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Abstract: In this paper ** , we design self-� novel solutions to the minimal connected sensorcover problem. The concept of self-� has been used to include fault-tolerant properties like self-con�guring, self-recon�guring/self-healing, etc. We will present two self-stabilizing, fully distributed,strictly localized, and scalable solutions, and show that these solutions are both self-con�guring andself-healing. The proposed solutions are space optimal in terms of the number of states used pernode. Another feature of the proposed algorithms is that the faults are contained only within theneighborhood of the faulty nodes. The paper also includes a comparison of the performance of thetwo proposed solutions in terms of the stabilization time, cover size metrics, and ability to cope withtransient and permanent faults.Key-words: Connectivity, coverage, fault-tolerance, query response system, self-con�guring,self-healing, self-stabilizing, Self-�, sensor networks.
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Couverture Auto-* d'une zone d'impacte dans les r�eseaux decapteursR�esum�e : Ce rapport pr�esente une premi�ere solution distribu�ee de type auto� au probl�eme decouverture connect�ee d'une zone d'impacte d'une requête dans un r�eseau de capteurs.Dans les r�eseaux de capteurs une requête est envoy�ee pour capter des donn�ees ou des �ev�enementsdans une zone g�eographique appel�ee - zone d'impacte. G�en�eralement suite au d�eploiement massif descapteurs dans une zone se trouvent plus de capteurs que le nombre minimal n�ecessaire �a r�epondre�a une requête donn�ee. Pour des raisons d'�economie d'�energie une partie des capteurs doivent êtrepass�es dans un mode de veille. Le probl�eme est de trouver l'ensemble minimal de capteurs qui couvreune zone d'impacte tout en gardant la connectivit�e de la couverture.Nous proposons deux solutions de type auto� (auto-organisantes, auto-stabilisantes) �a ce prob-l�eme, les deux �etant optimales en nombre d'�etats par processus.Mots cl�es : r�eseau de capteurs, couverture connexe, auto�



Self-� Distributed Query Region Covering in Sensor Networks 31 IntroductionAfter spending the �rst era of computing with mainframes, we are now in the era of personalcomputing. The next wave, the third era of computing was visioned by Late Mark Weiser. In1988 at the Computer Science Lab at Xerox PARC, he articulated the next age of computing, calledubiquitous computing [14]. In ubiquitous world, we expect to see thousands of invisible computingdevices used per person, maybe, even in a household. We can now build ad-hoc networks composedof a large number of low-cost, low-power, and small sensor nodes. These ad-hoc wireless sensornetworks [8] have applications everywhere | military, business, commercial, health, and home.Sensor networks [1] are expected to be very large. In many applications, they will be denselydeployed. These networks are energy constrained. Not only the sensors have limited battery power,it is extremely di�cult if not impossible to replace the battery. They may be deployed in inaccessibleterrains or disaster areas. So, it is very important to design energy e�cient sensor networks to enableuntethered and unattended operation for an extended period of time. The topology may changevery frequently due to various reasons, like position, reliability, available energy, malfunctioning, etc.Thus, designing reliable wireless sensor networks is challenging.Deploying pre-con�gured network of a huge number of sensors is impractical. Expecting tobe able to manually maintain that size of a network is absurd. Considering all these constraints,the sensor network must be self-con�guring and self-maintaining or self-healing [17]. A systemis considered to be self-con�guring if starting from an arbitrary state and an arbitrary input, thesystem will eventually satisfy the speci�cation or start behaving properly. A self-healing systemautomatically recovers from di�erent perturbations and dynamic changes. A self-healing system canalso be characterized as a self-maintaining system.Software systems are being used for almost all business-critical applications. Thus, the availabilityof these systems is extremely important. The system must be able to adjust to di�erent inputs, adaptto all possible changes of the environment, and handle di�erent faults. The di�erent concepts or termsencapsulated in self-� have been introduced to characterize di�erent ways of detecting, adjusting,and recovering from the above situations.In this paper, we will present two self-stabilizing solutions to an important energy saving prob-lem in sensor networks. Then we will show that these solutions can also be considered as self-�solutions. In a self-stabilizing system, every computation, upon starting from an arbitrary state,eventually reaches a state from where the computation satis�es the speci�cation. The paradigm ofself-stabilization, introduced by Dijkstra in 1974 [6], is considered to be the most uni�ed strategyto design fault-tolerant systems. Although it is intended to handle transient faults (e.g., memoryerrors, message omissions/duplications, program counter corruptions), it has been established thatalmost all types of faults can be dealt with in a stabilizing manner. Readers can refer to [7] for anoverview of self-stabilization.Motivation and Related Work. In sensor networks, queries are sent from some devices (couldbe a satellite, PDA, laptop, or any computer) to sense some data/events over some time period anda geographical region, called a query region. A query could be like \Every I ms for the next Yseconds, tell me how many vehicles of type T are moving in direction D in region R". The queryregion is usually a subset of the total region covered by all the sensors in the network. Consideringthe limited energy available, one of the most important goals in any protocol on sensor networks isto save energy. Since the sensors are usually densely deployed, there are usually a lot more sensorsthan required to process a given query. One possible way to minimize usage of energy is not to keepall sensor nodes fully active all the time. Some of them can be put in passive mode some times whilePI n�1715



4 Ajoy K. Datta , Maria Gradinariu , Preethi Linga , Philippe Raipan-Parv�edyothers are active in sensing the data in the environment. However, for the sensor networks to bee�ective, the active nodes must be able to cover the whole query region and maintain the networkconnectivity at all times.In [9], a new optimization problem in sensor networks, called the connected sensor cover wasintroduced to model the query response system. The problem can be informally de�ned as follows:Given a query over a sensor network, select a minimum or nearly minimum set of sensors, calledconnected sensor cover, such that the selected sensors cover the query region, and form a connectednetwork among themselves. In its general form, this problem is known to be NP-hard [9, 10].In this work, we address the minimal connected sensor cover problem (introduced in [9]) thatconstructs a minimal cover with respect to the inclusion operation. Coverage and connectivityissues were addressed in literature with di�erent assumptions: centralized, distributed using somecoordinators, and probabilistic. An overview of these approaches is presented below. Two self-organizing solutions were presented in [9]. None of the solutions is localized. The �rst solution iscentralized. In the second solution, a particular sensor node behaves as the coordinator or leader.This special node collects all the global information related to the possible new sensor nodes to beadded, then decides which ones to choose.The issues of coverage and connectivity, and the relations between them were analyzed in a uni�edframework in [13]. The CCP protocol [13] can be used to provide di�erent degrees of coverage. It wasshown in [13, 18] that if the communication range is at least twice of the sensing range, the completecoverage implies connectivity. When the above condition does not hold, CCP was integrated withSPAN [3] to provide both coverage and connectivity. However, in SPAN, the nodes need to maintaininformation about