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Abstract: In this paper = , we design self-x novel solutions to the minimal connected sensor
cover problem. The concept of self-*+ has been used to include fault-tolerant properties like self-
configuring, self-reconfiguring/self-healing, etc. We will present two self-stabilizing, fully distributed,
strictly localized, and scalable solutions, and show that these solutions are both self-configuring and
self-healing. The proposed solutions are space optimal in terms of the number of states used per
node. Another feature of the proposed algorithms is that the faults are contained only within the
neighborhood of the faulty nodes. The paper also includes a comparison of the performance of the
two proposed solutions in terms of the stabilization time, cover size metrics, and ability to cope with
transient and permanent faults.
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Couverture Auto-* d’une zone d’impacte dans les réseaux de
capteurs

Résumé : Ce rapport présente une premiére solution distribuée de type auto® au probléme de
couverture connectée d’une zone d’impacte d’'une requéte dans un réseau de capteurs.

Dans les réseaux de capteurs une requéte est envoyée pour capter des données ou des événements
dans une zone géographique appelée - zone d’impacte. Généralement suite au déploiement massif des
capteurs dans une zone se trouvent plus de capteurs que le nombre minimal nécessaire a répondre
a une requéte donnée. Pour des raisons d’économie d’énergie une partie des capteurs doivent étre
passés dans un mode de veille. Le probleme est de trouver I’ensemble minimal de capteurs qui couvre
une zone d’impacte tout en gardant la connectivité de la couverture.

Nous proposons deux solutions de type autox (auto-organisantes, auto-stabilisantes) & ce prob-
leme, les deux étant optimales en nombre d’états par processus.

Mots clés : réseau de capteurs, couverture connexe, autox



1 Introduction

After spending the first era of computing with mainframes, we are now in the era of personal
computing. The next wave, the third era of computing was visioned by Late Mark Weiser. In
1988 at the Computer Science Lab at Xerox PARC, he articulated the next age of computing, called
ubiquitous computing [14]. In ubiquitous world, we expect to see thousands of invisible computing
devices used per person, maybe, even in a household. We can now build ad-hoc networks composed
of a large number of low-cost, low-power, and small sensor nodes. These ad-hoc wireless sensor
networks [8] have applications everywhere  military, business, commercial, health, and home.

Sensor networks [1] are expected to be very large. In many applications, they will be densely
deployed. These networks are energy constrained. Not only the sensors have limited battery power,
it is extremely difficult if not impossible to replace the battery. They may be deployed in inaccessible
terrains or disaster areas. So, it is very important to design energy efficient sensor networks to enable
untethered and unattended operation for an extended period of time. The topology may change
very frequently due to various reasons, like position, reliability, available energy, malfunctioning, etc.
Thus, designing reliable wireless sensor networks is challenging.

Deploying pre-configured network of a huge number of sensors is impractical. Expecting to
be able to manually maintain that size of a network is absurd. Considering all these constraints,
the sensor network must be self-configuring and self-maintaining or self-healing [17]. A system
is considered to be self-configuring if starting from an arbitrary state and an arbitrary input, the
system will eventually satisfy the specification or start behaving properly. A self-healing system
automatically recovers from different perturbations and dynamic changes. A self-healing system can
also be characterized as a self-maintaining system.

Software systems are being used for almost all business-critical applications. Thus, the availability
of these systems is extremely important. The system must be able to adjust to different inputs, adapt
to all possible changes of the environment, and handle different faults. The different concepts or terms
encapsulated in self-+ have been introduced to characterize different ways of detecting, adjusting,
and recovering from the above situations.

In this paper, we will present two self-stabilizing solutions to an important energy saving prob-
lem in sensor networks. Then we will show that these solutions can also be considered as self-x
solutions. In a self-stabilizing system, every computation, upon starting from an arbitrary state,
eventually reaches a state from where the computation satisfies the specification. The paradigm of
self-stabilization, introduced by Dijkstra in 1974 [6], is considered to be the most unified strategy
to design fault-tolerant systems. Although it is intended to handle transient faults (e.g., memory
errors, message omissions/duplications, program counter corruptions), it has been established that
almost all types of faults can be dealt with in a stabilizing manner. Readers can refer to [7] for an
overview of self-stabilization.

Motivation and Related Work. In sensor networks, queries are sent from some devices (could
be a satellite, PDA, laptop, or any computer) to sense some data/events over some time period and
a geographical region, called a query region. A query could be like “Every I ms for the next Y
seconds, tell me how many vehicles of type 1" are moving in direction D in region R”. The query
region is usually a subset of the total region covered by all the sensors in the network. Considering
the limited energy available, one of the most important goals in any protocol on sensor networks is
to save energy. Since the sensors are usually densely deployed, there are usually a lot more sensors
than required to process a given query. One possible way to minimize usage of energy is not to keep
all sensor nodes fully active all the time. Some of them can be put in passive mode some times while
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others are active in sensing the data in the environment. However, for the sensor networks to be
effective, the active nodes must be able to cover the whole query region and maintain the network
connectivity at all times.

In [9], a new optimization problem in sensor networks, called the connected sensor cover was
introduced to model the query response system. The problem can be informally defined as follows:
Given a query over a sensor network, select a minimum or nearly minimum set of sensors, called
connected sensor cover, such that the selected sensors cover the query region, and form a connected
network among themselves. In its general form, this problem is known to be NP-hard [9, 10].

In this work, we address the minimal connected sensor cover problem (introduced in [9]) that
constructs a minimal cover with respect to the inclusion operation. Coverage and connectivity
issues were addressed in literature with different assumptions: centralized, distributed using some
coordinators, and probabilistic. An overview of these approaches is presented below. Two self-
organizing solutions were presented in [9]. None of the solutions is localized. The first solution is
centralized. In the second solution, a particular sensor node behaves as the coordinator or leader.
This special node collects all the global information related to the possible new sensor nodes to be
added, then decides which ones to choose.

