Asymmetric Parallel 3D Thinning Scheme and Algorithms Based on Isthmuses
Michel Couprie, Gilles Bertrand

To cite this version:
Michel Couprie, Gilles Bertrand. Asymmetric Parallel 3D Thinning Scheme and Algorithms Based on Isthmuses. 2015. <hal-01104691>

HAL Id: hal-01104691
https://hal.archives-ouvertes.fr/hal-01104691
Submitted on 19 Jan 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Asymmetric Parallel 3D Thinning Scheme and Algorithms Based on Isthmuses

Michel Couprie¹,∗∗, Gilles Bertrand¹

¹Université Paris-Est, LIGM, Équipe A3SI, ESIEE Paris, France

ABSTRACT

Critical kernels constitute a general framework settled in the context of abstract complexes for the study of parallel thinning in any dimension. We take advantage of the properties of this framework, to propose a generic thinning scheme for obtaining “thin” skeletons from objects made of voxels. From this scheme, we derive algorithms that produce curve or surface skeletons, based on the notion of 1D or 2D isthmus. We compare our new curve thinning algorithm with all the published algorithms of the same kind, based on quantitative criteria. Our experiments show that our algorithm largely outperforms the other ones with respect to noise sensitivity. Furthermore, we show how to slightly modify our algorithms to include a filtering parameter that controls effectively the pruning of skeletons, based on the notion of isthmus persistence.

1. Introduction

The usefulness of skeletons in many applications of pattern recognition, computer vision, shape understanding etc. is mostly due to their property of topology preservation, and preservation of meaningful geometrical features. Here, we are interested in the skeletonization of objects that are made of voxels (unit cubes) in a regular 3D grid, i.e., in a binary 3D image. In this context, topology preservation is usually obtained through the iteration of thinning steps, provided that each step does not alter the topological characteristics. In sequential thinning algorithms, each step consists of detecting and choosing a so-called simple voxel, that may be characterized locally (see Kong and Rosenfeld (1989); Saha et al. (1994); Couprie and Bertrand (2009)), and removing it. Such a process usually involves many arbitrary choices, and the final result may depend, sometimes heavily, on any of these choices. This is why parallel thinning algorithms are generally preferred to sequential ones. However, removing a set of simple voxels at each thinning step, in parallel, may alter topology. The framework of critical kernels, introduced by one of the authors in Bertrand (2007), provides a condition under which we have the guarantee that a subset of voxels can be removed without changing topology. This condition is, to our knowledge, the most general one among the related works. Furthermore, critical kernels indeed provide a method to design new parallel thinning algorithms, in which the property of topology preservation is built-in, and in which any kind of constraint may be imposed (see Bertrand and Couprie (2008, 2014)).

Among the different parallel thinning algorithms that have been proposed in the literature, we can distinguish between symmetric and asymmetric algorithms. Symmetric algorithms Ma (1995); Ma and Sonka (1996); Manzanera et al. (2002); Lohou and Bertrand (2007); Palágyi (2008) (also known as fully parallel algorithms) produce skeletons that are invariant under 90 degrees rotations. They consist of the iteration of thinning steps that are made of 1) the identification and selection of a set of voxels that satisfy certain conditions, independently of orientation or position in space, and 2) the removal, in parallel, of all selected voxels from the object. Symmetric algorithms, on the positive side, produce a result that is uniquely defined: no arbitrary choice is needed. On the negative side, they generally produce thick skeletons, see Fig. 1.

Asymmetric skeletons, on the opposite, are preferred when thinner skeletons are required. The price to pay is a certain amount of arbitrary choices to be made. In all existing asymmetric parallel thinning algorithms, each thinning step is divided into a certain number of substeps. In the so-called directional algorithms Tsao and Fu (1981, 1982); Gong and Bertrand (1990); Palágyi and Kuba (1998); Palágyi and Kuba (1999a,b); Lohou and Bertrand (2004, 2005); Raynal and Couprie (2011); Németh et al. (2011), each substep is devoted to the detection
and the deletion of voxels belonging to one “side” of the object: all the voxels considered during the substep have, for example, their south neighbor inside the object and their north neighbor outside the object. The order in which these directional substeps are executed is set beforehand, arbitrarily. Subgrid (or subfield) algorithms (see Bertrand and Aktouf (1995); Saha et al. (1997); Ma et al. (2002a,b); Németh et al. (2010a,b)) form the second category of asymmetric parallel thinning algorithms. There, each substep is devoted to the detection and the deletion of voxels that belong to a certain subgrid, for example, all voxels that have even coordinates. Considered subgrids must form a partition of the grid. Again, the order in which subgrids are considered is arbitrary.

Subgrid algorithms are not often used in practice because they produce artifacts, that is, waving skeleton branches where the original object is smooth or straight. Directional algorithms are the most popular ones. Most of them are implemented through sets of masks, one per substep. A set of masks is used to characterize voxels that must be kept during a given substep, in order to 1) preserve topology, and 2) prevent curves or surfaces to disappear. Thus, topological conditions and geometrical conditions cannot be easily distinguished, and the slightest modification of any mask involves the need to make a new proof of the topological correctness.