two-hop neighborhood. SPAN is a connectivity maintenance protocol where anode volunteers to be a coordinator when it �nds that two of its neighbors cannot communicate witheach other directly or indirectly. After a node decides to be a coordinator, it announces that witha random delay to reduce the number of redundant coordinators. A similar approach was discussedin ASCENT [2]. ASCENT nodes use the number of active neighbors and message losses to decideif they should be active or passive. However, this protocol does not guarantee complete coverage ofthe query region.Probabilistic studies related to coverage and connectivity in unreliable sensor networks weredone in [11]. A sensor grid network of unit area was considered. This work includes a necessary andsu�cient condition for the network to remain covered and connected in terms of the probability of anode to be active (i.e., not failed) and transmission radius of the nodes. Some optimal conditions forcoverage were established in [18]. An algorithm for coverage was proposed based on those optimalconditions. However, that result is valid only when complete coverage implies connectivity (asdiscussed above). A coverage protocol using a random delay to announce decision to turn o� wasproposed in [12]. The issue of connectivity was not addressed in [12]. The GAF protocol [15] usesGPS to reduce the redundant nodes to maintain routing paths in ad-hoc networks. A randomizedprobing-based density control algorithm was used to maintain coverage under node failures in PEASprotocol [16]. The probing range can be changed to provide di�erent degrees of coverage.Contributions. None of the above mentioned solutions explicitly addresses fault-tolerance issuesand in particular, transient faults. The main contribution of this research is to design self-� solutionsto the connected sensor cover problem. To the best of our knowledge, these are the �rst localized,distributed, and self-� solutions to the query connected cover problem in sensor networks. Localizedsolutions in large networks are desirable due to their high reliability and scalability. We implementedthe self-� properties by using the self-stabilization paradigm [7]. Self-stabilization is the most adapted
Irisa



Self-� Distributed Query Region Covering in Sensor Networks 5theoretical toolkit for the design of algorithms that cope with a broad range of faults in dynamicand large scale networks. Our solutions can handle di�erent types of faults including node andlink (wireless communication) failures, change of power level, topology changes due to faults or newjoinings, and memory and program counter corruptions.In the next section, we de�ne the model and specify the connected sensor cover problem. InSections 4 and 5, we present self-stabilizing solutions to the problem. Formal analysis and the proofsof the self� aspects of our solutions are presented in the Appendix. Discussion about the complexityof the algorithms and simulation results are included in Section 6. The experiments were conductedwith respect to the following metrics: stabilization time, cover size and fault-tolerance. Finally, inSection 7, we present some concluding remarks and we will give some ideas to extend this research.2 Preliminaries and ModelSensor Network. In this research, we consider sensor networks [9, 13] consisting of a large numberof sensors (also referred as sensor nodes and nodes in this paper) randomly distributed in a geo-graphical region. We model the sensor network as a directed communication graph G(V;E), whereeach node in V represents a sensor, and each edge (i; j) 2 E, called communication edge, indicatesthat j is a neighbor of i.For a sensor i, there is a region, called sensing region, which signi�es the area in which the sensori can sense a given physical phenomenon maintaining a desired con�dence level. The sensing rangeof a sensor i indicates the maximum distance between i and any point p in the sensing region of i.A point p is covered (or monitored) by a sensor node i if the Euclidean distance between p and i isless than the sensing range of i.The communication region of a sensor i (also called the transmission region) de�nes the areain which i can communicate directly (i.e., in single hop) with other sensor nodes. The maximumdistance between node i and any other node j, where j is in the communication region of i, is calledthe communication range of i. A directed path (sequence) of sensors i = i1; i2; : : : ; im = j, where ixis a neighbor of ix+1 for 1 � x � m� 1, is called a communication path from i to j. The length ofthe shortest (communication) path (which is the number of sensors on the shortest path) from i toj is called the communication distance from i to j.Program. We consider the local shared memory model of communication as used by Dijkstra [6].The program of every processor consists of a set of shared variables (henceforth, referred to asvariables) and a �nite set of actions. It can only write to its own variables, and read its ownvariables and variables owned by the neighboring nodes.Each action is of the following form: < label >:: < guard > �! < statement >. The guard ofan action in the program of p is a boolean expression involving the variables of p and its neighbors.The statement of an action of p updates one or more variables of p. An action can be executed onlyif its guard evaluates to true. We assume that the actions are atomically executed, meaning, theevaluation of a guard and the execution of the corresponding statement of an action, if executed, aredone in one atomic step.The state of a node is de�ned by the values of its variables. The state of a system is the productof the states of all nodes. We will refer to the state of a node and system as a (local) state and(global) con�guration, respectively.Fault Model. This research deals with the following types of faults: (i) The state or con�gurationof the system may be arbitrarily corrupted. However, the program (or code) of the algorithm cannotbe corrupted. (ii) Nodes may crash. That is, the faults can fail-stop nodes. (iii) Nodes may recover
PI n�1715



6 Ajoy K. Datta , Maria Gradinariu , Preethi Linga , Philippe Raipan-Parv�edyor join the network. The topology (both actual and logical topologies) may change due to faults.Faults may occur in any �nite number, in any order, at any frequency, and at any time.3 Problem and DescriptionOur research is focused on designing a reliable, self-organizing, and self-healing query-response sys-tem. A query in sensor networks asks for some data/measurements/events sensed/observed oversome period of time at some frequency over a geographical region. Upon receiving a query, thesensors will sense or measure the data and collaborate among themselves to disseminate or fuse thecollective data to the sink of the query. Although a query can be initiated in the whole geographicalregion, typically, a query refers to a subset of the region, called the query region denoted by RQ inthis report.The sensors only inside the query region should be involved in generating the response to thequery. Considering the redundancy and our goal of designing an e�cient query-response system, allsensors inside the query region should not be actively participating in the protocol to answer thequery. Our approach is for the sensors inside RQ to self-organize to form a logical network su�cientenough to cover the query region. However, in order for the sensors in the logical network (i.e., theregion covered by the selected sensors) to be able to collaborate to detect the events, and computeand deliver the response, they must be able to communicate with each other directly or indirectly.That is, the logical graph not only needs to satisfy the coverage criterion, it must also be a stronglyconnected communication graph.De�nition 3.1 (Connected Sensor Cover). Consider a sensor network G consisting of n sen-sors I1; I2; : : : ; In. Let Si be the sensing region associated with sensor Ii. Given a query Q over aregion RQ in the sensor network, a set of sensors SCQ = Ii1 ; Ii2 ; : : : ; Iim is called a connected sensorcover for Q if the following two conditions are satis�ed: (a) Coverage: RQ � (Si1 [ Si2 [ : : : Sim).