The issues of coverage and connectivity, and the relations between them were analyzed in a unified
framework in [13]. The CCP protocol [13] can be used to provide different degrees of coverage. It was
shown in [13, 18] that if the communication range is at least twice of the sensing range, the complete
coverage implies connectivity. When the above condition does not hold, CCP was integrated with
SPAN [3] to provide both coverage and connectivity. However, in SPAN, the nodes need to maintain
information about two-hop neighborhood. SPAN is a connectivity maintenance protocol where a
node volunteers to be a coordinator when it finds that two of its neighbors cannot communicate with
each other directly or indirectly. After a node decides to be a coordinator, it announces that with
a random delay to reduce the number of redundant coordinators. A similar approach was discussed
in ASCENT [2]. ASCENT nodes use the number of active neighbors and message losses to decide
if they should be active or passive. However, this protocol does not guarantee complete coverage of
the query region.

Probabilistic studies related to coverage and connectivity in unreliable sensor networks were
done in [11]. A sensor grid network of unit area was considered. This work includes a necessary and
sufficient condition for the network to remain covered and connected in terms of the probability of a
node to be active (i.e., not failed) and transmission radius of the nodes. Some optimal conditions for
coverage were established in [18]. An algorithm for coverage was proposed based on those optimal
conditions. However, that result is valid only when complete coverage implies connectivity (as
discussed above). A coverage protocol using a random delay to announce decision to turn off was
proposed in [12]. The issue of connectivity was not addressed in [12]. The GAF protocol [15] uses
GPS to reduce the redundant nodes to maintain routing paths in ad-hoc networks. A randomized
probing-based density control algorithm was used to maintain coverage under node failures in PEAS
protocol [16]. The probing range can be changed to provide different degrees of coverage.

Contributions. None of the above mentioned solutions explicitly addresses fault-tolerance issues
and in particular, transient faults. The main contribution of this research is to design self-x solutions
to the connected sensor cover problem. To the best of our knowledge, these are the first localized,
distributed, and self-x solutions to the query connected cover problem in sensor networks. Localized
solutions in large networks are desirable due to their high reliability and scalability. We implemented
the self-x properties by using the self-stabilization paradigm [7]. Self-stabilization is the most adapted
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theoretical toolkit for the design of algorithms that cope with a broad range of faults in dynamic
and large scale networks. Our solutions can handle different types of faults including node and
link (wireless communication) failures, change of power level, topology changes due to faults or new
joinings, and memory and program counter corruptions.

In the next section, we define the model and specify the connected sensor cover problem. In
Sections 4 and 5, we present self-stabilizing solutions to the problem. Formal analysis and the proofs
of the self* aspects of our solutions are presented in the Appendix. Discussion about the complexity
of the algorithms and simulation results are included in Section 6. The experiments were conducted
with respect to the following metrics: stabilization time, cover size and fault-tolerance. Finally, in
Section 7, we present some concluding remarks and we will give some ideas to extend this research.

2 Preliminaries and Model

Sensor Network. In this research, we consider sensor networks [9, 13] consisting of a large number
of sensors (also referred as sensor nodes and nodes in this paper) randomly distributed in a geo-
graphical region. We model the sensor network as a directed communication graph G(V, E), where
each node in V represents a sensor, and each edge (i,j) € E, called communication edge, indicates
that j is a neighbor of 1.

For a sensor i, there is a region, called sensing region, which signifies the area in which the sensor
1 can sense a given physical phenomenon maintaining a desired confidence level. The sensing range
of a sensor ¢ indicates the maximum distance between i and any point p in the sensing region of i.
A point p is covered (or monitored) by a sensor node i if the Euclidean distance between p and i is
less than the sensing range of i.

The communication region of a sensor i (also called the transmission region) defines the area

in which 4 can communicate directly (i.e., in single hop) with other sensor nodes. The maximum
distance between node ¢ and any other node j, where j is in the communication region of 4, is called
the communication range of i. A directed path (sequence) of sensors i = iq,149,...,4, = j, where i,
is a neighbor of iz for 1 <z < m — 1, is called a communication path from i to j. The length of
the shortest (communication) path (which is the number of sensors on the shortest path) from i to
j is called the communication distance from i to j.
Program. We consider the local shared memory model of communication as used by Dijkstra [6].
The program of every processor consists of a set of shared variables (henceforth, referred to as
variables) and a finite set of actions. It can only write to its own variables, and read its own
variables and variables owned by the neighboring nodes.

Each action is of the following form: < label >:: < guard > — < statement >. The guard of
an action in the program of p is a boolean expression involving the variables of p and its neighbors.
The statement of an action of p updates one or more variables of p. An action can be executed only
if its guard evaluates to true. We assume that the actions are atomically executed, meaning, the
evaluation of a guard and the execution of the corresponding statement of an action, if executed, are
done in one atomic step.

The state of a node is defined by the values of its variables. The state of a system is the product
of the states of all nodes. We will refer to the state of a node and system as a (local) state and
(global) configuration, respectively.

Fault Model. This research deals with the following types of faults: (i) The state or configuration
of the system may be arbitrarily corrupted. However, the program (or code) of the algorithm cannot
be corrupted. (ii) Nodes may crash. That is, the faults can fail-stop nodes. (iii) Nodes may recover
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or join the network. The topology (both actual and logical topologies) may change due to faults.
Faults may occur in any finite number, in any order, at any frequency, and at any time.

3 Problem and Description

Our research is focused on designing a reliable, self-organizing, and self-healing query-response sys-
tem. A query in sensor networks asks for some data/measurements/events sensed/observed over
some period of time at some frequency over a geographical region. Upon receiving a query, the
sensors will sense or measure the data and collaborate among themselves to disseminate or fuse the
collective data to the sink of the query. Although a query can be initiated in the whole geographical
region, typically, a query refers to a subset of the region, called the query region denoted by Ry in
this report.

