
c© 2010 by Wei-Wen Feng. All rights reserved.

EFFECTIVE METHODS FOR MANIPULATING AND RENDERING SKINNED MESHES

BY

WEI-WEN FENG

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2010

Urbana, Illinois

Doctoral Committee:

Professor Yizhou Yu, Chair and Director of Research
Professor David Forsyth
Professor John C. Hart
Liang Peng, Ph.D

Abstract

Mesh skinning has been a widely applied method in games for skeleton driven character animation. A gaming charac-

ter can be easily animated and deformed by transforming every vertex using a weighted sum of proxy bone transfor-

mations in the skeleton. Arbitrary deformations such as facial and cloth animation can also be effectively represented

with a relatively large number of proxy bones. However, the large number of necessary proxy bones make it difficult to

intuitively control the animation of deformable surfaces. This dissertation investigates novel methods for data-driven

deformation and level-of-detail rendering of skinned mesh.

The first part of this dissertation includes methods to effectively generate new animation for a skinned mesh,

which may be a non-articulated model or highly deformable surface such as face or clothes. We develop a regression

framework to learn deformation styles for a skinned mesh from example configurations based on kernel Canonical

Correlation Analysis (CCA). Without expensive non-linear optimization at run-time stage, the regression method is

very efficient and can achieve real-time performance in generating novel mesh deformations. The regression method

is also investigated to generate deformation details for dynamic clothes. A hybrid approach for cloth animation is

developed to find a mapping between coarse deformations to high-resolution spatial details in a cloth model. The

quality of regression model is improved by making separate regressions at different detail scale and by identifying

suitable rotation-invariant quantities for regression. The run-time components are implemented efficiently on GPU to

achieve an overall real-time performance on high-resolution cloth models.

In the second part, we focus on real-time rendering methods for skinned mesh. We introduce feature preserving

triangular geometry images for level-of-detail rendering of skinned mesh. Triangular charts pack efficiently, simplify

the elimination of T-junctions, arise naturally from an edge-collapse simplification base mesh, and layout more flexibly

to allow their edges to follow curvilinear mesh features. By incorporating skinning weights and skinned bounding

boxes into the representation, a view-dependent LOD scheme can be applied for rendering skinned meshes stored and

rendered entirely on the GPU to maximize throughput. We also develop a data management scheme for precomputed

radiance transfer to render skinned models with global shading effects.

ii

To my family and my wife

iii

Acknowledgments

When I began graduate school six years ago, I couldn not imagine the day when I would complete my dissertation and

have the opportunity to write this acknowledgement.

That day is finally here and, while I am proud of all that I have accomplished, I could not have done it without

the support of others. So it is with my deepest gratitude and respect that I recognize below my many outstanding

colleagues and friends - all of whom, in their unique way, played an important role in helping me complete my

dissertation.

First, I would like thank my PhD advisor, Yizhou Yu. While in the midst of defining my research path, Yizhou

accepted me as his PhD student and has since guided me through various research projects that were both challenging

and rewarding. His patience and thoroughness have prepared me with first-class knowledge and skills and, were it not

for him, I would not have been able to accomplish as much as I did, nor finish this dissertation.

I would like to thank my thesis committee - John C. Hart, David Forsyth and Liang Peng - for their valuable

time and efforts in refining my dissertation. Many thanks to Liang for mentoring me during my summer internship

at Rambus and for teaching me so much about GPU architecture. I would also like to thank Michael Garland for

inspiring me to explore computer graphics in-depth through his Digital Geometry Processing course.

Additionally, I would like to thank Byung-Uck Kim, Yuntao Jia, Lin Shi and Nathan Wesling for working with

me on various research projects and Shuo-Heng Chung, Tian Xia, Qing Wu, Binbin Liao, and Victor Lu for sharing

experiences and insights throughout our many discussions. You all provided important perspectives that helped shape

my dissertation.

Finally, I would like to thank my family for their support and encouragement throughout my graduate studies.

Most importantly, however, I would like to thank my wife, Li-Ying Chuang, to whom I dedicate this dissertation.

Meeting Li-Ying was the most wonderful thing that ever happened to me; she is my strength, my confidant and my

best friend.

iv

Table of Contents

List of Tables . vii

List of Figures . ix

Chapter 1 Introduction . 1
1.1 Part I : Data-Driven Skinned Mesh Deformation and Cloth Animation 1
1.2 Part II : Real-Time Rendering for Skinned Mesh . 2

Chapter 2 Real-Time Data-Driven Skinned Mesh Deformation Using Kernel Canonical Correlation
Analysis . 4
2.1 Introduction . 4
2.2 Related Work . 6
2.3 Overview . 7
2.4 CCA Based Regression . 9

2.4.1 Canonical Correlation Analysis . 10
2.4.2 The Kernel Trick . 10
2.4.3 Regression . 13

2.5 Poisson Translation Solver . 15
2.6 GPU Implementation . 17

2.6.1 Deformation Prediction . 17
2.6.2 Translation Solving . 17
2.6.3 DQ-Palette Skinning . 18

2.7 Experimental Results . 18
2.8 Conclusions and Future Work . 24

Chapter 3 A Deformation Transformer for Real-Time Cloth Animation 27
3.1 Introduction . 27
3.2 Related Work . 29
3.3 Overview . 30
3.4 Cloth Deformation Transformation . 31

3.4.1 Mid-Scale Deformations . 32
3.4.2 Fine-Scale Deformations . 34

3.5 Run-Time Implementation . 37
3.6 Experimental Results . 38
3.7 Conclusions and Discussion . 41

Chapter 4 Triangular Geometry Images for Level-of-Detail Control of Skinned Mesh 42
4.1 Introduction . 42
4.2 Related Work . 44
4.3 Overview . 45
4.4 Curvilinear Feature Detection . 47

4.4.1 Spectral Clustering . 47

v

4.4.2 High Curvature Feature Extraction . 49
4.4.3 Deformation Discontinuity Identification . 51

4.5 Triangular Geometry Image Construction . 53
4.5.1 Triangular Patch Generation . 53
4.5.2 Patch Parameterization and Packing . 56

4.6 GPU-Based Level-of-Detail Rendering . 58
4.6.1 Level of Detail Selection . 58
4.6.2 Geometry Image Rendering . 59
4.6.3 Boundary Stitching . 60

4.7 Experimental Results . 61
4.8 Conclusions and Future Work . 67

Chapter 5 Precomputed Radiance Transfer for Skinned Mesh . 69
5.1 Introduction . 69
5.2 Overview . 71
5.3 Mesh Segment Clustering . 73

5.3.1 Normalized Cut Framework . 74
5.3.2 Mesh Segment Clustering . 75

5.4 Transfer Matrix Compression . 76
5.4.1 Incremental Clustering . 77
5.4.2 Reclustering . 77
5.4.3 Cluster Merging . 77

5.5 Runtime Algorithm . 78
5.6 Experimental Results . 81

5.6.1 Validation . 82
5.7 Conclusions and Future Work . 83

References . 87

Vita . 93

vi

List of Tables

2.1 Statistics and Timings. All performance measurements were taken from a 3.0GHz Pentium D proces-
sor with nVidia Geforce 8800GTS 640MB VRAM. ’#CCA’ means the number of CCA bases used
for each bone, ’#Train’ means the number of training examples, ’#Test’ means the number of testing
examples, and ’Prep’ means the total time for all preprocessing steps. Our Poisson-based transla-
tion solver were not used for Face and Cylinder. Instead of the total number of vertices, the number
of bones, training examples and the translation solver are more influential factors affecting the final
frame rate. 23

3.1 Statistics and Timing. All performance measurements were taken from a 3.0GHz Core 2 Duo proces-
sor with a nVidia Geforce GTX275 Graphics Processor. ’#Tri’ and ’#Low Tri’ refer to the number of
triangles in the high and low resolution cloth models, respectively. ’#Cluster’ means the number of
face clusters used for Eigenskin, ’#RotCCA’ means the number of CCA basis vectors used for mid-
scale bone residual transformation regression, and ’#EigPCA’ means the number of PCA basis vectors
used for representing fine-scale deformations within each cluster. ’#Train’ means the number of train-
ing examples, ’#Test’ means the number of testing examples, and ’Prep’ means the total amount of
time for all preprocessing steps. Error is computed using the average per-vertex error divided by the
radius of the bounding sphere of the cloth. 38

4.1 Statistics and Timing. All performance measurements were taken from a 3.0GHz Pentium D processor.
’#Orig. Tris.’ means the number of triangles in the original mesh, ’Feature Time’ means the pre-
processing time for feature extraction, ’Chart Time’ means the time for chart generation, ’#Charts’
means the number of resulting triangular charts, and ’Max Resolution’ means the maximum resolution
for each chart. 61

4.2 Comparison of mesh reconstruction errors between our triangular geometry images and quad-chart
based geometry images [1]. 65

4.3 Performance of our LOD rendering system on four composed large scenes. The first two scenes have
large collections of dynamically animated meshes using linear blend skinning, and the last two are
static scenes. Performance were measured from nVidia Geforce 8800GTS 640MB VRAM. 66

5.1 Statistics for Precomputation. We utilize the cluster servers in our institution to accelerate the compu-
tation for PRT coefficients. In the Boxer example, every mesh segment cluster contains 4 segments.
There are 72000 PCA clusters on the character model and additional 24000 clusters for a floor plane.
In the Armadillo example, every mesh segment cluster contains 8 segments, which have the side effect
that the total number of PCA clusters is much reduced. The small number of sampled poses for the
Horse example gives rise to much smaller numbers of mesh segment clusters and PCA clusters, and
an overall much smaller dataset. Every PCA cluster in these examples has eight 25× 25 basis matrices. 81

5.2 Compression Result and Performance. As shown, we have achieved a compression ratio of around
140 on large examples. Because we generated the poses with enough variations, the demo animations
from our paper usually require only a small subset of the sampled poses for real-time interpolation.
The Cook-Torrance BRDF model is used for Armadillo and the Phong model is used for both Boxer
and Horse. All performance measurements were taken from a 3.0GHz PentiumD with nVidia Geforce
7900GTX 512MB VRAM. 81

vii

5.3 Comparisons of approximation errors between our interpolation scheme for transfer matrices and pose-
space based interpolation. The first five rows show the errors for five randomly generated poses, and
the last row shows the average errors among the five. 82

viii

List of Figures

2.1 Novel deformations of various styles can be generated in real time with our data-driven method. . . . 5
2.2 The work flow of our method. 8
2.3 A comparison among our method, regression based on both PCA and RBFs, and direct RBF-based

regression. The top row shows the fitting quality of a training example, and the bottom row shows a
predicted deformation once the user pulls a control point. The colored spheres are the control points,
with the red one indicating the point being edited by the user. All three methods can fit the training
data very well without noticeable differences. However, RBF and joint PCA-RBF regression fail to
generalize beyond original examples and produce distorted results. 12

2.4 A comparison of kernel functions in our CCA-based model reduction. Predictors based on nonlinear
polynomial kernels produce higher quality deformations without artifacts when compared with results
based on the linear kernel. 14

2.5 Deformation prediction without an additional translation solver may yield distorted results. However,
once our Poisson-based translation solver has been applied, the resulting deformation becomes natural
without artifacts. 15

2.6 Comparisons with ground truth on articulated mesh deformation. The top row shows the ground truth
which was not part of the training data, and the bottom row shows our synthetically generated results.
(Kernel function : Gaussian) . 19

2.7 Frames from predicted facial deformations generated using our method. The frames in the top row
belong to a testing facial animation sequence. The bottom row shows novel expressions generated
from interactive editing. (Kernel function : Polynomial) . 20

2.8 Comparisons with ground truth on cloth deformation. The top row shows the ground truth which was
not part of the training data, and the bottom row shows our synthetically generated results. (Kernel
function : Gaussian) . 21

2.9 A bending style is trained from given examples to generate novel deformations with the same style.
The blue models on the left are training examples. The green ones on the right are novel deformations.
(Kernel function : Gaussian) . 22

2.10 A simultaneous galloping and collapsing sequence generated from a deformation predictor trained
using two separate galloping and collapsing sequences. (Kernel function : Gaussian) 22

2.11 A comparison of predicted deformation among our method, FaceIK [2] and PCA-based blendshape.
Our method generalizes well within the deformation subspace learned from training examples, and
produces results closer to the ground truth than the other two methods. 23

2.12 A comparison of fitting quality between our method and SAD [3]. Our method generates more accu-
rate and natural results. 24

2.13 Performance plots of our method with or without the Poisson-based translation solver, using an in-
creasing number of bones and training examples. For plots with a varying number of bones, we use 38
training examples for the regression model. For the plot with a varying number of training examples,
we use 100 proxy bones. 25

2.14 A group of 15 pairs of pants are animated simultaneously at 35 FPS. Deformations for individual pairs
are generated independently in real time. 26

ix

2.15 Our data-driven method depends on training examples in (A) to produce an extreme new deformation
in (B), which demonstrates a strong extrapolation capability. However, if examples are completely
missing in the perpendicular direction, the predicted deformation becomes a simple shear as shown in
(C), which can be improved by inserting an extra training example in that direction as shown in (D). . 26

3.1 Cloth animations generated by our method. 28
3.2 The workflow of our method. 30
3.3 Proxy bones are used to model mid-scale cloth deformations. (Left) Bone clusters visualized on a rest-

pose cloth model. (Right) Same bone clusters shown on a deformed cloth model. Note that cluster
boundaries roughly follow cloth folds. 32

3.4 A comparison of cloth deformations using global and rotation invariant bone transformations as re-
gression targets. Global bone transformations are more difficult to generalize in the training stage and
produce obvious artifacts in the resulting cloth deformations. 33

3.5 Steps of our mid-scale deformation transformation. Start with a coarse cloth deformation in (A), we
extract a rotation from each coarse triangle. An intermediate first-order approximation of the rotations
in the high-resolution cloth using these rotations of the coarse triangles is shown in (B). The residual
transformations are then predicted from our regression model, and are combined with the rotations
from the first-order approximation to produce mid-scale surface deformations in (C). 34

3.6 A comparison of cloth deformations with and without face clustering in the modified eigenskin tech-
nique. 35

3.7 A comparison of deformation transformation results with and without fine-scale deformations. Mid-
scale results produce a relatively smooth cloth surface while more interesting folds are generated by
fine-scale deformation transformation. 36

3.8 Comparisons between ground truth and final deformation results from our method. The left images
show the ground truth, and the right images shows our final deformation results. 38

3.9 Deformation transformation results with distinct styles. Three high-resolution cloth simulations with
different material properties are used as training examples. All of them are trained with the same
coarse cloth simulation. Our method can adapt to different cloth material properties in the training
examples and produce distinct cloth animation styles. 39

3.10 A comparison between cloth animations generated from our method and the method in [4], where
explicit integration with iterative strain limiting is used to produce nonstretchy cloth. Compared with
explicit integration with strain limiting, our method can produce more inextensible cloth deformations
similar to the training examples. 40

4.1 Our method builds triangular geometry images for feature-preserving LOD representation of both
static and skinned meshes. It obtains a base complex and triangular patches from an original mesh
using mesh simplification. The packed triangular geometry images are shown in the bottom. 43

4.2 The pipelines of our method in the preprocessing and runtime stages. 46
4.3 The overall process of our feature extraction method. Given a mesh in (a), we first robustly estimate

its per-vertex curvatures, as shown in (b). The initial crest lines in (c) are noisy and disconnected.
Spectral clustering is applied on the mesh based on curvature similarity to extract a set of clusters
shown in (d). We only keep cluster boundaries with high curvature and refine them using a graph-cut
algorithm to obtain the final feature lines in (e). A sparse set of corner points are also detected in high
curvature regions as shown in (f). 48

4.4 The original feature lines from spectral clustering appear jaggy and may not align well with real fea-
tures on the mesh. After applying the graph-cut algorithm, the refined feature lines become smoother
and better localized. 49

4.5 Illustration of the difference between our spectral clustering and variational shape approximation
(VSA) [5]. The testing model has a high curvature feature, a narrow ridge, on the plane. VSA chooses
to better approximate the overall shape by dividing the hemisphere into two clusters. Our method is
better at feature detection and chooses to align a cluster boundary with the ridge. 50

4.6 Triangle clusters and their boundaries resulted from our new metric for spectral clustering using de-
formation gradients from the BALLET mesh animation. 52

x

4.7 A comparison of our spectral clustering method with hierarchical clustering [6] and mean-shift cluster-
ing [7] on two animation sequences, bending and horse collapsing, respectively. For the horse model,
mean-shift clustering fails to assign a large number of triangles (shown in black) to any clusters due
to their highly deformable nature. Our method results in more regular cluster shapes and a spatially
more coherent assignment of the triangles to the clusters. 53

4.8 The overall process of triangle patch generation. Start from an input mesh in (a), we first perform
mesh simplification to generate a base mesh in (b). During simplification, we apply MAPS [8] to
progressively parameterize the input mesh over the base mesh, as shown in (c). We utilize this pa-
rameterization to define a path in a flattened mesh for each base domain edge, as shown in (d). These
paths are mapped onto the original mesh to define the boundaries of triangle patches. 54

4.9 One step of MAPS parameterization. (A) For an edge (v1, v2) with v1 collapsed onto v2, Vd represents
the subset of previously removed vertices (shown in colors) parameterized over v 1’s one-ring neigh-
borhood. (B) After the edge collapse, the one-ring neighborhood has a new triangulation. We assign
v1 to a triangle f = (v2, va, vb) in the new triangulation, and compute its barycentric coordinates. (C)
Similarly, we reassign vertices in Vd to triangles in this new triangulation and update their barycentric
coordinates. 55

4.10 Overview of path generation. Every edge e s = (vs
1, v

s
2) in the base mesh (left) has a corresponding

path P = (v1, v2) in the original mesh (right). To generate such a path, we flatten a local region on
the original mesh and intersect es with triangles in the flattened region. A straight path from v s

1 to vs
2

is traced by inserting Steiner vertices at the intersections (middle). This path is mapped back to the
original mesh to form a path between v1 and v2. 55

4.11 Feature preservation in MAPs parameterization. For a base domain edge e f = (vf
1 , vf

2) collapsed
from a feature curve P f , all vertices on P f can be parameterized on ef (left). Thus the straight path
in the flattened mesh directly corresponds to the feature curve P f in the original mesh. 56

4.12 Patches generated without feature constraints might not align their boundaries well with high curvature
regions. Therefore the resulting reconstruction has more numerical and visual errors in these regions,
such as the ears on the bunny. 57

4.13 Illustration of our boundary stitching method. (Left) Visualization of triangle charts on the mesh. Each
color represents a distinct chart. (Middle) Stitching result along chart boundaries. (Right) Closer view
of the stitching result. Although two adjacent charts have a significant difference in LOD, the stitching
results are guaranteed to be watertight. 60

4.14 Triangular charts and reconstructed meshes at varying levels of detail for a BALLET animation. . . . 61
4.15 Triangular charts and reconstructed meshes at varying levels of detail for a BOXING animation. . . . 61
4.16 Skinning results of an oriented bounding box for different poses. The red bounding box is associated

with the patch in blue color. The skinned corners of the bounding box adequately approximate the
bounding volume of the deformed patch at every different pose. Therefore we can use the skinned
bounding box to estimate the projected screen area and thus determine the detail level for this chart at
every pose. 62

4.17 A comparison between our triangle-char geometry images (Bottom Row) and quad-chart geometry
images [1](Top Row). For this simple model, both methods approximate the original mesh well at a
high resolution. However, quad charts tend to have irregular shapes and produce lower quality results
at lower resolutions. 62

4.18 Another comparison between our triangle-chart geometry images (Bottom Row) and quad-chart ge-
ometry images [1] (Top Row) using the Isis model. Although this model has a relatively simple shape,
it also contains sharp edges and semantic features. Both methods can produce a good reconstruction
in a high resolution. However, quad charts fail to reconstruct important features faithfully in a low
resolution while our method still gives a good approximation. 63

4.19 Another comparison between our triangle-chart geometry images (Bottom Row) and quad-chart ge-
ometry images [1](Top Row). With the same number of vertices, the reconstructed meshes from our
method is more faithful to the original mesh than the quad-chart based method. The feature constraints
in our method ensure that important features are preserved during mesh simplification and result in
higher-quality charts. 64

xi

4.20 Comparison of skinning quality between our method and the hierarchical clustering method in [6].
Our method produces results with less artifacts. 65

4.21 Comparison of skinning quality between our method and SMA [7]. Our extracted proxy bones fit the
mesh sequence well while SMA fails in highly deformable regions including the bending legs. 65

4.22 Level-of-detail rendering of a large BOXING crowd. 66
4.23 Level-of-detail rendering of a terrain navigation using the Grand Canyon dataset. 67

5.1 PRT-based real-time rendering of dynamically deformed objects with global shading effects. 70
5.2 A multistage pipeline for data segmentation and clustering in the joint spatio-pose space. (a) PRT data

for all combinations of poses and vertices can be arranged into a large-scale matrix. (b) Consistent
segmentation horizontally divides the matrix into multiple submatrices. (c) Mesh segment clustering
reorganizes columns of each submatrix into multiple smaller clusters. (d) Revised clustered PCA
projects each row of the clusters onto the basis vectors of the same PCA cluster to facilitate runtime
interpolation. Vertices in the same PCA cluster are shown with the same pattern. 72

5.3 Renderings from our method. Left: a glossy deforming mesh. Right: a translucent deforming mesh.
Both images exhibit global shading effects, including soft shadows, diffuse and specular interreflec-
tions. The right image also exhibits subsurface scattering. 80

5.4 A comparison between our interpolation scheme and pose-space based transfer matrix interpolation.
Since pose-space interpolation only considers similarity in global pose configurations without ac-
counting for similarity among transfer matrices themselves, visually noticeable artifacts occur. 85

5.5 Another comparison between our interpolation scheme and pose-space based transfer matrix interpo-
lation in the self-occlusion area. Pose-space interpolation fails to capture some self-occluded effects
and has more visual artifacts . 86

5.6 A comparison between our revised CPCA and running CPCA independently on different poses. Note
that our revised CPCA satisfies additional requirements, and incrementally creates new clusters. With
the same total number of PCA clusters (72000 clusters over 1024 poses in this example), our algorithm
produces visually better results while independent CPCA produces visible boundary effects. 86

xii

Chapter 1

Introduction

1.1 Part I : Data-Driven Skinned Mesh Deformation and Cloth Animation

Mesh skinning has been widely used in games for skeleton driven skin deformation. Linear blend skinning (SSD) is a

popular technique that transforms every vertex using a weighted sum of nearby bone transformations. Bone influence

weights can be automatically estimated from examples. Meanwhile, fully automatic techniques have been developed

to compute proxy bones and their influence weights from mesh animations [7]. In [9], the extracted proxy bones

were used for segmenting markers into rigid segments. High quality skin deformations can be reconstructed via a

second-order skinning scheme followed by RBF-based interpolation of the residual errors. The algorithm in [6] also

relies on proxy bones in addition to rotational regression to overcome the limitations of SSD. Although the technique

in [7] is primarily targeted at articulated models, it can be extended to highly deformable surfaces by fitting a suitable

number of bones [3]. Nevertheless, the relatively large number of necessary proxy bones make it hard to intuitively

control the animation of deformable surfaces.

The research in the first part of this thesis tries to provide an intuitive control method on the class of deformable

objects generated by skinning [7, 3], which can effectively deform a non-articulated model or highly deformable

surface such as face or clothes. We present a regression framework to learn deformation styles for a skinned mesh

from example configurations based on kernel Canonical Correlation Analysis (CCA). Instead of solving for new

bone transformations via a relatively expensive nonlinear optimization such as methods previously investigated in the

framework of MeshIK [10, 11], we adopt a learning approach which has an offline training stage in addition to the run-

time animation stage. Because of the precomputation in the training stage, impressive real-time performance is made

possible during the run-time stage. In addition, our method can accommodate a larger number of training examples to

faithfully learn a deformation style because its run-time stage has linear scalability in terms of training examples.

Cloth animation is a challenging task for real-time computer graphics. Although efforts have been made to achieve

real-time performance for simulating relatively low-resolution cloth, there is still rooms for improvement to generate

higher quality dynamic folds and wrinkles. We propose a framework for adding these details in high-resolution cloth

on a low-resolution cloth simulation in real-time. It relies on data-driven models to capture the relationship between

1

cloth deformations at two resolutions. Such data-driven models are responsible for transforming low-quality simulated

deformations at the low resolution into high-resolution cloth deformations with dynamically introduced fine details.

The key components in this framework is two non-linear mappings for mid-scale and fine-scale deformations in the

high-resolution cloth model. The method relies on the carefully chosen rotation invariant quantities that are well suited

for training high-quality data-driven models. We have also developed a fast collision detection and handling scheme

based on dynamically transformed bounding volumes. The run-time stage can thus be efficiently implemented on

programmable graphics hardware to achieve an overall real-time performance on high-resolution cloth models.

1.2 Part II : Real-Time Rendering for Skinned Mesh

Realistic rendering and high frame rates are two most important aspects in games. However, the two goals are often in

conflict since increasing rendering quality implies using higher resolution models, which in turns hurts the frame rates.

Level-of-detail control provides a more efficient resource management scheme by rendering a higher resolution model

only when it is closer to the viewer. Traditional view-dependent LOD representations based on mesh simplification

[12, 13, 14] with poor cache coherence. Geometry images [15] support efficient LOD display [16, 17, 18] by storing

the mesh as a MIP-mapped texture image with better GPU cache coherence, but flattening a mesh into a single

geometry image can create severe parametric distortion.