(b) Connectivity: The subgraph induced by SCQ is strongly connected in the sense that any twosensors in this set can communicate with each other directly or indirectly.De�nition 3.2 (Minimal Connected Sensor Coverage Problem). Given a sensor network anda query over the network, the connected sensor coverage problem is to �nd the minimal connectedsensor cover (we will call it MCSCQ). A cover is considered minimal if it does not include anotherconnected cover.Additionally, we require the algorithm (solving the above problem) to be self-organizing, self-healing, and self-stabilizing [7, 17]. That is, regardless of the initial state (wrong initializationof the local variables, memory or program counter corruptions) nodes self-con�gure/self-organizeusing only local information in order to make the system self-stabilize to a legitimate state. Thelegitimate state is de�ned with respect to a minimal connected cover formed out of the nodes thatcan communicate with each other either directly or indirectly. The nodes in this set are the onlynodes that remain active. Moreover, under various perturbations, such as node joins, failures (due tocrash or energy loss), state corruptions, or weakening of power, the minimal connected cover shouldbe able to self-heal without any external intervention and the impact should be con�ned within atightly bounded region around the perturbed area.In this paper, we will present two space optimal self-stabilizing, self-con�guring and self-healingsolutions to the connected sensor cover problem. Computing a minimum sensor cover in its generalform is NP-hard [9, 10]. So, the proposed solutions make an attempt to approach an optimal solutionIrisa



Self-� Distributed Query Region Covering in Sensor Networks 7by checking and removing redundant sensor nodes from the �nal cover set. However, the solutionsalthough suboptimal in terms of the number of sensors, satisfy De�nition 3.2.Note that removing redundancy while constructing the distributed connected covers is a di�culttask, and its degree of accuracy depends on the exposure of a node. If nodes farther away areconsidered in the computation of the redundancy, the connected cover set will approach closer tothe optimal value, i.e., it is expected to be smaller. This trade-o� has been pointed out in [4]. Oursolutions use only two states per node and use knowledge of nodes at a distance of up to two hopsaway. We conjecture that using only two states, it is impossible to construct a fully local (i.e., onlythe immediate neighborhood is known) self-stabilizing connected covers, hence our solutions use theminimal knowledge per node.Our solutions do not require the sensors to have unique identi�ers (ID's). However, each sensor imaintains a set of distinct labels, denoted as Ni, such that each label identi�es a (unique) neighborof i. Note that these labels are unique only locally.The query region forms a convex region, and its boundary (hence, its center which is used by our�rst implementation) is known to all sensors. The energy level of the sensors may change over timedue to various reasons. The proposed solutions cope with that.We distinguish three types of sensors in or around the query region RQ. In our algorithms, therules for these three types of nodes are di�erent. A sensor is termed as a boundary sensor if itssensing region intersects with the boundary of the query region RQ. A sensor is called an interiorsensor if its sensing region is completely inside the query region RQ and it is not a boundary sensor.All sensors which are neither boundary nor interior are called exterior sensors.Data Structures. Three variables (RQ, Ni, and Posi) are used as Constants by the proposedsolutions. That is, the algorithms do not write into these variables. The input query includes thegeographical information about the region RQ to be covered. Ni represents the neighboring sensorsof sensor i. Our solutions assume that there is an underlying self-stabilizing topology maintenanceprotocol which computes Ni. The sensors use either some device or/and protocol to know theirgeometric location.The algorithms also use two Variables: Si and Colori. Si represents the sensing region of sensori. The Color variable is used to represent the di�erent status of a sensor. Sensors can be either inred or black initially. Eventually, if a sensor turns black and stays in that color, then it is consideredto be a member of MCSCQ. Other sensors will remain in red color.Macros. The macros do not represent variables, but return values when referred to in the code.Our �rst solution assumes that the sensors know the location of the center. So, they can use theirlocation information (Pos) to compute their distances to the center. Note that this informationis used uniquely by the �rst solution. The macro Dst(i) computes the distance of Sensor i fromthe center of RQ uncovered by the sensing region of i. We consider directed communication graphof sensors. So, a sensor i may not have a two-way communication with all its neighbors. Sensori may need this knowledge (i.e., which of its neighbors have a two-way communication with it)to check redundancy. The macro BidirN(i) returns a set of neighbors of i that e�ectively havea bidirectional communication with i. The predicate BlackConNbrs(i) is used to implement theredundancy checking. This predicate is the local version of the \Rule k" of [4]. It returns true ifthe subgraph of black neighbors of a node is connected. We also introduce a novel version of the\Rule k", BlackConNbrs(i; t), that checks if the subgraph de�ned by the black neighbors of twoneighboring nodes, i and t, is connected.
PI n�1715



8 Ajoy K. Datta , Maria Gradinariu , Preethi Linga , Philippe Raipan-Parv�edyModule 3.1 Data structures used by Cover Algorithms (Algorithms DMSC and IMSC)..Constants:RQ:: Query region; represented as a set in the algorithm;Ni :: Set of sensors within the communication range of Sensor i;Posi :: Geometric location or coordinates of Sensor i;Shared Variables:Si :: Sensing region of Sensor i;Colori 2 fblack; redg :: Color of Sensor i;Macros:Dst(i) � Returns the distance of Sensor i from the center of RQ uncovered by i sensing region (used onlyin Algorithm DMSC);uses RQ and Posi to compute the distance;BidirN(i) � fjj j 2 Ni ^ i 2 Njg;RealBlackNi :: fjjj 2 BidirNi ^ (Colorj = Black)g;RealBlackNi;t :: fjjj 2 BidirNiSBidirNt ^ (Colorj = Black)g;BlackConNbrs(i) � 8j; k 2 RealBlackNi : 9l1; : : : ; ln 2 RealBlackNi : l1 2 RealBlackNj ^ (8x < n :lx+1 2 RealBlackNlx) ^ ln 2 RealBlackNk;BlackConNbrs(i; t) � 8j; k 2 RealBlackNi;t : 9l1; : : : ; ln 2 RealBlackNi;t : l1 2 RealBlackNj ^ (8x < n :lx+1 2 RealBlackNlx) ^ ln 2 RealBlackNk;
4 Distance-Dependent Query CoverThe �rst solution to the connected sensor cover problem is given as Algorithm 4.1 (referred in thispaper as Algorithm DMSC). The proposed algorithm starts from the boundary sensors of RQ, andproceeds towards the center of the region. Starting from any con�guration, the algorithm selects afew sensors among many (due to our assumption of very dense network) to include in the (minimum)cover set MCSCQ.If the system starts from a good initial con�guration, it �rst selects some boundary sensors, thensome interior sensors, and keeps repeating the process of selection moving towards the center of thequery region until it covers the whole region RQ. Our solution is localized, meaning the decisionto be selected in MCSCQ is taken locally by all nodes. So, unlike the solution in [9], nodes do notcollect any global information to compute MCSCQ. Sensors consult only their immediate neighborsto decide if they should be included in the �nal set cover.4.1 Normal BehaviorIn the following, we assume that the system starts from a good initial con�guration, meaning, allsensors are red initially. If the system starts from a good initial con�guration, it �rst selects someboundary sensors, then some interior sensors, and keeps repeating the process of selection movingtowards the center of the query region until it covers the whole region RQ. In the following, we will�rst describe how some boundary red sensors are selected to turn black to cover the boundary ofRQ. Then we discuss the general case of covering any uncovered region inside the query region.