The sensors only inside the query region should be involved in generating the response to the
query. Considering the redundancy and our goal of designing an efficient query-response system, all
sensors inside the query region should not be actively participating in the protocol to answer the
query. Our approach is for the sensors inside Rg to self-organize to form a logical network sufficient
enough to cover the query region. However, in order for the sensors in the logical network (i.e., the
region covered by the selected sensors) to be able to collaborate to detect the events, and compute
and deliver the response, they must be able to communicate with each other directly or indirectly.
That is, the logical graph not only needs to satisfy the coverage criterion, it must also be a strongly
connected communication graph.

Definition 3.1 (Connected Sensor Cover). Consider a sensor network G consisting of n sen-
sors Iy, 1o, ..., I,. Let S; be the sensing region associated with sensor I;. Given a query Q) over a
region R in the sensor network, a set of sensors SCq = I, I;,, ..., 1;  is called a connected sensor
cover for Q if the following two conditions are satisfied: (a) Coverage: Rg C (S;, U S;, U...S;,.).
(b) Connectivity: The subgraph induced by SCgq is strongly connected in the sense that any two

sensors in this set can communicate with each other directly or indirectly.

Definition 3.2 (Minimal Connected Sensor Coverage Problem). Given a sensor network and
a query over the network, the connected sensor coverage problem is to find the minimal connected
sensor cover (we will call it MCSCgq). A cover is considered minimal if it does not include another
connected cover.

Additionally, we require the algorithm (solving the above problem) to be self-organizing, self-
healing, and self-stabilizing [7, 17]. That is, regardless of the initial state (wrong initialization
of the local variables, memory or program counter corruptions) nodes self-configure/self-organize
using only local information in order to make the system self-stabilize to a legitimate state. The
legitimate state is defined with respect to a minimal connected cover formed out of the nodes that
can communicate with each other either directly or indirectly. The nodes in this set are the only
nodes that remain active. Moreover, under various perturbations, such as node joins, failures (due to
crash or energy loss), state corruptions, or weakening of power, the minimal connected cover should
be able to self-heal without any external intervention and the impact should be confined within a
tightly bounded region around the perturbed area.

In this paper, we will present two space optimal self-stabilizing, self-configuring and self-healing
solutions to the connected sensor cover problem. Computing a minimum sensor cover in its general
form is NP-hard [9, 10]. So, the proposed solutions make an attempt to approach an optimal solution
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by checking and removing redundant sensor nodes from the final cover set. However, the solutions
although suboptimal in terms of the number of sensors, satisfy Definition 3.2.

Note that removing redundancy while constructing the distributed connected covers is a difficult
task, and its degree of accuracy depends on the exposure of a node. If nodes farther away are
considered in the computation of the redundancy, the connected cover set will approach closer to
the optimal value, i.e., it is expected to be smaller. This trade-off has been pointed out in [4]. Our
solutions use only two states per node and use knowledge of nodes at a distance of up to two hops
away. We conjecture that using only two states, it is impossible to construct a fully local (i.e., only
the immediate neighborhood is known) self-stabilizing connected covers, hence our solutions use the
minimal knowledge per node.

Our solutions do not require the sensors to have unique identifiers (ID’s). However, each sensor i
maintains a set of distinct labels, denoted as Nj, such that each label identifies a (unique) neighbor
of 7. Note that these labels are unique only locally.

The query region forms a convex region, and its boundary (hence, its center which is used by our
first implementation) is known to all sensors. The energy level of the sensors may change over time
due to various reasons. The proposed solutions cope with that.

We distinguish three types of sensors in or around the query region Rg. In our algorithms, the
rules for these three types of nodes are different. A sensor is termed as a boundary sensor if its
sensing region intersects with the boundary of the query region Rgp. A sensor is called an interior
sensor if its sensing region is completely inside the query region E¢ and it is not a boundary sensor.
All sensors which are neither boundary nor interior are called exterior sensors.

Data Structures. Three variables (Rg, N;, and Pos;) are used as Constants by the proposed
solutions. That is, the algorithms do not write into these variables. The input query includes the
geographical information about the region R to be covered. N; represents the neighboring sensors
of sensor 7. Our solutions assume that there is an underlying self-stabilizing topology maintenance
protocol which computes N;. The sensors use either some device or/and protocol to know their
geometric location.

The algorithms also use two Variables: S; and Color;. S; represents the sensing region of sensor
1. The Color variable is used to represent the different status of a sensor. Sensors can be either in
red or black initially. Eventually, if a sensor turns black and stays in that color, then it is considered
to be a member of MCSCg. Other sensors will remain in red color.

Macros. The macros do not represent variables, but return values when referred to in the code.
Our first solution assumes that the sensors know the location of the center. So, they can use their
location information (Pos) to compute their distances to the center. Note that this information
is used uniquely by the first solution. The macro Dst(i) computes the distance of Sensor i from
the center of Rg uncovered by the sensing region of . We consider directed communication graph
of sensors. So, a sensor i may not have a two-way communication with all its neighbors. Sensor
i may need this knowledge (i.e., which of its neighbors have a two-way communication with it)
to check redundancy. The macro Bidir N (i) returns a set of neighbors of i that effectively have
a bidirectional communication with 7. The predicate BlackConNbrs(i) is used to implement the
redundancy checking. This predicate is the local version of the “Rule k7 of [4]. It returns true if
the subgraph of black neighbors of a node is connected. We also introduce a novel version of the
“Rule k7, BlackConNbrs(i,t), that checks if the subgraph defined by the black neighbors of two
neighboring nodes, ¢ and ¢, is connected.
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Module 3.1 Data structures used by Cover Algorithms (Algorithms DMSC and ZMSC).

