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Abstract: A novel adaptive and exemplar-based approach is proposed for image restoration
and representation. The method is based on a pointwise selection of small image patches
of fixed size in the variable neighborhood of each pixel. The main idea is to associate with
each pixel the weighted sum of data points within an adaptive neighborhood. This method
is general and can be applied under the assumption that the image is a locally and fairly
stationary process. In this paper, we focus on the problem of the adaptive neighborhood
selection in a manner that it balances the accuracy of approximation and the stochastic
error, at each spatial position. Thus, the new proposed pointwise estimator automatically
adapts to the degree of underlying smoothness which is unknown with minimal a priori
assumptions on the function to be recovered. Finally, we propose a practical and simple
algorithm with no hidden parameter for image denoising. The method is applied to both
artificially corrupted and real images and the performance is very close, and in some cases
even surpasses, to that of the already published denoising methods. Also, the method is
demonstrated to be valuable for applications in fluorescence microscopy.
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Adaptation locale pour la représentation et le débruitage
d’image a base de motifs locaux

Résumé : Nous proposons une nouvelle méthode adaptative pour la restauration et la
représentation d’image. Lidée est de sélectionner dans un voisinage adapté pour chaque
pixel, des motifs qui sont des copies légerement modifiées du motif centré au pixel con-
sidéré. La méthode de restauration, apparentée aux méthodes a noyaux pour la régression
non-paramétrique, cherche alors a calculer, en chaque point, une moyenne pondérée des ob-
servations sélectionnées dans un voisinage variable spatialement. Toptimisation de la taille
du voisinage repose ici sur un compromis biais/variance de I'estimateur. Lalgorithme final,
dirigé par les données, est d’'une grande simplicité et nécessite a peine I'ajustement d’'un
faible nombre de parameétres. Nous présentons une comparaison avec des algorithmes con-
ventionnels et des résultats expérimentaux qui mettent en évidence le potentiel de cette
méthode pour traiter des situations o I'image est un processus localement stationnaire.
Cette méthode est trés efficace, puisque les performances obtenues dépassent la plupart
des méthodes existantes. Elle a également été validée sur des images de microscopie de
fluorescence en bio-imagerie.

Mots clés : méthode basée exemple, estimation, compromis bias-variance, restauration,
débruitage, filtrage non-linéaire, détection, microscopie a fluorescence
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4 Charles Kervrann & Jéréme Boulanger

1 Introduction

Traditionally, the problem of image recovering is to reduce undesirable distortions and noise
while preserving important features such as homogeneous regions, discontinuities, edges
and textures. In image regions corresponding to the interior of an object, linear filtering
produces desirable results, that is a pixel value which is more representative of the region
in which it lies. However, in the neighborhood of discontinuities, linear filtering such as
the Gaussian filter, removes noise but blurs edges significantly. This undesirable effect can
be reduced by taking into account local geometries and statistics during the filtering pro-
cess. Popular image restoration algorithms are therefore nonlinear to reduce the amount of
smoothing near abrupt changes:

e Most of the more efficient regularization methods are based on discrete [6] or contin-
uous [56, 64] energy functionals minimization since they are designed to explicitly ac-
count for the image geometry, involving the adjustment of global weights that balance
the contribution of prior smoothness terms and a fidelity term to data. Thus, related
partial differential equations (PDE) and variational methods, including anisotropic dif-
fusion [59, 77, 8] and total variation (TV) minimization [64], have shown impressive
results to tackle the problem of edge-preserving smoothing [59, 14, 77, 15].

e For reasons of efficiency in computer vision, other smoothing algorithms aggregate
information over a neighborhood of fixed size, based on two basic criteria: a spatial
criterion and a brightness criterion. The so-called bilateral filtering [75, 3] and pre-
vious local nonlinear filters (e.g. Lee ’s filter [45], Susan filter [69]) use this generic
principle and can be then considered as classical neighborhood filters, involving the
local weighted averaging of input data over a spatial neighborhood. The weight func-
tions are typically Gaussian kernels and are globally controlled by setting the stan-
dard deviations in both spatial and brightness domains. The relationships between
nonlinear Gaussian filters, and iterative mean-shift algorithm, local mode filtering,
clustering, local M-estimators, nonlinear diffusion, regularization approaches combin-
ing nonlocal data and nonlocal smoothness terms, have been recently investigated in
[79, 26, 4, 55, 72].

As effective as these smoothing techniques, we note they have a relatively small number of
parameters that control the global amount of smoothing being performed. The problem is
that there is no satisfying way to retrieve these smoothing parameters from data in practical
imaging and they are usually chosen to give a good visual impression [75, 3]. Furthermore,
when local characteristics of the data differ significantly across the domain, tuning these
global smoothing parameters is probably not satisfying. Some efforts have been then report-
ed to determine local scales of significant image features and to detect non-stationarities for
image regularization [51, 8, 18, 33, 44]. Another competitive approach consists in decom-
posing the image into its primary noise, texture and bounded variation (BV) components
[53, 58, 11, which actually can be hard to compute in practice.

Irisa



Exemplar-based image denoising 5

What makes image restoration a difficult task, is that natural images often contain many
irrelevant objects. This type of “noise” is sometimes referred to as “clutter”. To develop
better image enhancement algorithms that can deal with structured noise, we need non-
parametric models to capture all the regularities and geometries seen in local patterns. In
contrast to the above-cited methods, another line of work consists then in modeling non-
local pairwise interactions from training data [82] or a library of natural image patches
[29, 41, 63]. The idea is to improve the traditional Markov random field (MRF) models
by learning potential functions from examples and extended neighborhoods for computer
vision applications (e.g. image modeling [82, 46], image denoising [63], image reconstruc-
tion and super-resolution [29] and image rendering [28]). Also, it has been experimentally
confirmed that more intuitive exemplar-based approaches are fearsome for 2D texture syn-
thesis [25] and image inpainting [20]. In our framework, we will also assume that small
image patches in the variable neighborhood of a pixel contains the essential process re-
quired for local restoration. Unlike most existing exemplar-based MRF methods that use
training sets and optimization algorithms for learning [29, 63], the proposed restoration
approach is unsupervised and conceptually very simple being based on the key idea of it-
eratively growing a window at each pixel and adaptively weighting input data. The data
points with a similar patch to the central patch will have larger weights in the average as
recently proposed in [12, 13]. The idea is to estimate the underlying image at a point from
similar copies of a central pattern detected in a local neighborhood. We use small image
patches (e.g. 7 x 7 or 9 x 9 patches) to compute these weights since they are able to cap-
ture local geometric patterns and texels seen in images. In addition, we address the central
problem of choosing the smoothing window (neighborhood) which can different at each
pixel to cope with spatial inhomogeneities across the image domain. Accordingly, we pro-
pose to use a kind of change-point detection procedure, initiated by Lepskii for 1D signals
[48]. The Lespkii’s principle, also based on “wavelets” ideas [23, 24, 42], is a procedure
which aims at minimizing the pointwise risk of the estimator and amounts to balance the
accuracy of approximation and the stochastic error at each spatial position. This so-called
pointwise adaptive estimation approach has been described in its general form and in great
details in [48, 49], and the interested readers should of course have a look at these mile-
stone papers [48, 49]. In short, our approach can be viewed as an application of this idea of
pointwise adaptive estimation [48, 50] combined with exemplar-based techniques for image
restoration. We just point out that the proposed approach requires no training procedure
and no adaptive partitioning scheme such as quad-trees as already investigated in fractal
denoising [32]. However, it shares some common points with the recent non-local means
algorithm [12, 13] and other exemplar-based methods [25, 20]. Other related works to
our approach are nonlinear Gaussian filters [35, 75, 3, 79, 55] and statistical regularization
schemes [61, 43], but are enhanced via incorporating either a variable window scheme or
exemplar-based weights.

The remainder of the paper is organized as follows. Related studies are presented in
Section 2. In Section 3, we introduce the image modeling and some notations. In Section
4, we formulate the problem of the selection of the best possible window and present the
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6 Charles Kervrann & Jéréme Boulanger

adaptive estimation procedure, whose complexity is actually controlled by simply restricting
the size of the larger window. Theoretical results are given in Section 5. In Section 6, we
propose a practical algorithm with no hidden parameter for image denoising. In Section 7,
we demonstrate the ability of the method to restore artificially corrupted images with addi-
tive white Gaussian noise (WGN). Also, the method is applied to denoise real fluorescence
microscopy images in bio-imaging. Conclusions and perspectives are presented in Section 8.

2 Related work for image denoising

In this section, the relationships between the proposed technique and other image restora-
tion methods are discussed. A large number of methods have been proposed for image
denoising and regularization as recently described in [12]. To our knowledge, the more
competitive methods are recent wavelet-based methods. However, we do not draw into
comparison both the wavelet-based methods [24, 74, 62, 22, 60, 47] since they process the
input data in the transformed domain, and the fractal denoising methods [32] also rooted
in wavelet theory. In Section 5, we have just reported the experimental results when these
wavelet-based methods are applied to a commonly-used image dataset in image denoising
[62]. In the current section, we mainly focus on nonlinear Gaussian filters, nonlinear dif-
fusion, M-estimators from robust statistics and some related energy minimization methods
since they share some common points with the proposed method (see also [12] for a recent
survey).

