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Connected Filtering on Tree-Based
Shape-Spaces

Yongchao Xu, Thierry G«eraud, Laurent Najman

Abstract ÑConnected Þlters are well-known for their good contour preservation property. A popular implementation strategy relies on
tree-based image representations: for example, one can compute an attribute characterizing the connected component represented by
each node of the tree and keep only the nodes for which the attribute is sufÞciently high. This operation can be seen as a thresholding
of the tree, seen as a graph whose nodes are weighted by the attribute. Rather than being satisÞed with a mere thresholding, we
propose to expand on this idea, and to apply connected Þlters on this latest graph. Consequently, the Þltering is performed not in the
space of the image, but in the space of shapes built from the image. Such a processing of shape-space Þltering is a generalization of
the existing tree-based connected operators. Indeed, the framework includes the classical existing connected operators by attributes. It
also allows us to propose a class of novel connected operators from the leveling family, based on non-increasing attributes. Finally, we
also propose a new class of connected operators that we call morphological shapings. Some illustrations and quantitative evaluations
demonstrate the usefulness and robustness of the proposed shape-space Þlters.

Index Terms ÑMathematical morphology, connected Þltering, shape-space Þltering, Max-tree, Min-tree, tree of shapes, graph, shape-
based lower/upper leveling, blood vessel segmentation, shaping.

!

1 INTRODUCTION

M ATHEMATICAL morphology, as originally devel-
oped by Matheron and Serra [1], proposes a set of

morphological operators based on structuring elements.
Later, Salembier and Serra [2], followed by Breen and
Jones [3], proposed morphological operators based on
attributes, rather than on elements. Such operators, also
known as attribute Þlters or connected Þlters, have
been popularized notably by Salembier, Wilkinson, and
Ouzounis [4, 5, 6, 7, 8]. One popular implementation of
such operators relies on transforming an image into an
equivalent representation, namely a tree of components
of the level sets of the image. Such trees are equivalent
to the original image in the sense that the image can
be reconstructed from its associated tree. Filtering then
involves the design of a shape attribute that weighs how
much a node of the tree Þts a given shape. This tree-
based implementation is depicted by the black path in
Fig. 1.

Several approaches for Þltering a tree of components
(and hence the image) have been proposed. The more
evolved approach consists in pruning the tree by re-
moving some entire branches of the tree, an operation
particurlary relevant if the attribute is increasing on the
tree (i.e., if the attribute is always higher for the ancestors
of a node). However, most shape attributes are not in-
creasing. In this case, three pruning strategies have been
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Fig. 1: Classical connected operators (black path) and the
proposed shape-space Þltering scheme (black+red path).

proposed (Min, Max, Viterbi; see Section 4.1 and [9, 4]
for more details). They all choose a particular node on
which to make a decision, and remove the subtree rooted
at that node. Though it may give interesting results in
some cases, it does not take into account the possibility
that several relevant objects can have some inclusion
relationship, meaning that they are on the same branch
of the tree (e.g., a ring object in a tree of shapes [10], see
Fig. 6 (a)).

For non-increasing attributes, another commonly used
approach is to simply remove the nodes of the tree for
which the attribute is lower than a given threshold [9, 11,
4]. It is however often impossible to retrieve all expected
objects with one unique (global) threshold. Fig. 2 shows
the evolution of a shape attribute, the circularity [12],
along two branches of the tree of shapes. The light round
shape and the dark one are both meaningful round
objects when compared to their context. However, their
attribute values are very different. In order to obtain
the light object, a high threshold is required, but then
some non-desired shapes appear in the background in
Fig. 2 (f).

This classical thresholding process can be seen as a
simple Þltering of the tree. In particular, it does not
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Fig. 2: (a) Evolution of the circularity attribute on
two branches (containing respectively the red and blue
shapes) of the tree of shapes [10]; (b to e) Some shapes; (f)
Result of attribute thresholding; (g) Result of a shaping.

take into account the intrinsic parenthood relationship
of the tree. The founding idea of this paper is to apply
connected Þlters in the space of all the components of
the image, such space being structured into a graph by
the parenthood relationship ( i.e., the neighbors of a node
are its children and its parent). This process is illustrated
by the black+red path in Fig. 1. This surprising and
simple idea has several deep consequences that were
Þrst exposed in a preliminary version of this study [13],
where it is shown that this framework encompasses
some usual attribute Þltering operators. Novel connected
Þlters based on non-increasing criteria can also be pro-
posed. When the Þrst tree T is respectively a Min-tree or
a Max-tree [9], such Þlters are novel morphological lower
or upper levelings [14, 15] based on shapes. When the
Þrst tree T is a tree of shapes [10], it gives birth to a novel
family of connected Þlters that we call morphological
shapings.

The main contributions of the present paper are: 1) an
extensive discussion of the theory behind the framework
of shape-space Þltering; 2) the study of some theoretical
properties of shape-space Þlters (i.e., novel connected
operators provided by this framework), morphological
shapings, in particular, are also studied; and 3) some
Þltering illustrations allowig a qualitative comparison
to classical thresholding-based methods, as well as an
illustration of shape-based upper levelings to retinal
blood vessel segmentation.

The rest of the paper is organized as follows. In
Section 2 we brießy review a number of previous devel-
opments on which our methodology is based: connected
operators and attribute Þlters. The theory of the frame-

work of shape-space Þltering that we propose is detailed
in Section 3. Section 4 is dedicated to demonstrate that
this framework encompasses some classical attribute Þl-
ters. Theoretical properties of various novel shape-space
Þlters are explained in Section 5. Section 6 gives a set of
illustrative experimental results using those shape-space
Þlters. Finally we discuss and conclude in Section 7.

2 BACKGROUND

A discrete image is deÞned on a domain which can
be seen as an undirected graph represented by a pair
G = ( V, E), where V is the Þnite set of vertices and
E ! (V " V ) is the set of edges. Each vertexv # V
represents a pixel or a voxel of the image domain, and
each edgee # E models the neighborhood relationship
(classically, 4- or 8-connectivity for 2D images, and 6- or
26-connectivity in 3D images) between the two vertices
composing e.

A graph (V, E) is said to be connectedif, for any x, y #
V , there exists a path from x to y, which is a sequence of
n $ 1 vertices (x0 = x, x 1, . . . , xn = y) such that every
xi # V , and every (xi , xi +1 ) # E . In this paper, the image
domain V is connected.

A binary image X is a subset of the image domain
that induces a subgraph (VX , EX ), such that VX is the
set of vertices representing the set of points of X , and
EX = ( VX " VX ) % E. A binary set S is said to
be connected if the subgraph (VS, ES) is connected. A
connected componentC of a binary image X is a connected
subset of X with the maximal extent. This means for
any C! such that C ! C! ! X , if C! is connected,
then we have C! = C. More details about the notion
of connectivity can be found in [16, 17, 7, 8].

