Metadata, citation and similar papers at core.ac.uk

Provided by HAL-Rennes 1

HAL

archives-ouvertes

Exploiting Symmetries to Test Programs
Arnaud Gotlieb

» To cite this version:

Arnaud Gotlieb. Exploiting Symmetries to Test Programs. [Research Report] RR-4810, INRIA.
2003. <inria-00071776>

HAL Id: inria-00071776
https://hal.inria.fr /inria-00071776
Submitted on 23 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépodt et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/48275629?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/inria-00071776

ISRN INRIA/RR--4810--FR+ENG

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Exploiting Symmetriesto Test Programs

Arnaud Gotlieb

N°4810
Avril 2003

THEME 2

apport
derecherche

% I N RIA

RENNES

Exploiting Symmetries to Test Programs

Arnaud Gotlieb*

Théme 2 — Génie logiciel
et calcul symbolique
Projet Lande

Rapport de recherche n 4810 — Avril 2003 — 20 pages

Abstract: Symmetries often appear as properties of many artifical settings. In Program
Testing, they can be viewed as properties of programs and can be used to check the correct-
ness of the computed outcomes. In this paper, we consider symmetries to be permutation
relations between program executions and use them to automate the testing process. We
introduce a software testing paradigm called Symmetric Testing, where automatic test data
generation is coupled with symmetries checking to uncover faults inside the programs. A
practical procedure for checking that a program satisfies a given symmetry relation is de-
scribed. The paradigm makes use of Group theoretic results as a formal basis to minimize
the number of program executions required by the method. This approach appears to be
of particular interest for programs for which neither an oracle, nor any formal specifica-
tion is available. We implemented Symmetric Testing by using the primitive operations of
Roast : a Java unit testing tool developped by N. Daley, D. Hoffman and P. Strooper. The
experimental results we got on faulty versions of classical programs of the Software Testing
community show the effectiveness of the approach.

Key-words: Automated Software Testing, Symmetry, Group Theory, Symmetric Testing

(Résumé : tsup)

* Projet Lande — IRISA / INRIA — Campus de Beaulieu, 35042 Rennes Cedex, FRANCE

Unité de recherche INRIA Rennes
IRISA, Campus universitaire de Beaulieu, 35042 RENNES Cedex (France)
Téléphone : 02 99 84 71 00 - International : +33 2 99 84 71 00
Télécopie : 0299 84 71 71 - International : +3329984 71 71

Exploiter les symmeétries pour automatiser le test de
programmes impératifs

Résumé : La notion de symmétrie apparait souvent comme une propriété de nombreux
objets artificiels. Dans le domaine du Test Logiciel, celle-ci peut étre vue comme une pro-
priété de certains programmes impératifs et peut étre utilisée pour contrdler la correction des
sorties calculées par ces programmes. Dans ce rapport, nous considérons qu’une symmétrie
est une relation de permutation entre deux exécutions du programme et nous l’utilisons
pour automatiser le processus de test. Nous introduisons un paradigme nommé Test Sym-
métrique ou une procédure de génération automatique de données de test est couplée avec
un controle de la symmeétrie dans le but de détecter des fautes a 'intérieur des programmes.
Une méthode pratique pour controler qu’un programme satisfait une relation de symmeétrie
donnée est décrite. Le paradigme fait usage de résultats de la Théorie des Groupes comme
d’une base formelle pour minimiser le nombre d’exécutions requis par cette méthode. Cette
approche semble étre d’un certain intérét pour les programmes qui ne disposent ni d’un
oracle, ni d’une spécification formelle. Le Test Symmétrique a été développé et expérimenté
a l'aide d’un outil de test unitaire de programmes Java, nommé Roast et mis au point par
N. Daley, D. Hoffman et P. Strooper. Les résultats expérimentaux que nous avons obtenus
sur des versions incorrectes de programmes classiques de la Communauté du Test Logiciel
montrent Pefficacité de cette approche.

Mots-clé : Test logiciel automatisé, Symmétrie, Théorie des Groupes, Test symmétrique

Ezploiting Symmetries to Test Programs 3

1 Introduction

Testing imperative programs at the unit level requires to select test data from the input
domain, to execute the program with the selected test data and finally to check the cor-
rectness of the computed outcomes. For almost three decades, propositions have been made
to automate this process. Structural test data generation relies on program analysis to
find automatically a test set that guarantees the coverage of some criteria based on flow
graphs [1, 2, 3, 4]. Functional testing is based on the specifications analysis to generate
automatically test data [5, 6]. These techniques both require a formal description to be
given as input : the source code of programs in the case of structural testing ; the formal
specification of programs in the case of functional testing. However there are programs to
be tested for which no one of these formal descriptions is available. For example, commer-
cial off-the-shelf components are usually delivered as “black-boxes”, i.e. executable objects
whose licenses forbid de-compilation back to the source code [7], and informal specification
is used most of the time to describe their expected behaviour. In these situations, techniques
such as random testing [8], boundary-value analysis [9] or local exhaustive testing [10] can
be employed. Random testing aims at selecting randomly the values inside the input do-
main by using pseudo-random values generators, whereas boundary-value analysis relies on
selecting the boundaries of each individual or dependent domains [11] of the input space.
Local exhaustive testing requires to identify critical points around which input values will
be exhaustively selected. All these methods have in common to focus on the generation of
input values and are based on an underlying assumption which concerns the availability of
a correct and complete oracle, i.e. a procedure able to predict the right outcome for any
input data. Unfortunately, there are situations where this assumption seems to be unrea-
sonable. As pointed out by Weyuker [12], some programs are considered to be non-testable.
These are programs for which it is theoretically possible, but practically too difficult to
determine the correct outcome. Consider programs intented to compute a function which is
not accurately known or programs for which correct answers are too difficult to compute by
hand. Third-party librairies and commercial components fall usually into the former case
[13], whereas complex numerical programs fall into the latter [14].