Constants:

Rg:: Query region; represented as a set in the algorithm;

N; :: Set, of sensors within the communication range of Sensor i;

Pos; :: Geometric location or coordinates of Sensor ;
Shared Variables:

S; 1 Sensing region of Sensor i;

Color; € {black,red} :: Color of Sensor i;
Macros:

Dst(i) = Returns the distance of Sensor i from the center of R uncovered by i sensing region (used only
in Algorithm DMSC);
uses R¢g and Pos; to compute the distance;

BidirN(i) = {j| j € N; Ai € N;};

RealBlackN; :: {j|j € BidirN; A (Color; = Black)};

RealBlackN; ; :: {j|j € BidirN;|J BidirN; A (Color; = Black)};

BlackConNbrs(i) = Vj,k € RealBlackN; : 3l1,...,l, € RealBlackN; : l; € RealBlackN; A (Vz < n :
lo4+1 € RealBlackN,,) Al,, € Real BlackNy;

BlackConNbrs(i,t) = Vj,k € RealBlackN; ¢ : 31, ...,l,, € RealBlackN;; : 1 € RealBlackN; N (Vz < n :
lo4+1 € RealBlackN;,) Al,, € Real BlackNy;

4 Distance-Dependent Query Cover

The first solution to the connected sensor cover problem is given as Algorithm 4.1 (referred in this
paper as Algorithm DMGSC). The proposed algorithm starts from the boundary sensors of Rg, and
proceeds towards the center of the region. Starting from any configuration, the algorithm selects a
few sensors among many (due to our assumption of very dense network) to include in the (minimum)
cover set MCSCg.

If the system starts from a good initial configuration, it first selects some boundary sensors, then
some interior sensors, and keeps repeating the process of selection moving towards the center of the
query region until it covers the whole region Rg. Our solution is localized, meaning the decision
to be selected in MCSCq is taken locally by all nodes. So, unlike the solution in [9], nodes do not
collect any global information to compute MCSCg. Sensors consult only their immediate neighbors
to decide if they should be included in the final set cover.

4.1 Normal Behavior

In the following, we assume that the system starts from a good initial configuration, meaning, all
sensors are red initially. If the system starts from a good initial configuration, it first selects some
boundary sensors, then some interior sensors, and keeps repeating the process of selection moving
towards the center of the query region until it covers the whole region Rg. In the following, we will
first describe how some boundary red sensors are selected to turn black to cover the boundary of
Rg. Then we discuss the general case of covering any uncovered region inside the query region.
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Algorithm 4.1 Self-stabilizing Distance-Dependent Connected Sensor Cover Algorithm (Algorith-
m DMSC) for Sensor i.
Predicates:

Boundary(i) = S; is a boundary sensor;

Interior(i) = S; is an interior sensor;

Exterior(i) = S; N Rg = ; /* S; is an exterior sensor; */

Redundant(i) = BlackConNbrs(i) A (Si( Rq) € Ujereaslackn; Sis

Samelntrsctn(i, j) = Interior(i) A Interior(j) A (3z,y € {N; N N;} : (Color, = Colory = black) :
(¢ € Ny ANi € Ny) A Pos; € (S, NSy) A Pos; € (S, NSy));

BestCandidate(i) = Vj € N; : Samelntrsctn(i, j) : (Dst(i) < Dst(j));
Actions:

Ap 2 Boundary(i) A —=Redundant(i) A Color; # black — Color; = black

Aj i (Redundant(i) V Exterior(i)) A Color; # red — Color; = red

As 1 BestCandidate(i) AN —Redundant(i) A Color; # black — Color; = black

Boundary of Rg. The initial task is to select enough sensors to cover the boundary with a
communication network of sensors. The selected sensors will be colored black, and the rest will
remain red. This is implemented in Action A4; using the predicates Boundary and Redundant. A
boundary node will turn black and remain black only if it is not a redundant node. The redundant
nodes will be eventually marked red. The redundancy is checked by using the predicate Redundant,
and is described in detail in the next paragraph. Action A; changes a sensor from red to black.
Instead of wasting energy and time, we added the redundancy check in Action A; itself. As we are
using an asynchronous model, some nodes may be slow in executing Action Ay, while their neighbors
have already changed to black by executing the same action. So, the slow nodes soon after turning
to black may find out that they are redundant. Then, they will have to turn to red by executing
another action (Az). Note that, a red sensor turns black only after checking for possible redundancy
in the neighborhood.

The Redundant(i) predicate checks if the query region covered by sensor i is covered by some
neighboring nodes.

The above tests for redundancy are implemented by a sensor 4 before it decides to withdraw itself
from further consideration into the set cover MCSCg. However, those tests only verify the coverage of
i by other sensor (s). They do not implement the test of connectivity of the neighborhood of i. Recall
that the set MCSCo must be a connected set cover. So, before removing itself, Sensor ¢ wants to
secure the connectivity in its neighborhood. This is implemented in the predicate BlackConNbrs(i)
which is a part of redundancy checking. Ideally, Sensor i needs to check if every pair of its back
neighbors 5 and k, will remain connected if ¢ is marked redundant and removed. However, if the
path between j and k contains any node [ ¢ RealBlackN;, then ¢ cannot verify this path because
our solution is strictly localized. So, our implementation of BlackConNbrs(i) verifies if j and k
are connected using some intermediate nodes Iy, ...,l, where all the intermediate nodes are black
neighbors of 3.

Inside Rg. Current black nodes (their creation is discussed in the next paragraph) are used to
create more black nodes to gradually cover the uncovered region. Future black nodes are selected
from the intersections of pairs of existing black nodes. The algorithm considers every intersection of
two black nodes. It chooses one or more red nodes from the intersection as the new members of the
cover set MCSCg (using the predicate BestCandidate).
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Note that the current black nodes may have been created using the boundary sensors selected
earlier. Or, they were created by using the predicate BestCandidate among some sensors inside an
intersection of two other black nodes.

Newly selected nodes for the cover set create a new (virtual) boundary of the uncovered query
region. Thus, the algorithm reduces the uncovered portion of the query region Ry by effectively
pulling the (virtual) boundary towards the center of the query region.

4.2 Faults and Recovery

In this section, we focus on the fault handling features of the proposed algorithm (Algorithm 4.1).
There are two variables used in the solution: S; and Color; for a Sensor 7. So, we need to show that
our solution can cope with all possible corruptions associated with these two variables.

