the particle and the fixed stopper, respectively, in the absence

of excitation. Typically, δ < d, from which it follows that q ≤ δ.

The electrical system is modeled as consisting of an ideal voltage source V (t), where t is time, a linear

effective resistance, R, a displacement dependent inductance, L(q), with the current flowing in the circuit

denoted by I. The coupling fields are assumed to be conservative and field transients are assumed negligible

on the time scale of the mechanical oscillator.

In order to arrive at approximate expressions for the inductance L (q) and the magnetically induced force

F on the oscillating mass, consider the dotted line in Fig. 5.1 corresponding to the mean flux path. The

length of this path is the sum of the mean length lm in the magnetic material and the mean air gap length

2 (d− q), where we assume the two air gaps to be identical. Ampere’s law states that the line integral of

the magnetic field intensity about this closed path is equal to the total amount of electrical current enclosed
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within the path. Assuming that the magnetic field is everywhere perfectly aligned with the mean path then

yields

hmlm + 2ha (d− q) = NI, (5.1)

where hm and ha are the magnetic field intensities in the ferromagnetic material and in the air gaps,

respectively, and N is the number of windings in the coil.

Taking the magnetic properties of air and the ferromagnetic material to be linear and isotropic gives the

constitutive law B = µrµ0h, where B denotes the magnetic flux density in the medium, µr is the relative

permeability of the medium, and µ0 is the permeability of vacuum. To determine the total magnetizing flux

in the circuit, we assume that the flux density is uniformly distributed over the cross-sectional areas of the

magnetic members and air gap. These areas are assumed to be equal and denoted by A. By conservation of

the magnetic flux Φm through the circuit, it follows that Φm = BaA = BmA, where Ba and Bm correspond

to the magnetic flux densities in the air gap and ferromagnetic material, respectively. Together with Eqn. 5.1

and the constitutive relationship between flux density and field intensity this yields

Φm =
µ0ANI

lm/µm + 2 (d− q)
, (5.2)

where µm denotes the relative permeability of the ferromagnetic material and the approximation µa = 1 has

been introduced.

In the linear approximation, the voltage VL across the inductor equals the time derivative of the flux

linkage λ = NΦ, where Φ = Φl + Φm is the total flux in the inductor. Here, Φl represents the leakage flux

and accounts for that flux linkage which is not magnetizing. For simplicity assume that the corresponding

leakage flux linkage is proportional to the current I with a proportionality constant given by the leakage

inductance Ll. It follows that

λ = L (q) I =

(
Ll +

µ0AN
2

lm/µm + 2 (d− q)

)
I. (5.3)

Applying Kirchhoff’s voltage law to the circuit shown in Fig. 5.1 and introducing the coupling constants

β1 = N2µ0A/2 and β2 = lmµ−1
m /2 then yields the electrical balance equation

(
Ll +

β1

β2 + d− q

)
İ +

(
R+

β1

(β2 + d− q)
2 q̇

)
I = V (t), (5.4)

where dots denote derivatives with respect to time.

The electromagnetic forcing exerted on m is given by the gradient with respect to q of the potential
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energy in the coupling field

Ec =
1

2

(
Ll +

β1

β2 + d− q

)
I2, (5.5)

i.e.,

F =
β1

2 (β2 + d− q)2
I2. (5.6)

Newton’s second law then yields the coupled equation of motion for the mechanical system

mq̈ + 2mω0ζq̇ +mω2
0q =

β1

2 (β2 + d− q)
2 I

2. (5.7)

For a more detailed treatment of these derivations, see the book by Krause and Wasynczuk [34] (specifically,

Eqns. (1.7-16) and (2.6-5) in [34]).

To excite the system dynamics, let V (t) = V0 sinωt (ω = 2πf) and let

x
def
=

(
q q̇ I θ = ωt mod2π

)T

(5.8)

denote the system state vector, in which case

dx

dt
= f (x)

def
=




x2

−2ω0ζx2 − ω2
0x1 +

β1

2m(β2+d−q)2
x2
3(

Ll +
β1

β2+d−x1

)−1 (
V0 sinx4 −

(
R+ β1

(β2+d−x1)
2 x2

)
x3

)

ω




. (5.9)

Finally, let collisional contact with the fixed stopper, corresponding to an intersection with the zero-level

surface of δ − x1, result in a discrete jump in the state vector given by the map

g (x) =

(
x1 −ex2 x3 x4

)T

, (5.10)

where e is a kinematic coefficient of restitution.

It is straightforward to show that the vector field f is equivariant under the group of transformations

generated by the transformation

γ :

(
x1 x2 x3 x4

)T

7−→
(

x1 x2 −x3 x4 ± π

)T

(5.11)
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(note that the vector field is periodic in x4 with period 2π). It follows that if

x (t) =

(
x1 (t) x2 (t) x3 (t) x4 (t)

)T

(5.12)

is a solution to the corresponding dynamical system, then so is the vector

(
x1 (t) x2 (t) −x3 (t) x4 (t) + π

)T

.

In particular, a solution that is invariant under the group action will be said to be symmetric. This is

consistent with the previous definition in the case of the experimental results.

Suppose that trajectories are sampled at the zero-level surfaces of x4 and x4−π, respectively. In the case

of a symmetric solution, all points of intersection with x4 = π map under γ onto the corresponding points

of intersection with x4 = 0. This does not hold, however, in the case of a nonsymmetric solution. As there

is no way of distinguishing the two members of the group orbit corresponding to a nonsymmetric solution

by a uniform criterion across an arbitrary range of parameter values, it makes sense to record not just the

intersections with x4 = 0 but also the images under γ of the intersections with x4 = π, as these collections

represent both members of the group orbit. This was the methodology adopted in the experimental results

reported above.

5.3.1 System identification

In order to validate the model against the experimental observations, we proceed to outline a system iden-

tification procedure used to determine values for the model parameters appearing in the vector field f .

Mechanical parameters

The mass m of the oscillating assembly was measured on an Ohaus Series 700/800 triple beam mechanical

balance and found to equal 0.646 kg. The remaining mechanical parameters ω0 and ζ were estimated using

the method of logarithmic decrements applied to the time evolution of the velocity of the unforced response

after the mechanical element was released from an initial position with zero initial velocity. In particular, in

each of ten separate runs, the movable mechanical element was pressed against the stop with δ = 0.762 mm

and released from rest. Data was collected corresponding to the first ten positive peak velocities and ω0 and

ζ were estimated for each adjacent pair of points. This resulted in a sample of 90 estimates of ω0 and ζ, from

which we selected the mean values 95.94 rad/s and 0.01626, respectively. The positive data from a sample run

and the envelope calculated using the results of the identification are shown in Fig. 5.7. The fitted exponential
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Figure 5.7: Positive half of velocity time history after release from rest. Discrete points are experimental
data and the solid line is the exponential decay envelope calculated using the results from the logarithmic
decrement procedure.

envelope agrees well with the decay until the oscillation amplitude falls below ≈ 0.02 m/s, suggesting that

viscous damping dominates other dissipative mechanism at these amplitudes. Below 0.02 m/s, however, the

theoretical prediction assuming a linear viscous damping force deviates from the experimental results. A

possible source for this apparent nonlinearity is measurable contributions to damping due to dry friction.

An experimental kinematic coefficient of restitution can be calculated from trajectory data by taking the

negated ratio between the velocity after each impact and the velocity before the impact. The mean of these

ratios from a sample of 2000 impacts across a range of input conditions yielded e = 0.866. For a particular

set of input conditions, e did not exhibit much variation between different individual impacts. However, for

sets of impacts at different input conditions, differences in the calculated value of e between the sets could

be as high as 10%.

Coupling constants

To determine the electromagnetic coupling constants, β1 and β2, a series of static loading experiments

were performed. For each constant voltage applied, VDC , the system was allowed to equilibrate and the

corresponding equilibrium displacement, qeq, and equilibrium current, Ieq , were recorded. This procedure

was performed over ten separate runs. The experimental data, qeq vs. Ieq , are plotted as discrete points in

Fig. 5.8. The maximum stable equilibrium position was limited by the existence of a static snap-through

point in the vicinity of Ieq = 4.6 A.
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For equilibria, Eqn. (5.7) yields

(d− qeq)
√
2mω2

0qeq = Ieq
√
β1 − β2

√
2mω2

0qeq, (5.13)

which can be used to formulate the sum of squared residuals as

E =

n∑

i=1

(
Ii
√
β1 − β2

√
2mω2

0qi − (d− qeq,i)
√
2mω2

0qi

)2

, (5.14)

where Ii and qi are corresponding equilibrium current and displacement values and n is the number of data

points. Applying least squares regression, i.e., requiring that ∂E/∂
√
β1 = ∂E/∂β2 = 0, and solving for β1

and β2 then yields

β1 = 2mω2
0

(∑n
i=1

∑n
j=1 qi(d− qj)Ij

√
qj − (d− qi) qiIj

√
qj

∑n
i=1

∑n
j=1 qiI

2
j −

(∑n
i=1 Ii

√
qi
)2

)2

(5.15)

and

β2 = −
∑n

i=1

∑n
j=1 qi(d− qi)I

2
j − Ii

√
qi (d− qj) Ij

√
qj

∑n
i=1

∑n
j=1 qiI

2
j −

(∑n
i=1 Ii

√
qi
)2 . (5.16)

Using Eqns. (5.15) and (5.16) with the experimental data shown in Fig. 5.8 resulted in the estimated

parameter values β1 = 0.01902 H·mm and β2 = 1.631 mm. The resulting regression curve is shown as the

solid line in Fig. 5.8.
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Electrical parameters

The remaining electrical parameters were determined from the amplitude and phase response of the current

signal when the movable element was clamped at fixed q and a harmonic input was applied to the terminals

of the system. With the velocity term eliminated and setting V = V0 sinωt, Eqn. (5.4) admits the closed

form solution

I = I0 sin (ωt− φ) , (5.17)

where

tanφ =
ω

R

(
Ll +

β1

β2 + d− q

)
(5.18)

and

I0 =
V0√

R2 + ω2
(
Ll +

β1

β2+d−q

)2 . (5.19)

The leakage inductance Ll and the effective resistance R can now be estimated by experimentally measuring

the phase and amplitude of the steady-state response. In the time domain, the phase lag φ = ωt0 is calculated

using the known input frequency and measuring the time difference t0 between zero-crossings of the voltage

input and current response traces, respectively, as shown in Fig. 5.9. The amplitude of the current response

I0 is obtained by direct measurement in the acquired experimental data. Using a large sample of data

points resulted in the estimated values Ll = 10.55 mH and R = 1.390 Ω. A plot of the theoretical solution

calculated using the identified parameters is also shown in Fig. 5.9 for comparison with the corresponding

experimental data at excitation conditions ω = 25.1 rad/s, V0 = 1.66 V, d = 4.79 mm, and q = 1.27 mm.

(Equally convincing results were obtained when comparing response and prediction at different gap distances

and input frequencies.)

Values for Ll and R obtained using this procedure were explored across a range of parameter values

V0 = 1.66− 6.79 V, q = 0− 2.54 mm, and ω = 12.57− 50.27 rad/s. Ll was very consistent, exhibiting little

variation, and showed little if any dependence on q, V0, or ω in these intervals. The electrical dissipation

showed some slight dependence on frequency, with R increasing with ω. This variation might be due to

frequency dependent dissipation in the coupling field between the coil and the electromagnet. The smallest

value R = 1.345 Ω and the largest value R = 1.463 Ω indicate a maximum change of 8.7% over the total

frequency interval. The value R = 1.390 Ω used in the numerical simulations reported below has a maximum

error of ≈ 5.2%.
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Figure 5.9: Experimental input voltage and coil current time histories (points). Solid lines show the predicted
current from Eqns. 5.17-5.19 using numerical parameter values obtained through system identification.

5.3.2 Numerical results

Forward simulation of the governing equations was used to conduct numerical investigations which closely

mimic the experiments carried out on the physical device. The Matlab scripts and functions used to do

this are shown in Appendix C. The system behavior was numerically investigated over a frequency range of

2–10 Hz with typical input voltage amplitudes of 2–8 V. Parameters used in the numerical investigation were

those found from the system identification procedure described above and the gap distances, d = 4.79 mm

and δ = 1.11 mm, were chosen so as to agree with those measured in the experimental investigations. Here,

selected results are shown that demonstrate interesting behavior in the neighborhood of the onset of contact

between the particle and the stopper and bear resemblance to the experimental results reported in Sec. 5.2.3.

The choice of forward simulation for the numerical investigations, rather than more sophisticated con-

tinuation techniques, is due to the complexity of the system response in the vicinity of the onset of contact.

Many of the transitions to contacting behavior resulted in the system evolving to a chaotic attractor.

The bifurcation diagrams in Fig.’s 5.10, 5.11, and 5.12 were again generated by fixing the excitation

frequency and alternately sweeping the input voltage amplitude in the increasing and decreasing directions,

respectively, in increments of ∆V = 0.001 V. The final state at the conclusion of a simulation at a particular

value of the excitation parameters was used as the initial state for the subsequent simulation at a nearby

value of the excitation voltage. Data shown are intersections of the solution trajectories with the constant

phase sections x4 = 0 and x4 = π, albeit after applying the transformation γ to data collected at the latter

section. The system was simulated for a maximum of 150 input cycles. Periodicity was checked at each

intersection of the trajectory with x4 = 0. If a periodic orbit was found, the simulation was stopped, relevant
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section data saved, and the input voltage incremented (decremented). If no periodicity was detected, data

from the last 100 intersections of the trajectory with the sections was retained prior to input increment

(decrement).

Figure 5.10 shows the numerical bifurcation diagram obtained when sweeping the input voltage at an

excitation frequency of f = 6.25 Hz. This should be compared to Fig. 5.4, which although obtained at a

slightly different excitation frequency bears a significant resemblance to the results shown here. As with

Fig. 5.4, panels (a) and (c) show the sampled velocities for each period of excitation when increasing the

voltage (a) and decreasing the voltage (c). Starting with a symmetric periodic orbit for low input voltage

(see discussion about symmetry in Sec. 5.3), the onset of low-velocity contact is induced at an input voltage

near 4.85 V, after which the system settles onto a period-three, symmetric attractor, which subsequently

undergoes a symmetry-breaking bifurcation to a nonsymmetric period-three attractor. This then undergoes

a sequence of bifurcation to a banded chaotic attractor. Again, a significant parameter hysteresis is evident

in the figure as the symmetric period-three attractor disappears in a cyclic fold bifurcation near 4.8 V. Panels

(b) and (d) show the corresponding sampled currents for each period of excitation, again for increasing (b)

and decreasing (d) values of the input voltage amplitude.

Similarly, Fig. 5.11 shows the results of a parameter sweep for an excitation frequency of f = 7 Hz.

The response here clearly resembles that observed in the case of the experimental bifurcation results (see

Fig. 5.5), albeit without the sometimes obfuscating noise of the experimental data. In particular, the

periodic windows alluded to previously are here clearly visible including alternations between symmetric

and nonsymmetric trajectories. Finally, the experimental results shown in Fig. 5.6 are closely captured by

the numerical bifurcation diagram obtained for f = 8 Hz and shown in Fig. 5.12.

5.4 Discussion

The experimental and numerical results reported in previous sections support the notion of relying on

the multidomain coupling inherent in microscale electromechanical systems for simultaneous actuation and

sensing. In particular, the analysis exemplifies the possible use of nonlinear bifurcation characteristics in

device design. Specifically, it was shown that the onset of contact commonly results in a significant change

in the steady-state response in the mechanical system and a corresponding change in the electrical response.

As an example, transitions were observed between nonimpacting periodic responses with periodicity equal

to that of the excitation and impacting periodic or banded chaotic responses with recurrence three times

that of the excitation. While this was somewhat obscured by noise in the experimental bifurcation diagrams
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Figure 5.10: Numerical bifurcation diagrams for f = 6.25 Hz. Panels (a) and (c) show sampled velocities
for sweeps in the up and down directions, respectively. Panels (b) and (d) show sampled electrical current
for sweeps in the up and down directions, respectively. Here and in the following figures reporting numerical
results, and in agreement with the experimental procedure, blue dots indicate data taken at zero-crossings
of the input voltage as it is rising (i.e., at x4 = 0) and red dots indicate data taken at zero-crossings of the
input voltage as it is falling (i.e., at x4 = π).
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Figure 5.11: Numerical bifurcation diagrams for f = 7 Hz. Panels (a) and (c) show sampled velocities for
sweeps in the up and down directions, respectively. Panels (b) and (d) show sampled electrical current for
sweeps in the up and down directions, respectively.
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Figure 5.12: Numerical bifurcation diagrams for f = 8 Hz. Panels (a) and (b) show sampled velocities and
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Figure 5.13: Experimental trajectories with sampled data (V = 0 V) shown as circles. Panel (a) shows
an impacting, symmetric, period-3 orbit for f = 6.1 Hz, V0 = 5.00 V. Panel (b) shows an impacting,
nonsymmetric, period-3 orbit for f = 6.1 Hz, V0 = 4.94. Panel (c) shows a non-impacting, symmetric,
period-1 orbit for f = 6.1 Hz, V0 = 5.03 V. Panel (d) shows as a solid line a non-impacting, symmetric,
period-1 orbit for f = 7 Hz, V0 = 3.62 V, and shows as discrete points a nearby chaotic attractor for
f = 7 Hz, V0 = 3.63 V.

showing the current response, a clearer picture emerges from the state-space trajectories.

