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Programmation de grappes SCI avec des objets CORBA
paralleles

Résumé : Ce papier décrit une infrastructure logicielle pour la programmation par com-
posants sur une grappe SCI. Cet environnement est fondé sur le concept d’objet CORBA
parallele qui est une extension de ’architecture CORBA de ’OMG. Ces extensions ne re-
mettent pas en cause l'infrastructure principale de CORBA (’ORB) ce qui permet de co-
exister avec des applications déja écrites avec CORBA. Une application de traitement du
signal est présentée pour illustrer ’utilisation de cet environnement.

Mots-clé : CORBA,HPCN,METACOMPUTING,PSE



Programming SCI Clusters using Parallel CORBA Objects 3

1 Introduction

This chapter introduces a programming environment for SCI clusters that takes advantage
of both parallel and distributed programming paradigms. It aims at helping programmers
to design high performance applications based on the assembling of generic software compo-
nents. This environment is based on CORBA (Common Object Request Broker Architec-
ture), with our own extensions to support parallelism across several cluster nodes within a
distributed system. Our contribution concerns extensions to support a new kind of object,
which we call a parallel CORBA object (or parallel object), as well as the integration of
message-passing paradigms, mainly MPI, within a parallel object. These extensions exploit
as much as possible the functionality offered by CORBA and require few modifications to
an available CORBA implementation. This paper reports on these extensions and the des-
cription of a runtime system, called Cobra, which provides resource allocation services for
the execution of parallel objects.

The chapter is organized as follows. Section 2 discusses some issues related to parallel
and distributed programming. Section 3 gives a short introduction to CORBA. Section 4
describes the concept of parallel CORBA objects. Section 5 introduces the Cobra runtime
system for the execution of parallel objects. Section 6 presents a case study based on a signal
processing application from Aerospatiale. Section 7 describes some related work which has
some similarities with our work. Finally, section 8 draws some conclusions and outlines
perspectives of this work.

2 Parallel vs. Distributed Programming

Thanks to the rapid performance increase of today’s computers, it can be now envisaged to
couple several computationally intensive numerical codes to simulate more accurately com-
plex physical phenomena. Due to both the increased complexity of these numerical codes
and their future developments, a tight coupling of these codes cannot be envisaged. A loose
coupling approach based on the use of several components offers a much more attractive so-
lution. One can envisage to couple fluid and structure components or thermal and structure
components. Other components can be devoted to pre-processing (data format conversion)
or post-processing of data (visualization). Each of these components requires specific re-
sources (computing power, graphics, specific I/O devices). A component which requires a
huge amount of computing power can be parallelized so that it will be seen as a collection
of processes to be run on a set of cluster nodes. Processes within a component have to
exchange data and have to synchronize. Therefore, communication has to be performed at
different levels: between components and within a component. However, the requirements
for communication between or within a component are quite different. Within a component,
since performance is critical, low-level message-passing is required, whereas between com-
ponents, although performance is still required, modularity /interoperability and reusability
are necessary to develop cost effective applications using generic components.
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4 Thierry Priol, Christophe René, Guillaume Alléon'

However, until now, most programmers who are faced with the design of high-performance
applications use low-level message-passing libraries such as MPI or PVM. Such libraries can
be used for both coupling components and for handling communication among processes of a
parallel component. It is obvious to say that this approach does not contribute to the design
of applications using independent software components. Such communication libraries were
developed for parallel programming; they do not offer the necessary support for designing
components which can be reused by other applications.

Solutions already exist to decrease the design complexity of such applications. Distri-
buted object-oriented technology is one of them. A complex application can be seen as a
collection of objects which represent the components, running on different machines and
interacting using remote object invocations. Emerging standards, such as CORBA, sup-
port the design of applications using independent software components through the use of
CORBA objects. For the rest of the chapter, we will use the term object to name a CORBA
object. CORBA is a distributed software platform which supports distributed object com-
puting. However, exploitation of parallelism within such an object is restricted in a sense
that it is limited to a single node within a cluster. CORBA implementations such as Or-
bix from Iona Technologies [8], allow the design of multi-threaded objects that can exploit
several processors within a single SMP (Symmetric Multi-Processing) node. Such an SMP
node cannot offer the large number of processors which is required for handling scientific
applications in a reasonable time frame. However, the required number of processors is
available at the cluster level where several dozens of machines are connected. Nevertheless,
application designers have to deal “manually” with a large number of objects that have to be
mapped onto different nodes of a cluster, and to distribute computations and data among
these objects.