Fixed-window methods yield good results when all the pixels in the window come from
the same population as the central pixel. However, difficulties arise when the square (or
circular) window overlaps a discontinuity. Filtering with a window (or spatial kernel) that
is symmetric around the central pixel results in averaging of edge values, and therefore
blurring of the edge. In such cases, a possible strategy would be to substitute the border
pixel with a pixel inside the object. Nitzberg & Shiota [57] (and later Fischl & Schwartz
[27]) proposed an offset term that displaces spatial kernel centers away from the presumed
edge location, thus enhancing the contrast between adjacent regions without blurring their
boundaries. The so-called “offset-filtering” requires the generation of a vector field over the
image domain which specifies an appropriate displacement at each point. Intuitively, the
displacement direction is calculated from the dominant local gradient direction. Unfortu-
nately, approaches based on gradient information are known to be quite sensitive to noise.
The dominant directions can be more robustly estimated from eigenvectors of the second
moment matrix, which are essentially first and second order derivatives. This reduces the
sensitivity to noise but requires the user-defined setting of a global scale of features to be
preserved during diffusion [78] A more commonly-used strategy consists then in disregard-
ing some data points in the fixed window that should be classified as outliers in a bimodal
distribution. In our framework, we will exploit a such concept originated from robust s-
tatistics to filter out some undesirable data points in the estimation window [7, 8], and to
improve the estimation of image discontinuities [7, 8].

Irisa



Exemplar-based image denoising 7

An other class of nonlinear filters aims at estimating a connected component of pixels,
that can be of arbitrary shape, containing the point of interest. Such nonlinear filters spe-
cialized in Gaussian noise elimination have re-appeared in recent papers [75, 9, 3]. Most
of them use a certain window of neighboring pixels to modify the observed value at a given
pixel. One primarily and typical filter is the sigma filter [45] described as follows: define
E; ={x; € A; : |Y; = Y;|* < 2¢*}, where A, is the window centered at pixel x;, Y; is the
observation at x; and g is a smoothing parameter to be determined and depending on the
signal-to-noise ratio (SNR); then the output of the filter is

doxsen, La(Yi = Y5)Y;
ZX]‘EAZ' LQ(Y; - Y])

where L,(Y; — Y;) = 1if x; € E; and 0 otherwise. It can be seen that the weight function
of the sigma filter is discontinuous. A continuous version of this weight might be more
plausible and choosing L, (Y; — Y;) = exp(—(Y; — Y;)?/2g?) gives the well-known nonlinear
Gaussian filter [35]. Finally, if we substitute a Gaussian window to the hard disk-shaped
window around the current position x;, we get variants of the bilateral filtering (e.g. Lee’s
[45], Susan [69] and Saint-Marc ’s [65] filters) of the form

ijeAi Lg(Yi - Yy) Kp(xi — Xj) Y;
Yowen; Lo(Yi = Y Kn(xi —x;)

where K(-) = (1/h)K(-/h) and L,(-) = (1/g)L(-/g) are rescaled versions of non-negative
kernel functions K and L. By definition, the continuous kernel functions K and L fulfill:
[ K(t)dt =1, [ L(t)dt = 1 and have ¢ vanishing moments: [t K (t)dt =0, [t'L(t)dt = 0
for 1 <1 < {. The bandwidths h and g control the amount of averaging. These “weight”
functions depends on both the spatial and intensity difference between the central pixel
and its neighbors. The weight functions L,(-) and K(-) are typically Gaussians kernels
where and ¢ and h are respectively the standard deviations of the intensity and spatial
components. We can control the spatial support of the filter and thus the level of blurring
by varying h. By varying g, we can adapt the sensitivity of the filter to abrupt changes.
However, both must be set manually according to the image contents. Note, in particular,
that as ¢ — oo, the bilateral filter approaches a Gaussian filter of standard deviation h,
and as both g,h — oo, the bilateral filter approaches the mean filter. In short, smoothing
over some neighborhood is based on a spatial criterion and a brightness criterion in order
to select similar data points. Thus, this generic principle, also developed by Yaroslavsky
[81], was adopted in [9] where the authors describe an efficient method for choosing an
arbitrarily shaped connected window, in an manner that varies at each pixel. More recently,
Buades et al. proposed the so-called non-local means filter [12, 13] defined as

Zx,-eAi Lg(Yi — Yj) Kp(x; — xj) Y;
ZX]‘EAi LQ(Yl - Y])Kh(X1 — X])

where Y; denotes a vector of pixel values taken in the neighborhood of a point x;. The
similarity between two points x; and x; is based on the Euclidean distance ||Y; — Y;||?

M

u(x;) =

i(xi) =

(2)

u(x;) =

3
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8 Charles Kervrann & Jéréme Boulanger

between two vectorized image patches. It is worth noting that, if the size of the patch
is reduced to one pixel, the non-local means filter, also controlled by a small number of
smoothing parameters g and h, is strictly equivalent to (2). Finally, it has been shown that
using example image patches greatly improves image denoising [12, 13], and will be also
considered in our framework.

As effective as nonlinear Gaussian filters, they lacked a theoretical basis and some of con-
nections to better understood methods have been investigated. Here, we report some recent
results. First, emphasizing the importance of extended neighborhoods, Barash & Comaniciu
[4] have showed that bilateral filtering represents a weighted averaging algorithm which
turns out to be an implementation of anisotropic diffusion [59, 77], controlled by a glob-
al scale parameter. Elad [26] established further how the bilateral filter is algorithmically
related to anisotropic diffusion [59] and robust estimation [7] in terms of minimizing func-
tionals. The bilateral filter can also be viewed as an Euclidean approximation of the Beltrami
flow and originates from image manifold area minimization [72, 73]. Furthermore, Barash
& Comaniciu showed that kernel density estimation applied into the joint spatial-range do-
main yields a powerful processing paradigm - the mean-shift procedure [19] - also related to
bilateral filtering but having additional flexibility [4]. The link between iterative mean-shift
algorithm, local mode filtering, clustering, local M-estimators, nonlinear diffusion, regular-
ization approaches were already analyzed in [16, 79, 76, 26, 55, 4]. Also, all these methods
have been casted into a unified framework for functional minimization combining nonlocal
data and nonlocal smoothness terms in [55]. In particular, Mrazek et al. brought to the fore
the large amount of structural similarities between the iterated bilateral filter

Doxsen; Ly(Un(xi) —un(x;)) Kn(Xi —%;) un(x;)

_ _ 4
ijEAi Ly(un(x;) — un(x;)) Kn(xi —x;) @

an+1(X7:) =

and the local M-smoother

B (i) = Yox;en; Wo(Vi — Un(xq)) Kn(x; — x;) Yj )
Unt1(Xi) = ijeAi wy(Y; — tn(x;)) Kp(xi — x5)

where w, (s?) = p),(s”) and p(s) is the error norm for M-estimators. It is confirmed that
local M-smoothing uses the initial image in the averaging procedure and searches for the
minimum of a local criterion whereas iterated bilateral filtering uses the evolving image and
has to stop after a certain number of iterations in order to avoid a flat image. Note that the
use of a chain of nonlinear filters has been also proposed in [2], and the bandwidths g and h
vary at each iteration according to specific and deterministic rules to balance edge detection
and noise removal. To complete the state of the art of related regularization methods to our
approach, we must mention the successful of the Total Variation (TV) minimizing process of
Rudin-Osher-Fatemi [64] which simultaneously computes a piecewise smooth solution and
estimate discontinuities. This method aims at minimizing an energy functional comprised
of the TV norm and the fidelity of this image to the noisy input image. In contrast to
neighborhood filters, the regularization is extremely local and involves only the pixel values

Irisa



Exemplar-based image denoising 9

and derivatives at point x;. In the discrete setting, this energy functional, also casted into
the Bayesian framework [38], is related to MRF methods and can be stated as follows

G G
1G] A

ZIVU(Xi)I + %Z(K’,*U(Xi))z (6)

where |G| is the number of pixels of the discrete image domain G, Vu(x;) is a discrete ap-
proximation of the gradient of the function u and A, is interpreted as Lagrangian multiplier,
which globally balances the contribution of the TV norm and the fidelity term. The steepest
descent of this TV norm is then related to the mean curvature motion and, further, to the
robust anisotropic diffusion if a robust M-estimator norm is substituted to the ., norm (see
[7, 51). In (6), the fidelity term is actually used to automatically stop the diffusion process
and to avoid a flat image. In this paper, we will compare our method with the Rudin-Osher-
Fatemi method since it performs well in image denoising.