To this end, Fig. 5.13 shows the projection of experimental state-space trajectories onto the velocity-

current coordinate plane. In panel (d), the nonimpacting period-one response found for f = 7 Hz and

V0 = 3.62 V is superimposed on the chaotic impacting response found at V0 = 3.63 V. In this case, the

recurrence of the chaotic attractor is similar to that of the periodic response, suggesting only a broadening

of the individual peaks in the frequency spectrum and relatively small changes in amplitude content. In

contrast, panels (a) and (b) show the period-three impacting, symmetric and nonsymmetric responses found

for f = 6.1 Hz and V0 = 5.00 V and V0 = 4.94 V, respectively. For comparison, a non-impacting period-one

trajectory is shown in panel (c) for f = 6.1 Hz and V0 = 5.03 V. Also shown in these figures are the sampled

data points previously shown in Figs. 5.4 and 5.5. As seen here, triggering sampling at zero-crossings of the

input voltage may result in current measurements, for which individual differences are obscured by noise.

On the other hand, a different sampling scheme might result in clearly distinguishable changes in frequency

content as surmised from the sampled data. Figure 5.14 illustrates the same observation in the case of the

numerically simulated data.
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Figure 5.14: Numerical trajectories with sampled data shown as blue (x4 = 0) and red (x4 = π) circles.
Panel (a) shows an impacting, symmetric, period-3 orbit for f = 6.25 Hz, V0 = 4.833 V. Panel (b) shows
an impacting, nonsymmetric, period-3 orbit for f = 6.25 Hz, V0 = 4.849. Panel (c) shows a non-impacting,
symmetric, period-1 orbit for f = 6.25 Hz, V0 = 4.832 V. Panel (d) shows as a solid line a non-impacting,
symmetric, period-1 orbit for f = 7 Hz, V0 = 3.675 V, and shows as discrete points a nearby chaotic attractor
for f = 7 Hz, V0 = 3.676 V. (The vertical cluster of points near q̇ = 0 is a result of careful detection of local
maxima in the position during integration.)
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Figure 5.15: Normalized amplitude spectrum (see text for details) of the experimental data given by the
blue dots in Fig. 5.13 (a) (dashed), (b) (dash-dot), and (c) (solid), respectively.

To further illustrate the change in frequency content associated with the transition to impacting behavior,

let {Ij}Nj=1 denote a sequence of N consecutively sampled current values at phases corresponding to zero

crossings of the input voltage as it is rising, and let 〈Ij〉 denote the average of the sequence. Denote by

I(k) =
N∑

j=1

(Ij − 〈Ij〉) exp(−2πi)(j−1)(k−1)/N (5.20)

the discrete Fourier transform of the corresponding mean shifted sequence. It follows that, for 1 < k ≤ N/2,

2|I(k)|/N is the amplitude of the component of the response with frequency fk = (k−1)/(4πN). Figure 5.15

shows the result of performing this procedure when applied to the N = 60 sampled experimental data

corresponding to the blue circles in Fig. 5.13 panels (a)-(c), respectively. For the non-impacting, periodic

orbit the sampled values are nearly constant and the resultant data represents the noise floor as a percentage

of the average of the sampled currents. In the case of the two impacting orbits, the distinct peak in the

data represents the contribution to the response at frequency equal to one-third the excitation frequency.

As seen in the figure, the magnitude of the additional component is several percent of the signal average

with a signal-to-noise ratio close to 50:1.

The agreement between numerical and experimental data demonstrated here and in previous sections is

quite satisfying given the great uncertainties in parameterizing various dissipation mechanisms. This was

reflected in uncertainties in the estimates of the coefficient of restitution e and the effective resistance R.

Similarly, it was found that the viscous damping model yielded an estimated damping factor ζ, with which

good agreement with experimental data was found only in certain ranges of displacement amplitude.
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The study presented here was motivated by a desire to ultimately implement in a microelectromechanical

device the two fundamental operating principles of multidomain actuation and sensing and impact-induced

transitions in the steady-state response. The next chapter presents work on the design and fabrication of

such a microscale device which relies on capacitive coupling for excitation of the mechanical response.
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Chapter 6

Grazing-Bifurcation-Enabled MEMS
Limit Switch

6.1 Introduction

As suggested in Chapter 3, many MEMS devices use some form of electrostatic interaction, either in the

form of parallel-plate capacitors or through the use of electrostatic fringing fields in comb-drive actuators,

in order to drive displacements or oscillations of movable elements. In the parallel-plate configuration, two

conductive plates separated by a dielectric gap are placed so that their plan areas overlap. Typically one

plate is fixed in a grounded frame and the other plate is suspended relative to that frame. When a voltage

is applied across the plates, electrostatic interactions generate an attractive force between the plates.

Of particular interest to the design of limit switches is the snap-through instability present in parallel-plate

capacitive drives. Assuming linear suspension behavior for the suspended plate, under suitable DC input

voltage conditions, this configuration will undergo snap-through when the restoring force of the suspension

is unable to balance the attractive electrostatic force. This results in the plates coming together and forming

a conductive path of very low resistance across the device. A similar phenomenon occurs under AC input

voltage conditions when the dynamic response to an oscillatory excitation exceeds a critical amplitude.

The snap-through functionality is a natural candidate for the design of a so-called crowbar, a circuit-

protection device that is connected in parallel with the circuit to be protected and its source of power.

Normally the crowbar is an open circuit and no current passes through it. However, if the input source rises

beyond a safe operating range for the circuit being powered, the crowbar becomes a short circuit, safely

routing the excessive current around the load being protected. From the above discussion, it follows that a

crowbar mechanism could be implemented using a parallel-plate drive MEMS device designed to transition

to the clamped configuration at the desired trigger voltage. Indeed, this type of device might be used to

provide a faster acting protection mechanism than would be achievable with a more typical fuse or circuit

breaker implementation.

The snap-through phenomenon described above is induced by changes in the (amplitude of the) excitation

voltage across a critical level associated with a smooth subcritical bifurcation (a saddle-node or cyclic-fold
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bifurcation, respectively, in the static and dynamic case), and is directly related to the nonlinear nature of

the electrostatic attraction between the two parallel plates. In contrast, the grazing bifurcation induced by

the onset of low-velocity contact between a moving mass and a barrier is a direct result of the nonsmoothness

associated with the contact interactions. The introduction of a physical barrier in the path of the movable

plate might therefore induce snap-through at an excitation voltage below the critical value associated with

the electrostatic actuation. Adjustments to the position of the barrier might provide a mechanism for a

tunable snap-through criticality.

The remainder of this chapter explores these ideas and is organized as follows. The next section presents

numerical results on a particular switch architecture which makes use of a grazing bifurcation to trigger

snap-through in a parallel plate capacitive drive. Section 6.3 then describes the fabrication of an alternative

architecture which has the same mathematical description. The packaging of the devices is discussed in

Sec. 6.4, which is followed by a report of the testing results in Sec. 6.5. The chapter ends with a discussion

of important findings and suggestions for future direction.

6.2 An Electrostatic MEMS Switch

A schematic of one particular proposed design is shown in Fig. 6.1 and an operational schematic of the

device is shown in Fig. 6.2. The device consists of a die stack in which the top die is highly doped silicon

which acts as the fixed plate in a parallel-plate capacitor. Below and directly opposing the top die is an

inertial mass, suspended by polymer beams, that has had its top surface plated with aluminum to form the

moveable plate in the parallel-plate arrangement. The top plate and the aluminum film are separated by a

polymer layer that acts as a dielectric spacer. An input voltage V̂ is applied between the two parallel plates

to generate the electrostatic forcing. Below the proof mass, a third die is bonded with a spacer layer such

that contact may occur between the proof mass and a stopper patterned on the lowest die. As the amplitude

of the driving voltage is increased, the amplitude of the moving electrode will grow, eventually bringing it

into contact with the stopper. As shown below, through suitable design, the grazing bifurcation associated

with the onset of impacts induces a rapid transient growth of oscillation amplitude that carries the moving

electrode to snap-through. At this point the switch closes and current is shunted through the now shorted

capacitor.

Referring to the operational schematic of the proposed MEMS device shown in Fig. 6.2, the suspended

inertial mass is modeled as a point mass m̂ suspended by a linear spring m̂ω̂2
0 and damper 2m̂ω̂0ζ, where

ω̂0 is the undamped natural frequency and ζ is the damping ratio. The stopper is modeled as a rigid stop
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Figure 6.1: Plan (upper) and sectional (lower) schematic views of the proposedMEMS device for investigating
grazing-induced snap-through behavior.
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Figure 6.2: An operational schematic of the capacitively-excited parallel-plate device shown in Fig. 6.2.

with coefficient of restitution e and zero excitation equilibrium distance δ̂ separating m̂ and the stop. The

balance equation for the coupled electromechanical system is

m̂
d2q̂

dt̂2
+ 2m̂ω̂0ζ

dq̂

dt̂
+ m̂ω̂2

0 q̂ =
ε̂Âc

2
(
d̂− q̂

)2 V̂ 2 (6.1)

where q̂ denotes the displacement of the movable electrode, t̂ denotes time, ε̂ is the electrical permittivity,

Âc is the capacitive area, and d̂ is the electrode gap in the absence of excitation. The rescaling q̂ = d̂q and
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t̂ = ω̂−1
0 t then yields the nondimensional form of the balance equation as

q̈ + 2ζq̇ + q =
E2

(1− q)
2 (6.2)

where

E2 =
ε̂ÂcV̂

2

2m̂ω̂2
0 d̂

3
(6.3)

Let E be given by a square wave that switches between the levels V and 0 every π/ω units of rescaled time

and denote by

x =

(
q q̇ θ = ωtmod2π

)T

(6.4)

the system state vector. Finally, let collisional contact with the fixed stopper, corresponding to the vanishing

of the function himpact (x) = x1 + δ, where δ = δ̂ d̂−1, result in a discrete jump in the state vector given by

the map

g (x) =

(
x1 −ex2 x3

)T

(6.5)

Suppose that ζ = 0.02, ω = 1, e = 0.8, and δ = 0.6. Then, for V = V ∗ ≈ 0.2014, a grazing periodic

steady-state oscillation is found that is asymptotically stable in the absence of the fixed stopper. Figure 6.3

shows the time histories for the velocity of the movable electrode starting with initial conditions at the point

of grazing contact with x3 ≈ 0.7306 and V = V ∗ − 10−4 (solid) and V = V ∗ + 10−4 (dotted), respectively.
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Figure 6.3: The steady-state pre-grazing response (dotted) and the transient post-grazing response (solid)
with large black dots corresponding to himpact = 0.

As seen in the figure, the transient post-grazing response exhibits a rapid growth in jumps in the absolute

velocity over the course of a couple of excitation cycles. The movable electrode reaches the singularity
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corresponding to snap-through shortly after t = 27.3. This suggests that one might accurately control the

introduction of snap-through by controlling the stopper position. This feature would be more difficult if

relying on a smooth cyclic fold bifurcation of periodic trajectories to initiate snap-through. Additionally,

near a smooth fold bifurcation, the growth rate of deviations away from the critical periodic trajectory is

expected to decay to zero in the limit as the initial deviation goes to zero [37]. A snap-through function

relying on perturbations away from such a condition would thus be expected to take many more cycles of

excitation.

6.3 Fabrication of a revised architecture

Bulk fabrication of MEMS devices usually takes place as a series of addition and removal processes on planar

layers of materials. Many of these processes, such as photolithography and thin film deposition, are directly

borrowed from the microelectronics industry, while a few processes, such as deep reactive ion etching, were

developed specifically for fabrication of micromechanicial structures. By selectively depositing, patterning,

and removing different materials, small structures can be built to perform particular tasks and accomplish

useful functions.

Many kinds of materials are used in MEMS structures to provide a wide range of mechanical and electrical

properties as well as flexibility in manufacturing processes. Single crystal silicon is a very popular substrate

and structural material since much processing knowledge can be used from the microelecronics industry,

where it is used heavily for its properties as an inexpensive, versatile, and widely available semiconductor.

Also, since MEMS are often integrated with microelectronic circuitry, having a common substrate means

devices can be consolidated together on the same set of dies. Metals, such as aluminum, chrome, and gold

are used as conductive layers and pathways as well as sacrificial masks in certain processing steps. Many

polymers also find use in MEMS as processing masks, dielectric layers, adhesives, and permanent structures

[8, 20, 45, 48, 79].

Despite the seeming simplicity of the device described in the previous section, it was found that the

particular stack of patterns and material layers would be virtually impossible to fabricate. In particular,

chemical incompatibilities between subsequent steps in proposed fabrication processes and lack of suitable

bonding procedures to adhere the die stacks conspired to force a reconsideration of device architecture.

A plan-view schematic of the revised device architecture is shown in Fig. 6.4 with key features labeled.

In the center is an H-shaped mass which is symmetrically suspended from an external frame on either side

by folded-flexure assemblies. To the left of the mass (the suspended electrode) is the other electrode of the
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parallel plate drive, which is fixed relative to the frame, but is electrically isolated from it. The suspension

provides an electrically conductive pathway from the frame to the mass. Applying a voltage across the fixed

electrode and frame actuates the mechanism. This arrangement is very similar to the design proposed by

Mita et al. [8] that was studied in Chapter 2.

V(t)

Suspension Process
section

Stop

Laser

FrameMass
Electrodes

Mask 1

Mask 2

Figure 6.4: Schematic of the proposed micro-electromechanical device architecture (top) and two masks used
in its fabrication (middle and bottom).

In a significant departure from Mita’s design, and like the proposed device architecture shown above

in Sec. 6.2, the revised design does not prevent snapthrough of the suspended electrode toward the fixed

electrode, nor does it allow movement of the frame relative to a substrate. Instead of positioning a barrier

in the path of the suspended electrode in order to prevent snapthrough, here the barrier (in the form of two

protruding stops) is placed to the right of the mass. Between the stops is a gap in the frame to allow passage
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of a laser beam for external interrogation of the motion of the mass. It should be noted that this design can

still be analyzed with the same procedure presented in Sec. 6.2 of this chapter.

Several different sets of devices with different dimensions were built to explore the parameter space and

to investigate the effects of processing on different feature sizes. The remainder of this section describes in

some detail the process used to manufacture these devices. A more detailed process and recipe is included

in Appendix D.1.

The chart in Fig. 6.5 enumerates the fabrication steps used to process the proposed micro-electro-

mechanical devices, which consist of a bonded stack of dies electrically isolated by a dielectric adhesive.

This fabrication procedure requires the use of two masks for the photolithography steps and two wafers are

needed for each set of completed devices.

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Top Wafer

Top Wafer

Top Wafer

Top Wafer

Top Wafer

Top Wafer

Bottom Wafer

Bottom Wafer

Spin coat bottom with PR
and pattern using mask 1

Etch backside 50 micron

Strip PR

Spin coat top with PR and
pattern alignment marks

Sputter with aluminum
and strip PR

Spin coat topside with SU-8

Bond assembly stack

Spin coat top with PR and
pattern using mask2

Thru-etch from top

Strip PR

Sputter top with aluminum

Figure 6.5: Schematics and fabrication steps as described in Section 6.3.

In the first step of the fabrication process, photoresist (PR) is spincoated on the backside of a 300 micron
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thick silicon wafer and patterned using mask 1, which is shown schematically in the middle panel of Fig. 2.

In the second step, the wafer is then etched to a depth of approximately 50 microns using an inductively

coupled plasma (ICP) etching process, after which the PR is stripped from the top wafer in step three.

These steps result in chambers in the back side of the top wafer that allow the shuttle mass to move freely

without contacting the bottom wafer once the stack is bonded. The rectangle in the middle of the chamber

that is not etched is the base for the fixed electrode that gets bonded to the base wafer.