Irisa



Self-� Distributed Query Region Covering in Sensor Networks 9Algorithm 4.1 Self-stabilizing Distance-Dependent Connected Sensor Cover Algorithm (Algorith-m DMSC) for Sensor i. .Predicates:Boundary(i) � Si is a boundary sensor;Interior(i) � Si is an interior sensor;Exterior(i) � Si \RQ = ;; /* Si is an exterior sensor; */Redundant(i) � BlackConNbrs(i) ^ (SiTRQ) � Sj2RealBlackNi Sj ;SameIntrsctn(i; j) � Interior(i)^Interior(j)^ (9x; y 2 fNi\Njg : (Colorx = Colory = black) :(i 2 Nx ^ i 2 Ny) ^ Posi 2 (Sx \ Sy) ^ Posj 2 (Sx \ Sy));BestCandidate(i) � 8j 2 Ni : SameIntrsctn(i; j) : (Dst(i) � Dst(j));Actions:A1 :: Boundary(i) ^ :Redundant(i) ^ Colori 6= black �! Colori = blackA2 :: (Redundant(i) _Exterior(i)) ^ Colori 6= red �! Colori = redA3 :: BestCandidate(i) ^ :Redundant(i) ^Colori 6= black �! Colori = blackBoundary of RQ. The initial task is to select enough sensors to cover the boundary with acommunication network of sensors. The selected sensors will be colored black, and the rest willremain red. This is implemented in Action A1 using the predicates Boundary and Redundant. Aboundary node will turn black and remain black only if it is not a redundant node. The redundantnodes will be eventually marked red. The redundancy is checked by using the predicate Redundant,and is described in detail in the next paragraph. Action A1 changes a sensor from red to black.Instead of wasting energy and time, we added the redundancy check in Action A1 itself. As we areusing an asynchronous model, some nodes may be slow in executing Action A1, while their neighborshave already changed to black by executing the same action. So, the slow nodes soon after turningto black may �nd out that they are redundant. Then, they will have to turn to red by executinganother action (A2). Note that, a red sensor turns black only after checking for possible redundancyin the neighborhood.The Redundant(i) predicate checks if the query region covered by sensor i is covered by someneighboring nodes.The above tests for redundancy are implemented by a sensor i before it decides to withdraw itselffrom further consideration into the set coverMCSCQ. However, those tests only verify the coverage ofi by other sensor (s). They do not implement the test of connectivity of the neighborhood of i. Recallthat the set MCSCQ must be a connected set cover. So, before removing itself, Sensor i wants tosecure the connectivity in its neighborhood. This is implemented in the predicate BlackConNbrs(i)which is a part of redundancy checking. Ideally, Sensor i needs to check if every pair of its backneighbors j and k, will remain connected if i is marked redundant and removed. However, if thepath between j and k contains any node l 62 RealBlackNi, then i cannot verify this path becauseour solution is strictly localized. So, our implementation of BlackConNbrs(i) veri�es if j and kare connected using some intermediate nodes l1; : : : ; ln where all the intermediate nodes are blackneighbors of i.Inside RQ. Current black nodes (their creation is discussed in the next paragraph) are used tocreate more black nodes to gradually cover the uncovered region. Future black nodes are selectedfrom the intersections of pairs of existing black nodes. The algorithm considers every intersection oftwo black nodes. It chooses one or more red nodes from the intersection as the new members of thecover set MCSCQ (using the predicate BestCandidate).PI n�1715



10 Ajoy K. Datta , Maria Gradinariu , Preethi Linga , Philippe Raipan-Parv�edyNote that the current black nodes may have been created using the boundary sensors selectedearlier. Or, they were created by using the predicate BestCandidate among some sensors inside anintersection of two other black nodes.Newly selected nodes for the cover set create a new (virtual) boundary of the uncovered queryregion. Thus, the algorithm reduces the uncovered portion of the query region RQ by e�ectivelypulling the (virtual) boundary towards the center of the query region.4.2 Faults and RecoveryIn this section, we focus on the fault handling features of the proposed algorithm (Algorithm 4.1).There are two variables used in the solution: Si and Colori for a Sensor i. So, we need to show thatour solution can cope with all possible corruptions associated with these two variables.(1) Wrong initialization of the color variable. As discussed in Section 4.1, all sensors, ifproperly initialized start as red. (a) Boundary Sensor. Assume that a boundary sensor i startsin black color. If i is not a redundant node, then i remains black (see Action A1). That is, nocorrection is necessary. If i is redundant, then it will satisfy the predicate Redundant, hence theguard of Action A2. Node i then executes A2 and changes its color to red. (b) Interior Sensor.Assume that an interior node is initialized as a black colored sensor. If i is not a redundant node,then i remains black (see Action A2). So, no correction is necessary. If i is redundant, then itwill satisfy the predicate Redundant and execute Action A2 which will change its color to red. (c)Exterior Sensor. All exterior sensors must be eventually colored red. If any exterior sensor starts asblack initially, then it will execute Action A2 to change its color to red.(2) Best candidate sensor's color is corrupted from black to red. Action A3 corrects thecolor back to black.(3) A redundant sensor's color changes from red to black. The node, regardless of whetherboundary or interior, will satisfy Redundant and hence, the guard of Action A2. So, it will changeits color to red.(4) Weakening or Failure of sensors, both in terms of communication and sensing ability.The weakening or failure of sensors will a�ect the sensing and communication range of the sensors.In other words, the constant set N and the variable S will change. Change of S may change thevalues of Redundant and BestCandidate. All these changes will be re
ected in the change of valuesof the guards. So, eventually, the color of the a�ected node will change due to the execution of theactions. All change of colors have already been discussed in earlier cases above.5 Distance-Independent Query CoverIn the previous section, we proposed a distance-based solution to covering a query region. In thissection, we present a solution which does not need to compute the center of the query region. Theproposed algorithm given as Algorithm 5.1 (referred in this paper as Algorithm IMSC) has a di�erentapproach than Algorithm DMSC. It chooses non-redundant nodes inside the query region. Notethat in a good initial con�guration (when all nodes are red), every node inside the query region is apotential candidate to be selected in the �nal cover MCSCQ. Our algorithm removes the redundantnodes from the MCSCQ. The two phases of the algorithm are executed based only on the localinformation available to the nodes.