Finally, all cited restoration methods have a relatively small number of smoothing pa-
rameters (e.g. bandwidths g and A in (2), Ay in (6)) that control the global amount of
smoothing being performed. In implementing these methods, the first question to be asked
is how should the smoothing parameters be chosen ? The major drawback of global methods
is that there is no satisfying way to retrieve the smoothing parameters from data. A num-
ber of authors have then turned to various tools derived with statistical motivations such as
bandwidth selection could be interpreted and exploited for global parameter selection in the
diffusion process [16, 79, 76, 26, 55, 4, 33]. However, it is also theoretically confirmed that
automatically determining a bandwidth for spherical kernel is a difficult problem [35], and
the bandwidths ¢ and h involved in the bilateral filtering are usually chosen to give a good
visual impression and are heuristically chosen [75, 3]. Furthermore, when local characteris-
tics of the data differ significantly across the domain, selecting either optimal bandwidths or
optimal Lagrangian multipliers is probably not satisfying. There is seldom a single scale that
is appropriate for a complete image. Recently, these difficulties motivated the development
of more adaptive methods to cope with inhomogeneities in images. First, some mechanisms
using a spatially varying parameter A (x;) and local variances have been proposed to adapt
restoration over image regions according to their contents [33]. In [37], the local amount of
Gaussian smoothing is computed in terms of variance in a space-scale framework, through
the minimal description length criterion (MDL). The local variance is actually useful for lo-
calization of significant image features [8, 33, 37]. An alternative way to select the local
scale is to maximize a measure of edge strength over scale space [51] but the resulting scale
computed from image derivatives, is sensitive to signal-to-noise ratio. More recently, TV
flow has been suggested since it includes a non-explicit scale parameter useful for detecting
the scale of image features [10]. Also, some efforts have been reported to locally vary the
bandwidths in kernel regression [18, 68]. In [68], the authors determine local bandwidths
using Parzen windows to mimic local density for image segmentation. This is a variant of
the plug-in idea usually used in the statistics literature, which is fast and easy to compute.
However the plug-in approach is problematic since it is known to be highly sensitive to noise
in images and to the choice of a global initial bandwidth.

PIn°1733



10 Charles Kervrann & Jéréme Boulanger

In this paper, we will focus on this problem which is an open research issue, and propose
a stable scheme to select the best possible size and shape for local regression. In addition, we
propose to use example image patches to take into account complex spatial interactions in
images. In contrast to exemplar-based approaches for image modeling [82, 63], we propose
an unsupervised framework that uses no library of image patches and no computational
intensive training algorithms [29, 63]. Our adaptive smoothing works in the joint spatial-
range domain as the non-local means filter [13] but has a more powerful adaptation to the
local structure of the data since the size of windows and control parameters are estimated
from local image statistics as presented in the remainder of the paper.

3 Image model and basic idea

In order to describe our estimation method, let us first introduce some useful notations.
Consider the following image model

Y;':’LL(XZ')-FCZ', izl,...,|G| 7

where x; € R?, d > 2, represents the spatial coordinates of the discrete image domain G of
|G| pixels, and Y; € R, is the observed intensity at location x;. We suppose the errors ¢; to
be independent distributed Gaussian zero-mean random variables with unknown variance,

i.e. Var(e;) “J 52, Our aim is to recover u : R? — R from noisy observations Y;. In what
follows, we suppose no explicit smoothness assumptions on u is available and it will be only
assumed that u is compactly supported and bounded

Nevertheless, in order to recover v : R? — R from noisy observations, we need minimal
prior assumptions on the structure of the image. In particular, we will assume that the
unknown image u(x;) can be approximated by the weighted average of input data over a
variable neighborhood A; around that pixel x;. The points x; € A; with a similar estimated
patch u; to the reference image patch u; will have larger weights in the average. This
amounts to suppose there exists some stationarity in the neighborhood of a point x; which
can help to recover u(x;). However, our ambition is not to learn generic image priors from a
database of image patches as proposed in [82, 29, 41, 63]. We only focus on image patches
as non-local image features, and adapt kernel regression techniques for image restoration.

Here, for simplicity, an image patch u; is modeled as a fixed size square window of p x p
pixels centered at x;. In what follows, u; will denote indifferently a patch or a vector of
k = p? elements where the pixels are concatenated along a fixed lexicographic ordering. As
with all exemplar-based techniques, the size of image patches must be specified in advance
according to how stochastic the user believes the image to be [25, 20]. In our experiments,
we shall see that 7 x 7 or 9 x 9 patches are able to take care of the local geometries and
textures in the image while removing undesirable distortions. Finally, the proposed ap-
proach requires no training step and may be then considered as unsupervised. This makes
the method somewhat more attractive for many computer vision applications.

Irisa



Exemplar-based image denoising 11

Another important question under such an estimation approach is how to determine the
size and shape of the variable neighborhood A; at each pixel, from image data. The selected
window must be different at each pixel to take into account the inhomogeneous smoothness
of the image. Hence, the choice of the set Na of candidate neighborhoods will play the
key role. For the sake of parsimony, the set of admissible neighborhoods will be arbitrarily
chosen as a geometric grid of nested square windows

Na = {Aip | Ainl = @ +1)x (2"+1),n=1,..., Nal,

where |A; | = #{x; € A;,} is the cardinality of A; ,, and Na is the number of elements
of Na. For technical reasons, we will require the following conditions: A;, is centered
at x; and A;,, C A,;,4; and assume that the set N is finite. In the next section, we
will precise this adaptive estimation procedure and describe a local window selector which
achieves two objectives: spatial adaptivity and computational efficiency. We will introduce
the notion of local L, risk as an objective criterion to guide the optimal selection of the
smoothing window for constructing the best estimator as possible. This optimization will be
mainly accomplished by starting, at each pixel, with a small window A;  as a pilot estimate,
and growing A, ,, with n.

4 Adaptive estimation procedure

The proposed procedure is iterative and works as follows [61, 44].
At the initialization, we choose a local window A; o containing only the point of estima-

. . . . . . o d . .
tion x; (|A;o| = 1). A first estimate ; o (and its variance 02 = Var(u; o)) is then
~ _ ~9 a2
Uio =Y; and vy =0 (8)

where an estimated variance 52 has been plugged in place of o2 since the variance of errors
is supposed to be unknown (see Section 6). At the next iteration, a larger window A, ;
with A; o C A;, centered at x; is considered. Every point x; € A;; gets a weight m;;1

defined by comparing pairs of current estimated patches u; o = (17510), . ,ﬁgko) )T and 1,0 =

(ﬁ% . ,ﬂ;{“o))T of size k = p x p, obtained at the first iteration. Here, the subscript i ~ j
means “x; € A; . and the index j runs through the neighborhood of x;”. As usual, the points
x; with a similar patch u; o to u; o will have weights close to 1 and 0 otherwise. Then we
recalculate the estimate u; ; as the weighted average of data points lying in the neighborhood
A; 1. We continue this way, growing with n the considered window A;, while n < Na
where N denotes the maximal number of iterations of the algorithm.

For each n > 1, the studied maximum likelihood (ML) estimator #; , def ua, ,(x;) and

. . ~ def ~
its variance 07, = Var(u;,) can be represented as

~ ~2 ~92 2
Ujp = Z 7Tz'~j’nY} and Uin = 0 Z [71'i~]'7n] ©

X;EAi n X;EAi n
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12 Charles Kervrann & Jéréme Boulanger

where the weights ;_;, are continuous variables and satisfy the usual conditions 0 <
Tinjn < 1 and ijeAi’n mi~jn = 1. Here, we suggest to compute the weights from pairs of
current restored patches u; ,_1 and u;,_1 obtained at iteration n — 1 to capture complex
interactions between pixels (see Fig. 1). In what follows, n will coincide with the itera-
tion and we will use 7i(x;) to designate the index of the “best” window chosen among all
non-rejected window A, ,, from N, as

~

A(Xl) = argAmzéuﬁ[A {|A17n‘ : \ﬁlyn — ﬁiyn/| < Q'Ui,n’; forall 1 < TL’ < ’I’L}

where g is a positive constant. Throughout this paper, we shall see the rational behind this
pointwise statistical rule and the proposed strategy that updates the estimator when the
neighborhood increases at each iteration.

With this adaptive choice of window which depends on the observations instead of a
usual deterministic window and defined exemplar-based weights, this estimator is clearly
not linear and uses no explicit assumption on the smoothness of the unknown function .
Moreover, the best possible estimator u(x;) is computed from the whole path of values {u; , }
as

—~ def ~
u(x;) = Ujg(x;) = Z Tinjii(x:) Yi- (10)
xJ-EK(xi)

The use of variable and overlapping windows contributes to the restoration performance
with no block effect and make them possible to cope well with spatial inhomogeneities in
natural images. In the following, we use a spatial rectangular kernel (i.e. square windows)
for mathematical convenience and to refer to the sigma filter [45], but the method can be
naturally extended to the case of a more usual spatial Gaussian kernel [35, 75, 17, 3, 79]. In
equation (9), it worth noting the weight function ;. , does not directly depend on input
data but are only calculated from neighboring local estimates. This contrasts with traditional
local M-estimators (see (5)), non-linear Gaussian filters (see (2)) and the non-local means
filter (see (3)).