In later steps, the features on the top side of the top wafer need to be aligned with the features that

were etched on the bottom side of the top wafer in the first step. However, these features are hidden from

view once the stack has been bonded. To provide the necessary alignment features, in the fourth step, the

topside of the top wafer is spincoated with PR and patterned with mask 2, shown schematically in the lower

panel of Fig. 6.5, using a backside alignment. However, only topside alignment marks are developed. In step

five, aluminum is then sputtered on the topside and a lift-off procedure performed to leave the patterned

aluminum alignment marks on the topside of the top wafer.

In the sixth step, a second, 500 micron thick silicon wafer is prepared for bonding by spincoating the

topside with a 3 micron thick layer of thermosetting SU-8 epoxy. The bottom and top of the assembly are

then bonded in step seven in an anodic bonding chamber which presses the wafer stack between two heated

plates to thermally set the SU-8 epoxy in a vacuum atmosphere.

In step eight, the top of the bonded stack is spincoated with PR and patterned using mask 2, shown

schematically in the lower panel Fig. 6.5. This defines the final shape of the proof mass and suspension.

The features of the top mask are aligned to the features on the back using the alignment marks patterned

in steps four and five. The PR developer acts as an etchant for the aluminum, thus cleaning the aluminum

from the surface in preparation for the subsequent ICP etching of the silicon.

In step nine, the top wafer is thru-etched with the same ICP process used to etch the backside chambers.

The SU-8 acts as a good etch stop so that the bottom wafer is not inadvertently etched in the process. The

PR is removed in step 10 to expose the final device structure.

Finally, in step 11, the entire top of the bonded stack is conformally sputtered with aluminum to provide

a layer of high electrical conductivity. This substantially reduces the resistance of the devices and provides

for highly conductive capacitor plates. Note that the conformal sputtering does not short the capacitor

plates, due to the reliefs that are undercut at the edges of the lower bonding surfaces.

At number of wafers were processed using this protocol. At the end of processing, typically only one

or two devices, out of eight on each wafer, were still intact. Breakage usually occurred during step nine

in Fig. 6.5 when the top wafer was thru-etched. It was theorized that heat transfer from the shuttle mass
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was limited due to the presence of the chambers on the backside of the top wafer. Temperature build-up in

the mass and suspensions due to this limited heat transfer caused the etch rates to increase locally. This

resulted in failure of the thin suspension beams, freeing the masses completely, which subsequently fell out

of the wafer if it was inverted.

Some failures also occurred in step ten in Fig. 6.5 when the last layer of PR was stripped from the

top wafer. For reasons that are not yet clearly understood, the SU-8 adhesive layer exposed to the liquid

PR stripper would begin to delaminate from the bottom wafer. Particles of the SU-8 would then foul the

suspensions and become lodged in the capacitor gaps, effectively locking the masses in place. It was found

that under extended soaking in stripper while in an ultrasonic cleaner, the particles could sometimes be

dislodged. However, the ultrasonic waves in the bath sometimes destroyed the suspensions due to over-

excitation.

6.4 Packaging

To minimize manufacturing, packaging, and testing difficulties, the individual devices were not diced and

removed from the silicon wafers from which they were fabricated. Instead, the entire wafer was used as

the external frame to which the suspensions were attached. The devices are distributed radially along the

circumferences of the wafer so that by rotating the wafer around its central vertical axis, the channels

between the stops can be aligned with the laser beam used to interrogate the devices.

The testing fixture shown in Fig. 6.6 was designed and built to seal the entire wafer assembly in a clean,

protected chamber. The wafer rests on a central platter that is free to rotate within the chamber and is

actuated by an external shaft. The laser sensor head remains on the outside of the chamber and is held

so that the beam is directed down the channels through a clear viewing window in the side of the sealed

chamber. This window aligns with the central vertical axis of the platter so that each device can in turn be

rotated into alignment with the laser.

On the top of the fixture are two bosses with set-screws which hold gold-plated, spring loaded pins that

extend into the chamber. The tips of these pins press against the electrical contact pads which provide

power to the actuators.

The testing fixture was fabricated with extreme precision, but the sensor mount which was attached to it

lacked sufficient adjustability and rigidity to reliably hold the laser sensor in alignment with the channel. To

permanently remedy this issue, a revised apparatus for holding the sensing head would need to be designed

and constructed to work with the rest of the existing fixture. Prelimiary tests of the prototype devices were
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Figure 6.6: A testing fixture used to seal the entire wafer assembly in a protected chamber while allowing
the laser beam clear and uninterrupted access to the shuttle mass.

conducted with the laser mounted temporarily to a 3-axis micromanipulator.

It was also found that the clear viewing window through which the laser passed was actually generating

some unwanted reflections. Prior to fabricating the fixture, the idea of a window was tested by passing

the laser through a sample piece of clear acrylic and the results indicated the beam was not being affected.

Perhaps differences in surface quality or material properties between the test sample and the acrylic used

in the construction of the fixture are to blame. The window was simply removed for testing, since the

preliminary investigation took place within the cleanroom.

6.5 Preliminary Tests of the Prototype

A photograph of the apparatus as tested is shown in Fig. 6.7. In the center of the image is the acrylic

test packaging in which the wafer rests. To the right is the micromanipulator with the LMI Technologies

LNS 18/120 laser displacement sensor mounted on its arm. Although this was still not robust even to light

disturbances, it provided precise enough movements that the laser could be accurately pointed down the

channel to reflect off the shuttle mass. On top of the acrylic chamber, the two leads which power the device

are clamped to the input pins.

The laser beam from the displacement sensor has a beam diameter of 4 µm, so it is nearly impossible
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Figure 6.7: Photograph of the MEMS apparatus under test.

to see or adjust by the naked eye. To determine alignment, the output of the sensor was monitored on a

Tektronix 2235 oscilloscope while the micromanipulator was adjusted until a signal was observed. A series

of static excitation voltages in the range of 0–50 VDC was applied to the terminal pins using a Keithley 237

high voltage power supply. Movement of the shuttle mass was confirmed visually and the signal from the

LNS registered slight changes at the different voltage levels. The shuttle mass was also visually confirmed

to snap-through to the closed position when incrementing the input beyond 50VDC. However, the signal

from the LNS only indicated a movement of 1 µm, which was clearly incorrect. Since the integrity of the

data could not be guaranteed, no experimental data is included here.

6.6 Concluding discussion

The overall device design and construction process was successful and resulted in functioning MEMS devices.

The devices were visually confirmed to be operational and indications are that further efforts to refine the

experimental test fixture would result in accurate and satisfactory test data. Additonal means of obtaining

experimental data are also being investigated. For example, a high speed camera could be mounted above

the test fixture to capture images of a device as it was actuated. Image processing routines could then be

used to edge-detect the moving mass and obtain a time evolution of the movement of the mass.

After confirming the validity of the data being acquired, system identification procedures would need to

be developed, similar to those presented in Chapter 5. This would result in parameter values which could
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be used in numerical simulation for comparison to experimental data.

Further, it would be interesting to examine and adjust process variables to try to increase the yield rate.

One iteration of this was already performed by trying a second mask 2 which had different device sizes. It

would also be of interest to perform a design-of-experiment analysis to investigate the impact of process

parameters on yield, in particular for the bonding and thru-etch processes which were the primary causes of

device failure.

From the point of view of the broader research effort, the success in producing functioning devices is a

big step in moving towards sensing systems based on these ideas. Having a baseline from which to work

and develop opens up possibilities for further device enhancement. For instance, through the introduction

of moveable stops, a tunable device might be created, which could be adjusted to provide different trigger

points. In future development, one might even imagine real-time control, as suggested in Dankowicz and

Svahn [10], which would further augment device functionality.
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Chapter 7

Conclusions

This dissertation has explored the potential for grazing bifurcations to provide a useful means of creating

fast-acting limit switches. Chapter 1 discussed the use of limit switches as indicators and control devices and

how they are critical mechanisms for providing logic and safety interlocks in many consumer and industrial

applications. This chapter also introduced the reader to some of the concepts to be examined in detail in

later chapters.

Chapter 2 went on to present a detailed numerical analysis of a MEMS impact actuator using the

software application t̂c. This chapter discussed modeling of hybrid systems and demonstrated how numerical

continuation can be used to map out the bifurcation behavior of a mechanism in the state space of of the

system. The basic architecture of the example device was later borrowed for use in Chapter 6 in a novel

implementation of a MEMS limit switch.

Chapter 3 presented an exploration of an electrostatically-actuated, microscale Euler-Bernoulli beam

which was modeled using continuum assumptions. The PDE which described its behavior was discretized

using the Galerkin method and a sequence of reduced-order models were presented. Through the use of this

example, the chapter demonstrated modeling and numerical simulation techniques and also discussed the

characteristic features of grazing-induced bifurcations in mechanical systems with rigid impact and compliant

contact. Numerical results were presented which showed changes in system response associated with the

onset of low-relative-velocity contact.

In Chapter 4, the rapid transient behavior associated with grazing bifurcations in a mechanical system

was studied using analytical, numerical, and experimental methods. It was shown that the rate of growth of

successive impact velocities increases beyond all bounds as the threshold parameter value is approached. It

was then argued that a limit switch based on this nonsmooth fold scenario would be expected to outperform

one that relies on a smooth bifurcation, such as the cyclic-fold bifurcation, in terms of switching speed and

sensitivity.

To explore these ideas further and investigate the possibility for direct transduction of the mechanically-

induced bifurcation in a coupled electrical signal, a custom testbed was designed and built which allows
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further study of grazing bifurcations in the context of coupled, electromechanical systems. The material

presented in Chapter 5 demonstrated good agreement between numerical and experimental results. Further,

it was shown that changes in periodicity of the post-grazing response could be used, with suitable signal

processing, to readily detect the bifurcation in the electrical current response.

Finally, Chapter 6 combined these concepts to propose a novel implementation of a MEMS-based limit

switch which uses grazing bifurcations to trigger snap-through of the plates in a parallel-plate, electrostatic

actuator. The operational phenomenology of the mechanism was shown to work in numerical simulation and

experimental specimens were fabricated to demonstrate an actual, working device. The devices were visually

verified to be moving, indicating that the fabrication process was viable. Issues related to data acquisition

prevented complete validation of the numerical predictions.

Ongoing and future work should focus on resolving the data acquisition issues which prevented successful

demonstration of the MEMS switch developed in Chapter 6. Some additional possibilities which avoid the

use of a laser displacement sensor, as was attempted here, include the use of a laser doppler vibrometer or

the use of high speed imaging equipment with image processing software. It might also be possible to make

use of capacitance sensing to deduce the displacement of the oscillating mass.
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Appendix A

Matlab Simulation Files for Chapter 4

1 % Bryan Wilcox
2 % SwedenDriver.m
3 % 11/3/2007
4 % Script to drive the numerical simulator for the experiment al apparatus
5 % from the Summer 2007 trip to Sweden
6

7 % Initial Separation Distance
8 b = 0.6500;
9

10 % Coefficient of Restitution
11 e=0.55;
12

13 % Input Frequency and Amplitude
14

15 freq = 6; % [Hz]
16 omega = 2* pi * freq; % Calculate circular frequency for simulation purposes
17 A = b+5e-4;
18

19 % Maximum number of impacts to simulate.
20

21 max impacts = 20;
22

23 % Simulation Precision (See ode45 help file)
24

25 rel tol = 1e-12;
26 abs tol = 1e-12;
27 init step = .0001;
28

29 % Number of input cycles before simulation is aborted withou t impacts
30 % This prevents an infinite loop because of a mistake in setti ng initial
31 % separation and driving amplitude.
32

33 t incr = 8 * pi/omega;
34

35 t int = [0 t incr]; % Set the time increment for an integration run
36

37 % Initial Conditions on ['position' 'velocity' 'phase']
38 IC = [0 0 0];
39

40

41 % Index control variable and counter for number of impacts
42 i = 1;
43

44 % Initialize empty arrays to prevent logic errors
45 time data=[];
46 vel data=[];
47 pos data=[];
48

49 while i ≤ max impacts % Stop after 'max impacts' impacts
50 clear sol
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51 sol=DynSim(rel tol,abs tol,init step,t int,IC,A,b,omega);
52

53 if isempty(sol.ie)
54 % No impact detected before the end of the time interval, brea k the SIM
55 fprintf( 'No Impact. \n' )
56 fprintf( 'Check step sizes in the integration. \n' )
57 fprintf([ 'Make sure input amplitude is greater than initial ' ...
58 'separation distance. \n' ])
59 break
60 elseif sol.ie( end ) == 1
61 % Impact detected as event function decreased. Save data, ap ply jump
62 % map, reset time interval, increment counter, then pass to l oop
63 % control.
64

65 saved sol(i)=sol; % Save all data from each run.
66 time data( end+1: end+length(sol.x))=sol.x; % Isolate time data
67 pos data( end+1: end+length(sol.x))=sol.y(1,:); % Isolate position data
68 vel data( end+1: end+length(sol.x))=sol.y(2,:); % Isolate velocity data
69

70 IC = [sol.y(1, end )+1e-6 A * omega* cos(sol.y(3, end ))+ ...
71 e* (A * omega* cos(sol.y(3, end ))-sol.y(2, end )) sol.y(3, end )];
72 t int = [sol.x( end ) sol.x( end)+t incr];
73 i=i+1;
74 elseif sol.ie( end ) == 2
75 % Impact detected as event function increased. Something st range, sound
76 % the alert.
77 fprintf([ 'ALERT: Impact detected as event function increased. ' ...
78 'Investigate. \n' ])
79 break
80 else
81 % Catch-all in case something really weird happens
82 fprintf( 'Uh oh, something really broke. Tell Bryan. \n' )
83 break
84 end
85 end
86

87 figure
88 plot(time data,vel data, '.' )
89 xlabel( 'Time (s)' , 'FontSize' ,14)
90 ylabel( 'Ball velocity (mm/s)' , 'FontSize' ,14)

1 % Bryan Wilcox
2 % DynSym.m
3 % 11/3/2007
4 % Code to forward simulate the Sweden Apparatus
5

6 % First two event functions watch for impacts. They should on ly occur as
7 % the event function decreases, but the increasing case is ch ecked as
8 % well to look for errors in the formulation.
9

10 % UPDATE: Modified to investigate rates of increase in the
11 % displacement. Watch the turn-around point with event func tion number
12 % 3.
13

14 function sol=DynSim(rel tol,abs tol,init step,t int,IC,Z,z 0,omega)
15 options = odeset( 'Events' ,@events, 'RelTol' ,rel tol, 'InitialStep' , ...
16 abs tol, 'MaxStep' ,init step);
17

18 sol = ode45(@DE,t int,IC,options,Z,z 0,omega);
19

20 %-------------------------------------------------- ------------------------
21 function [value,isterminal,direction] = events(t,x,Z,z 0,omega)
22 % Impact Event
23 value(1) = x(1)-(Z * sin(x(3))-z 0); %
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24 isterminal(1) = 1; % 1 if the integration is to terminate at a zero of this
25 % event function and 0 otherwise
26 direction(1) = -1; % 0 if all zeros are to be computed (the default), +1 if
27 % only the zeros where the event function increases, and
28 % -1 if only the zeros where the event function decreases.
29

30 value(2) = x(1)-(Z * sin(x(3))-z 0);
31 isterminal(2) = 1;
32 direction(2) = 1;
33 % Period Event
34 value(3) = x(2); % Check peak displacement
35 isterminal(3) = 0;
36 direction(3) = -1;
37

38 %-------------------------------------------------- ------------------------
39 function dx = DE(t,x,Z,z 0,omega)
40 dx=zeros(3,1);
41 dx(1)=x(2);
42 % damping and nat. freq. current as of 4-16-2008
43 dx(2)=-(2 * 0.0881 * 25.2 * x(2)+25.2ˆ2 * x(1));
44 dx(3)=omega; % Input frequency
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Appendix B

Matlab Data Acquisition Files for
Chapter 5

1 %% Bryan Wilcox
2 %% DENSATacquire swpV.m
3 %% 20104030
4 %% Script to automatically sweep the input voltage for exper imental
5 %% DENSAT bifurcation diagrams
6

7 %% Initialize sweep parameters
8

9 %% Start points
10 begfreq=6.1;
11 endfreq=6.1;
12 freqincr=0.1;
13 freq=begfreq:freqincr:endfreq;
14 lenfreq=length(freq);
15

16 minvpp=5.5;
17 maxvpp=6.5;
18 vppincr=0.01;
19

20 vppup=minvpp:vppincr:maxvpp;
21 vppdwn=maxvpp:-vppincr:minvpp;
22 lenvppup=length(vppup);
23 lenvppdwn=length(vppdwn);
24

25 dirflag=1;
26

27 %% Initialize serial connection to function generator
28 s=serial( 'COM1' , 'baudrate' ,9600, 'parity' , 'none' , ...
29 'StopBits' ,2, 'FlowControl' , 'software' );
30 fopen(s)
31 fprintf(s, 'SYST:REM' )
32 fprintf(s, ' * CLS' )
33