In this paper, we introduce a software testing paradigm, called Symmetric Testing (ST),
which aims at testing imperative programs for which neither an oracle, nor any formal de-
scription is required. We consider symmetries to be permutation relations between program
executions and use them to automate the testing process. Given the interface of a program
and a symmetry relation, ST combines automatic test data generation and symmetries
checking to uncover faults within the program. Group theoretic results are used as a formal
basis, conforming so the well-known adage “Numbers measure size, Groups measure symme-
try” [15]. As a trivial example, consider the program p intended to compute the greatest
common divisor (ged) of two non-negative integers v and v and suppose that p is tested
with the following test datum (u = 1309,v = 693), automatically generated by a random
test data generator. Although, we all know how to compute the ged of two integers?, it is

lwith the Euclidian algorithm for example

RR n~ 4810

4 Arnaud Gotlieb

not so easy to predict the expected value of ged(1309,693) without the help of a calcula-
tor. Fortunately, gcd satisfies a simple symmetry relation :VuVv, gcd(u,v) = ged(v,u). So,
if ged(1309,693) # ged(693,1309) then the testing process will succeed to uncover a fault
without the help of an oracle of gcd. We generalized this idea to obtain a formal definition
of symmetry relation on imperative programs. Formally speaking, let p be a program which
takes a vector of at least k values as input and returns a vector of at least [values, and let
2 and y be two vectors then a symmetry relation for p holds if? :

V6 € S,3In € Sy such as y = 0.2 = p(y) = n.p(x)

where Sy, (resp. Sj) is the symmetric group acting on k elements of z (resp. ! elements of
y). Symmetric Testing consists in finding test data that violate a given symmetry relation,
i.e. finding € such as for all 7 :

y = 6.z Ap(y) # n.p(z)

Symmetries relations are generic properties and checking the correctness of programs in
regards with these relations is a difficult task, likely undecidable in the general case®. How-
ever, there are circumstances when testing procedures can be used to check the correctness
of properties against programs [2, 14, 16]. Hence, by using these procedures, it becomes
possible to check that a given symmetry relation is satisfied by the program on a finite
subset of its input space. Limitations of ST concern the weaknesses of symmetry relations
to differentiate incorrect implementations from correct ones. In fact, there are lots of pro-
grams that satisfy a given symmetry relation and any incorrect implementation will not be
necessary discovered by Symmetric Testing. Conversely, the approach does not report any
spurious fault. In order to evaluate the fault revealing capacity of ST, we implemented it
by using the four unit operations of the Java testing tool Roast [11] and we used it to reveal
faults on several academic programs and on programs extracted from the third-party library
java.util.Collections.* of the Java 2 plateform (std edition 1.4). These first experimen-
tal results show that ST is of particular interest when testing some of the “non-testable”
programs.

The rest of the paper is organized as follows : section 2 presents the Group theoretic
results as well as the necessary notations required to fully understand the paper. Section 3
details the principle of Symmetric Testing while section 4 reports the experimental results
obtained with Roast. Related works are described in section 5 and finally section 6 indicates
several perspectives to this work.

2 Group theory : notations and selected results

All the basic material on Group theory presented in this section is extracted from [15] and
the JS Milne’s lecture notes (available online www.jmilne.org/math/CourseNotes).

2p(x) denotes the vector of values computed by the execution of p with x as input
3 Although we are not aware of any proof of this, it can be hypothesized as a consequence of the unde-
cidability of the halting problem

INRIA

Ezploiting Symmetries to Test Programs 5

Definition 1 (Group)
A nonempty set G together with a composition law o is a group iff G satisfies the following
azrioms :

e Ya,VYb,Vc € G,ao (boc) = (aob)oc (associativity)
e dJe€ G suchasaoe=eoa=a Ya€ G (neutral)

e VaceG,Ja € G suchasaoa™' =a~!oa=e (existence of an inverse)

The symmetric group notion is the corner-stone of Symmetric Testing. Let E be a
nonempty finite set of n distinct elements, the set Sg of bijective mappings from FE to itself
is called the symmetric group of E (say Sg acts on E). This symmetric group has exactly
n! elements, which are named permutations. It is clear that Sg is a group because it is closed
and associative under o, identity is its neutral element and each permutation possesses an
inverse because the definition is restricted to bijective mappings only.

Sg can be identified with S, : the symmetric group acting on {1,..,n} as there is a
trivial bijective relation (isomorphism) between Sg and S,,. A permutation in S,, is written :

0= < 2(11) 1(7;)) where i(1),..,4(n) denote the images of 1,..,n by the permutation
8. When a permutation of S,, is applied to a vector x of size n, we will write 6.z to denote
the image of x by the permutation 6 (say 6 acts on z). For the sake of clarity, we will extend
our notations to program compositions. If p is a program, p o § will denote the application
of p to the permutation 6 of the elements of its input vector. Conversely, n o p will denote
the permutation 7 applied to the output vector of p.

All the permutations can be expressed by using only a few ones. Consider for example

the permutation

1 2 3 45 . .
0 = 341 5 2 of S5, the same permutation can be captured by the following
notation 6 = (13)(245) where each pair of brackets denotes a specific permutation called an
r_cycle. A permutation (aja3..a,) of S, is an r__cycle iff it maps a; to as, as to as, ..
ar—1 to a, and leave unchanged the other elements. A 2_cycle (written (a;a;)) is usually
referred to as a transposition. A trivial property of transpositions is that they are their own
inverse.
A subset X of elements of a finite group G is a set of generators iff every element of G can
be written as a finite composition product of the elements of X. G is said to be generated by
X. For example, it is well-known that Ss is generated by the two transpositions 7 = (12)
and 75 = (23) because each one of the six elements of S3 can be written with a finite
composition product of these two transpositions. More generally, S, is generated by all the
transpositions, but also by the following subset of transpositions : {(12),(23),..,(n—1,n)}.
In this paper we will use the following proposition, given here without a proof (that can be
found in [15]).