Most of the existing LOD methods have been developed for static meshes only and and simplification for deform-

ing meshes has been less explored. The quadric error metric [19] can be extended [20, 21] for simplification of a

mesh with multiple deformed poses into a pose-independent simplified mesh. Hierarchical face clustering has been

performed in [22] to achieve pose-dependent simplification with higher visual quality for precomputed mesh defor-

mation sequences. To our knowledge, there is no previous work dealing with level-of-detail representation and control

for skinned meshes.

The research in the second part of this thesis is to augment geometry images with new support for the dynamic

meshes found in modern videogames animated by linear-blend skinning deformations. We propose triangular geome-

try images as a single solution that combines the cache coherence of geometry images, the lower distortion of multiple

charts, the straightforward downsampling of a simple chart shape, and a feature preserving layout. To represent a

skinned mesh as geometry images, we store vertex skinning weights in addition to the (rest-pose) vertex positions in

the geometry image, and downsample both for dynamic mesh LOD. We also surround each skinned triangle chart with

an oriented bounding box whose corners are themselves skinned to deform with its contents. The screen size of a pro-

jected bounding box selects the optimal LOD resolution for each triangular chart. The result is a view-dependent LOD

representation for both static and skinned meshes stored and rendered entirely on the GPU to maximize throughput.

2

High frame rates requirements in games also restrict the quality of realistic rendering. To achieve photo-realism,

complicated light transport needs to be simulated for the effects such as glossy reflection, interreflection, shadow-

ing and subsurface scattering under environment lighting. However, these simulations are not feasible for real-time

rendering. Precomputed radiance transfer (PRT) provides the opportunity to produce compelling realism with global

shading effects in real time. Originally developed for static scenes [23, 24], PRT has been subsequently extended to

fixed animation sequences as well as deformable objects with shading effects caused by detailed surface features but

without cast shadows [25]. It has also inspired techniques that produce soft shadows for dynamic scenes [26, 27] as

well as algorithms for real-time lighting design [28] and cinematic relighting [29]. However, the generalization of

PRT to dynamic scenes with global shading effects, such as interreflection and subsurface scattering, has not been

very successful.

The last part of this thesis is to extend real-time PRT rendering to skinned mesh, which is commonly used in

computer games. We take the example-based approach that draws many samples in the pose subspaces for a particular

object and precomputes radiance transfer for them. During run-time, the example PRT matrices are interpolated from

nearest neighbors in the pose space to produce rendering results for the new poses. Since we need to precompute

radiance transfer for every sampled pose, resulting datasets reach hundreds of gigabytes, and are orders of magnitude

larger than those for a static object. Thus we present effective clustering and compression schemes for precomputed

radiance transfer matrices so that the aforementioned runtime data communication, decompression and interpolation

can be performed efficiently and accurately. As a result, high-quality real-time rendering with global shading effects

is achieved.

3

Chapter 2

Real-Time Data-Driven Skinned Mesh
Deformation Using Kernel Canonical
Correlation Analysis
Achieving intuitive control of animated surface deformation while observing a specific style is an important but chal-

lenging task in computer graphics. Solutions to this task can find many applications in data-driven skin animation,

computer puppetry, and computer games. We present an intuitive and powerful animation interface to simultaneously

control the deformation of a large number of local regions on a deformable surface with a minimal number of control

points. Our method learns suitable deformation subspaces from training examples, and generate new deformations on

the fly according to the movements of the control points. Our contributions include a novel deformation regression

method based on kernel Canonical Correlation Analysis (CCA) and a Poisson-based translation solving technique for

easy and fast deformation control based on examples. Our run-time algorithm can be implemented on GPUs and can

achieve a few hundred frames per second even for large datasets with hundreds of training examples.

2.1 Introduction

Achieving intuitive control of animated surface deformation while observing a specific style is an important but chal-

lenging task. Very often, the surface undergoing deformation does not have an intrinsic skeleton. For example, creating

interesting and meaningful facial expressions requires surface deformation induced by an orchestrated coordination

of a number of muscles. An intuitive and powerful animation interface should be able to simultaneously control the

deformation of a large number of local regions on such a deformable surface with a minimal number of control points

(animation parameters). Solutions to this task can find many applications in data-driven skin animation and computer

puppetry. This is especially true with the recent trend in computer game design, which makes in-game avatars and

virtual environments subject to user-level control and customization.

With the rapid progress in data acquisition and physically based simulation techniques, one effective solution

would be learning suitable deformation subspaces from acquired or simulated examples, and generate new deforma-

tions on the fly according to the translational movements of a sparse set of control points. Thus, one challenge we need

to overcome in intuitive control of arbitrary deformations would be learning the mapping between sparse control point

movements and the deformation of an entire surface with at least thousands of DOFs. Fortunately, deformations at

4

Figure 2.1: Novel deformations of various styles can be generated in real time with our data-driven method.

different regions of the surface might be highly correlated. For example, moving an eyebrow should not only deform

the eye, but also affect the cheek and mouth in a meaningful expression. Moving one region of clothing might create

wrinkles on other regions. Therefore, it is crucial to learn these potentially nonlinear relationships from the examples

and let them guide novel deformations.

Another challenge in achieving our goal is the performance requirement in real-time applications such as gaming.

An update rate of thirty frames per second is the basic requirement in gaming applications which have a large portion of

their system resources devoted to AI and rendering instead of animation. Thus the run-time algorithm for deformations

needs to be extremely fast and reach a frame rate much higher than 30fps. Preferably it should make use of modern

GPU’s parallel processing power. This consideration implies that the framework should not involve sophisticated

run-time computation that is hard to parallelize effectively on GPUs.

In this paper, we present a statistically based framework to learn deformation styles for a skinned mesh from

example configurations. Our contributions include a novel deformation regression method based on kernel Canonical

Correlation Analysis (CCA) [30, 31] and a Poisson-based translation solving technique for easy and fast deformation

control based on training examples. Our run-time algorithm can be implemented on GPUs and can achieve a few

hundred frames per second even for large datasets with hundreds of training examples.

In our method, we first extract from example meshes a sparse set of control points as well as a skinned mesh

with bones and bone influence weights. The goal of a subsequent learning process is to capture connections between

control points and bone deformations in the example data and train a predictor generating novel bone deformations

5

from control point movements. To achieve this, we first perform nonlinear model reduction by applying kernel CCA

to find a pair of nonlinear subspaces that maximize the correlation between the pairs of example configurations. The

original data are then projected into the subspaces to obtain their reduced coordinates. Standard regression techniques

can be performed on the reduced coordinates to train a desired predictor.

At run-time, the deformation predictor is used to generate novel bone deformations according to control point

movements. The prediction process is reformulated into matrix-vector multiplications and kernel transformations,

both of which can be efficiently implemented on GPUs for parallel processing. For deformations with large bone

rotations, the predicted bone translations can be improved using a real-time Poisson-based linear solver which only

requires a single matrix-vector multiplication if the pseudo inverse of its coefficient matrix has been precomputed.

The resulting bone transformations from previous steps can be directly used in a GPU-based skinning algorithm. High

performance has therefore been achieved in all of our experiments.

2.2 Related Work

Mesh skinning has been widely used in games for skeleton driven skin deformation. Linear blend skinning (SSD)

is a popular technique that transforms every vertex using a weighted sum of nearby bone transformations. Bone

influence weights can be automatically estimated from examples. Direct blending of rotation matrices by SSD suffers

from collapsing joints and the “candy wrapper” artifact when joints are overly bent or twisted. Techniques have been

proposed to compensate such inaccuracies. The method in [20] can well model example-based muscle deformations

by adding extra joints around the area with large skinning errors. Their joint placement is compact and can resolve

artifacts from SSD with little performance impact. Dual-quaternion skinning [32] have also demonstrated good results

in terms of both deformation quality and performance. In addition to these fast skinning algorithms, there exist more

expensive techniques [33, 34, 35] that effectively integrate recent mesh deformation techniques to generate high quality

skin deformations.

Meanwhile, fully automatic techniques have been developed to compute proxy bones and their influence weights

from mesh animations [7]. In [9], the extracted proxy bones were used for segmenting markers into rigid segments.

High quality skin deformations can be reconstructed via a second-order skinning scheme followed by RBF-based

interpolation of the residual errors. The algorithm in [6] also relies on proxy bones in addition to rotational regression

to overcome the limitations of SSD. Although the technique in [7] is primarily targeted at articulated models, it can

be extended to highly deformable surfaces by fitting a suitable number of bones [3]. Nevertheless, the relatively large

number of necessary proxy bones make it hard to intuitively control the animation of deformable surfaces.

Example-based mesh deformation driven by a small number of translational handles instead of a skeleton have

been previously investigated in the framework of MeshIK [10, 11], where deformation gradients are interpolated from

6

example poses and new vertex positions or new bone transformations are solved via a relatively expensive nonlinear

optimization, which simultaneously involves all examples. In contrast, this paper adopts a learning approach which

has an offline training stage in addition to the run-time animation stage. Because of the precomputation in the training

stage, impressive real-time performance is made possible during the run-time stage. In addition, our method can

accommodate a larger number of training examples to faithfully learn a deformation style because its run-time stage

has linear scalability in terms of training examples while the time complexity of the algorithm in [11] is a cubic

polynomial of the number of example poses. Thus, our method is better suited for real-time data-driven animation.

Facial expressions are difficult to animate due to correlated deformations in multiple regions, the variety of expres-

sions and the existence of small features such as wrinkles. Blendshape face is a popular real-time technique for facial

animation. By establishing relationships between motion capture data and blendshape weights, new facial animations

can be generated from facial MoCAP data [36, 37]. However, unlike our method, these techniques require relatively

dense marker movements. In FaceIK [2], spatially varying blending weights based on control point positions are

computed to generate novel expressions from multiple example faces. In Face poser [38], a nonlinear optimization

is formulated in a maximum a posteriori (MAP) framework to find optimal PCA coefficients. These face animation

techniques are relatively expensive and are not well suited for real-time applications.

Cloth is another challenge for both deformation acquisition and creation. A pattern-based cloth capturing method

has been proposed in [39] to reconstruct a deforming cloth mesh from multiple views, but a real-time interface is still

needed to create potentially novel animations consistent with the style of the captured data. On the other hand, the

main objective of the editing techniques in [40, 41, 42] was to modify an existing mesh animation but not to create a

novel one according to control point movements.

This paper also shares the same motivation with previous work on skeletal animation driven by low-dimensional

control signals [43, 44]. Specifically, the method in [43] performs global nonlinear model reduction using a particular

form of Gaussian processes. At run-time, a relatively expensive nonlinear optimization is still necessary to reconstruct

a complete skeletal configuration from low-dimensional signals. In comparison, our method performs local nonlinear

model reduction for each proxy bone using kernel CCA and does not require nonlinear optimization at the run-time.

Note that linear CCA has been applied in [45] for aligning two serial signals in skeletal animation.

2.3 Overview

Our goal is to achieve real-time example-based surface deformation and animation using sparse control points. The

original surface can be an arbitrary deformable surface without a skeleton. Given a set of surface deformation exam-

ples, we first build two different abstractions for the surface. The first abstraction is designed as an animation interface.

It is a very sparse set of control points whose locations on the surface are such that they can unambiguously convey

7

Figure 2.2: The work flow of our method.

the intended deformation. The second abstraction is a sparse set of abstract bones whose deformation parameters are

collectively used for generating the deformation of every vertex on the surface in real time. To build connections

between these two abstractions, a crucial preprocessing step is to train deformation predictors d(c) from pairs of

configurations of control points and bone deformations, (c,d). At run-time, these predictors effectively generate new

bone deformations, and in turn new surface deformations faithful to the style in the training examples, from novel

control point movements. Since the prediction models are precomputed, generating new deformations at run-time is

efficient and uses little computational resource. The work flow of our system is summarized in Figure 3.2.

Training Stage. Given meshes with np different deformations, we identify several mesh vertices in highly de-

formable regions and use them as the control points. We adapt the method in [46] to guide our control point selection.

The method works by performing principal component analysis (PCA) on vertex positions from mesh deformation

examples to obtain a set of bases. Varimax rotation is used to rotate each PCA basis vector into a more localized

version. Two representative points with largest differences are then selected automatically from each rotated basis

vector. Finally, we interactively choose nc samples from these representative points that are placed near the semantic

features of the input mesh such as eyes or the mouth. These points are then concatenated together to form the vector c.

Note that user interaction is only for choosing one of multiple points automatically identified near the same semantic

feature and can be finished in a few minutes.

We also build a skinned mesh which includes a set of bone deformations and the bone influence weights for

each vertex. The skinned mesh is generated by grouping original triangles with similar transformations into the same

bone [6]. The error EA→B of joining bone A to bone B is defined to include not only vertex prediction errors, induced

by applying B’s transformation to A’s vertices, but also edge prediction errors in terms of both edge orientation and

length. Each bone acts as an abstract representative for transformations, and its influence weights on a vertex are then

8

obtained by minimizing the fitting error of vertex positions in all examples. In terms of bone transformations, we

choose to fit a rigid transformation in the form of a dual-quaternion using the method in [3].

Once the set of control point sequences and corresponding deformations have been collected for each bone from

the examples, we perform nonlinear model reduction using kernel CCA [30, 31] and build a deformation predictor

using linear regression. We first transform every data pair,(c,d), into reduced coordinates (c r,dr) by performing

kernel CCA, which finds pairs of projection bases which maximize the correlation between c r and dr. We then apply

linear regression on the reduced coordinates (cr,dr) to compute the deformation predictor that maps cr to dr. The

mapping is in the form of a regression matrix, and can be computed by minimizing least-square errors. Both the CCA

bases and regression matrix are computed for each bone in the skinned mesh.

Run-time Stage. At the run-time, the CCA bases are used to transform new control point coordinates into reduced

coordinates. The regression matrix is then applied to the reduced coordinates as the predictor to obtain new dual

quaternion transformations for each bone. For highly deformable meshes, instead of using the predicted bone transla-

tions, we recompute them by solving the Poisson equation [47] in real time to distribute errors more uniformly over

the entire mesh as well as to satisfy positional constraints for better user control. Note that we still use the rotational

part of the prediction as usual. Most of the run-time process in our method can be formulated as simple matrix-vector

multiplications plus kernel function evaluations, which can be implemented on GPUs very efficiently. The run-time

performance of our method can achieve hundreds of frames per second in our experiments.

2.4 CCA Based Regression

We apply a statistically based method called canonical correlation analysis [30] to perform model reduction and

obtain optimal basis pairs that reveal the functional dependency between control points and bone deformations. While

principal component analysis (PCA) performs feature extraction for a single set of variables, CCA extracts pairs of

features that yield maximum correlation between two sets of variables and, thus, is better suited as a preprocessing

step for regression. We choose to use CCA because of its ability to capture data dependency while avoiding overfitting.

If we directly apply linear regression or kernel-based regression methods such as RBFs on the input data, the resulting

predictor can fit the example data very well, but there is the risk of overfitting if the input examples are sparse. The

obtained predictor might not be able to learn the essence of the actual deformation model, especially in terms of non-

linear facial deformations, and produce unnatural novel deformation sequences (Figure 2.3). Moreover, for example

pairs that are nonlinearly correlated, the kernel trick can be applied in the CCA formulation to establish nonlinear

dependency between variables, which enrich the classes of deformation our system can handle.

In the following subsections, we review the mathematical background of CCA, and describe the details of our

9

regression method.

2.4.1 Canonical Correlation Analysis

Given two sets of variables {c,d} with c ∈ Rn and d ∈ Rm, CCA finds pairs of bases {uc,ud} such that the

projections cr = uc
T c and dr = ud

T d have their correlation ρ maximized. Here we follow the derivation from [31].

Specifically,

ρ =
E[crdr]√
E[c2

r]E[d2
r]

=
E[uc

T cdTud]√
E[uc

T ccTuc]E[ud
T ddTud]

. (2.1)

The maximization can be formulated as :

max
uc,ud

ρ = max
uc,ud

uc
T Σcdud√

uc
T Σccucud

T Σddud

(2.2)

where Σcd = cov(c,d) is the cross-covariance matrix of c,d, and Σcc, Σdd are defined similarly. The solution for

{uc,ud} can be obtained via singular value decomposition (SVD) of the matrix :

Σ− 1
2

cc ΣcdΣ
− 1

2
dd = UDVT (2.3)

where U ,D,V are the resulting decomposition of SVD. The i-th basis pair can be obtained by computing

uc
i = Σ− 1

2
cc U i (2.4)

and

ud
i = Σ− 1

2
dd V i (2.5)

where U i and V i are the i-th column of matrices U and V . Note that there are a maximum number of min(m, n) basis

pairs, where min(m, n) is equal to the smaller dimension of c and d.

2.4.2 The Kernel Trick

Instead of representing CCA bases in a linear subspace, we can also construct a nonlinear version of the algorithm via

kernel functions. The kernel method was originally used to extend a support vector machine (SVM) to its non-linear

version. It works by mapping the original data into a higher dimensional feature space and solving a corresponding

nonlinear version of the problem in that feature space. Suppose φ : R s → Rt, t > s is a mapping that transforms x

into the feature space. A kernel function, k(x,y), can be used to define the dot product in the feature space. That is,

k(x,y) = φ(x)T φ(y). In many cases, the kernel function has a simple closed-form expression even when the mapping

10

itself is hard to formulate explicitly. The kernel trick means if the original problem can be reformulated to depend only

on the dot product of the original data, the nonlinear version of the problem can be formulated to depend only on the

kernel function. As a simple example, let φ(x) be a mapping which transforms a vector x = (x 1, x2) into the vector

of all second degree monomials (x2
1, x

2
2, x1x2, x2x1). We can clearly see that φ(x)T φ(y) = k(x,y) = (xT y)2. Here

k(x,y) = (xT y)2 is the second degree polynomial kernel.

The nonlinear version of CCA in our current context can be derived via the kernel trick. Given n p pairs of example

data {ci,di}np

i=1 with ci ∈ Rn and di ∈ Rm, we define C = (c1 . . . cnp) and D = (d1 . . .dnp) as data matrices with

their i-th columns being ci and di, respectively. The covariance matrices for nonlinearly mapped data can be written

as :

Σcd = φ(C)DT , Σcc = φ(C)φ(C)T , Σdd = DDT ,

where φ(C) is a nonlinear version of matrix C by applying the mapping φ on each column of C. We choose to

transform only the input matrix C instead of both (C,D) because a nonlinear mapping of D would result in a

nonlinear reconstruction at run time from reduced coordinates to original ones, which would be expensive considering

the performance requirement of our method. Because the basis pair {u c,ud} always lies in the span of the mapped

data {φ(C),D}, we can further express a pair of bases {uc,ud} as uc = φ(C)fc and ud = Dfd, where fc, fd ∈ Rnp

are coefficient vectors with their dimensions equal to the number of example pairs. Therefore we can write the

nonlinear version of (2.2) using the kernel as follows:

max
fc,fc

ρ = max
fc,fc

fc
T KcKdfd√

fcT (Kc)2fcfdT (Kd)2fd
(2.6)

where Kc = φ(C)T φ(C) and Kd = DT D. Note that the entries of Kc can be computed by the kernel function k c

instead of by φ(c) explicitly. This is the dual form of (2.2), and can be solved in a similar manner via SVD as (2.4)

and (2.5).

11

Our Results PCA+RBF Regression RBF Regression

Figure 2.3: A comparison among our method, regression based on both PCA and RBFs, and direct RBF-based regres-
sion. The top row shows the fitting quality of a training example, and the bottom row shows a predicted deformation
once the user pulls a control point. The colored spheres are the control points, with the red one indicating the point
being edited by the user. All three methods can fit the training data very well without noticeable differences. However,
RBF and joint PCA-RBF regression fail to generalize beyond original examples and produce distorted results.

12

Suppose we retain nf pairs of coefficient vectors from SVD to form two matrices, Fc = (fc1 . . . fcnf) and

Fd = (fd1 . . . fdnf). The projection of an input c onto the basis uc
i can be computed as

φ(c)T uc
i =

np∑
j=1

f i
cjφ(c)T φ(cj) =

np∑
j=1

f i
cjkc(c, cj).

Thus, the vector of reduced coordinates, cr ∈ Rnf , can be expressed in a matrix-vector form as follows.

cr = Fc
T ξc, (2.7)

where ξc∈Rnp is the kernelized vector whose j-th entry is kc(c, cj).

2.4.3 Regression

We use regression to build up connections between control point coordinates and bone deformations. We use dual

quaternions for representing bone deformations [32]. A dual quaternion q 0 + εqε represents a rigid transformation.

It involves two classic quaternions, q0 and qε, therefore, a bone deformation involves eight parameters, d ∈ R 8.

Linear blending of dual quaternions can be applied to blend multiple corresponding rigid transformations, and the

resulting dual quaternion still represents a rigid transformation. We choose to represent a bone deformation using

a dual quaternion instead of an affine transformation matrix because it has better interpolation property than the

transformation matrix and can avoid the “candy wrapper” artifact [3] when used for skinning. It also has fewer

parameters than an affine transformation matrix, and is therefore a more suitable choice for regression.

Regression is performed once for each bone. The outcome of regression is a predictor, d(c), that is able to predict a

bone deformation, d, given the concatenation of all control point coordinates, c ∈ R nc×nDOF where nc is the number

of control points and nDOF is the degree of freedom of each control point. Note that a control point can have at most

3 DOFs in its 3D position. Given np surface deformation examples, we first extract from each example a pair of data,

(ci,di) for the bone. Kernel CCA is then performed on all extracted data pairs to obtain the set of n f CCA bases and

the collection of reduced coordinates, Cr ∈ Rnf×np and Dr ∈ Rnf×np , of all data pairs after projection onto the

bases. While PCA can only have a common set of bases for all bones, there is a distinct set of CCA bases specifically

tailored for each bone. Given those pairs of reduced coordinates, we compute an optimal predictor B c ∈ Rnf×nf by

performing the following linear regression:

min
Bc

np∑
i=1

‖Bccr
i − dr

i‖2 (2.8)

where cr
i and dr

i are the i-th column of Cr,Dr, respectively. We choose a simple linear predictor because the

13

Rest Pose Linear Kernel Non-linear Kernel

Figure 2.4: A comparison of kernel functions in our CCA-based model reduction. Predictors based on nonlinear
polynomial kernels produce higher quality deformations without artifacts when compared with results based on the
linear kernel.

example data pairs have already been nonlinearly transformed using kernel CCA to maximize their dependency and

linear regression can already produce accurate predictions in all our experiments.

Since the output deformation from our predictor is in the form of reduced coordinates as well, they need to be used

to further reconstruct the eight parameters of a dual quaternion. Different from PCA, the bases generated by CCA are

not necessarily orthogonal to each other. Therefore we cannot directly reconstruct these parameters by considering

the reduced coordinates as weights over the CCA bases. In theory, dual bases of the CCA bases need to be computed

to achieve accurate reconstruction. Since we do not kernelize the example deformations in our CCA formulation, the

matrix of dual bases can be represented as a linear mapping Hd ∈ R8×nf which transforms the reduced coordinates

Dr to optimally approximate the example deformations D. Thus, it is the solution of the following linear least-squares

problem:

min
Hd

∑
i

‖Hddr
i − di‖2. (2.9)

Note that since the matrices Fc,Bc,Hd are consecutive linear mappings, we can concatenate them into a single

linear operator Mb = HdBcFc that predicts the resulting deformation d given the kernelized vector ξ c from the

input c. In our run-time implementation, this combined predictor M b is used in place of Fc,Bc and Hd for efficient

execution.

We have verified the merit of CCA-based nonlinear model reduction by comparing our results with regression

based on radial basis functions (RBF). We tested both direct RBF regression and RBF-based regression from reduced

coordinates obtained by applying PCA to control point configurations. In both schemes, a regression model is com-

puted by minimizing least-squares errors. As we can see from Figure 2.3, although the fitting error for the training

14

Without Poisson With Poisson

Figure 2.5: Deformation prediction without an additional translation solver may yield distorted results. However, once
our Poisson-based translation solver has been applied, the resulting deformation becomes natural without artifacts.

examples is small in all of the methods, the direct regression scheme tends to overfit the training data and produce

unnatural predicted results. On the other hand, while PCA-based model reduction can prevent overfitting, there are

still distortions in the predicted results. This is because the same set of PCA bases are used in the regression for all

bone transformations, and it cannot necessarily give rise to a good functional dependency for every bone.

We have also compared the quality of predicted deformations from linear and polynomial kernels in CCA-based

model reduction. As shown in Figure 2.4, for certain deformation styles such as facial animation, nonlinear kernels

yield more natural results.

2.5 Poisson Translation Solver

At run-time, the transformation for each bone is generated independently using the predictor learned in the previous

section. Usually we can directly use this resulting transformation for dual quaternion skinning. However, when nearby

bones undergo very different 3D rotations, small prediction errors in translation may be amplified in the visual results

and create artifacts in regions jointly controlled by multiple bones. We solve this problem by computing a new set

of translations for the bones in a Poisson formulation. The motivation is that while bone rotations define deformed

local shapes, it is the bone translation that integrates these local shapes together. By solving for new translations, we

can ensure that the resulting transformations will be consistent among nearby bones while preserving the deformed

local shapes from our prediction. In addition, control point positions can be enforced as soft constraints in the Poisson

formulation.