34 %% Initialize analog acquisition connection to USB-6211 on Dev1
35 ai = analoginput( 'nidaq' , 'Dev1' );
36 addchannel(ai, 0:3);
37 set(ai, 'InputType' , 'Differential' );
38 ai.SampleRate = 1000;
39 ai.SamplesPerTrigger = 10000; % 10 s of data
40 aiduration=ai.SamplesPerTrigger/ai.SampleRate;
41

42 freqind=1;
43 while freqind ≤lenfreq
44 inputcmd=sprintf( 'APPL:SIN %i, %i, 0' ,freq(freqind),vppup(1));
45 fprintf(s,inputcmd);
46 vppupind=1;
47 if dirflag==1
48 while vppupind ≤lenvppup
49 %% Set HP33120A outputs
50 freq(freqind)
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51 vpp=vppup(vppupind)
52 dirflag
53 inputcmd=sprintf( 'VOLT %i' ,vpp);
54 fprintf(s,inputcmd);
55

56 pause(20); % give the system 10 seconds to settle
57 % Start the acquisition
58 start(ai);
59 % Wait up to additional 5 seconds before getting data
60 wait(ai,aiduration+20);
61

62 % Acquire data into the MATLAB workspace
63 [data,time] = getdata(ai);
64 % format output matrix
65 outdat=[time, data];
66 % outfile string format
67 % yearmonthday hrminsec freq(in mHz) VPP(in mV)
68 % sample corresponds to Mar. 31, 2010 at 3:30:21 pm 5 Hz 5 VPP
69 % 20100331 153021 5000 5000
70 outtime=fix(clock);
71 freqout=freq(freqind) * 1000; % convert to mHz
72 vppout=vpp * 1000; % convert to mV
73 outfile= ...
74 sprintf( '%4d%02d%02d %02d%02d%02d%05.0f %05.0f %1.0f.dat' , ...
75 outtime(1:6),freqout,vppout,dirflag);
76 save(outfile, '-ascii' , '-double' , 'outdat' )
77 vppupind=vppupind+1;
78 end
79 end
80

81 dirflag=0;
82 vppdwnind=1;
83 while vppdwnind ≤lenvppdwn
84 %% Set HP33120A outputs
85 freq(freqind)
86 vpp=vppdwn(vppdwnind)
87 dirflag
88 inputcmd=sprintf( 'VOLT %i' ,vpp);
89 fprintf(s,inputcmd);
90

91 pause(10); % give the system 10 seconds to settle
92 % Start the acquisition
93 start(ai);
94 % Wait up to additional 5 seconds before getting data
95 wait(ai,aiduration+5);
96

97 % Acquire data into the MATLAB workspace
98 [data,time] = getdata(ai);
99 % format output matrix

100 outdat=[time, data];
101 % outfile string format
102 % yearmonthday hrminsec freq(in mHz) VPP(in mV)
103 % sample corresponds to Mar. 31, 2010 at 3:30:21 pm 5 Hz 5 VPP
104 % 20100331 153021 5000 5000
105 outtime=fix(clock);
106 freqout=freq(freqind) * 1000; % convert to mHz
107 vppout=vpp * 1000; % convert to mV
108 outfile= ...
109 sprintf( '%4d%02d%02d %02d%02d%02d%05.0f %05.0f%1.0f.dat' , ...
110 outtime(1:6),freqout,vppout,dirflag);
111 save(outfile, '-ascii' , '-double' , 'outdat' )
112 vppdwnind=vppdwnind+1;
113 end
114

115 dirflag=1;
116 freqind=freqind+1;
117 end
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118

119 %% Clean up serial connection
120 vpp=0.1;
121 inputcmd=sprintf( 'APPL:SIN %i, %i, 0' ,freq(freqind),vpp);
122 fprintf(s,inputcmd);
123 fclose(s)
124 delete(s)
125 clear s
126

127 %% Clean up DAQ connection
128 stop(ai);
129 delete(ai);

1 %% Bryan Wilcox
2 %% phasesecs.m
3 %% 20104030
4

5 % Processes data from DENSAT Vpp sweep experiments to extrac t Poincare
6 % sections at different values of the phase.
7

8 %% slice and dice
9 superclean;

10

11

12 constphase= {};
13 % velmaxima= {};
14 % velminima= {};
15 % posmaxima={};
16 % posminima= {};
17 velmax= {};
18 velmin= {};
19 posmax={};
20 posmin= {};
21

22 temp=dir( ' * .dat' );
23 numch=4; % number of data channels acquired
24 %% time is the first column of the data file
25 incol=2; % column of the input
26 chname={'V' , 'I' , 'q' , 'dotq' };
27

28 phasefrac=[0 1/4 1/2 3/4]; % input phase (fraction of 2pi) to sample
29 % data. i.e. 1/4= >pi/2
30

31 %%%%%%%%%%%%%%%%%%% START: Info from filenames %%%%%%%%%%%%%%%%%%%%%%%%%%%
32 j=0;
33 for i=1:length(temp)
34 if strncmp(temp(i).name, '2010' ,4)
35 %% only load original data files, must start with 2010
36 j=j+1;
37 datfile {j }=temp(i).name;
38 freq(j)=str2num(temp(i).name(17:21))/1000; % convert mHz to Hz
39 vpp(j)=str2num(temp(i).name(23:27))/1000; % convert mV to V
40 swpdir(j)=str2num(temp(i).name(29));
41 end
42 end
43 %%%%%%%%%%%%%%%%%%% END: Info from filenames %%%%%%%%%%%%%%%%%%%%%%%%%%%
44

45 %%%%%%%%%%%%%%%%%%% START: Datamining %%%%%%%%%%%%%%%%%%%%%%%%%%%
46 ufreq=unique(freq)
47

48 k= 1; % k indexes over unique frequencies
49 ufreqind=find(freq==ufreq(k)); % get indices for current unique
50 % frequency
51 %% initialize freq-wide datasets
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52 freqphasedat=cell(size(phasefrac));
53

54 %% Cycle through individual runs to collect data
55 for r=1:length(ufreqind) % r is index for each unique run at a freq
56 i=ufreqind(r) % i contains the index of the run in the global set
57 data=load(datfile {i }); % get the raw data
58 dt=data(2,1)-data(1,1); % get the sampling rate
59 T=1/freq(i); % calculate the period
60

61 %% Time shift data set to index input voltage as sin input
62 for j=1:(length(data(:,1))-1)
63 % looking for zero crossing in the increasing direction
64 if data(j,incol) <0 && data(j,incol) * data(j+1,incol) <0
65 %% zero index the time to make input a sin wave
66 %% use linear interpolation to locate t=0
67 %% start of sine wave is between j and j+1
68 tshift=interp1([data(j,incol) data(j+1,incol)], ...
69 [data(j,1),data(j+1,1)],0);
70 data(:,1)=data(:,1)-tshift; % zero index the time
71 data=data(j: end ,:); % remove junk prior to t=0;
72 break
73 end
74 end
75

76 % for a=1:length(phasefrac)
77 runphasedat=[];
78 %% Collect data at constant phase Poincare sections
79 %% Generate array of time stamps on the available zero phase s ections
80 tphase=0:T:data( end,1);
81 runphasedat0=[tphase(1: end-1)' zeros(length(tphase)-1,numch)];
82 runphasedat1=[(tphase(1: end-1)+T/4)' zeros(length(tphase)-1,numch)];
83 runphasedat2=[(tphase(1: end-1)+T/2)' zeros(length(tphase)-1,numch)];
84 runphasedat3=[(tphase(1: end-1)+3 * T/4)' zeros(length(tphase)-1,numch)];
85 len=length(tphase);
86

87 for m=1:len-1 % index over the periods
88 %% Get the index for the first point beyond the time stamp
89 ind0=find(data(:,1) >tphase(m),1);
90 for n=1:numch
91 %% Interpolate data and save into cell array
92 runphasedat0(m,n+1)=interp1([data(ind0-1,1) data(ind 0,1)], ...
93 [data(ind0-1,n+1) data(ind0,n+1)],tphase(m));
94 end
95 ind1=find(data(:,1) >tphase(m)+T/4,1);
96 %% phase section lies between ind and ind-1
97 for n=1:numch
98 %% Interpolate data and save into cell array
99 runphasedat1(m,n+1)=interp1([data(ind1-1,1) data(ind 1,1)], ...

100 [data(ind1-1,n+1) data(ind1,n+1)], ...
101 tphase(m)+T/4);
102 end
103 ind2=find(data(:,1) >tphase(m)+T/2,1);
104 %% phase section lies between ind and ind-1
105 for n=1:numch
106 %% Interpolate data and save into cell array
107 runphasedat2(m,n+1)=interp1([data(ind2-1,1) data(ind 2,1)], ...
108 [data(ind2-1,n+1) data(ind2,n+1)], ...
109 tphase(m)+T/2);
110 end
111 ind3=find(data(:,1) >tphase(m)+3 * T/4,1);
112 %% phase section lies between ind and ind-1
113 for n=1:numch
114 %% Interpolate data and save into cell array
115 runphasedat3(m,n+1)=interp1([data(ind3-1,1) data(ind 3,1)], ...
116 [data(ind3-1,n+1) data(ind3,n+1)], ...
117 tphase(m)+3 * T/4);
118 end
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119 end
120 % average the input voltage amplitudes
121 Vin=mean(abs([runphasedat1(:,2);runphasedat3(:,2)]) );
122 %% Append run phase data to freq phase data set.
123 freqphasedat {1}=[freqphasedat {1}; vpp(i) * ones(len-1,1) Vin * ones(len-1,1) ...
124 runphasedat0 swpdir(i) * ones(len-1,1)];
125 freqphasedat {2}=[freqphasedat {2}; vpp(i) * ones(len-1,1) Vin * ones(len-1,1) ...
126 runphasedat1 swpdir(i) * ones(len-1,1)];
127 freqphasedat {3}=[freqphasedat {3}; vpp(i) * ones(len-1,1) Vin * ones(len-1,1) ...
128 runphasedat2 swpdir(i) * ones(len-1,1)];
129 freqphasedat {4}=[freqphasedat {4}; vpp(i) * ones(len-1,1) Vin * ones(len-1,1) ...
130 runphasedat3 swpdir(i) * ones(len-1,1)];
131 % end
132

133 end
134 %% save off global data sets for this freq
135 %% constphase becomes a cell array of cell arrays, the first i ndex
136 %% corresponds to a unique frequency, the second index corre sponds to a
137 %% phase section within that group of frequency runs
138 constphase {k}=freqphasedat;
139

140

141 clear T data dt extind freqphasedat freqposmax freqposmin f reqvelmax freqvelmin
142 clear i incol ind ind1 ind2 j k len m n runphasedat runposmax ru nposmin
143 clear runvelmax runvelmin temp tperiod tphase tshift r a ufr eqind
144

145 save phasesecsoutput

1 %% Bryan Wilcox
2 %% velpeaks.m
3 %% 20104030
4

5 % Processes data from DENSAT Vpp sweep experiments to extrac t peak
6 % values of the data for each period.
7

8 %% slice and dice
9 superclean;

10

11

12 constphase= {};
13 % velmaxima= {};
14 % velminima= {};
15 % posmaxima={};
16 % posminima= {};
17 velmax= {};
18 velmin= {};
19 posmax={};
20 posmin= {};
21

22 temp=dir( ' * .dat' );
23 numch=4; % number of data channels acquired
24 %% time is the first column of the data file
25 incol=2; % column of the input
26 chname={'V' , 'I' , 'q' , 'dotq' };
27

28 % input phase (fraction of 2pi) to sample data. i.e. 1/4= >pi/2
29 phasefrac=[0 1/4 1/2 3/4];
30

31 %%%%%%%%%%%%%%%%%%% START: Info from filenames %%%%%%%%%%%%%%%%%%%%%%%%%%%
32 j=0;
33 for i=1:length(temp)
34 if strncmp(temp(i).name, '2010' ,4)
35 %% only load original data files, must start with 2010
36 j=j+1;
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37 datfile {j }=temp(i).name;
38 freq(j)=str2num(temp(i).name(17:21))/1000; % convert mHz to Hz
39 vpp(j)=str2num(temp(i).name(23:27))/1000; % convert mV to V
40 swpdir(j)=str2num(temp(i).name(29));
41 end
42 end
43 %%%%%%%%%%%%%%%%%%% END: Info from filenames %%%%%%%%%%%%%%%%%%%%%%%%%%%
44

45 %%%%%%%%%%%%%%%%%%% START: Datamining %%%%%%%%%%%%%%%%%%%%%%%%%%%
46 ufreq=unique(freq);
47

48 %% Collect data from each unique frequency
49 for k=1:length(ufreq) % k indexes over unique frequencyis
50 ufreqind=find(freq==ufreq(k)); % get indices for current unique frequency
51 %% initialize freq-wide datasets
52 freqphasedat=cell(size(phasefrac));
53 freqvelmin=[];
54 freqvelmax=[];
55 freqposmin=[];
56 freqposmax=[];
57

58 %% Cycle through individual runs to collect data
59 for r=1:length(ufreqind) % r is control index for each unique run at a freq
60 i=ufreqind(r) % i contains the index of the run in the global set
61 data=load(datfile {i }); % get the raw data
62

63 %% THIS IS BIG - cut the collected data sample in half. Some of t he
64 %% runs appear to ring at the beginning.
65

66 data=data( end /2: end ,:);
67

68 dt=data(2,1)-data(1,1); % get the sampling rate
69 T=1/freq(i); % calculate the period
70

71 %% Time shift data set to index input voltage as sin input
72 for j=1:(length(data(:,1))-1)
73 % looking for zero crossing in the increasing direction
74 if data(j,incol) <0 && data(j,incol) * data(j+1,incol) <0
75 %% zero index the time to make input a sin wave
76 %% use linear interpolation to locate t=0
77 %% start of sine wave is between j and j+1
78 tshift=interp1([data(j,incol) data(j+1,incol)], ...
79 [data(j,1),data(j+1,1)],0);
80 data(:,1)=data(:,1)-tshift; % zero index the time
81 data=data(j: end,:); % remove junk prior to t=0;
82 break
83 end
84 end
85

86

87 for a=1:length(phasefrac)
88 runphasedat=[];
89 %% Collect data for a constant phase Poincare section
90 %% Generate array of time stamps on the phase section
91 tphase=phasefrac(a) * T:T:data( end,1);
92 runphasedat=[tphase' zeros(length(tphase),numch)];
93 len=length(tphase);
94 for m=1:len
95 %% Get the index for the first point beyond the time stamp
96 ind=find(data(:,1) >tphase(m),1);
97 for n=1:numch
98 %% Interpolate data and save into cell array
99 runphasedat(m,n+1)=interp1([data(ind-1,1) ...