Our approach is radically different. Instead of considering single voxels, we consider cliques. A clique is a set of mutually adjacent voxels. Then, we identify the critical kernel of the object, according to some definitions, which is a union of cliques. The main theorem of the critical kernels framework Bertrand (2007); Bertrand and Couprie (2014) states that we can remove in parallel any subset of the object, provided that we keep at least one voxel of every clique that constitutes the critical kernel, and this guarantees topology preservation. Here, as we try to obtain thin skeletons, our goal is to keep, whenever possible, exactly one voxel in every such clique. This leads us to propose a generic parallel asymmetric thinning scheme, that may be enriched by adding any sort of geometrical constraint. From our generic scheme, we easily derive, by adding such geometrical constraints, specific algorithms that produce curve or surface skeletons. To this aim, we define in this paper the notions of 1D and 2D isthmuses that capture relevant geometrical information: a 1D (resp. 2D) isthmus is a voxel that is “locally like a piece of curve” (resp. surface).

Our article is organized as follows. The first three sections contain a minimal set of basic notions about voxel complexes, simple voxels and critical kernels, respectively, which are necessary to make the article self-contained. In section 5, we introduce our new generic asymmetric thinning scheme, and we provide some examples of ultimate skeletons obtained by using it. Section 6 is devoted to introducing and illustrating our new isthmus-based parallel algorithms for computing curve, surface and curve-surface skeletons. Then in section 7, we describe the experiments that we made for comparing our curve thinning algorithm with all existing parallel curve thinning methods of the same kind. We show that our method ranks first with respect to robustness. Finally, we show in section 8 how to use the notion of isthmus persistence in order to effectively filter the spurious skeleton parts due to noise. Persistence is a criterion, easy to compute in our framework, that allows us to dynamically detect or ignore certain isthmuses.

2. Voxel Complexes

In this section, we give some basic definitions for voxel complexes, see also Kovalevsky (1989); Kong and Rosenfeld (1989).

Let \(Z \) be the set of integers. We consider the families of sets \(\mathbb{F}^0_0, \mathbb{F}^1_1 \), such that \(\mathbb{F}^1_0 = \{a \mid a \in Z\}, \mathbb{F}^1_1 = \{(a, a + 1) \mid a \in Z\} \). A subset \(f \) of \(\mathbb{Z}^n \), \(n \geq 2 \), that is the Cartesian product of exactly \(d \) elements of \(\mathbb{F}^1_0 \) and \((n - d)\) elements of \(\mathbb{F}^1_1 \) is called a face or an \(d \)-face of \(\mathbb{Z}^n \), \(d \) is the dimension of \(f \). In the illustrations of this paper, a 3-face (resp. 2-face, 1-face, 0-face) is depicted by a cube (resp. square, segment, dot), see e.g. Fig. 4.

A 3-face of \(\mathbb{Z}^3 \) is also called a voxel. A finite set that is composed solely of voxels is called a (voxel) complex (see Fig. 2). We denote by \(\mathbb{V}^3 \) the collection of all voxel complexes.

We say that two voxels \(x, y \) are adjacent if \(x \cap y \neq \emptyset \). We write \(\mathcal{N}(x) \) for the set of all voxels that are adjacent to a voxel \(x \), \(\mathcal{N}(x) \) is the neighborhood of \(x \). Note that, for each voxel \(x \), we have \(x \in \mathcal{N}(x) \). We set \(\mathcal{N}^*(x) = \mathcal{N}(x) \setminus \{x\} \).

Let \(d \in \{0, 1, 2\} \). We say that two voxels \(x, y \) are \(d \)-neighbors if \(x \cap y \) is a \(d \)-face. Thus, two distinct voxels \(x \) and \(y \) are adjacent if and only if they are \(d \)-neighbors for some \(d \in \{0, 1, 2\} \).

Let \(X \in \mathbb{V}^3 \). We say that \(X \) is connected if, for any \(x, y \in X \), there exists a sequence \((x_0, \ldots, x_k) \) of voxels in \(X \) such that \(x_0 = x, x_k = y \), and \(x_i \) is adjacent to \(x_{i-1}, i = 1, \ldots, k \).

3. Simple Voxels

Intuitively a voxel \(x \) of a complex \(X \) is called a simple voxel if its removal from \(X \) “does not change the topology of \(X \)”. This
Fig. 2. (a) A complex X which is made of 8 voxels, (b) A complex $Y \subseteq X$, which is a thinning of X.

A notion may be formalized with the help of the following recursive definition introduced in Bertrand and Couprie (2014), see also Kong (1997); Bertrand (1999) for other recursive approaches for simplicity.

Definition 1. Let $X \in \mathbb{V}^3$. We say that X is reducible if either:
i) X is composed of a single voxel; or
ii) there exists $x \in X$ such that $N^*(x) \cap X$ is reducible and $X \setminus \{x\}$ is reducible.