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Self-� Distributed Query Region Covering in Sensor Networks 11Algorithm 5.1 Self-stabilizing Distance-Independent Connected Sensor Cover Algorithm (Algorith-m IMSC) for Sensor i. .Predicates:Useless(i) � (BidirNi = ;);Exterior(i) � (Si \RQ) = ;);Redundant(i) � BlackConNbrs(i) ^ (SiTRQ) � Sj2RealBlackNi Sj ;Potential Candidate(i) � :(Useless(i) _Exterior(i)) ^ :Redundant(i);Candidate(i) � Potential Candidate(i) ^ (8j 2 BidirNi : Potential Candidate(j) :: i < j)Potential Link(i; j; k) � Potential Candidate(i) ^ :Candidate(i) ^ (9t 2 Bidir(i);9j; k 2RealBlackNiSRealBlackNt;:(BlackConNbrs(i) _BlackConNbrs(i; t))Link(i) � 9j; k; Potential Link(i; j; k) ^ (8s : Potential Link(s; j; k) :: i < s)Actions:A1 : (Candidate(i) _ Link(i)) ^Colori 6= Black ! Colori = Black;A2 : :(Candidate(i) _ Link(i)) ^ Colori 6= Red ! Colori = Red;
5.1 Normal behaviorStarting from a good con�guration, all candidates or links eventually become black by executing A1.A process is a candidate if it is inside the query region or on the boundary, but not a redundantnode. A node is critical if removing it disconnects at least a pair of its neighbors locally. Due tothe asynchronous execution of the algorithm, all nodes may become candidates at the same time.In order to break the symmetry, only one node can be a candidate in any neighborhood. However,choosing one candidate per neighborhood may disconnect the cover. This is avoided by using linknodes. A node is a potential link node between two black nodes if it is a potential candidate butnot a candidate, and the two black nodes are not neighbors of each other. That is, a potentiallink node works as a bridge between two black nodes that would otherwise be disconnected. A linknode between two black nodes is the node with the minimum ID (as per the local label) among thepotential link nodes of the black nodes.5.2 Faults and RecoveryAs in Algorithm 4.1, this algorithm also has two variables used in the solution: Si and Colori fora Sensor i. So, we need to show that our solution can cope with all possible corruptions associatedwith these two variables.(1) Wrong initialization of the color variable. In Algorithm IMSC, all sensors, if properlyinitialized start as red. (a) Interior & Boundary Sensors. Assume that an interior or a boundarynode is initialized as a black sensor. Let i be this node. If i is not a redundant node or it is critical,then i remains black (see Action A2). So, no correction is necessary. If i is redundant, then itexecutes Action A2 which will change its color to red. (b) Exterior Sensor & Useless Sensors. Allexterior sensors must be eventually colored red. If any exterior sensor starts as black, then it willexecute Action A2 to change its color to red. If a black sensor cannot be sensed by none of itsneighbors, then it will turn red by executing A2.(2) Candidate or link sensor's color is corrupted from black to red. Action A1 corrects thecolor back to black.PI n�1715



12 Ajoy K. Datta , Maria Gradinariu , Preethi Linga , Philippe Raipan-Parv�edyAlgorithm S.T. CS Algorithm S. T. C. S.DMSC grid, range 9 41 116 IMSC grid, range 9 65 122DMSC random, range 9 32 146 IMSC random, range 9 116 155DMSC random, range 5-15 41 145 IMSC random, range 5 -15 95 154Table 6.1: Average Performance Metrics.(3) Non-candidate or non-links sensor's color changes from red to black. The node satis�esthe guard of Action A2. So, it will change its color to red.(4)Weakening or Failure of sensors, both in terms of communication and sensing ability.The algorithm behaves as Algorithm DMSC in this situation.6 Complexity and SimulationAlgorithms DMSC and IMSC are space optimal solutions. Recall the problem speci�cation. Upontermination of the sensor cover algorithm, a node will know if it should be active or passive. So, itmust use at least two states to distinguish its two possible roles. Our solutions use exactly two statesin the Color variable to implement this. Moreover, both solutions compute a minimal cover for thequery region.In our simulations, for the �rst set of experiments, we assumed that nodes are �xed and uniformlydeployed on a grid of size 25 � 25 (625 nodes). Similar to [9, 11, 18] we consider the sensing regionassociated with a sensor modeled as a circular region around itself. We considered a homogeneousnetwork (i.e. all sensors have the same sensing region | circular of radius 9). Then in the secondset of experiments, we considered 625 sensors randomly deployed in a square region of size 100, withdi�erent sensing regions uniformly distributed in the range between 5 and 15. In all the simulations,we considered a circular query region of radius 40. The number of experiments performed for eachsimulated point was 100. The performance metrics we measured are the stabilization time (S.T.)and the number of nodes per cover (C.S.). The average results are summarized in Table 6. Ourexperiments for both the topologies (grid and arbitrary) show that Algorithms DMSC and IMSChave almost identical behaviors in terms of the coverage size, Algorithm DMSC computing a slightlybetter cover.Algorithm DMSC stabilizes faster than Algorithm IMSC (see Figures 6.1 a,b,c) . The slowerstabilization of Algorithm IMSC is due to the fact that a sensor inside the query region can changeits color more than once. In Algorithm DMSC, a sensor inside the query region waits until thecovering wave arrives at its neighborhood.Interestingly, the type of sensing regions (homogeneous or di�erent) and the placement of sen-sors (grid or arbitrary) do not have a strong impact on the coverage size and stabilization timefor Algorithm DMSC. Algorithm IMSC seems to be more sensitive to the topology and sensorscharacteristics.We observed a strong impact of the redundancy predicate on the coverage size. Due to the spacelimitation, the plots for this case are not shown. Initially, we assumed that a node is consideredredundant only if it is covered by one, two, or three of its neighbors. Intuitively, in order to de�nea cover for a circle, it is su�cient to provide a triangle that includes the circle. The average size ofthe cover at the stabilization time was around 400 nodes for a grid placement. Note that in the gridtopology, the sensing region of an arbitrary sensor cannot be covered by a triangle. The covering
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Self-� Distributed Query Region Covering in Sensor Networks 13

(a) Grid - homogeneous sensingrange 9. (b) Arbitrary placement, het-erogeneous sensing range 5-15 (c) Self* in the presence of tran-sient and permanent faultsFigure 6.1: Experimental Resultsregion needs to be a square in this case. That is, we need at least four neighboring nodes to computethe redundancy predicate.In the simulations shown in Figures 6.1 a,b,c each node uses all its neighbors to decide itsredundancy. As shown in Table 6, the coverage size stabilizes to approximately 150 nodes for theboth algorithms (see Table 6). Moreover, we simulate the impact of various types of faults (crashand memory corruption) on the construction of the cover computed by IMSC and DMSC (Figure6.1c). At times 72 and 112, 30% of nodes experience crash and transient failures, respectively. Figure6.1c shows that the systems is able to self-heal. At time 152, 30% of black nodes (nodes that formthe cover) experience memory corruptions (i.e., their color change from black to red). The systemself-heals again without any external intervention.7 Future work and ConclusionThe main motivation of our research was to design a totally distributed self-� query response systemin sensor networks. We presented the �rst local, distributed, scalable, self-� designs of the connectedsensor cover problem introduced in [9]. We presented two stabilizing solutions to the problem andshowed how the solutions are self-organizing and self-healing as well. Algorithms are space optimal| only two colors are used. Once the system is stabilized, the faults can be corrected in theirneighborhood. Hence the system is self-containing. This research showed that the concept of self-stabilization subsumes many other self-� properties.The connected sensor cover problem is a global task, meaning nodes cannot locally compute the�nal response to the query. However, we still require the algorithm to be local in the sense that thenodes collect information from their immediate neighbors. Unlike the solution in [9], no node in theproposed algorithm collects global information, and no node behaves as a special node in any stageof the execution of the algorithm. In our solution, every node can locally decide if it should be anactive or passive node in the current computation of the response to the query. In summary, weachieve a global objective by using local algorithms.