15

As a preprocessing step for the Poisson solver, we perform linear blend skinning for both vertices and edges on

the deformable mesh surface. Let v0
i be the rest position of the i-th vertex vi, {wb

i }nb

b=1 be its skinning weights for

all bones, and {Rb, tb}nb

b=1 be the rotation matrices and translation vectors of all bones, the skinned vertex position

vs
i =

∑
b wb

i (Rbv0
i + tb). We also fit a set of skinning weights {ŵb

k}nb

b=1 for each edge ek = vk0 − vk1 in the

mesh. We treat ŵb
k as a skinning weight for edge ek analogous to wb

i for vi. Specifically, we compute {ŵb
k}nb

b=1 by

minimizing the following fitting error of the edge:

min
ŵk

np∑
j=1

‖ej
k −

nb∑
b=1

ŵb
k(Rb

je0
k)‖2 (2.10)

Note that we use the same set of bone transformations when fitting weights for edges. Since the edge orientation is a

vector, we have removed the translation component in the error formulation.

Our Poisson-based translation solver is formulated as an optimization problem which minimizes the differences of

two edge predictions. The objective function of this minimization is formulated as follows.

min
t

ne∑
k=1

‖(vs
k0 − vs

k1) − es
k‖2 + β

nc∑
l=1

‖vs
il
− cl‖2 (2.11)

where β is a weighting factor for positional constraints, es
k =

∑
b ŵb

k(Rbe0
k) is the skinned edge representation,

cl represents the current position of the l-th control point, v il
is the vertex corresponding to the l-th control point,

and ne is the number of edges. Here the rotation matrix Rb is directly from prediction, and new translation vectors

t = {t0 . . . tnb
} are sought as the solution of this minimization. It can be easily verified that (2.11) is actually a linear

least-squares problem, mint ‖At − T‖2, where T contains all bone rotation matrices and control point positions,

and matrix A can be computed from rest-pose vertex positions and the skinning weights for both vertices and edges.

Since entries in matrix A do not change at run-time, we precompute its pseudo inverse P = (A TA)−1AT in a

preprocessing stage. Therefore the solution of (2.11) can be directly found by a matrix-vector multiplication t = PT.

This simple solution technique makes it straightforward to implement on GPUs.

The insightful reader might notice that dual-quaternion skinning has been replaced by linear blend skinning in our

Poisson formulation. The reason for this approximation is that the evaluation of dual quaternions makes the solution

nonlinearly depend on the predicted rotations. Thus the problem becomes a nonlinear optimization, which is much

more expensive to solve at run-time. In practice, we have found the resulting translations from this approximation

works very well in all our experiments.

To validate our translation solving process, we have compared the predicted deformations from novel control point

movements with and without the translation solver. As we can see in Figure 2.5, the predicted deformation is much

more distorted without the Poisson-based translation solver because of the inconsistency of the translations among

16

nearby bones. On the other hand, new translations obtained from our translation solver can better position nearby

bones and are much more natural visually.

Remark A solution in the form of matrix-vector multiplication for the Poisson problem has previously been used

for solving for transformations of a reduced deformable model [6]. However, their method was derived in the context

of deformation gradients and both the new matrix transformations and translations were solved. In our method, we

propose a novel view of the problem by treating edges as additional elements for skinning, and therefore do not require

any specific treatment for deformation gradients or recomputing the rotation matrices.

2.6 GPU Implementation

Since all the run-time components can be reduced to linear operations, we can implement most of them efficiently on

GPUs. During each frame, the data sent to the GPU from CPU only includes the current control point coordinates,

which have less than 150 bytes in all of our examples. Both the deformation prediction and translation solving

processes are performed entirely on GPUs.

The overall GPU implementation can be separated into three stages: two matrix-vector multiplications for CCA-

based prediction, one matrix-vector multiplication for solving translations, and a dual-quaternion skinning step in

a vertex shader. In both prediction and translation solving steps, there are additional kernel transformations and

quaternion conversion for each bone. But overall the computation is dominated by straightforward matrix-vector

multiplications. In our implementation, we use CUDA [48], a general GPU programming framework by nVidia, for

the first two GPGPU stages.

2.6.1 Deformation Prediction

Given uploaded control point coordinates c, we first compute the kernelized vector ξ c from data matrix C, which

is defined at the end of Section 2.4.2. The predicted deformation d b for bone b can then be obtained via a matrix-

vector multiplication db = Mbξc, where Mb is defined in Section 2.4.3 as the product of multiple matrices. For

computational efficiency, we concatenate Mb from all bones into one large matrix M, and perform the multiplication

only once per pass. Note that both M and C can be precomputed and preloaded to GPU before the run-time process.

2.6.2 Translation Solving

Once we have obtained the predicted dual quaternions, we convert their non-dual parts into rotation matrices and

concatenate them into a single vector T. Similar to the previous stage, we can precompute and preload the pseudo

inverse matrix P to the GPU memory. The translations t can then be computed directly by t = PT. Once we have

obtained t, we use it to generate a new set of dual quaternions d ′ by updating the translation part of d with t. We map

17

the resulting dual quaternions d′ into an OpenGL texture buffer to make it available in the skinning stage.

2.6.3 DQ-Palette Skinning

The last step of our GPU implementation performs dual-quaternion skinning [32] to actually deform the mesh. Dual-

quaternion skinning for vertex v i is formulated as

v̂s
i = (

nb∑
b=1

wb
idb)v̂0

i (
nb∑

b=1

wb
idb)−1

where wb
i is a vertex skinning weight, d̄ = q0 − εqε is the dual quaternion conjugation, d−1 = d∗ = q∗

0 + εq∗
ε is the

inverse of unit dual-quaternion d with ‖d‖ = 1, and v̂ = 1 + ε(vxi + vyj + vzk) is the dual quaternion representation

for vertex v = (vx, vy, vz).

We perform the above skinning in a vertex shader in an intermediate pass before normal computation and shading.

The rest-pose vertex positions and their skinning weights are preloaded to GPU as a Vertex Buffer Object (VBO). In

the vertex shader, we compute at each vertex a weighted sum of revised dual quaternions from the previous pass. The

interpolated dual quaternion is then applied to the vertex to obtain its deformed position. In the final rendering pass,

new vertex normal vectors are computed on the fly based on deformed positions from previos stages. This results in

more accurate normal and improve the shading results.

2.7 Experimental Results

We chose three different types of example deformations, including facial animation, articulated mesh animation,

and secondary deformation of clothing driven by underlying articulated motion, for our experiments. Among them,

the facial animation and clothing deformation examples were real-world data acquired using computer vision tech-

niques [2, 39]. In the CCA-based regression stage, we chose the fifth degree inhomogeneous polynomial kernel,

k(x,y) = (xT y+c)5, for facial animation, and the Gaussian kernel for other deformations. The differences between

these two kernel functions are not significant in predicted results. In our experiments, the Gaussian kernel worked

well for all of our examples, while the polynomial kernel produced slightly better result for face demo.

The parameters of the kernel functions are estimated automatically. For the Gaussian kernel, its standard deviation

is set to the standard deviation of control point positions from the training examples. In the chosen polynomial kernel,

c is set to the average norm of control points scaled by a constant factor (0.1 in our case).

18

Figure 2.6: Comparisons with ground truth on articulated mesh deformation. The top row shows the ground truth
which was not part of the training data, and the bottom row shows our synthetically generated results. (Kernel function
: Gaussian)

19

Figure 2.7: Frames from predicted facial deformations generated using our method. The frames in the top row belong
to a testing facial animation sequence. The bottom row shows novel expressions generated from interactive editing.
(Kernel function : Polynomial)

20

Figure 2.8: Comparisons with ground truth on cloth deformation. The top row shows the ground truth which was not
part of the training data, and the bottom row shows our synthetically generated results. (Kernel function : Gaussian)

21

Figure 2.9: A bending style is trained from given examples to generate novel deformations with the same style. The
blue models on the left are training examples. The green ones on the right are novel deformations. (Kernel function :
Gaussian)

Figure 2.10: A simultaneous galloping and collapsing sequence generated from a deformation predictor trained using
two separate galloping and collapsing sequences. (Kernel function : Gaussian)

At run-time, novel bone deformations can be predicted in real time in our system (Table 5.1) with novel control

point movements. We demonstrate this by generating novel animated surface deformation with the motion trajectories

of a sparse (< 10) set of control points. Here we obtain the control point movements directly from testing mesh

sequences, though they can also be obtained from MOCAP data. Although surface deformation is underdetermined

with such a sparse set of constraints in the original deformation space, our regression model is able to predict the

deformations from the learned subspaces based on the training examples. The resulting deformations are shown in

Figures 2.6, 2.7, and 2.8. The top rows of Figures 2.6 and 2.8 show ground truth that was not part of the training

data. We have also designed an interface to let the user drag any of the control points either in a 3D space or on a

2D projection plane. The interactively defined control point positions can also be used for generating novel surface

deformations.

We show the capability of our method in learning different deformation styles in Figure 2.9 and 2.15. Given

sparse training examples of a bending style, our method can produce novel deformations with the same style. We

can also combine examples of different deformation styles to produce a hybrid deformation predictor. In Figure 5.3, a

simultaneous galloping and collapsing sequence is generated from our predictor using training examples from separate

horse galloping and collapsing sequences.

We have compared our results with FaceIK [2] and PCA-based blendshape on facial animation. We used the

22

Ground Truth FaceIK PCA Blendshape Our Method

Figure 2.11: A comparison of predicted deformation among our method, FaceIK [2] and PCA-based blendshape. Our
method generalizes well within the deformation subspace learned from training examples, and produces results closer
to the ground truth than the other two methods.

Examples Vertices Bones #CCA #Train #Test fps Prep

Face 23,728 260 8 38 384 502 20 min
Pants 1,453 150 8 80 1691 466 15 min

Armadillo 33,000 80 8 29 298 408 18 min
Horse 8,431 150 8 27 n/a 506 13 min

Cylinder 2,000 40 2 3 40 798 2 min
Bar 8,000 90 2 3 40 632 6 min

Table 2.1: Statistics and Timings. All performance measurements were taken from a 3.0GHz Pentium D processor
with nVidia Geforce 8800GTS 640MB VRAM. ’#CCA’ means the number of CCA bases used for each bone, ’#Train’
means the number of training examples, ’#Test’ means the number of testing examples, and ’Prep’ means the total
time for all preprocessing steps. Our Poisson-based translation solver were not used for Face and Cylinder. Instead
of the total number of vertices, the number of bones, training examples and the translation solver are more influential
factors affecting the final frame rate.

same set of control points and their moving sequences for all three methods and recorded the prediction errors for

each method. The RMS errors for FaceIK, PCA-based blendshape and our method are 0.0242, 0.0143 and 0.0108,

respectively, when the largest dimension of the bounding box of the face is scaled to have a unit length. Visual

comparison results are also shown in Figure 2.11. While the numerical errors are not large for all methods, the

visual result from our method is more natural and closer to the ground truth than others. FaceIK is not a real-time

technique and sometimes produces results with obvious distortion around facial features such as the mouth. For PCA-

based blendshape, we built a set of blendshape bases using PCA and solved for optimal blendshape weights from

new control point positions using least-squares. Because the sparse set of control points are not sufficient to robustly

solve for the blendshape weights, there are visible artifacts in the resulting deformations. We have also compared the

performance of our method with Face poser [38]. In their method, a nonlinear optimization is performed on CPU at

run-time and requires significantly more time than our method. It can only solve for less than six frames per second

while our method is around two orders of magnitude faster.

23

We have compared the accuracy of our regression with SAD [3] using the same number of proxy bones. Since

SAD cannot be directly used for generating novel deformations, we only perform the comparison on the training

examples. Our results were obtained by predicting the deformations from control point configurations in the training

examples, and SAD results were from direct skinning of training examples. The comparison is shown in Figure 2.12,

where our method can faithfully reproduce the deformations from original training examples after regression while

SAD fails to accurately fit the training examples with the same number of bones. Since SAD uniformly places proxy

bones on the mesh, its skinning results are less optimal.

To demonstrate the scalability of our method, we have tested the performance of our system with an increasing

number of proxy bones and training examples. As shown in Figure 2.13, our system can still achieve more than 100 fps

even for the extreme case of 650 bones with the Poisson-based translation solver, which has a quadratic dependence on

the number of bones. In Figure 2.14, we demonstrate the performance of our system by generating the deformations

for a group of 15 pairs of pants on the fly at 35 fps.

2.8 Conclusions and Future Work

We have presented an intuitive and powerful user interface to simultaneously control the deformation of an entire de-

formable surface with a minimal number of control points. Our contributions include a novel deformation regression

method based on kernel CCA, a Poisson-based translation solving technique, and an efficient GPU implementation.

Our run-time algorithm can achieve a few hundred frames per second even for large datasets with hundreds of ex-

amples. Comparisons show our method can achieve better results than existing ones on challenging tasks such as

handle-based facial animation.

Ground Truth SAD Our Method

Figure 2.12: A comparison of fitting quality between our method and SAD [3]. Our method generates more accurate
and natural results.

24

0 100 200 300 400 500 600 700
0

100

200

300

400

500

600

700

Bones/Training Examples

Fr
am

es
 /

se
c

Varying Training Examples with Poisson
Varying Bones without Poisson
Varying Bones with Poisson

Figure 2.13: Performance plots of our method with or without the Poisson-based translation solver, using an increasing
number of bones and training examples. For plots with a varying number of bones, we use 38 training examples for
the regression model. For the plot with a varying number of training examples, we use 100 proxy bones.

There exist a few limitations in our method that need further research. First, the control points need to be specified

before regression and fixed in subsequent animations. However, our current regression implementation only took

less than 30 seconds in all of our experiments. With further optimization, it is possible to change control points and

rebuild the regression model at run-time. Second, the predicted deformations are not always localized when moving

control points. This is undesirable when precise control is necessary. However, in typical data-driven animations, the

movements of control points are not independent but highly correlated. Therefore, such a limitation would not create

serious problems in practice. Finally, since our method is data-driven, the quality of predicted deformations depend on

training examples. As shown in Figure 2.15, when examples are completely missing in certain directions, our system

can only generate simple shearing deformation. This can be alleviated by adding extra examples in those directions.

Since our system is highly scalable with respect to the number of training examples, adding a few extra examples

would not hurt performance in practice.

25

Figure 2.14: A group of 15 pairs of pants are animated simultaneously at 35 FPS. Deformations for individual pairs
are generated independently in real time.

(A) (B) (C) (D)

Figure 2.15: Our data-driven method depends on training examples in (A) to produce an extreme new deformation
in (B), which demonstrates a strong extrapolation capability. However, if examples are completely missing in the
perpendicular direction, the predicted deformation becomes a simple shear as shown in (C), which can be improved
by inserting an extra training example in that direction as shown in (D).

26

Chapter 3

A Deformation Transformer for Real-Time
Cloth Animation

Achieving interactive performance in cloth animation has significant implications in computer games and other in-

teractive graphics applications. Although much progress has been made, it is still much desired to have real-time

high-quality results that well preserve dynamic folds and wrinkles. We introduce a hybrid method for real-time cloth

animation. It relies on data-driven models to capture the relationship between cloth deformations at two resolutions.

Such data-driven models are responsible for transforming low-quality simulated deformations at the low resolution

into high-resolution cloth deformations with dynamically introduced fine details. Our data-driven transformation is

trained using rotation invariant quantities extracted from the cloth models, and is independent of the simulation tech-

nique chosen for the lower resolution model. We have also developed a fast collision detection and handling scheme

based on dynamically transformed bounding volumes. All the components in our algorithm can be efficiently im-

plemented on programmable graphics hardware to achieve an overall real-time performance on high-resolution cloth

models.

3.1 Introduction

Achieving interactive performance in cloth animation has significant implications in computer games, online fashion

shows and other interactive graphics applications. Indeed, much progress has been made to achieve a reasonable

quality in real time. Nevertheless, it is still much desired to have real-time high-quality results that better preserve

dynamic folds and wrinkles.

It is challenging to achieve this goal for the following reasons. First, physically based cloth simulation involves

two expensive steps, PDE integration and collision handling. Even the latest GPUs have a hard time performing both

tasks in real time on high resolution cloth models. Second, data-driven model reduction can be potentially applied

to improve cloth simulation performance. However, unlike elastic materials and fluids, cloth primarily has secondary

motion driven by collisions against an animated body. It is not obvious how model reduction could accelerate collision

detection and handling for high resolution cloth models.

In this paper, we explore a different approach that tries to decouple the spatial dimensions from the temporal

27

Figure 3.1: Cloth animations generated by our method.

dimension. The temporal dimension is in charge of dynamics and the two spatial dimensions provide a domain to

define spatially varying details, such as folds, over the cloth surface. Spatial details across a cloth surface are highly

correlated. For example, at least dozens of vertices over a high-resolution cloth need to move together in a coherent

way to create a single fold. This means it is possible to generate all the spatial details from a lower dimensional space.

Based on this observation, we introduce a hybrid method for real-time cloth animation. The dynamics of a cloth

model is generated by a low-resolution physically based simulation, and the high-resolution spatial details over the

cloth surface are generated by a data-driven model from a low-dimensional space. We integrate the data-driven model

with the dynamics model to produce complete high-quality cloth animations. This integration is achieved by train-

ing additional data-driven models that accurately capture the relationship between simulated coarse deformations and

data-driven high-resolution spatial details. Such data-driven models transform simulated deformations at the lower

resolution into high-resolution cloth deformations with dynamically introduced fine details. One of the major contri-

butions of this paper is the identification and extraction of rotation invariant quantities that are well suited for training

high-quality data-driven models.

We have developed a new animation pipeline to make the aforementioned hybrid cloth animation possible. Each

time step starts with a one-step simulation of a low-resolution cloth, followed by deformation transformation and col-

lision handling, and finally ends with high-resolution cloth surface reconstruction and rendering. The most important

part is deformation transformation, which includes two nonlinear mappings that are respectively responsible for mid-

scale and fine-scale deformations in the high-resolution model. To maintain a low collision detection and handling

cost, we have developed a fast and effective scheme based on dynamically transformed bounding volumes. Every step

of our run-time stage has been carefully designed to fully utilize the parallel processing power of modern GPUs. As a

result, we achieve hundreds of frames per second when generating a high quality cloth animation from a synchronous

28

coarse simulation.

3.2 Related Work

Data Driven Deformation. Skeleton subspace deformations (SSD) attach a skin to bones and each vertex of the

skin is deformed according to a weighted sum of nearby bone transformations. It has been generalized in a number of

techniques [49, 20, 32, 6] to prevent potential artifacts. Meanwhile, fully automatic techniques have been developed

to compute proxy bones and their influence weights from existing mesh animations [7].

Data-driven approaches have been able to produce realistic and detailed results. Allen et al. [50] interpolate

scanned models with various poses to generate animations of skin deformation. Anguelov et al. [51] built a data-driven

model of both the shape and deformation of full body surfaces to generate novel subjects animated with novel motion.

Park and Hodgins [9] performed motion capture of skin deformation with a large number of markers. High quality

skin deformations are reconstructed via a second-order skinning scheme followed by interpolation of the residual

errors. Marker-based techniques for facial motion capture and synthesis have been reported in [52, 53]. Detailed

facial geometry, such as wrinkles, can be successfully synthesized from local deformation. Feng et al. [54] introduced

an example-based regression model for static surface deformation driven by sparse control points. This paper uses

the same regression method as in [54] but in a different context for medium to fine-scale cloth motion transformation.

More importantly, unlike [54], this paper relies on carefully designed rotation invariant quantities to achieve superior

regression results rather than performing regression on global transformations. Moreover, the work in [Feng et al.

2008] only deals with mid-scale bone transformations. Thus it cannot produce detailed wrinkles without an excessive

number of bones.

Producing high-quality dynamic data either via simulation or from a motion capture setup is a costly and time-

consuming process. Much research has been performed to obtain dynamical models from existing data. This is

typically achieved using dimension reduction and model fitting techniques [55, 56]. Barbič and James [55] derive

a reduced dynamical model from an original one by applying dimension reduction to the state vectors while Park

and Hodgins [56] adopt an empirical dynamical model for reduced dimensions and solve its parameters by fitting the

model to motion capture data.

Interactive Cloth Simulation. Extensive research has been performed on cloth simulation [57, 58, 59, 60]. Much

effort has also been devoted to making cloth simulation reach interactive performance. A common approach to faster

cloth simulation replaces large in-plane forces with constraints [61, 4, 60] and iteratively solve the system of governing

equations. Physics-based geoemtric subdivision methods are applied in [62] and [63] to produce additional folds in

a coarse cloth mesh. These methods can generate more interesting high resolution cloth than applying traditional

29

Pre-processing Stage

Run-Time Stage

Figure 3.2: The workflow of our method.

geometric subdivision. However, it is hard to produce many wrinkles within one coarse triangle as the subdivision is

driven by minimizing membrane energy or enforcing the edge length constraint.

Cordier et al. [64, 65] developed real-time techniques for animating clothes dressed on virtual characters. Their

data-driven technique uses pre-simulated cloth animations as examples to correct the simulation run in real time on

a much coarsened cloth mesh. Vertex positions or local cloth details are interpolated from the examples with the

closest neighborhood configurations. In comparison, our technique does not need to look up closest neighborhoods.

It is based on an advanced kernel regression method that takes a global configuration of the coarse cloth as the input.

Results from our method have better visual quality. Stumpp et al. [66] proposed a shape-matching cloth model which

can plausibly reproduce folds and wrinkles from a physically based simulation. A GPU-based implementation of a

finite element method [67] has also been reported in [68]. An interactive performance up to 30fps on a cloth with 10K

vertices has been reported using these techniques.

3.3 Overview

We introduce a data-driven framework for transforming low-resolution cloth simulations into higher resolution cloth

animations in real time. Unlike deformation transfer [69] and motion retargetting [70] where the source animation has

30

a sufficient quality and the goal is to integrate the source animation with a new hosting model, the source animation in

our framework may have a low quality and our goal is to transform it to a higher-quality one. This is made possible by

including high-quality high-resolution cloth deformations as part of the training data. The workflow in our method,

including both a preprocessing stage and a run-time stage, is summarized in Figure 3.2.

Preprocessing Stage The input to the preprocessing stage is a set of n triplets, {(A i, Hi, Di)}n
i=1, where Ai is a

skinned character model, H i is a deformed high-resolution cloth model for the character, and D i is a corresponding

deformed low-resolution cloth model. In this paper, these three types of models are all represented as triangle meshes,

and meshes with the same type but a differing superscript share the same topology. Our goal is to train nonlinear

mappings that can approximately transform every D i to its corresponding H i. Note that the underlying mechanisms

for generating Di and H i may be different. For example, one could choose a fast low-quality simulator to generate

Di, and a slower, more expensive simulator to generate H i.

We represent the deformation in the high-resolution model H i at two different scales, a mid scale and a fine scale.

Mid-scale deformations treat the cloth surface as a set of local patches smoothly joined together. Internal variations

of the patches, such as small folds and wrinkles, are modeled as fine-scale deformations. Mid-scale deformations

are represented using a skinning model while fine scale deformations are represented as residual vectors at individual

vertices. We perform regressions to obtain two separate mappings for these two types of deformations. These two

mapppings are collectively called a deformation transformer. Our training procedure for the mappings is independent

of the simulation technique chosen for the low-resolution model.

To accelerate collision handling at the run time, we also preprocess the cloth and character model pairs (H i, Ai)

and build a two-level bounding volume structure for collision detection.

Run-Time Stage During the run-time stage, a coarse cloth model is simulated in real time. At every frame, local

surface properties of the deformed coarse model are used as the input to the trained nonlinear mappings. Once mid-

scale and fine-scale deformations have been generated from the mappings, we perform collision detection against the

character model and further update the cloth deformation to resolve the collisions. The final deformation is used to

reconstruct a high-resolution cloth surface for the current frame. Every step of our run-time process has been designed

to fully utilize the parallel processing power of modern GPUs.

3.4 Cloth Deformation Transformation

Since a cloth is a highly deformable surface, the deformation transformer needs to be carefully designed to capture

its intricate movements and folds. Moreover, a cloth can easily have multiple collisions with the animated character.

31

How to resolve these collisions efficiently also affects our choice of representing cloth deformations.

3.4.1 Mid-Scale Deformations

A physically based cloth simulation usually needs to model a cloth using thousands of vertices to generate interesting

animations. However, once fine-scale details have been removed, the remaining cloth deformation becomes more spa-

tially coherent within local regions. Therefore, we can choose to represent mid-scale cloth deformations using linear

blend skinning with a set of proxy bones [7] each of which represents a local region. Note that these proxy bones are

solely used for cloth deformation and are independent of the character’s skeleton. Because cloth is mostly inextensible

and its deformation is mostly local bending, the deformation of proxy bones is restricted to rigid transformations with

no scaling.

We need to decide next which quantity regression should be performed on. Although it is tempting to perform

regression directly on global bone transformations, there exist several drawbacks. First, a global transformation is not

rotation invariant. The trained mapping needs to produce distinct results for rotated versions of the same deformation,

which makes the training stage much harder. Second, the dynamic range of absolute rotation and translation of a proxy

bone could be very large, which makes it hard for our mapping to accurately predict them. Finally, any inaccuracies

in the mapped global transformations directly affect the resulting cloth geometry, leading to obvious visual artifacts.

To resolve these issues, we observe that although the low-resolution cloth simulation does not produce high-quality

deformations, it does provide us with a simple overall shape of the deformed cloth. Therefore, we choose to use the

cloth geometry in the low-resolution simulation to obtain a first-order approximation of every bone transformation

in the high-resolution cloth, and then perform nonlinear regression to estimate the residual transformation of this

first-order approximation.

Given n example deformations of the high-resolution cloth mesh, {H i}n
i=1, we partition the mesh model into a

set of m local patches Pk, k = 1..m, using a face clustering algorithm similar to hierarchical clustering in [6] (Figure

Figure 3.3: Proxy bones are used to model mid-scale cloth deformations. (Left) Bone clusters visualized on a rest-
pose cloth model. (Right) Same bone clusters shown on a deformed cloth model. Note that cluster boundaries roughly
follow cloth folds.