Definition 2. Let $X \in \mathbb{V}^3$. A voxel $x \in X$ is simple for X if $N^*(x) \cap X$ is reducible. If $x \in X$ is simple for X, we say that $X \setminus \{x\}$ is an elementary thinning of X.

Thus, a complex $X \in \mathbb{V}^3$ is reducible if and only if it is possible to reduce X to a single voxel by iteratively removing simple voxels. Observe that a reducible complex is necessarily non-empty and connected.

In Fig. 2 (a), the voxel a is simple for X ($N^*(a) \cap X$ is made of a single voxel), the voxel d is not simple for X ($N^*(d) \cap X$ is not connected), the voxel h is simple for X ($N^*(h) \cap X$ is made of two voxels that are 2-neighbors and is reducible).

In Bertrand and Couprie (2014), it was shown that the above definition of a simple voxel is equivalent to classical characterizations based on connectivity properties of the voxel’s neighborhood Bertrand and Malandain (1994); Bertrand (1994); Saha et al. (1994); Kong (1995); Couprie and Bertrand (2009). An equivalence was also established with a definition based on the operation of collapse Whitehead (1939); Giblin (1981), this operation is a discrete analogue of a continuous deformation (a homotopy), see also Kong (1997); Bertrand (2007); Couprie and Bertrand (2009).

The notion of a simple voxel allows one to define thinnings of a complex, see an illustration Fig. 2 (b).

Let $X, Y \in \mathbb{V}^3$. We say that Y is a thinning of X or that X is reducible to Y, if there exists a sequence ($X_0, ..., X_k$) such that $X_0 = X$, $X_k = Y$, and X_i is an elementary thinning of X_{i-1}, $i = 1, ..., k$.

Thus, a complex X is reducible if and only if it is reducible to a single voxel.

4. Critical Kernels

Let X be a complex in \mathbb{V}^3. It is well known that, if we remove simultaneously (in parallel) simple voxels from X, we may “change the topology” of the original object X. For example, the two voxels f and g are simple for the object X depicted in Fig. 2 (a). Nevertheless $X \setminus \{f, g\}$ has two connected components whereas X is connected.

In this section, we recall a framework for thinning in parallel discrete objects with the warranty that we do not alter the topology of these objects Bertrand (2007); Bertrand and Couprie (2008, 2014). This method is valid for complexes of arbitrary dimension.

Let $d \in \{0, 1, 2, 3\}$ and let $C \in \mathbb{V}^3$. We say that C is a d-clique or a clique if $\cap\{x \in C\}$ is a d-face. If C is a d-clique, d is the rank of C.

If C is made of solely two distinct voxels x and y, we note that C is a d-clique if and only if x and y are d-neighbors, with $d \in \{0, 1, 2\}$.

Let $X \in \mathbb{V}^3$ and let $Y \subseteq X$ be a clique. We say that C is essential for X if we have $C = D$ whenever D is a clique such that:
i) $C \subseteq D \subseteq X$; and
ii) $\cap\{x \in C\} = \cap\{x \in D\}$.

Observe that any complex C that is made of a single voxel is a clique (a 3-clique). Furthermore any voxel of a complex X constitutes a clique that is essential for X.

In Fig. 2 (a), (f, g) is a 2-clique that is essential for X, (b, d) is a 0-clique that is not essential for X, (b, c, d) is a 0-clique essential for X, (e, f, g) is a 1-clique essential for X.

Definition 3. Let $S \in \mathbb{V}^3$. The \mathcal{K}-neighborhood of S, written $\mathcal{K}(S)$, is the set made of all voxels that are adjacent to each voxel in S. We set $\mathcal{K}(S) = \mathcal{K}(S) \setminus S$.

We note that we have $\mathcal{K}(S) = N(x)$ whenever S is made of a single voxel x. We also observe that we have $S \subseteq \mathcal{K}(S)$ whenever S is a clique.

Definition 4. Let $X \in \mathbb{V}^3$ and let C be a clique that is essential for X. We say that the clique C is regular for X if $\mathcal{K}^*(C) \cap X$ is reducible. We say that C is critical for X if C is not regular for X.

Thus, if C is a clique that is made of a single voxel x, then C is regular for X if and only if x is simple for X.

In Fig. 2 (a), the cliques $C_1 = \{b, c, d\}$, $C_2 = \{f, g\}$, and $C_3 = \{f, h\}$ are essential for X. We have $\mathcal{K}^*(C_1) \cap X = \emptyset$, $\mathcal{K}^*(C_2) \cap X = \{e, h\}$, and $\mathcal{K}^*(C_3) \cap X = \{g\}$. Thus, C_1 and C_2 are critical for X, while C_3 is regular for X.

The following result is a consequence of a general theorem that holds for complexes of arbitrary dimensions Bertrand (2007); Bertrand and Couprie (2014).

Theorem 5. Let $X \in \mathbb{V}^3$ and let $Y \subseteq X$. The complex Y is a thinning of X if any clique that is critical for X contains at least one voxel of Y.