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14 Ajoy K. Datta , Maria Gradinariu , Preethi Linga , Philippe Raipan-Parv�edySensing coverage characterizes the monitoring quality provided by a sensor network in a des-ignated region. Di�erent applications may require di�erent degrees of sensing coverage. In thisregard, we can extend our solutions in a couple of ways. Firstly, we may write a parametric solutionwhere the input query will include the degree of coverage expected. The predicate Redundancy willbe relaxed to allow the corresponding higher degree of coverage. Secondly, we can simply assumea particular degree (> 1) of coverage in our algorithm. Similar to the implementation of a higherdegree of coverage to achieve better robustness, we may also require a higher degree of connectivityfor the same purpose (i.e., to increase the level of fault-tolerance). We can extend the neighborhoodconnectivity checking to k-node (k > 1) disjointness in the communication graph. Unfortunate-ly, higher degree of coverage/connectivity would require more communication cost, i.e., consumingmore power. We can conduct a study on the trade o� between connected cover size optimality vs.robustness and energy e�ciency.References[1] IF Akyildiz, W Su, Y Sankarasubramaniam, and E Cayirci. A survey on sensor networks. IEEE Com-munications Magazine, 40(8):102{114, Aug 2002.[2] A Cerpa and D Estrin. Ascent: Adaptive self-con�guring sensor networks topologies. In INFOCOM02Proceedings of the Conference on Computer Communications, Jun 2002.[3] B Chen, K Jamieson, H Balakrishnan, and R Morris. Span: An energy-e�cient coordination algorithmfor topology maintenance in ad hoc wireless networks. In MobiCom02 Proceedings of the Seventh AnnualInernational Conference on Mobile Computing and Networking, pages 85{96, Jul 2001.[4] F. Dai and J. Wu. Distributed dominant pruning in ad hoc networks. ICC'03, 2003.[5] A.K. Datta, M. Gradinariu, P. Linga, and P. Raipin-Parvey. Self* query region covery in sensor networks.Technical Report 1607, IRISA, Rennes, France (www.irisa.fr), 2004.[6] EW Dijkstra. Self stabilizing systems in spite of distributed control. Communications of the Associationof the Computing Machinery, 17(11):643{644, Nov 1974.[7] S Dolev. Self-Stabilization. MIT Press, 2000.[8] D Estrin, R Govindan, J Heidemann, and S Kumar. Next century challenges: Scalable coordination insensor networks. Mobile Computing and Networking, pages 263{270, 1999.[9] H Gupta, SR Das, and Q Gu. Connected sensor cover: Self-organization of sensor networks for e�cientquery execution. In MobiHoc03 Proceedings of the Fourth ACM International Symposium on Mobile AdHoc Networking and Computing, pages 189{200, 2003.[10] VSA Kumar, S Arya, and H Ramesh. Hardness of set cover with intersection 1. In ICALP00 Proceedings ofthe Twentyseventh International Colloquium on Automata, Languages and Programming, pages 624{635,2000.[11] S Shakkottai, R Srikant, and N Shro�. Unreliable sensor grids: Coverage, connectivity and diameter.In INFOCOM03 Twenty-Second Annual Joint Conference of the IEEE Computer and CommunicationsSocieties, volume 2, pages 1073{1083, Apr 2003.[12] D Tian and ND Georganas. A coverage-preserving node scheduling scheme for large wireless sensornetworks. In WSNA02 Proceedings of the First Workshop on Sensor Networks and Applications, pages32{41, Sep 2002.[13] X Wang, G Xing, Y Zhang, C Lu, R Pless, and C Gill. Integrated coverage and connectivity con�gurationin wireless sensor networks. In ACM SenSys03 Proceedings of the First International Conference onEmbedded Networked Sensor Systems, pages 28{39, Nov 2003.
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Self-� Distributed Query Region Covering in Sensor Networks 15[14] M Weiser. The computer for the 21st century. Scienti�c American, 265(3):66{75, Sep 1991.[15] Y Xu, J Heidemann, and D Estrin. Geography-informed energy conservation for ad hoc routing. In Mobi-Com02 Proceedings of the Seventh Annual Inernational Conference on Mobile Computing and Networking,pages 70{84, 2001.[16] F Ye, G Zhong, J Cheng, S Lu, and L Zhang. PEAS: A robust energy conserving protocol for long-livedsensor networks. In ICDCS03 Proceedings of the 23rd International Conference on Distributed ComputingSystems, pages 1{10, 2003.[17] H Zhang and A Arora. GS3: Scalable self-con�guring and self-healing in wireless networks. In PODC02Proceedings of the Twenty�rst Annual ACM Symposium on Principles of Distributed Computing, 2002.[18] H Zhang and JC Hou. Maintaining sensing coverage and connectivity in large sensor networks. TechnicalReport UIUCDCS-R-2003-2351, University of Illinois at Urbana Champaign, Jun 2003.