Therefore, either parallel and distributed programming environments have their limita-
tions which do not allow the design of high performance applications using a set of reusable
software components. The remaining part of this chapter introduces a programming envi-
ronment which combines the advantages of both parallel and distributed programming.

3 An Overview of CORBA

CORBA is a specification from the OMG (Object Management Group) [7] to support dis-
tributed object-oriented applications. An application based on CORBA can be seen as a
collection of independent software components or CORBA objects. Remote method invo-
cations are handled by an Object Request Broker (ORB) which provides a communication
infrastructure independent of the underlying network. Within the ORB, several protocols
exist to handle specific network technologies. The most important protocol is the IIOP
(Internet Inter-ORB Protocol) which is used to support Ethernet-based networks. However,
IIOP was designing for interoperability and thus offers limited performance. Fortunately,
CORBA designers have provided the ESIOP (Environment-Specific Inter-ORB Protocol)
which can handle other network technologies (SCI, for instance). An object interface is spe-
cified using the Interface Definition Language (IDL). An IDL file contains a list of operations

INRIA
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Figure 1: CORBA system architecture

for a given object that can be remotely invoked. Figure 1 provides a simplified view of the
CORBA architecture. In this figure, an object located at the client side is bound to an
implementation of an object located at the server side. When a client invokes an operation
of the object, communication between the client and the server is performed through the
ORB thanks to the IDL stub (client side) and the IDL skeleton (server side). The stub and
the skeleton are generated by an IDL compiler taking as input the IDL specification of the
object. Since CORBA is independent of the language used for the object implementation,
an IDL compiler may generate stubs for different languages (e.g., Java, C++, Smalltalk).
An object can thus be implemented in C++ and called by a client implemented in Java.
The following example shows a simple IDL interface:

interface myservice {

void put(in double a);

int put(out double a);

double myop(inout long i, inout long j);
};

An interface corresponds to an object class and an operation to an object method. In this
interface example, there are two operations associated with the interface. Each operation
has a single parameter. An operation parameter is assigned a type which is similar to a
C++ type (e.g., a scalar, an array). A keyword added just before the type specifies if
the parameter is an input or an output parameter or both. IDL types are mapped to the
language to be used at the server and the client side. IDL provides an interface inheritance
mechanism so that services can be extended easily.

A CORBA-compliant system offers several services for the execution of distributed
object-oriented applications. It provides object registration and activation through the use
of repositories. Object registration consists of specifying a process that implements the
object so that when an operation is called, the process is executed.

RR n3649
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Figure 2: Parallel CORBA object service execution model

4 Parallel CORBA Objects

CORBA was not originally intended to support parallelism within an object. However, avai-
lable CORBA implementations provide a multi-threading support for the implementation
of objects. Such support is able to exploit several processors sharing a physical memory
within a single computer. This level of parallelism does not require any modification to the
CORBA specification since it concerns only the object implementation at the server side.
Instead of having one thread assigned to an operation, it can be implemented using several
threads. However, the sharing of a single physical memory does not allow a large number of
processors since these could create bus and memory contention. One objective of our work
is to exploit the several dozens of nodes available within a cluster to carry out a parallel
execution of an object. To reach this objective, we introduce the concept of parallel CORBA
object.