See an illustration in Fig. 2(a) and (b) where the complexes X and Y satisfy the condition of theorem 5. For example, the voxel d is a non-simple voxel for X, thus $\{d\}$ is a critical 3-clique for X, and d belongs to Y. Also, Y contains voxels in the critical cliques $C_1 = \{b, c, d\}$, $C_2 = \{f, g\}$, and the other ones.
5. A generic 3D parallel and asymmetric thinning scheme

Our goal is to define a subset Y of a voxel complex X that is guaranteed to include at least one voxel of each clique that is critical for X. By theorem 5, this subset Y will be a thinning of X.

Let us consider the complex X depicted Fig. 3 (a). There are precisely three cliques that are critical for X:
- the 0-clique $C_1 = \{b, c\}$ (we have $K^*(C_1) \cap X = \emptyset$);
- the 1-clique $C_2 = \{a, b\}$ (we have $K^*(C_2) \cap X = \emptyset$);
- the 2-clique $C_3 = \{b\}$ (the voxel b is not simple).

Suppose that, in order to build a complex Y that fulfills the condition of theorem 5, we select arbitrarily one voxel of each clique that is critical for X. Following such a strategy, we could select c for C_1, a for C_2, and b for C_3. Thus, we would have $Y = X$, no voxel would be removed from X. Now, we observe that the complex $Y' = \{b\}$ satisfies the condition of theorem 5. This complex is obtained by considering first the 3-cliques before selecting a voxel in the 2-, 1-, or 0 cliques.

The complex X of Fig. 3 (b) provides another example of such a situation. There are precisely three cliques that are critical for X:
- the 1-clique $C_1 = \{e, f, g, h\}$ (we have $K^*(C_1) \cap X = \emptyset$);
- the 2-clique $C_2 = \{e, d, g\}$ (we have $K^*(C_2) \cap X = \emptyset$);
- the 3-clique $C_3 = \{e, g\}$ ($K^*(C_3) \cap X$ is not connected).

If we select arbitrarily one voxel of each critical clique, we could obtain the complex $Y = \{f, d, g\}$. On the other hand, if we consider the 2-cliques before the 1-cliques, we obtain either $Y' = \{e\}$ or $Y'' = \{g\}$. In both cases the result is better in the sense that we remove more voxels from X.

This discussion motivates the introduction of the following 3D asymmetric and parallel thinning scheme AsymThinningScheme (see also Bertrand and Coupliou (2008, 2009, 2014) for other thinning schemes and properties of critical kernels). The main features of this scheme are the following:
- Taking into account the observations made through the two previous examples, critical cliques are considered according to their decreasing ranks (step 4). Thus, each iteration is made of four sub-iterations (steps 4-8). Voxels that have been previously selected are stored in a set Y (step 8). At a given sub-iteration, we consider voxels only in critical cliques included in $X \setminus Y$ (step 6).
- Select is a function from V^3 to V^3, the set of all voxels. More precisely, Select associates, to each set S of voxels, a unique voxel x of S. We refer to such a function as a selection function. This function allows us to select a voxel in a given critical clique (step 7). A possible choice is to take for Select(S), the first pixel of S in the lexicographic order of the voxels coordinates.
- In order to compute curve or surface skeletons, we have to keep other voxels than the ones that are necessary for the preservation of the topology of the object X. In the scheme, the set K corresponds to a set of features that we want to be preserved by a thinning algorithm (thus, we have $K \subseteq X$). This set K, called constraint set, is updated dynamically at step 10. Skel$_X$ is a function from X on $\{True, False\}$ that allows us to keep some skeletal voxels of X, e.g., some voxels belonging to parts of X that are surfaces or curves. For example, if we want to obtain curve skeletons, a frequently employed solution is to set Skel$_X(x) = True$ whenever x is a so-called end voxel of X: an end voxel is a voxel that has exactly one neighbor inside X.

Better propositions for such a function will be introduced in section 6.

By construction, at each iteration, the complex X at step 9 satisfies the condition of theorem 5. Thus, the result of the scheme is a thinning of the original complex X. Observe also that, except step 4, each step of the scheme may be computed in parallel.

Algorithm 1: AsymThinningScheme(X, Skel_X)

Data: $X \in V^3$, Skel_X is a function from X on $\{True, False\}$
Result: X
1 $K := \emptyset$;
2 repeat
3 $Y := K$;
4 for $d \leftarrow 3$ to 0 do
5 $Z := \emptyset$;
6 foreach d-clique $C \subseteq X \setminus Y$ that is critical for X do
7 $Z := Z \cup (\text{Select}(C))$;
8 $Y := Y \cup Z$;
9 $X := Y$;
10 $K := K \cup \{x\}$;
11 until stability;