Let x # V . In the following, ! x denotes the operator
that associates with a binary image X the connected
component of X containing x if x # VX , otherwise &.
Let ! be the operator that associates the set of connected
components with a binary image X . Formally, !( X ) de-
noted also by !( VX , EX ) is given by !( X ) = { ! x (X ), x #
VX } .

In the sequel, we denote by F the set of mappings
V '( R or Z. A grayscale image f is then an element
of F. Given a graph G = ( V, E), a pair (G, f ) also denoted
in the following by (V, E, f ) is called a node-weighted
graph, and it models an image f . In this paper, as a
convention, operators on binary images are denoted with
a capital Greek letter; the corresponding lowercase letter
is used to denote the grayscale version.

2.1 Connected operators

In this section we brießy review the connected operators.
More details can be found in [18, 2, 9, 4]. Generally
speaking, such operators deal with a set of connected
components C ! P (V ) of an image, where P denotes
the set of all subsets of V . The connected operators act
by Þltering out some elements in C and/or by changing
their associated gray levels.

For a binary image X , the set C is composed of two
types of connected components: those in the foreground
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!( X ) and those in the background !( X c), where X c is
the complement of X . We have VX c = V \ VX . A connected
operator" working on X simply preserves or removes
te connected components of X . This implies that the
difference between X and "( X ) is exclusively composed
of the union of connected components of X and/or of
its complement X c.

For a grayscale image f , there are many possibilities
for the set C. The most trivial one is the set of elemental
connected components called ßat zones[2]. Let L h (V, f ),
also denoted simply by L h (f ), be the set of points
having a gray level h: L h (V, f ) = { x # V | f (x) = h} .
Then a connected component of the subgraph (L h , EL h )
is a ßat zone, where EL h = ( L h " L h ) % E. In-
deed, for any point x # V , ! x (L f (x ) , EL f ( x ) ) is the
ßat zone containing that point. The set of ßat zones
denoted by CFZ of a grayscale image f is given by
CFZ = FZ(V, E, f ) = { ! x (L f (x ) , EL f ( x ) ), x # V } , where
FZ(V, E, f ), also denoted simply by FZ(f ), is the op-
erator that gives the set of ßat zones of a grayscale
image f . Such a set of ßat zonesCFZ forms a par-
tition of the image domain V called partition of ßat
zones [2]. The general deÞnition of connected operators
for grayscale images is based on this notion of partition
of ßat zones. An operator ! on a grayscale image f
is a connected operatorif the partition of ßat zones of
! (f ) is coarser than the one of f , which means that
) C # FZ(f ), * C! # FZ(! (f )) , such that C ! C! +
) x # V, ! x (L f (x ) , EL f ( x ) ) ! ! x (L ! ( f )( x ) , EL ! ( f )( x ) ).

The ßat zones of ! (f ) are created by merging ßat
zones of f , implying that connected operators will not
split the ßat zones of f . Hence, connected operators do
not introduce any new contour, and perfectly keep the
location and shape of contours in the input image.

In practice, the ßat zones in CFZ are usually individual
points or small in size. Hence the decision whether or not
to remove a connected components might be difÞcult to
take. For that reason, other methods to create the setC of
a grayscale image have been proposed in the literature.
A popular strategy is based on two types of threshold
decomposition: upper level sets and lower level sets. For
a given threshold value h, the upper level set Xh (V, f ) or
simply Xh (f ) and the lower level set X h (V, f ) or simply
X h (f ) are deÞned respectively by:

Xh (V, f ) = { x # V | f (x) $ h} , (1)

X h (V, f ) = { x # V | f (x) < h } . (2)

This leads to two different sets of connected components.
They are given by the connected components of all
possible upper (resp. lower) level sets denoted by C>
(resp. C< ):

C> = { !( Xf (x ) , EX f ( x ) ), x # V } , (3)

C< = { !( X f (x ) , EX f ( x ) ), x # V } . (4)

A third set of connected components is given by the
fusion of C> and C< through the notion of shapes[10]
(see [19, 20] for more details), where a shape is a con-
nected component of an upper or lower level set with all
cavities (i.e., connected components of its complement)

Þlled in. We denote this third type of set of connected
components by C<

> , it is given by:

C<
> = { Sat(C), C # C> or C # C< } , (5)

where Sat is the saturation operator that acts by Þlling
the cavities (connected components of the background).

2.2 Attribute Þlters

Attribute Þlters [3, 9, 21] deal with connected compo-
nents instead of individual points (as in the case of
classical morphological operators originally developed
by Matheron and Serra [1]). They act by preserving
or by removing the connected components based on
some attribute criterion. We denote by A the set of
mappings (C, F) '( R or Z. An attribute function is
then an element of A that measures some interesting
feature A(C, f ) on each connected componentC. When
no confusion can occur, we use the notation A(C). In this
paper, we distinguish the following attribute functions:

¥ An attribute function A can be as simple as the gray
level at which a connected component is obtained.
We denote this speciÞc function by F , and we term
F (C) the levelof the connected component C. If the
set of connected componentsC> (resp. C< ) is used,
F (C) is the smallest (resp.largest) gray level inside
each connected componentC.

¥ An attribute function A can also be more compli-
cated, for example it can be some shape information
measurement, such as circularity, compactness, or
elongation [5]. Note that these attributes do not
depend on the gray levels of the points inside
the connected components, which means for any
connected component C # C, and any two different
mapping functions f 1 # F and f 2 # F, f 1 ,= f 2,
we always have A(C, f 1) = A(C, f 2). We call such
attribute functions shape attributes.

¥ Some attribute functions based on the gray levels
of points inside the connected components might
also be interesting, such as the height or some other
attributes [12]. For a given connected component
C # C, the height is given by height (C, f ) =!

x " C
f (x) '

"

x " C
f (x).

Let T be an attribute criterion: C ( { true, false} . Typ-
ically, T is given by the comparison of the attribute func-
tion A to a given threshold " : T(C) = ( A(C) $ " ). Then
the trivial attribute Þlter ! T on a connected componentC
returns the connected component C itself if T(C) is true,
and & otherwise, with the convention that ! T (&) = &.
The binary anti-extensive attribute Þlter ! T for a binary
image X is deÞned by ! T (X ) =

#

x " X
! T (! x (X )) . Recall

that an operator " on a binary image X is said to be
anti-extensive if "( X ) ! X . If A is increasing, which
meansC1 ! C2 - A (C1) . A (C2), ! T is then an attribute
opening, otherwise ! T is an attribute thinning [3].

The extension of the attribute Þlters to grayscale
images is based on the set of connected components
C obtained from an image. The attribute Þlters on a
grayscale image f consists in preserving or removing
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Fig. 3: An example of the workßow of shape-space
Þltering framework with T T being the Min-tree of T .
Circles with a capital letter inside: nodes of C; Blue
values: Þrst attribute A ; Circles without a letter inside:
nodes of CC; Red values: second attribute AA ; Dashed
circles: Þltered nodes with a given threshold value 2.

some connected components in C. Let C = C> given
by Eq. (3), the grayscale anti-extensive attribute Þlter
#T for a given image f at any point x is deÞned by
#T (f )(x) =

!
{ h | x # ! T (Xh (f ), EX h ( f ) )} . Recall that an

operator ! on a grayscale image f is said to be anti-
extensive if ! (f ) . f .

The extensive attribute Þlters for binary images and
grayscale images can be easily deÞned by the duality
relationship with the anti-extensive versions deÞned
above.

3 SHAPE-SPACE FILTERING

In the literature connected operators and attribute Þlters
have generally been applied to the node-weighted graph
(V, E, f ) or shortly (G, f ) of the image with G = ( V, E).
They deal with the connected components of (G, f ) and
act by preserving or removing some of them in the set of
connected components C. We begin with studying some
basic features of this set of connected componentsC in
Section 3.1. This leads to the introduction of the shape-
space, a graph representation GC in Section 3.2. Then
we present in Section 3.3 the principle of the framework
of shape-space Þltering, which is, in short, applying the
connected operators and attribute Þlters to the node-
weighted graph (GC, A ). Finally, in Section 3.4, we detail
how to use this framework efÞciently, relying on tree-
based image representations (as depicted in Fig. 1). A
synthetic example of the scheme of shape-space Þltering
based on tree representation is given in Fig. 3.

3.1 The set of connected components C

Any two different elements Ci # C, Cj # C are either
disjoint or nested: ) Ci # C, Cj # C, Ci % Cj ,= & -
Ci ! Cj or Cj ! Ci . The set of connected components
C> , C< , and C<

> given respectively by Eq. (3, 4, and 5)
are such examples. The nesting property of these sets

of connected components is because) h1 . h2, Xh1 /
Xh2 and X h1 ! X h2 . Note also that the data of the set
of connected components C> or C< and the associated
level function F are sufÞcient to reconstruct the im-
age thanks to the threshold superpositin principle [22]:
f (x) =

!
{ h | x # X h (f )} =

"
{ h | x # X h (f )} . Let

us denote this reconstruction operator by C# 1. More
generally, for any set of connected components C ob-
tained from some image f (whether it is C> , C< , or C<

> )
and its associated level function F , the image f can be
reconstructed by:

f (x) = C# 1(x, C, F ) = F (Cx ), (6)

where Cx is the smallest connected component in C such
that x # Cx , i.e., Cx =

$
{ Ci # C | x # Ci } . Thanks

to this reconstruction principle, the set of connected
components C is an equivalent representation of the
input image.

Classical connected operators and attribute Þlters re-
move connected components from the set C (e.g., circles
on the top-middle of Fig. 3), yielding a subset of con-
nected components C! ! C. Then, a Þltered image f ! is
obtained from C! based on the reconstruction principle
in Eq. (6). Note that a slightly modiÞed reconstruction
rule has also been proposed in [11], see Section 4.1 for
more details.

Such a classical Þltering process is easy to apply if
the attribute function is an increasing attribute A $: if
a connected component Ci # C is preserved, then any
Cj # C such that Ci ! Cj is also preserved. For a non-
increasing attribute A , several Þltering rules have been
proposed in the literature [4]. The simplest one among
them is the thresholding-based Þltering, where each
connected component C # C is analyzed individually.
We note that the nesting property (represented by the
lines linking any pair of circles on the top-middle of
Fig. 3) of the family of connected components in C is
not taken into account in such a thresholding.

3.2 Shape-space

For any C # C, we denote by Pr (C) the smallest element
of C containing C and different from C:

Pr (C) =
%

{ Ci # C | C ! Ci } . (7)

We observe that for any C # C, with C different from the
image domain, Pr (C) ,= &. We also denote by Pr # 1(C)
the set of largest connected components contained in C
and different from C, given by:

Pr # 1(C) = { Ci # C | P(Ci ) = C} . (8)

Note that Pr # 1(C) might be empty. These two oper-
ators Pr and Pr # 1 encode an adjacency relationship
between the set of connected components inC. We have
Ci = Pr (Cj ) + Cj # Pr # 1(Ci ). Consequently, we can
structure the family of connected components of C into
a graph representation denoted by GC = ( C, EC), where
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EC is given by Pr and Pr # 1:

EC = { (Ci , Cj ) # (C " C) | such as either Ci = Pr (Cj )

or Ci # Pr # 1(Cj ) } .
(9)

We call this graph representation GC the shape-space. As
compared to the image space, which is also modeled by
a graph G = ( V, E), each node in GC is a connected com-
ponent of the image space. And each edge inGC encodes
the inclusion relationship of the connected components
in C. For example, the structure on the top-middle of
Fig. 3 is a shape-space, where nodes are represented by
circles, and edges by lines.

This shape-space has several interesting features.
Firstly, it is invariant to contrast changes, that are increas-
ing functions g applied to the image f , and covariant to
continuous (topological) transformations. Besides, such
a shape-space inherently embeds a morphological scale-
space (the size of Pr (C) # C is always larger than
the size of C # C). Furthermore, this shape-space is
an equivalent representation of an image, in the sense
that the image can be reconstructed from the shape-
space (thanks to Eq. (6) if F is given). This shape-
space also has another interesting property: contrary to
scale-spaces, the contours of a given shape (topological
boundaries of the connected components) correspond
to actual contours in the image, without any blurring
due to convolution with a kernel in the case of classical
scale-space. Finally, this shape-space satisÞes theprinciple
of causality which is certainly the most fundamental
principle of multi-scale analysis [23]. From this principle,
for any pair of scales " 2 > " 1, the ÒstructuresÓ found at
scale " 2 should Þnd a ÒcauseÓ at scale" 1. Indeed, each
connected component C # C can be seen as a kind of
ÒcauseÓ of the connected componentPr (C) # C.

As an illustration of the usefulness of shape-spaces,
we would like to mention two proposals of local feature
detectors. The Þrst proposal is the Maximally Stable
Extremal Regions (MSER) [24, 25]. Note that MSER,
broadly speaking, are equivalent to the Maximal Mean-
ingful Lines previously proposed by Desloneux et al [26].
Indeed, a small variation in the components area occurs
because of strong gradients in the image, which is the
measure that is used in Desolneux et al.Õs work to
characterize meaningful level lines. The second proposal
is the recent Tree-Based Morse Regions (TBMR) [27];
TBMR are truly invariant to contrast changes, a property
which, combined with the other properties of shape-
spaces, allows us to obtain state-of-the-art results in
image registration and in multi-view 3D reconstruction.