4.1 Execution Model

The concept of parallel objects relies on an SPMD (Single Program Multiple Data) execu-
tion model. A parallel object is a collection of identical objects having their own data, in
compliance with the SPMD execution model. Figure 2 illustrates the concept of parallel
objects. From the client side, there is no difference in calling a parallel object to calling a
standard object. Parallelism is thus hidden to the user. When a call to an operation is per-
formed by a client, the operation is executed by all objects belonging to the collection. The
parallel execution is handled by the stub that was generated by an Extended-IDL compiler
which is a modified version of the standard IDL compiler.

INRIA
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4.2 Extended-IDL

Like a standard object, a parallel object is associated with an interface which specifies
the operations available. However, this interface is described using an IDL we extended to
support parallelism. Extensions to the standard IDL aim at both specifying that an interface
corresponds to a parallel object and at distributing parameter values among the collection
of objects. Extended-IDL is the name of these extensions.

Specifying the degree of parallelism

The first IDL extension corresponds to the specification of the number of objects of the
collection that will implement the parallel object. Modifications to the IDL language consist
of adding two brackets to the IDL interface keyword. A parameter can be added within the
two brackets to specify the number of objects belonging to the collection. This parameter
can be a “*”, which means that the number of objects belonging to the collection is not
specified in the interface. An integer value or a function which determines the number of
objects, is also valid. The following example illustrates the proposed extension:

interface[*] ComputeFEM {
void initFEM(in double mat[100][100], in double p);
void doFEM(in long niter, out double err);

};

In the previous example, the number of objects will be fixed at runtime depending on
the available resources (i.e., the number of cluster nodes if we assume that each object of
the collection is assigned to a single node). The implementation of a parallel CORBA object
may require a given number of objects in the collection to be able to run correctly. The
following example gives an example of a parallel object service which comprises four objects:

interface[4] ComputeFEM {
void initFEM(in double mat[100][100], in double p);
void doFEM(in long niter, out double err);

};

Instead of giving a fixed number of objects in the collection, a function may be added
to specify a valid number of objects in the collection. The following example illustrates this
possibility. In this case, the number of objects in the collection may be only a power of two:

interface[n~2] ComputeFEM {
void initFEM(in double mat[100][100], in double p);
void doFEM(in long niter, out double err);

};

IDL allows a new interface to inherit from an existing one. Parallel interfaces can do
the same but with some restrictions. A parallel interface can inherit only from an existing
parallel interface. Inheritance from a standard interface is prohibited. Moreover, inheritance
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is allowed only for parallel interfaces that can be implemented by a collection of objects with
a corresponding number of objects. The following examples illustrate this restriction:

interface[*] MatrixComponent {
void matrix_vector_mult(in double mat[100] [100], in double v[100],
out double u[100]);
void matrix_transpose(in double A[100] [100],
out double B[100][100]);
};
interface[n~2] ComputeFEM : MatrixComponent {
void initFEM(in double mat[100][100], in double p);
void doFEM(in long niter, out double err)

};

In this example, interface ComputeFEM inherits from interface MatrixComponent. The
new interface has to be implemented using a collection having a square number of objects.
In the following example, the inheritance is not valid:

interface[3] MatrixComponent {
void matrix_vector_mult(in double mat[100] [100],
in double v[100], out double u[100]);
void matrix_transpose(in double A[100] [100],
out double B[100][100]);
}s

interface[n~2] ComputeFEM : MatrixComponent {
void initFEM(in double mat[100][100], in double p);
void doFEM(in long niter, out double err)

};

The Extended-IDL compiler will generate an error when compiling this specification.
The intersection of the valid range of values of each inherited parallel interface and the new
parallel interface must not be empty; otherwise the inheritance is not valid.

Specifying data distribution

Our second extension to the IDL language to support parallel objects concerns data dis-
tribution. Remember that the execution of a method on the client side will provoke the
execution of the method on every object of the collection on the server side. Since each
object of the collection performs a part of the work and has its own separate address space,
we must envisage how to distribute the parameter values for each operation. We add new
keywords to specify how to distribute the parameter values among the objects of the col-
lection. The following paragraphs will explain how the data can be distributed for both in,
out and inout modes depending on their type. A data-distribution extension of an IDL
specification is allowed only for parameters of operations defined in a parallel interface.