32

3.3). We set each patch Pk as a proxy bone and extract its corresponding rotation, R i
k, from the deformed model

Hi. This rotation is defined with respect to the corresponding patch in the rest-pose high-resolution mesh. We also

extract a rotation Gi
t for each triangle ft in the deformed coarse mesh D i. Gi

t is defined with respect to the triangle

corresponding to ft in the rest-pose coarse mesh.

The first-order approximation of R i
k is formulated as T̄ i

k =
∑

j wk
t Gi

t, where wk
t ’s are linear blending coefficients

for patch Pk and can be obtained by minimizing the following least-squares objective function,
∑n

i=1 ‖
∑

t wk
t Gi

t −
Ri

k‖2. Since T̄ i
k is not necessarily a rotation, we apply the polar decomposition to extract the rotation matrix R̄i

k

from T̄ i
k. The residual transformation R̃i

k is the difference between R̄i
k and Ri

k, defined as R̃i
k = (R̄i

k)−1Ri
k. It

is advantageous to perform a regression on R̃i
k than Ri

k because it is local, rotation invariant, and encodes intrinsic

differences between coarse and high resolution cloth deformations. In practice, we use the exponential form of a

rotation and perform regression on the logarithm of R̃i
k, which becomes the axis-angle representation of a rotation.

This is because the axis-angle representation is less ambiguous than a quaternion and also achieves more accurate

regression results. We demonstrate the benefit of performing regression on residual transformations in Figure 3.4.

A mapping directly trained on global transformations tends to produce highly distorted deformations because of the

ambiguity and a large fitting error. Note that the regression performed in [Feng et al. 2008] also predicts global

transformations. Therefore it would suffer from the same type of difficulties.

Since we have chosen to use rotation-invariant quantities from the high-resolution model, we need to use rotation-

invariant properties of the coarse cloth as well during regression. There are a few possible choices available, including

linear rotation invariant coordinates (LRI) [71] and local connection maps [72]. In our system, we choose dihedral

angles between adjacent triangle pairs because it is both compact and rotation invariant. Using all dihedral angles from

each example can capture static deformations, but may still miss the dynamic aspect of a cloth simulation. Therefore

we use the complete set of dihedral angles, Θ, and their velocity, Θ̇, during regression.

Global Rotation Invariant

Figure 3.4: A comparison of cloth deformations using global and rotation invariant bone transformations as regression
targets. Global bone transformations are more difficult to generalize in the training stage and produce obvious artifacts
in the resulting cloth deformations.

33

(A) (B) (C)

Figure 3.5: Steps of our mid-scale deformation transformation. Start with a coarse cloth deformation in (A), we extract
a rotation from each coarse triangle. An intermediate first-order approximation of the rotations in the high-resolution
cloth using these rotations of the coarse triangles is shown in (B). The residual transformations are then predicted from
our regression model, and are combined with the rotations from the first-order approximation to produce mid-scale
surface deformations in (C).

We seek a mapping gk(Θ, Θ̇) → ωk for each Pk, where ωk is the three-dimensional axis-angle form of the

residual rotation of Pk. The regression method we use to train the mapping is similar to the one in [54]. Since the

mapping is likely to be nonlinear, to adequately account for the nonlinearity while avoiding overfitting, we perform

nonlinear dimension reduction on (Θ, Θ̇) by applying kernel canonical correlation analysis [31] between (Θ, Θ̇) and

ωk. Since our regression target is the residual rotation with an axis-angle representation, which is a 3D vector, the

reduced dimension is set to three. This dimension reduction is followed by a linear regression between ω k and the

reduced coordinates for (Θ, Θ̇). At run time, given a novel coarse cloth mesh, our mapping predicts the residual

rotation R̃k and combines that with R̄k to reconstruct Rk (Figure 3.5). Since R̃k is a local rotation, it does not have a

bone translation necessary for high-resolution cloth surface reconstruction. We compute bone translations by solving

a coarse-grain Poisson equation in real time as in [54].

3.4.2 Fine-Scale Deformations

Detailed folds and wrinkles are difficult to model with proxy bone transformations since they are high-frequency

features that may change rapidly even within a local patch. Increasing the number of proxy bones may alleviate this

problem, but using too many proxy bones would affect the overall performance and defeat our original purpose for

real-time applications. Thus we revise the eigenskin method [73] to represent these high-frequency details, and then

train a second mapping for predicting such details. The original eigenskin technique was proposed to model details

in articulated skin deformation that cannot be captured by proxy bones. It partitions a mesh into a set of influence

regions associated with joints and performs dimension reduction on their residue offsets. However, in our problem,

34

these influence regions are not well-defined since a cloth model has its own dynamics and is not tightly coupled to

joints in the articulated character.

To adapt the eigenskin technique to solve our problem, we need to define suitable criteria for partitioning the

cloth surface into local regions. We notice that although cloth wrinkles tend to be quite complicated, wrinkle offsets

at individual vertices are usually correlated with each other. That is, offset patterns at one vertex may give rise to

similar offset patterns at some other vertices. Therefore our goal is to identify regions that have coherent vertex offsets

throughout the training examples. We propose a clustering scheme based on both hierarchical clustering and clustered

principal component analysis (CPCA) [24] to find the coherent regions.

Given n deformed high-resolution cloth meshes, {H i}n
i=1, as training examples, we represent the fine-scale defor-

mation at vertex vj on mesh H i as a 3D displacement vector ui
j on the rest-pose mesh. Let the original and skinned

position of vj on mesh H i be vi
j and v̄i

j , respectively. According to linear blend skinning, v̄ i
j =

∑
k wj

kM i
kv0

j where

v0
j is the rest-pose position of vj , M i

k is the transformation of bone Pk at mesh H i, and wj
k represents the influence

weight of bone Pk on vertex vj . Thus, ui
j = (

∑
k wj

kM i
k)−1vi

j − v0
j . The set of displacement vectors at the same

vertex but across all n training examples, {ui
j}n

i=1, are concatenated to form a 3n-dimensional per-vertex residual

vector. This residual vector represents per-vertex displacement vectors across all training examples instead of across

different vertices.

At the beginning, our clustering algorithm sets up a face cluster Γ s for each triangle fs. It performs hierarchical

merging on these clusters afterwards. A PCA basis is computed for all the per-vertex residual vectors within a cluster.

The error induced by merging cluster Γ la to Γlb is defined as

∑
i

∑
j∈Γla

‖ui
j − ũi

j‖,

where ũi
j is the approximation of per-vertex displacement u i

j by the PCA basis of cluster Γlb . This error metric tends

to merge clusters with similar per-vertex displacements across all training examples. We greedily merge the cluster

pair with the lowest merging error. Whenever two clusters are merged, the PCA basis is recomputed from all the

Without Clustering With Clustering

Figure 3.6: A comparison of cloth deformations with and without face clustering in the modified eigenskin technique.

35

Mid-Scale Only Mid+Fine Scale

Figure 3.7: A comparison of deformation transformation results with and without fine-scale deformations. Mid-scale
results produce a relatively smooth cloth surface while more interesting folds are generated by fine-scale deformation
transformation.

per-vertex residual vectors in the merged cluster. This process is repeated until a desired number of clusters has been

reached. Each of the final clusters represents a region with similar per-vertex residual vectors.

Now let us define a per-example residual vector, Υi
l, for a final cluster Γl on mesh H i by concatenating all 3D

per-vertex displacement vectors in {ui
j}j∈Γl

. The per-example residual vector is 3m-dimensional if cluster Γ l has

m vertices. A PCA basis is also computed for all the per-example residual vectors corresponding to the same final

cluster. For example, there is a PCA basis for the set of residual vectors, {Υ i
l}n

i=1. This new PCA basis plays a similar

role as the eigenskin basis in [73] and will be used for reconstructing wrinkle patterns within a cluster from given PCA

coefficients.

With this new PCA basis for each final cluster Γl, we train a second mapping, hl(Θ, Θ̇) → cl, for fine-scale

deformations in Γl. Here cl represents the PCA coefficients of a per-example residual vector from Γ l. As in the

previous section, the mapping is also trained using both kernel canonical correlation analysis and linear regression.

The advantage of face clustering before regression is that we can obtain local mappings for the fine-scale details within

each region, instead of a global mapping for details over the entire surface. As shown in Figure 3.6, a global mapping

may miss certain fine-scale details, while a set of local mappings produce deeper folds and wrinkles. Note that the

total size of PCA basis vectors are identical between a global PCA and a clustered PCA.

At run time, the residual vector within every cluster is reconstructed from predicted PCA coefficients to produce

detailed folds over the high-resolution cloth surface. We show the benefits of adding fine-scale deformations in Figure

3.7. The deformation results with our eigenskin-based mapping have more detailed folds that cannot be captured by

bone transformations alone.

36

3.5 Run-Time Implementation

We carefully choose operations involved in our run-time algorithms to make sure all of them can be implemented

efficiently on programmable graphics hardware to achieve real-time performance on high-resolution cloth models.

The overall run-time stage has four steps: low-resolution cloth simulation, deformation transformation, collision

detection and resolution, and high-resolution cloth surface reconstruction. In our implementation, we use CUDA for

the first three steps, and GLSL for final surface reconstruction and rendering.

Coarse Cloth Simulation We implemented the mass-spring model using Verlet integration [74] in the low-quality

coarse cloth simulation. Since an explicit integration scheme is used, the spring lengths need to be constrained to

ensure stable integration. A few iterations of Jacobi relaxation is applied in parallel to every cloth spring to enforce

such length constraints [4]. Cloth-body collision detection is performed by testing every cloth triangle against the

body mesh via two levels of bounding volumes as discussed in the previous section.

Deformation Transformation Once we have obtained the coarse cloth deformation, dihedral angles are extracted

from the current vertex positions. fk(Θ, Θ̇) and gl(θ, Θ̇) are used to predict residual rotations for mid-scale deforma-

tions and PCA coefficients for fine-scale offsets, respectively, in the high-resolution cloth model. This process involves

matrix-vector multiplications and kernel function evaluations, which can be implemented efficiently on the GPU. Once

we have obtained bone rotations, we need to solve a linear system (a Poisson equation) to obtain bone translations.

The solution matrix for the linear system can be precomputed, and thus only a matrix-vector multiplication is needed

at the run-time stage.

Collision Detection and Resolution Before testing collisions for the high-resolution cloth model, we transform in

parallel all first-level bounding volumes according to corresponding bone transformations. We test collisions between

all lozenges and their nearby body part capsules CPk
in parallel. Penetration depths are also computed in parallel for

every lozenge to update the corresponding bone translation.

High-Resolution Cloth Reconstruction The final cloth surface is reconstructed via eigenskin-based offsetting and

matrix-palette skinning. Using the predicted PCA coefficients c l for per-example residual vectors, the displacement

uj for vertex vj is obtained by uj = Vjlcl, where Vjl has the components associated with uj in the PCA basis Vl.

We upload Vl as a vertex texture in advance, and reconstruct u j in the vertex shader before skinning. The final vertex

position vf
j on the cloth surface is

vf
j =

∑
k

wj
kMk(v̄0

j + uj)

37

Cloth Motion # Tri # Low Tri Bones #Cluster #RotCCA #EigPCA #Train #Test Error fps Prep

Skirt 1 Dance 1 38,502 200 330 100 3 20 120 601 2.5% 268 13 min
Skirt 1 Jump 38,502 200 330 100 3 20 60 314 2.5% 271 11 min
Skirt 2 Dance 2 25,693 180 320 80 3 20 48 224 2.4% 280 8 min
Dress Dance 3 27,402 220 350 120 3 20 124 600 1.8% 261 15 min
Dress Walk 27,402 220 350 80 3 20 47 239 1.6% 266 10 min
TShirt Dance 1 25,726 322 350 120 3 20 120 601 2.8% 251 15 min

Table 3.1: Statistics and Timing. All performance measurements were taken from a 3.0GHz Core 2 Duo processor
with a nVidia Geforce GTX275 Graphics Processor. ’#Tri’ and ’#Low Tri’ refer to the number of triangles in the
high and low resolution cloth models, respectively. ’#Cluster’ means the number of face clusters used for Eigenskin,
’#RotCCA’ means the number of CCA basis vectors used for mid-scale bone residual transformation regression, and
’#EigPCA’ means the number of PCA basis vectors used for representing fine-scale deformations within each cluster.
’#Train’ means the number of training examples, ’#Test’ means the number of testing examples, and ’Prep’ means the
total amount of time for all preprocessing steps. Error is computed using the average per-vertex error divided by the
radius of the bounding sphere of the cloth.

Figure 3.8: Comparisons between ground truth and final deformation results from our method. The left images show
the ground truth, and the right images shows our final deformation results.

where wj
k is a bone influence weight at vj , and v̄0

j is the rest-pose position of vj . Here both wj
k and v̄0

j can be preloaded

to the GPU memory via vertex buffer objects (VBO). Since cloth wrinkles are highly dynamic, we recompute vertex

normals on the fly every frame to guarantee accurate normals for wrinkle rendering.

3.6 Experimental Results

We have successfully tested our deformation transformer on different types of clothing and body movements (Figure

4.1). For each clothing, we directly constructed the low-resolution model using Maya, and then produced the high-

resolution cloth via mesh subdivision. It should be feasible to generate the low-resolution cloth by simplifying a

given high-resolution mesh as well. We then use Poser, a commercial software package for 3D character animation,

to generate skinned character animations and their associated high resolution cloth simulations as training data. The

cloth simulator in Poser is capable of simulating different types of cloth materials with different settings of simulation

parameters such as cloth density, folding resistance, damping, etc. We utilize these features to produce high quality

cloth animations as our training examples. For each type of high-resolution clothing, we also generate a corresponding

38

Most Responsive Less Responsive Most Damped

Figure 3.9: Deformation transformation results with distinct styles. Three high-resolution cloth simulations with
different material properties are used as training examples. All of them are trained with the same coarse cloth simu-
lation. Our method can adapt to different cloth material properties in the training examples and produce distinct cloth
animation styles.

low-resolution cloth animation, which only needs to have roughly the same overall shape. We follow the method in

[4, 74] to produce low-resolution cloth animations. The same method is applied when performing low-resolution cloth

simulation on the GPU to ensure a low simulation overhead in our run-time cloth animation pipeline. The number

of triangles in a coarse cloth model is typically between 200 to 300 triangles. We found this resolution sufficient to

capture a rough shape of the high-resolution cloth without much performance penalty during runtime simulation.

For each animation sequence, we select the training examples automatically by performing K-Mean clustering on

the dihedral angles Θ of low-resolution cloth. From each cluster, the pose closest to the cluster center is then selected

as the training example. Comparing to random selection, selecting the examples by clustering helps finding the more

representative cloth deformations in the animation.

Training data from a high-resolution cloth simulation generated by Poser needs to be preprocessed and converted

to our mid-scale and fine-scale deformation representations. In our experiments, we found that 300 to 400 proxy bones

were suitable for capturing important mid-scale deformations in the training examples; and fine-scale details could

be captured by 80 to 120 CPCA clusters with 20 basis vectors per cluster in our modified eigenskin technique (Table

5.1). In all our experiments, we applied the 3rd degree inhomogeneous polynomial kernel for CCA-based regression.

Our runtime stage includes both coarse cloth simulation and deformation transformation. Our runtime algorithm

can achieve more than 250 frames per second on an nVidia Geforce GTX275 GPU when generating high quality cloth

animations with a resolution between 25,000 and 38,000 triangles, as shown in Table 5.1. As can be seen, the number

of triangles in our high-resolution cloth models is more than 100 times the number of triangles in our coarse cloth

models.

39

Our trained transformer can produce high quality cloth deformations from a coarse cloth simulation. A comparison

between novel cloth deformations from our transformer and the ground truth are shown in Figure 3.8. Our transformed

cloth deformations are not only visually appealing, but also numerically accurate, as shown in the ”Error” column in

Table 5.1. Our method is also capable of adapting to training examples with different cloth material properties. As

shown in Figure 3.9, three different sets of training examples are simulated with different parameter settings to show

varying responsiveness and wrinkles. The transformers trained using these different sets of examples are capable of

capturing intrinsic material properties from the training data and produce cloth deformations with the corresponding

material properties.

We have also compared our results with a direct simulation of high resolution cloth on the GPU using our CUDA

implementation of the method in [4], which is similar to the method implemented in NVIDIA PhysX. The perfor-

mance of direct simulation is about 80 FPS for the cloth model with 38K triangles. We found the major performance

bottleneck was its iterative scheme for limiting spring length. While it takes only a few iterations for a coarse cloth,

it may take many more iterations to generate acceptable results for a higher resolution cloth. As shown in 3.10, the

simulated cloth still appears stretchy after 40 iterations, but its performance has already dropped to 60 FPS. Increasing

the number of iterations could improve the simulation results, but would also further affect the overall performance.

On the other hand, our hybrid method produces more inextensible cloth deformations with less computational cost.

Explicit Strain Limiting Our Method

Figure 3.10: A comparison between cloth animations generated from our method and the method in [4], where explicit
integration with iterative strain limiting is used to produce nonstretchy cloth. Compared with explicit integration with
strain limiting, our method can produce more inextensible cloth deformations similar to the training examples.

40

3.7 Conclusions and Discussion

We have introduced a hybrid method for real-time cloth animation. It relies on data-driven models to capture the

relationship between cloth deformations at two resolutions. Such data-driven models are responsible for transforming

low-quality simulated deformations at the low resolution into high-resolution cloth deformations with dynamically

introduced fine details. Our data-driven transformation is trained using rotation invariant quantities extracted from

the cloth models, and is independent of the simulation technique chosen for the lower resolution model. Our method

achieves hundreds of frames per second when generating a high quality cloth animation from a synchronous coarse

simulation.

Limitations Like other data-driven methods, our proposed method requires a preprocessing stage where a data-

driven model is trained. In addition, once deformations from a coarse simulation fall outside the deformation subspace

defined by the training examples, numerical accuracy cannot be guaranteed. Nevertheless, we found experimentally

that reasonable visual results could still be generated in such circumstances. Another limitation of our current method

is that cloth self-intersections are not handled. We would like to add this capability in future using a spatial partition

scheme, such as a uniform voxel grid. When two nonadjacent proxy bones on the cloth intersect with the same voxel,

a potential self-intersection occurs and can be resolved by pulling the bones along their negative normal directions.

Such a self-intersection resolution scheme is not expected to consume many GPU cycles.

41

Chapter 4

Triangular Geometry Images for
Level-of-Detail Control of Skinned Mesh

Geometry images resample meshes to represent them as texture for efficient GPU processing by forcing a regular

parameterization that often incurs a large amount of distortion. Previous approaches broke the geometry image into

multiple rectangular or irregular charts to reduce distortion, but complicated the automatic level of detail one gets from

MIP-maps of the geometry image.

We introduce triangular-chart geometry images and show this new approach better supports the GPU-side repre-

sentation and display of skinned dynamic meshes, with support for feature preservation, bounding volumes and view-

dependent level of detail. Triangular charts pack efficiently, simplify the elimination of T-junctions, arise naturally

from an edge-collapse simplification base mesh, and layout more flexibly to allow their edges to follow curvilinear

mesh features. To support the construction and application of triangular-chart geometry images, this paper intro-

duces a new spectral clustering method for feature detection, and new methods for incorporating skinning weights and

skinned bounding boxes into the representation. This results in a ten-fold improvement in fidelity when compared to

quad-chart geometry images.

4.1 Introduction

Traditional view-dependent LOD representations based on mesh simplification [12, 13, 14] rely on random-access

mesh traversal with poor cache coherence. Geometry images [15] support efficient LOD display [16, 17, 18] by

storing the mesh as a MIP-mapped texture image with better GPU cache coherence, but flattening a mesh into a single

geometry image can create severe parametric distortion. Multi-chart geometry images [75] improve this distortion

with feature sensitive clustering, but its irregular chart boundaries complicated coarser levels of LOD downsampling.

Rectangle-chart geometry images [1, 76, 77] pack and down-sample better, but their rectangular shape constraint

creates charts that cross prominent mesh feature lines and obfuscate these features at coarser levels of detail.

Triangle-chart geometry images offer a single solution that combines the cache coherence of geometry images,

the lower distortion of multiple charts, the straightforward downsampling of a simple chart shape, and a feature

preserving layout. The triangle’s barycentric coordinates uniformly sample each chart, and provide multiple levels

42

Figure 4.1: Our method builds triangular geometry images for feature-preserving LOD representation of both static
and skinned meshes. It obtains a base complex and triangular patches from an original mesh using mesh simplification.
The packed triangular geometry images are shown in the bottom.

of downsampling when the initial number of samples along the triangle edges is a power of two. Triangle charts

benefit from a more flexible simplicial layout that, when compared to rectangle charts, avoids T-junctions, better

supports feature-sensitive boundary alignment and packs (in pairs) just as easily and efficiently into an atlas. Our

results show that triangle chart geometry images represent meshes with about 10% of the error incurred by rectangular

chart approaches.

We support the feature preserving capabilities of triangle-chart geometry images with new algorithms for detecting

feature curves in meshes and for organizing triangle charts to lie between these curves to preserve these features

across levels of detail. We first detect features globally using a novel spectral face clustering on a mesh curvature

estimate that identifies feature curves along cluster boundaries near local curvature maxima. A modified edge-collapse

simplification forms vertex clusters within these feature curve boundaries. Each vertex cluster is parameterized onto a

triangular domain and uniformly resampled to form a triangular geometry image.

We also augment geometry images with new support for the dynamic meshes found in modern videogames ani-

mated by linear-blend skinning deformations. In addition to the (rest-pose) vertex positions, we store vertex skinning

weights in the geometry image, and downsample both for dynamic mesh LOD. To maintain spatiotemporal features

at coarser levels of detail, we incorporate sequences of deformation transforms into the feature preservation metric

to yield a space-time metric that clusters vertices with similar frame-to-frame transformations. This approach yields

better shaped clusters and more accurate skinning than do hierarchical clustering [6] or SMA (Skinning Mesh Anima-

tions) [7]. We also surround each skinned triangle chart with an oriented bounding box whose corners are themselves

skinned to deform with its contents. The screen size of a projected bounding box selects the optimal LOD resolution

43

for each triangular chart.

In summary, we introduce 1) a new type of triangular geometry images with feature preserving capabilities, 2) a

spectral clustering method for effective curvilinear feature detection and deformation discontinuity detection, 3) GPU-

based multi-resolution geometry image rendering for static and skinned meshes. The result is a view-dependent LOD

representation for both static and skinned meshes stored and rendered entirely on the GPU to maximize throughput. It

enables the convenience of geometry images to serve as a high-performance choice for representing characters, objects

and scenes in games and virtual environments.

4.2 Related Work

The original geometry-image approach [15] cut a mesh into a single contractible component, mapped it onto a rect-

angular parametric domain and imposed a regular mesh sampling, often with high distortion. Multi-chart geometry

images with irregular [75] or later rectangular [1, 76] boundaries reduced distortion by decomposing the input mesh

into multiple pieces each individually parameterized and resampled. (Alternatively, [77] improved fidelity by sub-

dividing a geometry image after parameterization into square charts sampled at different rates.) The construction of

charts can utilize any of a number of mesh decomposition or clustering algorithms [78, 79, 80, 81, 82, 83], but they

produce either rectangular or irregularly shaped charts. Mutiresolution analysis on triangle mesh [84] can be applied

here to generate triangular charts. However, it is not straightforward to integrate our feature preserving scheme into its

chart generation method. MAPS [8] constructed and parameterized a base domain of triangular charts, which serves as

a working parameterization for our construction of feature-sensitive well-shaped triangle charts for geometry images,

as described in Section 4.5.

Mesh Colors [85] uses barycentric coordinates to regularly sample textures over every triangle in an input mesh,

packing the texture signal into a 1-D texture stream. Their approach focuses on atlas-free storage of a color texture

whereas we focus on a geometric representation for view-dependent LOD whose atlas derives from a simplified base

domain.

Several static mesh segmentation algorithms align cluster boundaries with feature lines [79, 86, 87]. They use

curvature estimates to detect fragmented features, and connect these fragments into feature lines, but this gap filling

can be ambiguous and sensitive to noise. Spectral clustering overcomes this sensitivity with a global approach to

mesh segmentation [88, 80]. We improve this approach with new metrics that better detect crest lines and sharp points

by processing the dual mesh in Section 4.4.2. We remove partial cluster boundaries that do not lie closely to local

curvature maxima whereas other similar approaches handle these regions with flexible “fuzzy” boundaries [89].

Clustering and simplification for deforming meshes has been less explored. The quadric error metric [19] can be

44

extended [20, 21] for simplification of a mesh with multiple deformed poses into a pose-independent simplified mesh.

Hierarchical face clustering has been performed in [22] to achieve pose-dependent simplification with higher visual

quality for precomputed mesh deformation sequences. Hierarchical clustering [6] and a mean shift algorithm [7] can

both yield pose-independent face clusters for deforming meshes, but Section 4.4.3 shows that our spectral clustering

better localizes deformation discontinuities and preserves spatial coherence. To our knowledge, there is no previous

work dealing with level-of-detail representation and control for skinned meshes and this paper is the first piece of

work that applies multiresolution geometry images to skinned meshes.