Proposition 1 (generators of Sy,)
The transposition 7 = (12) and the n_ cycle o = (12..n) together generate S,,.

RR n~ 4810

6 Arnaud Gotlieb

It can be shown that S, cannot be generated by less than two permutations. Hence {7,0}
is a set of generators of minimum size.
A fundamental notion in Group theory is group homomorphism :

Definition 2 (group homomorphism)

A group homomorphism from a group G to a group G' over the same composition law o is
a map ¢ : G — G such that (6 06") = ¢(8) o ().

Note that an isomorphism is simply a bijective homomorphism. As a consequence of this
definition, the image of a group homomorphism from G to G’ is a subgroup of G'. It is noted
Im(p). Conversely, Ker(y) denotes the kernel of a group homomorphism, which is the set
of permutations of G which are mapped to idg. G/Ker(p) denotes the group quotient of
G by Ker(y), i.e. the set {go hlg € G,h € Ker(p)}. Hom(G,G') denotes the set of group
homomorphisms (in fact, it is also a Group). To end this review of the Group theoretic
results that we need here, we give the fundamental theorem of group homomorphisms :
Proposition 2 (isomorphism theorem)

Let G and G’ be two groups and ¢ be an element of Hom(G,G'), then ¢ factors into the
composite of a surjection, an isomorphism @ and an injection :

G 25

surjl Tinj

G/Ker(p) —— Im(yp)

3 Principle of Symmetric Testing

3.1 Symmetry relations

The idea behind Symmetric Testing is to exploit user-defined symmetries to automate the
testing process of imperative programs. Lots of definitions of symmetry have been proposed
in various contexts [15]. Some of them can be adapted for our purpose. We briefly discuss
two possible choices that can be considered for program testing.

e Symmetries over values. A symmetry over values can be expressed as a relation
between two program executions when there is a geometric relation (for example, an
isometry) between the two input points. As a trivial example, consider a program p
which takes two integers as arguments and verifies p(z,y) = p(—z,—y). In this case,
the two input points are symmetrical w.r.t. the origin of the input space ;

¢ Symmetries over variables. A symmetry over variables can be viewed as a relation
between two program executions where there is a permutation relation beetwen the
input points. p(z,y) = p(y, z) is the most simple example of such a symmetry.
Symmetries over values can easily be recognized for programs that compute a mathematical
function given by a formula (based on arithmetic or trigonometric operations). In some cases,

INRIA

Ezploiting Symmetries to Test Programs 7

local symmetries over these operations may be aggregated to determine a global symmetry
over the formula, such as in the formula p(x,y) = sin(zy) — cos(y) which satisfies a trivial
symmetry over values w.r.t. the origin. Nevertheless, in such a case the formula itself can
be used to check the correctness of the computed outcome. Hence, these symmetries over
values appear to be useless for our purpose. Conversely, symmetries over variables can be
specified with a very few knowledge on the function being computed. Type informations are
sometimes sufficient to see that a program has to satisfy a symmetry over variables. Further,
they are properties that can be easily extracted from an informal specification. These are the
reasons why we will focus on such symmetries in this paper. Formally speaking, a symmetry
is defined as follows :

Definition 3 (symmetry)

Let p be a program over a domain D that takes n references as input and returns m refer-
ences*, and let S, (resp. Sp.) be the symmetric group over n (resp. m) elements, then a
symmetry is a pair < 0,17 > such as : 0 € Sp,n € Spy,

y==0.r = p(y) =n.p(z) Vz,y€D

Note that every program p satisfies at least the trivial symmetry < idgs,,ids,, > because
imperative programs are considered to be deterministics here (two executions with the same
input give the same result). Some of the references of the input vector may be leaved
unchanged by the permutation 6 of a symmetry < 6,7 >. So, the vector of k exchanged
input references involved in the symmetry is called the permutable input set® whereas the
vector of [exchanged output references is called the permutable output set. Such symmetries
can be grouped together by the mean of symmetry relations.

Definition 4 (symmetry relation)
Let p be a program over a domain D that has k permutable input data and | permutable
outcomes, ¥y ; is a symmetry relation for p iff

o U, € Hom(Sk,S1) (group homomorphism) ,

o VO €Sy, <0,9.,(68)> is a symmetry for p.

The reason why symmetry relations are required to be group homomorphisms is based on
our will to characterize the links between permutable outcomes. This will be made clearer
in the following. Note that symmetry relations are very difficult to check when the number
of permutable input data increases (because Sy contains k! elements). It is important to
see that ¥ ; does not denote a unique symmetry relation, because there is no requirement
over the mapping properties of the homomorphism. In fact, ¥y ; is identified with a class of
symmetry relations that are group homomorphisms in Hom(Sk, S;). Based on their formal
definition, identifying such symmetry relations might appear to be difficult. Conversely, we

4 As usual in imperative programming, the value of an input reference may be modified within the program
and considered so as an output variable
5in Group theory, this is called the support of a permutation

RR n~ 4810

8 Arnaud Gotlieb

argue that they can easily be specified by looking at the informal specification of programs,
because they are often related to the type informations of program variables. Consider a
program p taking an unordered set as argument, then we already know that p has to satisfy
a symmetry relation because computing p with a permutation of the elements of the set does
not modifiy the computed result. Numerous programs take unordered sets as arguments :
consider sorting programs or graph-based programs just to name a few. Further, third-
party libraries that contain lots of generic programs (for reusing purpose) have often to
satisfy symmetry relations.