INRIA
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The IDL language provides multidimensional fixed-size arrays which contain elements
of the same type. Types can be either basic or constructed types. The size along each
dimension has to be specified in the definition. We provide some extensions to allow the
distribution of arrays among the objects of a collection. Data distribution specifications
apply for in, out and inout modes. These data distribution specifications follow those
already defined by HPF (High Performance Fortran). This design choice permits to map
Extended-IDL to the HPF language in the future. It will be thus possible to implement a
parallel object using HPF. Such a mapping could be based on the IDL to Fortran90 compiler
which is being designed and implemented within the Esprit PACHA project. The following
example gives a brief overview of the proposed extension:

interface[*] MatrixComponent {
void matrix_vector_mult(in dist[BLOCK] [*] double mat[100][100],
in double v[100],
out dist[CYCLIC] double u[100]);
};

This extension consists of adding the new keyword dist, which specifies how an array is
distributed among the objects of the collection. The 2D array mat is distributed by blocks of
rows. Since the parameter is assigned an in mode, each object of the collection will receive a
block of rows instead of the whole array. A distributed array of a given IDL type is mapped
to an unbounded sequence of this IDL type which has been extended to store information
related to the distribution. An unbounded sequence offers the advantage that its length is
determined at runtime. Scattering of distributed arrays among the objects of a collection
is performed by the stub generated by the Extended-IDL compiler. If the client is itself a
parallel object, the stub is in charge of gathering data from client objects before sending
them to the server objects with the correct distribution. In the previous example, the
number of objects in the collection is not specified in the interface. Therefore, the number
of elements assigned to a particular object can be known only at runtime. Parameter v does
not have a data distribution specification so that each object receives the whole array. The
last parameter u has an out mode assigned to it. Each object of the collection will send
back to the client a part of the array. The code generated by the Extended-IDL compiler
is in charge of gathering the data from the objects of the collection and to give them back
to the client which invoked the operation. Gathering may include a redistribution of data if
the client is itself a parallel object. As a matter of fact, distribution of variable u may not
be identical at the client and the server side. At the client side, information related to the
distribution is stored in the corresponding unbounded sequence structure. This information
is accessed by the stub of the parallel object to redistribute data if necessary.

4.3 Implementation of Parallel CORBA Objects

As we have shown in the previous paragraphs, the code generated by the Extended-IDL
compiler is in charge of managing the communication between a client that issues a request

RR n3649
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and a parallel object. Implementation relies on a new stub to be generated by the Extended-
IDL compiler. After binding the client object to the parallel object, the client is able to send
method invocations to the parallel object service. Modification of the ORB is not required
since the CORBA specification provides a mechanism to issue multiple requests within a
single call to the ORB. When an operation is invoked, a request is constructed containing
the object references of all objects belonging to the collection as well as the name of the
operation to be invoked. This request is then sent through the ORB which in turn will issue
a request to each object to execute the operation.

5 The Cobra Runtime System

The Cobra runtime system provides resource allocation for the execution of parallel objects
on SCI-based clusters. This runtime system is being developed with the Esprit PACHA
R&D project. The project aims at building a parallel scalable computer system for high
performance applications. This system includes both the development of hardware compo-
nents and runtime systems. Emerging standards both in software, namely CORBA, and in
hardware, namely SCI, are exploited to investigate the design and implementation of a full-
featured CORBA-compliant software with minimum overhead. The Cobra runtime system
is targeted to the PACHA multiprocessors, as shown in Figure 3. It is based on the cluste-
ring of PC systems using the PCI-SCI technology from Dolphin Interconnect Solutions. The
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machine is a set of three SCI ringlets connected together through an SCI switch. The first
SCI ringlet contains two service nodes which act as the front-end of the PACHA machine.
These two nodes run the Cobra runtime system for resource allocation. The two other SCI
ringlets connect compute nodes. These compute nodes are allocated to users on demand by
the Cobra runtime system for the execution of parallel objects. Resource allocation consists
of providing cluster nodes and shared virtual memory regions for the execution of parallel
objects.