4.1 Adaptive weights

As already mentioned, we may decide on the basis of current estimates u; ,,—; and u; ,—1, if
a pixel x; belongs to the region A; ,,_1. In order to compute the similarity between patches
u; », and u; ,, an objective distance must be considered. In [25, 20, 12, 13], several authors
showed that the L, distance ||a;,-1 — 0;,-1]|? is a reliable measure to compare image
patches. To make a decision, we have rather used the following normalized distance

dist(T; 1, Ujn-1) = (i1 — jn1)’ Vipy @1 —Oj) (A1)

+ Nl

(@1 — Ain1)’ Vih ) (@jne1 — 8inot)
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>

L I

Figure 1: Description of the exemplar-based restoration approach.

where \A/'i,n,l and \A/j,n,l are diagonal matrices with the k non-zero diagonal elements
equal to variances {07, ,} and {v3, ,} associated to the current estimated patch ; ,, 1
and 4;,_1. Accordingly, The hypothesis u;,_1 and u;,_: are similar is accepted if the
distance is small, i.e. dist(W;,—1,Uj,-1) < Aq. In our modeling, the parameter A\, € R
is chosen as a quantile of a x? , , distribution with k degrees of freedom, and controls the
probability of type I error for the hypothesis of two points to belong to the same region:

]P{dist(ﬁim,l,ﬁj’n,l) < )\a} =1-a. (12)

All these tests (JA; | tests) have to be performed at a very high significance level, our
experience suggesting to use a 1—a = 0.99-quantile. Henceforth, we introduce the following
commonly-used weight function

K (A;l dist(ﬁi’n,1 s ﬁj’nfl))

> K (A dist(Tii 1, 1j,,-1))

X]'EAi,n

(13)

Tinjn =

PIn°1733



14 Charles Kervrann & Jéréme Boulanger

with K(-) denoting a monotone decreasing function, e.g. a kernel K (z) = exp(—=z/2). Due
to the fast decay of the exponential kernel, large distances between estimated patches lead
to nearly zero weights, A\, acting as an automatic threshold. Note that the use of weights
enables to relax the structural assumption the neighborhood is roughly modeled by a square
window, and is an alternative strategy to a more natural geometric strategy which consists
in estimating the anisotropy and direction of a rectangular or elliptic window (see [80] for
instance). To complete the description, the optimal estimator (9) requires the determination
of the best window adapted for each pixel. This difficult problem is theoretically addressed
in the next section.

4.2 An “ideal” smoothing window

In this section, we address the problem of automatic selection of the window A; . adapted
for each pixel x;. It is well understood that the local smoothness varies significantly from
point to point in the image and usual global risks cannot wholly reflect the performance of
estimators at a point. Then, a classical way to measure the performance of the estimator
u;n to its target value u(x;) is to choose the local L, risk, which is explicitly decomposed

into the sum of the squared bias b7 , and variance 07,

[l = u(xa) ] = [0, + 08 (14)
Our goal is to minimize this local L, risk with respect to the size of the window A; ,,
and for each pixel in the image. It is worth noting that the weights depend on previous
estimates and a closed-form solution for the ideal window cannot be calculated. Actually,
the optimal solution explicitly depends on the smoothness of the “true” function u(x;) which
is unknown, and so, of less practical interest (see [67, 39, 43, 71]). A natural way to bring
some further understanding of the situation is then to individually analyze the behavior of
the bias and variance terms when A; ,, increases or decreases with n as follows:

e The bias term Bm = E[u;, — u(x;)] is nonrandom and characterizes the accuracy
of approximation of the function u at the point x; by the smoothing window. As it
explicitly depends on the unknown function u(x;), it is usually not very useful by
itself. Nevertheless, approximations to the bias can be derived as follows: first, we
assume there exists a real constant C; < oo for all x; € G such that |u(x;) — u(x;)| <
Ci|x; — x;| (i.e. wu is Lipschitz continuous). Also, we use the geometric inequality
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Exemplar-based image denoising 15

1x; — x| < Q\Am\lﬂ for 2D images. Then, it follows that

biml = | D miiw BV —ux)]| <D misg Julx;) — ulx)]

X;EAi n X;EA; R
< G Yl T lx o xil
X;EAN; n
S C]|Ai7n|3/2
V2

and so |Rn\2 is of the order O(|A; »|?). Thus the squared bias is small when |A; | is
small and typically increases when A; ,, grows. As expected, small windows give a less
biased estimator.

¢ The behavior of the variance term is just opposite. The errors are independent and
the stochastic term o7, can be exactly computed on the basis of observations. Since
0<mi.jn<land ijeAm Ti~jn = 1, it follows that
~2
o ~ e
< vy, < 0%

Ainl T

In addition, we can reasonably assume that there exits a constant 0 < 3 < 1 such that
) ~ 82\Ai,n|*5 . Accordingly, as A; , grows, more data is used to construct the

2
Ui,n

2

i n decreases.

estimate u; ,, and so U

In conclusion, the bias and standard deviation are monotonous functions with opposite
behavior. In order to approximately minimize the local L. risk of the estimator with respect
to |A; |, a natural idea would be to minimize an upper bound of the form

~2

3
+ -2
|AinlP

. C3
E|u; pn fu(xi)|2 < 7|Aln

This equation summarizes the well-known trade-off between bias and variance and the size
of the optimal window can be easily calculated as

o [2p2]FE
el = 2]

Note that this result cannot be used in practice since C; and 8 are unknown. However, for
the optimal value |A*(x;)|, it can be easily shown that the ratio between the optimal bias
b*(x;) and the optimal standard deviation v*(x;) is image independent (see [43, 71]):

|0* (%) | \/E def
v*(x;) = 3
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16 Charles Kervrann & Jéréme Boulanger

Accordingly, an ideal choice of the window will be the largest window A; ,, such that Rn is
still not larger than ~v; ,,, for some real value v € Ry :

~

A*(x;) = R suepj\/ {|Ain] : bin < Y0in}-
i,n A

Since A*(x;) is based on the full knowledge of the bias (and then of the unknown function
u) rather than a data-dependent selection, it represents an ideal we cannot expect to attain.
Since, in the ideal case, the ideal window A*(x;) exactly balances the bias and variance
terms, i.e. b*(x;) = yv*(x;), the corresponding pointwise ideal risk is then of the form

Ti(u*,u) e [E|u*(x;) — u(xi)|2]1/2 = V1492 v (x;). (15)

In practice, the bias is not observable and the trade-off between bias and variance cannot be
obtained by sweeping out the measured bias Rn and variance 07 ,, indexed by the smoothing
window A, ,, at point x;. Henceforth, we need more precise characterizations to derive a
selection procedures: first, following the standard decomposition of the estimator #; ,, [50]

-~

Ui = w(x;) + bip + v (16)
where v; ~ N (0, E[2]), we have E[d; ,,] = u(x;)+bi.. and E[v2] = E[|t.n —u(x;) —bin|?] <
07, Therefore, the following inequality

.0 — w(X)| < bi + 3 Din a”n

holds with a high probability and 0 < » < co. In this inequality, the right hand side is
comprised of two terms, the deterministic dynamic error b; ,, which is completely determined

by u, and the stochastic error which is completely independent of u. Finally, since Em <
~Y0; n, we modify correspondingly the definition of the ideal window as

A*(x;) = A.suepj\/ {Ain| i —u(x)| < (v + 2) Uin}. (18)

The crucial point is that this inequality depends no longer on Bi,n, but is yet related to the
unknown function u(x;). In the next section, we shall see that a data-driven window selector
based on this definition of A*(x;) can actually be derived.

4.3 A data-driven local window selector

In the pointwise estimation approach, we strongly suppose ¥; ,, decreases as n increases and
the ordering relation ;,» < u;, that implies ¥; , < U;,, can be introduced. If this as-
sumption is not fulfilled for the original set Na, i.e. there is A; ,,» C A, ,, with the property
Vin' > Uin, then we simply exclude the window A; ,,» from Na at point x;. The collection
of estimators {u; 0, ..., %(x;)} is then naturally ordered in the direction of increasing |A; ;|
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Exemplar-based image denoising 17

where @(x;) can be thought as the best possible estimator. Accordingly, we propose a selec-
tion procedure based on pairwise comparisons of an essentially one-dimensional family of
competing estimators u; ,, as described below.

Actually, the random variables u; ,, — u; , are Gaussian random variables with expecta-
tions equal to the bias differences Bm — En and variances to Var(u; , — U n/) < ﬁfn (see
the proof in Appendix A.1.). From (17) and (18), it follows

(s — Tip| < |Bimr — b + 5eVar(i; n — )| bim — bin| + 20 (19)
|bi,n’| + |bi,n| + %ai,n’
761',71’ + ’Y'Uz,n + %'Ui,n’

(2"}/ + %)’L/)\LW .