(1) Wrong initialization of the color variable. As discussed in Section 4.1, all sensors, if
properly initialized start as red. (a) Boundary Sensor. Assume that a boundary sensor i starts
in black color. If i is not a redundant node, then i remains black (see Action A;). That is, no
correction is necessary. If i is redundant, then it will satisfy the predicate Redundant, hence the
guard of Action Ay. Node i then executes Ao and changes its color to red. (b) Interior Sensor.
Assume that an interior node is initialized as a black colored sensor. If ¢ is not a redundant node,
then ¢ remains black (see Action Ay). So, no correction is necessary. If i is redundant, then it
will satisfy the predicate Redundant and execute Action Ay which will change its color to red. (c)
Exterior Sensor. All exterior sensors must be eventually colored red. If any exterior sensor starts as
black initially, then it will execute Action Ay to change its color to red.

(2) Best candidate sensor’s color is corrupted from black to red. Action Aj corrects the
color back to black.

(3) A redundant sensor’s color changes from red to black. The node, regardless of whether
boundary or interior, will satisfy Redundant and hence, the guard of Action As. So, it will change
its color to red.

(4) Weakening or Failure of sensors, both in terms of communication and sensing ability.
The weakening or failure of sensors will affect the sensing and communication range of the sensors.
In other words, the constant set N and the variable S will change. Change of S may change the
values of Redundant and BestCandidate. All these changes will be reflected in the change of values
of the guards. So, eventually, the color of the affected node will change due to the execution of the
actions. All change of colors have already been discussed in earlier cases above.

5 Distance-Independent Query Cover

In the previous section, we proposed a distance-based solution to covering a query region. In this
section, we present a solution which does not need to compute the center of the query region. The
proposed algorithm given as Algorithm 5.1 (referred in this paper as Algorithm ZMGSC) has a different
approach than Algorithm DMGSC. It chooses non-redundant nodes inside the query region. Note
that in a good initial configuration (when all nodes are red), every node inside the query region is a
potential candidate to be selected in the final cover MCSCq. Our algorithm removes the redundant
nodes from the MCSCg. The two phases of the algorithm are executed based only on the local
information available to the nodes.
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Algorithm 5.1 Self-stabilizing Distance-Independent Connected Sensor Cover Algorithm (Algorith-
m ZMSC) for Sensor i.
Predicates:
Useless(i) = (BidirN; = ();
Ezterior(i) = (S; N Rg) = 0);
Redundant(i) = BlackConNbrs(i) A (Si (N Rq) € UjereaBlackn; Sis
Potential_Candidate(i) = —(Useless(i) V Exterior(i)) A mRedundant(i);
Candidate(i) = Potential_Candidate(i) A (Vj € BidirN; : Potential_Candidate(j) :: i < j)
Potential_Link(i,j, k) = Potential_Candidate(i) N —Candidate(i) A (It € Bidir(i),3j,k €
RealBlackN; | Real BlackNy, —(BlackConNbrs(i) V BlackConNbrs(i,t))
Link(i) = 3j, k, Potential _Link(i, j, k) A (Vs : Potential_Link(s, j, k) = i < s)
Actions:
A; ¢ (Candidate(i) V Link(i)) A Color; # Black — Color; = Black;
Ay + =(Candidate(i) V Link(i)) A Color; # Red — Color; = Red;

5.1 Normal behavior

Starting from a good configuration, all candidates or links eventually become black by executing A; .
A process is a candidate if it is inside the query region or on the boundary, but not a redundant
node. A node is critical if removing it disconnects at least a pair of its neighbors locally. Due to
the asynchronous execution of the algorithm, all nodes may become candidates at the same time.
In order to break the symmetry, only one node can be a candidate in any neighborhood. However,
choosing one candidate per neighborhood may disconnect the cover. This is avoided by using link
nodes. A node is a potential link node between two black nodes if it is a potential candidate but
not a candidate, and the two black nodes are not neighbors of each other. That is, a potential
link node works as a bridge between two black nodes that would otherwise be disconnected. A link
node between two black nodes is the node with the minimum ID (as per the local label) among the
potential link nodes of the black nodes.

5.2 Faults and Recovery

As in Algorithm 4.1, this algorithm also has two variables used in the solution: S; and Color; for
a Sensor i. S0, we need to show that our solution can cope with all possible corruptions associated
with these two variables.

(1) Wrong initialization of the color variable. In Algorithm ZMSC, all sensors, if properly
initialized start as red. (a) Interior € Boundary Sensors. Assume that an interior or a boundary
node is initialized as a black sensor. Let i be this node. If ¢ is not a redundant node or it is critical,
then ¢ remains black (see Action Ay). So, no correction is necessary. If i is redundant, then it
executes Action A which will change its color to red. (b) Exterior Sensor €& Useless Sensors. All
exterior sensors must be eventually colored red. If any exterior sensor starts as black, then it will
execute Action Ay to change its color to red. If a black sensor cannot be sensed by none of its
neighbors,; then it will turn red by executing As.

(2) Candidate or link sensor’s color is corrupted from black to red. Action A; corrects the
color back to black.
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Algorithm S.T. | CS | Algorithm S.T. | C.S.
DMSC grid, range 9 41 | 116 | ZMSC grid, range 9 65 122
DMSC random, range 9 32 | 146 | ZMSC random, range 9 116 | 155
DMSC random, range 5-15 | 41 145 | ZMSC random, range 5 -15 95 154

Table 6.1: Average Performance Metrics.

(3) Non-candidate or non-links sensor’s color changes from red to black. The node satisfies
the guard of Action Ay. So, it will change its color to red.

(4)Weakening or Failure of sensors, both in terms of communication and sensing ability.
The algorithm behaves as Algorithm DMSC in this situation.