Fig. 4 provides an illustration of the scheme AsymThinningScheme. Let us consider the complex X depicted in (a). We suppose in this example that we do not keep any skeletal voxel, i.e., for any $x \in X$, we set Skel$_X(x) = False$. The traces of the cliques that are critical for X are represented in (b), the trace of a clique C is the face $f = \cap \{x \in C\}$. Thus, the set of the cliques that are critical for X is precisely composed of six 0-cliques, two 1-cliques, three 2-cliques, and one 3-clique. In (c) the four different sub-iterations of the first iteration of the scheme are illustrated (steps 4-8):
- when $d = 3$, only one clique is considered, the dark grey voxel is selected whatever the selection function;
- when $d = 2$, all the three 2-cliques are considered since none of these cliques contains the above voxel. Voxels that could be selected by a selection function are depicted in medium grey;
- when $d = 1$, only one clique is considered, a voxel that could be selected is depicted in light grey;
- when $d = 0$, no clique is considered since each of the critical cliques contains the above voxel.
0-cliques contains at least one voxel that has been previously selected. After these sub-iterations, we obtain the complex depicted in (d). The figures (e) and (f) illustrate the second iteration, at the end of this iteration the complex is reduced to a single voxel. In (g) and (h) two other possible selections at the first iteration are given.

Fig. 5 shows another illustration, on bigger objects, of AsymThinningScheme. Here also, for any \(x \in X \), we have \(\text{Skel}_X(x) = False \) (no skeletal voxel). The result is called an ultimate asymmetric skeleton.

6. Isthmus-based asymmetric thinning

In this section, we show how to use our generic scheme AsymThinningScheme in order to get a procedure that computes either curve or surface skeletons. This thinning procedure preserves a constraint set \(K \) that is made of “isthmuses”.

Intuitively, a voxel \(x \) of an object \(X \) is said to be a 1-isthmus (resp. a 2-isthmus) if the neighborhood of \(x \) corresponds - up to a thinning - to the one of a point belonging to a curve (resp. a surface) Bertrand and Couprie (2014).

We say that \(X \in \mathbb{V}^3 \) is a 0-surface if \(X \) is precisely made of two voxels \(x \) and \(y \) such that \(x \cap y = \emptyset \).

We say that \(X \in \mathbb{V}^3 \) is a 1-surface (or a simple closed curve) if:

i) \(X \) is connected; and ii) For each \(x \in X \), \(N^*(x) \cap X \) is a 0-surface.

We say that \(x \) is a 1-isthmus for \(X \) if \(N^*(x) \cap X \) is reducible to a 1-surface.

We say that \(x \) is a 2-isthmus for \(X \) if \(N^*(x) \cap X \) is reducible to a 0-surface.

We say that \(x \) is a 2+-isthmus for \(X \) if \(x \) is a 1-isthmus or a 2-isthmus for \(X \).

See Fig. 6 for an illustration of the notion of \(k \)-isthmus.

Our aim is to thin an object, while preserving a constraint set \(K \) that is made of voxels that are detected as \(k \)-isthmuses during the thinning process. We obtain curve skeletons with \(k = 1 \), surface skeletons with \(k = 2 \), and surface/curve skeletons with \(k = 2^+ \). These three kinds of skeletons may be obtained by using AsymThinningScheme, with the function \(\text{Skel}_X \) defined as follows:

\[
\text{Skel}_X(x) = \begin{cases}
\text{True} & \text{if } x \text{ is a } k\text{-isthmus for } X, \\
\text{False} & \text{otherwise},
\end{cases}
\]

with \(k \) being set to 1, 2, or \(2^+ \).

Observe that there is the possibility that a voxel belongs to a \(k \)-isthmus at a given step of the algorithm, but not at further steps. This is why previously detected isthmuses are stored (see lines 10-11 of AsymThinningScheme).

In Fig. 7, we show a curvilinear skeleton and a surface/curvilinear skeleton obtained by our method from the same object.
7. Experiments, results and discussion

In these experiments, we used a database of 30 threedimensional voxel objects. These objects were obtained by converting into voxel sets some 3D models freely available on the internet (mainly from the NTU 3D database, see http://3d.csie.ntu.edu.tw/~dynamic/benchmark). Our test set can be downloaded at http://www.esiee.fr/~info/ck/3DSkAsymTestSet.tgz. We chose these objects because they all may be well described by a curve skeleton, the branches of which can be intuitively related to object parts (for example, the skeleton of a coarse human body has typically 5 branches, one for the head and one for each limb). For each object, we manually indicated an “ideal” number of branches. Unnecessary branches are essentially due to noise. Thus, a simple and effective criterion for assessing the robustness of a skeletonization method is to count the number of extra branches, or equivalently in our case, the number of extra curve extremities.

In order to compare methods, we mainly use the indicator
\[E(X, M) = |c(X, M) - c_i(X)|, \]
where \(c(X, M) \) stands for the number of curve extremities for the result obtained from \(X \) after application of method \(M \), and \(c_i(X) \) stands for the ideal number of curve extremities to expect with the object \(X \). Note that, for all objects in our database and all tested methods, the difference was positive, in other words the methods produced more skeleton branches than expected, or just the right number. We define \(E(M) \) as the average, for all objects of the database, of \(E(X, M) \). The lower the value of \(E(M) \), the better the method \(M \) with respect to robustness.