ININ IN DA

Now if a threshold p = (2 + ) is properly chosen, none of the variables |u; ,,» — u; | Will
exceed the value g with a high probability. Thus, the fulfillment of the event

~ ~
Ui n — Uin'

<o, 1<n/ <m, (20)

=
Ui,n'

will suggest that u; , can be a good candidate for the “true” estimator. Among all such
candidates, one naturally choose the one with the smallest variance ¢7,,. The exact choice
of the threshold ¢ then becomes a balancing act based on large deviation calculations: o
should be large enough to guarantee a sufficiently high probability of (20) and, at the same
time, small enough to provide a good control of @; ,, — u(x;). However, it worth noting that
setting the threshold g remains an open issue in practice as already mentioned in [43] and
in a recent reliability study for a fine adjustment of 5 and +y in signal processing applications
[71]. In the next section, we shall see how this parameter can be estimated from image data.
Following the above discussion, a window selector is then based on the following pointwise
rule [49, 52, 42, 50, 36]:

A(x;) = arg max {|Ajn|: |Gin — Uiw| < 001w forall 1<n’ <n}. (21)
amax {14 : : :

This choice ensures the balance between the stochastic term and bias and means that we
take the largest window such that the estimators #; ,, and u; - are not too different, in some
sense, for all 1 < n’ < n. Hence, if an estimated point ; ,» appears far from the previous
ones,, this means that the bias is already too large and the window A; ,, is not a good one.
In this case, rejecting u; , in favor of u;, , n' < n, as the procedure prescribes, would
result in a reduction of the bias more substantial than then the increasing of the variance.
For each pixel, the detection of this transition enables to determine the critical size that
balances bias and variance. Out of all the windows which have not been thus rejected, the
one corresponding to the smallest variance, namely A(x;) is used in the construction of the
estimator @(x;). This idea underlying our construction definitely belongs to Lepskii [48, 49].
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18 Charles Kervrann & Jéréme Boulanger

5 Theoretical properties

5.1 Accuracy of the adaptive estimate

For adaptive estimation at a point x;, one must pay a price for adaptation. The extra factor
is a function of » and 7 and is an unavoidable payment for pointwise adaptation. Under fair
assumptions, the following proposition can be proved (see Appendix A.2).

PROPOSITION 1. If the ideal risk is defined as
Ti(u*,u) = /1492 0*(x;)
and iif n*(x;) < n(x;), then there exists an optimal adaptive estimate u(x;) with the inaccuracy

of order [% + 1} times the ideal risk. i.e.
Y

1/2 (27 + »)

Vi

It is clear that the ideal risk is unattainable in general but, iif n*(x;) < n(x;), our estimator
has (up to a constant term) the same risk as the risk of the estimator constructed with the
ideal window A*(x;).

(B (xi) <) | (1) — u(x5) ]

+ 1] Ci(u*,u).

Clearly, the choice of the parameter g plays an important role in the adaptation and must
be carefully chosen. In order to calibrate this threshold, we need to evaluate the probability
of the event {n(x;) = n} at x; and prove the following proposition:

PROPOSITION 2. The event {n(x;) = n} occurs at x; with a probability

P{i(x;) =n} < Y 2exp <%2> < 2Na exp (%)

n'<n
Proof: see Appendix A.3.

From PROPOSITION 2, it follows

L Pa(x) > Na} = 3 Pla) =n} < 3 Y 2ex (%)

<
n=1 n=1 n/=1
NAfl g2
< 2 —=
< zz; nexp< 2)
92
S NA(NA—l)eXp<——>.

[\
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Hence, if we fix the probability P{7(x;) > Na}, an upper bound can be calculated to choose
oas

NaA(Na — 1)
QS\/QIOgl—P{ﬁ(xi)ZNA}' (22)

Moreover, we point out that most images are piecewise smooth. They contain a small num-
ber of pixels with significant discontinuities. Therefore, the probability P{n(x;) > Na} is
high at x; € G. The threshold ¢ can be then adapted to image contents using the following
approximation

#{x; : |ri| <5}
|G ’

i.e. from the empirical distribution of pseudo-residuals {r;} defined by (25). In what fol-
lows, we adopt the upper bound (22) (and the approximation (23)) to derive a data-driven
estimation of p.

Finally, it remains to evaluate P{n(x;) < n*(x;)} and to prove that we nearly never
under-estimate the optimal window A*(x;):

P{fi(x;) > Na} ~ P{|r;| <5} = (23)

PROPOSITION 3. The event {n(x;) < n*(x;)} occurs at x; with a probability
2
P{Ax) < n*(x:)} < n* (i) (n* (x3) — 1) exp (%) |

Proof: due to the definition of n(x;), we have
{axi) <n*(x)} S |J U {tim —Giw] > 0Dim}-
n<n*(x;) n'<n
and the probability of the event {n < n*(x;)} occurs can bounded

n*(x;)—1 n

(
P{a(x;) <n*(x;)} < > > P{ur(xi) = il > 00in}-

n=1
In Appendix A.3, we proved P{|@; ,, — Ui,/ | > 0U;n' } < 2exp (—0?/2). Hence, we have

n*(x;) n 9 2
P{ﬁ(xl) < n*(xi)} < ; H,Z:] 2eXp <%> = TL*(Xi)(TL*(Xz‘) — 1) exp (%)
U
This last inequality can be checked to hold true for any positive values of g. The probability
of the event {7n(x;) < n*(x;)} is small, provided that the value n*(x;)(n*(x;) —1) exp(—0?/2)
is sufficiently small. Accordingly, if 2.5 < ¢ < 3 (as shown in our experiments) and if we
choose Na = 4, the probability of the event {n(x;) > n*(x;))} occurs with a high probability.
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5.2 Invariance properties

We prove some additional invariance properties of our estimator. In particular it satisfies the
following properties:

e Average gray level invariance: We study an idealized situation when the underlying
image is a unique flat region. In this situation, we can show the estimate #(x;) coincide
with the mean values of observations Y; for all x; € G with a probability close to 1:

) 1
lim Z Tivji(xi) Yj = il Z Y;

A(xi)—G =
(i) = x; EA(x;) x; €G

Additionally, the deviations 7i(x;) — ug are of the order |G|~!/?:

lim &° [Tivinen)? = =0
&(xi)—>G x-EEB:(x-) i3, (x:) |G|

We may apply the Bernstein’s inequality which tells us that the deviations of u(x;) —ug
are bounded:

R 3/G[262
P{lu(x;) — uo| > 6} < 2exp 652 +205/G)6 ‘G‘—_{Do 0

for any § € R, since we can find C> € Ry such that |u(x;) — E(u(x;))| < Cs.

e Extremum principle: The estimator fulfills the extremum principle which offers the
practical advantage that, if we start with an input image within the range [0, 255],
we will never obtain results with gray level outside this range. If inf,,cqY; <V <
supy, ci Yj, Vx; € G, then

> Tiejm mf Y, <> migaY; <00 Y misjm sup Y;
XjEG XjeG
X;EAG X;EA; n X; €A n
inf,eq Y; < Ui,n < SUPy; e Y

Some other properties should be further investigated.

5.3 Complexity

The complexity of the whole procedure is of the order p x p x |G| x (JA. 1] + -+ [A. N4l
if an image contains |G| pixels.
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6 implementation

In this section, we describe a practical algorithm given in Fig. 2, with a minimal number of
calibrated parameters, based on the previous construction of the adaptive window and the
corresponding estimators. The key ingredient of the procedure is an increasing sequence
of nested square windows, centered at x;, of size |A; ,,| = (2" + 1) x (2" + 1) pixels with
n = 1,...,Na. At the initialization, we naturally choose |A;¢| = 1 and set the fixed size
of p x p patches and the level a of the hypothesis test for image patch comparison. In
addition, the estimation procedure relies on the preliminary estimation of the noise variance
o2 robustly estimated from input data as

& = 1.4826 med(|r — med]r||) (24)

where r = {ry,72,...,7rg|} is the set of local residuals of the entire image defined as (we
note Y;, ;, the observation Y; at point i = (i1,2)) (see [30]):

ri = [21/2'1,2'2 - (Yvi1+17i2 + E17i2+1)]/\/6' (25)

and the constant 1//6 is used to ensure E[r?] = 52 in homogeneous regions. A stopping
rule (e.g Csiszar’s I-divergence [21]) could be used to save computing time if two succes-
sive solutions are very close and prevent an useless setting of the larger window size [44].
However, we manually set the number Na of iterations to bound the numerical complexity
(typically Na = 4). As expected, increasing Na allows for additional variance reduction in
homogeneous regions.

7 Experimental results

The proposed methodology is used for image denoising in various contexts, including ob-
ject detection in bio-imaging. Our results were measured by the peak signal-to-noise ratio
(PSNR) in decibels (db) defined as

2552 C Yea(uo(xi) —(x;))?

——, MSE =
MSE’ €

PSNR = 101og,,,

where ug is the noise-free original image.