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16 Ajoy K. Datta , Maria Gradinariu , Preethi Linga , Philippe Raipan-Parv�edyAppendix7.1 DMSC Proof of convergenceIn this section, we will prove the convergence of Algorithm DMSC (presented in Section 4). The self�properties of Algorithm DMSC will be proven in Section 8. The outline of this section is as follows:We will �rst de�ne a legitimacy predicate of Algorithm DMSC with respect to the speci�cationof the proposed problem. Next it will be shown that the algorithm is guaranteed to arrive at alegitimate state regardless of the initial con�guration or type of faults occurring in the system.De�nition 7.1 (Legitimacy Predicate LDMSC). The system is considered to be in a legitimatestate (i.e., satis�es the legitimacy predicate LDMSC) if the following conditions are true with respectto a query region:(i) All non-redundant boundary sensors are black. (ii) All non-redundant best candidate sensors areblack. (iii) All other active sensors | exterior, boundary, and interior | are red.The proof outline is as follows: We �rst show that starting from an arbitrary con�guration, theboundary of RQ will be covered. Then we establish the progress towards covering the whole regionby proving that every black node creates two more black nodes to cover some other uncovered areaof RQ. This process is repeated until RQ is completely covered.Lemma 7.1. Starting from any arbitrary con�guration, the boundary of the input query RQ will becovered.Proof. By contradiction. Assume that there is an area A which intersects the boundary of RQ is notcovered. A must contain at least an active sensor i. Then if Action A1 is enabled at i, i will turnblack. Considering other sensors in A, A will eventually be covered. That is a contradiction. Let usassume that i is not enabled to execute Action A1. Then per guard of A1, there are two possibilities:1. (i) Sensor i is black. So, considering other sensors (like i) in A, A is covered. That is acontradiction.2. (ii) The predicate Redundant(i) is true. By the de�nition of Redundant(i), it follows that iis covered by black sensors. Again, considering other active sensors in A, we obtain that A iscovered, hence the contradiction.Lemma 7.2. In any con�guration, if all boundary and interior red nodes are redundant, then theregion RQ is completely covered.Proof. Assume the contradictory, i.e., although all boundary and interior red nodes satisfyRedundantpredicate, RQ is not completely covered yet. Consider an area A intersecting RQ which is not cov-ered. A must contain at least an active sensor i. The color of i cannot be black since A is assumed tobe uncovered. So, i is red. Since A is not covered, i will not satisfy Redundant(i). That contradictsthe lemma hypothesis.Lemma 7.3. Every black node covering a region of RQ will eventually add two neighboring blacknodes unless the new nodes are found to be redundant.
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Self-� Distributed Query Region Covering in Sensor Networks 17Proof. 1. (i) Consider a black boundary node r. That is, r covers a region on the boundary ofRQ. The existence of at least one such node is implied by Lemma 7.1. Assume that r has twoblack neighbors, r1 and r2. This is a valid assumption because only one black sensor coveringa region is very unlikely. Let I1 be the area of intersection between the sensing regions of r1and r. Then in I1, there must exist a node p that satis�es Best candidate(p). So, unless p isredundant (i.e., satis�es the predicate Redundant(p)), it will execute Action A3 to turn black.Similarly, let I2 be the intersection between the sensing regions of r and r2. So, there must bea sensor q in I2 which will satisfy Best candidate(q), perform A3, and change its color to blackif it is not a redundant node. Note that both p and q are interior nodes.2. (ii) Now, consider a black interior node r covering a region in RQ. By Lemma 7.2 and theabove case, a node like r exists unless RQ is completely covered. Following the same reasoningas in the above case, we can show that r will add two more black nodes unless the new nodesare marked to be redundant.Lemma 7.4. Starting from an arbitrary con�guration, the input query region RQ will eventually becompletely covered by black nodes.Proof. Assume that Covered Regioni and Uncovered Regioni represent the current covered and yetto be covered region of RQ, respectively. By Lemmas 7.2 and 7.3, there must exist at least one blacknode r in Covered Regioni, which will generate two more black sensors. These new black sensorswill cover some portion of Uncovered Regioni, e�ectively reducing the area of Uncovered Regioni.Therefore, repeated application of Lemma 7.3 progressively reduces the area of Uncovered Regioni.Since Uncovered Regioni is �nite, eventually the system reaches a con�guration which satis�es oneof the following two conditions:1. (i) Uncovered Regioni becomes an empty set. That is, RQ is completely covered.2. (ii) Uncovered Regioni is nonempty. By the lemma hypothesis, there are some black nodesin Covered Regioni. By Lemma 7.3, a black node will create two more black nodes. If thenewly created nodes are redundant, then by Lemma 7.2, RQ is already covered. But, that is acontradiction.Theorem 7.1 (Convergence). Starting from an arbitrary con�guration, Algorithm DMSC reach-es a con�guration that satis�es the legitimacy predicate LDMSC.Proof. By Lemma 7.4, RQ will be eventually covered. Starting from this con�guration, we now provethat the system will reach a con�guration satisfying LDMSC. In the following, we will consider thethree conditions to be satis�ed to satisfy LDMSC.(i) All non-redundant boundary sensors are black.The proof follows from Action A1.(ii) All non-redundant best candidate sensors are black.The proof follows from Action A3
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18 Ajoy K. Datta , Maria Gradinariu , Preethi Linga , Philippe Raipan-Parv�edy(iii) All other active sensors | exterior, boundary, and interior | are red.Exterior nodes will turn red by applying Action A2. Other nodes if redundant will turn redby executing Action A2. The nodes which are not best candidates (if not already redundant)will eventually become redundant when they will be covered by black nodes, and will turn red(if not already red).7.2 IMSC Proof of ConvergenceThe legitimate con�guration de�nition for Algorithm IMSC is based on the notion of candidate.De�nition 7.2 (Legitimacy Predicate LIMSC). The system is considered to be in a legitimatestate (i.e., satis�es the legitimacy predicate LIMSC) if the following conditions are true with respectto a query region:(i) All candidate and link sensors are black.