Another useful indicator is the reconstruction ratio, defined as
\[R(X, M) = 100 \times \frac{\|v(Re(Sk(X, M), X))\|}{\|v(X)\|}, \]
where \(Sk(X, M) \) is the skeleton obtained from object \(X \) using method \(M \), \(Re(S, X) \) stands for the reconstruction from \(S \) (union of balls using the voxels of \(S \) as centers and the values of the distance map of \(X \) as radii), and \(V(X) \) stands for the number of voxels of \(X \). We define \(R(M) \) as the average, for all objects of the database, of \(R(X, M) \). Of course, there is a trade-off between indicators \(R \) and \(E \), as a noisy skeleton with many spurious branches will likely yield a high reconstruction rate. But for skeletons with comparable values of \(E \), a higher \(R \) indicates a better quality (better centering and/or longer skeleton branches).

The goal of asymmetric thinning is to provide “thin” skeletons. This means in particular that the resulting skeletons should contain no simple voxel, apart from the curve extremities. However, due to their parallel nature, most thinning algorithms considered in this study may leave some extra simple voxels. We define our third indicator as
\[P(X, M) = 100 \times \frac{\|v(\text{Si}(Si(Sk(X, M))))\|}{\|v(Sk(X, M))\|}, \]
where \(Si(S) \) denotes the set of simple voxels of \(S \) that are not curve extremities. We define \(P(M) \) as the average, for all objects of the database, of \(P(X, M) \). The lower the value of \(P(M) \), the better the method \(M \) with respect to thinness.

To make a fair comparison, we consider only parallel asymmetric thinning methods that produce curve skeletons of voxel objects, and that have no parameter. In particular, we do not consider the variants of the algorithms of Németh et al. (2010b) that involve the checking of extremity voxel neighborhoods of increasing size, as this neighborhood size is indeed a parameter.

First of all, it is interesting to look at the results of different methods for a same object (see Fig. 8 and Fig. 9). We notice in particular that some methods, like Tsao and Fu (1981) and Palágyi and Kuba (1998), are not sufficiently powerful to produce results that may be interpreted as curve skeletons (see also the ratio of remaining simple points in table 1). For the sake of space and readability, we selected only 12 methods among the 21 that took place in our experiments. See table 1 for the complete quantitative results.
Fig. 8. Curve skeletons of a same object obtained through different methods: (a) Tsao and Fu (1981), (b) Tsao and Fu (1982), (c) Palágyi and Kuba (1998), hybrid, (d) Palágyi and Kuba (1999a), (e) Palágyi and Kuba (1999b), (f) Ma and Wan (2000), (g) Ma et al. (2002b), (h) Ma et al. (2002a), (i) Lohou and Bertrand (2005), (j) Németh et al. (2010a), 2 subgrids, (k) Németh et al. (2010b), 8 subgrids, (l) Our new method based on isthmuses.

Fig. 9. Idem Fig. 8.
Table 1. Results of our quantitative comparison (see text). The term “dir” indicates a directional algorithm, “sgr” a subgrid algorithm, and “hybrid” an algorithm that alternates directional steps and subgrid steps. Our method AsymThinningScheme was used, either with a function Skelk that detects 1-isthmuses (1), or with a function that detects extremity voxels (2).