In our experiments, the noise variance 6 and the threshold p are autonomously esti-
mated from image data using (24) and (22) and we have chosen p = 9 and Na = 4. In all
the experiments, we shall see ¢ < 3, which implies the optimal adaptive estimate u(x;) is
with the inaccuracy of order 3 times the ideal risk if v < 1 (see PROPOSITION 1.). This value
corresponds to a local neighborhood of maximal size of 17 x 17 pixels. Moreover, the choice
of the critical values )\, is also important. Large values improve stability of the model under
homogeneity but result in a low sensitivity to parameter changes, while too small critical
values lead to a large “false alarm” probability. In our experiments, this “false alarm” prob-
ability should not exceed the given level a set to 0.01 yielding to Ao.o1 = X§1,0.99 = 113.5.

2
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Algorithm Exemplar-based image restoration algorithm

Let {p, @, Na} be the parameters.
Initialization: compute 37, ¢ and {@;,0, v; o} for each x; € G.

Repeat

e foreachx; € G

— compute

K (/\;1 diSt(ﬁ,‘,nfl, ﬁj,nfl))

i =
i~g,m Afld. ~ ~
K (A, dist(Qin—1,0j,n-1))
X;EA; n
Uin = E Tinjn Yj,
X;E€EA;
~2 a2 2
Oim = 0 [Tinjn]
X;EA; n

— test the window using

A(xi) = argA_mg/A{\AM i — Ui | < 00, forall 1<n' <n}.

If this rule is violated at iteration n, we do not accept u;,» and keep the estimate u; ,,—1 as
the final estimate at x;, i.e. u(x;) = Ui »n—1 and n(x;) = n— 1. This estimate is unchanged
at the next iterations and x; is “frozen”.

e increment n

while n = Na.

Figure 2: Exemplar-based image restoration algorithm.

The processing of a 256 x 256 image required typically about 1.5 minute (p = 9) on a PC
(2.6 Ghz, Pentium IV) using a C++ implementation of the algorithm.

7.1 Image restoration on artificially noisy images and comparison to
state-of-the-art methods

We have done simulations on a commonly-used set of images available at http: //decsai.ugr.es/
~javier/denoise/test_images/ and described in [62]. The potential of the estimation
method is mainly illustrated with the 512 x 512 lena image (Fig. 3a) corrupted by an addi-
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tive white-Gaussian noise (WGN) (Fig. 3b, PSNR = 22.13 db, o = 20). In this experiment,
we found P{|r;| < ¢} = 0.829 from image data and derived ¢ = 2.91 from (22). In Fig. 3c,
the noise is reduced in a natural manner and significant geometric features, fine textures,
and original contrasts are visually well recovered with no undesirable artifacts (PSNR =
32.64 db). The noise component is shown in Fig. 3b (magnification factor of 2) and has
been estimated by calculating the difference between the noisy image (Fig. 3b) and the re-
covered image (Fig. 3c). The estimated noise component contains few geometric structures
and is similar to a simulated white Gaussian noise. To better appreciate the accuracy of
the restoration process, the variance of the pointwise estimator is shown in Fig. 3e where
dark values correspond to high-confidence estimates. As expected, pixels with a low level
of confidence are located in the neighborhood of image discontinuities. Figure 3f shows the
probability of a patch u(x;) occurring in A(x;):

P{@i(x;) occurring in A(x;)} < ng(x;)
X

where the set (x;) is used to denote {x; € ﬁ(xi) s dist(u(x;), u(x;)) < Ay} In Fig. 3f,
dark values correspond low probabilities of occurrence and, it is confirmed that repetitive
patterns in the neighborhood of image discontinuities are mainly located along image level
lines. We have compared the performance of our method to several competitive methods:
Total Variation (TV) minimizing process [64], bilateral filtering [75], anisotropic diffusion
(AD) using a diffusivity function of the type (1 + |Vu|?/K?)~! [59] and Wiener filtering
(WF) (Matlab function wiener2). Figures 4a-d shows the results of the four tested method-
s. We stopped anisotropic diffusion after 150 iterations in order to avoid a over-smoothed
image but a decorrelation criterion could be used to stop the diffusion process [54]. The
TV minimizing method [64] completely eliminates small textures but also blurs edges when
Ar = 0.01. If we modify the balance between the fidelity and regularizing terms by choosing
Ay = 0.05, the image is denoised but smooth parts are not completely recovered. Accord-
ingly, the global control parameters of these algorithms were tuned (we have to try several
values) to both eliminate noise and simultaneously to get the best PSNR value, and to give
a good visual impression (Fig. 4). Additionally, this noisy image has been restored using
pointwise adaptive estimation methods [44, 61] which are not patch-based. Figs. 4e-f pro-
vides a visual comparison of image denoising with these two algorithms: the AWS algorithm
[61] tends to oversmooth the image and to generate some artificial planar segments in ho-
mogeneous regions (Fig. 4f), whereas a variant of this approach [44] yields a similar result
(Fig. 4e) to the image regularizing with the TV method [64] (see Fig. 4a). In Fig. 5, the
corresponding recovered noise components are shown and most of them contain undesir-
able geometric structures. Moreover, our approach is also compared to the non-local means
algorithm [12, 13] using 7 x 7 image patches and a fixed search window of 21 x 21 pixels:
the visual impression and the numerical results are improved using our algorithm (see Figs.
6-8). Our approach is also compared to another and recent patch-based approach applied
to image denoising [63], that exploits ideas from sparse image coding and training images
for learning Markov random field image priors. The PSNR values are reported in table I for
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the test images; In most cases, our unsupervised and simple method produces the best PSNR
values. Finally, we reported the best PSNR results we obtained using these methods in table
L. Both visually and in terms of PSNR, our method outperforms any of the tested methods.

Moreover, we have also examined some complementary aspects of our approach using
the artificially corrupted barbara image (Figs. 9-12, (WGN) o = 20). In this experiment,
we found P{|r;| < 6} = 0.806 using (23) and derived ¢ = 2.871 from (22). For illustration
, figure 10 shows the four results obtained at each iteration of the algorithm. Finally, we
varied the patch size and Fig. 11 shows that taking too small image patches can generate
some visually undesirable flat zones during the restoration process (see Fig. 11 d-f). Note,
that taking one point every two pixels (in both two directions) in a p x p patch (k = p*/4)
can be applied to produce natural regularized images (Fig. 11 a-c) and reduce the time
computing. In addition, Table II shows the PSNR values obtained by varying the patch size
and sub-sampling (factor 2). Note the PSNR values are close for every patch size and the
optimal patch size depends on the image contents; a 9 x 9 patch seems appropriate in most
cases and a smaller patch can be considered for processing piecewise smooth images. We
have also compared our method to the best available published results when very competi-
tive methods [63, 62, 60] were applied to the same image dataset [62]. These results were
taken from the corresponding publications. We point out that, visually and quantitatively,
our very simple and unsupervised algorithm method favorably compares to any of these de-
noising algorithms, including the more sophisticated wavelet-based denoising methods (e.g.
see Fig. 6¢, Fig. 7c and Fig. 8c). Note that our method yields an improved PSNR for a wide
range of variance as compared to existing methods. If the PSNR gains are marginal for some
images, the visual difference can be significant as shown Fig. 6 where less artifacts are visi-
ble using our method. To complete the experiments, Table III shows the PSNR values using
our exemplar-based restoration method when applied to this set of test images for a wide
range of noise variance. This table can be used for comparison with previously published
denoising methods [62, 63].

In the second part of experiments, the effects of the exemplar-based restoration is ap-
proach are illustrated on artificially corrupted textured images with an additive white-
Gaussian noise. The set of parameters is unchanged for processing all these test images:
p =9, Na = 4,a = 0.01. In most cases, a good compromise between the amount of s-
moothing and preservation of edges and textures is automatically reached (Figs. 13-15).
However, the visual quality decreases if the image contains small textures to be preserved.
In that case, the neighborhood contains a small number of similar patches and the image
cannot be reliably denoised (e.g. see Fig. 13). The estimated noise component correspond-
ing to the difference between the denoised image and the noisy image is shown for each
processed image (Figs. 13e, 14e and 15e). The variance estimation and the probability
P{u(x;) occurring in A(x;)} is also shown to describe the image organization (Figs. 13f,
14f and 15f). The robustness to noise is illustrated in Fig. 16 by varying ¢ from 5 to 50.