(ii) All other active sensors | exterior, boundary, and interior | are red.In the following, we prove that starting in an arbitrary con�guration, the algorithm converges toa legitimate con�guration satisfying De�nition 7.2.Lemma 7.5. Starting from an arbitrary con�guration, each node changes its color a �nite numberof times.Proof. Any exterior node or useless node executes at most one step. If the node is black then itturns red, otherwise it does not change its color.A red interior node may execute �rst A1 and turns black then it may execute A2 and turnsagain red. In the following we show that the previous scenario can be repeated only a �nite numberof times. Such a scenario is possible if the node is part of a cycle that includes oscillating nodes.Assume the contrary. There is no cycle of oscillating nodes that contains the node. Hence we canconstruct a linear chain formed only with oscillating nodes. This chain will have at least one nodeoutside the query region or at least one inside node that eventually will not oscillate. After a �nitenumber of steps the chain eventually stabilizes. That is, if the oscillating node is part of an acyclicstructure then after a �nite number of steps the chain stabilizes.Let p1 : : : pl : : : p1 be the oscillating cycle. The cycle oscillates only if: all nodes execute ruleA1, then all of them execute A2 and so on. This scenario is not possible because of the Candidatepredicate. In a neighborhood only one node has its predicate veri�ed, hence the symmetry is broken.Lemma 7.6. Starting from an arbitrary con�guration, eventually, the input query region will becompletely covered by black nodes.Proof. Let c be the initial illegitimate con�guration. Each node in the query region executes a �nitenumber of times Algorithm IMSC (Lemma 7.5). Hence there exists c0 a con�guration such that nonode in c0 is able to execute its algorithm. Assume that such con�guration does not exist. Hence anode executes forever its algorithm. Let c00 be the con�guration where all the nodes but one, p, aredisabled.Let Cover be the query region covered by black nodes in c00. If p is candidate or link node coloredred in c00 . then p executes rule A1 and colors itself black. That is, after the p execution the queryregion covering is completed. Irisa



Self-� Distributed Query Region Covering in Sensor Networks 19If p is a redundant node and not critical then p executes A2 and colors itself in red. Again, afterthe p's execution the query region covering is completed.Theorem 7.2 (Convergence). Starting from an arbitrary con�guration, Algorithm IMSC reachesa con�guration that satis�es the legitimacy predicate LIMSC.Proof. By Lemma 7.6, RQ is eventually covered. In the following, we will consider the two conditionsto be satis�ed to satisfy LIMSC.(i) All non-redundant boundary and interior sensors are black.The proof follows from Action A1.(ii) All other active sensors | exterior, boundary, and interior | are red.Exterior nodes will turn red by applying Action A2. Other nodes if redundant will turn redby executing Action A2.8 Self-� ProofsWe want to conclude the proof of Algorithms DMSC and IMSC in this section by showing howour solutions satisfy some of the self-� properties. Algorithms DMSC and IMSC are distributed,self-con�guring, self-healing, and scalable. Thus, the proposed self-� solution makes the goal ofubiquitous/pervasive computing a reality since two of the main requirements for this type of largeubiquitous sensor networks are low-power and self-con�guring.The next two lemmas prove that the two proposed algorithms satisfy the coverage and connec-tivity properties of the connected cover problem. These two results will be used later to prove someself-� properties.Lemma 8.1 (Coverage). In any legitimate con�guration, the connected set cover MCSCQ com-puted by Algorithm DMSC or Algorithm IMSC completely covers the query region RQ.Proof. By contradiction. Assume that there is an area A which intersects RQ is uncovered byMCSCQ. Since the network is assumed to be densely deployed, A must contain at least an activesensor i which is obviously red. Then according to the predicates LDMSC or LIMSC, i must be aredundant sensor. By the de�nition of predicate Redundant(i), i must be covered by some blacknodes. Since i was chosen to be any node in the uncovered area A, we can claim that all activered sensors in A are covered by some black sensors. Therefore, A is covered, and we arrive at thecontradiction.Lemma 8.2 (Connectivity). In any legitimate con�guration, the connected set cover MCSCQcomputed by Algorithm DMSC or Algorithm IMSC forms a connected graph.Proof. By contradiction. Assume that there exist two node-disjoint connected components in theset MCSCQ. All active sensors initially form a connected graph. So, the only way for the set beingdisconnected is by marking some active sensor (say i) as redundant such that not considering i aspart of the �nal set MCSCQ disconnected i's neighborhood.However, per predicate BlackConNbrs(i), i is considered to be a redundant node only afterensuring the complete bidirectional connectivity of its neighborhood. That is, if i was markedPI n�1715



20 Ajoy K. Datta , Maria Gradinariu , Preethi Linga , Philippe Raipan-Parv�edyredundant and colored red by Action A2, all neighbors of i remained connected. In other words, ifthe setMCSCQ was connected beforeA2 was executed, it would remain connected after the executionof the action as well. We reach the contradiction.Self-con�guring and Self-healing Algorithms DMSC and IMSC are self-con�guring in thesense that starting from any initial con�guration, they con�gure themselves to form a networktopology where all sensors (members of the connected sensor cover) are able to communicate witheach other either directly or indirectly. We also proved that the given query region will eventuallybe covered starting from any arbitrary state. Hence these algorithms are self-con�guring.The proposed algorithms are self-healing under various perturbations, such as node joins, failures(due to crash and energy loss), state corruptions, and weakening of power. If a node fails, Algo-rithms DMSC and IMSC heal themselves in the following manner: If it is not a redundant node,then a part of the query region RQ may become uncovered. In that situation, a subset of its (active)neighbors will take over by executing Action A1 or A3 in Algorithm DMSC, and A1 in AlgorithmIMSC. A similar process may be initiated, if necessary, when a node's power weakens to the pointthat it a�ects the node's communication ability. On the other hand, if a node joins the network (afterrecovering, being repaired, or being re-energized in power), it would be considered as a redundantnode since the query region is already covered by the existing nodes. So, the node joining event willnot change the connected set cover. Arbitrary corruptions of state variables of the nodes are alsodealt with in the solution | change of Color variable due to faults is �xed in a very simple manner.Self-stabilization.Theorem 8.1 (LDMSC and LIMSC satisfy speci�cation). Any system con�guration satisfyingthe legitimacy predicates LDMSC or LIMSC (per De�nitions 7.1 or 7.2, respectively) satis�es thespeci�cation of the minimal1 connected sensor cover problem (per De�nition 3.2).Proof. The coverage and connectivity properties are proved in Lemmas 8.1 and 8.2, respectively. Thede�nitions of LDMSC and LIMSC imply that in a legitimate con�guration no node can be removedfrom the coverage sets. Therefore, the connected cover set MCSCQ computed at this point areminimal.Lemma 8.3 (Closure). The legitimacy predicates LDMSC and LIMSC are closed.Proof. In any con�guration satisfying LDMSC or LIMSC, all actions of Algorithm DMSC or Algo-rithm IMSC respectively are disabled. Therefore, the algorithms are silent, and satisfy the closureproperty.Theorem 8.2. Algorithms DMSC and IMSC are self-stabilizing.Proof. The proof follows from Theorem 8.1, Lemma 8.3, and Theorems 7.1 and 7.2.
1A connected cover is minimal if it does not include another connected cover Irisa