<table>
<thead>
<tr>
<th>Method M</th>
<th>$E(M)$</th>
<th>$R(M)$</th>
<th>$P(M)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tsao and Fu (1981), 6 dir</td>
<td>177.2</td>
<td>89.9</td>
<td>29.07</td>
</tr>
<tr>
<td>Tsao and Fu (1982), 6 dir</td>
<td>37.0</td>
<td>75.1</td>
<td>5.66</td>
</tr>
<tr>
<td>Gong and Bertrand (1990), 6 dir</td>
<td>134.1</td>
<td>92.5</td>
<td>28.15</td>
</tr>
<tr>
<td>Bertrand and Aktouf (1995), 8 sgr</td>
<td>15.6</td>
<td>72.6</td>
<td>0.13</td>
</tr>
<tr>
<td>Saha et al. (1997), 8 sgr</td>
<td>117.4</td>
<td>80.1</td>
<td>0.29</td>
</tr>
<tr>
<td>Palágyi and Kuba (1998), 6 dir</td>
<td>43.2</td>
<td>78.7</td>
<td>1.96</td>
</tr>
<tr>
<td>Palágyi and Kuba (1998), hybrid</td>
<td>25.7</td>
<td>78.0</td>
<td>8.28</td>
</tr>
<tr>
<td>Palágyi and Kuba (1999a), 8 dir</td>
<td>8.97</td>
<td>60.8</td>
<td>0.23</td>
</tr>
<tr>
<td>Palágyi and Kuba (1999b), 12 dir</td>
<td>9.2</td>
<td>51.3</td>
<td>0.72</td>
</tr>
<tr>
<td>Ma and Wan (2000), 6 dir</td>
<td>115.9</td>
<td>82.9</td>
<td>10.40</td>
</tr>
<tr>
<td>Ma et al. (2002b), 4 sgr</td>
<td>380.1</td>
<td>88.0</td>
<td>0.18</td>
</tr>
<tr>
<td>Ma et al. (2002a), 2 sgr</td>
<td>51.5</td>
<td>79.7</td>
<td>0.43</td>
</tr>
<tr>
<td>Lohou and Bertrand (2004), 12 dir</td>
<td>21.0</td>
<td>55.8</td>
<td>0.13</td>
</tr>
<tr>
<td>Lohou and Bertrand (2005), 6 dir</td>
<td>11.3</td>
<td>71.5</td>
<td>0.003</td>
</tr>
<tr>
<td>Németh et al. (2010a), 2 sgr</td>
<td>67.9</td>
<td>81.3</td>
<td>38.32</td>
</tr>
<tr>
<td>Németh et al. (2010b), 4 sgr</td>
<td>38.2</td>
<td>75.6</td>
<td>0.0</td>
</tr>
<tr>
<td>Németh et al. (2010b), 8 sgr</td>
<td>31.7</td>
<td>74.7</td>
<td>0.0</td>
</tr>
<tr>
<td>Németh et al. (2011), 6 dir</td>
<td>10.1</td>
<td>71.5</td>
<td>5.59</td>
</tr>
<tr>
<td>Raynal and Couprie (2011), 6 dir</td>
<td>12.9</td>
<td>74.3</td>
<td>1.56</td>
</tr>
<tr>
<td>AsymThinningScheme(1)</td>
<td>5.5</td>
<td>68.5</td>
<td>0.05</td>
</tr>
<tr>
<td>AsymThinningScheme(2)</td>
<td>6.7</td>
<td>68.8</td>
<td>0.0</td>
</tr>
</tbody>
</table>

This illustrates the difficulty of designing a method that keeps enough voxels in order to preserve topology, and in the same time, deletes a sufficient number of voxels in order to produce thin curve skeletons. This difficulty is indeed high when these two opposite constraints are not clearly distinguished. The strength of our approach lies in a complete separation of these constraints.

The example of Fig. 8 illustrates very well the sensitivity to contour noise of the methods. The original object is a solid cylinder bent in order to form a knot. Thus, its curve skeleton should ideally be a simple closed curve. Any extra branch of the skeleton must undoubtedly be considered as spurious. As can be seen in the figure, only our method produces a skeleton of this object that is totally free of spurious branches.

Table 1 gathers the quantitative results of our experiments, that allows us to compare the 19 other existing methods of the same class with our algorithm. We see that our method outperforms all existing methods with respect to the robustness criterion. This remains true if we use extremity voxels (variant 2) instead of 1-isthmuses (variant 1) as skeletal voxels. We note also that, compared with the two best methods after ours, namely Palágyi and Kuba’s directional methods with 8 and 12 substeps, our algorithms have a better reconstruction ratio $R(M)$ and thinness factor $P(M)$.

8. Isthmus persistence and skeleton filtering

It is well known that the skeletonization process is highly sensitive to noise, and this is a major issue in practical applications. The origin of this problem lies in the following fact: the transformation that associates its skeleton to a shape is not continuous. In practice, it means that if a small perturbation is applied on the contour of an object, then a big skeleton part may appear or disappear. See for example Attali et al. (2009) for a survey of selected studies on the stability of skeletons.

In consequence, many authors have proposed methods that aim at eliminating, or “pruning”, spurious skeleton branches or parts. These methods are essentially based on a criterion that permits to distinguish between points or parts of the skeleton, those that are due to noise from those that are robust to small perturbations.

Among the different criteria that were proposed in the literature, the notion of isthmus persistence introduced in Liu et al. (2010) (see also Chaussard (2010)) yields a simple yet efficient method to filter skeletons during the thinning process. Originally, this method has been formulated in the framework of 3D cubical complexes, i.e., objects made of faces of different dimensions. In this section, we show that it can be adapted to the context of voxel complexes.

Let x be a voxel in a voxel complex X, that becomes an isthmus for the first time at step i of the parallel thinning. Then, we define the birth date of x, denoted by $b(x)$, as $b(x) = i$. Intuitively, $b(x)$ corresponds to the local thickness of the object around the voxel x, see Fig. 10 for an illustration in 2D.

Now, consider an isthmus voxel x that becomes, at step j of the parallel thinning process, a deletable voxel. Then, we define the death date of x, denoted by $d(x)$, as $d(x) = j$.

Finally, we define the persistence of the voxel x as the difference between the death date and the birth date, that is, $d(x) − b(x)$. It may be seen that a voxel with a high persistence value is likely to belong to a robust skeleton part, whereas a low persistence characterizes a voxel in a spurious skeleton part (Fig. 10). Therefore, skeleton filtering may be performed by keeping in the constraint set of the thinning algorithm, only the isthmuses that have a persistence greater than a given threshold.