100 data(ind,1)],[data(ind-1,n+1) ...
101 data(ind,n+1)],tphase(m));
102 end
103 end
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104

105 %% Append run phase data to freq phase data set.
106 freqphasedat {a}=[freqphasedat {a}; vpp(i) * ones(len,1) ...
107 runphasedat swpdir(i) * ones(len,1)];
108 end
109

110 %% Sequentially search for max and min per period
111 tperiod=0:T:data( end ,1);
112 runvelmin=zeros(length(tperiod)-1,numch+1);
113 runvelmax=zeros(length(tperiod)-1,numch+1);
114 runposmin=zeros(length(tperiod)-1,numch+1);
115 runposmax=zeros(length(tperiod)-1,numch+1);
116 len=length(tperiod)-1;
117 for m=1:len
118 ind1=find(data(:,1) ≥tperiod(m),1);
119 ind2=find(data(:,1) ≥tperiod(m+1),1);
120

121 [temp,extind]=min(data(ind1:ind2,5)); % min velocity
122 runvelmin(m,:)=data(ind1+extind-1,:); % get data at min index
123 [temp,extind]=max(data(ind1:ind2,5)); % max velocity
124 runvelmax(m,:)=data(ind1+extind-1,:); % get data at max index
125

126 [temp,extind]=min(data(ind1:ind2,4)); % min position
127 runposmin(m,:)=data(ind1+extind-1,:); % get data at min index
128 [temp,extind]=max(data(ind1:ind2,4)); % max postion
129 runposmax(m,:)=data(ind1+extind-1,:); % get data at max index
130 end
131 % plot(runposmax(:,1),runposmax(:,4),'ko',runposmin( :,1),runposmin(:,4),'ko')
132 % plot(runvelmax(:,1),runvelmax(:,5),'ko',runvelmin( :,1),runvelmin(:,5),'ko')
133 %% Append run extrema data to freq extrema data set.
134 freqvelmin=[freqvelmin; vpp(i) * ones(len,1) runvelmin ...
135 swpdir(i) * ones(len,1)];
136 freqvelmax=[freqvelmax; vpp(i) * ones(len,1) runvelmax ...
137 swpdir(i) * ones(len,1)];
138 freqposmin=[freqposmin; vpp(i) * ones(len,1) runposmin ...
139 swpdir(i) * ones(len,1)];
140 freqposmax=[freqposmax; vpp(i) * ones(len,1) runposmax ...
141 swpdir(i) * ones(len,1)];
142 end
143 %% save off global data sets for this freq
144 %% constphase becomes a cell array of cell arrays, the first i ndex
145 %% corresponds to a unique frequency, the second index corre sponds to a
146 %% phase section within that group of frequency runs
147 constphase {k}=freqphasedat;
148 velmin {k}=freqvelmin;
149 velmax {k}=freqvelmax;
150 posmin {k}=freqposmin;
151 posmax{k}=freqposmax;
152 end
153

154 clear T data dt extind freqphasedat freqposmax freqposmin f reqvelmax freqvelmin
155 clear i incol ind ind1 ind2 j k len m n runphasedat runposmax ru nposmin
156 clear runvelmax runvelmin temp tperiod tphase tshift r a ufr eqind
157 %% save off plot data
158

159 % dirname=pwd;
160 %
161 % for j=1:numch
162 % figure(j)
163 % plotdata=[datset(:,1) datset(:,j+2)];
164 % plot(plotdata(:,1),plotdata(:,2),'b.');
165 % hold on
166 % outfile=sprintf('%s %s.dat',dirname(end-18:end),chname {j });
167 % save(outfile,'plotdata','-ascii');
168 % end
169

170 for i=1:length(ufreq)
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171 figure(i)
172 plot(posmax {i }(:,1),posmax {i }(:,5), '.' )
173 end

1 % Bryan Wilcox
2 % sectionplots.m
3

4 % plot data from phasesecs.m and velpeaks.m output
5

6 close all
7

8 sec=1;
9 secsym=3;

10 xmin=5.5;
11 xmax=6.5;
12 vpk=2; %% index into constphase cell array for peak input voltage
13 % col 1=vpp
14 % col 2=time
15 % col 3=Vin
16 % col 4=I
17 % col 5=pos
18 % col 6=vel
19 % col end = 0,1 0- > downsweep, 1- > upsweep
20 for i=1:length(ufreq)
21 figure(floor(ufreq(i) * 1000))
22 ind1=find(posmax {i }(:, end)==1);
23 ind2=find(posmax {i }(:, end)==0);
24 ind3=find(constphase {i }{sec }(:, end)==1);
25 ind4=find(constphase {i }{sec }(:, end)==0);
26 ind5=find(constphase {i }{secsym }(:, end )==1);
27 ind6=find(constphase {i }{secsym }(:, end )==0);
28 indinup=find(constphase {i }{vpk }(:, end )==1);
29 indindwn=find(constphase {i }{vpk }(:, end)==0);
30

31 subplot(4,1,1)
32 plot(constphase {i }{sec }(ind3,1),constphase {i }{sec }(ind3,6), 'b.' , ...
33 constphase {i }{secsym }(ind5,1),constphase {i }{secsym }(ind5,6), 'c.' )
34 axis([xmin xmax -2 4])
35

36 subplot(4,1,2)
37 plot(constphase {i }{sec }(ind4,1),constphase {i }{sec }(ind4,6), 'r.' , ...
38 constphase {i }{secsym }(ind6,1),constphase {i }{secsym }(ind6,6), 'm.' )
39 axis([xmin xmax -2 4])
40

41 subplot(4,1,3)
42 plot(posmax {i }(ind1,1),posmax {i }(ind1,5), 'b.' ,posmax {i }(ind2,1), ...
43 posmax{i }(ind2,5), 'r.' )
44 axis([xmin xmax -Inf Inf])
45

46 % Plot current at the section
47 subplot(4,1,4)
48 plot(constphase {i }{sec }(ind3,1),constphase {i }{sec }(ind3,4), 'b.' , ...
49 constphase {i }{secsym }(ind5,1),constphase {i }{secsym }(ind5,4), 'c.' , ...
50 constphase {i }{sec }(ind4,1),constphase {i }{sec }(ind4,4), 'r.' , ...
51 constphase {i }{secsym }(ind6,1),constphase {i }{secsym }(ind6,4), 'm.' )
52 axis([xmin xmax -2 4])
53 % % Plot input voltage at the terminals subplot(4,1,4)
54 % plot(constphase {i }{vpk }(indinup,1),constphase {i }{vpk }(indinup,4),
55 % 'b.',constphase {i }{vpk }(indindwn,1),constphase {i }{vpk }(indindwn,4),'r.')
56 % axis([5.2 6.2 -Inf Inf])
57 end
58

59

60 indevo=find(freq==6.1 & vpp==5.92);
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61

62 % for i=1:length(ufreq)
63 % figure(floor(ufreq(i) * 100))
64 % ind1=find(posmax {i }(:,end)==1);
65 % ind2=find(posmax {i }(:,end)==0);
66 %
67 % subplot(3,1,1)
68 % plot(velmax {i }(ind1,1),velmax {i }(ind1,6),'b.')
69 % axis([2 8 -2 3])
70 %
71 % subplot(3,1,2)
72 % plot(velmax {i }(ind2,1),velmax {i }(ind2,6),'r.')
73 % axis([2 8 -2 3])
74 %
75 % subplot(3,1,3) plot(posmax {i }(ind1,1),posmax {i }(ind1,5),'b.',
76 % posmax{i }(ind2,1),posmax {i }(ind2,5),'r.') axis([2 8 -Inf Inf])
77 % end
78

79 % NOTE: There is a symmetry that corresponds to a mirroring of current
80 % and a time shift in the input. For this reason, show phase sec tions in
81 % increments of pi

1 % Bryan Wilcox
2 % plottraj6100nonsym.m
3

4 % extract and plot trajectory and discrete fft
5

6 data=load( '20100427 203411 06100 05920 0.dat' );
7 T=1/6.1; % calculate the period
8 numch=4; % number of data channels acquired
9 dt=data(2,1)-data(1,1); % get the sampling rate

10 incol=2; % column of the input
11

12 %% Pull phase section data
13 %% Time shift data set to index input voltage as sin input
14 for j=1:(length(data(:,1))-1)
15 % looking for zero crossing in the increasing direction
16 if data(j,incol) <0 && data(j,incol) * data(j+1,incol) <0
17 %% zero index the time to make input a sin wave
18 %% use linear interpolation to locate t=0
19 %% start of sine wave is between j and j+1
20 tshift=interp1([data(j,incol) data(j+1,incol)],[data (j,1), ...
21 data(j+1,1)],0);
22 data(:,1)=data(:,1)-tshift; % zero index the time
23 data=data(j: end,:); % remove junk prior to t=0;
24 break
25 end
26 end
27

28 % for a=1:length(phasefrac)
29 runphasedat=[];
30 %% Collect data at constant phase Poincare sections
31 %% Generate array of time stamps on the available zero phase s ections
32 tphase=0:T:data( end ,1);
33 runphasedat0=[tphase(1: end -1)' zeros(length(tphase)-1,numch)];
34 runphasedat1=[(tphase(1: end -1)+T/4)' zeros(length(tphase)-1,numch)];
35 runphasedat2=[(tphase(1: end -1)+T/2)' zeros(length(tphase)-1,numch)];
36 runphasedat3=[(tphase(1: end -1)+3 * T/4)' zeros(length(tphase)-1,numch)];
37 len=length(tphase);
38

39 for m=1:len-1 % index over the periods
40 %% Get the index for the first point beyond the time stamp
41 ind0=find(data(:,1) >tphase(m),1);
42 for n=1:numch
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43 %% Interpolate data and save into cell array
44 runphasedat0(m,n+1)=interp1([data(ind0-1,1) data(ind 0,1)], ...
45 [data(ind0-1,n+1) data(ind0,n+ ...
46 1)],tphase(m));
47 end
48 ind1=find(data(:,1) >tphase(m)+T/4,1);
49 %% phase section lies between ind and ind-1
50 for n=1:numch
51 %% Interpolate data and save into cell array
52 runphasedat1(m,n+1)=interp1([data(ind1-1,1) data(ind 1,1)], ...
53 [data(ind1-1,n+1) data(ind1,n+ ...
54 1)],tphase(m)+T/4);
55 end
56 ind2=find(data(:,1) >tphase(m)+T/2,1);
57 %% phase section lies between ind and ind-1
58 for n=1:numch
59 %% Interpolate data and save into cell array
60 runphasedat2(m,n+1)=interp1([data(ind2-1,1) data(ind 2,1)], ...
61 [data(ind2-1,n+1) data(ind2,n+ ...
62 1)],tphase(m)+T/2);
63 end
64 ind3=find(data(:,1) >tphase(m)+3 * T/4,1);
65 %% phase section lies between ind and ind-1
66 for n=1:numch
67 %% Interpolate data and save into cell array
68 runphasedat3(m,n+1)=interp1([data(ind3-1,1) data(ind 3,1)], ...
69 [data(ind3-1,n+1) data(ind3,n+ ...
70 1)],tphase(m)+3 * T/4);
71 end
72 end
73

74 Vin=mean(abs([runphasedat1(:,2);runphasedat3(:,2)]) )
75

76 ind3T=find(data(:,1) ≥3* T,1);
77 time3T=data(1:ind3T,1);
78

79 pos=data(:,4) * 0.0791868 * 0.0254;
80 pos3T=pos(1:ind3T);
81 vel=-data(:,5) * 25/1000;
82 vel3T=vel(1:ind3T);
83 cur=data(:,3);
84 cur3T=cur(1:ind3T);
85 vin=data(:,2);
86 vin3T=vin(1:ind3T);
87

88 pos0=runphasedat0(:,4) * 0.0791868 * 0.0254;
89 vel0=-runphasedat0(:,5) * 25/1000;
90 cur0=runphasedat0(:,3);
91 vin0=runphasedat0(:,2);
92 time0=runphasedat0(:,1);
93

94 pospi=runphasedat2(:,4) * 0.0791868 * 0.0254;
95 velpi=-runphasedat2(:,5) * 25/1000;
96 curpi=runphasedat2(:,3);
97 vinpi=runphasedat2(:,2);
98 timepi=runphasedat2(:,1);
99

100 avg=mean(cur0);
101 dat=cur0-avg;
102 NFFT=length(cur0);
103 Fs=6.1;
104 f = Fs/2 * linspace(0,1,NFFT/2);
105 CUR0=fft(dat,NFFT)/NFFT;
106 plotdata=abs([CUR0(1), 2 * CUR0(2:NFFT/2)']/avg);
107

108 figure(1)
109 hold on
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110 plot(f,plotdata, 'r' )
111

112 % Save off data
113 outdat=[f' plotdata'];
114 save( '6100 fftnonsym.dat' , '-ascii' , '-double' , 'outdat' )
115

116 figure(2)
117 plot(vel,cur, 'k.' ,vel0,cur0, 'bo' ,velpi,curpi, 'ro' , 'MarkerSize' ,5)
118

119 figure(3)
120 plot3(pos,vel,cur, 'k.' ,pos0,vel0,cur0, 'bo' ,pospi,velpi,curpi, 'ro' , 'MarkerSize' ,2)
121

122 figure(4)
123 subplot(4,1,1)
124 plot(time3T,vin3T, 'k.' ,time0(1:3),vin0(1:3), 'bo' ,timepi(1:3),vinpi(1:3), 'ro' )
125 subplot(4,1,2)
126 plot(time3T,cur3T, 'k.' ,time0(1:3),cur0(1:3), 'bo' ,timepi(1:3),curpi(1:3), 'ro' )
127 subplot(4,1,3)
128 plot(time3T,pos3T, 'k.' ,time0(1:3),pos0(1:3), 'bo' ,timepi(1:3),pospi(1:3), 'ro' )
129 subplot(4,1,4)
130 plot(time3T,vel3T, 'k.' ,time0(1:3),vel0(1:3), 'bo' ,timepi(1:3),velpi(1:3), 'ro' )
131

132 % Save off data
133 outdat=[vel cur];
134 save( '6100 vel cur nonsym.dat' , '-ascii' , '-double' , 'outdat' )
135

136 outdat=[vel0 cur0];
137 save( '6100 sec0 nonsym.dat' , '-ascii' , '-double' , 'outdat' )
138

139 outdat=[velpi curpi];
140 save( '6100 secpi nonsym.dat' , '-ascii' , '-double' , 'outdat' )
141

142 %% Time evolution
143 outdat=[time3T vin3T];
144 save( '6100 tevo vin.dat' , '-ascii' , '-double' , 'outdat' )
145

146 outdat=[time3T cur3T];
147 save( '6100 tevo cur.dat' , '-ascii' , '-double' , 'outdat' )
148

149 outdat=[time3T pos3T * 1000]; % scale into mm
150 save( '6100 tevo pos.dat' , '-ascii' , '-double' , 'outdat' )
151

152 outdat=[time3T vel3T];
153 save( '6100 tevo vel.dat' , '-ascii' , '-double' , 'outdat' )
154

155 outdat=[time0(1:3) vin0(1:3)];
156 save( '6100 tevo vin sec0.dat' , '-ascii' , '-double' , 'outdat' )
157

158 outdat=[time0(1:3) cur0(1:3)];
159 save( '6100 tevo cur sec0.dat' , '-ascii' , '-double' , 'outdat' )
160

161 outdat=[time0(1:3) pos0(1:3) * 1000]; % scale into mm
162 save( '6100 tevo pos sec0.dat' , '-ascii' , '-double' , 'outdat' )
163

164 outdat=[time0(1:3) vel0(1:3)];
165 save( '6100 tevo vel sec0.dat' , '-ascii' , '-double' , 'outdat' )
166

167 outdat=[timepi(1:3) vinpi(1:3)];
168 save( '6100 tevo vin secpi.dat' , '-ascii' , '-double' , 'outdat' )
169

170 outdat=[timepi(1:3) curpi(1:3)];
171 save( '6100 tevo cur secpi.dat' , '-ascii' , '-double' , 'outdat' )
172

173 outdat=[timepi(1:3) pospi(1:3) * 1000]; % scale into mm
174 save( '6100 tevo pos secpi.dat' , '-ascii' , '-double' , 'outdat' )
175

176 outdat=[timepi(1:3) velpi(1:3)];
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177 save( '6100 tevo vel secpi.dat' , '-ascii' , '-double' , 'outdat' )
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Appendix C

Matlab Simulation Files for Chapter 5

1 %% Bryan Wilcox
2 %% 04142010
3 %% simdriver.m
4 %% script to drive the simulation function to generate numer ical data for
5 %% comparison to experiment.
6 superclean
7 sysid; %load system parameters
8

9 % begfreq=7; % Hz
10 % endfreq=7; % Hz
11 % freqincr=0.05;
12 % freqHz=begfreq:freqincr:endfreq;
13

14 freqHz=[6.25,7,8];
15 freq=freqHz * 2* pi/d.w0; % nondimensionalized
16

17 begV0=[4.5,3.0,1.5];
18 endV0=[5.5,5.5,5.5];
19 V0incr=0.001;
20 maxT=6; % Maximum periodicity to look for in swpsim
21 maxshots=150; % Maximum number of input phases to simulate
22 tol=1e-6;
23

24 %% DELETE the next two lines to run for real
25 % V0incr=1;
26 % maxshots=1; % Maximum number of input phases to simulate
27

28 [junk ind]=max(endV0-begV0);
29

30 savedICup=cell(length(freq),length(begV0(ind):V0inc r:endV0(ind)));
31 savedICdwn=cell(length(freq),length(begV0(ind):V0in cr:endV0(ind)));
32 simphase=cell(1,4); % saving 4 phase sections 0,pi/2,pi,3pi/2, see events.m
33 phaseevents=[1 5 6 7];
34 maxpos=[];
35

36 simconstphaseup=cell(1,length(freq));
37 simmaxposup=cell(1,length(freq));
38 simconstphasedwn=cell(1,length(freq));
39 simmaxposdwn=cell(1,length(freq));
40

41 %% First call to populate Y array
42 tic
43 x0=[0 1e-10 0 0 begV0(1) freq(1) p.zeta]'; % Initial condition
44 [T,Y,TE,YE,IE,x]=sim1per(x0,p,s);
45 toc
46

47 x0=x; % reset IC
48 i=0;
49 while i <length(freq)
50 i=i+1;
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51

52 %% GOING UP
53 simphase=cell(1,4); % saving 4 phase sections 0,pi/2,pi,3pi/4, see events.m
54 maxpos=[];
55 j=0;
56 V0dim=begV0(i):V0incr:endV0(i);
57 V0=V0dim/(d.w0ˆ2 * sqrt(2 * d.m* d.beta1 * d.beta2)); % nondimensionalized
58