6 Complexity and Simulation

Algorithms DMSC and ZMGSC are space optimal solutions. Recall the problem specification. Upon
termination of the sensor cover algorithm, a node will know if it should be active or passive. So, it
must use at least two states to distinguish its two possible roles. Our solutions use exactly two states
in the Color variable to implement this. Moreover, both solutions compute a minimal cover for the
query region.

In our simulations, for the first set of experiments, we assumed that nodes are fixed and uniformly
deployed on a grid of size 25 x 25 (625 nodes). Similar to [9, 11, 18] we consider the sensing region
associated with a sensor modeled as a circular region around itself. We considered a homogeneous
network (i.e. all sensors have the same sensing region  circular of radius 9). Then in the second
set of experiments, we considered 625 sensors randomly deployed in a square region of size 100, with
different sensing regions uniformly distributed in the range between 5 and 15. In all the simulations,
we considered a circular query region of radius 40. The number of experiments performed for each
simulated point was 100. The performance metrics we measured are the stabilization time (S.T.)
and the number of nodes per cover (C.S.). The average results are summarized in Table 6.  Our
experiments for both the topologies (grid and arbitrary) show that Algorithms DMSC and ZMSC
have almost identical behaviors in terms of the coverage size, Algorithm DMSC computing a slightly
better cover.

Algorithm DMSC stabilizes faster than Algorithm ZMSC (see Figures 6.1 a,b,c) . The slower
stabilization of Algorithm ZMSC is due to the fact that a sensor inside the query region can change
its color more than once. In Algorithm DMGSC, a sensor inside the query region waits until the
covering wave arrives at its neighborhood.

Interestingly, the type of sensing regions (homogeneous or different) and the placement of sen-
sors (grid or arbitrary) do not have a strong impact on the coverage size and stabilization time
for Algorithm DMSC. Algorithm ZMSC seems to be more sensitive to the topology and sensors
characteristics.

We observed a strong impact of the redundancy predicate on the coverage size. Due to the space
limitation, the plots for this case are not shown. Initially, we assumed that a node is considered
redundant only if it is covered by one, two, or three of its neighbors. Intuitively, in order to define
a cover for a circle, it is sufficient to provide a triangle that includes the circle. The average size of
the cover at the stabilization time was around 400 nodes for a grid placement. Note that in the grid
topology, the sensing region of an arbitrary sensor cannot be covered by a triangle. The covering
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Figure 6.1: Experimental Results

region needs to be a square in this case. That is, we need at least four neighboring nodes to compute
the redundancy predicate.

In the simulations shown in Figures 6.1 a,b,c each node uses all its neighbors to decide its
redundancy. As shown in Table 6, the coverage size stabilizes to approximately 150 nodes for the
both algorithms (see Table 6). Moreover, we simulate the impact of various types of faults (crash
and memory corruption) on the construction of the cover computed by IMSC and DMSC (Figure
6.1c). At times 72 and 112, 30% of nodes experience crash and transient failures, respectively. Figure
6.1c shows that the systems is able to self-heal. At time 152, 30% of black nodes (nodes that form
the cover) experience memory corruptions (i.e., their color change from black to red). The system
self-heals again without any external intervention.

7 Future work and Conclusion

The main motivation of our research was to design a totally distributed self-* query response system
in sensor networks. We presented the first local, distributed, scalable, self-x designs of the connected
sensor cover problem introduced in [9]. We presented two stabilizing solutions to the problem and
showed how the solutions are self-organizing and self-healing as well. Algorithms are space optimal

only two colors are used. Once the system is stabilized, the faults can be corrected in their
neighborhood. Hence the system is self-containing. This research showed that the concept of self-
stabilization subsumes many other self-x properties.

The connected sensor cover problem is a global task, meaning nodes cannot locally compute the
final response to the query. However, we still require the algorithm to be local in the sense that the
nodes collect information from their immediate neighbors. Unlike the solution in [9], no node in the
proposed algorithm collects global information, and no node behaves as a special node in any stage
of the execution of the algorithm. In our solution, every node can locally decide if it should be an
active or passive node in the current computation of the response to the query. In summary, we
achieve a global objective by using local algorithms.
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Sensing coverage characterizes the monitoring quality provided by a sensor network in a des-
ignated region. Different applications may require different degrees of sensing coverage. In this
regard, we can extend our solutions in a couple of ways. Firstly, we may write a parametric solution
where the input query will include the degree of coverage expected. The predicate Redundancy will
be relaxed to allow the corresponding higher degree of coverage. Secondly, we can simply assume
a particular degree (> 1) of coverage in our algorithm. Similar to the implementation of a higher
degree of coverage to achieve better robustness, we may also require a higher degree of connectivity
for the same purpose (i.e., to increase the level of fault-tolerance). We can extend the neighborhood
connectivity checking to k-node (k > 1) disjointness in the communication graph. Unfortunate-
ly, higher degree of coverage/connectivity would require more communication cost, i.e., consuming
more power. We can conduct a study on the trade off between connected cover size optimality vs.
robustness and energy efficiency.
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Appendix
7.1 DMSC Proof of convergence

In this section, we will prove the convergence of Algorithm DMSC (presented in Section 4). The self*
properties of Algorithm DMGSC will be proven in Section 8. The outline of this section is as follows:
We will first define a legitimacy predicate of Algorithm DMSC with respect to the specification
of the proposed problem. Next it will be shown that the algorithm is guaranteed to arrive at a
legitimate state regardless of the initial configuration or type of faults occurring in the system.

Definition 7.1 (Legitimacy Predicate Lpasc). The system is considered to be in a legitimate
state (i.e., satisfies the legitimacy predicate Lpmse) if the following conditions are true with respect
to a query region:

(i) All non-redundant boundary sensors are black. (ii) All non-redundant best candidate sensors are
black. (iii) All other active sensors exterior, boundary, and interior are red.

The proof outline is as follows: We first show that starting from an arbitrary configuration, the
boundary of Rg will be covered. Then we establish the progress towards covering the whole region
by proving that every black node creates two more black nodes to cover some other uncovered area
of Rg. This process is repeated until Rg is completely covered.