In the last part of experiments, the exemplar-based restoration method has been used to
denoise original noisy pictures shown in Fig. 17a, Fig. 18a and Fig. 19a. In that case, the
noise variance 52 is automatically estimated from image data. The reconstruction of images
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(a) original 512 x 512 image (b) noisy (WGN) image (o = 20)

(d) noise component (x2)

T |

- ey

¢
|
i

(e) variance of the estimator (f) P{ii(x;) occurring in A(x;)}

Figure 3: Denoising of the noisy (WGN) lena 512 x 512 image (o = 20).
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(a) TV [64] (PSNR = 30.48) (b) BF [75] (PSNR = 30.26)

(c) AD [59] (PSNR = 28.83)

(e) RAWA [44] (PSNR = 30.52)

(f) AWS [61] (PSNR = 29.74)

Figure 4: Comparison with restoration methods applied to the noisy (WGN) lena image
(0 = 20): (a) Total Variation (TV) minimizing process [64], (b) bilateral filtering (BF)

[75], (c) anisotropic diffusion (AD) [59], (d) Wiener filtering (WF), (e) adaptive Weigl&gg
smoothing (AWS) [61], (f) robust adaptive window approach (RAWA) [44].
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(a) TV [64] (b) BF [75]

(c) AD [59] (d) WF

(e) RAWA [44] (H) AWS [61]

Figure 5: Estimated noise components by applying restoration methods to the noisy (WGN)
lena image (o = 20): (a) Total Variation (TV) minimizing process [64], (b) bilateral filter-
};}go(lggg [75], (c) anisotropic diffusion (AD) [59], (d) Wiener filtering (WF), (e) adaptive
weights smoothing (AWS) [61], (f) robust adaptive window approach (RAWA) [44].
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(c) wavelet-based denoising [60] (PSNR=32.20)

Figure 6: Comparisons with the non-local means algorithm [12] and a wavelet-based de-
noising method [60] when applied to the noisy (WGN) lena image (o = 20).
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(b) non-local means filter [12] (c) wavelet-based denoising [60]
(PSNR=31.09) (PSNR=32.20)

Figure 7: Comparisons with the non-local means filter [12] and a wavelet-based denoising
method [60] when applied to the noisy (WGN) lena image (o = 20).
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f;

(a) our method (PSNR=32.64)

(b) non-local means filter [12] (c) wavelet-based denoising [60]
(PSNR=31.09) (PSNR=32.20)

Figure 8: Comparisons with the non-local means filter [12] and a wavelet-based denoising
method [60] when applied to the noisy (WGN) lena image (o = 20).
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(a) original 512 x 512 image (b) noisy (WGN) image (o = 20)

(d) noise component (x2)

(e) variance of the estimator (f) P{ti(x;) occurring in A(x;)}

I °1733Figure 9: Densoing of the noisy (WGN) barbara 512 x 512 image (¢ = 20).
n
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(a) iteration #1 (b) iteration #2

(c) iteration #3 (d) iteration #4

Figure 10: Results obtained at each iteration of the algorithm (Na = 4) when applied to the
noisy (WGN) barbara 512 x 512 image (o = 20).
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(a) 3 x 3 (k = 9) patch (b) 5 x 5 (k = 25) patch
(PSNR = 28.97) (PSNR = 29.97)

(€) 7 x 7 (k = 49) patch (d) 9 x 9 (k = 81) patch
(PSNR = 30.27) (PSNR = 30.37)

(e) sub-sampled 9 x 9 (k = 25) patch (f) sub-sampled 11 x 11 (k = 36) patch
PIn°1733 (PSNR = 29.84) (PSNR = 29.83)

Figure 11: Results with different patch sizes of p x p pixels and sub-sampling (factor 2) when
the algorithm is applied to the noisy (WGN) barbara image (o = 20).
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(a) 3 x 3 (k = 9) patch (b)5 x5 (k= 25)
(PSNR = 28.97) patch (PSNR = 29.97)

(€) 7 x 7 (k = 49) patch (d) 9 x 9 (k = 81) patch
(PSNR = 30.27) (PSNR = 30.37)

(e) sub-sampled 9 x 9 (k = 25) patch (f) sub-sampled 11 x 11 (k = 36) patch
(PSNR = 29.84) (PSNR = 29.83) Irisa

Figure 12: Noise components obtained with several patch sizes of p x p pixel and sub-
sampling (factor 2) when the algorithm is applied to the noisy (WGN) barbara image (o =
20).
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Image Lena Barbara Boats House Peppers
o/PSNR 20/ 22.13 20/22.18 20/22.17 20/22.11 20/22.19
Our method 32.64 30.37 30.12 132.90]  [30.59]
(9 x 9 patch)

Buades et al. [12] 31.09 29.38 28.60 31.54 29.05
Ghazel et al. [32] 28.50 25.64 26.34 - -

Kervrann [44] 30.54 26.50 28.01 30.70 28.23
Pizurica et al. [60] 32.20 29.53 29.93 - 30.30
Polzehl et al. [61] 29.74 26.05 27.74 30.31 28.40
Portilla et al. [62] 30.32 32.39 30.31
Roth et al. [63] 31.92 28.32 29.85 32.17 30.58
Rudin et al. [64] 30.48 27.07 29.02 31.03 28.51
Starck et al. [74] 31.95 - - - -

Tomasi et al. [75] 30.26 27.02 28.41 30.01 28.88
Wiener filering 28.51 26.99 27.97 28.74 28.10

Table 1: Performances

(o = 20).

of denoising algorithms when applied to test noisy (WGN) images

k points / p x p patch | Ag,0.99 Lena Barbara Boats House Peppers
512 x 512 512x 512 512x 512 256 X 256 256 X 256

9 points / 3 x 3 21.67 32.13 28.97 29.86 32.69 30.86
25points/ 5x 5 | 44.31 || 32.52 29.97 30.15  [33.05]  [30.98]
49points / 7x 7 | 7492 | 32.63 30.27 30.17 33.03 30.80
8lpoints/ 9x 9 | 113.5 || [32.64] [30.37]  30.12 32.90 30.59
25points/ 9x 9 | 44.31 | 3227 29.84 29.64 32.46 30.26
36 points / 11 x 11 | 58.62 || 32.26 29.84 29.51 32.57 29.52

Table 2: PSRN values (db) when our examplar-based restoration method (Na = 4, = 0.01)
with different patch size and sub-sampling (factor 2) is applied to noisy (WGN) images

(o = 20).
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o/PSNR Lena Barbara Boats House Peppers
512 x 512 512 x 512 512 x 512 256 x 256 256 x 256

5/ 34.15 37.91 37.12 36.14 37.62 37.34
10/ 28.13 35.18 33.79 33.09 35.26 34.07
15/ 24.61 33.70 31.80 31.44 34.08 32.13
20/ 22.11 32.64 30.37 30.12 32.90 30.59
25/ 2017 31.73 29.24 29.20 32.22 29.73
50/ 14.15 28.38 24.09 25.93 28.67 25.29
75/ 10.63 25.51 22.10 23.69 25.49 22.31
100/ 8.13 23.32 20.64 21.78 23.08 20.51

Table 3: Performances of our exemplar-based restoration method (p = 9, Na = 4, = 0.01)
when applied to test noisy (WGN) images.

is respectively shown in Fig. 17a and Fig. 17b. Note that edges and geometric structures
are well preserved and the noise component corresponding to the paper ageing (Fig. 18c)
or fine texture in paints is removed (Figs. 17b and 19b).

7.2 Image denoising and detection of exceptional patterns in bio-imaging

We have applied the exemplar-based restoration method to noisy 2D (360 x 445) images ex-
tracted from a temporal 3D +time sequence of 120 images, showing a large number of small
fluorescently labeled vesicles in regions close to the Golgi apparatus (Fig. 20a, courtesy of
Institut Curie). We mainly focus on the analysis of these vesicles that deliver cellular com-
ponents to appropriate places within cells. Quantitative analysis of data obtained by fast 4D
deconvolution microscopy allows to enlighten the role of specific Rab proteins. The role of
Rab proteins is viewed as to organize membrane platforms serving for protein complexes to
act at the required site withing the cell. Methods have been developed for a target protein -
Rab6a’ - involved in the regulation of transport from the Golgi apparatus to the endoplasmic
reticulum. Typically, the state of Golgi membranes during mitosis is controversial, and the
role of Golgi-intersecting traffic in Golgi inheritance is unclear and then investigated. In
Fig. 20a, two types of objects are observed on three images from the 3D stack: i) organelle
(Golgi), ii) static and moving vesicles. The signal-to-noise ratio is shown to be drastically
improved resulting enhanced objects in Fig. 20b. Note the the variance of the noise has
been first stabilized in order to transform Poisson noise corrupted data into Gaussian noise
corrupted data [74, 11]. Moreover, we propose to focus on the detection of “rare” elements
in this image. Traditionally, the “rare” elements are local distinctive features for which the
intensity abruptly changes in the image. Here, this notion is intended to be quite gener-
al and includes spots, various curvature maxima and not repeated patterns in a variable
neighborhood.
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(c) denoised image

(d) noise component (x2)

(e) variance of the estimator

(f) P{ti(x;) occurring in A(x;)}
- °Fli%%re 13: Denoising of a noisy (WGN) 256 x 256 texture image (o = 20, ¢ = 2.71).
n
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(b) noisy (WGN) image (o

(d) noise component (x2)

(e) variance of the estimator (f) P{ti(x;) occurring in A(x;)}

Figure 14: Denoising of a noisy (WGN) textured 445 x 417 image (o = 30, o = 2.87).
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(b) noisy (WGN) image (o = 20)

(d) noise component (x2)

(e) variance of the estimator (f) P{ti(x;) occurring in A(x;)}

ol °%igélre 15: Denoising of a noisy (WGN) 512 x 512 bridge image (o = 20, ¢ = 2.87).
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L s :
(e) noisy image (0 = 50, PSNR = 14.05) (f) denoised image (PSNR = 20.04)