59 while j <length(V0)
60 j=j+1;
61 x0=[x0(1:4);V0(j);freq(i);p.zeta];
62 [T,Y,TE,YE,IE,NT,x]=swpsim(x0,maxT,maxshots,tol,p,s ,d);
63 x0=x;
64 for k=1:length(phaseevents)
65 ind=find(IE==phaseevents(k));
66 if phaseevents(k)==1
67 zerophase {k}=[V0(j) * ones(length(ind),1) TE(ind) YE(ind,1:4)];
68 end
69 simphase {k}=[simphase {k}; V0(j) * ones(length(ind),1) TE(ind) YE(ind,1:4)];
70 end
71

72 ind2=find(IE==2); % find points of impact, this a max position
73 ind3=find(IE==3); % find local maxima
74

75 maxpos=[maxpos; V0(j) * ones(length(ind2),1) IE(ind2) TE(ind2) YE(ind2,1:4)];
76 maxpos=[maxpos; V0(j) * ones(length(ind3),1) IE(ind3) TE(ind3) YE(ind3,1:4)];
77

78 savedICup {i,j }=x0;
79

80 %% put up some debug plots
81 tmp1=simphase {1}(:,1) * (d.w0ˆ2 * sqrt(2 * d.m* d.beta1 * d.beta2));
82 tmp2=simphase {1}(:,4) * d.beta2 * d.w0;
83 tmp3=simphase {3}(:,1) * (d.w0ˆ2 * sqrt(2 * d.m* d.beta1 * d.beta2));
84 tmp4=simphase {3}(:,4) * d.beta2 * d.w0;
85 tmp5=simphase {1}(:,1) * (d.w0ˆ2 * sqrt(2 * d.m* d.beta1 * d.beta2));
86 tmp6=simphase {1}(:,5) * sqrt((2 * d.m* d.w0ˆ2 * d.beta2ˆ3)/d.beta1);
87 tmp7=simphase {3}(:,1) * (d.w0ˆ2 * sqrt(2 * d.m* d.beta1 * d.beta2));
88 tmp8=simphase {3}(:,5) * sqrt((2 * d.m* d.w0ˆ2 * d.beta2ˆ3)/d.beta1);
89

90 figure(round(freqHz(i) * 1000))
91 subplot(2,1,1)
92 plot(tmp1,tmp2, 'r.' ,tmp3,tmp4, 'm.' )
93 subplot(2,1,2)
94 plot(tmp5,tmp6, 'r.' ,tmp7,tmp8, 'm.' )
95 drawnow
96 end
97 simconstphaseup {i }=simphase;
98 simmaxposup {i }=maxpos;
99 save

100 %% END GOING UP
101

102

103 %% GOING DOWN
104 simphase=cell(1,4); % saving 4 phase sections 0,pi/2,pi,3pi/4, see events.m
105 maxpos=[];
106 j=0;
107 V0dim=endV0(i):-V0incr:begV0(i);
108 V0=V0dim/(d.w0ˆ2 * sqrt(2 * d.m* d.beta1 * d.beta2)); % nondimensionalized
109

110 while j <length(V0)
111 j=j+1;
112

113 x0=[x0(1:4);V0(j);freq(i);p.zeta];
114 [T,Y,TE,YE,IE,NT,x]=swpsim(x0,maxT,maxshots,tol,p,s ,d);
115 x0=x;
116

117 for k=1:length(phaseevents)
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118 ind=find(IE==phaseevents(k));
119 if phaseevents(k)==1
120 zerophase {k}=[V0(j) * ones(length(ind),1) TE(ind) YE(ind,1:4)];
121 end
122 simphase {k}=[simphase {k}; V0(j) * ones(length(ind),1) TE(ind) YE(ind,1:4)];
123 end
124

125 ind2=find(IE==2); % find points of impact, this a max position
126 ind3=find(IE==3); % find local maxima
127

128 maxpos=[maxpos; V0(j) * ones(length(ind2),1) IE(ind2) TE(ind2) YE(ind2,1:4)];
129 maxpos=[maxpos; V0(j) * ones(length(ind3),1) IE(ind3) TE(ind3) YE(ind3,1:4)];
130

131 savedICdwn {i,j }=x0;
132

133 %% put up some debug plots
134 tmp1=simphase {1}(:,1) * (d.w0ˆ2 * sqrt(2 * d.m* d.beta1 * d.beta2));
135 tmp2=simphase {1}(:,4) * d.beta2 * d.w0;
136 tmp3=simphase {3}(:,1) * (d.w0ˆ2 * sqrt(2 * d.m* d.beta1 * d.beta2));
137 tmp4=simphase {3}(:,4) * d.beta2 * d.w0;
138 tmp5=simphase {1}(:,1) * (d.w0ˆ2 * sqrt(2 * d.m* d.beta1 * d.beta2));
139 tmp6=simphase {1}(:,5) * sqrt((2 * d.m* d.w0ˆ2 * d.beta2ˆ3)/d.beta1);
140 tmp7=simphase {3}(:,1) * (d.w0ˆ2 * sqrt(2 * d.m* d.beta1 * d.beta2));
141 tmp8=simphase {3}(:,5) * sqrt((2 * d.m* d.w0ˆ2 * d.beta2ˆ3)/d.beta1);
142

143 figure(round(freqHz(i) * 1000))
144 subplot(2,1,1)
145 plot(tmp1,tmp2, 'r.' ,tmp3,tmp4, 'm.' )
146 subplot(2,1,2)
147 plot(tmp5,tmp6, 'r.' ,tmp7,tmp8, 'm.' )
148 drawnow
149 end
150 simconstphasedwn {i }=simphase;
151 simmaxposdwn {i }=maxpos;
152 save
153 %% END GOING DOWN
154 end
155

156 % %% Generate dimensional data to compare with experiment
157 % num.time=T/d.w0;
158 % num.pos=Y(:,1) * d.beta2;
159 % num.vel=Y(:,2) * d.beta2 * d.w0;
160 % num.cur=Y(:,3) * sqrt((2 * d.m* d.w0ˆ2 * d.beta2ˆ3)/d.beta1);
161 % figure(1)
162 % clf
163 % plot(num.time,num.pos,'r',[num.time(1) num.time(end )],[d.delta d.delta],'k')
164 % ylabel('Position (m)')

1 function [T,Y,TE,YE,IE,x0]=sim1per(x,p,s)
2

3 % Bryan Wilcox
4 % sim1per.m
5 %% Returns a trajectory from the IC to the phase=0 surface
6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
7 %% This stuff really shouldn't be here I don't think. It shoul d be passed
8 %% as part of a problem definition structure.
9

10 FUNC=@diffeq; % declare the vector field function
11

12 tstart=0;
13 % make sure plenty of sim time to cover max. periodicity
14 tfinal=(s.maxper+1) * pi/x(s.freq);
15 x0=reshape(x,s.dim,1);
16 Px0=eye(s.dim);
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17

18 options=odeset( 'RelTol' ,1e-8, 'AbsTol' ,1e-8, 'Events' ,@events);
19 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20 % save calculations
21 dim2=s.dimˆ2;
22 jacbeg=s.dim+1;
23 jacend=s.dim+dim2;
24

25 T=[];
26 Y=[];
27 TE=[];
28 YE=[];
29 IE=[];
30

31 modind=0;
32 while tstart <tfinal
33 [t,y,te,ye,ie]=ode45(FUNC,[tstart tfinal],[x0;reshap e(Px0',dim2,1)],options,p);
34 tstart=t( end);
35

36 T=[T;t];
37 Y=[Y;y];
38 TE=[TE;te];
39 YE=[YE;ye];
40 IE=[IE;ie];
41

42 x0=y( end ,1:s.dim)';
43 dphidx=reshape(y( end,jacbeg:jacend),s.dim,s.dim)';
44

45 if ¬isempty(ie)
46 if ie( end)==1
47

48 dh=[0,0,0,-1,0,0,0]; % jacobian of the event function
49 x0(4)=x0(4)-2 * pi; % mod. phase
50 % get vector field, post mapping
51 temp=FUNC(te( end ),[x0;reshape(eye(s.dim),dim2,1)],p);
52 f=temp(1:s.dim); % isolate state vector field
53 gx=eye(s.dim); % jacobian of of event map
54 % project coord jacobian onto event surface
55 Px0=gx * (eye(s.dim)-f * dh/(dh * f)) * dphidx;
56 % give a frendly bump to avoid false positive on restart
57 x0=x0+1e-12 * f;
58

59 % Break when phase=0 surface reached. To get one full period
60 % this implictly assumes that the initial condition was on (o r
61 % very near) the phase=0 surface
62 break
63

64 % IMPACT event
65 elseif ie( end )==2
66 %display('contact')
67 dh=[-1,0,0,0,0,0,0];
68 x0(2)=-p.e * x0(2);
69 temp=FUNC(te( end ),[x0;reshape(eye(s.dim),dim2,1)],p);
70 f=temp(1:s.dim);
71 gx=[1,0,0,0,0,0,0;
72 0,-p.e,0,0,0,0,0;
73 0,0,1,0,0,0,0;
74 0,0,0,1,0,0,0;
75 0,0,0,0,1,0,0;
76 0,0,0,0,0,1,0
77 0,0,0,0,0,0,1];
78 Px0=gx * (eye(s.dim)-f * dh/(dh * f)) * dphidx;
79 x0=x0+1e-12 * f;
80

81 % local MAX position (velocity goes (+) to (-)
82 elseif ie( end )==3
83 dh=[0,1,0,0,0,0,0];
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84 temp=FUNC(te( end ),[x0;reshape(eye(s.dim),dim2,1)],p);
85 f=temp(1:s.dim);
86 Px0=(eye(s.dim)-f * dh/(dh * f)) * dphidx;
87 x0=x0+1e-12 * f;
88

89 % local MIN postion (velocity goes (-) to (+)
90 elseif ie( end )==4
91 dh=[0,-1,0,0,0,0,0];
92 temp=FUNC(te( end ),[x0;reshape(eye(s.dim),dim2,1)],p);
93 f=temp(1:s.dim);
94 Px0=(eye(s.dim)-f * dh/(dh * f)) * dphidx;
95 x0=x0+1e-12 * f;
96

97 elseif ie( end )==5
98 % phase=pi/2
99 dh=[0,0,0,-1,0,0,0]; % jacobian of the event function

100 % get vector field, post mapping
101 temp=FUNC(te( end ),[x0;reshape(eye(s.dim),dim2,1)],p);
102 f=temp(1:s.dim); % isolate state vector field
103 gx=eye(s.dim); % jacobian of of event map
104 % project coord jacobian onto event surface
105 Px0=gx * (eye(s.dim)-f * dh/(dh * f)) * dphidx;
106 % give a frendly bump to avoid false positive on restart
107 x0=x0+1e-12 * f;
108

109 elseif ie( end )==6
110 % phase=pi
111 dh=[0,0,0,-1,0,0,0]; % jacobian of the event function
112 % get vector field, post mapping
113 temp=FUNC(te( end ),[x0;reshape(eye(s.dim),dim2,1)],p);
114 f=temp(1:s.dim); % isolate state vector field
115 gx=eye(s.dim); % jacobian of of event map
116 % project coord jacobian onto event surface
117 Px0=gx * (eye(s.dim)-f * dh/(dh * f)) * dphidx;
118 % give a frendly bump to avoid false positive on restart
119 x0=x0+1e-12 * f;
120

121 elseif ie( end )==7
122 %phase=3* pi/4
123 dh=[0,0,0,-1,0,0,0]; % jacobian of the event function
124 % get vector field, post mapping
125 temp=FUNC(te( end ),[x0;reshape(eye(s.dim),dim2,1)],p);
126 f=temp(1:s.dim); % isolate state vector field
127 gx=eye(s.dim); % jacobian of of event map
128 % project coord jacobian onto event surface
129 Px0=gx * (eye(s.dim)-f * dh/(dh * f)) * dphidx;
130 % give a frendly bump to avoid false positive on restart
131 x0=x0+1e-12 * f;
132 else
133 error( 'shouldn''t be possible' );
134 end
135 end
136 end

1 function [Trtn,Yrtn,TErtn,YErtn,IErtn,NT,x]=swpsim(x,maxT,ma xshots,tol,p,s,d)
2

3 % Bryan Wilcox
4 % swpsim.m
5

6 % give this a starting pt, the max periodicity to look for, max number
7 % of input periods, maxshots, to simulate before giving up, c onvergence
8 % tolerance it either returns a periodic orbit indicating th e
9 % periodicity, or it returns the last 100 periods of simulati on

10 T=[];Y=[];TE=[];YE=[];IE=[];
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11

12 % simulate with sim1per.m to get a starting point on the phase =0
13 % surface
14 % figure(1)
15 % clf
16 % hold on
17 [t,y,te,ye,ie,x0]=sim1per(x,p,s);
18 %% append new data to saved data arrays
19 % plot(t,y(:,2))
20 % drawnow
21 T=[T;t];
22 Y=[Y;y];
23 TE=[TE;te];
24 YE=[YE;ye];
25 IE=[IE;ie];
26

27 x=x0; % reset IC
28

29 shots=0;
30 while shots ≤maxshots
31 shots=shots+1;
32 [t,y,te,ye,ie,x0]=sim1per(x,p,s);
33 % plot(t,y(:,2))
34 % drawnow
35 T=[T;t];
36 Y=[Y;y];
37 TE=[TE;te];
38 YE=[YE;ye];
39 IE=[IE;ie];
40 x=x0;
41 NT=0;
42 ind=find(IE==1);
43 len=length(ind);
44 % start at end of index of phase events and work backward until max
45 % periodicity is reached or run out of data to work with
46 while NT<maxT && NT<(len-1)
47 NT=NT+1;
48 convtest=norm(YE(ind( end ),1:4)-YE(ind( end-NT),1:4));
49 if convtest <tol
50 % Orbit with periodicity NT found. Return to invoking functi on
51 % Send back trajectory information for NT periods.
52

53 indrtn=find(T==TE(ind( end-NT)),1)+1;
54 % find time stamp exactly equal to the time of the event.
55 % advance one index to obtain the point that has had the phase
56 % reset to zero and had the slight bump added to get it off the
57 % event surface
58 % safety check to make sure the phase is very close to zero
59 if Y(indrtn,4) > 1e-10
60 error( 'phase should be zero and is not: periodic' )
61 end
62

63 % if length(indrtn) >1
64 % error('too many indices returned by find for rtn trajector y')
65 % %indrtn=indtemp(2);
66 % end
67 display( 'periodic' )
68 Trtn=T(indrtn: end);
69 Yrtn=Y(indrtn: end,:);
70 TErtn=TE(ind( end -NT)+1: end);
71 YErtn=YE(ind( end -NT)+1: end,:);
72 IErtn=IE(ind( end -NT)+1: end);
73 return
74 end
75 end
76 end
77
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78 %% Did not find a periodic orbit up to maxT within the specifie d number
79 %% of tries, return last 100 periods or the entire trajectory , whichever is
80 %% less
81 display( 'Not periodic' )
82 NT=0; % set to zero to indicates no periodic orbit found
83 ind=find(IE==1);
84

85 if length(ind) >100
86 indrtn=find(T==TE(ind( end-100)),1)+1;
87 if Y(indrtn,4) > 1e-10
88 error( 'phase should be zero and is not: not periodic' )
89 end
90 Trtn=T(indrtn: end );
91 Yrtn=Y(indrtn: end ,:);
92 TErtn=TE(ind( end -100): end);
93 YErtn=YE(ind( end -100): end,:);
94 IErtn=IE(ind( end -100): end);
95 else
96 Trtn=T;
97 Yrtn=Y;
98 TErtn=TE;
99 YErtn=YE;

100 IErtn=IE;
101 end

1 %% Untitled.m
2 %% 04142010
3 %% General purpose script for messing around with simulatio ns. Useful for
4 %% finding starting points for continuation runs.
5

6 %% Useful initial conditions
7 x0=[0 1e-10 0 0 in.V in.freq p.zeta]'; % Initial condition
8 x0=[-0.328205614790196 -0.008008223178345 0.522467536 665541 ...
9 0.454682523675993 in.V in.freq p.zeta]'; % pregrazing

10

11 sysid; %load system parameters
12

13 numperiods=1;
14 % Inputs
15 in.Hz = 6.3; % Input frequency in Hz
16 in.freq = 2 * pi * in.Hz/d.w0; % ND input circular frequency
17 in.volt = 4; % Dimensional input voltage amplitude
18 %in.volt = 3.55; % Dimensional input voltage amplitude
19 in.V = in.volt/(d.w0ˆ2 * sqrt(2 * d.m* d.beta1 * d.beta2)); % ND input voltage
20