3.2 Examples

Consider the standard application programming interface specification of the
java.util.Collections.replaceAll method given in Fig.1l. If we consider the n_cycle o

public static boolean replaceAll(List A,
Object oldVal,
Object newVal,

Replaces all occurrences of one specified value in a list with
another. More formally, replaces with newVal each element e
in A such that (oldVal==null ? e==null : oldVal.equals(e)).
(This method has no effect on the size of the list.)
Parameters:
A - the list in which replacement is to occur.
o0ldVal - the old value to be replaced.
newVal - the new value with which oldVal is to be
replaced.
Returns:
true if list contained one or more elements e such that
(oldVal==null ? e==null : oldVal.equals(e)).
Throws:
UnsupportedOperationException - if the specified list or
list-iterator does not support the set method.

Figure 1: API specification of replaceAll

(permutation (12..n)), then the method replaceAll has to satisfy a < 0,0 > symmetry :
let A (resp. B) be a vector of n symbolic references and A’ (resp. B’) be the resulting
vector computed by invocation of replaceAll with the references oldVal and newVal, then
B=0A — B =o0.A". Aand B are two permutable input sets whereas A’ and B’ are
the permutable output sets. Further, it is clear that replaceAll has to satisfy the same
symmetry for all § € S,,. Hence, this Java method has to satisfy a ¥4 4| symmetry relation,
where |A| denotes the size of the abstract collection A. Finally, this group homomorphism
is the identity of Hom(S|4,S)4/), which is only one of the possible symmetry relations
represented by ‘I’|A|,J;A|- By looking at the java.util.Collections class which contains
19 distinct methods® among 37, we found that 12 methods have to satisfy at least one
non-trivial symmetry relation. This class was selected because it consists of methods that

Smethods which have distinct specifications, and not only distinct interfaces

INRIA

Ezploiting Symmetries to Test Programs 9

operate on collections, which can be specialized on multiset or sequences of objects. As a
consequence, the results given here should not be extrapolated for any other classes. Table 1
summarizes the symmetry relations found for these methods. Permutable input and output
are indicated in the two central columns. The symbol Ret denotes the returned reference or
value of the Java method.

Signature of Java methods Perm. | Perm. | Sym.

in out rel.
void copy(List B,List A) A B W) al,B]
Enumeration C Ret V4], Ret|
enumeration(Collection A)
void fill(List A,Object obj) A A Wial,la]
Object max(Collection A) C Ret Yiala
Object min(Collection A) (@] Ret W41
List nCopies(int n, Object 0) O Ret V1 |Ret|
boolean replaceAll(List A, A A W)al,l4|
Object oldVal, Object newVal)
void reverse(List A) A A Va4
void rotate(List A, int A A Yial,A|
distance)
void shuffle(List A) A A Va4
void sort(List A) A A Wial4]
void swap(List A, int i, int j) A A Wial,la

Table 1: Examples of symmetry relations

The max and min have to satisfy a ¥|4|,; symmetry relation because they return one of the
elements of an unordered set, took as argument. Conversely, fill, replaceAll, reverse,
rotate, sort, shuffle,swap have to satisfy a W 4|4 symmetry relation because they
modify ordered sequences or lists. In fact, these polymorphic functions have been extensively
studied in the Functional Programming Community and the symmetry relations they have to
satisfy can be derived from the well-known properties of their type [17]. enumeration has to
satisfy a W 4|, et Symmetry relation but |Ret| is equal to |A| in this case, hence the program
has to satisfy the same symmetry relation than the other programs. Note that shuffle uses
a random permutation of its permutable input data. Although the computed list cannot be
easily predicted, the symmetry relation that shuffle has to satisfy is specified without any
difficulties. nCopies has to satisfy a ¥; |4 symmetry relation, which can be interpreted as
follows : whatever is the argument of nCopies, the outcome should be a vector of equal
references. To complete this panorama, consider the copy method which aims at copying
the values contained into a list (the source list) into another one (the destination list). The
method requires the destination list to be at least as long as the source list. If it is longer, the
remaining elements in the destination list are unaffected and remain equal to their previous
values. As a consequence, the method has to satisfy a ¥| 4, symmetry relation where |A|
may not be equal to |B|. For example, copying S = [1,2,3] into D = [0,0,0,0,0] leads
to D' = [1,2,3,0,0]. In the section 4, we give several examples of non-trivial symmetry
relations.

RR n~ 4810

10 Arnaud Gotlieb

3.3 Symmetric Testing

These symmetry relations can be used to seek for a subclass of faults within an implemen-
tation. Formally speaking :

Definition 5 Symmetric Testing

Let p be a program and ¥y ; be a symmetry relation for p, then Symmetric Testing aims at
finding a triple (z,p(z),p(0.2)) such as p(8.z) # ¥y (6).p(x)

If found, such a triple < z,p(z),p(f.z) > represents a counter-example for the symmetry
relation. This shows that at least one of the two test data x and 6.z reveals a fault in p. So,
given a set of test data and a symmetry relation, we get a naive procedure that can check
whether program outcomes are incorrects. It is required to compute all the permutations
of the permutable input of a vector z, to execute p with all these input data and to check
whether the outcome vectors are equals to a permutation of the vector returned by p(z).
This principle can be illustrated by the following commutative diagram.

r — 0.x

”l lp
p(z) —— Ui (6).p(x)
.1 (0)

It is only a necessary condition for the correctness of p w.r.t. its specification because in-
correct implementations of p may also satisfy the same symmetry relation. Note that this
procedure is independant of the test set being used. In fact, it leaves the tester the possi-
bility to use any automatic test data generators, because it is not required to produce an
oracle for the expected outcomes. However, it should be recalled that the number of pos-
sible permutations in Sy, is k!, leading to an impractical number of program calls whenever
k increases. No hypothesis are made on the type of the permutable input data (Object
references, integers, ...) but checking the equality between floating point values might be
hazardous because programs that manipulate such variables depend strongly on the evalua-
tion order of expressions. So, the equality relation between the computed results should be
relaxed for these types.

