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Abstract—In this paper, we are focusing on various industry-
related aspects and new possibilities of virtual environment-
based benchmarking. A brief introduction to augmented virtual
reality simulators is given, focusing on the basic conceptsand
features that make these well suited for collaborative workand
benchmarking in mixed virtual and physical reality. Through the
concrete example of the VirCA (Virtual Collaboration Arena)
system —developed at our centers— the way of involving real
industrial robots in a remote collaboration scenario is discussed.
Typical uses of a shared infrastructure are reviewed, considering
the relationship of the virtual and real entities.

Index Terms—Robotics benchmarking, Virtual Reality, Future
Internet, Networked Robotics, Remote Laboratories.

I. I NTRODUCTION

The ongoing revolution of info-communication technologies
brings completely new paradigms in different overlapping
everyday and industrial ICT applications. This is mainly sup-
ported by the ever-increasing Internet bandwidth, the headway
of Cloud Computing and the Internet of Things [1], [2], [3].
Recent development of display technologies (e.g., UHD TVs,
Google Glass project, Oculus Rift) and smart devices also
foster the convergence and synergies in the ”big picture”.
These fields together are often referred to as Future Internet
research [4].

All these trends point towards new philosophies not only
in home and social applications [3], [5], [6], but in industrial
ICT as well [2]. As a substantive result, the classical Sensing,
Decision making and Actuation paradigm became logically
and/or spatially distributed services massively relayingon
the latest solutions of Cloud Computing and the Internet of
Services.

II. T HE RISE OFV IRTUAL REALITY

Current development is targeting software-based solutions
for virtual collaboration, system-level testing and even bench-
marking. Complete interactive simulation and Virtual Reality
platforms have been created to facilitate sharing best practices
in robotics for multi-site projects (e.g., Webots1). These are
now promoted as R&D platforms, yet finding new domains of
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applications in the industry. This paper presents current op-
portunities to use VR software tools for robot benchmarking.

Typically, in industrial robotics, each robot manufacturer
have been maintaining a closed proprietary software and
controller system—including control algorithms and periphery
interfaces (e.g., KUKA.Sims2) in order to guarantee the safety
and IP of their products [7]. As a result, the development
of multi-vendor solutions is in lack of professional support,
yet it is badly needed. The situation seems to be slightly
changing due to the emergence of the Open Source Robot-
ics Foundation, that teamed with some of the leader robot
manufacturers established the Robot Operating System ROS-
Industrial Consortium [8], [9]. ROS-Industrial aims to apply
ROS in industrial applications allowing for the exploitation of
the previously mentioned new paradigms. In Japan, AIST3

has similar goals based on the RT-Middleware standard [10]
and its implementation, OpenRTM-aist [11].

VR has proved to be a practical tool in generalizing and
replacing physical components, thus allowing a site with
limited hardware to still test and functionally trial its system.
This feature is believed to support robotics best practices, since
the same standards can be copied over various locations.

Besides robotics, numerous recently developed, and widely
used middleware technologies, such as DDS (Data Distribution
Service) [12], [13], [14], [15], ROS (Robot Operating System)
[16], [17], [18] and RT-Middleware [11], [19] initiated a
paradigm shift in the following topics backed up by immersive
3D VR:

• Remote laboratories (e.g., [20], [21], [22])
• Mixing Virtual and physical realities (e.g., [23], [24],

[25])
• System of Systems (e.g., [26], [27])
• Cyber Physical systems (e.g., [28], [29])
• Collaborative virtual commissioning of automation sys-

tems (e.g., [25], [30], [31], [32])
• Exploiting cloud computing in industrial/service robotics
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scenarios (e.g., [33], [34], [35], [36], [37])
• Education in collaborative virtual environments (e-

learning) (e.g., [24], [38]).