Rendering throughput in modern GPUs implies that it is more important to optimally feed the graphics pipeline

than fine-grain LOD adaptivity. Recent simplification-based LOD models focus on coarse-grained mesh resolution

changes to minimize CPU usage and maximize GPU triangle throughput [90, 91, 92]. Our triangle-chart geometry

image representation aligns well with this motivation and can maximize the GPU throughput of LOD models. First, it

implicitly encodes vertex connectivity, avoiding the need to find and convert tri-strips. Second, the regular sampling

of triangle-chart geometry images simplifies the stitching of neighboring patches differing by multiple levels of detail,

whereas others allow only a single level difference, e.g. [91]. Third, it combines geometry and texture into a single

multiresolution representation, avoiding the wasted storage of texture coordinates for every chart in video memory.

4.3 Overview

Our method produces triangular patches for an input mesh with patch boundaries following important geometric

features on the mesh. These patches are converted to geometry images and used for dynamic level-of-detail rendering.

The overall pipelines of our method for the preprocessing and runtime stages are summarized in Figure 4.2.

Preprocessing The first part of preprocessing extracts coherent curvilinear features on the mesh. For static meshes,

curvilinear features in high curvature areas are detected. For skinned meshes, deformation discontinuities are also

detected as additional features. These curvilinear features serve as constraints in a later stage where triangular patches

are formed. Feature detection starts with spectral clustering [88, 80] using a similarity matrix based on curvature or

deformation gradients. The boundary of these clusters serve as feature candidates. A subset of these feature candidates

are retained as detected features. Since these initial features tend to be jagged, we further apply the graph-cut algorithm

to refine the retained features.

The second part of preprocessing generates triangular patches for the input mesh. We perform extreme simplifi-

cation to the input mesh to obtain a base complex with a very small number of triangles each of which serves as the

parametric domain of a triangular region over the input mesh. Thus the complete base complex serves as a global

parametric domain for the entire input mesh. Curvilinear features detected from the previous stage are used as con-

45

Figure 4.2: The pipelines of our method in the preprocessing and runtime stages.

straints in the simplification process. During mesh simplification, we apply MAPS [8] to figure out which triangle in

the simplified mesh should be used as the parametric domain of a vertex in the input mesh as well as the barycentric

coordinates of this vertex. Triangular patches on the input mesh can be obtained by mapping the edges of the base

complex onto the input mesh. The obtained triangular patches on the input mesh are then sampled and packed into

triangular geometry images. A mip-map hierarchy for each geometry image is also built to represent different levels

of details.

Run-Time LOD Rendering At run time, a suitable level of detail is determined on the fly for each patch based

on its screen projected area. An oriented bounding box (OBB) associated with each patch is used to approximate

the projected area. To adapt our LOD calculation to skinned meshes, we need to dynamically estimate the screen

projected area of the bounding box of each skinned patch. This is achieved by applying skinning to the bounding

boxes as well and computing a set of bone influence weights for every corner of the OBBs. Once the suitable detail

46

levels are obtained, we render each patch at its corresponding level of detail on the GPU using its geometry image. To

avoid cracks along patch boundaries, we apply automatic stitching on the GPU along boundaries of adjacent patches

with different geometry image resolutions.

Notation We define a 3D mesh M = (V, E, F) as a set of 3D positions V = {vi = (xi, yi, zi)}, mesh edges E (a

set of vertex pairs), and triangle faces F (a set of vertex triples). To perform spectral face clustering and face-oriented

graph-cut, we also define the dual graph G = (F, D) of a mesh M, where F is the set nodes in the dual, one for

each face in M, and D is the set of graph edges, each denoted by a pair of face nodes (f i, fj) from F. Note that an

edge in the dual graph can connect pairs of faces that are not adjacent to each other in the mesh. A path P = (v i, vj)

is defined as a set of connected mesh edges Ep ⊂ E that connects vi and vj . Given a skinned mesh with nb bones

and na frames of animation, we denote the set of bone transformations T k
b and a set of skinning weights wb

i , where

1 ≤ b ≤ nb, 1 ≤ k ≤ na, 1 ≤ i ≤ |V | and
∑nb

b=1 wb
i = 1 for each vertex. The skinned position of v i at frame k

becomes vk
i =

∑
b(w

b
iT

k
b)vi.

4.4 Curvilinear Feature Detection

We would like to preserve perceptually salient corner and curvilinear features during multiresolution resampling of

the original mesh by aligning chart boundaries with such features. We explicitly detect a sparse set of salient corner

and curvilinear features before chart generation. A common approach to feature line detection would apply local

criteria first to detect fragmented feature points, followed by a gap-filling step to connect them. Since local feature

detection is noisy, feature connection can be ambiguous and error-prone. In addition, in this process, salient feature

lines do not necessarily have a higher priority to be discovered. In this section, we take a top-down approach instead by

performing global spectral clustering with a new metric which takes into account local feature measurements. Salient

feature lines are discovered as partial boundaries of the resulting triangle clusters. Our approach works very well with

both static and deforming meshes. The reason that we use spectral clustering only for feature detection but not for

chart generation is that it gives rise to irregularly shaped clusters not suited for triangular geometry images.

4.4.1 Spectral Clustering

Let G = (U , E) be a weighted graph, where the set of nodes, U = {u1, u2, ..., un}. An edge, (ui, uj) ∈ E , has a

weight w(ui, uj) defined by the similarity between the location and attributes of the two nodes defining the edge. The

idea is to partition the nodes into two subsets, A and B, such that the following disassociation measure, the normalized

47

(a) (b) (c)

(d) (e) (f)

Figure 4.3: The overall process of our feature extraction method. Given a mesh in (a), we first robustly estimate its
per-vertex curvatures, as shown in (b). The initial crest lines in (c) are noisy and disconnected. Spectral clustering
is applied on the mesh based on curvature similarity to extract a set of clusters shown in (d). We only keep cluster
boundaries with high curvature and refine them using a graph-cut algorithm to obtain the final feature lines in (e). A
sparse set of corner points are also detected in high curvature regions as shown in (f).

cut, is minimized,

Ncut(A,B) =
cut(A,B)
cut(A,U)

+
cut(A,B)
cut(B,U)

(4.1)

where cut(X ,Y) =
∑

s∈X ,t∈Y w(s, t) is the total connection from nodes in X to nodes in Y .

To compute the optimal partition based on the above measure is NP-hard. However, it has been shown [93]

that an approximate solution may be obtained by thresholding the eigenvector corresponding to the second smallest

eigenvalue of the normalized Laplacian L, which is defined as

L = D−1/2(D − W)D−1/2 = I − D−1/2WD−1/2, (4.2)

where D is a diagonal matrix with D(i, i) =
∑

j w(ui, uj), and W is the weight matrix with W(i, j) = w(ui, uj).

Extensions to multiple groups may be realized through the use of multiple eigenvectors [88]. Let us first take the

Ne largest eigenvalues, λ1, . . . , λNe , of D−1/2WD−1/2 and their associated eigenvectors, e1, . . . , eNe . Let Me be

48

Before After

Figure 4.4: The original feature lines from spectral clustering appear jaggy and may not align well with real features
on the mesh. After applying the graph-cut algorithm, the refined feature lines become smoother and better localized.

a matrix with its i-th column set to ei/
√

λi. The rows of Me define an embedding of the original graph nodes into

the Ne-dimensional space. The underlying intuition is that pairwise distance in this N e-dimensional space reflects

the pariwise similarity defined by W. Thus, partitioning the original graph nodes into multiple groups according to

their pairwise similarity may be accomplished by running the K-means algorithm in this embedding space, which

is referred to as spectral clustering. The Nyström method was applied in [88] to process large datasets with sparse

sampling.

4.4.2 High Curvature Feature Extraction

We extract both feature lines and feature points using the process diagrammed in Figure 4.3.

Curvilinear Feature Detection For static meshes, we measure features with local curvature estimates [94]. A

set of fragmented crestline segments are then obtained by finding local extrema of curvatures [95]. While it is tempting

to directly use these crest lines as our feature lines, they are too noisy to represent large scale features. Instead we

take these crest line segments into consideration when constructing the similarity matrix W for spectral clustering.

Specifically, given a dual graph G = (F, D) with nf faces and nd edges, we define a new metric for the similarity

term w(i, j) in W over each edge d = (fi, fj) as

w(i, j) = β exp
(
−|κi| + |κj |

σκ

)
exp

(
−dist(fi, fj)

σd

)
(4.3)

where β is a scaling factor to emphasize the existence of crest line segments between two faces (β = 0.1 if there

is a crest line between fi, fj and β = 1.0 otherwise), κi indicates the estimated mean curvature at fi and σκ is the

standard deviation of the absolute mean curvatures among all faces, dist(f i, fj) is the geodesic distance between fi

and fj measured as the total length of the dual edges, and σd is the standard deviation of pairwise geodesic distance

between faces. Since spectral clustering can be applied on a general graph without a valid mesh structure, we also

add additional graph connections in the dual graph for nearby non-adjacent faces according to their pairwise distances

49

Curvature VSA Our Method

Figure 4.5: Illustration of the difference between our spectral clustering and variational shape approximation (VSA)
[5]. The testing model has a high curvature feature, a narrow ridge, on the plane. VSA chooses to better approximate
the overall shape by dividing the hemisphere into two clusters. Our method is better at feature detection and chooses
to align a cluster boundary with the ridge.

dist(fi, fj) defined above. Thus we increase the valence of each dual node to improve the results from spectral

clustering. This similarity matrix for spectral clustering favors clusters with boundaries along crest line segments or

high curvature regions on the mesh.

Other mesh clustering schemes, such as the one presented in Variational Shape Approximation (VSA) [5], can

also be used for detecting high curvature features. VSA locally grows triangle clusters according to normal variations.

It focuses on approximating the shape of the original mesh with flat regions, while our spectral clustering method

focuses on detecting high curvature features on the mesh. The model shown in Figure 4.5 is used to demonstrate the

difference between the two methods. This model has a narrow ridge on the plane, which should be regarded as a

curvilinear feature. The two methods make different choices according to their clustering criteria. VSA chooses to

better approximate the overall shape by dividing the hemisphere into two clusters, while our method chooses to align

a cluster boundary with the ridge. In terms of shape approximation, VSA produces better results. However, spectral

clustering is preferred in this paper because we would like to detect salient curvilinear features.

Once we have spectral clustering results, as shown in Figure 4.3(d), the cluster boundaries serve as initial candi-

dates of curvilinear features. Although these boundaries roughly follow high curvature features, some of them might

be jagged while others may not align precisely with local curvature maxima. Thus further improvement is necessary

to identify accurately localized features. We refine initial cluster boundaries by applying a graph minimum s-t cut

[89] with different edge weights. We thicken each initial boundary to a boundary region and form a dual graph G

using faces within the region as nodes. The actual size of this boundary region could affect the results of refined

boundaries. If the size is too large, the new boundary could deviate to some high curvature regions far away from the

current boundary. On the other hand, if the size is too small, there will be little room for graph cut refinement. In our

experiment, we found that setting the boundary region to cover 10% of the triangles closest to the cluster boundary

works well for all our examples. The weights on graph edges are computed using a combination of edge length and

50

absolute mean curvature. Specifically, we define the edge weight g(i, j) between graph nodes f i, fj as :

g(i, j) = β|eij | exp
(
−|κi| + |κj |

σκ

)
(4.4)

where eij is the edge shared by fi and fj in the original mesh and β, κ are defined similarly as in (4.3). As a result,

we favor the shortest path that passes through high curvature regions. This local refinement makes cluster boundaries

smoother and better aligned with local curvature maxima, as shown in Figure 4.4.

After refinement, we break cluster boundaries into non-branching segments by finding junctions with more than

two incident boundaries. Since cluster boundaries are closed curves, some boundary segments may not lie near

features, serving only to close the loop. We discard such segments by checking whether the average magnitude of

mean curvature along a segment is smaller than a predefined threshold, which is set to the average magnitude of the

largest 30% mean curvatures at all vertices. The remaining segments become the detected curvilinear feature lines.

The setting of this threshold affects how many feature line segments will be used as constraints in the chart generation

stage. If we set the curvature threshold too small, we may include unimportant boundaries as features. This would

impose unnecessary constraints on chart generation, but not necessarily affect reconstruction errors.

Corner Feature Detection In addition to curvilinear features, we also identify a sparse set of feature points that

are important for preserving sharp corners such as horns or finger tips. As shown in Figure 4.3(f), such corner points

typically belong to high curvature regions. These points will also act as constraints in the chart generation process to

ensure that the resulting base complex adequately covers these feature regions. We choose corner points as the vertices

with the maximum absolute mean curvature in a local neighborhood. The size of this neighborhood is typically set to

from 7 to 10 rings. The precise localization of these points is not crucial because the purpose of corner detection is

to improve sampling rate by geometry images in high curvature regions. For each detected corner point, we further

check whether its absolute mean curvature is sufficiently large and only keep the highest 10% as feature points. The

same parameter setting works well for all our testing models and we achieve high reconstruction accuracy even when

the corners are not positioned very accurately.

4.4.3 Deformation Discontinuity Identification

For dynamic meshes, we also detect deformation discontinuities and incorporate them as additional features for tri-

angle chart generation. Deformation discontinuities can also be viewed as potential high curvature features since,

at some frames of a deformation sequence, transformations of triangles across these places can differ significantly

and high curvature features can form along these discontinuities. Deformation discontinuities can also aid the mesh

skinning process, which needs to extract a set of proxy bones from a mesh deformation sequence [7].

51

Figure 4.6: Triangle clusters and their boundaries resulted from our new metric for spectral clustering using deforma-
tion gradients from the BALLET mesh animation.

In this section, we introduce a novel metric for detecting deformation discontinuities using spectral clustering. We

start by computing the deformation gradient Γk
i [10] for each face fi at frame k, and use them in the formulation of

the similarity matrix Wb in spectral clustering. We define the similarity between two faces according to the similarity

of their deformation gradients in all frames as follows,

wb(i, j) = exp

(
−
∑na

k=1 ‖Γk
i − Γk

j ‖
naσΓ

)
exp

(
−dist(fi, fj)

σd

)
, (4.5)

where na is the number of frames, and σΓ is set to the standard deviation of deformation gradients across both spatial

and temporal domains. The cluster boundaries formed using this criterion are also saved as feature lines for chart

generation. An example of such feature lines detected as deformation discontinuities is shown in Figure 4.6. The

reason for adding the deformation discontinuity as feature lines is to make sure the resulting triangular patches do

not cross bending joints such as the elbow of a bending arm. If they were not added, the resulting geometry images

could still well represent the static mesh, but would not be sufficiently accurate at lower resolutions during a skinned

animation. This is because when a joint is being bent, a flat region around the joint in the static mesh may dynamically

become a high curvature region that demands better sampling. Note that we do not break apart the cluster boundaries

this time because subsequent proxy bone extraction requires closed regions.

Once we represent each cluster using one proxy bone, we can further compute bone transformations and bone

influence weights in a way similar to previous methods that solve least-squares problems [7].

While previous work such as mean-shift clustering [7] or hierarchical clustering [6] can also effectively learn

a set of proxy bones, certain drawbacks exist. As shown in Figure 4.7, mean-shift clustering cannot always find

a suitable cluster for each face and might result in few and sparse clusters for animation sequences with extreme

deformations. On the other hand, hierarchical clustering adapts a bottom-up scheme to greedily merge nearby clusters

with similar transformations. While this yields a valid cluster membership for each face, it might fail to recognize

52

Hier. Clustering Our Method SMA Our Method

Figure 4.7: A comparison of our spectral clustering method with hierarchical clustering [6] and mean-shift clustering
[7] on two animation sequences, bending and horse collapsing, respectively. For the horse model, mean-shift clustering
fails to assign a large number of triangles (shown in black) to any clusters due to their highly deformable nature. Our
method results in more regular cluster shapes and a spatially more coherent assignment of the triangles to the clusters.

global deformation characteristics since only local merging is performed at each step. Therefore it usually results in

irregularly shaped clusters even for simple and well-behaved deformation such as bending. As shown in Figure 4.7, our

method works better in identifying the deformation characteristics from bending and results in triangle clusters with a

more regular shape. The advantage of our method lies in that it is a global clustering technique that better preserves

spatial coherence. These properties make it more robust in learning the set of proxy bones for mesh animations with

extreme deformations.

4.5 Triangular Geometry Image Construction

When an input mesh is converted to a set of triangular geometry images, there are two constraints we would like to

impose for triangular chart generation. First, each chart boundary should be shared by exactly two adjacent charts

without T-junctions. This constraint makes it straightforward to construct seamless atlases for geometry images and

simplifies boundary stitching at the rendering stage. Second, chart boundaries should be aligned with detected curvi-

linear features. This constraint is important for level-of-detail rendering since it helps preserve features even at lower

resolutions. We therefore design our chart generation process to enforce these constraints. Detailed description of

feature detection can be found in Section 4.4.

4.5.1 Triangular Patch Generation

Many patch formation methods rely on cluster growth, but growing triangular clusters that everywhere share bound-

aries with exactly three other clusters would be difficult. Our triangle patch generation is based on mesh simplification

and the progressive parameterization provided by MAPS [8]. We parameterize the original mesh over a base complex

which is an extremely simplified version of the original mesh, and then compute patch boundaries on the original

53

(a) (b)

(c) (d)

Figure 4.8: The overall process of triangle patch generation. Start from an input mesh in (a), we first perform mesh
simplification to generate a base mesh in (b). During simplification, we apply MAPS [8] to progressively parameterize
the input mesh over the base mesh, as shown in (c). We utilize this parameterization to define a path in a flattened mesh
for each base domain edge, as shown in (d). These paths are mapped onto the original mesh to define the boundaries
of triangle patches.

mesh to create triangular patches there. Every patch boundary on the original mesh corresponds to an edge in the base

complex.

As shown in Figure 4.8, we simplify the input mesh to a base complex M s = (V s, Es, F s) through series of

“half-edge collapses” that use one of the edge’s two original vertices as the new vertex position [19]. Thus V s ⊂ V .

We prevent the collapse of any edge that connects a feature vertex with a non-feature vertex, which ensures the base

domain triangles do not cross feature curves and do not absorb feature points, while allowing feature curves themselves

to be simplified. During mesh simplification, we progressively build a parameterization of the original mesh using

MAPS [8].

MAPS is a global parameterization method that parameterizes an original mesh over a simplified base complex.

Every vertex in the original mesh is assigned a membership to a base domain triangle f s ∈ F s as well as barycentric

coordinates (α, β, γ) with respect to f s. Therefore vertices assigned to the same base domain triangle share the

same coordinate frame, as shown in Figure 4.8(C). Moreover, vertices assigned to two adjacent base domain triangles

54

V1

V2

V1

V2

Va
Vb

V1

V2

Va
Vb

(A) (B) (C)

Figure 4.9: One step of MAPS parameterization. (A) For an edge (v 1, v2) with v1 collapsed onto v2, Vd represents
the subset of previously removed vertices (shown in colors) parameterized over v 1’s one-ring neighborhood. (B) After
the edge collapse, the one-ring neighborhood has a new triangulation. We assign v 1 to a triangle f = (v2, va, vb) in
the new triangulation, and compute its barycentric coordinates. (C) Similarly, we reassign vertices in V d to triangles
in this new triangulation and update their barycentric coordinates.

Figure 4.10: Overview of path generation. Every edge e s = (vs
1, v

s
2) in the base mesh (left) has a corresponding path

P = (v1, v2) in the original mesh (right). To generate such a path, we flatten a local region on the original mesh and
intersect es with triangles in the flattened region. A straight path from v s

1 to vs
2 is traced by inserting Steiner vertices

at the intersections (middle). This path is mapped back to the original mesh to form a path between v 1 and v2.

fs
1 , fs

2 ∈ F s can also be expressed in the same coordinate frame by flattening f s
1 and f s

2 onto the same plane. This

will become very useful when mapping a base domain edge to a path on the original mesh.

To obtain the aforementioned global parameterization, MAPs progressively generates and updates the member-

ships and barycentric coordinates of the removed vertices after each half-edge collapse. As shown in Figure 4.9(A), let

e = (v1, v2) be an edge to be collapsed, where v1 will be moved to v2. For the removed vertex v1, MAPs first obtains

the set of triangles, Fv1 , in its one-ring neighborhood, along with the complete set of previously removed vertices V d

currently parameterized over Fv1 . It then flattens the one-ring neighborhood defined by F v1 using a harmonic map,

which will result in a 2D coordinate frame to represent vertices in Fv1 . v1 and all vertices in Vd are then expressed in

this 2D coordinate frame. After the edge collapse, as shown in Figure 4.9(B), the one-ring neighborhood defined by

Fv1 is retriangulated and the new set of triangles is denoted by F ′
v1

. One can easily reassign v1 or a vertex in Vd to a

triangle in F ′
v1

and recompute its new barycentric coordinates, as shown in Figure 4.9(C). This process is repeated for

each edge collapse, and eventually all removed vertices become parameterized over base domain triangles in F s.

Once we have the global parameterization from MAPS, patch generation becomes a straightforward process. As

55

Figure 4.11: Feature preservation in MAPs parameterization. For a base domain edge e f = (vf
1 , vf

2) collapsed from
a feature curve P f , all vertices on P f can be parameterized on ef (left). Thus the straight path in the flattened mesh
directly corresponds to the feature curve P f in the original mesh.

shown in Figure 4.10, a base domain edge es = (vs
1, v

s
2) ∈ Es is shared by two base triangles f s

A and f s
B , which can

be unfolded to a planar quadrilateral with es being one of its diagonals. The part of the original mesh parameterized

over f s
A and f s

B can be flattened onto the same planar region. We collect the set of triangles F e ∈ F from the original

mesh that intersect with es in this flattened configuration. Tracing a path between v s
1 and vs

2 in the flattened mesh can

be achieved by inserting Steiner vertices at those intersections. This is similar to previous work for tracing a path on a

polygonal mesh [96, 97, 98]. This path determined by e s is finally mapped back to the original mesh to define a path

between v1 and v2.

When building the MAPS parameterization, we detect and fix any triangle flips in the parametric domain [8] to

ensure that a straight line in the parametric domain always maps to a topological line in the original mesh. Therefore

the above method guarantees to produce a valid path for each base domain edge. The MAPs algorithm can also

integrate feature-related constraints into the parameterization to ensure a traced path is aligned with a feature curve.

As shown in Figure 4.11, for a base domain edge e f = (vf
1 , vf

2) simplified from a feature curve C f , all vertices on Cf

can be parameterized on ef . Therefore the path corresponding to ef in the parametric domain can be mapped trivially

to the feature curve C f on the original mesh.

Fig. 4.1 shows a base complex and triangular patches from an original mesh using mesh simplification. The packed

triangular geometry images are also shown in the bottom. Fig. 4.12 validates how well patch generation preserves

features by comparing the reconstruction quality with and without feature constraints. Ordinary simplification can

obscure some features, such as the ears, which directly affects their sampling rate and can cause both numerical errors

and visual artifacts in the geometry image representation.

4.5.2 Patch Parameterization and Packing

For each triangular patch, we parameterize it onto a 2D triangular domain by fixing its boundary onto the edges of

a right triangle. We apply the parameterization algorithm in [99] to ensure no triangles flip in the embedding. The

56

Without Features With Features

Figure 4.12: Patches generated without feature constraints might not align their boundaries well with high curvature
regions. Therefore the resulting reconstruction has more numerical and visual errors in these regions, such as the ears
on the bunny.

resulting parameterization is then resampled onto a regular grid within the right triangle with 2 dmax +1 samples along

every edge. Since each patch may have different geometric complexity, we determine a maximum resolution level

dmax for a patch according to its size and curvatures. Specifically, we set dmax to be proportional to the curvature

weighted sum of face areas of this patch. Trivially packing each single patch into its square bounding box would be a

waste of space since it only occupies about half of the bounding box.

An intuitive way to improve packing efficiency is to exploit patch adjacency by packing pairs of neighboring

patches into a single square image. Since two adjacent patches share the same geometric information along their

shared boundary, a single shared boundary can be stored along the diagonal pixels in the image. One drawback of

this method is that there will be leftover patches which do not have any neighboring patches to pair with. Therefore

we need to allocate more space for these patches than necessary as they have to be packed individually. Moreover, if

two adjacent patches have different maximum resolutions, we have to allocate a square region sufficiently large for

the higher resolution patch to pack both of them together. Therefore this method is still suboptimal in terms of spatial

efficiency.

Therefore we have chosen to pack two triangular patches that are not necessarily adjacent into a rectangular image

of size (2dh + 2)× (2dh + 1), where dh represents the higher resolution of the two patches, for best spatial efficiency.

The rectangular shape is due to the fact that pixels along the diagonals are from two separate patch boundaries and

both boundaries need to be preserved. In this scheme, we maintain a sorted list of patches based on their maximum

resolution, and always pack a pair of patches with closest maximum resolutions together. We take special care when

building a geometry image pyramid to ensure that the downsampling filter only considers pixels from the same patch.

This packing technique is similar to the schemes originally designed for texture atlases consisting of triangular texture

maps [100, 101].

Packing Skinning Parameters. For skinned meshes, we also resample the bone influence weights, originally

57

stored at the vertices, onto the regular grid in a similar manner to geometry resampling. In order to improve run-time

efficiency, we only keep the four largest bone influence weights for every grid point and store both the weights and

their associated bone indices. This ensures that the total storage for resampled weights is fixed and independent of the

total number of bones in the mesh.

4.6 GPU-Based Level-of-Detail Rendering

At run-time, we render each triangular patch in the form of a triangular geometry image. A suitable resolution of the

geometry image is determined on the fly for each patch according to the projected screen area of its oriented bounding

box (OBB). To further adapt our LOD selection scheme to a dynamically skinned mesh, the bounding box of each

deformed patch is also deformed before its screen projected area being used to estimate LOD of the patch. To avoid

cracks along boundaries, we apply an automatic boundary stitching method to connect adjacent patches with different

resolutions in our GPU implementation.

4.6.1 Level of Detail Selection

We use an OBB to approximate the geometry on each patch when computing its LOD. The projected screen area of

the OBB is used to determine an appropriate resolution for each patch. In order to compute the projected area of an

OBB, only four of the eight corners of the OBB are transformed to form three new major axes of the transformed

bounding box. Since there are always three adjacent faces of the OBB are visible, the projected area of the OBB can

be computed with the cross-product of these major axes. However, this requires precomputing an extra set of bone

influence weights for each corner point of the OBB from bone transformations and the actual OBB corner vertices in

every input deformation sample data. At run-time, we apply new bone transformations to the OBB corners and use the

deformed bounding box for LOD selection. Specifically, given a set of corners c i, i = 0 . . . 3 which form the major

axes of an OBB with c0 being the pivoting point, and their skinning weights w b
i , b = 1 . . . nb, we can compute the

projected area A as

A =
∑
i>k

‖(ĉi − ĉ0) × (ĉk − ĉ0)‖ (4.6)

where ĉi = Mp

(∑nb

b=1 wb
iTbci

)
is the screen projection of the transformed corner vertex c i using the current camera

view-projection matrix Mp. For a static mesh, we simply use ĉi = Mpci and apply the above equation to obtain the

screen projected area. Once we obtain the projected area A, we determine the detail level for this patch according

to both the area and its maximum detail level dmax. Since one higher resolution increases the number of rendered

58

triangles by four times, we compute the current level of detail d as follows.

d = max(log4 (αA), dmax) (4.7)

where α is a scaling factor such that αA0 = 4dmax with A0 equal to the screen size of the display window. This

ensures that the coverage ratio of triangles over pixels is approximately constant at all detail levels. We implement

both the dynamic skinning and LOD selection processes on the GPU using the CUDA programming environment and

store the results into GPU video memory in preparation of geometry image rendering at the next stage.

Although it would be more straightforward to implement the above LOD selection on the CPU, the actual perfor-

mance depends on the complexity of the LOD computation. For animated meshes, corners of their bounding boxes

need to be skinned and projected to obtain their approximate screen projected area. This LOD computation becomes

more significant when we perform LOD rendering for a number of animated characters, each with hundreds of charts.

This computation can be performed much faster on the GPU and thus motivate our GPU implementation for LOD

selection.

4.6.2 Geometry Image Rendering

Since the multi-chart mesh geometry datasets generated in our preprocessing stage is in the form of multi-resolution

2D images, they can be easily stored in the GPU video memory and preloaded as textures for real time rendering.

Since the latest G80 hardware supports texture array extension, geometry images at the same resolution can be stored

in the same texture array. This texture array data organization has effectively reduced the overhead incurred from

calling the OpenGL API functions since the texture binding only need to be performed once for each detail level.

Since we precompute all resolutions of geometry images, mip-mapping is disabled during rendering. Although we

use textures for storing geometry images, they are primarily used as the medium for storage on the GPU. By turning

off automatic texture filtering when accessing geometry images on the GPU, we access them as 2D arrays instead of

filtered textures.

A set of triangular grids are precomputed at all necessary resolutions and packed as OpenGL Vertex Buffer Objects

(VBOs). Each grid point is associated with a pair of (u, v) texture coordinates. Since the texture coordinates are

independent from the actual geometry stored in the rectangle textures, they can be reused for different patches. These

triangular grids are also stored and preloaded into the GPU video memory for the rendering pass. During rendering,

we select a grid resolution corresponding to the chosen LOD of a patch and directly render it with texture mapping

turned on. In a vertex shader program, the texture coordinates of each grid point are used to look up vertex positions in

a geometry image. Additional information such as normal vectors, bone influence weights can also be looked up in a

59

Figure 4.13: Illustration of our boundary stitching method. (Left) Visualization of triangle charts on the mesh. Each
color represents a distinct chart. (Middle) Stitching result along chart boundaries. (Right) Closer view of the stitching
result. Although two adjacent charts have a significant difference in LOD, the stitching results are guaranteed to be
watertight.

similar manner. The final patch geometry can therefore be rendered in the vertex shader after skinning transformations

have been applied.

4.6.3 Boundary Stitching

When different resolutions have been chosen for adjacent patches, cracks will occur at their common boundary. Since

adjacent patches share the same geometry along their common boundary, we can perform simple stitching directly on

the GPU by moving the vertices on the higher resolution border to those vertices on the lower resolution one. This

is done by recalculating the texture coordinates for grid points on the higher resolution boundary so that they can be

used to access the texels on the lower resolution one. With the latest shader API function texelFetch, we can access

the integer texture coordinates directly within the range (0 . . . w − 1, 0 . . . h − 1). Given two patches P i, Pj with

resolution ri = 2n + 1, rj = 2m + 1, n > m respectively, new texture coordinates (ū, v̄) can be computed from the

original texture coordinates (u, v) along the shared boundary of P i as :

ū = u − u mod 2(n−m), v̄ = v − v mod 2(n−m) (4.8)

In our vertex shader implementation, the edge vertices along each boundary are identified. The texture coordinates

of these vertices are then modified according to (4.8) to ensure that the vertex positions retrieved from the geometry

image correctly align with the adjacent patch.

As shown in Figure 4.13, the above stitching method guarantees no seams along chart boundaries. This is because

the boundary vertices of a chart at a lower detail level is always a subset of boundary vertices of any chart at a higher

detail level. However, it is possible to have triangle flips when detail levels between adjacent charts vary significantly.

In our results, this rarely happens and does not generate discernible artifacts.

60

Figure 4.14: Triangular charts and reconstructed meshes at varying levels of detail for a BALLET animation.

Figure 4.15: Triangular charts and reconstructed meshes at varying levels of detail for a BOXING animation.

4.7 Experimental Results

We have successfully tested our method on both static and deforming meshes. The triangular charts generated with

our method and their reconstruction results can be found in Figures 4.12, 4.19, 4.14, and 4.15. The results for static

meshes are shown in 4.12 and 4.19, and those for deforming meshes are shown in 4.14 and 4.15. Timing and statistics

for the preprocessing steps can be found in Table 4.1. The skinning quality of oriented bounding boxes for triangular

charts is shown Figure 4.16. Since we also treat deformation discontinuities as feature lines during chart generation,

the resulting charts do not cross boundaries between regions that are primarily controlled by different bones. Thus we

can accurately fit the bounding box deformations and use the skinned bounding boxes when estimating the level of

detail for different poses.

Examples #Orig. Tris Feature Chart #Charts Max. Data
Time Time Resolution Size

V2 8K 0 min 1 min 34 25 0.5 MB
Bunny 70K 2 min 4 min 70 26 5.2 MB

Isis 100K 3 min 6 min 120 26 8 MB
Feline 100K 3 min 9 min 250 26 17 MB
Ballet 350K 5 min 19 min 250 26 42 MB

Boxing 250K 5 min 12 min 150 26 24 MB
Grand Canyon 6M 15 min 140 min 840 27 316 MB

Table 4.1: Statistics and Timing. All performance measurements were taken from a 3.0GHz Pentium D processor.
’#Orig. Tris.’ means the number of triangles in the original mesh, ’Feature Time’ means the pre-processing time
for feature extraction, ’Chart Time’ means the time for chart generation, ’#Charts’ means the number of resulting
triangular charts, and ’Max Resolution’ means the maximum resolution for each chart.

61

Figure 4.16: Skinning results of an oriented bounding box for different poses. The red bounding box is associated
with the patch in blue color. The skinned corners of the bounding box adequately approximate the bounding volume of
the deformed patch at every different pose. Therefore we can use the skinned bounding box to estimate the projected
screen area and thus determine the detail level for this chart at every pose.

Charts 13K Vertices 200 Vertices

Figure 4.17: A comparison between our triangle-char geometry images (Bottom Row) and quad-chart geometry im-
ages [1](Top Row). For this simple model, both methods approximate the original mesh well at a high resolution.
However, quad charts tend to have irregular shapes and produce lower quality results at lower resolutions.

62

Charts 67K Vertices 1.1K Vertices

Figure 4.18: Another comparison between our triangle-chart geometry images (Bottom Row) and quad-chart geometry
images [1] (Top Row) using the Isis model. Although this model has a relatively simple shape, it also contains
sharp edges and semantic features. Both methods can produce a good reconstruction in a high resolution. However,
quad charts fail to reconstruct important features faithfully in a low resolution while our method still gives a good
approximation.

63

Charts 130K Vertices 1.5K Vertices

Figure 4.19: Another comparison between our triangle-chart geometry images (Bottom Row) and quad-chart geometry
images [1](Top Row). With the same number of vertices, the reconstructed meshes from our method is more faithful
to the original mesh than the quad-chart based method. The feature constraints in our method ensure that important
features are preserved during mesh simplification and result in higher-quality charts.

We have compared both numerical errors and visual quality between triangular geometry images from our method

and the quad-images generated from seamless texture atlas (STA) [1]. In our comparison, we use the same number

of vertices for both methods and geometry images from both methods have an equivalent resolution. Numerical

errors of the meshes reconstructed from geometry images are obtained using the method in [102] which computes the

Hausdorff distance between the original mesh and the reconstructed mesh. As shown in Figures 4.17-4.19 and Table

4.2, triangular geometry images from our method give rise to smaller numerical errors and better visual reconstruction

results, especially around feature regions with high curvature. We found that STA usually performs adequately for

examples with a simple shape, such as the Isis model. However, for examples with a high genus or with protruding

features, STA tends to produce poor results. Since the face clustering scheme in STA needs to satisfy multiple topology

constraints and perform additional steps to generate a quadrangulation, the resulting shape of the charts are usually

much more irregular, which in turn give rise to more distortion and lower quality surface reconstruction. While using

adaptive charts could improve its quality, the main source of the distortion comes from badly shaped charts during

64

Examples #Tri. #Tri. Tri. #Quad #Quad. Quad.
Charts Vetices Error Charts Vetices Error

Bunny 70 38K 0.010 42 45K 0.309
Feline 250 130K 0.019 150 163K 0.150
Ballet 250 130K 0.0080 138 150K 0.129

Boxing 140 82K 0.007 78 85K 0.074
Isis 120 67K 0.0036 66 71K 0.0146
V2 34 19K 0.0016 24 26K 0.0022

Table 4.2: Comparison of mesh reconstruction errors between our triangular geometry images and quad-chart based
geometry images [1].

Ground Truth Hierarchical Cluster Our Method

Figure 4.20: Comparison of skinning quality between our method and the hierarchical clustering method in [6]. Our
method produces results with less artifacts.

hierarchical clustering. Moreover, it is more difficult to integrate the feature constraints in our method into their

face clustering scheme. On the other hand, since the generation of our triangular charts is based on triangle mesh

simplification, it is straightforward to add feature constraints in the framework and ensure a sufficient number of

charts in the feature regions. As shown in Figure 4.18, although quad charts produce a good reconstruction in a high

resolution, it fails to reconstruct important features faithfully in a low resolution.

We have also compared the quality of mesh skinning using proxy bones extracted with spectral clustering. It has

been shown in Section 4.4.3 that spectral clustering can extract higher-quality proxy bones faithful to the deformation

structure. Here we further compare the resulting skin animations between our method and existing ones. In Figure

4.20, we show that the skinning results from spectral clustering are closer to the ground truth without noticeable

Ground Truth SMA Our Method

Figure 4.21: Comparison of skinning quality between our method and SMA [7]. Our extracted proxy bones fit the
mesh sequence well while SMA fails in highly deformable regions including the bending legs.

65

Figure 4.22: Level-of-detail rendering of a large BOXING crowd.

Demo Scene #Total Tri. Avg. Throughput Avg. FPS

Boxing Crowd 15.3M 85M/s 45
Ballet Crowd 12.8M 84M/s 40

Bunnies & Felines 22.1M 105M/s 27
Grand Canyon 6.8M 110M/s 50

Table 4.3: Performance of our LOD rendering system on four composed large scenes. The first two scenes have
large collections of dynamically animated meshes using linear blend skinning, and the last two are static scenes.
Performance were measured from nVidia Geforce 8800GTS 640MB VRAM.

artifacts, while the irregular cluster shapes from hierarchical clustering, adopted in [6], tend to cause more obvious

artifacts. In Figure 4.21, our result is compared with that from SMA [7] on an extreme horse collapsing sequence.

Since our method produces a clustering that is more spatially coherent, the skinning results are more faithful to the

ground truth. On the other hand, SMA tends to produce sparse clusters on highly deformable meshes and fails to

reconstruct the deformation at the front legs. To clearly show the differences, all results in this comparison were

generated from skinning only without applying displacement corrections as proposed in [7].

We have created four large scenes of both static and skinned models to demonstrate our level-of-detail rendering

system. Two examples of these scenes are shown in Figures 4.23 and 4.22. The rendering performance and other

statistics of these scenes can be found in Table 4.3. It can be seen that including a large number of dynamically

animated objects using our LOD representation only moderately compromises the rendering performance. Adding

additional unique characters would surely increase the required amount of video memory and increase the number of

rendering passes. However, since each skinned character requires only about 40MB of texture memory, as shown in

Table 4.1, the current generation GPU should be able to hold up to tens of distinct high-resolution characters in its

texture memory. If only a few distinctive characters are required for a scene, there should be plenty of memory left

66

Figure 4.23: Level-of-detail rendering of a terrain navigation using the Grand Canyon dataset.

for other GPU operation such as texturing and shading.

4.8 Conclusions and Future Work

In this paper, we introduce multi-chart triangular geometry images for GPU-based LOD representation of both static

and deforming objects. To fulfill the promises of triangular geometry images, we have developed a series of algorithms

for the detection of curvilinear features, for the construction of such geometry images and their LOD representations,

as well as for GPU-based LOD rendering. We have also generalized these algorithms for dynamically skinned meshes.

There are limitations that we would like to address in our future work. First, the optimal resolution level is only

determined once per frame for each triangular geometry image. This coarse-grain scheme does not hinder rendering

performance for geometry images with a reasonable size. However, when the geometry images become excessively

large, a single resolution per patch would not be sufficiently adapted at the desired level of detail in each local surface

region. It would be more practical to integrate a dynamic subdivision scheme on the geometry images as in[18] and

render different subimages using different resolutions. Second, it is assumed in this work that all the geometry images

can be preloaded into the GPU video memory for maximal rendering throughput. Since most of models used in our

demo required only at most 40 MB of video memory, this assumption will not pose as a problem for rendering a

scene with tens of distinct characters using the current generation of GPUs. However, for rendering many different

characters in a high resolution, the amount of required video memory might exceed the capacity of the GPU. In future,

we would like to develop an out-of-core system for gigantic mesh models that cannot fit into the GPU video memory.

A dynamic paging scheme should be designed to swap geometry images between the video memory, system memory

67

and hard drives.

68

Chapter 5

Precomputed Radiance Transfer for
Skinned Mesh

Computer games and real-time applications frequently adopt mesh skinning as a deformation technique for virtual

characters and articulated objects. Rendering skinned models with global shading effects, such as interreflection and

subsurface scattering, using precomputed radiance transfer enables high-quality real-time display of dynamically de-

formed objects. In this approach, we need to precompute radiance transfer for many sampled poses. Resulting datasets

reach hundreds of gigabytes, and are orders of magnitude larger than those for a static object. This paper presents

simple but effective large-scale data management techniques so that runtime data communication, decompression and

interpolation can be performed efficiently and accurately. Specifically, we have developed a mesh clustering technique

based on spectral graph partitioning to facilitate interpolation from nearest neighbors and an incremental clustering

method for transfer matrix compression. By exploiting additional data redundancies among different sampled poses,

we can achieve higher compression ratios with the same fidelity. Our incremental clustering can make the runtime

cost of per-frame data decompression and interpolation satisfy a prescribed upper bound. As a result, we can achieve

real-time performance using the massive precomputed data and an efficient runtime algorithm.

5.1 Introduction

Precomputed radiance transfer (PRT) provides the opportunity to produce compelling realism with global shading

effects in real time. Originally developed for static scenes [23, 24], PRT has been subsequently extended to fixed

animation sequences as well as deformable objects with shading effects caused by detailed surface features but without

cast shadows [25]. It has also inspired techniques that produce soft shadows for dynamic scenes [26, 27] as well

as algorithms for real-time lighting design [28] and cinematic relighting [29]. However, the generalization of PRT

to dynamic scenes with global shading effects, such as interreflection and subsurface scattering, has not been very

successful. Our goal is to overcome this limitation on the class of deformable objects generated by skinning [49, 20],

which is the most widely adopted deformation technique for virtual characters and articulated objects in computer

games and real-time applications.

In skinning, there is a set of rigid “bones”. Surface deformations are defined as functions of the rigid movements of

69

Figure 5.1: PRT-based real-time rendering of dynamically deformed objects with global shading effects.

nearby bones [49, 20, 7]. Such a nature gives rise to deformations at two different scales. The relative position among

large surface segments, such as the limbs of a virtual character, may undergo large-scale changes. Nevertheless, large-

scale movements are highly correlated. For example, a virtual character is typically designated with a few classes

of whole body movements, such as walking, running and dancing. Each class of movements exhibit a high degree

of coordination among various body parts [103]. Subspaces that enclose relevant poses can be identified with a

covariance analysis on sample movements. At a smaller scale, deformations within each surface region, such as the

bulging of muscles, are smoothly varying, and spatially close points share similar deformations.

In this paper, we focus on real-time PRT techniques that can achieve realistic global shading effects, such as

interreflection and subsurface scattering, on glossy or translucent surfaces deformed by skinning. Most importantly,

such surface deformation is not precomputed, but dynamically generated. To be able to produce these global shading

effects, we take the example-based approach that draws many samples in the pose subspaces for a particular object

and precomputes radiance transfer for them. Note that during runtime a dynamically generated pose as well as its

associated surface deformation may be different from all the sampled poses. Therefore, some type of interpolation

from nearest neighbors in the pose space is inevitable.

An important question is what criteria or distance metrics we should use to search for these nearest neighbors. Pose

similarity should obviously be considered. But pose similarity alone is insufficient. Even a subspace of poses typically

has multiple dimensions. Any practical number of sampled poses only give rise to a sparse sampling within such a

space, which results in large interpolation errors. On the other hand, the configuration of a single surface segment lies

in a much lower dimensional space. Therefore, we search for nearest neighbors for each surface segment separately

and then perform interpolation using different nearest neighbors for different surface segments. When searching for

such segment-wise nearest neighbors, we also consider similarity in terms of local PRT data (i.e. the precomputed

radiance transfer matrices). Unlike local geometry, radiance transfer matrices over a surface segment actually account

70

for global effects such as scattering and interreflections caused by other surface segments.

Another tough challenge we face is the sheer size of the data generated by precomputing. Because we need to

precompute radiance transfer for every sampled pose, resulting datasets reach hundreds of gigabytes, and are orders

of magnitude larger than those for a static object. We need clustering and compression methods that are better suited

for such large-scale data for the following reasons. First, compressed datasets need to fit into the system memory.

Otherwise, dynamically loading data from hard disks during runtime would be intolerably slow. Second, because

loading all compressed data into the GPU memory has become infeasible, effective data compression can reduce per-

frame communication overhead between the CPU and GPU. Furthermore, these goals should be achieved without

compromising rendering quality or increasing per-frame data decompression cost, which is directly related to the

frame rate we can achieve.

In this paper, we present effective clustering and compression schemes for precomputed radiance transfer matrices

so that the aforementioned runtime data communication, decompression and interpolation can be performed efficiently

and accurately. First, we have developed a data segmentation scheme to facilitate interpolation from nearest neighbors.

Once all the meshes associated with the sampled poses have been consistently segmented in the surface domain, every

group of corresponding surface segments are further evenly divided into small groups in the pose domain using spectral

graph partitioning and a nonlinear measure that computes similarities in terms of both pose and radiance transfer

matrices. Second, we have developed a revised clustered PCA algorithm for transfer matrices. It incrementally creates

new PCA clusters for data associated with new pose configurations. By exploiting additional data redundancies among

different sampled poses, our method can achieve a higher compression ratio with the same approximation error. Our

incremental clustering can make the cost of per-frame data decompression and interpolation satisfy a prescribed upper

bound.

In addition, we have designed an efficient runtime algorithm that takes advantage of the precomputed clustering

and compression results while effectively distributing the workload among multiple rendering passes. As a result,

high-quality real-time rendering with global shading effects is achieved.

5.2 Overview

Since a dynamic articulated object may have a number of linked parts moving simultaneously, interactively computing

light transport, including glossy reflection, interreflection, shadowing and subsurface scattering, under environment

illumination for such objects is extremely challenging. Therefore, state-of-the-art techniques can only dynamically

generate soft shadows [27], all-frequency shadows [104], or ambient occlusion values [105]. There exist other limi-

tations with these techniques. In fact, the algorithm in [104] can interactively generate shadows for one moving part

only, and only diffuse shading has been demonstrated on original object surfaces in [27].

71

v

v

v

v

v

v

v

v

v

p p p p p p p p p

1

9

8

7

6

5

4

3

2

1 2 3 4 5 6 7 8 9

6

7

8

9

v

v

v

v

v

v

v

p p p p p p p p p

1

3

2

1 2 3 4 5 6 7 8 9

v

v4

5

Ω3

Ω1

Ω2

Ω1,1

Ω2,1

Ω3,1

Ω1,2

Ω2,2

Ω3,2

Ω1,3

Ω2,3

Ω3,3

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

����
����
����

����
����
����

���
���
���

���
���
���

���
���
���

���
���
���

����
����
����

����
����
����

���
���
���

���
���
���

���
���
���

���
���
���

����
����
����

����
����
����

���
���
���

���
���
���

���
���
���

���
���
���

����
����
����

����
����
����

���
���
���

���
���
���

���
���
���

���
���
���

����
����
����

����
����
����

���
���
���

���
���
���

���
���
���

���
���
���

����
����
����

����
����
����

���
���
���

���
���
���

���
���
���

���
���
���

����
����
����

����
����
����

���
���
���

���
���
���

���
���
���

���
���
���

����
����
����
����

����
����
����
����

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

����
����
����

����
����
����

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

Ω1,1

Ω2,1

Ω3,1

Ω1,2

Ω2,2

Ω3,2

Ω1,3

Ω2,3

Ω3,3

(a) Input (b) Consistent Segmentation (c) Mesh Segment Clustering (d) Revised Clustered PCA

Figure 5.2: A multistage pipeline for data segmentation and clustering in the joint spatio-pose space. (a) PRT data
for all combinations of poses and vertices can be arranged into a large-scale matrix. (b) Consistent segmentation
horizontally divides the matrix into multiple submatrices. (c) Mesh segment clustering reorganizes columns of each
submatrix into multiple smaller clusters. (d) Revised clustered PCA projects each row of the clusters onto the basis
vectors of the same PCA cluster to facilitate runtime interpolation. Vertices in the same PCA cluster are shown with
the same pattern.

To achieve all global shading effects on glossy or translucent articulated objects, we take the approach that draws

many samples in the pose subspaces for a particular object, precomputes radiance transfer for all of them, and inter-

polates the precomputed transfer matrices during runtime. Note that the high-level approach of the rendering stage in

[106] is similar to ours. Nevertheless, they only devoloped methods for diffuse surfaces and small elasticity-based de-

formations while our articulated objects typically generate deformations at a much larger scale. In this paper, we adopt

the basic PRT framework for glossy objects presented in [23, 24] which account for global shading effects caused by

low-frequency environment lighting using a truncated spherical harmonic basis.

Since we need to sample poses and perform interpolation, we briefly discuss our pose sampling strategy here even

though it is not the focus of this paper. We took multiple representative sequences from the CMU motion capture

database [107]. Each sequence represents a distinct type of whole body motion, such as boxing, dancing, running and

walking. A pose consists of all the joint angles in a specific skeletal configuration of the object, and there is a pose at

every frame of these sequences. We ran clustered principal component analysis (CPCA) on all the poses and extracted

a few pose subspaces. Since we would like to obtain pose samples that are distributed more uniformly and widely

within each subspace than the input poses, we resample each subspace by performing stratified Monte Carlo sampling

on the PCA coefficients. Let C = {p1, p2, ..., pmp} be the set of resampled poses. Note that we need to generate

a deformed surface mesh for every sampled pose using skinning and then precompute radiance transfer matrices for

these deformed meshes. All the deformed meshes have the same number of vertices and the same connectivity among

the vertices. Only the vertex positions have been altered. Let Υ j = {vj
1, v

j
2, ..., v

j
nv
} be the complete set of vertices in

the deformed mesh for a single pose pj ∈ C. We can arrange all the vertices within Υj into a single column vector, and

arrange such column vectors for all poses into a matrix, M. Each row of vertices within M are actually corresponding

vertices on different meshes (Fig. 5.2(a)).

72

We perform a consistent mesh segmentation across all the deformed meshes using the technique in [7] to ob-

tain a set of segments for every mesh. A consistent segmentation partitions different meshes into the same number

of segments and corresponding vertices on different meshes belong to corresponding segments (Fig. 5.2(b)). Let

{Υj
k|1 ≤ k ≤ nr} be the segmentation of Υj so that Υj =

⋃
k Υj

k. Next, we group corresponding segments on dif-

ferent meshes together and define Ωk = {Υj
k|1 ≤ j ≤ M} for 1 ≤ k ≤ nr. We can imagine that each Ωk is actually

a submatrix of M, and occupies a subset of rows within M. We further run spectral graph partitioning (Section 5.3)

on each Ωk independently to reorganize its columns and evenly distribute them into smaller clusters each of which

typically has 3-8 segments. Let {Ωk,g|1 ≤ g ≤ nc} be the clusters from dividing Ωk so that Ωk =
⋃

g Ωk,g . If we

move the segments of each cluster together, we can imagine each cluster as a submatrix where each column consists of

vertices from the same mesh segment and each row consists of corresponding vertices from different segments within

the same cluster (Fig. 5.2(c)). The mesh segments within each cluster should exhibit two types of similarity. If Υ j1
k

and Υj2
k belong to the same cluster, their corresponding poses, p j1 and pj2 , should be similar, and radiance transfer

matrices at corresponding vertices of Υj1
k and Υj2

k should also be similar. After data segmentation, radiance transfer

matrices over all sampled poses are finally compressed using a revised clustered PCA algorithm.

During runtime, given an input skeletal configuration as well as the associated surface mesh, which shares the same

segmentation discussed above, we first use the skeleton to find the most similar pose among the samples. Suppose

this most similar pose is pj , which is then used to find the cluster Ωk,gj
k

where each mesh segment, Υj
k(1 ≤ k ≤ nr),

belongs. Radiance transfer matrices at each row of corresponding vertices within each retrieved cluster of mesh

segments are finally interpolated to generate estimated transfer matrices for the vertices on the input mesh. There are

two major reasons to perform the aforementioned clustering on each group of segments Ω k(1 ≤ k ≤ nr). First, the

resulting clusters can accelerate runtime nearest neighbor search. We directly consider the mesh segments in the same

cluster as approximate nearest neighbors. Second, such clustering can accelerate runtime transfer matrix interpolation

once transfer matrices at corresponding mesh vertices in the same cluster of mesh segments are compressed using the

same set of PCA basis vectors (Section 5.4 and Fig. 5.2(d)).

5.3 Mesh Segment Clustering

In this section, we apply a spectral graph partitioning algorithm, called normalized cut [93], to dividing each Ω k(1 ≤
k ≤ nr) into smaller clusters of mesh segments. In the current context, clustering based on normalized cut has

important advantages. First, unlike linear subspace methods, such as PCA and clustered PCA, normalized cut is

based on local pairwise similarity. Therefore, it is better suited for interpolation based on nearest neighbors. Second,

normalized cut can easily handle nonlinear similarity measures and can easily integrate multiple similarity measures

together to achieve a tradeoff among them. Third, a similarity measure in normalized cut is typically defined as

73

a Gaussian, which is a widely used radial basis function. Such a nonlinear measure is consistent with pose-based

skin deformation techniques that use radial basis functions [49]. The normalized cut algorithm has recently been

successfully applied to the compression of motion capture sequences [108]. In the following section, we briefly

introduce this algorithm first.

5.3.1 Normalized Cut Framework

Let G = (U , E) be a weighted graph, where the set of nodes, U = {u1, u2, ..., un}. An edge, (ui, uj) ∈ E , has a

weight w(ui, uj) defined by the similarity between the location and attributes of the two nodes defining the edge. The

idea is to partition the nodes into two subsets, A and B, such that the following disassociation measure, the normalized

cut, is minimized.

Ncut(A,B) =
cut(A,B)
asso(A,U)

+
cut(A,B)
asso(B,U)

(5.1)

where cut(A,B) =
∑

s∈A,t∈B w(s, t) is the total connection from nodes in A to nodes in B; asso(A,U) =∑
s∈A,t∈U w(s, t) is the total connection from nodes in A to all nodes in the graph; and asso(B,U) is similarly

defined. This measure works much better than cut(A,B) because it favors relatively balanced subregions instead of

cutting small sets of isolated nodes in the graph.

To compute the optimal partition based on the above measure is NP-hard. However, it has been shown [93] that

a good approximation can be obtained by relaxing the discrete version of the problem to a continuous one which can

be solved using eigendecomposition techniques. Let y be the indicator vector of a partition. Each element of y takes

two discrete values to indicate whether a particular node in the graph belongs to A or B. If y is relaxed to take on

continuous real values, it can be shown that the optimal solution can be obtained by solving the following generalized

eigenvalue system,

(D − W)y = λDy (5.2)

where D is a diagonal matrix with D(i, i) =
∑

j w(ui, uj), W is the weight matrix with W(i, j) = w(ui, uj). The

eigenvector corresponding to the second smallest eigenvalue is the optimal indicator vector in real space. A suboptimal

partition can be obtained by first allowing y to take on continuous real values, solving the above generalized eigenvalue

system for y, and then searching for the best threshold to partition the real-valued elements of y into two subgroups.

There exist different criteria to guide this threshold search. By default, one would like to use the cost function in

(5.1) as the criterion so that the threshold can minimize this cost. Alternatively, as in our case, one may look for two

evenly subdivided subgroups. Then, the threshold should be the median of the elements in y. In either case, it is a

74

one-dimensional search that can be performed very quickly. The two resulting subregions from this partition can be

recursively considered for further subdivision. This algorithm can be used to solve different clustering or segmentation

problems by choosing different edge weights [109].

5.3.2 Mesh Segment Clustering

In the current context, we would like to partition every group of corresponding mesh segments, Ω k(1 ≤ k ≤ nr) into

multiple smaller clusters. We set up a complete graph for a given group of segments. A node in the graph corresponds

to a mesh segment from the group. The attributes of a node include the complete skeletal configuration corresponding

to that node as well as the radiance transfer matrices at all the vertices within that segment.

The weight w(ui, uj) over an edge (ui, uj) is the product of two similarity terms. One measures the overall

similarity between the transfer matrices associated with the two nodes of the edge. The other measures the similarity

between the poses associated with the two nodes. Both similarity terms can be in the form of a Gaussian distribution.

Overall, w(ui, uj) is a local measure of how likely the nodes belong to the same partition. w(u i, uj) is close to 1 for

nodes which are likely to belong together, and close to 0 for nodes which are likely to be separated, as judged purely

from local evidence available at the two nodes.

Overall similarity regarding both transfer matrices and pose configuration is formulated as

w(ui, uj) = exp

(
−
∑

l ‖Ti
l − Tj

l ‖2
F

2σ2
t

−
∑

b∈S ‖Ri
b − Rj

b‖2
F

2σ2
p

)
(5.3)

where ui and uj are two graph nodes each of which has a corresponding mesh segment, T i
l denotes the transfer matrix

at vertex vl in the mesh segment at node ui, S represents the complete skeleton of an articulated object, b is a “bone”

in this skeleton, Ri
b denotes the local rigid body transform at this “bone” in the pose corresponding to node u i, and Tj

l

and Rj
b are defined similarly. We use the Frobenius norm for both transfer matrices and local rigid body transforms.

Parameters σt and σp are automatically determined from the respective standard deviations of the root mean squared

differences of corresponding transfer matrices or local transforms within a pair of corresponding mesh segments.

These parameters can be further adjusted to reflect the relative weighting between the two similarity measures.

Once the graph is set up, it is recursively partitioned into two subgraphs using the aforementioned normalized cut

algorithm. Binary partition only needs one eigenvector with the second smallest eigenvalue with respect to (5.2). Since

we always use the same number of neighbors to perform runtime interpolation and these neighbors are always from

the same cluster, we enforce final clusters from graph subdivision have an equal size. This is achieved by enforcing

the two subgraphs from every binary partition have an equal size. Recursive partition terminates when the size of the

subgraphs reaches a given threshold, which is typically 4 in our experiments.

75

5.4 Transfer Matrix Compression

We need to precompute a radiance transfer matrix at every vertex of the mesh for every pose, which gives rise to

an amount of data that is three orders of magnitude larger than that for a static object. However, there exist extra

redundancies across different meshes that we can exploit by compressing transfer matrices from different meshes

together. Nevertheless, there are two important requirements that need to be satisfied. First, the cost of per-frame data

decompression should be bounded to guarantee runtime performance. Second, since runtime interpolation will be

performed among transfer matrices at corresponding vertices within the same cluster of mesh segments, they should

be compressed in such a way that facilitates such interpolation.

We have developed a revised clustered PCA algorithm with incremental cluster creation to overcome these diffi-

culties. Note that incremental cluster creation is different from incremental singular value decomposition algorithms

[110] that incrementally update the basis vectors of a cluster. Clustered PCA divides the original dataset into a few

clusters each of which is approximated separately using a truncated PCA basis. In this context, the first requirement

translates to an upper bound on the number of distinct PCA clusters used by per-frame data since all our PCA clusters

have a fixed number of basis vectors. The second requirement is satisfied by using the basis vectors of the same PCA

cluster to approximate all transfer matrices falling on the same row of the same cluster of mesh segments (Fig. 5.2(d)).

Our incremental algorithm goes through the set of poses in a sequential order and incrementally creates new PCA

clusters as necessary for each additional pose while guaranteeing the total number of distinct PCA clusters used by

that pose is below a prescribed upper bound, m cpf . Suppose we are looking at pose pj . Let E = {Ki|1 ≤ i ≤ mpca}
be the set of existing PCA clusters each of which has a list of transfer matrices that have been assigned to it. The mesh

for pj has a set of vertices Υj , which has been partitioned into segments, {Υj
k|1 ≤ k ≤ nr}. Suppose Υj

k ∈ Ωk,gj
k
,

where Ωk,gj
k

is a cluster of mesh segments, as defined in Section 5.2. Since vertices on other mesh segments in Ω k,gj
k

might have been assigned PCA cluster memberships, according to the second requirement, corresponding vertices

in Υj
k should have the same membership as well. Thus, we can divide {Ωk,gj

k
|1 ≤ k ≤ nr} into two subgroups,

{Ωk,gj
k
|k ∈ Ia} and {Ωk,gj

k
|k ∈ Ib}, where vertices of the mesh segments in the first subgroup of clusters have been

assigned to PCA clusters in E but vertices associated with the second subgroup have not. The second subgroup of

clusters are called active clusters. Let Ej = {Ki|i ∈ Ij} ⊆ E be the set of PCA clusters already used by vertices

from pose pj and ρj
assigned be the percentage of the vertices from pj that have been assigned PCA clusters. When

1−ρj
assigned ≤ r

mcpf−|Ej |
mcpf

, where r is a ratio typically set to 2, we perform an incremental clustering step; otherwise,

the number of new PCA clusters that can be created within the per-frame budget is too few compared to the number

of unassigned vertices and, therefore, we need to perform a reclustering step to reinitialize a sufficient number of new

PCA clusters better suited for the pose under consideration.

76

5.4.1 Incremental Clustering

We create mcpf −|Ej | new PCA clusters, and every vertex of the segments in the second subgroup is assigned to either

one of the new clusters or one of the existing clusters in E j . We have revised the original clustered PCA algorithm

to achieve this goal. In the revised CPCA algorithm, we assign every row of corresponding vertices within the same

cluster of segments to the same PCA cluster. According to the mesh clustering process presented in the previous

section, the transfer matrices at such corresponding vertices should already have a high degree of similarity. Therefore,

assigning them to the same PCA cluster would not sacrifice much accuracy, as confirmed by our experiments.

The criterion to determine cluster membership is the cumulative squared approximation errors contributed by all

the vertices in the row. There are still two alternating steps in the revised CPCA algorithm. In the first step, every

row of vertices in an active cluster of segments, Ωk,gj
k
(k ∈ Ib), is assigned to the PCA cluster that produces minimal

cumulative squared errors. In the second step, the basis vectors of the new PCA clusters are updated. Thus, in this

revised algorithm, existing clusters in Ej can accept new members, but their previously existing members cannot

change their memberships. The basis vectors of these clusters are updated only when these clusters have accepted a

significant number of new members. If we define a cost function as the summed squared approximation errors within

all mcpf clusters, it is straightforward to show that this cost function monotonically decreases during each of the above

two steps. Therefore, the revised CPCA algorithm converges.

5.4.2 Reclustering

In the reclustering step, to guarantee high-quality approximation within the per-frame budget, we simply choose to

generate mcpf entirely new PCA clusters for the current pose by running the original CPCA algorithm. Before doing

that, those rows of vertices associated with the first subgroup of clusters of mesh segments, i.e. {Ω k,gj
k
|k ∈ Ia}, need

to be removed from the PCA clusters where they have been previously assigned.

5.4.3 Cluster Merging

Because reclustering may split among multiple new clusters vertices that previously belong to the same PCA cluster,

it may cause the number of PCA clusters used by another pose to exceed our per-frame budget. Therefore, we perform

a cluster merging step once our incremental algorithm has generated clusters for all the poses. As a preprocessing

step, we first measure distance between pairwise PCA clusters. We only need to consider pairs of clusters that have

members from the same pose, and only consider those poses that have used more clusters than they should. The

distance between two PCA clusters can be measured by the L2-norm of the difference between their corresponding

projection matrices [111]:

d(Ψ, Φ) = ‖PΨ − PΦ‖2, (5.4)

77

where PΨ = UΨUT
Ψ is the projection matrix of cluster Ψ, UΨ is a matrix whose columns are the basis vectors of Ψ,

and PΦ is defined similarly.

During each iteration of the merging process, a pair of PCA clusters with the minimal distance is chosen. This pair

of clusters is merged only if at least one pose shared by their members has more clusters than the per-frame budget.

Once merged, distances between the new cluster and all relevant existing clusters need to be computed. This process

is repeated until the number of clusters used by all poses has fallen below the upper bound, m cpf . There exist efficient

and accurate algorithms for merging two clusters without going back to the raw data in these original clusters. We

apply the merging algorithm in [112]. At the end of merging, the coefficient vector of every transfer matrix needs to

be recomputed according to its final cluster membership.

5.5 Runtime Algorithm

The shading equation we follow is largely similar to the one in [24]. Although our implementation is in three color

channels, in the following, we explain the shading process using a single channel. The final radiance from a sur-

face point along a specific viewing direction V and under a specific low-frequency global lighting vector L can be

formulated as

Γ = VT BTL, (5.5)

where B is a BRDF matrix, T is the radiance transfer matrix with an integrated rotation from the global frame to the

local frame [23], and the lighting vector L is a coefficient vector computed by projecting an environment map onto SH

bases. The BRDF matrix is obtained by first discretizing a continuous BRDF, B(v, s), in both viewing and lighting

directions to obtain an intermediate matrix whose rows correspond to different viewing directions and columns to

different lighting directions. Then each row of the intermediate matrix is projected onto the spherical harmonic (SH)

bases.

In this paper, we always use 25 spherical harmonic bases for both lighting and BRDF. Inspired by PCA-based

separable approximations of an arbitrary BRDF [113], we further factorize the BRDF matrix using singular value

decomposition (SVD) and represent it as a product of a view map, H, and a light map, G, B = HG T . There is an

important distinction between our factorization and that in [114, 115]. We decompose the BRDF matrix after spherical

harmonic projection while they directly decompose the original BRDF for all-frequency rendering. Since we have also

found experimentally that a 4-term approximation can produce sufficiently accurate results, both H and G are chosen

to have only four columns. With the resolution of the BRDF view map set to 32 × 32 and the number of SH bases

being 25, H and G are represented as 1024 × 4 and 25 × 4 matrices, respectively.

Suppose during runtime we need to estimate the transfer matrix T̃v at vertex v for a new incoming pose whose

78

most similar sampled pose is pj , which is found quickly using a Kd-tree. Let v belongs to the k-th mesh segment,

which further belongs to a cluster of mesh segments, Ωk,gj
k
. Then T̃v can be interpolated from the transfer matrices

defined at the corresponding vertices of v on the mesh segments in Ω k,gj
k

as follows.

T̃v =
∑

l

αlTjl
v =

∑
l

αl

(∑
i

cv,jl

i Ul
i

)
, (5.6)

where Tjl
v represents the transfer matrix at the corresponding vertex of v on a mesh segment in Ω k,gj

k
, and αl is

its interpolation coefficient. The interpolation coefficients are implemented using normalized radial basis functions

(NRBFs) [116], and need to be computed only once for each mesh segment. Since we still use clustered PCA to

approximate transfer matrices, {Ul
i|i = 1, ..., nb} represent the set of PCA basis matrices whose linear combination

approximates Tjl
v , and cv,jl

i (i = 1, ..., nb) are the PCA coefficients. Because our revised CPCA algorithm assigns

different Tjl
v ’s from the same row of Ωk,gj

k
to the same PCA cluster, we can drop the superscript in {U l

i|i = 1, ..., nb},

and (5.6) becomes

T̃v =
∑

i

(∑
l

αlc
v,jl

i

)
Ui =

∑
i

λiUi, (5.7)

where λi =
∑

l αlc
v,jl

i . This means we can simply interpolate scalar PCA coefficients to avoid reconstructing multiple

transfer matrices.

Substituting (5.7) into (5.5), we obtain

Γ = VT HGT

(∑
i

λiUi

)
L (5.8)

=
(
VT H

)
(

Z︷ ︸︸ ︷
∑

i

λi((

Qi︷ ︸︸ ︷
GT Ui)L︸ ︷︷ ︸

Si

)), (5.9)

where the parentheses in (5.9) indicate the order of evaluation we use, and Q i,Si and Z are intermediate variables.

The computation of (5.9) is partitioned into multiple stages, including precomputing, a runtime CPU pass and two

runtime GPU passes. We have implemented the GPU passes using DirectX 9 API.

• In the precomputing stage, we multiply the 4× 25 matrix, GT , with each 25× 25 matrix, Ui, to obtain a 4× 25

matrix, Qi. Such computation is performed for the 8 basis matrices we use for each PCA cluster. Since the size of Q i

is smaller than a basis matrix, this step actually helps improve our overall data compression ratios.

• During the runtime CPU pass, we select the Qi’s needed by the current frame and multiply each of them with

the current 25 × 1 lighting vector, L, to obtain a 4 × 1 vector, S i. The time complexity of this step is proportional to

the number of PCA clusters needed by the current frame. The resulting vectors, S i’s, are saved as a 2D texture. In

79

Figure 5.3: Renderings from our method. Left: a glossy deforming mesh. Right: a translucent deforming mesh. Both
images exhibit global shading effects, including soft shadows, diffuse and specular interreflections. The right image
also exhibits subsurface scattering.

addition, we compute λi’s by interpolating relevant PCA coefficients as in (5.7). This step needs to be done for every

vertex, and is performed on the CPU because the available bandwidth between the system memory and GPU does not

permit us to transmit the data before interpolation. To improve runtime performance, we have implemented this pass

using double threads on a dual-core processor. The resulting coefficients are saved as textures as well. Since only a

subset of the clusters are selected in each frame, all the computed textures during this pass become small enough to

be transmitted to the GPU on a per-frame basis.

• In the first GPU pass, we compute Z =
∑

i λiSi for every vertex, where λi and Si are passed from the previous

CPU pass. Although this is purely vertex-based processing, considering the performance limitation of vertex textures

on DirectX 9 generation GPUs, we choose to implement it in a pixel shader program via a GPGPU technique by

drawing a quad covering as many pixels as the total number of vertices. Every pixel in the quad computes its own Z

vector using the textures representing Si’s and λi’s. These Z vectors from the pixel shader are saved back to the GPU

video memory as a 2D texture map using multiple render targets.

• In the second GPU pass, we use a pixel shader program to first compute V T H for every pixel. Since we use

bilinear interpolation in the viewing direction, V has four nonzero entries, and V T H is computed as a linear blend of

four row vectors of H. Meanwhile, the per-vertex Z vectors from the previous pass are linearly interpolated at every

pixel in the GPU pipeline implicitly. At the end, we perform pixelwise multiplication between the row vector, V T H,

and the interpolated Z vector to obtain the final radiance for each color channel.

In addition to opaque surfaces, we also support translucent objects with subsurface scattering (Fig. 5.3). We

follow the algorithms in [117] for precomputing single and multiple scattering. The precomputed results can still

be represented using transfer matrices except that the BRDF matrix in (5.5) should be replaced with a matrix that

80

#vertices #poses # mesh prt coefficients segment clustering revised CPCA
segs computation time #clusters cpu time #clusters cpu time

Armadillo 33,000 1024 19 77hrs 2432 42hrs 36000 91hrs
Boxer 32,000 1024 11 64hrs 2816 38hrs 96000 115hrs
Horse 19,000 48 27 2hrs 648 30mins 2984 1.7hrs

Table 5.1: Statistics for Precomputation. We utilize the cluster servers in our institution to accelerate the computation
for PRT coefficients. In the Boxer example, every mesh segment cluster contains 4 segments. There are 72000 PCA
clusters on the character model and additional 24000 clusters for a floor plane. In the Armadillo example, every
mesh segment cluster contains 8 segments, which have the side effect that the total number of PCA clusters is much
reduced. The small number of sampled poses for the Horse example gives rise to much smaller numbers of mesh
segment clusters and PCA clusters, and an overall much smaller dataset. Every PCA cluster in these examples has
eight 25 × 25 basis matrices.

Armadillo Boxer Horse

original data size 253GB 215GB 3.06GB
compressed data size 1.7GB 1.54GB 76MB

data used in demo 200MB 430MB 76MB
frame rate 30 30 45∼50

Table 5.2: Compression Result and Performance. As shown, we have achieved a compression ratio of around 140 on
large examples. Because we generated the poses with enough variations, the demo animations from our paper usually
require only a small subset of the sampled poses for real-time interpolation. The Cook-Torrance BRDF model is used
for Armadillo and the Phong model is used for both Boxer and Horse. All performance measurements were taken
from a 3.0GHz PentiumD with nVidia Geforce 7900GTX 512MB VRAM.

accounts for light coming from both sides of the surface.

5.6 Experimental Results

We have successfully experimented with three examples. Renderings from our method can be found in Figs. 5.1,

5.3 and 5.4. For each example, we start with a static mesh and a few deformed versions of this mesh. A skinning

model with blending weights is trained from these deformed versions using the technique in [7], which also produces a

consistent segmentation of the meshes. Meanwhile, we obtain a number of MoCAP sequences from the CMU database

[107], and align the skeleton used in the MoCAP sequences with the segmented meshes. As discussed in Section 5.2,

we resample pose subspaces to obtain a database of sampled poses. Each of the sampled poses can generate a deformed

version of the original mesh using the trained skinning model, and we precompute radiance transfer matrices for each

of them using ray-tracing [118]. The statistics of these precomputed datasets are shown in Table 5.1. As we can

see, two of the examples are very large. Each of them has more than 200GB of raw PRT data. Our data processing

algorithms actually divide such large-scale raw data into smaller chunks and only load into the memory one chunk at

a time. Once we have run the mesh segment clustering algorithm and the revised CPCA algorithm, we quantize each

PCA coefficient down to 16 bits. In this way, we can achieve a compression ratio of around 140 without losing much

81

Our Scheme Pose-Space

1 8851 10661
2 5307 11015
3 6104 8167
4 8348 9686
5 9819 13922

Avg 7685.2 10690.2

Table 5.3: Comparisons of approximation errors between our interpolation scheme for transfer matrices and pose-
space based interpolation. The first five rows show the errors for five randomly generated poses, and the last row
shows the average errors among the five.

visual fidelity.

With such a precomputed and compressed dataset, we can render dynamically deformed versions of the original

mesh in real time. We have experimented with two possible methods to generate dynamically deformed meshes. In

the first method, the user can interactively adjust the pose of the skeleton, and every adjusted pose produces a new

deformed mesh. In the second method, we can take a new MoCAP sequence with the same skeletal structure and use

the poses in this sequence to deform the mesh. Note that these poses are different from all previously sampled poses.

In both cases, the transfer matrices for the dynamically deformed mesh are interpolated from the precomputed data

in real time and the deformed mesh is shaded instantly on the GPU using the interpolated transfer matrices. Since it

is not very convenient to interactively produce interesting new poses without referencing MoCAP data, most of our

demonstrations use the second method.

5.6.1 Validation

Frame Rate

Frame rate is by far the most important goal. An important reason that we can achieve real-time performance with at

least 30 frames per second is that transfer matrix interpolation is actually performed through the interpolation of their

scalar PCA coefficients, as formulated in (5.7). This is facilitated by both mesh segment clustering and the revised

CPCA algorithm. We did a comparison on the two large examples between our technique and a different version that

does not use the same set of PCA bases to approximate transfer matrices at corresponding vertices within the same

cluster of mesh segments. The latter only achieved at most 8 frames per second, more than three times slower than

our version.

Interpolation Accuracy

We interpolate transfer matrices for each mesh segment independently using the cluster of mesh segments it belongs.

Our clusters of mesh segments are formed considering similarity in both transfer matrices and pose. In contrast, given

82

a new pose, a conventional scheme finds a few nearest sampled poses, and then simply interpolates all transfer matrices

for the new pose from the same set of nearest sampled poses. It is thus a global scheme that always uses the same set

of neighbors for different mesh segments.

We have compared our interpolation scheme with this pose-space scheme on our examples. During the precom-

puting stage of these comparisons, we use the same number of PCA clusters to compress the raw PRT data in both

cases. During runtime, we randomly generate new poses that further produce new deformed meshes, which are ren-

dered using the two interpolation schemes which choose different sets of neighbors. We also directly ray-trace the

deformed meshes to produce the ground truth. Table 5.3 lists summed errors of the interpolated transfer matrices for a

few randomly generated poses. The errors of our interpolation scheme are consistently lower. However, differences in

numerical errors may not reflect the true differences in visual quality. We further compare the rendered images from

these interpolation schemes in Figs. 5.4 and 5.5. The global scheme produces obvious artifacts on certain parts of the

surface while the results from our scheme are visually comparable to the ground truth.