3.3 Principle of shape-space Þltering

For each element in the shape-space, the attribute func-
tion A weighs how much that element Þts a given
criterion. The pair (GC, A ) is a node-weighted graph.
In the classical use of attribute Þlters as described in
Section 2.2, the Þltering decision for each connected com-
ponent C # C is usually made upon the comparison of
its attribute function A(C) to a given threshold value " .

This thresholding process can be seen as a simple Þlter-
ing of the graph (GC, A ). However, many sophisticated
signal/image processing Þlters exist. Besides, it is well-
known that a pertinent result with a unique thresholding
value is usually difÞcult to obtain. Instead of just thresh-
olding the graph (GC, A ), we propose to apply some
signal/image Þltering tools to the graph (GC, A ). Indeed,
graphs are generic data structures that have been widely
used in many scientiÞc and engineering Þelds, notably
for image analysis and computer vision [28, 29]. Since
they are very ßexible representations, a current trend is
to use the classical tools for signal/image processing also
for graphs [30]. SpeciÞcally, in this paper, we apply some
connected operators to the graph (GC, A ). This process
is the basis of the proposed framework.

Exactly as described in Section 2.1, in order to apply
the connected operators to the graph (GC, A ), we create
a set of connected components of the graph (GC, A ).
We denote this second set of connected components
by CC, and we note that CC ! P (C). Each connected
component CC # CC is composed of a set of nested
connected components C # C. We can also associate
a second attribute AA to each connected component
CC # CC, where AA is an element of the set of map-
pings (CC, A) '( R or Z denoted by AA. This second
attribute function is usually designed to be increasing so
that the Þltering process is easy to apply. We Þlter out all
the connected components CC # CC such that AA (CC)
is smaller than a given threshold " . This Þltering yields
a subset of the connected componentsCC! ! CC given
by:

CC! = { CC # CC | AA (CC) $ " } . (10)

For each connected component C # C of the graph
(G, f ), let CC C # CC be the smallest connected compo-
nent of the graph (GC, A ) such that C # CC C :

CC C =
%

{ CC # CC | C # CC} . (11)

Then the Þnal Þltered subset of connected components
C! of the graph (G, f ) is given by:

C! = { C # C | CC C # CC!} . (12)

As described in Eq. (6), we can reconstruct an image
f ! from this subset of connected components C! and
its associated level function F : f ! = C# 1(C!, F ). This
reconstructed image f ! is the Þnal Þltered image.

3.4 Shape-space Þltering using trees

In practice, an efÞcient implementation of the connected
operators and the framework of shape-space Þltering
rely on some tree-based representations (see [9, 10] for
some more details). Indeed, if the whole domain of
the graph G (resp. GC) belongs to the set of connected
components V # C (resp. C # CC), then the set of
connected components C (resp. CC) can be organized
into a tree structure denoted by T (resp. T T) thanks
to the nesting property. Each node of the tree T (resp.
T T) corresponds to a connected componentC # C (resp.
CC # CC). The parenthood relationship of the tree T
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(resp. T T) is given by Pr deÞned in Eq (7) (resp. PPr
which is similar to Pr but deÞned on CC). The node
Pr (C) # T (resp. PPr (CC) # T T ) is said to be the
parent of the node C # T (resp. CC # T T ), and C
(resp. CC) is said to be a child of Pr (C) (resp. PPr (CC)).
Note that the node representing V # C or C # CC
has no parent. The set of connected componentsC> in
Eq. (3) and C< in Eq. (4) are organized into respectively
Max-tree and Min-tree representation [9]. And the set
of connected components C<

> in Eq. (5) gives the tree
of shapes [10]. Using these tree-based representations,
we call the shape-space GC = ( C, EC) described in
Section 3.2 the tree-based shape-space. We also denote it
by GT . Each node of the graph GT is adjacent to its
parent, so each node has its parent and its children as
its neighbors.

A schematic overview of the framework of shape-
space Þltering relying on the tree-based representations
is depicted by the black+red path in Fig. 1. The Þltering
is performed on the second tree T T, that contrasts with
classical connected operators which Þlter the Þrst tree
T . The whole process is composed of: 1) The Þrst treeT
construction to create C of graph (G, f ); 2) The second
tree T T construction to create CC of graph (GC, A ); 3)
The second tree pruning that yields a subset CC! ! CC
contained in the simpliÞed tree T T !; 4) A simpliÞed tree
T ! restitution to produce the Þltered subset C! ! C,
and an image reconstruction from C!. Fig. 3 depicts
a synthetic example of the proposed framework using
tree representation. We hereafter rely on this example to
detail each step of the proposed framework.

3.4.1 Creation of C by tree representation T
First of all, we build a tree representation of graph (G, f )
to create the set of connected componentsC. The choice
of the type of tree T depends on the targeted application:
the shapes (objects) of interest have to be present at some
nodes of the chosen tree. The tree of shapes is used
in Fig. 3. During the tree T construction, we are able
to compute incrementally a lot of information, based
on which the attribute A (e.g., area, gray level F , or
some more evolved shape attributes) is derived. The pair
(GT , A ) is a node-weighted graph modeling the tree-
based shape space. The graph(GT , A ) in Fig. 3 has four
regional minima (represented by red circles).

3.4.2 Construction of CC by the second tree T T
As we have done in the previous step for the graph
(G, f ), we construct the set of connected componentsCC
of graph (GT , A ) by constructing a tree representation
T T. In this paper, this second tree T T is either a Min-
tree or a Max-tree representation. The choice between
them depends on the application and on the nature
of the attribute A . Indeed, the attribute A encodes the
probability for a shape to be of a given type. If we want
to Þlter out the shapes different from that type, we use
a Min-tree for T T, so that the minima of the space of
shapes are the less probable shapes. In other words,
for a node of T to be a leaf of T T, its parent and its
children have to be more probable than the node itself.

Conversely, if we want to preserve the shapes of a given
type, then we use a Max-Tree for T T.

Two different ÒobjectsÓ located in the same branch of
T are now possibly present in two different branches of
T T. For example, in Fig. 3, nodes C and H of T are now
in two distinct branches of T T (Min-tree of T ). Hence,
these two ÒobjectsÓ can be extracted separately, which
is difÞcult to achieve using only T . In this example, the
four regional minima of the graph (GT , A ) are repre-
sented by the four leaves (red circles) of T T.

3.4.3 Filtering of T T
A tree Þltering of T T is performed based on a second
attribute AA . This attribute AA is always an increasing
attribute in order to ensure that the second tree Þltering
can be achieved with a simple pruning strategy. The
design of this second attribute AA is quite ßexible.
Usually, it can also be computed incrementally during
T T construction, based on the Þrst attribute A (for
instance, the height of A ), or based on the contextual
information on the image domain around the shapes that
CC represents.