5.1 Cobra Services

Cobra provides the concept of a virtual parallel machine which is associated with the exe-
cution of a parallel object. Allocating a virtual parallel machine consists of choosing a set
of cluster nodes where objects of the collection will be mapped to for execution. Selection
of nodes is performed statically since the PACHA multiprocessors act as a computational
server. There are no other applications running simultaneously with parallel objects. Dy-
namic strategies could be added in the future to allow sharing of the machine by several
user applications. Cobra offers services for the allocation of virtual shared memory regions.
Such regions can be accessed simultaneously by several components of the application. We
think that the coupling of software components will need the exchange of unstructured data
which cannot be passed efficiently between components through the ORB due to the cost
of marshalling and demarshalling data. The two resource allocation services are implemen-
ted using CORBA objects so that they are available from any machine within the cluster.
Therefore, a client running somewhere in the network is able to allocate resources through
CORBA, and once the resources have been allocated, a client can bind a parallel object to
the virtual parallel machine which has been created.

Cobra provides basic services for parallel programming. Execution of objects belonging
to a collection associated with a parallel object requires some basic functions such as identi-
fication and communication between objects. Cobra provides an application programming
interface for these objects. This interfaces contains a set of C and Fortran77 functions
for parallel programming such as synchronisation between objects (barrier, lock), low-level
message-passing and shared memory region management.

5.2 Cobra Software Architecture

Cobra has been designed for the PACHA multiprocessors and thus benefits from the SCI
technology. Cobra can allocate both physical nodes and shared memory for the execution
of parallel objects. Figure 4 shows the overall architecture of Cobra. Cobra is a set of three
standard CORBA objects which run on the service nodes of the PACHA multiprocessors.
Implementation of these services is carried out using either MICO [14], a freely available
CORBA implementation from the University of Frankfurt, or ORBSCI, which is a CORBA
implementation being implemented by Spacebel within the PACHA project.

The AdminProcess object provides services for the administration of the multiprocessors.
The RmProcess gives a set of services for resource allocation, while AppProcess supports

RR n3649



12 Thierry Priol, Christophe René, Guillaume Alléon®

‘VPM 1: 3 Compute Nodes

Chiosrares> Gatd) |5
Codefrocess > (Tak D

Compute Node

CORBA © g :
RmProcess, Rl B Free !
B| . |

Compute Node
' o

T B R Free |
B

[z e)

i
s | | _LUNIX command AdminProcesé

i NoueE '
s |7 CORBA /
P g o 1%
" Process/ | << R corBA N R |,
; AppProcess A

wWPBO||w@PO||wDO

Service Node

: Process, <

; + | [UNIX command

User’s Workstation

User’s \| @ o
Process/| <

UNIX command

Figure 4: The Cobra runtime system architecture

the execution of standalone applications. Since several service nodes are allowed by the
runtime system, resource allocation tables are mapped onto SCI shared memory regions
so that each service node is able to access the allocation tables. Running on the compute
nodes, the NodeProcess object provides services to the RmProcess object for the execution
of objects belonging to a collection. Accesses to these services are performed using either
UNIX commands, specific APIs, or simply by using the IDL specification.

Administration service

The AdminProcess service administrates the PACHA multiprocessors. It is mapped on a
specific node of the machine which is called the administration node that acts also as a service
node. There is always one such node in the PACHA multiprocessors. This service provides
basic support for adding and removing nodes or changing the node state. For instance, at
any time a compute node can be changed to a service node to let more users have access
to the PACHA multiprocessors. To protect the system, the AdminProcesss service can be
executed only by a user who has the administrator privilege. A list of users is maintained
by the runtime system indicating if a user is an administrator or a standard user. For each
node of the machine, the runtime system maintains a list of resources associated with that
node (e.g., access to a fast network, frame buffer, number of processors). This information is
used later when a set of nodes is allocated to a particular parallel object which may require
specific resources for execution.
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Resource management service

The RmProcess services provides resource management for standard users. This service
is run on each service node of the PACHA multiprocessors. It manages resources such as
compute nodes and shared memory regions provided by SCI. To let service nodes manage
their own set of users concurrently and to avoid contention when the number of users in-
creases, allocation tables are shared between service nodes. This sharing is performed using
several SCI shared memory regions. Accesses to these tables, by both the AdminProcess
and RmProcess services, are performed using critical sections to avoid any incoherent state.