Compression Quality

We further validate the compression quality of our revised CPCA algorithm by comparing it with running the original

CPCA on each pose independently. Because an important goal of our algorithm is to satisfy the two requirements

discussed in Section 5.4 instead of achieving maximum compression ratios, without incremental cluster creation, it

should generate larger approximation errors than the original CPCA. However, incremental cluster creation exploits

data redundancies across different poses and, therefore, can compensate the negative effects produced by the require-

ments we impose on compression. As a result, with the same total number of PCA clusters, our revised CPCA actually

achieves smaller approximation errors than running CPCA independently on each pose. For example, on the BOXER

dataset, when there are a total of 72000 clusters over 1024 poses, the average error per pose is 4489 for our algorithm

and 5516 for independent CPCA. More importantly, the latter cannot satisfy the second requirement, therefore, would

significantly lower the frame rate. As shown in Fig. 5.6, our revised algorithm also produces results with better visual

quality and without obvious boundaries among PCA clusters.

5.7 Conclusions and Future Work

We have presented effective data clustering and compression techniques as well as an efficient runtime algorithm that

can achieve high-quality real-time rendering of dynamically skinned models using precomputed radiance transfer. Our

techniques can reduce the amount of precomputed data to a managable size, and achieve a compression ratio of 140

on large-scale datasets with hundreds of gigabytes of raw data. Meanwhile, they also facilitate runtime data communi-

cation, decompression and interpolation. Our algorithms and results have demonstrated that using an example-based

83

approach for PRT-based rendering of dynamic objects with glossy or translucent materials is both feasible and practi-

cal.

There are limitations with our current algorithms and implementation. First, we are limited to low-frequency

environment lighting. We would like to investigate in future whether it is feasible to extend our work to all-frequency

lighting using nonlinear wavelet approximation [119, 120]. Second, we would like to model interactions among

multiple objects using subspaces and investigate precomputed radiance transfer for such interactions. Third, our

implementation is partially limited by the memory capacity and streaming bandwidth of the current generation of

GPUs. We expect these aspects improved in the future generations and even better runtime performance achieved on

them.

84

Ground Truth Our Method Pose-Space

Figure 5.4: A comparison between our interpolation scheme and pose-space based transfer matrix interpolation. Since
pose-space interpolation only considers similarity in global pose configurations without accounting for similarity
among transfer matrices themselves, visually noticeable artifacts occur.

85

Ground Truth Our Method Pose-Space

Figure 5.5: Another comparison between our interpolation scheme and pose-space based transfer matrix interpolation
in the self-occlusion area. Pose-space interpolation fails to capture some self-occluded effects and has more visual
artifacts

Ground Truth Independent CPCA Our Revised CPCA

Figure 5.6: A comparison between our revised CPCA and running CPCA independently on different poses. Note
that our revised CPCA satisfies additional requirements, and incrementally creates new clusters. With the same total
number of PCA clusters (72000 clusters over 1024 poses in this example), our algorithm produces visually better
results while independent CPCA produces visible boundary effects.

86

References

[1] B. Purnomo, J.D. Cohen, and S. Kumar. Seamless texture atlases. In Proceedings of the Eurograph-
ics/SIGGRAPH Symposium on Geometry Processing, pages 65–74, 2004.

[2] Li Zhang, Noah Snavely, Brian Curless, and Steven M. Seitz. Spacetime faces: High-resolution capture for
modeling and animation. ACM Transactions on Graphics, 23(3):548–558, 2004.

[3] Ladislav Kavan, Rachel McDonnell, Simon Dobbyn, Jiri Zara, and Carol O’Sullivan. Skinning arbitrary defor-
mations. In I3D ’07: Proceedings of the 2007 symposium on Interactive 3D graphics and games, pages 53–60,
2007.

[4] Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. Position based dynamics. J. Vis.
Comun. Image Represent., 18(2), 2007.

[5] D. Cohen-Steiner, P. Alliez, and M. Desbrun. Variational shape approximation. ACM Transactions on Graphics,
23(3):905–914, 2004.

[6] R.Y. Wang, K. Pulli, and J. Popović. Real-time enveloping with rotational regression. ACM Transactions on
Graphics, 26(3):73.1–73.9, 2007.

[7] D.L. James and C.D. Twigg. Skinning mesh animations. ACM Transactions on Graphics, 24(3):399–407, 2005.

[8] A. W. F. Lee, W. Sweldens, P. Schröder, L. Cowsar, and D. Dobkin. MAPS: Multiresolution adaptive parame-
terization of surfaces. Computer Graphics Proceedings (SIGGRAPH 98), pages 95–104, 1998.

[9] S.I. Park and J.K. Hodgins. Capturing and animating skin deformation in human motion. ACM Transactions
on Graphics, 25(3):881–889, 2006.

[10] R.W. Sumner, M. Zwicker, C. Gotsman, and J. Popović. Mesh-based inverse kinematics. ACM Transactions
on Graphics, 24(3):488–495, 2005.

[11] K.G. Der, R.W. Sumner, and J. Popović. Inverse kinematics for reduced deformable models. ACM Transactions
on Graphics, 25(3):1174–1179, 2006.

[12] J.C. Xia and A. Varshney. Dynamic view-dependent simplification for polygonal models. In Proceedings of the
7th Conference on Visualization, pages 327–334, 1996.

[13] D. Luebke and C. Erikson. View-dependent simplification of arbitrary polygonal environments. In SIGGRAPH
1997, pages 199–208, 1997.

[14] H. Hoppe. View-dependent refinement of progressive meshes. In SIGGRAPH 1997, pages 189–198, 1997.

[15] X. Gu, S.J. Gortler, and H. Hoppe. Geometry images. ACM Transactions on Graphics, 21(3):355–361, 2002.

[16] F. Losasso and H. Hoppe. Geometry clipmaps: terrain rendering using nested regular grids. ACM Transactions
on Graphics, 23(3):769–776, 2004.

[17] J. Ji, E. Wu, S. Li, and X. Liu. Dynamic LOD on GPU. In Proceedings of the Computer Graphics International,
pages 108–114, 2005.

87

[18] K. Niski, B. Purnomo, and J. Cohen. Multi-grained level of detail using a hierarchical seamless texture atlas.
In Symposium on Interactive 3D Graphics and Games, pages 153–160, 2007.

[19] M. Garland and P.S. Heckbert. Surface simplification using quadric error metrics. In SIGGRAPH 1997, pages
209–216, 1997.

[20] A. Mohr and M. Gleicher. Building efficient, accurate character skins from examples. ACM TOG, 22(3):562–
568, 2003.

[21] C. DeCoro and S. Rusinkiewicz. Pose-independent simplification of articulated meshes. In Symposium on
Interactive 3D Graphics, pages 17–24, 2005.

[22] S. Kircher and M. Garland. Progressive multiresolution meshes for deforming surfaces. In ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, pages 191–200, 2005.

[23] P.-P. Sloan, J. Kautz, and J. Snyder. Precompted radiance transfer for real-time rendering in dynamic, low-
frequency lighting environments. ACM TOG, 21(3):527–536, 2002.

[24] P.-P. Sloan, J. Hall, J. Hart, and J. Snyder. Clustered principal components for precomputed radiance transfer.
ACM TOG, 22(3):382–391, 2003.

[25] P.-P. Sloan, B. Luna, and J. Snyder. Local, deformable precomputed radiance transfer. ACM TOG, 24(3):1216–
1224, 2005.

[26] K. Zhou, Y. Hu, S. Lin, B. Guo, and H. Shum. Precomputed shadow fields for dynamic scenes. ACM TOG,
24(3):1196–1201, 2005.

[27] Z. Ren, R. Wang, J. Snyder, K. Zhou, X. Liu, B. Sun, P.-P. Sloan H. Bao, Q. Peng, and B. Guo. Real-time soft
shadows in dynamic scenes using spherical harmonic exponentiation. ACM TOG, 25(3):977–986, 2006.

[28] A.W. Kristensen, T. Akenine-Möller, and H.W. Jensen. Precomputed local radiance transfer for real-time light-
ing design. ACM TOG, 24(3):1208–1215, 2005.

[29] M. Hasan, F. Pellacini, and K. Bala. Direct-to-indirect transfer for cinematic relighting. ACM TOG, 25(3):1089–
1097, 2006.

[30] H. Hotelling. Relations between two sets of variates. Biometrika, 28:321–377, 1936.

[31] Thomas Melzer, Michael Reitera, and Horst Bischofb. Appearance models based on kernel canonical correla-
tion analysis. Pattern Recognition, 36(9):1961–1971, 2003.

[32] Ladislav Kavan, Steven Collins, Jiri Zara, and Carol O’Sullivan. Skinning with dual quaternions. In I3D ’07:
Proceedings of the 2007 symposium on Interactive 3D graphics and games, pages 39–46, 2007.

[33] Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Sebastian Thrun, Jim Rodgers, and James Davis.
Scape: shape completion and animation of people. ACM Transactions on Graphics, 24(3):408–416, 2005.

[34] X. Shi, K. Zhou, Y. Tong, M. Desbrun, H. Bao, and B. Guo. Mesh puppetry: Cascading optimization of mesh
deformation with inverse kinematics. ACM Transactions on Graphics, 26(3):81.1–81.10, 2007.

[35] O. Weber, O. Sorkine, Y. Lipman, and C. Gotsman. Context-aware skeletal shape deformation. Computer
Graphics Forum (Eurographics 2007), 26(3):265–274, 2007.

[36] P. Joshi, W.C. Tien, M. Desbrun, and F. Pighin. Learning controls for blend shape based realistic facial anima-
tion. In Proceedings of the 2003 Eurographics/SIGGRAPH symposium on computer animation, pages 162–174,
2003.

[37] Zhigang Deng, Pei-Ying Chiang, Pamela Fox, and Ulrich Neumann. Animating blendshape faces by cross-
mapping motion capture data. In I3D ’06: Proceedings of the 2006 symposium on Interactive 3D graphics and
games, pages 43–48, 2006.

88

[38] M. Lau, J. Chai, Y.-Q. Xu, and H.-Y. Shum. Face poser: Interactive modeling of 3d facial expressions using
model priors. In ACM SIGGRAPH / Eurographics Symposium on Computer Animation (SCA 2007), pages
161–170, August 2007.

[39] Ryan White, Keenan Crane, and David Forsyth. Capturing and animating occluded cloth. ACM Transactions
on Graphics, 26(3):34.1–34.8, 2007.

[40] Scott Kircher and Michael Garland. Editing arbitrarily deforming surface animations. ACM Transactions on
Graphics, 25(3):1098–1107, 2006.

[41] W. Xu, K. Zhou, Y. Yu, Q. Tan, Q. Peng, and B. Guo. Gradient domain editing of deforming mesh sequences.
ACM Transactions on Graphics, 26(3):84.1–84.10, 2007.

[42] S. Kircher and M. Garland. Free-form motion processing. ACM Transactions on Graphics, To Appear.

[43] K. Grochow, S.L. Martin, A. Hertzmann, and Z. Popivic. Style-based inverse kinematics. ACM TOG,
23(3):520–529, 2004.

[44] J. Chai and J.K. Hodgins. Performance animation from low-dimensional control signals. ACM TOG, 24(3):686–
696, 2005.

[45] M. Dontcheva, G. Yngve, and Z. Popivic. Layered acting for character animation. ACM TOG, 22(3):409–416,
2003.

[46] Mark Meyer and John Anderson. Key point subspace acceleration and soft caching. ACM Transactions on
Graphics, 26(3):74.1–74.8, 2007.

[47] Y. Yu, K. Zhou, D. Xu, X. Shi, H. Bao, B. Guo, and H.-Y. Shum. Mesh editing with poisson-based gradient
field manipulation. ACM Transactions on Graphics (special issue for SIGGRAPH 2004), 23(3):641–648, 2004.

[48] nVidia CUDA. Compute unified device architecture (cuda). http://developer.nvidia.com/object/cuda.html.

[49] J.P. Lewis, M. Cordner, and N. Fong. Pose space deformation: A unified approach to shape interpolation and
skeleton-driven deformation. In Computer Graphics Proceedings, Annual Conference Series, 2000.

[50] B. Allen, B. Curless, and Z. Popović. Articulated body deformation from range scan data. ACM Transactions
on Graphics, 21(3):612–619, 2002.

[51] D. Anguelov, P. Srinivasan, D. Koller, S. Thrun, J. Rodgers, and J. Davis. Scape: Shape completion and
animation of people. ACM TOG, 24(3):408–416, 2005.

[52] Bernd Bickel, Mario Botsch, Roland Angst, Wojciech Matusik, Miguel Otaduy, Hanspeter Pfister, and Markus
Gross. Multi-scale capture of facial geometry and motion. In SIGGRAPH ’07: ACM SIGGRAPH 2007 papers,
page 33, 2007.

[53] Wan-Chun Ma, Andrew Jones, Jen-Yuan Chiang, Tim Hawkins, Sune Frederiksen, Pieter Peers, Marko
Vukovic, Ming Ouhyoung, and Paul Debevec. Facial performance synthesis using deformation-driven poly-
nomial displacement maps. ACM Trans. Graph., 27(5), 2008.

[54] Wei-Wen Feng, Byung-Uck Kim, and Yizhou Yu. Real-time data driven deformation using kernel canonical
correlation analysis. ACM Transactions on Graphics, 27(3):91:1–9, 2008.

[55] Jernej Barbič and Doug L. James. Real-time subspace integration for st. venant-kirchhoff deformable models.
ACM Trans. Graph., 24(3), 2005.

[56] Sang Il Park and Jessica K. Hodgins. Data-driven modeling of skin and muscle deformation. ACM Trans.
Graph., 27(3):96:1–6, 2008.

[57] D. Baraff and A. Witkin. Large steps in cloth simulation. In Proc. of SIGGRAPH’98, pages 43–54, 1998.

[58] Kwang-Jin Choi and Hyeong-Seok Ko. Stable but responsive cloth. ACM Trans. Graphics, 21(3), 2002.

89

[59] R. Bridson, S. Marino, and R. Fedkiw. Simulation of clothing with folds and wrinkles. In SCA ’03: Proceedings
of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation, 2003.

[60] Rony Goldenthal, David Harmon, Raanan Fattal, Michel Bercovier, and Eitan Grinspun. Efficient simulation
of inextensible cloth. ACM Trans. Graph., 26(3):49, 2007.

[61] Arnulph Fuhrmann, Clemens Groβ, and Volker Luckas. Interactive animation of cloth including self collision
detection. In WSCG ’03, 2003.

[62] Konstantinos Dinos Tsiknis. Better cloth through unbiased strain limiting and physics-aware subdivision. Mas-
ter’s thesis, University of British Columbia, 2004.

[63] M. Oshita and A. Makinouchi. Real-time cloth simulation with sparse particles and curved faces. In Proc. of
Computer Animation, pages 62–83, 2001.

[64] Frederic Cordier and Nadia Magnenat-Thalmann. Real-time animation of dressed virtual humans. Computer
Graphics Forum, 21(3):862–870, 2002.

[65] Frederic Cordier and Nadia Magnenat-Thalmann. A data-driven approach for real-time clothes simulation. In
PG ’04: Proceedings of the Computer Graphics and Applications, 12th Pacific Conference, 2004.

[66] Thomas Stumpp, Jonas Spillmann, Markus Becker, and Matthias Teschner. A geometric deformation model
for stable cloth simulation. In Workshop on Virtual Reality Interaction and Physical Simulation, 2008.

[67] Olaf Etzmuβ, Michael Keckeisen, and Wolfgang Straβer. A fast finite element solution for cloth modelling. In
PG ’03: Proceedings of the 11th Pacific Conference on Computer Graphics and Applications, 2003.

[68] J. Rodriguez-Navarro and A. Susin. Non structured meshes for cloth gpu simulation using fem. In Workshop
on Virtual Reality Interaction and Physical Simulation, 2006.

[69] R.W. Sumner and J. Popović. Deformation transfer for triangle meshes. ACM Transactions on Graphics,
23(3):397–403, 2004.

[70] M. Gleicher. Retargetting motion to new characters. In SIGGRAPH 98 Proceedings, pages 33–42, 1996.

[71] Y. Lipman, O. Sorkine, D. Levin, and D. Cohen-Or. Linear rotation-invariant coordinates for meshes. ACM
Transactions on Graphics, 24(3), 2005.

[72] S. Kircher and M. Garland. Free-form motion processing. ACM Transactions on Graphics, 27(2):1–13, 2008.

[73] P.G. Kry, D.L. James, and D.K. Pai. Eigenskin: real time large deformation character skinning in hardware. In
ACM SIGGRAPH / Eurographics Symposium on Computer Animation (SCA 2002), pages 153–159, 2002.

[74] Cyril Zeller. Cloth simulation on the gpu. In SIGGRAPH ’05: ACM SIGGRAPH 2005 Sketches, page 39, New
York, NY, USA, 2005. ACM.

[75] P.V. Sander, Z.J. Wood, S.J. Gortler, J. Snyder, and H. Hoppe. Multi-chart geometry images. In Proceedings of
the Eurographics/SIGGRAPH Symposium on Geometry Processing, pages 146–155, 2003.

[76] N. Carr, J. Hoberock, K. Crane, and J. Hart. Rectangular multi-chart geometry images. In Proceedings of the
Eurographics/SIGGRAPH Symposium on Geometry Processing, pages 181–190, 2006.

[77] Chih-Yuan Yao and Tong-Yee Lee. Adaptive geometry image. IEEE Transactions on Visualization and Com-
puter Graphics, 14(4):948–960, 2008.

[78] P.V. Sander, J. Snyder, S.J. Gortler, and H. Hoppe. Texture mapping progressive meshes. In Proceedings of the
28th annual conference on Computer graphics and interactive techniques, pages 409–416, 2001.

[79] B. Lévy, S. Petitjean, N. Ray, and J. Maillot. Least squares conformal maps for automatic texture atlas genera-
tion. ACM Transactions on Graphics, 21(3):362–371, 2002.

90

[80] R. Liu and H. Zhang. Segmentation of 3d meshes through spectral clustering. In Proceedings of the 12th Pacific
Conference on Computer Graphics and Applications, pages 298– 305, 2004.

[81] K. Zhou, J. Snyder, B. Guo, and H.-Y. Shum. Iso-charts: Stretch-driven mesh parameterization using spectral
analysis. In Proceedings of the Eurographics/SIGGRAPH Symposium on Geometry Processing, pages 45 – 54,
2004.

[82] D. Julius, V. Kraevoy, and A. Sheffer. D-charts: Quasi-developable mesh segmentation. Computer Graphics
Forum, 24(3):981–990, 2005. Proceedings of Eurographics.

[83] H. Yamauchi, S. Gumhold, R. Zayer, and H.-P. Seidel. Mesh segmentaion driven by Gaussian curvature. Visual
Computer, 21:659–668, 2005.

[84] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W. Stuetzle. Multiresolution analysis of
arbitrary meshes. In Computer Graphics Proceedings (SIGGRAPH 95), pages 173–182, 1995.

[85] Cem Yuksel, John Keyser, and Donald H. House. Mesh colors. Technical Report tamu-cs-tr-2008-4-1, Dept. of
CS, Texas A&M, 2008.

[86] Y. Lee, S. Lee, A. Shamir, D. Cohen-Or, and H.-P. Seidel. Mesh scissoring with minima rule and part salience.
Computer Aided Geometric Design, 22(5):444–465, 2005.

[87] E. Zhang, K. Mischaikow, and G. Turk. Feature-based surface parameterization and texture mapping. ACM
Transaction on Graphics, 24(1):1–27, 2005.

[88] C. Fowlkes, S. Belongie, F. Chung, and J. Malik. Spectral grouping using the Nyström method. IEEE Trans.
Pat. Anal. Mach. Intell., 26(2):214–225, 2004.

[89] S. Katz and A. Tal. Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Transactions on
Graphics, 22(3):954–961, 2003.

[90] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Ponchio, and R. Scopigno. Adaptive tetrapuzzles: efficient
out-of-core construction and visualization of gigantic multiresolution polygonal models. ACM Transactions on
Graphics, 23(3):796–803, 2004.

[91] L. Borgeat, G. Godin, F. Blais, P. Massicotte, and C. Lahanier. GoLD: interactive display of huge colored and
textured models. ACM Transactions on Graphics, 24(3):869–877, 2005.

[92] L.M. Hwa, M.A. Duchaineau, and K.I. Joy. Real-time optimal adaptation for planetary geometry and texture:
4-8 tile hierarchies. IEEE Trans. Vis. Comput. Graph, 11(4):355–368, 2005.

[93] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Trans. Pat. Anal. Mach. Intell., 22(8):888–
905, 2000.

[94] E. Kalogerakis, P. Simari, D. Nowrouzezahrai, and K. Singh. Robust statistical estimation of curvature on
discretized surfaces. In Proceedings of the Eurographics/SIGGRAPH Symposium on Geometry Processing,
pages 13–22, 2007.

[95] Georgios Stylianou and Gerald Farin. Crest lines for surface segmentation and flattening. IEEE Transactions
on Visualization and Computer Graphics, 10(5):536–544, 2004.

[96] V. Kraevoy, A. Sheffer, and C. Gotsman. Matchmaker: Constructing constrained texture maps. ACM Transac-
tions on Graphics, 22(3):326–333, 2003.

[97] V. Kraevoy and A. Sheffer. Cross-parameterization and compatible remeshing of 3d models. ACM Transactions
on Graphics, 23(3):861–869, 2004.

[98] J. Schreiner, A. Asirvatham, E. Praun, and H. Hoppe. Inter-surface mapping. ACM Transactions on Graphics,
23(3):870–877, 2004.

91

[99] Michael S. Floater. Mean value coordinates. Comput. Aided Geom. Des., 20(1):19–27, 2003.

[100] M. Soucy, G. Godin, and M. Rioux. A texture-mapping approach for the compression of colored 3d triangula-
tions. The Visual Computer, 12:503–514, 1996.

[101] N.A. Carr and J.C. Hart. Meshed atlases for real-time procedural solid texturing. ACM Transactions on Graph-
ics, 21(2):106–131, 2002.

[102] P. Cignoni, C. Rocchini, and R. Scopigno. Metro: measuring error on simplified surfaces. Computer Graphics
Forum, 17(2):167–174, 1998.

[103] A. Safonova, J.K. Hodgins, and N.S. Pollard. Synthesizing physically realistic human motion in low-
dimensional, behavior-specific spaces. ACM TOG, 23(3):512–519, 2004.

[104] W. Sun and A. Mukherjee. Generalized wavelet product integral for rendering dynamic glossy objects. ACM
TOG, 25(3):955–966, 2006.

[105] A.G. Kirk and O. Arikan. Precomputed ambient occlusion for character skins. SIGGRAPH 2006 Sketches,
2006.

[106] D.L. James and K. Fatahalian. Precomputing interactive dynamic deformable scenes. ACM TOG, 22(3):879–
887, 2003.

[107] Lib. MoCAP. CMU graphics lab motion capture database. http://mocap.cs.cmu.edu.

[108] O. Arikan. Compression of motion capture databases. ACM TOG, 25(3):890–897, 2006.

[109] J. Malik, S. Belongie, T. Leung, and J. Shi. Contour and texture analysis for image segmentation. Int’l Journal
of Computer Vision, 43(1):7–27, 2001.

[110] M. Brand. Incremental singular value decomposition of uncertain data with missing values. In Proc. European
Conference on Computer Vision (Vol. I), pages 707–720, 2002.

[111] G.H. Golub and C.F. Van Loan. Matrix Computations. The Johns Hopkins Unversity Press, Baltimore, third
edition, 1996.

[112] P. Hall, D. Marshall, and R. Martin. Merging and splitting eigenspace models. IEEE Trans. Pattern Analysis
and Machine Intelligence, 22(9):1042–1049, 2000.

[113] J. Kautz and M. McCool. Interactive rendering with arbitrary brdfs using separable approximations. In Euro-
graphics Workshop on Rendering, pages 281–292, 1999.

[114] X. Liu, P.-P. Sloan, H.-Y. Shum, and J. Snyder. All-frequency precomputed radiance transfer for glossy objects.
In Eurographics Symposium on Rendering, pages 337–344, 2004.

[115] R. Wang, J. Tran, and D.P. Luebke. All-frequency relighting of non-diffuse objects using separable brdf ap-
proximation. In Eurographics Symposium on Rendering, pages 345–354, 2004.

[116] O. Nelles. Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models.
Springer Verlag, 2000.

[117] R. Wang, J. Tran, and D. Luebke. All-frequency interactive relighting of translucent objects with single and
multiple scattering. ACM TOG, 24(3):1202–1207, 2005.

[118] M. Pharr and G. Humphreys. Physically Based Rendering. Morgan Kaufmann, 2004.

[119] R. Ng, R. Ramamoorthi, and P. Hanrahan. All-frequency shadows using non-linear wavelet lighting approxi-
mation. ACM TOG, 22(3):376–381, 2003.

[120] R. Ng, R. Ramamoorthi, and P. Hanrahan. Triple product integrals for all-frequency relighting. ACM TOG,
23(3):477–487, 2004.

92

Vita

Wei-Wen Feng was born on July 18, 1980 in Taipei, Taiwan. He attended National Chiao Tung University in Hsin-

Chu, Taiwan and earned a Bachelor of Science degree in Computer Science in 2002. He then served the mandatory

military service in the Army Special Force Command. During the service, he successfully completed the paratrooper

training and survived five jumps from the airplane (with parachute). After the military service, he left Taiwan to

pursue the graduate study at University of Illinois at Urbana-Champaign. Yizhou Yu was Wei-Wen’s Ph.D advisor at

UIUC and has guided him through many challenges during his Ph.D study. Wei-Wen has completed various research

projects in computer graphics, which have resulted in publications in conferences such as SIGGRAPH. His research

interests include mesh deformation, cloth animation, and real-time rendering.

93