The pruning is then based on comparing AA to a
given threshold. Let us remark that depending on the
application, two different pruning strategies can be used.
For the purpose of Þltering out some non-desired shapes,
the nodes to be pruned are the subtrees rooted just above
the leaves. If we want to select the shapes corresponding
to the desired shapes (represented by the leaves ofT T),
the pruning strategy removes the nodes that are close to
the root node of T T. This is equivalent to preservation
of subtrees containing the leaves.

In Fig. 3, the second tree is Þltered by pruning the
nodes CC whose attribute value AA , e.g., the height of A
applied on shape-space, is less than 2. This is an example
of Þltering out the non-desired shapes around the leaves.

3.4.4 Tree restitution and image restitution
The tree restitution step is trivial. The simpliÞed tree
T ! is reconstructed by removing the set of nodes { Ci } i
contained in the series of Þltered nodes { CCk } k , and
by updating the parenthood relationship. For example,
the simpliÞed tree T ! in Fig. 3 is obtained by removing
the nodes (dashed circles) contained in the set of Þltered
nodes of T T !, and each preserved node in T takes its
lowest preserved ancestor as its parent.

For any point x # V , let Ca
x # T ! be the lowest

preserved ancestor node that contains the point x. Then
based on the principle of image reconstruction described
in Section 3.1, the Þltered imagef ! at any point x is given
by:

f !(x) =
&

F (Cx ) if Cx # T !,
F (Ca

x ) otherwise. (13)

A similar reconstruction strategy by maintaining the
local contrast of the preserved nodes is detailed in
Section 4.1.

Note that in Fig. 3, the nodes C and H are removed,
while the node E lying between them in the same branch
is preserved. None of the existing pruning strategies
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described in Section 4.1 can achieve such a result. Indeed,
the nodes E and J with A = 3 are preserved, while the
node F with A = 3 and even the node D with A = 4 are
Þltered out. Such a behavior cannot be obtained with a
threshold-based strategy.

4 REVISITING CLASSICAL ATTRIBUTE -BASED
CONNECTED OPERATORS

The framework of shape-space Þltering deals with con-
nected components which are composed of ßat zones.
This guarantees that the operators of the proposed
framework belong to the class of connected operators.
In this section, we show in Section 4.2 that the frame-
work of shape-space Þltering encompasses some clas-
sical strategies of attribute Þlters which are detailed in
Section 4.1.

4.1 Classical rules for tree Þltering

Filtering the tree T with some increasing attributes
A $ is rather straightforward: it is simply performed
by removing all the nodes that do not satisfy the at-
tribute criterion T. As the attribute A $ is increasing, it
amounts to removing a branch of the tree: if a node
does not satisfy T, then none of its descendants satisÞes
it. The pruned points take the respective gray levels
of their respective lowest preserved ancestors. For non-
increasing attributes, which is the usual case for many
shape attributes, there is no straightforward strategy to
Þlter the tree. Salembieret al. [9, 4] propose three pruning
strategies (Min , Max, Viterbi) and a threshold-based rule
(Direct). Urbach et al.[11] also propose a threshold-based
strategy (Subtractive). The decisions of these rules for a
given attribute threshold " are described as follows:

¥ Min : a node C is removed if A (C) < " or if there
exists one of its ancestorsCa such that A (Ca) < " .

¥ Max: a node C is removed if A (C) < " and for all
its descendants Cd, A (Cd) < " holds.

¥ Viterbi: removal and preservation of nodes are de-
termined by a cost optimization process. Each tran-
sition is assigned with a cost. For each leaf node,
the branch with the lowest cost to the root node is
taken. See [9] for more details.

¥ Direct: a node C is removed if A (C) < " . The pixels
stored in C but not in any of its descendants take
the gray level of the Þrst preserved ancestor starting
from C to the root.

¥ Subtractive: as the direct rule, but it differs in image
reconstruction. The change in the gray level of the
modiÞed node is applied to all its descendants, so
that the contrast with the local background remains
unchanged.

Let us notice that all those rules have some drawbacks.
Pruning strategies can not deal with the case where two
interesting objects are present in the same branch. With
the two threshold-based rules, it is often impossible to
retrieve at the same time all the expected objects with
one unique global threshold.

4.2 Encompassing some classical attribute Þlters

We now explore the effect on the image of Þltering T T,
the Min-tree of the node-weighted graph (GT , A ), with
some speciÞc attributes. We show that those attributes
allow us to retrieve the classical Þltering rules described
in the previous section.
Case A: Pruning of increasing attribute A

In the most trivial case, the attribute A is increasing,
and the classical connected Þlters are equivalent to a
pruning of the tree.

Proposition 1: For any tree representation T , if A is
strictly increasing, let T T be the Min-tree of the node-
weighted graph (GT , A ), then T T is isomorphic to T .

Proof: Since A is strictly increasing, so for any given
node C, A(C) < A(Ca) holds for any ancestor node Ca of
C, which means that the leaves of T are regional minima
of graph (GT , A ). These regional minima lie also on the
leaves of T T being the Min-tree. Furthermore, for any
pair of neighboring nodes (Ci , Cj ) # EC, either Ci =
P(Cj ) or Ci # P# 1(Cj ). Suppose that the former one
holds, then Cj 0 Ci , A (Cj ) < A(Ci ). Let Ck # C, Ck ,=
Ci be any neighboring node of Cj , since the parent of
each node on a tree structure is unique, so Ck is a child
of Cj , which means A(Ck ) < A(Cj ). In consequence, we
have CCCi = PPr (CCCj ). SoT T has the same structure
of T .

Let AA be the current level of the second tree T T,
which means ) C # C, AA (CCC ) = A(C). Pruning T T
is equivalent to pruning T . In other words, shape-space
Þltering encompasses the classical Þltering strategy in
this case, but we do not have to test whether the attribute
A is increasing or not.
Case B: Thresholding of non-increasing attribute A

A shape attribute A is more often non-increasing. In
such a case, there exists some pair of vertices(Ci , Cj ) #
EC, such that Cj = P(Ci ), and A(Cj ) < A(Ci ). For exam-
ple, let T T be the Min-tree of the graph (GT , A ), then the
node CCCi # CC is hence an ancestor ofCCCj # CC on
T T. SoT T is different from T . Furthermore, just like the
increasing attribute case, let AA be the current level of
T T, we have AA (CCC ) = A(C) for any C # C. Pruning
T T by AA is equivalent to thresholding T . Accord-
ingly, shape-space Þltering encompasses the threshold-
based strategies (Direct and Subtractiverules), which are
context-free or adjacency stable operators, as explained
in [31]. Let us remark that, although shape-space Þltering
theoretically encompasses the cases presented above,
a direct implementation (not relying on the proposed
framework) is more efÞcient. Let us also remark that
it is impossible (without a global rule) to retrieve in
the proposed framework the contextual Þltering [32]
pruning strategies described in Section 4.1, based on
Min , Max, and Viterbi.