The Cobra runtime system provides the concepts of a Virtual Parallel Machine (VPM)
and Shared Memory Regions (SMR). A VPM is a set of compute nodes of the PACHA
multiprocessors allocated by a user on demand. It is identified in the system by a name. A
VPM is used for the execution of a parallel object. When executing a parallel object on a
VPM, the runtime system creates as many objects as there are processors in the compute
nodes of a VPM.

The second kind of resource managed by Cobra are shared memory regions. An SMR is
identified by an unique name in the system. Shared memory regions can be used in several
ways. They permit objects which are executed on different nodes of a VPM to share data.
An SMR is also a way to exchange information between parallel objects running on different
VPDMs either simultaneously or sequentially. Exporting or importing an SMR between VPMs
is granted depending on access rights specified during the creation of the SMR. Data stored
in an SMR is persistent. Shared memory regions can thus be seen as a data repository which
can be used to avoid huge data transfers between objects. Concerning the implementation,
SMRs managed by Cobra correspond either to SCI shared memory regions or Shared Virtual
Memory (SVM) regions [13]. SVM is implemented using SCI as a communication layer, and
it provides better performance since it offers page migration and replication. Coherence is
enforced by a strong consistency protocol.

Application service

Although the Cobra runtime system was mainly designed to support execution of parallel
objects, we provide a specific service, called AppProcess, for supporting stand-alone applica-
tions (which are not CORBA compliant). This service allows the loading and the monitoring
of parallel application (either SPMD or MPMD) onto a VPM using a set of UNIX commands.

Application programming interface

The Cobra runtime system provides several application programming interfaces for both the
C and Fortran languages. The first API supports the client side. It provides a function for
each operation of the IDL specification of the AdminProcess, RmProcess and AppProcess
services. At the server side, an API is provided for parallel programming. This API contains
C and Fortran functions for node identification, low-level message passing, shared memory
management and synchronization such as locks and barriers.
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6 A Case Study: the IDAHO Application

The IDAHO application is being developed by the Aérospatiale Joint Research Centre for
electromagnetic experimentation and simulation purposes. The IDAHO application is a set
of tools to help the engineers in processing the data coming from experiments performed
in an anechoic chamber. The electro-magnetic illumination is generated by a transmitter-
receiver driven by the operator. The reduced model is placed on a rotating column in the
anechoic chamber. For each angle of rotation (from 0 to 360 degrees) and each frequency
(typically from 2 to 8 GHz), a complex number representing the reflected field is stored.
This experimentation procedure can last up to 90 hours and generate up to 1 GByte of
data.

The IDAHO application has been designed to adopt a client/server approach to let
engineers process data remotely from their workstations. The most compute-intensive part of
the application has been encapsulated in a parallel object which contains several operations.
Among them, the normalization operation computes the correction on the measured values
to balance the noise effects of the anechoic chamber, using the measurements of the empty
chamber and the measurements of a reference. We can then represent in 2D the reflected
field for each rotation angle and each frequency. This representation is commonly named
hologram. The windowing normalization operation is very similar to the previous one,
except that it includes a window multiplication in the computation. This is used to focus
the analysis around the measured object. The ISAR image computation is an operation to
compute a 2D ISAR image, by making a 2D FFT on the data. With an ISAR image, we
are able to locate on the object the reflecting points. The transverse response computation
aims at calculating the 2D transverse response, by making a 1D FFT on one dimension of
the measured data. With a transverse response, it is possible to follow a reflecting point
while the object is rotating in the anechoic chamber. Each of these operations has been
parallelized using the Cobra parallel application programming interface. The most complex
task is the parallelization of the matrix transpose needed by the 2D FFT. The complexity
is due to the limited size of shared memory regions provided by the SCI driver (512 kByte).
Preliminary results have shown a speedup of three for the matrix transpose when running
on a four-processor VPM.