3.4 Checking a given symmetry relation

We turn now on a more practical procedure that checks whether a program satisfies a given
symmetry relation.

3.4.1 Reducing the number of permutations

In order to limit the number of program calls, we propose to check only two permutations
when checking a symmetry relation. In fact, by using the proposition 1, we known that
only two permutations are required to generate Si. As a consequence, we get the following
proposition :

INRIA

Ezploiting Symmetries to Test Programs 11

Proposition 3 Let p be a program and ¥y be a symmetry relation for p, let 7 = (12) and
o = (12..k), then we have

{po T=Yi(r)op

< pof =V, ,(0)op Ve S,
poo =Yy, (c)op

Proof: <. 7 € S}, and o € Si, hence taking § = 7 and 6§ = o yields the expected result.
=. Let 8 € Si, be a permutation (distinct from 7 or ¢). By using proposition 1, 6 can be
written as a finite composition of the two permutations 7 and o. Let § = 7o ¢ o ... be the
beginning of such a composition (taking any other chain does not change the proof) then
poTocgo..=W(T)opooo.. by applying one of the two hypothesis and recalling that
o is associative. Further, it is possible to iterate on the composition chain : porToogo... =
Uy (1) oWy (0)opo... =Ty (1) 0¥y (o) o...op. This is repeated until the complete finite
chain would have been processed. Finally, ¥y, (1) o ¥y (o) o ... is equal to ¥y () because
¥, is a group homomorphism.

As a corollary, it is possible to characterize the subgroup of S;, image of Sj by the
homomorphism ¥y ;.

Proposition 4 (Generators of Im(¥y,))
Uy (1) and ¥y (o) together generate the subgroup Im(¥y ;).

Proof: ¥ ;(0) = ¥y (1) 0 ¥y (o) o ... for all 8 € Sy, hence every permutation of Im(¥y ;)
can be written as a finite composition of ¥, ;(7) and ¥y ;(0).

Ker(¥y ;) denotes the set of permutations of Sy, which leave the outcome of p unchanged.
Because G/Ker(¥y,) is isomorphic to Im (¥) by the group isomorphism induced by ¥ ;,
it is possible to determine precisely the mapping properties of ¥y ; just by looking at the
link between the two generators ¥y ;(7) and ¥y (o), but this is outside the scope of this

paper.

3.4.2 Checking only 7 and ¢

We will provide here a procedure to check whether a program p satisfies the two symmetries
< 7,% (1) > and < 0, ¥ (o) > over an input space D. In fact, it is required to show
that p(1.2) = ¥, (7).p(z) and p(o.x) = Vi, (0).p(z) for all x € D. To achieve such a
goal by the mean of testing, we propose to use an local exhaustive test data generator [10].
However, other approaches, that make use of a (semi-)proving technique can be followed
[14, 16] and are discussed in the section 5 of this paper. In general, input domains are
infinites, as illustrated by the replaceAll method (Fig.1), which takes an unbounded list
as first argument. In this case, a local exhaustive test data generator will enumerate all
the possible lists until a selected size will be reached. So, any proof of symmetry relation
satisfaction would be limited to the input domain being exhaustively explored. Fortunately,
the limitation of the input space allows the approach to remain practical.

The keypoint of our approach is that we just have to know whether p(r.x) and p(c.z) are
permutations of p(z). As previously said, a precise knowledge of ¥y, ;(7) and ¥y (o) is not

RR n~4810

12 Arnaud Gotlieb

required here because ¥y ; represents an entire class of symmetries. The procedure shown
in Fig.2 takes a program p and the input space D as arguments and returns the first found
triple < z,p(z),p(6.x) > that violates the symmetry relation, among the portion of the
input space being explored. If such a counter-example cannot be found, this proves that p
satisfies not only the two selected symmetries but also all the permutations of Sy, of the input
vector in the input space D. Note that some test data are not required to be examined :

while(D # 0) {
pick up z € D,
D:=D\{z}
if(p(7.z) is not a permutation of p(z))
return < z,7,p(1.) >
if(p(o.z) is not a permutation of p(z))
return < z,r,p(o.z) >

return(“Check complete”);

Figure 2: A procedure for Symmetric Testing

test data of the form = = (v,v,..,v) can be eliminated from D because any permutation
will leave x unchanged. Note also that non-permutable input data may be leaved constants
because these input data do not play any role in the symmetry relation. However, by doing
these, we restrict the proof when the procedure explores the complete domain.

3.5 Discussion

As expected, terminaison of the previous procedure cannot be guaranted. Although the
input space of the program p is required to be finite, nothing prevents p to iterate infinitely
when computing p(z),p(r.z) or p(o.z) and no general procedure can be used to decide the
termination of p.

Under the strong hypothesis that p halts on all test data of its finite input space, ST is
guaranted either to find a counter-example of the symmetry relation if there exists one, or
to show that p satisfies the symmetry relation. However, the input space of p may have to
be fully explored in the worst case. Let D; x Dy x .. X D, be the finite input space of p
and let d be the number of elements of the greatest domain D;, then the procedure given in
Fig.2 will have to enumerate O(d™) points in the worst case. From a practical point of view,
it is crucial to maintain d and n as smallest as possible by limiting the size of the domains
of permutable input data. Note also that the number of program calls is O(d™) by using
the procedure of Fig.2 whereas it would have been O(n! d") in the worst case by using the
naive procedure that we first introduced.