Fig. 10. The lengths depicted with a solid line correspond to the birth dates, the dotted lines to the death dates.
In the following algorithm, \(k \) stands for the dimension of the considered isthmuses (1, 2 or \(2^n \)), and \(p \) is a parameter that sets the persistence threshold. The function \(b \) associates to certain voxels their birth date, and \(K \) is a constraint set that is dynamically updated by adding those voxels whose persistence is greater than the threshold \(p \) (lines 12-13).

Algorithm 2: PersistenceAsymThinning

\[
\textbf{Data} \quad X \in \mathbb{R}^3, \quad k \in \{1, 2, 2^n\}, \quad p \in \mathbb{N} \cup \{+\infty\} \\
\textbf{Result} \quad X \\
i := 0; \quad K := \emptyset; \quad \text{\textbf{foreach} } x \in X \quad b(x) := 0; \quad \text{\textbf{repeat}} \\
\quad \text{\textbf{for} } d \leftarrow 3 \text{ \textbf{to} } 0 \text{ \textbf{do}} \\
\quad \quad Z := \emptyset; \\
\quad \quad \text{\textbf{foreach} } d\text{-clique } C \subseteq X \setminus Y \text{ that is critical for } X \quad Z := Z \cup \{\text{Select}(C)\}; \\
\quad \quad Y := Y \cup Z; \\
\quad \quad W := \{x \in X \setminus K \mid x \text{ is a } k\text{-isthmus for } X\}; \\
\quad \quad \text{\textbf{foreach} } x \in W \text{ such that } b(x) = 0 \quad b(x) := i; \\
\quad \quad W' := \{x \in Y \mid b(x) > 0 \text{ and } i + 1 - b(x) \geq p\}; \\
\quad \quad X := Y; \quad K := K \cup W'; \\
\quad \text{\textbf{until} } \text{stability} \\
\]

In line 11, the birth date \(b(x) \) of each new isthmus voxel \(x \) is recorded. In line 12, the test \(b(x) > 0 \) implies that the considered voxel \(x \) has been recorded as an isthmus voxel. Furthermore, since this voxel \(x \) belongs to \(Y \), it is not deletable, thus its death date \(d(x) \) is strictly greater than \(i \). The condition \(i + 1 - b(x) \geq p \) thus implies \(d(x) - b(x) \geq p \), meaning that the voxel \(x \) must be added to the constraint set \(K \) (see line 13) because its persistence is greater than \(p \).

Extreme cases for the values of the parameter \(p \) are \(p = 1 \) and \(p = +\infty \). Notice that, by the very definitions of isthmus and persistence, the persistence of any isthmus is at least one (since an isthmus is not deletable). If \(p = 1 \), then all detected isthmuses are added to the constraint set. In this case, we retrieve the behaviour of algorithm IsthmusAsymThinning. If \(p = +\infty \), then no voxel is added to the constraint set. In this case, the result is an ultimate asymmetric skeleton of \(X \).

Fig. 12 illustrates the usefulness and the effectiveness of persistence-based filtering. Fig. 12(a) shows a 3D shape and its skeleton obtained by using AsymThinningScheme. In Fig. 12(b), we added some random noise to the shape contour. We clearly see that, for noisy objects, some filtering is mandatory. We obtain satisfactory results with values of \(p \) greater than 5. See also Fig. 11.

9. Conclusion

We introduced an original generic scheme for asymmetric parallel topology-preserving thinning of 3D objects made of voxels, in the framework of critical kernels. We saw that from this scheme, one can easily derive several thinning operators having specific behaviours, simply by changing the definition of skeletal points. In particular, we showed that ultimate, curve, surface, and surface/curve skeletons can be obtained, based on the notion of 1D/2D isthmuses.

A key point, in the implementation of the algorithms proposed in this paper, is the detection of critical cliques and isthmus voxels. In Bertrand and Couprie (2014), we showed that it is possible to detect critical cliques thanks to a set of masks, in linear time. Note also that the configurations of 1D and 2D isthmuses may be pre-computed by a linear-time algorithm and stored in lookup tables. Finally, based on a breadth-first strategy, the whole method can be implemented to run in \(O(n) \) time, where \(n \) is the number of voxels of the input 3D image.

We performed some experiments in order to compare our curve skeletonization algorithm with all methods of the same class found in the literature. The results show clearly that our method outperforms the other ones with respect to robustness. Furthermore, we showed that an effective filtering can be easily performed within our framework, thanks to the notion of persistence. In this approach, the filtering is done dynamically, with very little added cost, and is governed by a unique parameter. Persistence is closely linked to the notion of isthmus, and we stress that this kind of filtering cannot be adapted to the other methods considered in our experiments.

Acknowledgments

This work has been partially supported by the “ANR-2010-BLAN-0205 KIDICO” project.

References

Fig. 12. (a) Original shape and its curve skeleton obtained by using
AsymThinningScheme. (b) Noisy shape and its curve skeleton. (c,d,e) Filtered skeletons of the noisy shape, obtained by using
PersistencedAsymThinning, with parameter values 2, 5, 8 respectively.