21 %x0=[Y(end,1:s.coords),in.V,in.freq,p.zeta];
22 tic
23 [T,Y,TE,YE,IE]=simulate(x0,p,s,d);
24 %% Generate dimensional data to compare with experiment
25 num.time=T/d.w0;
26 num.pos=Y(:,1) * d.beta2;
27 num.vel=Y(:,2) * d.beta2 * d.w0;
28 num.cur=Y(:,3) * sqrt((2 * d.m* d.w0ˆ2 * d.beta2ˆ3)/d.beta1);
29 figure(1)
30 clf
31 plot(num.time,num.pos, 'r' ,[num.time(1) num.time( end)],[d.delta d.delta], 'k' )
32 ylabel( 'Position (m)' )
33

34 figure(2)
35 clf
36 plot(num.vel( end-5000: end ),num.cur( end-5000: end ), 'r' )
37 xlabel( 'Velocity (m/s)' )
38 ylabel( 'Current (A)' )
39 toc
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40

41 % Prep for continuation
42 getNper;

1 %% sysid.m
2 %% calculation of non-dim params based on dim values in paper
3 %% d-struct holds dimensional device parameters
4 %% p-struct holds nondim parameter values for use in simulat ion
5 %% s-struct holds simulation specific information
6

7 %% From system identification
8 LDSsens=0.0791868; % [in/V] LDS sensitivity
9 d.d=2.382 * LDSsens* 0.0254; % [V]- >[in]- >[m]

10 d.delta=0.55 * LDSsens* 0.0254; % [in]- >[m]
11 d.e=0.866; % averaged from experiment, data from JCND paper
12 d.m=0.6462; % [kg]
13 d.zeta=0.01626; % [] From free response
14 d.w0=95.94; % [rad/s]
15 d.k=d.w0ˆ2 * d.m; % [N/m]
16 d.beta1=1.902e-5; % [H m]
17 d.beta2=1.631e-3; % [m]
18 d.L l=10.55e-3; % [H]
19 d.R=1.390; % [Ohm]
20

21 %% Calculate nondim params
22 p.zeta=d.zeta;
23 p.alpha1=d.L l * d.beta2/d.beta1;
24 p.alpha2=d.R * d.beta2/(d.beta1 * d.w0);
25 p.d=d.d/d.beta2;
26 p.delta=d.delta/d.beta2;
27 p.e=d.e;
28

29 %% Set simulation params
30 % s.dim=6;
31 % s.coords=4;
32 % s.contvar=5;
33 % s.maxNRiter=5;
34 % s.maxper=6;
35 % s.NRtol=1e-8;
36 % s.NRmaxcondnum=1e20;
37

38 s.dim=7; % dimension of the system of ode's, number of state variables
39 s.coords=4; % number of state var's corresponding to physical coordinat es
40 s.freq=6; % index of frequency in the state array
41 s.contvar=7; % index of continuation variable
42 s.maxNRiter=5; % maximum Newton Raphson iterations
43 s.maxper=10; % maximum periodicity to look for
44 s.NRtol=1e-8; % convergence criteria for Newton Raphson iterations
45 s.NRmaxcondnum=1e20; % Maximum condition number for Newton Raphson routine

1 function [T,Y,TE,YE,IE]=simulate(x,p,s,d)
2 %% simulate.m
3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 %% This stuff really shouldn't be here I don't think. It shoul d be passed
5 %% as part of a problem definition structure.
6

7 FUNC=@diffeq; % declare the vector field function
8

9 tstart=0;
10 tfinal=5 * d.w0;
11 x0=reshape(x,s.dim,1);
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12 Px0=eye(s.dim);
13

14 options=odeset( 'RelTol' ,1e-8, 'AbsTol' ,1e-8, 'Events' ,@events);
15 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
16 % save calculations
17 dim2=s.dimˆ2;
18 jacbeg=s.dim+1;
19 jacend=s.dim+dim2;
20

21 T=[];
22 Y=[];
23 TE=[];
24 YE=[];
25 IE=[];
26

27 while tstart <tfinal
28 [t,y,te,ye,ie]=ode45(FUNC,[tstart tfinal], ...
29 [x0;reshape(Px0',dim2,1)],options,p);
30 tstart=t( end);
31

32 T=[T;t];
33 Y=[Y;y];
34 TE=[TE;te];
35 YE=[YE;ye];
36 IE=[IE;ie];
37

38 x0=y( end ,1:s.dim)';
39 dphidx=reshape(y( end,jacbeg:jacend),s.dim,s.dim)';
40

41 if ¬isempty(ie)
42

43 if ie( end)==1
44 % PHASE=0 event
45 dh=[0,0,0,-1,0,0,0]; % jacobian of the event function
46 x0(4)=x0(4)-2 * pi; % mod. phase
47 % get vector field, post mapping
48 temp=FUNC(te( end ),[x0;reshape(eye(s.dim),dim2,1)],p);
49 f=temp(1:s.dim); % isolate state vector field
50 gx=eye(s.dim); % jacobian of of event map
51 % project coord jacobian onto event surface
52 Px0=gx * (eye(s.dim)-f * dh/(dh * f)) * dphidx;
53 % give a frendly bump to avoid false positive on restart
54 x0=x0+1e-12 * f;
55

56 elseif ie( end )==2
57 % IMPACT event
58 %display('contact')
59 dh=[-1,0,0,0,0,0,0];
60 x0(2)=-p.e * x0(2);
61 temp=FUNC(te( end ),[x0;reshape(eye(s.dim),dim2,1)],p);
62 f=temp(1:s.dim);
63 gx=[1,0,0,0,0,0,0;
64 0,-p.e,0,0,0,0,0;
65 0,0,1,0,0,0,0;
66 0,0,0,1,0,0,0;
67 0,0,0,0,1,0,0;
68 0,0,0,0,0,1,0
69 0,0,0,0,0,0,1];
70 Px0=gx * (eye(s.dim)-f * dh/(dh * f)) * dphidx;
71 x0=x0+1e-12 * f;
72

73 elseif ie( end )==3
74 % local MAX position (velocity goes (+) to (-)
75 dh=[0,1,0,0,0,0,0];
76 temp=FUNC(te( end ),[x0;reshape(eye(s.dim),dim2,1)],p);
77 f=temp(1:s.dim);
78 Px0=(eye(s.dim)-f * dh/(dh * f)) * dphidx;
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79 x0=x0+1e-12 * f;
80

81 elseif ie( end )==4
82 % local MIN postion (velocity goes (-) to (+)
83 dh=[0,-1,0,0,0,0,0];
84 temp=FUNC(te( end ),[x0;reshape(eye(s.dim),dim2,1)],p);
85 f=temp(1:s.dim);
86 Px0=(eye(s.dim)-f * dh/(dh * f)) * dphidx;
87 x0=x0+1e-12 * f;
88

89 elseif ie( end )==5
90 % phase=pi/2
91 dh=[0,0,0,-1,0,0,0]; % jacobian of the event function
92 % get vector field, post mapping
93 temp=FUNC(te( end ),[x0;reshape(eye(s.dim),dim2,1)],p);
94 f=temp(1:s.dim); % isolate state vector field
95 gx=eye(s.dim); % jacobian of of event map
96 % project coord jacobian onto event surface
97 Px0=gx * (eye(s.dim)-f * dh/(dh * f)) * dphidx;
98 % give a frendly bump to avoid false positive on restart
99 x0=x0+1e-12 * f;

100

101 elseif ie( end )==6
102 % phase=pi
103 dh=[0,0,0,-1,0,0,0]; % jacobian of the event function
104 % get vector field, post mapping
105 temp=FUNC(te( end ),[x0;reshape(eye(s.dim),dim2,1)],p);
106 f=temp(1:s.dim); % isolate state vector field
107 gx=eye(s.dim); % jacobian of of event map
108 % project coord jacobian onto event surface
109 Px0=gx * (eye(s.dim)-f * dh/(dh * f)) * dphidx;
110 % give a frendly bump to avoid false positive on restart
111 x0=x0+1e-12 * f;
112

113 elseif ie( end )==7
114 %phase=3* pi/4
115 dh=[0,0,0,-1,0,0,0]; % jacobian of the event function
116 % get vector field, post mapping
117 temp=FUNC(te( end ),[x0;reshape(eye(s.dim),dim2,1)],p);
118 f=temp(1:s.dim); % isolate state vector field
119 gx=eye(s.dim); % jacobian of of event map
120 % project coord jacobian onto event surface
121 Px0=gx * (eye(s.dim)-f * dh/(dh * f)) * dphidx;
122 % give a frendly bump to avoid false positive on restart
123 x0=x0+1e-12 * f;
124

125 else
126 error( 'shouldn''t be possible' );
127 end
128 end
129 end

1 function dydt = diffeq(t,y,p)
2 %% diffeq.m
3

4 x1=y(1); % position
5 x2=y(2); % velocity
6 x3=y(3); % current
7 x4=y(4); % input phase
8 x5=y(5); % input amplitude
9 x6=y(6); % input frequency

10 x7=y(7); % damping (zeta)
11

12 dim=7;
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13 f=zeros(dim,1);
14

15 f(1)=x2;
16 f(2)=-x1-2 * x7 * x2+x3ˆ2/(1+p.d-x1)ˆ2;
17 f(3)=(x5 * sin(x4)-(p.alpha2+x2/(1+p.d-x1)ˆ2) * x3)/(p.alpha1+1/(1+p.d-x1));
18 f(4)=x6;
19

20 df=zeros(dim,dim);
21

22 df(1,2)=1;
23 df(2,1)=-1+2 * x3ˆ2/(1+p.d-x1)ˆ3;
24 df(2,2)=-2 * x7;
25 df(2,3)=2 * x3/(1+p.d-x1)ˆ2;
26 df(2,7)=-2 * x2;
27 df(3,1)=((p.alpha2 * (1+p.d-x1)ˆ2-(1+2 * p.alpha1 * (1+p.d-x1)) * x2) * x3-(1+ ...
28 p.d-x1)ˆ2 * x5* sin(x4))/((1+p.alpha1 * (1+p.d-x1))ˆ2 * (1+p.d-x1)ˆ2);
29 df(3,2)=-(x3/((1+p.alpha1 * (1+p.d-x1)) * (1+p.d-x1)));
30 df(3,3)=-((p.alpha2+x2/(1+p.d-x1)ˆ2)/(p.alpha1+1/(1 +p.d-x1)));
31 df(3,4)=(x5 * cos(x4))/(p.alpha1+1/(1+p.d-x1));
32 df(3,5)=sin(x4)/(p.alpha1+1/(1+p.d-x1));
33 df(4,6)=1;
34

35

36 dydt=zeros(dim+dimˆ2,1);
37

38 for i=1:dim
39 dydt(i)=f(i);
40 end
41 for i=1:dim
42 for j=1:dim
43 sum=0;
44 for k=1:dim
45 sum=sum+df(i,k) * y(dim+(k-1) * dim+j);
46 end
47 dydt(dim+(i-1) * dim+j)=sum;
48 end
49 end

1 function [value,isterminal,direction] = events(t,y,p)
2 %% events.m
3 x1=y(1); % position
4 x2=y(2); % velocity
5 x3=y(3); % current
6 x4=y(4); % input phase
7 x5=y(5); % input amplitude
8 x6=y(6); % input frequency
9 x7=y(7); % damping (zeta)

10

11

12 value = [2 * pi-x4,(p.delta-x1),x2,-x2,pi/2-x4,pi-x4,3 * pi/2-x4];
13 isterminal = [1,1,1,1,1,1,1];
14 direction = [-1,-1,-1,-1,-1,-1,-1];

1 %% getNper.m
2

3 x=Y( end ,1:s.dim);
4

5 [TNper,YNper,TENper,YENper,IENper,x0]=simNper(x,num periods,p,s);
6

7 clear Nper
8 % Nper struct in dimensional form
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9 Nper.time=TNper/d.w0;
10 Nper.pos=YNper(:,1) * d.beta2;
11 Nper.vel=YNper(:,2) * d.beta2 * d.w0;
12 Nper.cur=YNper(:,3) * sqrt((2 * d.m* d.w0ˆ2 * d.beta2ˆ3)/d.beta1);
13

14 Nper.time=TNper;
15 Nper.pos=YNper(:,1);
16 Nper.vel=YNper(:,2);
17 Nper.cur=YNper(:,3);
18

19 figure(20)
20 plot3(Nper.pos,Nper.vel,Nper.cur, 'r' ,Nper.pos(1),Nper.vel(1), ...
21 Nper.cur(1), 'or' ,Nper.pos( end ),Nper.vel( end),Nper.cur( end), 'og' )
22 xlabel( 'Position' )
23 ylabel( 'Velocity' ) % (m/s)')
24 zlabel( 'Current' ) % (A)')

1 function [T,Y,TE,YE,IE,x0]=simNper(x,numperiods,p,s)
2 %% simNper.m
3 %% Returns the trajectory for the first full numperiod's of t he
4 %% input starting from the first time the phase is modded afte r the initial
5 %% call to the function.
6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
7 %% This stuff really shouldn't be here I don't think. It shoul d be passed
8 %% as part of a problem definition structure.
9

10 FUNC=@diffeq; % declare the vector field function
11

12 tstart=0;
13 % make sure plenty of sim time to cover max. periodicity
14 tfinal=(s.maxper+1) * pi/x(s.freq);
15 x0=reshape(x,s.dim,1);
16 Px0=eye(s.dim);
17

18 options=odeset( 'RelTol' ,1e-8, 'AbsTol' ,1e-8, 'Events' ,@events);
19 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20 % save calculations
21 dim2=s.dimˆ2;
22 jacbeg=s.dim+1;
23 jacend=s.dim+dim2;
24

25 T=[];
26 Y=[];
27 TE=[];
28 YE=[];
29 IE=[];
30

31 modind=0;
32 while tstart <tfinal
33 [t,y,te,ye,ie]=ode45(FUNC,[tstart tfinal],[x0;reshap e(Px0',dim2,1)],options,p);
34 tstart=t( end);
35

36 T=[T;t];
37 Y=[Y;y];
38 TE=[TE;te];
39 YE=[YE;ye];
40 IE=[IE;ie];
41

42 x0=y( end ,1:s.dim)';
43 dphidx=reshape(y( end,jacbeg:jacend),s.dim,s.dim)';
44

45 if ¬isempty(ie)
46 if ie( end)==1
47
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48 dh=[0,0,0,-1,0,0,0]; % jacobian of the event function
49 x0(4)=x0(4)-2 * pi; % mod. phase
50 % get vector field, post mapping
51 temp=FUNC(te( end ),[x0;reshape(eye(s.dim),dim2,1)],p);
52 f=temp(1:s.dim); % isolate state vector field
53 gx=eye(s.dim); % jacobian of of event map
54 % project coord jacobian onto event surface
55 Px0=gx * (eye(s.dim)-f * dh/(dh * f)) * dphidx;
56 % give a frendly bump to avoid false positive on restart
57 x0=x0+1e-12 * f;
58

59 if modind == numperiods
60 break
61 end
62 % Clean out saved trajectory info if first mod, only happens
63 % once
64 if modind == 0
65 T=[];Y=[];TE=[];YE=[];IE=[];
66 end
67 modind=modind+1;
68

69 % IMPACT event
70 elseif ie( end )==2
71 %display('contact')
72 dh=[-1,0,0,0,0,0,0];
73 x0(2)=-p.e * x0(2);
74 temp=FUNC(te( end ),[x0;reshape(eye(s.dim),dim2,1)],p);
75 f=temp(1:s.dim);
76 gx=[1,0,0,0,0,0,0;
77 0,-p.e,0,0,0,0,0;
78 0,0,1,0,0,0,0;
79 0,0,0,1,0,0,0;
80 0,0,0,0,1,0,0;
81 0,0,0,0,0,1,0
82 0,0,0,0,0,0,1];
83 Px0=gx * (eye(s.dim)-f * dh/(dh * f)) * dphidx;
84 x0=x0+1e-12 * f;
85

86 % local MAX position (velocity goes (+) to (-)
87 elseif ie( end )==3
88 dh=[0,1,0,0,0,0,0];
89 temp=FUNC(te( end ),[x0;reshape(eye(s.dim),dim2,1)],p);
90 f=temp(1:s.dim);
91 Px0=(eye(s.dim)-f * dh/(dh * f)) * dphidx;
92 x0=x0+1e-12 * f;
93

94 % local MIN postion (velocity goes (-) to (+)
95 elseif ie( end )==4
96 dh=[0,-1,0,0,0,0,0];
97 temp=FUNC(te( end ),[x0;reshape(eye(s.dim),dim2,1)],p);
98 f=temp(1:s.dim);
99 Px0=(eye(s.dim)-f * dh/(dh * f)) * dphidx;