Another limitation comes from the difficulty to establish that an extracted symmetry re-
lation is actually a group homomorphism, for some programs. Consider the method Vector

INRIA

Ezploiting Symmetries to Test Programs 13

min_nb(Vector A, int nb) which computes a vector of nb minimum integer values ex-
tracted from A, given in Fig.3. We can guess that this program has to satisfy a ¥4, get|
symmetry relation. However, the vector returned by the program is not sorted and its el-
ements order depends strongly on the algorithm used. Further, it is difficult to verify at
hand that ‘I'|A|,|Ret\(91 o 02) = W|A|,|Ret\(91) o lI/|A|’|Ret|(02) for all 01,92. An approach for

public static Vector min_nb(Vector V, int nb) {
if((V == null)) return null;

int k = ((V.size() < nb) ? V.size() : nb);
int 5,2 =0 ;

Vector R = new Vector();

Integer maxr_R,cur_V;

Collections ¢ = null;

while(i < k) {
R.addElement (V.elementAt(i));
i+ o+

}

while(i < V.size()){
i=0
while(j < k){ // k is the size of R
mazx R = (Integer)c.max(R) ; // max value of R
cur_V = (Integer)V.elementAt(i); // current value of V

if(maz_R.intValue() > cur V.intValue()){
R.setElementAt(cur V, R.index0f(maz R));
break;
!
J++
}
it
}

return(R);

}

Figure 3: The min_nb program

this problem would be to use symmetry relations over compositions of programs. For exam-
ple here, composing min_nb with a sorting program of the resulting vector yields a ¥4,
symmetry relation for the composition.

RR n~ 4810

14 Arnaud Gotlieb

4 Experimental results

4.1 Implementation

We implemented ST with the help of the primitive operations of the Java unit testing tool
Roast [11]. The tool includes four unit operations (generate, filter, execute, and check)
designed 1) to automate the generation of test tuples, 2) to filter some of the generated
tuples, 3) to execute the program under test with the selected tuples and 4) to check the
computed outcomes. Roast provides several test data generators such as a boundary-value
generator and a Cartesian product generator. We used only the latter to implement our local
exhaustive test data generator. Roast supports test templates (Perl macros) to compare
actual outcomes to predicted ones. We used these templates in combination with our Java
methods to check whether a computed outcome was a permutation of another one.

4.2 Experiments with ST

The goal was to study the capacity of ST to reveal faults in programs and to find circum-
stances where ST checks that a given symmetry relation is satisfied. The experiment was
performed on classical academic programs, where faults were injected by mutation.

Programs. Six programs were selected among which three were implemented and three
came from the java.lang.Collections class : replaceAll, sort and copy. We implemented
the min_nb method (given in Fig.3), the GetMid program (given in [14]) intended to compute
the median of three integers, and the well-known triangle classification program trityp [18].
This program takes three integers as arguments that represent the relative lengths of the
sides of a triangle and classifies the triangle as scalene (sca), isocele (iso), equilateral (equ)
or illegal (illeg). To limit the size of the search space, we considered every input integer to
belong to a range of 100 values (ranging from 0 to 99) for GetMid and trityp. For min_nb,
replaceAll, copy, and sort we considered lists to contains at most 4 integers ranging from
0 to 19.

Mutants. Four mutants were created for min_nb and GetMid. GetMid_1 and min_nb_1
are versions of the original programs where two statements are removed. The first mutant
has been studied in [14] because it contains a “missing path error” fault, which is considered
as a difficult fault to reveal. The mutation of relational operators in GetMid_2 and min_nb_2
leads to the creation of infeasible paths (at least for the first program). Finally, thirty three
mutants were manually created for trityp. The strategy used to create the mutants was to
exchange operators, values or variables in a systematic manner. Equivalents mutants’ have
been removed from the set of experiments, because they cannot be revealed by the mean of
testing [18]. All the mutants are available at the url www.irisa.fr/lande/gotlieb

“programs which compute the same outcome as the original program although a mutation operator has
been applied

INRIA

Ezploiting Symmetries to Test Programs 15

Symmetry relations. The results of GetMid and trityp must be invariant to every
permutation of their three input values, leading to a ¥3; symmetry relation. As previously
said, min_nb has to satisfy a W 4| gy Symmetry relation. Finally, Table 1 contains the
expected symmetry relations for replaceAll, copy and sort.

4.3 Experimental results and Analysis

Mutantd z p(z) p(o.z)] p(r.z)| rtime
(sec)
min_nb_{ vec:[1,1,0], nb:2 [0,0] [1,0] [0,0] 6.8
min_nb_2 Vec:[l,O], nb:1 [0] [1] [0] 4
min_nb | 3367220 test data [57 |

Table 2: Results for min_nb

Mutants z p(z) p(o.z)| p(r.z)| rtime
(sec)
GetMid_1 | (1,1,0)) 1 0 0.1
GetMid_2 | (1,0,0) 0 1 0 0.1
[GetMid [999900 test data [9,4 |

Table 3: Results for GetMid

All the computations were performed on a 1.8Ghz Pentium 4 personal computer by using
the version 1.3 of Roast.

4.3.1 Revealling faults with ST

We first applied ST to reveal faults among the mutants of each program. The results are
given in tables 2, 3, and 4. If found, a test datum z that violates the symmetry relation is
given. The values of p(x), p(7.z) and p(c.x) are given in each of three interiors columns of
the tables. In the case where a test datum is found , the mutant is said to be killed by the
symmetry relation. Incorrect results of the program p are noted with boldface to facilitate
the results interpretation, but this was determined manually. For each relation, the CPU
time spent to find the solution is given (including time spent garbage collecting or in system
calls) in the last column.