Figure 16: Results on a the noisy 256 x 256 mandrilll image artificially corrupted with dif-
ferent signal-to-ratio levels (WGN). Irisa
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(c) noise component (x2)

(d) variance of the estimator (e) P{ti(x;) occurring in A}

Figure 17: Simplification of the sailboat 512 x 512 image (¢ = 7.70, ¢ = 2.59).
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(b) restored image

(c) noise component (x2)

Figure 18: Restoration of a picture.
Irisa



Exemplar-based image denoising 43

(b) simplified image

Figure 19: Simplification of a paint.
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As previously explained, if we define a set Q(x;) = {x; € A(x;) : dist(t(x;), u(x;)) <
Ao } containing all occurrences of 1i(x;) in A(x;), then a patch 1u(x;) is stated as exceptional
if

#Q(x;)

P{u(x;) occurring in ﬁ(xi)} = A0 <e (26)
X

where 0 < ¢ < 1 is a detection threshold. We generate a plausible list of exceptional
patches from local minima of P{u(x;) occurring in A(x;)}. Finally clustering on locations
of the minima which are lower than e, produces a set of distinct exceptional patches. This
approach does not involve extra computation. In what follows, the positions of interest
points are superimposed on the input noisy image. In Fig. 20c, the user-defined parameter
¢ has been adjusted to 0.005 to return 218 detected objects, most of them corresponding
to vesicles/spots. In addition, the reading of observed trajectories can be improved if the
exemplar-based restoration method is applied to xt or yt projection images shown in Figs.
21 and 22. In future work, the challenge is to track these detected vesicles with high pre-
cision in movies representing several gigabytes of image data and collected and processed
automatically to generate information on complex trajectories.

We have also tested the algorithm on 2D and 3D confocal fluorescence microscopy im-
ages that contain complex structures. In Fig. 23, a typical 2D image taken from the 3D stack
of 80 images depicts glomeruli in the antennal lobes of the moth olfactory system (Fig.
23a). The smoothed 2D image have larger homogeneous areas than the original 2D image
(Fig. 23b). The corresponding noise component image is shown in Fig. 23d. Here, this
image decomposition is useful to extract regions/volumes of interest. Finally 125 interest
points have been detected in the vicinity of point with high curvature, by setting ¢ = 0.01
and are mainly located on level lines with high curvature. Some of the current applications
in biological studies are in neuron research. The 271 x 238 confocal image depicts neural
cells (Fig. 24a). The image is denoised using the set of parameters used in the previous
experiments. The denoised 2D image have larger homogeneous areas than the original 2D
image (Fig. 24b) and can be more easily segmented. Finally, the same denoising process
has been applied to a 2D image showing nuclei in a embryology specimen. In that case,
274“rare” elements (¢ = 0.05) are located on the borders of nuclei corresponding to image
level line points with high curvatures. These interest points can help to describe the spatial
distribution of nuclei in the analyzed specimen. The validation of this methodology and the
automatic adjustment of the threshold ¢ is an on-going research.

8 Summary and conclusions

We have described a novel feature-preserving adaptive restoration algorithm where local
image patches and variable window sizes are jointly used. The proposed smoothing scheme
provides an alternative method to the anisotropic diffusion, bilateral filtering and energy
minimization methods. Our straightforward and unsupervised method yields a significan-
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t improvement in image denoising and achieves performances close to the best special-
purpose wavelet-based denoising algorithms. We believe this method represents an impor-
tant step forward for the use of neighborhood design that captures spatial dependencies in
images. Unlike previous most exemplar-based methods that use learning algorithms, our
method is unsupervised and fully automatic since control parameter are easily calibrated
with statistical arguments. Experimental results show demonstrated its potential for large
variety of images, including bio-imaging.
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(a) noisy image

(b) denoised image (c) detection of spots

Figure 20: Results on a 2D image depicting small vesicles of transport (spots).
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(a) noisy image (b) denoised image (¢) variance of the estimator

Figure 21: Results on a 2D image depeciting trajectories of vesicles of transport in a spatio-
temporal plane yt.
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(b) denoised image

(¢) variance of the estimator

Figure 22: Results on a 2D image depeciting trajectories of vesicles of transport in a spatio-
temporal plane zt.
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(b) denoised image

(c) detection of interest points (d) noise component (x2)

Figure 23: Results on a 2D image depicting glomeruli in the antennal lobes of the moth
olfactory system.
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(b) denoised image (c) noise component (x2)

Figure 24: Results on a 2D image depicting neural cells.
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(a) noisy image (b) denoised image

(c) detection of interest points (d) noise component (x2)

Figure 25: Results on a 2D image depicting nuclei in a embryology spcecimen.
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A Appendix
A.1 Proof of the inequality: Var(i;, — ) <07, V1<n' <n.
We have:
Uin — Uin ~ N(0,Var(u; p — Uj )
since both biases are negligible (E [@;,, — U; /] = 0) and then
Var(t;,, — Uin)) = E [|Uin — Ui |?] -

We recall that V; = u(x;) + ¢; and

Uj,n = E Tinj,n Y} and Ui p! = E Tinj,n' Y}

x]'EAi," Xj EAL"/
Let us assume u(x;) is constant in A; ,,» C A;,, C A(x;), then we write

Var(ﬂm — ﬂm/ ))

= E Z Tinj,n €5 + Z Ting,n U(XZ) - Z Ti~jn' €5 — Z Tinj,n' U(XZ)

x]'GA,"n X]'EAZ'," XjEAl-’"r XjEAl-’"r

= E Yo g tuXi) Y Wiga— D, Tijwe—ulX) Y T

x]'GA,"n X]'EAZ'," X]'EAi’nr x]'EAi’nr
r 2
= E Y Tiejn€ = Y Tieja €
X;EAi n ijAi,n’
= E E Tinjn € — E Tinjmn' € E Tinjn € — E Tinjmn' € -I
L XjeAi,n X]‘EAZ-’"/ XjeAi,n X]‘EAZ-’"/
a2 2 ~2 2 [ -|
= 0 E Tijn T 0O E Tiin — 2E E Tinjn €] E Tinjn' €
X]‘EAi,n XjeAi,n’ XjEAi,n XjeAi,n’
a2 2 ~2 2 ~2 o o
= 0 E Tijm +0 E Tijmn — 20 E Tijn! Timjm
X]‘EAi,n XjeAi,n’ XjeAi,n’
= Uy, + U, — 2 E Timjon! Timj,m -
x]'EAl-'n/
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In addition, if m;; ,» = 0 when x; ¢ A, ., it follows that

E Timjon! Tinjn 2 E Tinjon! Tinj,m -

ijAi,n’ XJ‘EA,'VTL

By definition, m;._j . > mijn for x; € (A;, N A; ), hence

~9 ~2 2 -0
g § Tinjn! Ting,n >0 § Tjujm — Vin-

X;EA; n X;EA; n
Finally, we obtain the inequality:

Var(iiy , — g w)) < 02 + 02, — 207

A.2 Proof of Proposition 1.

Let the condition of the theorem be satisfied, that is n*(x;) < 7n(x;), then, from the inequality
(20), we have

() — )] < (2y 429 v (x,).
By taking the expectation of this expression, we obtain:

1/2

[En*(x,-)gﬁ(xz-) u*(xi) — ﬂ(XZ)‘Z] < (2’}/ + %) UZ(XZ')
< 2y +

= Ve

Finally, by applying the triangular inequality, we get

[Elu* (x;) — u(x) 2]

~ 1/2 N 1/2
[Ens ()< |07 () = @(xa) 7] < B ) o |5 (%) = 6(x3) 7]
+ [Blu* (xi) — u(x;)?]”
2 .
< EE (Rt (x) — ulx)?]
V1+ 2
+ [Blu* (xi) — u(x;)?]”
2 .
ﬂ + 1 []E|U*(Xl) o U(Xi)‘z]l/Z 7
1+192

what yields the desired bound.
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A.3 Proof of Proposition 2.

If X = w is A(0,1), then

Ui,n'

92
Eexp(pX) = exp (;) )
From this inequality and the exponential Chebychev’s inequality stated as follows:

P(X 2a) <

where g : R — R is a positive monotonous function and a € R, we have

Boxp (L))

exp 0>

P{(@i,n — Wi,n) > 0Usnr)} <
by taking g(z) = exp(oz) and a = p. Hence
92
]P){(azm - ai,n’) > Qai,n’} S €xXp <_7>
and the following result comes from the symmetry of the normal distribution.
92
P{|ti,n — Ui n| > 0050} < 2exp <?> .

To prove Proposition 2., we note also that

{n(xi)=n} = {In' €{l,....;n—1}: |Uin — Ujn|> 0Vin}
c U {lain —fiw| > 0bin}.
n'<n

Using this definition, we get

]P){h\(xz) = n} S Z P{‘azm - ai,n" > Qai,n’}
n'<n
02 92
< 2 2 <N LS
< Lo ) <anen( )

This proves the assertion.
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