100 x0=x0+1e-12 * f;
101

102 elseif ie( end )==5
103 % phase=pi/2
104 dh=[0,0,0,-1,0,0,0]; % jacobian of the event function
105 % get vector field, post mapping
106 temp=FUNC(te( end ),[x0;reshape(eye(s.dim),dim2,1)],p);
107 f=temp(1:s.dim); % isolate state vector field
108 gx=eye(s.dim); % jacobian of of event map
109 % project coord jacobian onto event surface
110 Px0=gx * (eye(s.dim)-f * dh/(dh * f)) * dphidx;
111 % give a frendly bump to avoid false positive on restart
112 x0=x0+1e-12 * f;
113

114 elseif ie( end )==6
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115 % phase=pi
116 dh=[0,0,0,-1,0,0,0]; % jacobian of the event function
117 % get vector field, post mapping
118 temp=FUNC(te( end ),[x0;reshape(eye(s.dim),dim2,1)],p);
119 f=temp(1:s.dim); % isolate state vector field
120 gx=eye(s.dim); % jacobian of of event map
121 % project coord jacobian onto event surface
122 Px0=gx * (eye(s.dim)-f * dh/(dh * f)) * dphidx;
123 % give a frendly bump to avoid false positive on restart
124 x0=x0+1e-12 * f;
125

126 elseif ie( end )==7
127 %phase=3* pi/4
128 dh=[0,0,0,-1,0,0,0]; % jacobian of the event function
129 % get vector field, post mapping
130 temp=FUNC(te( end ),[x0;reshape(eye(s.dim),dim2,1)],p);
131 f=temp(1:s.dim); % isolate state vector field
132 gx=eye(s.dim); % jacobian of of event map
133 % project coord jacobian onto event surface
134 Px0=gx * (eye(s.dim)-f * dh/(dh * f)) * dphidx;
135 % give a frendly bump to avoid false positive on restart
136 x0=x0+1e-12 * f;
137 else
138 error( 'shouldn''t be possible' );
139 end
140 end
141 end

1 %% run.m
2

3 sysid; % load system parameters
4 numperiods=1; % input periodicity of the targeted trajectory
5

6 % Project along all dimensions except those staying constan t. 'C' will
7 % have s.dim rows corresponding to the length of the state vec tor and
8 % will have one more column than the number of states correspo nding to
9 % varying coordinates (not padded parameters)

10

11 C= [1,0,0,0,0;
12 0,1,0,0,0;
13 0,0,1,0,0;
14 0,0,0,1,0;
15 0,0,0,0,0;
16 0,0,0,0,0;
17 0,0,0,0,1];
18

19 h=-0.0001;
20 hmax=0.005;
21

22 [dFdx,eigs]=shootjac(x0,numperiods,p,s);
23

24 X=x0';
25 EIGS=eigs';
26 nv=null(dFdx);
27

28 ind=0;
29 while abs(h) >1e-8 %&& x0(5) <10
30 % project out to the new guess (predictor step)
31 xs=x0+h * C* nv;
32 % Pass to NewtonRaphson to do predictor-corrector
33 % return exiting state and number of iterations
34 [x,n]=NewtonRaphson(@shootfun,@shootjac,x0,xs,nv,C, numperiods,p,s);
35

36 % if too many iterations, decrease stepsize
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37 if n>s.maxNRiter
38 h=h/2
39 else
40 % NR succeeded, try to increase (decrease) stepsize towards max
41 if h>0
42 h=min(hmax,h * 1.5)
43 else
44 h=max(-hmax,h * 1.5)
45 end
46

47 [tempT,tempY,tempTE,tempYE,tempIE]=simNper(x,numper iods,p,s);
48 % Simulate one full period (can probably be combined with one of
49 % the shooting calls)
50 ind3=find(tempIE==3);
51

52 [tempYE(ind3( end),1) * d.beta2,x(s.contvar)]
53 % print peak position and last succesful cont. var. value
54 clear tempT tempY tempTE tempYE tempIE ind3
55 x0=x; % reset initial condition
56 X=[X;x0']; % append to saved lists of states
57

58 % Get jacobian at new IC
59 [dFdx,eigs]=shootjac(x0,numperiods,p,s);
60 % append eigenvalues
61 EIGS=[EIGS;eigs'];
62 % find new nullspace for next predictor step
63 nv=null(dFdx);
64

65 % make sure to get the null vector corresponding to continuat ion in the
66 % positive direction of the continuation (state) variable t he
67 % sign of h will determine direction for continuation
68 if nv( end)<0 % last element corresponds to cont. var.
69 nv=-nv;
70 end
71 end
72 end

1 function [dFdx,EIGS]=shootjac(x,numperiods,p,s)
2 % shootjac.m
3

4 % Heavily modified from some of Harry's original code to sepa rate
5 % functionality between jacobian call and function call... maybe put back
6 % together at some point
7

8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
9 %% This stuff really shouldn't be here I don't think. It shoul d be passed

10 %% as part of a problem definition structure.
11

12 FUNC=@diffeq; % declare the vector field function
13

14 tstart=0;
15 % make sure plenty of sim time to cover max. periodicity
16 tfinal=(s.maxper+1) * pi/x(s.freq);
17 x0=reshape(x,s.dim,1);
18 Px0=eye(s.dim);
19

20 options=odeset( 'RelTol' ,1e-8, 'AbsTol' ,1e-8, 'Events' ,@events);
21 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
22 % save calculations
23 dim2=s.dimˆ2;
24 jacbeg=s.dim+1;
25 jacend=s.dim+dim2;
26

27 numperind=0;
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28

29 while tstart <tfinal
30 [t,y,te,ye,ie]=ode45(FUNC,[tstart tfinal],[x0;reshap e(Px0',dim2,1)],options,p);
31 tstart=t( end);
32

33 x0=y( end ,1:s.dim)';
34 dphidx=reshape(y( end,jacbeg:jacend),s.dim,s.dim)';
35 if ¬isempty(ie)
36 % PHASE event
37 if ie( end)==1
38

39 numperind=numperind+1;
40

41 dh=[0,0,0,-1,0,0,0]; % jacobian of the event function
42 x0(4)=x0(4)-2 * pi; % mod. phase
43 % get vector field, post mapping
44 temp=FUNC(te( end ),[x0;reshape(eye(s.dim),dim2,1)],p);
45 f=temp(1:s.dim); % isolate state vector field
46 gx=eye(s.dim); % jacobian of of event map
47 % project coord jacobian onto event surface
48 Px0=gx * (eye(s.dim)-f * dh/(dh * f)) * dphidx;
49 % give a frendly bump to avoid false positive on restart
50 x0=x0+1e-12 * f;
51

52 % Check for numperiods to shoot
53 if numperind==numperiods
54 break
55 end
56

57 % IMPACT event
58 elseif ie( end )==2
59 display( 'contact' )
60 dh=[-1,0,0,0,0,0,0];
61 x0(2)=-p.e * x0(2);
62 temp=FUNC(te( end ),[x0;reshape(eye(s.dim),dim2,1)],p);
63 f=temp(1:s.dim);
64 gx=[1,0,0,0,0,0,0;
65 0,-p.e,0,0,0,0,0;
66 0,0,1,0,0,0,0;
67 0,0,0,1,0,0,0;
68 0,0,0,0,1,0,0;
69 0,0,0,0,0,1,0
70 0,0,0,0,0,0,1];
71 Px0=gx * (eye(s.dim)-f * dh/(dh * f)) * dphidx;
72 x0=x0+1e-12 * f;
73

74 % local MAX position (velocity goes (+) to (-)
75 elseif ie( end )==3
76 dh=[0,1,0,0,0,0,0];
77 temp=FUNC(te( end ),[x0;reshape(eye(s.dim),dim2,1)],p);
78 f=temp(1:s.dim);
79 Px0=(eye(s.dim)-f * dh/(dh * f)) * dphidx;
80 x0=x0+1e-12 * f;
81

82 % local MIN postion (velocity goes (-) to (+)
83 elseif ie( end )==4
84 dh=[0,-1,0,0,0,0,0];
85 temp=FUNC(te( end ),[x0;reshape(eye(s.dim),dim2,1)],p);
86 f=temp(1:s.dim);
87 Px0=(eye(s.dim)-f * dh/(dh * f)) * dphidx;
88 x0=x0+1e-12 * f;
89 else
90 error( 'shouldn''t be possible' );
91 end
92 end
93 end
94
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95 temp=Px0-eye(s.dim);
96 dFdx=[temp(1:s.coords,1:s.coords),temp(1:s.coords,s .contvar)];
97 EIGS=eig(Px0);

1 function DIFF=shootfun(x,numperiods,p,s)
2 % shootfun.m
3

4 % Heavily modified from some of Harry's original code to sepa rate
5 % functionality between jacobian call and function call... maybe put back
6 % together at some point
7

8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
9 %% This stuff really shouldn't be here I don't think. It shoul d be passed

10 %% as part of a problem definition structure.
11

12 FUNC=@diffeq; % declare the vector field function
13

14 tstart=0;
15 % make sure plenty of sim time to cover max. periodicity
16 tfinal=(s.maxper+1) * pi/x(s.freq);
17 x0=reshape(x,s.dim,1);
18 Px0=eye(s.dim);
19

20 options=odeset( 'RelTol' ,1e-8, 'AbsTol' ,1e-8, 'Events' ,@events);
21 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
22 % save calculations
23 dim2=s.dimˆ2;
24 jacbeg=s.dim+1;
25 jacend=s.dim+dim2;
26

27 numperind=0;
28

29 while tstart <tfinal
30 [t,y,te,ye,ie]=ode45(FUNC,[tstart tfinal],[x0;reshap e(Px0',dim2,1)],options,p);
31 tstart=t( end);
32

33 x0=y( end ,1:s.dim)';
34 dphidx=reshape(y( end,jacbeg:jacend),s.dim,s.dim)';
35 if ¬isempty(ie)
36 % PHASE event
37 if ie( end)==1
38

39 numperind=numperind+1;
40

41 dh=[0,0,0,-1,0,0,0]; % jacobian of the event function
42 x0(4)=x0(4)-2 * pi; % mod. phase
43 % get vector field, post mapping
44 temp=FUNC(te( end ),[x0;reshape(eye(s.dim),dim2,1)],p);
45 f=temp(1:s.dim); % isolate state vector field
46 gx=eye(s.dim); % jacobian of of event map
47 % project coord jacobian onto event surface
48 Px0=gx * (eye(s.dim)-f * dh/(dh * f)) * dphidx;
49 % give a frendly bump to avoid false positive on restart
50 x0=x0+1e-12 * f;
51

52 % Check for numperiods to shoot
53 if numperind==numperiods
54 break
55 end
56

57 % IMPACT event
58 elseif ie( end )==2
59 display( 'contact' )
60 dh=[-1,0,0,0,0,0,0];
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61 x0(2)=-p.e * x0(2);
62 temp=FUNC(te( end ),[x0;reshape(eye(s.dim),dim2,1)],p);
63 f=temp(1:s.dim);
64 gx=[1,0,0,0,0,0,0;
65 0,-p.e,0,0,0,0,0;
66 0,0,1,0,0,0,0;
67 0,0,0,1,0,0,0;
68 0,0,0,0,1,0,0;
69 0,0,0,0,0,1,0
70 0,0,0,0,0,0,1];
71 Px0=gx * (eye(s.dim)-f * dh/(dh * f)) * dphidx;
72 x0=x0+1e-12 * f;
73

74 % local MAX position (velocity goes (+) to (-)
75 elseif ie( end )==3
76 dh=[0,1,0,0,0,0,0];
77 temp=FUNC(te( end ),[x0;reshape(eye(s.dim),dim2,1)],p);
78 f=temp(1:s.dim);
79 Px0=(eye(s.dim)-f * dh/(dh * f)) * dphidx;
80 x0=x0+1e-12 * f;
81

82 % local MIN postion (velocity goes (-) to (+)
83 elseif ie( end )==4
84 dh=[0,-1,0,0,0,0,0];
85 temp=FUNC(te( end ),[x0;reshape(eye(s.dim),dim2,1)],p);
86 f=temp(1:s.dim);
87 Px0=(eye(s.dim)-f * dh/(dh * f)) * dphidx;
88 x0=x0+1e-12 * f;
89 else
90 error( 'shouldn''t be possible' );
91 end
92 end
93 end
94

95 temp=x0-x;
96 DIFF=temp(1:s.coords);

1 function [x,n]=NewtonRaphson(shootfun,shootjac,x0,xs,nv,C,nu mperiods, p,s)
2 % NewtonRaphson.m
3

4 % shootfun and shootjac are function handles to the respecti ve shooting
5 % routines
6

7 x=x0;
8 F=[shootfun(x,numperiods,p,s);nv' * C' * (x-xs)];
9 n=0;

10 res=norm(F);
11 while res >s.NRtol && n ≤s.maxNRiter
12

13 dFdx=[shootjac(x,numperiods,p,s);nv'];
14 if cond(dFdx) <s.NRmaxcondnum
15 x=x-C * inv(dFdx) * F;
16 else
17 warning( 'condition number of dFdx too large' )
18 n=s.maxNRiter+1; % return one larger iteration to tell invoking
19 % function that NR did not converge
20 return
21 end
22 F=[shootfun(x,numperiods,p,s);nv' * C' * (x-xs)];
23 n=n+1;
24 res=norm(F);
25

26 end
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Appendix D

Fabrication recipe for MEMS devices
in Chapter 6

D.1 Materials list:� SPR220 photoresist� AP8000 adhesion promotor� ∆77 SU-8 thermal cure epoxy (custom mix from Bruce Flachsbart)� Double-sided polished 300 micron thick Si wafer <100> P/Boron, 100 mm dia, 1-5 Ohm-cm (wafer 1)� Single-sided polished 500 micron thick Si wafer (wafer 2)� Two chrome on soda-lime glass photolithography masks as shown below

D.2 Process:

D.2.1 Wafer 1 prep for bond

1. Degrease wafer (Acetone, IPA, DI water, IPA, N2 dry)

2. Dehydration bake at 120◦C for 2 min

3. Spincoat backside with AP8000

4. Bakeout 110◦C, 1 min

5. Spincoat backside with SPR220 (recipe #3, 3000 rpm, 30 sec)

6. Softbake 110◦C, 1min

7. Expose backside with mask 1, 20 sec

8. Develop using straight 327 developer, approx. 1 min
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9. DI quench then N2 blow dry

10. Inspect

11. Bake at 110◦C for 2 min with heat shield

12. Etch in STS for 6 min. using recipe MANTRA2 (about 50 µm etch depth)

13. Strip PR in 1165 preheated to 120◦C, approx. 15min, ultrasound for 5min

14. Degrease wafer

15. Spincoat topside with SPR220 (recipe #3, 3000 rpm, 30 sec)

16. Softbake 110◦C, 1 min

17. Bottom side alignment with mask 2, expose 20 sec

18. Develop using straight 327

19. DI quench at least 1 min, then N2 blow dry

20. Inspect and check features

21. Hardbake at 110◦C for 2 min with heat shield

22. Sputter Al, 2 min 300W

23. Strip PR (liftoff) in 1165 in ultrasound

D.2.2 Wafer 2 preparation and assembly bond

1. Spin coat bottom SSP wafer with 3 micron SU-8

2. Vacuum anneal at 60◦C for 2 hours

3. Place bottom wafer in bonder and stack top wafer making sure to align the flats perfectly the first

time. Bond is almost instant.

4. Place coverglass on stack, close bonder and run bonding program NOTETK put bonding program

parameters in here
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D.2.3 Final photolithography and thru-etch

1. Spincoat topside with AP8000

2. Bakeout 110◦C, 1 min

3. Spincoat topside with SPR220 (recipe #3, 3000 rpm, 30 sec)

4. Softbake 110◦C, 1 min

5. Top side alignment with mask 2, expose 20 sec

6. Develop using straight 327

7. DI quench at least 1 min, then N2 blow dry

8. Inspect and check features

9. Hardbake at 110◦C for 2 min with heat shield

10. Thru etch wafer 1 using recipe MANTRA2 in STS, 38 min

11. Strip PR in 1165 preheated to 120◦C, approx. 15 min, ultrasound for 5 min

12. Transfer to acetone bath and rock to remove air bubbles

13. Transfer to methanol bath and rock to remove air bubbles

14. Remove from methanol and air dry

15. Conformal sputter aluminum, (20 min, 300 watts)
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D.3 Mask drawings

Figure D.1: Drawing of mask 1. See text in Chapter 6 for a detailed description of the devices.
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Figure D.2: Drawing of mask 2. See text in Chapter 6 for a detailed description of the devices.
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