Test data are found for killing the two mutants of min_nb and GetMid. This illustrates
the capacity of ST to reveal two difficult class of faults (missing path error and infeasible
path) on these programs. Among the 33 mutants of trityp, 10 were not detected as faulty
versions (programs trityp 2, 9, 11, 13, 14, 15 16, 18, 30, 33) by ST. Studying
these programs leads to see that they are equivalent to the correct version of trityp in
the following sense : both the mutant and the correct version satisfies the same symmetry
relation. For example, the mutant trityp_9 cannot be detected by ST because the fault has

RR n~ 4810

16 Arnaud Gotlieb

Mutants z p(z) p(o.z)] p(r.z)| rtime
(sec)
trityp_1 (3,1,1) iso illeg illeg 0.2
trityp_2 not found 9.6
trityp_3 (2,1,1) illeg iso iso 0.2
trityp_4 (2,1,1) equ sca iso 0.2
trityp_b (2,1,1) iso illeg illeg 0.2
trityp_6 (2,1,1) illeg illeg iso 0.2
trityp_7 (2,1,1) illeg illeg iso 0.2
trityp_8 (2,2,1) equ iso equ 0.2
trityp_9 not found 9.3
trityp_10 (2,1,1) [equ [illeg | illeg 0.2
trityp_11 not found 9.2
trityp_12 (2,2,1) [illeg [iso [illeg | 0.2
trityp_13 not found 9.2
trityp_14 not found 9.6
trityp_15 not found 9.4
trityp_16 not found 10
trityp_17 (3,2,1) [sca [illeg [sca 0.2
trityp_18 not found 9.6
trityp_19 (2,2,1) sca iso sca 0.2
trityp_20 (3,2,1) sca illeg illeg 0.2
trityp_21 (3,2,1) illeg sca illeg 0.2
trityp_22 (2,1,1) illeg illeg equ 0.2
trityp_23 (2,1,1) illeg equ equ 0.2
trityp_24 (2,1,1) illeg illeg equ 0.2
trityp_25 (2,1,1) equ iso illeg 0.2
trityp_26 (2,1,1) illeg iso illeg 0.2
trityp_27 (2,1,1) equ illeg illeg 0.2
trityp_28 (2,1,1) illeg iso illeg 0.2
trityp_29 (2,1,1) equ iso iso 0.2
trityp_30 not found 9.9
trityp_31 (1,1,0) [illeg [iso | illeg 0.2
trityp_32 (1,0,1) [illeg [iso | iso 0.1
trityp_33 not found 10
[trityp [999900 test data tried [9,6 |

Table 4: Results for trityp

been introduced into a statement only reached by a sequence of three equal integers, which
is invariant to permutation and in fact not even tried by the local exhaustive generator.
In some cases, the p(z), p(c.z) and p(r.z) are all incorrects (mutants 4 and _29). This
illustrates a situation where a fault injected in the program yields to modify every computed
outcome. Fortunately, this breaks also the symmetry relation that the program has to satisfy.

4.3.2 Checking that a program satisfies a given symmetry relation

Checking that the symmetry relations are satisfied by the correct versions of min_nb, GetMid,
and trityp yields to the results shown in the last row of table 2, 3 and 4. As the size of
the search space was arbitrarely limited, the proof is only valid on a small part of the input
space. Nevertheless, we prefered to compromize the size of the input space rather than
the time spent to search a counter-example. Although these proofs are done in restricted

INRIA

Ezploiting Symmetries to Test Programs 17

cases, they form a valuable step toward program correctness because the checking procedure
is completely automated for these programs. Finally, we applied ST to check symmetry
relations for the copy, sort, replaceAll methods of the class java.lang.Collections.
The results are given in table 5 and show that the three methods satisfy their symmetry
relation among the restricted input space.

Mutants z p(z) p(o.z)| p(r.z)| rtime
(sec)
copy 168361 test data 14.4
sort 168361 test data 5.4
replaceAll 67344400 test data 38240.5

Table 5: Results for sort copy, replaceAll

5 Related work

The idea of checking the computed results of a program by using several input data is not
new. Ammann and Knight [19] described the data diversity approach which aims at execut-
ing the same program, on a related set of input points. To check the computed outcomes, a
voting procedure is used as an acceptance test. As claimed by the authors, the reexpression
algorithms, used to generate the input data in relation within an expression, must be tailored
to the application at hand. Blum and Kannan [20] proposed the concept of program checker,
which is a program able to play the role of a probabilistic oracle, under a set of restrictions.
As an example, the authors considered the graph isomorphism problem and they provide a
program checker which checks that a graph G’ resulting from a random permutation of a
graph G is isomorphic to a graph H only if G is isomorphic to H. Other program checkers
that make use of mathematical properties are designed for programs that compute ged,the
matrix rank or programs that sort data. Conversely to these works, our approach is deter-
ministic because each reported symmetry violation is given with certainty. Further, it focus
on generic relations that can be easily extracted from an informal specification.

More recently, Chen et al. proposed in [21] to use existing relations over the input data
and the computed outcomes to eliminate faulty programs, in a framework called Metamor-
phic Testing. They propose in [14] to use global symbolic evaluation techniques to prove
that an implementation satisfies a given metamorphic relation for all input data. The tech-
nique yields to enumerate the paths of the program and to evaluate the statements along
each path, by replacing variables by symbolic values. The procedure requires to compare
several sets of constraints extracted from the program. The GetMid program is used as
an example to illustrate the approach. For this program, a symmetry relation is provided
and only a few permutations (transpositions only) are used to check the relation. However,
their approach is only manual and requires several sets of constraints to be compared. In
a previous work [16], we proposed to automate the generation of input data that violate a
given metamorphic relation, by using Constraint Logic Programming techniques. During

RR n~ 4810

18 Arnaud Gotlieb

this work, symmetry relations appear to be of a great interest because of their simplicity and
genericity. Although the preliminary ideas of ST are similar to those of the works of Chen
and its collegues, our approach focus on symmetry relations and generalizes the approach
which aims at exploiting these relations to test programs.

6 Perspectives

In this paper, we have introduced a new software testing paradigm called Symmetric Test-
ing which aims at finding test data that violate a given symmetry relation. Group theoretic
results are used to give a formal basis to this paradigm. In particular, a formal definition of
symmetry relation is introduced and we have given a practical procedure for applying Sym-
metric Testing on imperative programs. However, the limits of our automated approach
of Symmetric Testing have been identified. We forsee to replace the local exhaustive test
data generator by a a constraint-based test data generator which makes use of constraints
extracted from the source code. In this approach, constraints are used as relational expres-
sions between input and output symbolic variables and allow us to prove properties about
the program and its test data. We believe that symmetry relations would be easily expressed
as program properties into such a framework. Further, program composition appears to be
an interesting perspective to take into account programs for which it is not easy to specify
symmetry relations. This would allow to specify symmetry relations over finite sequence of
method invocations, providing so a way to test programs at the integration level.

References

[1] L. Clarke, “A System to Generate Test Data and Symbolically Execute Programs,”
IEEE Trans. on Soft. Eng., vol. SE-2, pp. 215-222, September 1976.

[2] R. Boyer, B. Elspas, and K. Levitt, “SELECT - A formal system for testing and debug-
ging programs by symbolic execution,” SIGPLAN Notices, vol. 10, pp. 234-245, June
1975.

[3] B. Korel, “Automated Software Test Data Generation,” IEEE Trans. on Soft. Eng.,
vol. 16, pp. 870-879, Jul. 1990.

[4] A. Gotlieb, B. Botella, and M. Rueher, “Automatic Test Data Generation Using Con-
straint Solving Techniques,” in ACM Int. Symp. on Soft. Testing and Analysis (ISSTA),
Soft. Eng. Notes,23(2):53-62, 1998.

[5] G.Bernot, M. C. Gaudel, and B. Marre, “Software testing based on formal specifications:
a theory and a tool,” Soft. Eng. Jour., vol. 6, no. 6, pp. 387-405, 1991.

[6] E. Weyuker, T. Goradia, and A. Singh, “Automatically generating test data from a
Boolean specification,” IEEE Trans. on Soft. Eng., vol. 20, pp. 353-363, May 1994.

INRIA

Ezploiting Symmetries to Test Programs 19

[7] J. M. Voas, “Certifying off-the-shelf software components,” Computer, vol. 31, pp. 53—
59, June 1998.

[8] J. Duran and S. Ntafos, “An evaluation of random testing,” IEEE Trans. on Soft. Eng.,
vol. 10, pp. 438-444, Jul. 1984.

[9] G. J. Myers, The Art of Software Testing. New York: John Wiley, 1979.

[10] T. Wood, K. Miller, and R. E. Noonan, “Local exhaustive testing: a software reliability
tool,” in Proc. of the Southeast regional conf., pp. 77—84, ACM Press, 1992.

[11] N. Daley, D. Hoffman, and P. Strooper, “A framework for table driven testing of Java
classes,” Soft. Prac. and Ezper., vol. 32, pp. 465—493, Apr. 2002.

[12] E. Weyuker, “On testing non-testable programs,” Computer Journal, vol. 25, no. 4,
pp. 465-470, 1982.

[13] P. Devanbu and S. G. Stubblebine, “Cryptographic verification of test coverage claims,”
in Proc. of the European Soft. Eng. Conf. (ESEC/FSE) (M. Jazayeri and H. Schauer,
eds.), pp. 395-413, LNCS 1013, Sept. 1997.

[14] T. Chen, T. Tse, and Z. Zhou, “Semi-proving: an integrated method based on global
symbolic evaluation and metamorphic testing,” in ACM Int. Symp. on Soft. Testing
and Analysis (ISSTA), pp. 191-195, 2002.

[15] M. A. Armstrong, Groups and Symmetry (Undergraduate Texts in Mathematics).
Springer Verlag, second ed., 1988.

[16] A. Gotlieb and B. Botella, “Automated metamorphic testing,” PI 1516, IRISA Tech.
Report - Rennes, France, 2003.

[17] P. Wadler, “Theorems for free!,” in FPCA’89, London, England, pp. 347-359, ACM
Press, Sept. 1989.

[18] R. A. Demillo and A. J. Offut, “Constraint-Based Automatic Test Data Generation,”’
IEEE Trans. on Soft. Eng., vol. 17, pp. 900-910, Sep. 1991.

[19] P. E. Ammann and J. C. Knight, “Data diversity: An approach to software fault toler-
ance,” IEEE Trans. on Computers, vol. 37, no. 4, pp. 418-425, 1988.

[20] M. Blum and S. Kannan, “Designing programs that check their work,” Jour. of the
Assoc. for Computing Machinery, vol. 42, pp. 269-291, Jan. 1995.

[21] T. Chen, T. Tse, and Z. Zhou, “Fault-based testing in the absence of an oracle,” in
IEEE Int. Comp. Soft. and App. Conf. (COMPSAC), pp. 172-178, 2001.

RR n~°4810

20 Arnaud Gotlieb
Contents

1 Introduction 3

2 Group theory : notations and selected results 4

3 Principle of Symmetric Testing 6

3.1 Symmetry relations e 6

3.2 Examples e e e 8

3.3 Symmetric Testing L 9

3.4 Checking a given symmetry relation 10

3.4.1 Reducing the number of permutations 10

3.4.2 Checkingonly rando Lo 11

3.5 Discussion L 12

4 Experimental results 13

4.1 TImplementation L. e 13

4.2 Experiments with ST L 14

4.3 Experimental results and Analysis 14

4.3.1 Revealling faults with ST 15

4.3.2 Checking that a program satisfies a given symmetry relation 15

5 Related work 16

6 Perspectives 17

INRIA

/<

Unité de recherche INRIA Lorraine, Technopdle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LES NANCY
Unité de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unité de recherche INRIA Rhéne-Alpes, 655, avenue de I’Europe, 38330 MONTBONNOT ST MARTIN
Unité de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unité de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
http:/ /www.inria.fr
ISSN 0249-6399