Lemma 7.1. Starting from any arbitrary configuration, the boundary of the input query Rg will be
covered.

Proof. By contradiction. Assume that there is an area A which intersects the boundary of R is not
covered. A must contain at least an active sensor 5. Then if Action A; is enabled at 4, ¢ will turn
black. Considering other sensors in A, A will eventually be covered. That is a contradiction. Let us
assume that ¢ is not enabled to execute Action A;. Then per guard of A;, there are two possibilities:

1. (i) Sensor i is black. So, considering other sensors (like 7) in A, A is covered. That is a
contradiction.

2. (ii) The predicate Redundant(i) is true. By the definition of Redundant(i), it follows that i
is covered by black sensors. Again, considering other active sensors in A, we obtain that A is
covered, hence the contradiction.

O

Lemma 7.2. In any configuration, if all boundary and interior red nodes are redundant, then the
region Rq is completely covered.

Proof. Assume the contradictory, i.e., although all boundary and interior red nodes satisty Redundant
predicate, Rg is not completely covered yet. Consider an area A intersecting Rg which is not cov-
ered. A must contain at least an active sensor 4. The color of 7 cannot be black since A is assumed to
be uncovered. So, i is red. Since A is not covered, i will not satisfy Redundant(i). That contradicts
the lemma hypothesis. ]

Lemma 7.3. Every black node covering a region of Rg will eventually add two neighboring black
nodes unless the new nodes are found to be redundant.
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Proof. 1. (i) Consider a black boundary node r. That is, r covers a region on the boundary of
Rg. The existence of at least one such node is implied by Lemma 7.1. Assume that 7 has two
black neighbors, r; and ro. This is a valid assumption because only one black sensor covering
a region is very unlikely. Let I; be the area of intersection between the sensing regions of rq
and 7. Then in I, there must exist a node p that satisfies Best_candidate(p). So, unless p is
redundant (i.e., satisfies the predicate Redundant(p)), it will execute Action Aj to turn black.
Similarly, let I, be the intersection between the sensing regions of r and r9. So, there must be
a sensor ¢ in Is which will satisfy Best_candidate(q), perform As, and change its color to black
if it is not a redundant node. Note that both p and ¢ are interior nodes.

2. (ii) Now, consider a black interior node r covering a region in Rgp. By Lemma 7.2 and the
above case, a node like r exists unless Rg is completely covered. Following the same reasoning
as in the above case, we can show that r will add two more black nodes unless the new nodes

are marked to be redundant.
O

Lemma 7.4. Starting from an arbitrary configuration, the input query region Rg will eventually be
completely covered by black nodes.

Proof. Assume that Covered_Region; and Uncovered_Region; represent the current covered and yet
to be covered region of Rg, respectively. By Lemmas 7.2 and 7.3, there must exist at least one black
node r in Covered_Region;, which will generate two more black sensors. These new black sensors
will cover some portion of Uncovered_Region;, effectively reducing the area of Uncovered_Region,;.
Therefore, repeated application of Lemma 7.3 progressively reduces the area of Uncovered_Region;.
Since Uncovered_Region; is finite, eventually the system reaches a configuration which satisfies one
of the following two conditions:

1. (i) Uncovered_Region; becomes an empty set. That is, Rg is completely covered.

2. (i1) Uncovered_Region; is nonempty. By the lemma hypothesis, there are some black nodes
in Covered_Region;. By Lemma 7.3, a black node will create two more black nodes. If the
newly created nodes are redundant, then by Lemma 7.2, R is already covered. But, that is a
contradiction.

O

Theorem 7.1 (Convergence). Starting from an arbitrary configuration, Algorithm DMSC reach-
es a configuration that satisfies the legitimacy predicate Lpasc-

Proof. By Lemma 7.4, Rg will be eventually covered. Starting from this configuration, we now prove
that the system will reach a configuration satisfying Lpase. In the following, we will consider the
three conditions to be satisfied to satisfy Lpasc.

(i) All non-redundant boundary sensors are black.
The proof follows from Action A;.

(i) All non-redundant best candidate sensors are black.
The proof follows from Action Aj
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(iii) All other active sensors exterior, boundary, and interior are red.
Exterior nodes will turn red by applying Action Ay. Other nodes if redundant will turn red
by executing Action As. The nodes which are not best candidates (if not already redundant)
will eventually become redundant when they will be covered by black nodes, and will turn red
(if not already red).

O

7.2 TIMSC Proof of Convergence
The legitimate configuration definition for Algorithm ZMGSC is based on the notion of candidate.

Definition 7.2 (Legitimacy Predicate Lzasc). The system is considered to be in a legitimate
state (i.e., satisfies the legitimacy predicate Lzamsc) if the following conditions are true with respect
to a query region:

(i) All candidate and link sensors are black.

(ii) All other active sensors — exterior, boundary, and interior — are red.

In the following, we prove that starting in an arbitrary configuration, the algorithm converges to
a legitimate configuration satisfying Definition 7.2.

Lemma 7.5. Starting from an arbitrary configuration, each node changes its color a finite number
of times.

Proof. Any exterior node or useless node executes at most one step. If the node is black then it
turns red, otherwise it does not change its color.

A red interior node may execute first A; and turns black then it may execute A; and turns
again red. In the following we show that the previous scenario can be repeated only a finite number
of times. Such a scenario is possible if the node is part of a cycle that includes oscillating nodes.
Assume the contrary. There is no cycle of oscillating nodes that contains the node. Hence we can
construct a linear chain formed only with oscillating nodes. This chain will have at least one node
outside the query region or at least one inside node that eventually will not oscillate. After a finite
number of steps the chain eventually stabilizes. That is, if the oscillating node is part of an acyclic
structure then after a finite number of steps the chain stabilizes.

Let p1...p;...p1 be the oscillating cycle. The cycle oscillates only if: all nodes execute rule
Aj, then all of them execute Ay and so on. This scenario is not possible because of the Candidate
predicate. In a neighborhood only one node has its predicate verified, hence the symmetry is broken.

