Viscosity of multimodal suspensions predicted from solid fraction model for mixtures
G Roquier

To cite this version:
G Roquier. Viscosity of multimodal suspensions predicted from solid fraction model for mixtures. AERC 2015 Nantes, Apr 2015, Nantes, France. 2015. <hal-01275517>

HAL Id: hal-01275517
https://hal.archives-ouvertes.fr/hal-01275517
Submitted on 17 Feb 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
The model is able to predict the viscosity of a suspension of non colloidal rigid spherical particles in a Newtonian fluid. The theory is developed to highlight a new relation between relative viscosity and the solid volume fraction. A new version of the Compressible Packing Model (CPM), the 4-parameter CPM, is introduced to predict the solid fraction of maximally dense disordered packings of spherical particles. It is apt to account for the geometrical interactions between particles.

4-parameter Compressible Packing Model (CPM):

\[
\gamma_i = 1 - \sum_{j=1}^{n_i} \left[\beta_i \left(1 - \frac{a_j}{\bar{a}_j} \right)^{1 - \beta_i} \right] \left(1 - \beta_i \right) \gamma_j + \frac{\sum_{j=1}^{n_i} (1-\beta_i) \gamma_j}{\bar{a}_i},
\]

where:
- \(\gamma_i \): suspension viscosity
- \(\beta_i \): viscosity of the Newtonian suspending fluid
- \(\phi \): volume fraction of the suspended spheres in a total volume unity
- \(\gamma_j \): volume fraction of the class \(j \) considering the presence of finer class
- \(\bar{a}_i \): maximal volume fraction of the class \(i \) considering the presence of finer class

In agreement with a previous work of [BOURDOS], the iterative approach advocated by Farris and a power-law relation (Krieger-Dougherty type) are used for the relative viscosity. The theory is developed to highlight a new relation between relative viscosity and the solid volume fraction, compatible with the Einstein relation. When the solid volume fraction reaches its critical value, the suspension is jammed and the mixture reaches the packing density of the solid skeleton.

Viscosity of a suspension:

\[
\eta = \eta_0 \prod_{i=1}^{n_i} \left(1 - \frac{\gamma_i}{\gamma_{i_{MAX}}} \right)^{C_{PM}} \quad C_{PM} = 2.5
\]

The model is able to predict the viscosity of a suspension of non colloidal rigid spherical particles in a Newtonian fluid. The theory is developed to highlight a new relation between relative viscosity and the solid volume fraction. A new version of the Compressible Packing Model (CPM), the 4-parameter CPM, is introduced to predict the solid fraction of maximally dense disordered packings of spherical particles. It is apt to account for the geometrical interactions between particles.

References: