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ABSTRACT

When building a pattern recognition system, we primarily deal with stochas-

tic signals such as speech, image, video, and so forth. Often, a stochastic

signal is ideally of a one-vector form so that it appears as a single data

point in a possibly high-dimensional representational space, as the majority

of pattern recognition algorithms by design handle stochastic signals hav-

ing a one-vector representation. More importantly, a one-vector represen-

tation naturally allows for optimal distance metric learning from the data,

which generally accounts for significant performance increases in many pat-

tern recognition tasks. This is motivated and demonstrated by our work on

semi-supervised speaker clustering, where a speech utterance is represented

by a Gaussian mixture model (GMM) mean supervector formed based on the

component means of a GMM that is adapted from a universal background

model (UBM) which encodes our prior knowledge of speakers in general.

Combined with a novel distance metric learning technique that we propose,

namely linear spherical discriminant analysis, which performs discriminant

analysis in the cosine space, the GMM mean supervector representation of

utterances leads to the state-of-the-art speaker clustering performance. Not-

ing that the main criticism of the GMM mean supervector representation

is that it assumes independent and identically distributed feature vectors,

which is far from true in practice, we propose a novel one-vector represen-

tation of stochastic signals based on adapted ergodic hidden Markov models

(HMMs) and a novel one-vector representation of stochastic signals based

on adapted left-to-right HMMs. In these one-vector representations, a sin-

gle vector is constructed based on a transformation of the parameters of an

HMM that is adapted from a UBM by various controllable degrees, where the

transformation is mathematically derived based on an upper bound approxi-

mation of the Kullback-Leibler divergence rate between two adapted HMMs.

These one-vector representations possess a set of very attractive properties
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and are rather generic in nature, so they can be used with various types of

stochastic signals (e.g. speech, image, video, etc.) and applied to a broad

range of pattern recognition tasks (e.g. classification, regression, etc.). In

addition, we propose a general framework for one-vector representations of

stochastic signals for pattern recognition, of which the proposed one-vector

representations based on adapted ergodic HMMs and adapted left-to-right

HMMs respectively are two special cases. The general framework can serve

as a unified and principled guide for constructing “the best” one-vector rep-

resentations of stochastic signals of various types and for various pattern

recognition tasks. Based on different types of underlying statistical models

carefully and cleverly chosen to best fit the nature of the stochastic signals,

“the best” one-vector representations of the stochastic signals may be con-

structed by a possibly nonlinear transformation of the parameters of the

underlying statistical models which are learned from the stochastic signals,

where the transformation may be mathematically derived from a properly

chosen distance measure between two statistical models that has an elegant

root in the Kullback-Leibler theory.

Since most work in this dissertation is based on HMMs, we contribute to

this fascinating tool via proposing a new maximum likelihood learning algo-

rithm for HMMs, which we refer to as the boosting Baum-Welch algorithm.

In the proposed boosting Baum-Welch algorithm, we formulate the HMM

learning problem as an incremental optimization procedure which performs

a sequential gradient descent search on a loss functional for a good fit in an

inner product function space. The boosting Baum-Welch algorithm can serve

as an alternative maximum likelihood learning algorithm for HMMs to the

traditional Baum-Welch or expectation-maximization (EM) algorithm, and

a preferred method for use in situations where there is insufficient training

data available. Compared to the traditional Baum-Welch or EM algorithm,

the boosting Baum-Welch algorithm is less susceptible to the over-fitting

problem (known as a general property of maximum likelihood estimation

techniques) in that the boosting Baum-Welch algorithm has a tendency to

produce a “large margin” effect.
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CHAPTER 1

INTRODUCTION

The ever-expanding field of pattern recognition is primarily concerned with

problems such as the automatic discovery of regularities in the data and

optimal decision making or action taking (e.g., classification, regression, etc.)

with the use of the discovered regularities [1]. When we design a pattern

recognition system, we are mainly dealing with a particular kind of signal that

we call random or stochastic and that is assumed to be generated by certain

underlying sources governed by random or stochastic processes [2]. A speech

utterance, an audio segment, an image, a video clip, and a piece of multimedia

data, etc., are all concrete examples of stochastic signals, when they serve

as the input to a pattern recognition system. Usually, when performing a

pattern recognition task, we do not work directly with the raw input signals.

Rather, as a preprocessing step, we compute one or more feature vectors from

a raw input signal through a process known as feature extraction [3]. The

feature extraction process is in general heavily domain and task dependent

and is most often smartly and purposely designed by domain knowledge

experts with care. In a word, the goal of feature extraction is to seek an

efficient and effective representation of an input stochastic signal which can

make the subsequent pattern recognition tasks easier.

The number of feature vectors that we extract from a stochastic signal can

range from one to several hundreds or thousands (or even much more), de-

pending on the stochastic signal and the specific method used for the feature

extraction process. Without loss of generality, for an arbitrary stochastic

signal s, we may assume that it can be efficiently and effectively represented

by an ordered set of n feature vectors

F (s) = {v1,v2, · · · ,vn} (1.1)

where F (s) denotes the feature vector set of s and each element of the feature
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vector set vk is a d-dimensional feature vector. In this way, the raw stochastic

signal s may be safely discarded after feature extraction, and we need only

to work with the feature vector set F (s) in lieu of the raw stochastic signal

s in our pattern recognition tasks. Such a feature vector set representation

of a stochastic signal is a general one for pattern recognition.

However, often, a stochastic signal is ideally of a single-vector or one-vector

form in a possibly high-dimensional representational space. That is, given

a stochastic signal, we desire to represent it by a single vector so that it

appears as a single data point in a possibly high-dimensional space. The rea-

sons for such a desire are two-fold. First, the majority of the existing pattern

recognition algorithms to date, such as the k-nearest-neighbor [4], artificial

neural network [5], support vector machine [6], AdaBoost [7], etc., by design

handle stochastic signals having a single-vector or one-vector representation.

In this sense, the benefit of a one-vector representation of stochastic signals

is tremendous. We can directly apply those excellent “off-the-shelf” pattern

recognition algorithms developed in the past to our specific pattern recogni-

tion tasks in hand if we can always construct a one-vector representation of

the stochastic signals to be processed by these tasks. Second, many pattern

recognition algorithms rely on a distance metric that provides a measure of

how dissimilar two given stochastic signals are in a certain meaningful sense.

Such a distance metric normally plays a vitally important role for the per-

formance of the pattern recognition algorithms. Although there currently

exist a number of distance metrics that we may use, such as the Euclidean

distance, cosine distance, Mahalanobis distance [8], and so on, a distance

metric that is considered optimal in some meaningful sense for a specific

task and data set is usually the one that is directly learned from the data for

that particular task. Undoubtedly, a one-vector representation of stochastic

signals naturally allows us to learn an optimal distance metric directly from

the data according to a certain criterion set for our particular pattern recog-

nition task, and the practice of optimal distance metric learning from the

data generally accounts for significant performance increases in a wide range

of pattern recognition tasks.

Conceptually, a one-vector representation smay be constructed for a stochas-

tic signal s from its feature vector set F (s)

T : F (s)→ s (1.2)
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and this dissertation is mainly concerned with the study of the transformation

process T for pattern recognition purposes.

Although the term “one-vector representation” is for the first time pro-

posed by this dissertation, similar concepts and ideas have been vaguely

present in the literature so far. There have existed several methods which

may be used to construct a one-vector representation of stochastic signals.