O

Lemma 7.6. Starting from an arbitrary configuration, eventually, the input query region will be
completely covered by black nodes.

Proof. Let ¢ be the initial illegitimate configuration. Each node in the query region executes a finite
number of times Algorithm ZMSC (Lemma 7.5). Hence there exists ¢’ a configuration such that no
node in ¢’ is able to execute its algorithm. Assume that such configuration does not exist. Hence a
node executes forever its algorithm. Let ¢”” be the configuration where all the nodes but one, p, are
disabled.

Let Cover be the query region covered by black nodes in ¢”. If p is candidate or link node colored
red in ¢’ . then p executes rule A; and colors itself black. That is, after the p execution the query
region covering is completed.
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If p is a redundant node and not critical then p executes Ay and colors itself in red. Again, after
the p’s execution the query region covering is completed. O

Theorem 7.2 (Convergence). Starting from an arbitrary configuration, Algorithm TMSC reaches
a configuration that satisfies the legitimacy predicate L1asc-

Proof. By Lemma 7.6, R is eventually covered. In the following, we will consider the two conditions
to be satisfied to satisfy Lzasc.

(i) All non-redundant boundary and interior sensors are black.
The proof follows from Action A;.

(i) All other active sensors — exterior, boundary, and interior — are red.
Exterior nodes will turn red by applying Action Ay. Other nodes if redundant will turn red
by executing Action As.

O

8 Self-x Proofs

We want to conclude the proof of Algorithms DMSC and ZMSC in this section by showing how
our solutions satisfy some of the self-x properties. Algorithms DMSC and ZMSC are distributed,
self-configuring, self-healing, and scalable. Thus, the proposed self-x solution makes the goal of
ubiquitous/pervasive computing a reality since two of the main requirements for this type of large
ubiquitous sensor networks are low-power and self-configuring.

The next two lemmas prove that the two proposed algorithms satisfy the coverage and connec-
tivity properties of the connected cover problem. These two results will be used later to prove some
self-x properties.

Lemma 8.1 (Coverage). In any legitimate configuration, the connected set cover MCSCq com-
puted by Algorithm DMSC or Algorithm TMSC completely covers the query region Rg.

Proof. By contradiction. Assume that there is an area A which intersects Rg is uncovered by
MCSCq. Since the network is assumed to be densely deployed, A must contain at least an active
sensor ¢ which is obviously red. Then according to the predicates Lpamse or Lzamse, ¢+ must be a
redundant sensor. By the definition of predicate Redundant(i), i must be covered by some black
nodes. Since i was chosen to be any node in the uncovered area A, we can claim that all active
red sensors in A are covered by some black sensors. Therefore, A is covered, and we arrive at the
contradiction. U

Lemma 8.2 (Connectivity). In any legitimate configuration, the connected set cover MCSCg
computed by Algorithm DMSC or Algorithm ZTMSC forms a connected graph.

Proof. By contradiction. Assume that there exist two node-disjoint connected components in the
set MCSCg. All active sensors initially form a connected graph. So, the only way for the set being
disconnected is by marking some active sensor (say i) as redundant such that not considering i as
part of the final set MCSCg disconnected ¢’s neighborhood.

However, per predicate BlackConNbrs(i), i is considered to be a redundant node only after
ensuring the complete bidirectional connectivity of its neighborhood. That is, if ¢ was marked
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redundant and colored red by Action As, all neighbors of 7 remained connected. In other words, if
the set MCSCg was connected before A, was executed, it would remain connected after the execution
of the action as well. We reach the contradiction. U

Self-configuring and Self-healing Algorithms DMSC and ZMSC are self-configuring in the
sense that starting from any initial configuration, they configure themselves to form a network
topology where all sensors (members of the connected sensor cover) are able to communicate with
each other either directly or indirectly. We also proved that the given query region will eventually
be covered starting from any arbitrary state. Hence these algorithms are self-configuring.

The proposed algorithms are self-healing under various perturbations, such as node joins, failures
(due to crash and energy loss), state corruptions, and weakening of power. If a node fails, Algo-
rithms DMSC and ZMSC heal themselves in the following manner: If it is not a redundant node,
then a part of the query region R may become uncovered. In that situation, a subset of its (active)
neighbors will take over by executing Action A; or As in Algorithm DMSC, and A; in Algorithm
IMSC. A similar process may be initiated, if necessary, when a node’s power weakens to the point
that it affects the node’s communication ability. On the other hand, if a node joins the network (after
recovering, being repaired, or being re-energized in power), it would be considered as a redundant
node since the query region is already covered by the existing nodes. So, the node joining event will
not change the connected set cover. Arbitrary corruptions of state variables of the nodes are also
dealt with in the solution — change of Color variable due to faults is fixed in a very simple manner.

Self-stabilization.

Theorem 8.1 (Lpamsec and Lravse satisfy specification). Any system configuration satisfying
the legitimacy predicates Lpmsce or Lrmse (per Definitions 7.1 or 7.2, respectively) satisfies the
specification of the minimal' connected sensor cover problem (per Definition 3.2).

Proof. The coverage and connectivity properties are proved in Lemmas 8.1 and 8.2, respectively. The
definitions of Lpase and Lrase imply that in a legitimate configuration no node can be removed
from the coverage sets. Therefore, the connected cover set MCSCo computed at this point are
minimal. ]

Lemma 8.3 (Closure). The legitimacy predicates Lpmse and Lzpsc are closed.

Proof. In any configuration satisfying Lpase or Lzmse, all actions of Algorithm DMSC or Algo-
rithm ZMGSC respectively are disabled. Therefore, the algorithms are silent, and satisfy the closure
property. ]

Theorem 8.2. Algorithms DMSC and ZMSC are self-stabilizing.

Proof. The proof follows from Theorem 8.1, Lemma 8.3, and Theorems 7.1 and 7.2. ]

LA connected cover is minimal if it does not include another connected cover
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