The second attribute AA can be different from A. For
example, it can be any measure based on A or even
some new attribute/measure computed from the image
domain (e.g., the total variation inside the context region
represented by the node CC). This is when shape-space
Þltering becomes particularly useful.
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5 SOME NOVEL CONNECTED OPERATORS

Shape-space Þltering is more ßexible than conventional
connected operators and offers some new possibilities.
In this section, we introduce two novel classes of con-
nected operators: shape-based lower/upper levelings in
Section 5.1 and morphological shapings in Section 5.2.

In the rest of this paper, we study the following
process:

¥ we Þrst build a family C of the connected compo-
nents of level sets of the image. In other words, C is
made of the connected components corresponding
to the nodes of either the Min-tree, the Max-tree or
the tree of shapes;

¥ using the parenthood relationship in Eq. (7), we
build the graph (C, EC), where EC is given by
Eq. (9);

¥ we choose an attribute A that evaluates any element
of C. This attribute does not need any particular
property, other than the ones needed for the appli-
cation at hand;

¥ we choose an attribute AA , increasing for the
connected components of node-weighted graph
(C, EC, A ). This attribute AA evaluates the strength
of the attribute A in the graph (C, EC);

¥ we then make an attribute Þltering on the node-
weighted graph (C, EC, A ) with the attribute AA .

We call such an attribute-based connected operator a
shape-space Þlter. Note that this deÞnition is not to be
confused with the deÞnition of shape Þltergiven in [11]:
speciÞcally, a shape Þlter is scale, rotation and translation
invariant.

5.1 Shape-based lower/upper levelings

Let us now detail the Þrst type of novel connected opera-
tors offered by the framework of shape-space Þltering, in
the case ofT being a Max-tree or Min-tree representation
of the image f . For that, we Þrst recall the notion of
levelings [14].

The levelings form a subclass of connected operators.
They act by enlarging the ßat zones by suppressing
many details, while keeping the sharpness of the tran-
sition zones. The levelings are the intersection of two
subclasses: the lower levelings and upper levelings.

DeÞnition 1: An operator ! is a lower levelingof a
grayscale imagef if and only if for any pair of neighbor-
ing vertices (x, y) : ! (f )(x) > ! (f )(y) - ! (f )(y) $ f (y).

DeÞnition 2: An operator ! is an upper levelingof a
grayscale imagef if and only if for any pair of neighbor-
ing vertices (x, y) : ! (f )(x) > ! (f )(y) - ! (f )(x) . f (x).

DeÞnition 3: An operator ! is a levelingof a grayscale
image f if and only if for any pair of neighbor-
ing points (x, y) : ! (f )(x) > ! (f )(y) - f (x) $
! (f )(x) and ! (f )(y) $ f (y).

The deÞnition 3 states that if there is a transition
in the output image after leveling, the transition ex-
ists in the initial image. This is because ! (f )(x) >

! (f )(y) - f (x) $ ! (f )(x) > ! (f )(y) $ f (y). Fur-
thermore, the interval of the transition in the output
image [! (f )(y), ! (f )(x)] is contained in the interval of
the transition in the input image [f (y), f (x)].

The readers can refer to [14, 15] for more details about
the properties of levelings.

Proposition 2: If C is made from a Max-tree T , and if
the attribute function is a (non-increasing) attribute, any
shape-space Þlter is an upper leveling. We term such an
operator ! s$ a shape-based upper leveling.

Proof: Let T be a Max-tree representation, then no
matter what type of tree T T is and no matter how T T
is pruned, the simpliÞed tree T ! has always a Max-tree
structure in the sense that gray level for the ancestors
is always lowered. In the image reconstruction step, the
pixels stored in some removed node Cr take the gray
level of the Þrst preserved ancestor Ca (Direct rule) or
even lowered with the change induced by the removed
ancestors (Subtractiverule). Hence, ) x # V, ! s$(f )(x) .
f (x) always holds. By DeÞnition 2, such an operator ! s$
is an upper leveling.

Proposition 3: If C is made from a Min-tree T , and if
the attribute function is a (non-increasing) attribute, any
shape-space Þlter is a lower leveling. We term such an
operator ! s% a shape-based lower leveling.

Proof: Let T be a Min-tree, the simpliÞed tree T ! is
still a Min-tree in the sense that the gray levels of the
ancestors are always higher. So, similarly to the proof
of Prop. 2, ) x # V, ! s%(f )(x) $ f (x) holds. Based on
DeÞnition 1, such an operator ! s% is a lower leveling.

When the Þrst tree T is a Max-tree (respMin-tree), the
reason why shape-space Þltering gives shape-based up-
per (resp. lower) leveling is that any anti-extensive ( resp.
extensive) operator is an upper (resp. lower) leveling. Let
us also remark that in both cases, the operator ! s is not
a leveling. Indeed, for any pair of points (x, y) # E ,
we have either f (x) $ ! s(f )(x) and f (y) $ ! s(f )(y),
or ! s(f )(x) $ f (x) and ! s(f )(y) $ f (y). Therefore, the
operator ! s is not a leveling (except when ! s(f ) is a
constant), according to DeÞnition 3.

A classical upper (resp. lower) leveling removes some
details around the regional minima ( resp. maxima). In
practice, this is equivalent to pruning the Min-tree ( resp.
Max-tree) with an increasing attribute A $. Nevertheless,
a shape-based upper (resp. lower) leveling is based on
some connected Þltering on the shape-space built from
the Max-tree (resp. Min-tree) representation. It Þlters out
some details of unwanted bright ( resp. dark) shapes on
the basis of a user deÞned non-increasing attributes.

Recall that an operator ! is said to be idempotentif and
only if ! (! (f )) = ! (f ).

Proposition 4: If the second tree T T Þltering is idem-
potent then the shape-based upper leveling ! s$ and
lower-leveling ! s% are idempotent.

Proof: Let T0, T T0, T T !
0 , and T !

0 be the tree structures
corresponding to the shape-based morphological opera-
tor ! s applied to f . T1, T T1, T T !

1 , and T !
1 are the tree

structures corresponding to ! s applied to f ! = ! s(f ). As
T !

0 and T1 are either a Max-tree or a Min-tree, it is trivial
to see that T1 = T !

0 , thanks to the strict Þxed order of the
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gray level between neighboring nodes of those trees. As
the second tree Þltering is based on the pruning strategy,
it is equivalent to removing some blobs around minima
or maxima of the graph (GT0 , A ). As a consequence,
the second tree of graph (GT !