Visualization is performed using a graphical user interface which has been implemented
in Java to be run on any machine in the network. A version of this interface has been
designed and implemented as a Java applet. This applet is stored on a service node of
the PACHA multiprocessor which acts as a Web server. Therefore, the IDAHO application
can be executed from any machine in the network having a Web browser supporting Java.
Figure 5 shows the client/server overall architecture of the IDAHO application. In the first
step (1), the applet connects to the Cobra services to allocate a VPM, then it connects to a
proxy object which acts as a bridge between the applet and the parallel object. The proxy
object has to be executed on the service node from which the applet was downloaded. The
proxy object implements the same operations as the parallel object. The proxy object adds
communication overhead but is required as a result of the security rules of the Java virtual
machine. Once data has been sent to the parallel object (2), parallel execution starts (3)
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Figure 5: The IDAHO client/server application

and an image is sent back to the applet (4) as a result of the execution. The final step (5)
consists of releasing the VPM which was previously allocated.

7 Related Work

Several projects deal with environments for high-performance computing combining the
benefits of distributed and parallel programming.

The RCS [1], NetSolve [4] and Ninf [15] projects provide an easy way to access linear
algebra method libraries which run on remote supercomputers. Each method is described
by a specific interface description language. Interface descriptions have been made for all
methods of standard libraries (such as BLAS and LAPACK). Specific functions are provided
for invoking methods of these libraries. Arguments of these functions specify method name
and method arguments. These projects propose some mechanisms to manage load balancing
on different supercomputers. One drawback of these environments is the difficulty for the
user to add new functions to the libraries. Moreover, they are not compliant to relevant
standards such as CORBA.

The Legion [5, 6] project aims at creating a world-wide environment for high-performance
computing. A lot of principles of CORBA (such as heterogeneity management and object
location) are provided by the Legion runtime system, although Legion is not CORBA-
compliant. It manipulates parallel objects to obtain high performance. All these features are
in common with our Cobra runtime system. However, Legion provides other services such as
load balancing on different hosts, fault tolerance and security which are not present in Cobra.
Furthermore, the Legion communication layer manages different networking technologies
such as Ethernet and ATM.
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The PARDIS [10, 11, 12] project proposes a solution very close to our project because
it extends the CORBA object model to a parallel object model. A new IDL type is added:
dsequence (for distributed sequence). It is a generalization of the CORBA sequence. This
new sequence describes data type, data size, and how data must be distributed among
objects. The PARDIS IDL compiler creates a new bind function, spmd _bind, which is
added to the client’s stub. Concurrent threads may use this function to make a collective
request to a server. Therefore, this server has to reply only to one request. For each operation
listed in the interface description, the PARDIS IDL compiler adds a non-blocking method.
Non-blocking functions may be executed concurrently even if they are called in a sequential
order. out arguments of these functions are returned in futures. This idea results from the
work on parallel C++. In PARDIS, distribution of objects is up to the programmer. This
is the main difference from Cobra, for which a resource allocator is provided. Moreover, in
Cobra, Extended-IDL allows to describe parallel services in more detail, such as the number
of objects associated with a parallel object.

8 Conclusion and Perspectives

This chapter described the Cobra runtime system which provides a software environment
for building high-performance applications using software components. Cobra is a set of
CORBA services for the execution of CORBA parallel objects. A parallel object is a col-
lection of standard CORBA objects. Its interface is described using an extension of IDL to
manage data distribution among the objects of the collection. Current work now focuses
on coupling numerical codes. Particular attention will be paid to the performance of the
ORB which seems to be the most critical part of the software environment to get the desired
performance. We are currently designing an efficient ORB for MICO, based on the Virtual
Interface (VI) architecture.
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