III. S IMULATION IN USE

The real life simulation of a robotic system is of great
importance (either in R&D or the industry), helping to realize
the whole complex production system perfect for the first time.
Complete virtualization, —where the system exists only in
VR— is sometimes not sufficient, especially in cases where
nonlinearities cannot be modelled completely, or the lack of
knowledge of system parts or parameters do not allow the
task to simulate the processes properly. In this case, it has
shown to be advantageous to apply a mixed simulation model.
Some parts of the system can be included as real machines or
components, augmenting the VR. The great advantage of this
mixed environment is that these robots/machines do not have
to be at one place (as in the real production line would require)
nor they have to be under the direct supervision of the user. For
example, important complex machines can be added for the
trial of the system that belongs to other companies or univer-
sities that are interlinked in the mixed VR system. The whole
system can then be modelled and tested even before its actual
installation or distinct real components can be benchmarked in
the design phase using the complement VR environment. This
concept leads to a more streamlined component benchmarking,
testing and commissioning procedure.

All the bottlenecks and scheduling problems can be evalu-
ated and resolved within the VR system. This option is also
available once the real production system is set up and running.
In order to carry out servicing tasks, testing or improvement
modifications of the system, parts of the real system have
to be fully or at least partially separated or taken out from
production. This is a lengthy and costly process, not to mention
the risk of damaging the production capabilities. The virtual
test lines can be easily connected via the VR system that will
allow any further real life and real-time testing without even
stopping the original production line.

IV. T HE V IRTUAL COLLABORATION ARENA

VirCA (Virtual Collaboration Arena)4 framework has been
developed while considering the union of the requirements of
the various fields listed above. VirCA implements a complex
vision by adopting the shareable and fully customizable 3D
virtual workspace as a central idea. This concept enables
people who are not always at the same location, (or even
on the same continent) to create ideas, then design and
implement them together in a shared virtual space. VirCA can
be considered as a pilot solution which highlights several key
tenets of the trend of Future Internet, and as such provides
very effective means of collaboration in virtual spaces.

The framework is composed of a VR engine and a web-
based system editor. The editor allows for the composition of
VirCA applications combining different real or virtual entities
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including robots, machine tools, static 3D objects and various
functionalities such as speech recognition or 3D navigation.
The networked component mechanism behind VirCA is based
on the RT-Middleware component standard [10] that is ori-
ginally introduced for component-based robotics, but it also
serves well the purposes of VirCA. The VR application is
based on the community maintained OGRE engine [39] which
is able to visualize spectacular 3D scenes and provide the
necessary features for the seamless integration of physicssim-
ulators and virtual sensors. Recent version of VirCA is running
on Windows and available for free download from the website.
Further discussions and examples of VirCA applications can
be found in [40], [41], [42], [43].

V. BENCHMARKING IN HIGHER EDUCATION

The VirCA system can easily be adopted for education of
advanced robotic systems and teaching best practices. Some
universities or polytechnics are not as well equipped with
robots or CNC machines. At most places, real production lines
cannot be found (mostly because of the space requirement and
the expenses), but there is an existing demand from the in-
dustry employers towards fresh engineers for having a greater
insight into modern flexible manufacturing systems. This can
be solved with VirCA, training sites can work together in the
Virtual Collaboration Arena by entering their machines. This
is a great advantage, because adding their own equipment to
the pool of system they eventually get experience with other
machines as well. This opens a great new perspective in virtual
production line benchmarking as well, where every virtual/real
system can be tested according to the same protocol. Figure
1 shows how the various equipments (located at different
locations) can be delegated into the shared VR of VirCA
making the access possible for the groups of remote users.

Figure 1. Illustration of the location independent hands-on remote training
concept

VirCA is in the early phase of its life-cycle, however it
is already applied in several research projects in Europe [44],



[45], [46], [41] and in Japan [43]. It is also considered as teach-
ing material at prestigious Hungarian universities (e.g.,Óbuda
University, Széchenyi István University, Budapest University
of Technology and Economics).

VI. CONCLUSION

The advantage of mixed virtual reality simulators is that
there is no need for separate warehouses for storing the
large machines or moving them physically for comparative
tests. The interlinking of components is entirely arbitrary,
so is the capability to employ any benchmarking protocol.
Tight coupling of physical robots and system parts and their
virtual variations enables an almost infinite complexity in
system design. Task-based test, functional trials, safetychecks
and educational tasks can all be run with on these extended
simulators.
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