0
, A ) is the same asT T !

0 ,
which means that T T1 = T T !

0 . The idempotent second
tree Þltering yields: T T !

1 = T T !
0 - T !

1 = T !
0 , so

! s(! s(f )) = ! s(f ) holds.

5.2 Morphological shapings

Unlike the shape-based upper or lower levelings, which
deals only with bright or dark shapes, we introduce in
this section a second type of connected operators which
process both bright and dark shapes at the same time.

Proposition 5: If C is made from the tree of shapes
T , and if A is a non-increasing attribute, the operator
! s given by the shape-space Þltering is in general not a
leveling.

Proof: SinceA is non-increasing, and any shape-space
operator gives a Þltered tree T ! which does not result
from a pruning of T , a pair of neighboring vertices (x, y)
can exist, such that Cx 0 Cy , and Cy is removed while
Cx is preserved. Let Cz be the lowest preserved ancestor
of Cy . Then we have ! s(f )(x) = f (x), ! s(f )(y) = f (z).
However, as the tree T is the tree of shapes, the order of
the gray level of a node and any of its ancestors is not
monotonous a priori. So it is possible that f (z) < f (x)
and f (z) < f (y). In this case, we have ! s(f )(x) >
! s(f )(y), f (x) $ ! s(f )(x) and ! s(f )(y) < f (y). This
is in contradiction with the deÞnition of a leveling (see
DeÞnition (3)).

DeÞnition 4: If C is made from the connected compo-
nents corresponding to the tree of shapes T , and if A is a
non-increasing attribute, then the associated shape-space
Þlter is called a morphological shaping.

In the sequel, the symbol S is used for denoting a
morphological shaping.

Proposition 6: A morphological shaping S with shape
attribute A is a self-dual operator.

Proof: Since the tree of shapesT is self-dual, the tree
of shapes of graph (G, f ) denoted by T + has the same
structure as the one of graph (G, ' f ) denoted by T # .
Consequently, the set of connected components made
from T + denoted as C+ is equal to the one made from
T # denoted as C# . By deÞnition, the shape attribute
A does not depend on the gray levels of the points
inside the connected components, which means for any
C # C+ , C # C# , we have A(C, f ) = A(C, ' f ). In
consequence, the graph(GT + , A ) is equal to the graph
(GT " , A ). Then we have T T + = T T # - T !+ =
T !# and f ! = ' f ! , which means that S(' f ) = 'S (f ).
Thus the shaping S is a self-dual operator.

To make a shaping S idempotent, the Þrst condition
to satisfy is that the tree of shapes of S(f ) denoted by
T1 is equivalent to the simpliÞed tree T !

0 from which the
Þltered image S(f ) is reconstructed. However, this is not
a trivial requirement due to the unÞxed order of gray
levels of the neighboring nodes on the tree of shapes T .
A node Ck # C of T is obtained by Þlling the cavities of

either a component of a upper level set (see Eq. (1)), or a
component of a lower level set (see Eq. (2)). Let us denote
the family of these two types of nodes respectively by
¥

C> and
¥

C< . We have C =
¥

C> 1
¥

C< .
Proposition 7: Let T be the tree of shapes,C! be the

set of preserved connected components, and P! be the
parenthood relationship between connected components
in C!. For each preserved node C # C!, C! ! C, if
F !(C) < F !(P !(C)) holds for C #

¥

C< of T , and
F !(C) > F !(P !(C)) holds for C #

¥

C> of T , then the
tree T1 constructed from f ! is equal to T ! from which f !

is reconstructed.
Proof: Thresholding the reconstructed image f ! by

Eq. (1) and Eq. (2) yields some shapes which can also be
found in T !. This correspondence is guaranteed by the
condition ) C #

¥

C< remained in T !, F !(C) < F !(P !(C))
and ) C #

¥

C> remained in T !, F !(C) > F !(P !(C)) .
Based on the deÞnition of the tree of shapes [10], the
inclusion relationship between those shapes yields a
unique tree, which is equal to T !.

Proposition 8: If the second tree Þltering T T is idem-
potent and if the type (either a

¥

C> or
¥

C< node) of the
preserved nodes does not change, then the shapingS is
idempotent.

Proof: See Prop. 7 and the proof of Prop. 4.

6 ILLUSTRATIONS AND EXPERIMENTS

In this section, we present some illustrations and ex-
perimental results based on the novel connected oper-
ators introduced in the previous section. First of all,
in Section 6.1, we provide several Þltering results of
some shape-space Þlters, and we compare them, from
a qualitative point of view, to those based on threshold-
ing strategies. This qualitative comparison demonstrates
the robustness and ßexibility of the proposed frame-
work. Then, in Section 6.2, we evaluate quantitatively
one of the shape-space Þlters against its corresponding
threshold-based Þlter, in the context of retinal blood
vessel segmentation.

6.1 Comparison with classical approaches

We compare several shape-space Þlters to their corre-
sponding classical attribute Þlters based on threshold-
ing strategies. First of all, we illustrate two examples
of shape-based lower levelings. In Fig. 4, we aim to
preserve the round disks while Þltering out the other
structures in Fig. 4 (a). The Þrst tree representation is a
Min-tree, and we use for the attribute A the inverse of
the compactness [5, 11], the compactness being deÞned
by L 2 / (4 $ A), where A and L are respectively the area
and the perimeter of the component. Fig. 4 (c) is the
result of a subtractive reconstruction and Fig. 4 (d) is
obtained by taking the average value for the pixels inside
each preserved node excluding its preserved descen-
dants. We observe that, with a low thresholding value,
some unwanted objects remain. When we augment the
thresholding value (shown in Fig. 4 (e) and (f)), some of
the expected objects are Þltered out. At the same time,
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(a) Input image. (b) Result of ! s! .

(c) Low threshold of A . (d) Low threshold A .

(e) High threshold of A . (f) High threshold of A .

Fig. 4: Comparison between shape-based lower leveling
and attribute thresholding, with A being the compact-
ness. Images (c,e) are obtained with the subtractive rule
and images (d, f) with the average [see text].

some unexpected objects are still preserved. The result
of a shape-based lower leveling is shown in Fig. 4 (b):
the second tree T T is a Min-tree, and the second at-
tribute function AA is the combination of the attribute
A itself with the total variation inside the context region
represented by the node CC. We observe that all the Þve
round disks are preserved while all the other structures
have been Þltered out. In Fig. 5, we use the average of
the gradient magnitude on the shape contour as attribute
A . As illustrated in Fig. 5 (c) and (d), thresholding
this attribute with a low value preserves some structures
(inside the red boxes) in the background. To get rid of
these unexpected structures, a higher thresholding value
is applied. But, as shown in Fig. 5 (e) and (f), some
of the expected structures (inside the blue boxes) are
also Þltered out. The result of the shape-based lower
leveling (Fig. 5 (b)) is cleaner. We preserve any node in
the second tree T T (a Max-tree) with a small height,
and if furthermore the node contains a maximum of
GC = ( C, EC) having a high extinction value [33] and
a high attribute A .

When we want to perform a self-dual Þltering, i.e., to
process at the same time both upper and lower level sets,
we choose as treeT the tree of shapes. Such an operator
is a morphological shaping. In both Fig. 2 and Fig. 6, we
use for attribute A the circularity, 1 ' lmin /l max , where
lmin and lmax denote the respective lengths of the small-

(a) Input image. (b) Shaping 1.

(c) Low threshold of A . (d) Higher threshold of A .

(e) Threshold strategy. (f) Shaping 2.

Fig. 6: Comparison between extinction-based shapings
and attribute thresholding. (b-d): Using one shape at-
tribute; (e-f): Using a combination of shape attributes.

est and of the largest axis of the best Þtting ellipse of the
node. The result of the shaping on Fig. 2 (a) is shown
in Fig. 2 (g), and looks indeed better than the one of
Fig. 2 (f). In Fig. 6, we compare a self-dual morphological
shaping to a variant of the state-of-the-art thresholding
approach [11]. In the latter, when the threshold of A
is low, some objects do not appear (Fig. 6 (c)). To be
able to get all expected objects, we have to set a high
threshold. However, in this case, too many unwanted
objects are present (Fig. 6 (d)). The Þltering strategy used
in the shaping consists in preserving the minima of the
graph GC based on their extinction values [33]. More
details about this Þltering strategy can be found in [13].
With the shaping, all the expected objects can be found,
as depicted in Fig. 6 (b). The results can be improved
by combining some shape attributes. In Fig. 6 (e) and
Fig. 6 (f), we use a combination of the circularity and of
the non-compactness attribute, Tr( I ) / A 2, where I is the
moment-of-inertia tensor and A is the area [5, 11]. The
combination of shape attributes signiÞcantly improves
the results. Yet, the shaping in Fig. 6 (f) performs much
better than the threshold-based strategy in Fig. 6 (e).

In Fig. 7, we give another example of comparison
between our shaping and classical attribute thresholding.
The used attribute function A is the inverse of the
context-based energy estimator proposed in [34]. Just
like in active contours, this energy estimator measures
the signiÞcance of each region, based on the image
contents around the region boundary. Small values of the
estimator correspond to meaningful objects. More details
about it can be found in [34]. We construct a Min-tree
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(a) Input image. (b) Result of ! s! .

(c) Low threshold of A (subtractive). (d) Low threshold of A (average).

(e) Higher threshold of A (subtractive). (f) Higher threshold of A (average).

Fig. 5: Comparison of shape-based lower leveling to attribute thresholding; the attribute function is the average of
the gradient magnitude on the shape contour.

T T on GC, and we choose for the second attribute AA
the total variation (as in Fig. 4). As depicted in Fig. 7,
classical attribute thresholding gives reasonable results
(in Fig. 7 (c) and (d)), but some unwanted structures
in the background remain. In contrast, as observed in
Fig. 7 (b), the shaping preserves all the expected struc-
tures on a clean background.

Shape-space Þlters provide more possibilities and ßex-
ibilities for image Þltering as compared to classical at-
tribute Þlters. In all those above illustrations, our shape-
space Þlters give results that are more robust than the
classical attribute thresholding methods. And some of
them are impossible to obtain with classical methods.

6.2 Blood vessels segmentation in retinal images

In this section, we evaluate quantitatively one of the
shape-space Þlters on the speciÞc application of retinal
blood vessel segmentation, where it is used as a seg-
mentation tool. The motivation here is not to develop
a complete process, but rather to demonstrate that the
qualitative results of the previous section 6.1 are of some
practical importance. In particular, we are going to see
that a shape-based Þlter can advantageously replace its
threshold-based counterpart.

As in many other existing approaches [35], we work
here on the green channel of the color retinal image.
To improve the visibility of the blood vessels, for each
color retinal image f c, a black top-hat transform, given
by %b5 (f g) ' f g, where %is morphological closing using
a disk with radius 5 as structuring element b5, is applied
to the green channel f g. When a mask of eye fundus is
available, we combine it with the black top-hat f t . We
thus obtain an image f i in which the blood vessels are
visible, and the main structures of the blood vessels are
present in the Max-tree T representation of f i .

Blood vessels are usually long and thin structures.
Hence, the attribute used here is the elongation A e. For
each node C of the Max-tree T , the elongation attribute
is given by

A e(C) = |C|/ ($ " l2
max ), (14)

where |á|denotes the cardinality (area) and lmax denotes
the length of the largest axis of the best Þtting ellipse for

the connected component C. We expect that nodes with
low attribute A e correspond to blood vessels.

The core of this application is the Þltering of the Max-
tree T . A mere thresholding of the elongation A e already
provides interesting results, but also gives unwanted
objects (noise). However, a very low thresholding value
tmin on A e ensures that thresholded nodes are blood
vessels. These initially extracted nodes are used as seeds
in the sequel. We then apply a morphological Þltering
with a depth criterion: using the Min-tree T T of the node
weighted graph (GT , A e), we only preserve the nodes
that have an height smaller than a given thresholding
value d0 in T T and that furthermore contain the seeds.
The connected components contained in the preserved
nodes of T T are considered as segmented blood ves-
sels. The whole process is one of the many variants
of shape-based upper levelings. An example of such a
blood vessel segmentation process is given in Fig. 8. The
elongation-based upper leveling correctly segments most
of the blood vessels (see Fig. 8 (e)).

We have tested this speciÞc shape-based upper level-
ing on the database of Digital Retinal Images for Vessel
Extraction (DRIVE) [36, 37] and on the database of
STructured Analysis of the Retina (STARE) [38, 39]. Fig. 9
shows two segmentation results on DRIVE database,
where the parameter tmin is set to 0.05, and the pa-
rameter d0 is set to 0.09. Two segmentation results on
STARE database are depicted in Fig. 10 in Appendix A
for this paper. Qualitatively, most of the blood vessels
are correctly extracted, although some noise at the end
of the vessels is also extracted. In addition some very
thin blood vessels are missed.

Quantitative assessment is based on three performance
measurements: sensitivity , speciÞcity, and accuracy [37]
(see Appendix A and [37] for details about these
measurements). High values of these measurements are
required for good segmentation results. A benchmark of
our approach compared to the threshold-based attribute
Þltering [40], and one of the best dedicated method [35]
on DRIVE database is provided in Table 1. The proposed
elongation-based upper leveling is more robust than
the thresholding-based subtractive Þlter given in [40],
where the thresholding value is set manually for each
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