Among them, the most basic method is the so-called “holistic” method [9],

where all the feature vectors in the feature vector set are stacked orderly to

form a single high-dimensional vector s = [vT
1 ,v

T
2 , · · · ,vT

n ]
T . This holistic

method has been widely used as a one-vector representation of grayscale or

color images in some image-based recognition tasks such as face recognition

[10], where the pixel intensities or color values (or other features extracted

from the pixel locations) of an image are stacked column-wise to form a sin-

gle high-dimensional vector. While the holistic method is very simple and

straightforward, it suffers from several serious limitations. First, in order to

generate representational vectors of the same length for all stochastic signals

to be processed, the number of feature vectors extracted from different sig-

nals must be the same. This normally requires that the signals be of the same

size or be scaled to the same size prior to feature extraction. Second, due to

the way in which the representational vectors are formed, the feature vectors

extracted from different signals are to be one-to-one corresponding. This im-

plies that the fairly exact alignment of the signals must be required in order

for the representational vectors to be useful. Third, for reasons which are ob-

vious, a one-vector representation constructed by this method is not robust

to partial occlusions or corruption in the signals. Another method is the so-

called “bag of words” method [11], where a single vector is formed out of the

histogram of the feature vectors in the feature vector set. This bag of words

method has been very popular in many text and image classification tasks

[12, 13]. While demonstrated to be a fairly good one-vector representation

of stochastic signals for several application domains, this method also has a

few constraints and weaknesses. First, in order to compute the histogram of

the feature vectors in the feature vector set, the feature vectors must be first

quantized into a set of discrete code words. In this case, loss of information

will occur, and if such loss of information is important or even critical to the

pattern recognition task, the results will be adversely affected. Second, the

histogram is a rather coarse model for describing probability distributions.
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Thus, it cannot provide an accurate estimate of the probability distribution

of the feature vectors. Third, the histogram can easily break down in high-

dimensional spaces. This phenomenon is commonly known as the “curse of

dimensionality” [3, 1], which can prevent the method from being utilized to

solve large-scale problems.

In fact, the holistic and the bag of words methods can represent the two

extreme ends of the range of possible methods for constructing a one-vector

representation of stochastic signals. The holistic method is the most rigid

and non-probabilistic method, whereas the bag of words method is the most

flexible method that is based on a special kind of non-parametric probabilis-

tic model – the histogram. Somewhere between these two extremes lies the

Gaussian mixture model (GMM) mean supervector representation of stochas-

tic signals [14]. In the GMM mean supervector representation, a Gaussian

mixture model (GMM) [15], which is a continuous parametric probabilistic

model, widely used due to its excellent properties, is first learned to describe

the probability distribution of the feature vectors in the feature vector set,

and the mean vectors of all the Gaussian components of the learned GMM are

then concatenated to form a single high-dimensional vector usually referred

to as a GMM mean supervector. The GMM mean supervector representa-

tion was originally proposed by researchers in the field of speaker recognition

(a.k.a. speaker identification and verification) [14], and later became pop-

ular in several areas of speech and language processing [16]. Recently, the

GMM mean supervector representation was introduced to the image pro-

cessing and computer vision community and has begun to receive increased

attention from researchers in this field [17]. The main criticism of the GMM

mean supervector representation is, however, that it assumes that the feature

vectors in the feature vector set are independent and identically distributed

(i.i.d.), due to the fact that a GMM is used to model the marginal probability

distribution of the feature vectors rather than to model the joint probability

distribution of the feature vectors. This is certainly a weakness that can

lead to serious problems in real-world applications, as in practice, for most

kinds of stochastic signals, the strong assumption that the feature vectors

extracted from a stochastic signal are i.i.d. is far from valid.

In this dissertation, we mainly study one-vector representations of stochas-

tic signals for pattern recognition. Notably, we propose a novel one-vector

representation of stochastic signals based on adapted ergodic hidden Markov
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models (EHMMs) [18, 19] and a novel one-vector representation of stochastic

signals based on adapted left-to-right hidden Markov models (LRHMMs).

These proposed one-vector representations of stochastic signals are aimed

at overcoming the limitations, constraints, and weaknesses of the afore-

mentioned methods. Specifically, the major contributions of this dissertation

are highlighted as follows.

1. We propose the conceptually new idea of, and novel strategies for, semi-

supervised speaker clustering [20, 21, 22, 23], where semi-supervision

here refers to the use of our prior knowledge of speakers in general

to assist the unsupervised speaker clustering process. By means of

an independent training data set, we encode the prior knowledge at

the various stages of the speaker clustering pipeline via (1) learning a

speaker-discriminative acoustic feature transformation, (2) learning a

universal speaker prior model, and (3) learning a discriminative speaker

subspace, or equivalently, a speaker-discriminative distance metric. We

discover the directional scattering property of the GMM mean super-

vector representation of utterances in the high-dimensional space, and

advocate the use of the cosine distance metric instead of the Euclidean

distance metric for speaker clustering in the GMM mean supervector

space. We propose to perform discriminant analysis based on the cosine

distance metric, which leads to a novel distance metric learning algo-

rithm – linear spherical discriminant analysis (LSDA). We show that

the proposed LSDA formulation can be systematically solved within

the elegant “graph embedding” general dimensionality reduction frame-

work. Our extensive speaker clustering experiments on the GALE

database clearly indicate that (1) our speaker clustering methods based

on the GMM mean supervector representation and vector-based dis-

tance metrics outperform traditional speaker clustering methods based

on the “bag of acoustic features” representation and likelihood-based

distance metrics, (2) our advocated use of the cosine distance met-

ric yields consistent increases in the speaker clustering performance as

compared to the commonly used Euclidean distance metric, (3) our

semi-supervised speaker clustering concept and strategies significantly

improve the speaker clustering performance over the baselines, and

(4) our proposed LSDA algorithm further leads to the state-of-the-art
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speaker clustering performance. One may note that this contribution

seems to stand apart from the rest of the dissertation. However, in ad-

dition to being of great value by itself, this contribution not only serves

as an important motivation for the study of one-vector representations

of stochastic signals for pattern recognition in this dissertation, but

also helps to illustrate the essential concepts and many benefits of one-

vector representations of stochastic signals (such as optimal distance

metric learning from the data).

2. We propose a new maximum likelihood learning algorithm for hidden

Markov models (HMMs), which we refer to as the boosting Baum-

Welch algorithm [24, 25]. In the proposed boosting Baum-Welch al-

gorithm, we formulate the HMM learning problem as an incremental

optimization procedure which performs a sequential gradient descent

search on a loss functional for a good fit in an inner product func-

tion space. Such a sequential optimization procedure may be used to

provide a theoretical interpretation for the boosting algorithm from

a very different perspective. Hence the name of the boosting Baum-

Welch algorithm. The boosting Baum-Welch algorithm can serve as an

alternative maximum likelihood learning algorithm for HMMs to the

traditional Baum-Welch or expectation-maximization (EM) algorithm,

and a preferred method for use in situations where there is insufficient

training data available. Compared to the traditional Baum-Welch or

EM algorithm, the boosting Baum-Welch algorithm is less susceptible

to the over-fitting problem (known as a general property of maximum

likelihood estimation techniques) in that the boosting Baum-Welch al-

gorithm has a tendency to produce a “large margin” effect. Since

HMMs form the basis of the one-vector representations of stochastic

signals proposed in this dissertation, this contribution is relevant and

important.

3. We propose a novel one-vector representation of stochastic signals based

on adapted ergodic hidden Markov models (EHMMs) [18, 19] and a

novel one-vector representation of stochastic signals based on adapted

left-to-right hidden Markov models (LRHMMs). These one-vector rep-

resentations of stochastic signals possess very attractive properties.

First, the representation summarizes the probability distribution of the
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feature vectors in the feature vector set compactly and accurately and

allows the statistical dependence among the feature vectors to be mod-

eled with a systematic underlying structure of first-order Markov chain.

Second, the representation performs unsupervised segmentation of the

stochastic signals implicitly to reveal the local structures of the sig-

nals and to allow for localized, segment-wise comparison of the signals.

Third, the representation is in a one-vector form ready for either super-

vised, semi-supervised or unsupervised distance metric learning from

the data to further reenforce its discriminatory power for classifica-

tion. In addition to the above advantages, the representation is rather

generic in nature and may be used with various types of stochastic sig-

nals (e.g. image, video, speech, etc.) and applied to a broad range of

pattern recognition tasks (e.g. classification, regression, etc.). It does

not require the signals to be of the same size, nor does it require the

alignment of the signals. In addition, it is supposed to be robust to

partial occlusions or corruption in the signals.

4. We propose a general framework for one-vector representations of stochas-

tic signals for pattern recognition, of which the proposed one-vector

representation based on adapted ergodic HMMs and one-vector repre-

sentation based on adapted left-to-right HMMs are two special cases.

The general framework claims that, based on different types of un-

derlying statistical models carefully and cleverly chosen to best fit the

nature of the stochastic signals, “the best” one-vector representations

of the stochastic signals may be constructed by a nonlinear transforma-

tion of the parameters of the underlying statistical models which are

learned from the stochastic signals, where the nonlinear transforma-

tion may be mathematically derived from a properly chosen distance

measure between two statistical models that has an elegant root in

the Kullback-Leibler (KL) theory. The general framework can serve as

a unified and principled guide for constructing “the best” one-vector

representations of stochastic signals of various types and for various

pattern recognition tasks.

The remainder of this dissertation is organized as follows. In Chapter 2, we

address the problem of speaker clustering, which is the specific task of assign-

ing every speech utterance in an audio stream to its speaker. We propose the
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conceptually new idea of, and offer a complete treatment of, semi-supervised

speaker clustering [20, 21, 22, 23], where semi-supervision here refers to the

use of our prior knowledge of speakers in general to assist the unsupervised

speaker clustering process. By means of an independent training data set,

we encode the prior knowledge at the various stages of the speaker cluster-

ing pipeline via (1) learning a speaker-discriminative acoustic feature trans-

formation, (2) learning a universal speaker prior model, and (3) learning

a discriminative speaker subspace, or equivalently, a speaker-discriminative

distance metric. We discover the directional scattering property of the Gaus-

sian mixture model (GMM) mean supervector representation of utterances

in the high-dimensional space, and advocate the use of the cosine distance

metric instead of the Euclidean distance metric for speaker clustering in the

GMM mean supervector space. We propose to perform discriminant analysis

based on the cosine distance metric, which leads to a novel distance metric

learning algorithm – linear spherical discriminant analysis (LSDA). We show

that the proposed LSDA formulation can be systematically solved within

the elegant “graph embedding” general dimensionality reduction framework.

Our speaker clustering experiments on the GALE database clearly indicate

that (1) our speaker clustering methods based on the GMM mean supervec-

tor representation and vector-based distance metrics outperform traditional

speaker clustering methods based on the bag of acoustic features represen-

tation and likelihood-based distance metrics, (2) our advocated use of the

cosine distance metric yields consistent increases in the speaker clustering

performance as compared to the commonly used Euclidean distance metric,

(3) our semi-supervised speaker clustering concept and strategies significantly

improve the speaker clustering performance over the baselines, and (4) our

proposed LSDA algorithm further leads to the state-of-the-art speaker clus-

tering performance. This chapter, in addition to being of great value by

itself, serves as an important motivation for the study of one-vector repre-

sentations of stochastic signals for pattern recognition in this dissertation,

and more importantly, helps to illustrate the essential concepts and many

benefits of one-vector representations of stochastic signals (such as optimal

distance metric learning from the data).

In Chapter 3, we provide a detailed review of the basics of HMMs [26, 27,

28]. These include the basic concepts and definitions of HMMs as well as

the solutions to three fundamental problems of HMMs. Under the context
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of HMMs, we also introduce the concept and strategy of universal back-

ground modeling, and present several popular model adaptation techniques

for HMMs. Since most of the techniques developed in this dissertation are for

or based on HMMs, a fundamental review of this fascinating tool is necessary

and inevitable.

In Chapter 4, we propose a new maximum likelihood learning algorithm for

HMMs, which we refer to as the boosting Baum-Welch algorithm [24, 25]. In

the proposed boosting Baum-Welch algorithm, the problem of HMM learning

is formulated as a sequential optimization problem on a loss functional in an

inner product function space instead of an iterative optimization problem on

a log likelihood objective function in a model parameter space. Such a se-

quential optimization procedure in a function space may be used to provide

a theoretical interpretation for the boosting algorithm from a very differ-

ent perspective. Hence the name of boosting Baum-Welch algorithm. The

boosting Baum-Welch algorithm can serve as an alternative maximum like-

lihood learning algorithm for HMMs to the traditional Baum-Welch or EM

algorithm, and a preferred method for use in situations where there is insuf-

ficient training data available. The reason that the boosting Baum-Welch

algorithm – being itself a maximum likelihood estimation technique – is less

susceptible to the over-fitting problem (known as a general property of max-

imum likelihood estimation techniques) than the traditional Baum-Welch or

EM algorithm is that by design the boosting Baum-Welch algorithm tends

to produce a “large margin” effect. Our experiments show that the boost-

ing Baum-Welch algorithm can lead to a significant performance increase in

an HMM-based speech emotion classification task in the case of small-size

training data sets.

In Chapter 5, we propose a novel one-vector representation of stochastic

signals based on adapted ergodic HMMs [18, 19]. This one-vector representa-

tion is generic in nature and may be used with various types of stochastic sig-

nals (e.g. image, video, speech, etc.) and applied to a broad range of pattern

recognition tasks (e.g. classification, regression, etc.). More importantly, by

combining the one-vector representation with optimal distance metric learn-

ing (e.g. linear discriminant analysis) directly from the data, the performance

of a pattern recognition system may be significantly improved. Our experi-

ments on an image-based recognition task, namely gender recognition based

on facial images, clearly demonstrate the effectiveness of the proposed one-
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vector representation of stochastic signals for potential use in many pattern

recognition systems. To further demonstrate that the proposed one-vector

representation of stochastic signals based on adapted ergodic HMMs can be

an effective one-vector representation of images, we apply it to a practical

application in computer vision, namely the challenging problem of automatic

facial expression recognition from non-frontal view facial images [19, 29, 30].

Our experiments of recognizing six universal facial expressions over exten-

sive multiview facial images with seven pan angles and five tilt angles (i.e. a

total of 35 views), which are synthesized from the BU-3DFE facial expres-

sion database, show promising results that outperform the state of the art

recently reported.

In Chapter 6, we propose a novel one-vector representation of stochastic

signals based on adapted left-to-right HMMs. This one-vector representa-

tion of stochastic signals is complimentary to the one-vector representation

of stochastic signals proposed in Chapter 5, and turns out to be a poten-

tially more appropriate one-vector representation for stochastic signals such

as speech and video which are sequential in nature or which have a clear

temporal dimension of which the dynamics needs to be captured.

In Chapter 7, we propose a general framework for one-vector representa-

tions of stochastic signals for pattern recognition, which can serve as a unified

and principled guide for constructing “the best” one-vector representations of

stochastic signals of various types and for various pattern recognition tasks.

The general framework claims that, based on different types of underlying

statistical models carefully and cleverly chosen to best fit the nature of the

stochastic signals, “the best” one-vector representations of the stochastic

signals may be constructed by a nonlinear transformation of the parameters

of the underlying statistical models which are learned from the stochastic

signals, where the nonlinear transformation may be mathematically derived

from a properly chosen distance measure between two statistical models that

has an elegant root in the Kullback-Leibler (KL) theory. The one-vector rep-

resentations of stochastic signals proposed in Chapters 5 and 6 are considered

as two special cases of this general framework, with the underlying statisti-

cal models being chosen as adapted ergodic HMMs and adapted left-to-right

HMMs, respectively.

Finally, Chapter 8 concludes the dissertation, with a brief discussion of the

future research directions.
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CHAPTER 2

SEMI-SUPERVISED SPEAKER

CLUSTERING

In this chapter, we address the problem of speaker clustering [31, 32, 33, 34,

35, 36]. Speaker clustering aims to assign every speech utterance in an audio

stream to its respective speaker, and is an essential part of a task known

as speaker diarization [37, 38, 39, 40, 41, 42]. Also referred to as speaker

segmentation and clustering, or “who spoken when,” speaker diarization is

the process of partitioning an input audio stream into temporal regions of

speech signal energy contributed from the same speakers. A typical speaker

diarization system consists of three stages. The first is the speech detection

stage, where we find the portions of speech in the audio stream. The second is

the segmentation stage, where we find the locations in the audio stream likely

to be change points between speakers. At this stage, we often over-segment

the audio stream, resulting in only one single speaker in each segment. The

last is the clustering stage, where we associate the segments from the same

speakers together. Figure 2.1 illustrates the process of speaker diarization.

In this chapter, we mainly focus on the clustering stage, not only because the

clustering stage is the most important part of speaker diarization, but also

because most techniques developed for the clustering stage can be readily

applied to the segmentation stage (for example, with the help of a sliding

window of fixed or variable length).

Unlike speaker recognition (i.e. identification and verification), where we

have training data for the speakers and thus recognition can be done super-

vised, speaker clustering is usually performed in a completely unsupervised

manner. The output of speaker clustering is the internal labels of speakers

(e.g. spk1, spk2, etc.) rather than their real identities (e.g. Tom, Mary, etc.).

An interesting question is: Can we do semi-supervised speaker clustering?

That is, can we make use of all available information that can be helpful to

speaker clustering?

Our answer to this question is affirmative. It is worth noting that a few
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Figure 2.1: The process of speaker diarization. A typical speaker
diarization system consists of a speech detection stage, a segmentation
stage, and a clustering stage.

researchers in the field of speaker diarization have already tried to incorpo-

rate some prior knowledge into their methods and indeed gained noticeable

improvements on the performance. For example, the use of a universal back-

ground model (UBM) for adapted Gaussian mixture model (GMM) based

clustering was attempted in [37] and [38], and the GMM mean supervec-

tor as the utterance representation was recently adopted in [41] and [42].

However, none of the above work addresses every facet of the problem. In

this chapter, we offer a complete treatment of the conceptually new idea

of semi-supervised speaker clustering, where semi-supervision refers to the

use of our prior knowledge of speakers in general to assist the unsupervised

speaker clustering process. By means of an independent training data set, we

acquire the prior knowledge by (1) learning a speaker-discriminative acous-

tic feature transformation, (2) learning a universal speaker prior model (i.e.

a UBM) which is then adapted to the individual utterances to form the

GMM mean supervector representation possessing the very nice directional

scattering property, and (3) learning a discriminative speaker subspace, or

equivalently, a speaker-discriminative distance metric.

2.1 The Speaker Clustering Pipeline

Figure 2.2 is a general speaker clustering pipeline. Basically, there are four

critical elements in any speaker clustering algorithm and it is these elements

that make a difference. We incorporate our prior knowledge of speakers

into the various stages of this pipeline through an independent training data

12



Figure 2.2: The general speaker clustering pipeline. There are four essential
elements in any speaker clustering algorithm and it is these elements that
do make a difference.

set. First, at the feature extraction stage, we learn a speaker-discriminative

acoustic feature transformation based on linear discriminant analysis (LDA)

[3]. Second, at the utterance representation stage, we adopt the maximum a

posteriori (MAP) adapted GMM mean supervector representation [14] based

on a UBM [43], which can be considered as a universal speaker prior model.

Third, at the distance metric stage, we learn a speaker-discriminative dis-

tance metric through a novel algorithm – linear spherical discriminant anal-

ysis (LSDA). Note that at the clustering stage, conventional clustering tech-

niques such as k-means [44] and hierarchical clustering [45] can be naturally

employed.

2.2 Feature Extraction

2.2.1 Acoustic Features

The first stage of the speaker clustering pipeline is feature extraction. Fea-

ture extraction is the process of identifying the most important cues from the

measured data while removing unimportant ones for a specific task or pur-

pose based on domain knowledge. For speaker clustering, the most widely

used features are the short-time spectrum envelop based acoustic features

such as the mel-frequency cepstral coefficients (MFCC) [46] and perceptual

13



linear predictive (PLP) coefficients [47]. Although MFCC and PLP were not

originally designed for representing the information relevant to distinguishing

among different speakers — in fact, their primary use is in speech recognition

— they work reasonably well for speaker clustering in practice. The higher-

order MFCCs (e.g. 13-19) are known to correspond to the source character-

istics in the source-filter model of speech production [48], and thus convey

speaker information. In order to account for the temporal dynamics of the

spectrum changes, the basic MFCC or PLP features are usually augmented

by their first-order derivatives (i.e. the delta coefficients) and second-order

derivatives (i.e. the acceleration coefficients). Higher-order derivatives may

be used too, although that is rarely seen. These derivatives incorporate the

time-evolving properties of the speech signal and are expected to increase

the robustness of the acoustic features.

2.2.2 Speaker-Discriminative Acoustic Feature
Transformation

The use of first and second order derivatives of the basic acoustic features

introduces the characterization of the temporal dynamics of the spectrum

changes. However, such characterization is completely unsupervised, and

thus lacks the potential to discriminate between speakers. Using an inde-

pendent training data set, we can simultaneously characterize the temporal

dynamics of the spectrum changes and maximize the discriminative power

of the augmented acoustic features based on a discriminative learning frame-

work. Specifically, we first compute 13 PLP features for every speech frame

with cepstral mean subtraction (CMS) and cepstral variance normalization

(CVN) to compensate for the inter-section and inter-channel variability [49].

Then, instead of augmenting the basic PLP features by their first and sec-

ond order derivatives, we augment them by the basic PLP features of the

neighboring frames spanning a window centered on the current frame. More

precisely, the PLP features of the current frame, those of the KL (e.g. 4)

frames to the left and those of the KR (e.g. 4) frames to the right are

concatenated to form a high-dimensional feature vector, referred to as the

context-expanded feature vector. In the context-expanded feature vector

space, we learn a speaker-discriminative acoustic feature transformation by

14



LDA based on the known speaker labels of the independent training data

set. The context-expanded feature vectors can then be projected onto a

low-dimensional (e.g. 40) speaker-discriminative feature subspace, which is

expected to provide optimal speaker separability. Note that this is one of

the strategies by which we implement our semi-supervised speaker clustering

concept.

In the experiment section, we specifically compare the proposed LDA

transformed acoustic features with the acoustic features traditionally aug-

mented with the first and second order derivatives and show that the LDA

transformed acoustic features outperform the traditional acoustic features on

speaker clustering under the same clustering conditions. This validates that

the proposed speaker-discriminative acoustic feature transformation strategy

can provide a better frontend to speaker clustering as compared to traditional

ones.

2.3 Utterance Representation

2.3.1 Bag of Acoustic Features Representation

The second stage of the speaker clustering pipeline is utterance representa-

tion. Utterance representation, as its name suggests, is the way to compactly

encode the acoustic features of an utterance. In the literature of speaker

clustering, the mainstream utterance representation is the so-called “bag of

acoustic features” representation where the acoustic feature vectors are de-

scribed by a statistical model such as a Gaussian or GMM. The rationale

behind this representation is that in speaker clustering the linguistic content

of the speech signal is considered to be irrelevant and normally disregarded.

Thus, temporal independence between inter-frame acoustic features is as-

sumed.

Most often, due to its unimodal nature, a single Gaussian is far from being

sufficient to model the probability distribution of the acoustic features of

an utterance, and a GMM is preferred. The theoretical property that a

GMM can approximate any continuous probability density function (PDF)

arbitrarily closely given a sufficient number of Gaussian components makes

the GMM a popular choice for parametric PDF estimators.
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The acoustic features of an utterance are modeled by an m-component

GMM, defined as a weighted sum of m component Gaussian densities

p(x|λ) =
m
∑

i=1

wiN(x|µi,Σi) (2.1)

where x is a d-dimensional random vector, wi is the i
th mixture weight, and

N(x|µi,Σi) is a multivariate Gaussian PDF

N(x|µi,Σi) =
1

(2π)d/2|Σi|1/2
e−

1
2
(x−µi)

TΣ−1
i (x−µi) (2.2)

with mean vector µi and covariance matrix Σi. Weight wi can be interpreted

as the a priori probability that an observation of x comes from the source

governed by the ith Gaussian distribution. Thus it satisfies the properties 0 ≤
wi ≤ 1 and

∑m
i=1wi = 1. A GMM is completely specified by its parameters

λ = {wi, µi,Σi}mi=1 and the estimation of the PDF reduces to finding the

proper values of λ.

A central problem of the GMM is how to estimate the model parameters

λ. This problem can be practically solved by maximum likelihood estima-

tion (MLE) techniques such as the expectation-maximization (EM) algorithm

[50]. However, a fundamental drawback of MLE is that it suffers from insuffi-

cient training data. The number of free parameters of a GMM, p, depends on

the feature dimension d and the number of Gaussian components m. More

precisely, p = md2/2+3md/2+m−1, which grows linearly inm but quadrat-

ically in d. In order to alleviate this “curse of dimensionality” [1], diagonal

covariance matrices are often used in the Gaussian components. In this case,

p = 2md+m− 1, which grows linearly in both m and d.

2.3.2 GMM Mean Supervector Representation

A relatively new utterance representation that has emerged in the speaker

recognition area is the GMM mean supervector representation, which is ob-

tained by concatenating the mean vectors of the Gaussian components of a

GMM trained on the acoustic features of a particular utterance [51].
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UBM and MAP Adaptation

When an utterance is short, the number of acoustic feature vectors available

for training a GMM is small. To avoid over-fitting (an intrinsic problem

related to MLE), we can first train a single GMM on an independent training

data set, leading to a well-trained GMM known as the UBM in the speaker

recognition literature. Since the amount of data used to train the UBM is

normally large, and the data is fairly evenly distributed across many speakers,

the UBM is believed to provide a good representation of speakers in general.

Therefore, it can be considered as a universal speaker prior model in which

we encode the common characteristics of different speakers. Given a specific

utterance, we can then derive a target GMM by adapting the UBM to the

acoustic features of the utterance. This is done by MAP adaptation [52].

MAP adaptation starts with a prior model (i.e. the UBM) and iteratively

performs EM estimation. In the E step, the posterior probability of a training

vector falling into every Gaussian component is computed

p(i|xt) =
w0iN(xt|µ0i,Σ0i)

∑m
j=1w0jN(xt|µ0j,Σ0j)

, i = 1, 2, · · · , m (2.3)

Note that Equation (2.3) is the probability that we re-assign the training

vector xt to the ith Gaussian component of the UBM λ0 = {w0i, µ0i,Σ0i}mi=1.

Based on these posterior probabilities, we compute the sufficient statistics of

the training data

ni =

T
∑

t=1

p(i|xt) (2.4)

Ei =
1

ni

T
∑

t=1

p(i|xt)xt (2.5)

E2
i =

1

ni

T
∑

t=1

p(i|xt)x
2
t (2.6)

In the M step, the sufficient statistics of the training data are combined

with the prior model sufficient statistics by interpolation. The new model

parameters are obtained as follows:

w′
i = [αini/T + (1− αi)wi]δ (2.7)
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µ′
i = βiEi + (1− βi)µi (2.8)

σ′2
i = γiE

2
i + (1− γi)(σ2

i + µ2
i )− µ′2

i (2.9)

where δ is a scaling factor computed over all new mixture weights to ensure

that they sum to unity. The interpolation coefficients in Equations (2.7)-

(2.9) are data dependent and automatically determined for every Gaussian

component using the empirical formula νi = ni/(ni+ r
ν) where ν ∈ {α, β, γ}

and rν is a fixed relevance factor for ν. This empirical formula offers a

smart mechanism to control the balance between the new and old sufficient

statistics. Figure 2.3 demonstrates the basic idea of MAP adaptation for a

GMM.

GMM Mean Supervectors

The GMM mean supervector representation of an utterance is obtained by

first MAP adapting the UBM to the acoustic features of the utterance and

then concatenating the component mean vectors of the target GMM to form

a long column vector. Figure 2.4 gives a block diagram that shows how a

GMM mean supervector is generated.

Typically, only the component means are adapted. Once a target GMM is

obtained for an utterance, its component means are stacked to form a GMM

mean supervector

s = [µ1
T µ2

T ... µm
T ]T (2.10)

It is numerically beneficial to subtract the mean supervector of the UBM

Figure 2.3: The basic idea of MAP adaptation. MAP adaptation starts
with a prior model and iteratively performs EM estimation.
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Figure 2.4: The generation of a GMM mean supervector. A GMM mean
supervector is obtained by MAP adapting only the component means of a
UBM.

from a GMM mean supervector, namely,

s′ = s− s0 (2.11)

where s0 is the mean supervector of the UBM. Without causing any ambi-

guity, we call s′ (instead of s) a GMM mean supervector. A complete set of

GMM mean supervectors forms a high-dimensional space called the GMM

mean supervector space.

Property of GMM Mean Supervectors

The GMM mean supervector is an effective utterance representation that has

been applied to speaker recognition. However, it has come to our attention

that the use of the GMM mean supervector representation for speaker clus-

tering is still rare. The GMM mean supervector representation allows us to

represent an utterance as a single data point in a high-dimensional space,
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Figure 2.5: The property of GMM mean supervectors. The data points
show strong directional scattering patterns.

where conventional clustering techniques such as k-means and the hierarchi-

cal clustering can be naturally applied.

Figure 2.5 visualizes the GMMmean supervectors of many utterances from

five different speakers using 2D scatter plots of their two principal compo-

nents. In each plot, the different speakers are shown in different colors. For

each speaker, there are about 150 utterances, denoted by small dots. As one

can see, the data points belonging to the same speaker tend to cluster to-

gether. Thus, the Euclidean distance metric is a reasonable choice for speaker

clustering in the GMM mean supervector space. However, one can also ob-

serve that the data points show very strong directional scattering patterns.

The directions of the data points seem to be more informative and indicative

than their magnitudes. This observation motivated us to favor the cosine

distance metric over the Euclidean distance metric for speaker clustering in

the GMM mean supervector space.

A reasonable explanation as to why the GMM mean supervectors show

strong directional scattering patterns is that when we perform mean-only

20



MAP adaptation, only a subset of the UBM component means is adjusted,

and the particular subset that is adjusted seems to be rather speaker-dependent.

Hence, the speaker-specific information is encoded in those component means

which are adapted. Therefore, the utterances from the same speaker tend

to yield a cluster of GMM mean supervectors that scatter in a particular

direction in the GMM mean supervector space.

As presented later in the experiment section, our experiment results on all

speaker clustering tasks clearly demonstrate that the cosine distance met-

ric consistently outperforms the Euclidean distance metric when using the

GMM mean supervector as the utterance representation. This strongly sup-

ports our discovery of the directional scattering property of the GMM mean

supervectors and forms the foundation of our original motivation to perform

discriminant analysis in the cosine distance metric space.

2.4 Distance Metric

The third stage of the speaker clustering pipeline is distance metric. The

distance metrics that can be used for speaker clustering are closely related

to the particular choice of utterance representations. Two popular categories

of distance metrics, namely likelihood-based distance metrics and vector-

based distance metrics, are widely used for the two corresponding utterance

representations, respectively.

2.4.1 Likelihood-Based Distance Metrics

For the bag of acoustic features utterance representation, the distance metric

should represent some measure of the distance between two statistical mod-

els. A famous likelihood-based distance metric extensively used for speaker

clustering is the Bayesian information criterion (BIC) [53]. For a given ut-

terance, the BIC value indicates how well a model fits the utterance and is

given by

BIC(Mi) = logL(Xi|Mi)−
λ

2
ki log(ni) (2.12)

where L(Xi|Mi) is the likelihood of the acoustic features Xi given the model

Mi, λ is a design parameter, ki is the number of free parameters inMi, and ni
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is the number of feature vectors in Xi. The distance between two utterances

Xi and Xj is given by the ∆BIC value. If we assume Mi and Mj are both

Gaussian, then ∆BIC is given by

∆BIC(Xi, Xj) = n log Σ− ni log Σi − nj log Σj − λP (2.13)

where n = ni + nj, Σi and Σj are the covariance matrices of Xi and Xj ,

respectively, Σ is the covariance matrix of the aggregate of Xi and Xj , and

P is a penalty term given by

P =
1

2
(d+

1

2
d(d+ 1)) logn (2.14)

with d being the dimension of the acoustic feature vectors.

Other likelihood-based distance metrics include the generalized likelihood

ratio (GLR), Gish distance, Kullback-Leibler divergence (KLD), divergence

shape distance (DSD), Gaussian divergence (GD), cross BIC (XBIC), cross

log likelihood ratio (XLLR), and so forth [54]. All these metrics have been

proposed for the bag of acoustic features utterance representation.

2.4.2 Vector-Based Distance Metrics

For the GMM mean supervector utterance representation, since an utterance

can be represented as a single data point in a high-dimensional vector space,

the most often used distance metric is the Euclidean distance metric

d(x,y) = (x− y)T (x− y) (2.15)

As we discussed earlier, in the GMM mean supervector space, the data

points belonging to the same speaker tend to cluster together. Thus, the

Euclidean distance metric is a reasonable choice for speaker clustering in the

GMM mean supervector space. However, we observe that the data points

show very strong directional scattering patterns. The directions of the data

points seem to be more informative and indicative than their magnitudes.

This observation motivated us to advocate the use of the cosine distance

metric instead of the Euclidean distance metric for speaker clustering in the

GMM mean supervector space. The cosine distance metric is a measure of
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the angle between two vectors in the space and is irrelevant to the norms of

the vectors. It is defined as

d(x,y) = 1− xTy√
xTx

√

yTy
(2.16)

Our experiments show that the cosine distance metric consistently outper-

forms the Euclidean distance metric for speaker clustering in the GMM mean

supervector space.

2.4.3 Distance Metric Learning vs. Linear Subspace Learning

Although the Euclidean and cosine distance metrics can be directly used,

they are optimal only if the data points are uniformly distributed in the

entire space. In a high-dimensional space, most often the data points lie in

or near a low-dimensional manifold, or preferably a linear subspace, of the

original space. In this case, it is extremely advantageous if we can learn an

optimal distance metric for the data.

We define a generalized Euclidean distance metric between two data points

x and y as

d(x,y) = (x− y)TA(x− y) (2.17)

where the positive definite matrix A is intended to compensate for the non-

uniform data distribution. If A coincides with the covariance matrix of the

data, this generalized Euclidean distance metric reduces to the Mahalanobis

distance [8]. Equation (2.17) can be re-written as

d(x,y) = (A
1
2x− A 1

2y)T (A
1
2x− A 1

2y)

= (Wx−Wy)T (Wx−Wy) (2.18)

That is, the generalized Euclidean distance metric between x and y can

be re-organized as the Euclidean distance metric between two linearly trans-

formed data points Wx and Wy where W = A
1
2 .

Similarly, we define a generalized cosine distance metric between x and y
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as

d(x,y) = 1− xTAy

√
xTAx
√

yTAy

= 1− (A1/2x)T (A1/2y)√
(A1/2x)T (A1/2x)

√
(A1/2y)T (A1/2y)

= 1− (Wx)T (Wy)√
(Wx)T (Wx)

√
(Wy)T (Wy)

(2.19)

Likewise, the generalized cosine distance metric between x and y is the

cosine distance metric between two linearly transformed data points Wx

and Wy where W = A
1
2 . In this sense, it is clear that learning an optimal

distance metric is equivalent to learning an optimal linear subspace of the

original high-dimensional space. There exist various linear subspace learning

methods that can fit into this context.

2.4.4 Distance Metric Learning in Euclidean Space

Linear subspace learning can be classified into two distinct categories: unsu-

pervised learning and supervised learning. For unsupervised linear subspace

learning, principal component analysis (PCA) [3] may be the most early de-

veloped and prevailing technique and, when applied to speech or speaker

recognition, is known as the eigenvoice approach [55]. Other more recent

unsupervised learning techniques include the locality preserving projection

(LPP) [56], neighborhood preserving embedding (NPE) [57], etc. All these

techniques may be applied to speaker clustering. However, we are most in-

terested in supervised learning since the goal of speaker clustering is related

to classification. It is natural that we prefer a learning technique that is

discriminative rather than generative. The most famous technique for su-

pervised linear subspace learning is Fisher’s LDA. LDA has been applied to

speaker clustering, and the resulting technique is termed the fishervoice ap-

proach [22]. The term “fishervoice” is analogous to “fisherface” in the face

recognition literature, where the fisherface approach refers to the face recog-

nition method based on LDA while the eigenface approach refers to the face

recognition method based on PCA.
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2.4.5 Distance Metric Learning in Cosine Space

Most existing linear subspace learning techniques (e.g. PCA and LDA) are

implicitly based on the Euclidean distance metric. As we mentioned earlier,

due to the directional scattering property of the GMM mean supervectors,

we favor the cosine distance metric over the Euclidean distance metric for

speaker clustering in the GMM mean supervector space. Therefore, we pro-

pose to perform discriminant analysis in the cosine distance metric space.

Linear Spherical Discriminant Analysis

We coined the phrase “spherical discriminant analysis” (SDA) to denote dis-

criminant analysis in the cosine distance metric space. We define a projection

from a d-dimensional linear space to an h-dimensional hypersphere where

h < d

y =
W Tx

‖W Tx‖ (2.20)

We note that such a projection is nonlinear. However, under two mild

conditions, this projection can be linearized. One condition is that the ob-

jective function for learning the projection only involves the cosine distance

metric. The other condition is that only the cosine distance metric is used

in the projected space. In this case, the norm of the projected vector y

has an impact on neither the objective function nor distance computation

in the projected space. Thus, the denominator term of Equation (2.20) can

be safely dropped, leading to a linear projection y = W Tx, which is called

“linear spherical discriminant analysis” (LSDA). Figure 2.6 illustrates the

basic ideas of SDA and LSDA.

Formally speaking, the goal of LSDA is to seek a linear projection W

such that the average within-class cosine similarity of the projected data is

maximized while the average between-class cosine similarity of the projected

data is minimized. Assuming that there are c classes, the average within-class

cosine similarity is defined to be the average of the class-dependent average

cosine similarities between the projected data vectors. It can be written in

terms of the unknown projection matrix W and original data points x

SW =
1

c

c
∑

i=1

Si (2.21)
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Figure 2.6: The schematic illustration of SDA and LSDA. Under two mild
conditions, the nonlinear projection can be linearized and thus SDA reduces
to LSDA.

Si =
1

|Di||Di|

∑

xj ,xk∈Di

yT
j yk√

yT
j yj

√
yT
k yk

=
1

|Di||Di|

∑

xj ,xk∈Di

xT
j WWTxk√

xT
j WWTxj

√
xT
k WWTxk

(2.22)

where |Di| denotes the number of data points in the ith class. Similarly,

the average between-class cosine similarity is defined to be the average of

the average cosine similarities between any two pairs of classes. It can be

likewise written in terms of W and x

SB =
1

c(c− 1)

c
∑

m=1

c
∑

n=1

Smn (m 6= n) (2.23)
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Smn =
1

|Dm||Dn|

∑

xj∈Dm

xk∈Dn

yT
j yk√

yT
j yj

√
yT
k yk

=
1

|Dm||Dn|

∑

xj∈Dm

xk∈Dn

xT
j WWTxk√

xT
j WWTxj

√
xT
k WWTxk

(2.24)

where |Dm| and |Dn| denote the number of data points in the mth and nth

classes, respectively.

The LSDA criterion is to maximize SW while minimizing SB, which can

be written in the trace difference form

W = argmax
W

(SW − SB) (2.25)

Note that there are various forms of the criterion that may be adopted. We

choose the trace difference form, which is similar to the work of Ma et al. [58].

However, we systematically solve our LSDA formulation in an elegant general

dimensionality reduction framework known as graph embedding [59, 60].

Graph Embedding Solution to LSDA

Graph embedding is a general framework for dimensionality reduction. In

graph embedding, an undirected weighted graph, G = {X,S}, with vertex

set X and similarity matrix S, is used to characterize certain statistical or

geometrical properties of a data set. A vertex xi in X represents a data

point in the high-dimensional space. An entry sij in S, denoted as the

weight of the edge connecting xi and xj, represents the similarity between

the two corresponding data points. The purpose of graph embedding is to

represent each vertex of the graph as a low dimensional vector that preserves

the similarities in S.

For a specific dimensionality reduction algorithm, there may exist two

graphs. One is the intrinsic graph {X,S(i)}, which characterizes the data

properties that the algorithm aims to preserve. The other is the penalty

graph {X,S(p)}, which characterizes the data properties that the algorithm

aims to avoid. These two graphs share the same vertex set but have different
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similarity matrices. The graph similarity preserving criterion is given by

W = argmin
W

∑

i 6=j

‖f(xi,W )− f(xj,W )‖2(s(i)ij − s(p)ij ) (2.26)

where f(x,W ) is a general projection with parametersW . One can easily see

that minimizing the above objective function ensures that if the data points

xi and xj are close in the sense of the similarities in S(i) and S(p), then their

projections in the low-dimensional space are close, too.

While the projection function f(x,W ) can be of any form, a widely used

one is the linear projection f(x,W ) = W Tx. The criterion for the linear

specialization of graph embedding becomes

W = argmin
W

∑

i 6=j

‖W Txi −W Txj‖2(s(i)ij − s(p)ij ) (2.27)

It has been shown in [61] that minimizing Equation (2.27) is equivalent to

maximizing

w = argmax
w

wTXSXTw

wTXDXTw
(2.28)

where S = S(i)−S(p), D is a diagonal matrix with the diagonal elements being

the column sums of S, namely Dii =
∑

j sji, and the w’s are the columns

of W , which correspond to the eigenvectors of the generalized eigenvalue

problem

XSXTw = λXDXTw (2.29)

With different choices of S, this linear graph embedding framework can

lead to different linear dimensionality reduction algorithms such as LDA,

LPP, NPE, etc.

However, our LSDA formulation cannot be treated in the linear graph

embedding framework. Recall that SDA reduces to LSDA under two mild

conditions, one of which is that only the cosine distance metric is used in the

objective function for learning the projection. In the objective function in

Equation (2.27), the L2 norm term, which is the Euclidean distance metric,

violates this condition. Thus, we need to choose a spherical projection of the
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form of Equation (2.20), which leads to the following criterion:

W = argmin
W

∑

i 6=j

∥

∥

∥

∥

W Txi

‖W Txi‖
− W Txj

‖W Txj‖

∥

∥

∥

∥

2

(s
(i)
ij − s(p)ij ) (2.30)

In the above revised objective function, since the projected vectors are of

unit norm, the Euclidean distance metric and the cosine distance metric are

equivalent.

Although there is no closed-form solution to the optimization problem of

Equation (2.30), as shown in [60], this problem can be solved using a steepest

descent algorithm, with the gradient derived as

G = 2
∑

i 6=j

{

fijW
Txix

T
i

f 3
i fj

+
fijW

Txjx
T
j

f 3
j fi

− W T (xix
T
j + xjx

T
i )

fifj

}

(s
(i)
ij − s(p)ij )

(2.31)

where fi =
√

xT
i WW Txi, fj =

√

xT
j WW Txj , and fij = xT

i WW Txj. If we

expand the L2 norm term of Equation (2.30), by some simple manipulations

we obtain

∥

∥

∥

∥

W Txi

‖W Txi‖
− W Txj

‖W Txj‖

∥

∥

∥

∥

2

= 2

(

1− xi
TWW Txj

‖W Txi‖ ‖W Txj‖

)

(2.32)

Thus, the criterion in Equation (2.30) is equivalent to the following crite-

rion:

W = argmax
W

∑

i 6=j

xi
TWW Txj

√

xT
i WW Txi

√

xT
j WW Txj

(s
(i)
ij − s(p)ij ) (2.33)

By comparing Equation (2.33) to Equations (2.21)–(2.25), we conclude

that the graph embedding criterion of Equation (2.30) is the equivalent to

the LSDA criterion of Equation (2.25) if the entries of the similarity matrices

S(i) and S(p) are set to proper values, as follows:

s
(i)
jk ← 1

c|Di||Di|
if xj ,xk ∈ Di, i = 1, ..., c

s
(p)
jk ← 1

c(c− 1)|Dm||Dn|
if xj ∈ Dm,xk ∈ Dn

m,n = 1, ..., c,m 6= n (2.34)
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That is, by assigning appropriate values to the weights of the intrinsic and

penalty graphs, our LSDA formulation can be systematically solved within

the elegant graph embedding general dimensionality reduction framework.

2.5 Clustering

The last stage of the speaker clustering pipeline is clustering. We are inter-

ested in conventional clustering techniques which can be applied to the GMM

mean supervector space. We mainly focus on two traditional classes of algo-

rithms. One is “flat” clustering – clustering by partitioning the data space.

The other is hierarchical clustering, where we try to construct not a partition

but a nested hierarchy of partitions. In most real-world applications, one of

these two classes of algorithms is employed.

The representative flat clustering algorithm is k-means, whose objective is

to partition the data space in such a way that the total intra-cluster vari-

ance is minimized. It iterates between a cluster assigning step and a mean

updating step until convergence. Spherical k-means [62] is an extension of

k-means that is based on the cosine distance metric.

The representative hierarchical clustering algorithm is agglomerative clus-

tering [3] whose objective is to obtain a complete hierarchy of clusters in the

form of a dendrogram. The algorithm adopts a bottom-up strategy. First, it

starts with each data point being a cluster. Then, it checks which clusters are

the closest and merges them into a new cluster. As the algorithm proceeds,

it always merges the two closest clusters until there is only one single cluster

left.

A remarkable question related to agglomerative clustering is how to deter-

mine which clusters are the closest. There exist several methods that measure

the distance between two clusters, for instance, the single linkage, complete

linkage, average linkage, “ward” linkage, and so on [45, 63]. We empirically

discover that the “ward” linkage yields the best performance for speaker clus-

tering. The “ward” linkage is a function that specifies the distance between

two clusters X and Y by the increase in the error sum of squares (ESS) after
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Table 2.1: Experiment settings.

Test set Indep. training set

#speaker 630 498
#utterance 19024 18327

#utt/spk (ave.) 30 ∼ 40 30 ∼ 40
utt duration (ave.) 3 ∼ 4s 3 ∼ 4s

merging of X and Y

x̄ =
1

N

N
∑

i=1

xi, ESS(X) =
N
∑

i=1

|xi − x̄|2

d(X, Y ) = ESS(XY )− [ESS(X) + ESS(Y )] (2.35)

2.6 Experiments

2.6.1 Experiment Setup and Protocol

We conduct extensive speaker clustering experiments on the GALEMandarin

database [64]. The GALE database contains about 1900 hours of broadcast

news speech data collected from various Mandarin TV programs at various

times. The waveforms were sampled at 16 kHz and quantized at 16 bits per

sample, and were automatically over-segmented into short utterances using

the BIC criterion, with each utterance being as pure as possible, namely,

each utterance being from a single speaker. A random sample of the results

was further verified by human listeners.

Our experiments are based on a test set of 630 speakers and 19024 utter-

ances extracted from the GALE database. In order to implement our semi-

supervised speaker clustering strategies at the various stages of the speaker

clustering pipeline, we employ an independent training set, which was also

extracted from the GALE database. Note that the test set and the indepen-

dent training set were chosen in such a way that speakers in the independent

training set do not exist in the test set. Table 2.1 lists the detailed experiment

settings.

To guarantee a statistically significant performance comparison, we carry

out our experiments as follows.
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1. A case is an experiment associated with a specific number of test speak-

ers, namely 2, 5, 10, 20, 50, and 100, respectively.

2. For each case, this number of speakers are drawn randomly from the

test set, and all the utterances from the selected speakers are used in

the experiment.

3. For each case, 10 independent trials are run, each of which involves a

random draw of the test speakers.

4. For each case, the average of the clustering results over the 10 indepen-

dent trials is reported.

2.6.2 Performance Evaluation Metrics

We report our experiment results based on two performance evaluation met-

rics, namely the clustering accuracy and the normalized mutual information

(NMI) [65]. These two metrics are standard for evaluating (general) data

clustering results [66]. The clustering accuracy is given by

r =
1

N

N
∑

i=1

[ci = li] (2.36)

where N denotes the number of test utterances, ci is the cluster label of the

ith utterance returned by the algorithm, li is the true cluster label, and [v] is

an indication function which returns 1 if v is true and 0 otherwise.

The NMI is another popular, information-theoretically interpreted metric

given by

r =
I(C,L)

[H(C) +H(L)]/2
(2.37)

where I(C,L) is the mutual information

I(C,L) =
∑

i

∑

j

|ci
⋂

lj|
N

log
N |ci

⋂

lj|
|ci||lj|

(2.38)

and H(C) and H(L) are the entropy

H(C) = −
∑

i

|ci|
N

log
|ci|
N
, H(L) = −

∑

i

|li|
N

log
|li|
N

(2.39)
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In the above formulas, |ci|, |lj | and |ci
⋂

lj | are the number of utterances

from speaker ci, lj , and ci
⋂

lj , respectively.

The above two metrics are used for utterance-based evaluations. We ex-

tend them to frame-based evaluations by simply replacing the number of

utterances in the above formulas with the corresponding number of frames.

This allows us to investigate how the duration of an utterance affects the

clustering performance.

2.6.3 Experiment Results

We present our experiment results in Tables 2.2-2.5. Specifically, we con-

duct speaker clustering (1) in the GMM mean supervector space with the

Euclidean and cosine distance metrics, (2) in the PCA subspace with the

Euclidean distance metric (i.e. the eigenvoice approach), (3) in the LPP

subspace with the Euclidean distance metric, (4) in the NPE subspace with

the Euclidean distance metric, (5) in the LDA subspace with the Euclidean

distance metric (i.e. the fishervoice approach), (6) in the LSDA subspace

with the cosine distance metric. In each experiment, we utilize both k-means

(or spherical k-means) and agglomerative clustering. In order to compare

our methods to the traditional bag of acoustic features methods, we employ

the “Gaussian+BIC” method as the baseline. The experiment results are

presented in four forms – utterance-based clustering accuracies (Table 2.2),

utterance-based NMIs (Table 2.3), frame-based clustering accuracies (Table

2.4), and frame-based NMIs (Table 2.5). In the tables, Orig stands for the

original GMM mean supervector space, k for k-means, and h for hierarchical

clustering.

Additionally, we compare the proposed LDA transformed acoustic features

with the acoustic features traditionally augmented with the first and second

order derivatives. Specifically, 13 basic PLP features augmented by their

first and second order derivatives form a 39-dimensional traditional acoustic

feature vector. Table 2.6 gives a comparison of the results (clustering ac-

curacies) of both kinds of acoustic features on speaker clustering under the

same clustering conditions. In this table, “traditional” stands for traditional

acoustic features, and “LDA” for the proposed LDA transformed acoustic

features. These experiment results show that the LDA transformed acoustic

33



features consistently outperform the traditional acoustic features by 1%-3%,

which validates that the proposed speaker-discriminative acoustic feature

transformation strategy can provide a better frontend to speaker clustering

as compared to traditional ones. In the table, EU stands for Euclidean, COS

for cosine, Trad for the traditional acoustic features, LDA for LDA trans-

formed acoustic features, k for k-means, and h for hierarchical clustering.

Table 2.2: Performance comparison of speaker clustering based on
utterance-based clustering accuracies.

2 spk 5 spk 10 spk 20 spk 50 spk 100 spk
×100% ∼ 60 utt ∼ 150 utt ∼ 300 utt ∼ 600 utt ∼ 1500 utt ∼ 3000 utt

k h k h k h k h k h k h

EU

Orig 94.7 96.0 81.6 85.0 77.3 82.6 70.5 78.1 58.4 69.4 47.2 57.7
PCA 96.6 96.2 84.8 85.5 81.3 82.9 78.5 79.3 69.7 69.9 59.4 58.5
LPP 98.3 98.1 92.5 92.8 87.9 88.6 85.6 84.7 77.4 77.0 70.1 69.8
NPE 97.4 97.0 84.3 85.0 83.2 83.9 78.7 79.3 70.4 69.8 58.1 58.3
LDA 98.3 98.4 94.1 94.0 89.9 90.8 87.2 86.6 79.5 79.6 73.1 72.3

COS
Orig 99.0 99.1 88.3 90.7 84.1 86.5 80.6 82.2 74.7 77.7 66.4 69.3

LSDA 99.2 99.1 97.8 98.0 95.0 94.7 90.3 90.0 84.3 85.9 77.9 79.4

Baseline 82.5 83.8 71.6 72.0 58.3 60.5 53.1 52.7 43.2 44.1 35.0 37.4

Table 2.3: Performance comparison of speaker clustering based on
utterance-based NMIs.

2 spk 5 spk 10 spk 20 spk 50 spk 100 spk
×100% ∼ 60 utt ∼ 150 utt ∼ 300 utt ∼ 600 utt ∼ 1500 utt ∼ 3000 utt

k h k h k h k h k h k h

EU

Orig 91.9 93.7 79.0 82.7 74.4 80.3 67.7 75.3 55.9 66.4 44.3 55.3
PCA 93.9 93.5 82.7 83.0 78.9 79.9 76.2 76.7 66.9 67.6 56.9 56.3
LPP 96.1 95.4 89.9 89.9 85.1 86.2 83.1 82.0 74.8 74.0 67.2 67.3
NPE 95.3 94.3 81.6 82.3 81.1 81.3 76.0 77.1 67.8 67.0 55.7 55.9
LDA 96.2 95.8 92.0 91.5 87.5 88.2 85.0 84.0 77.4 77.6 71.1 70.2

COS
Orig 96.6 96.8 86.0 88.0 81.4 83.6 78.2 79.2 72.1 75.2 63.8 67.1

LSDA 97.2 97.0 95.3 95.3 92.2 92.6 87.3 87.9 82.3 83.2 75.3 77.4

Baseline 79.9 81.5 69.3 69.5 56.2 58.4 50.9 50.4 41.0 41.5 32.2 35.2
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Table 2.4: Performance comparison of speaker clustering based on
frame-based clustering accuracies.

2 spk 5 spk 10 spk 20 spk 50 spk 100 spk
×100% ∼ 60 utt ∼ 150 utt ∼ 300 utt ∼ 600 utt ∼ 1500 utt ∼ 3000 utt

k h k h k h k h k h k h

EU

Orig 95.9 97.2 83.4 87.7 80.6 85.8 74.4 82.5 63.3 74.7 53.5 64.4
PCA 97.4 97.7 86.2 86.6 84.4 85.7 81.9 83.1 74.5 74.8 66.1 67.2
LPP 99.1 99.0 94.7 94.8 90.5 90.6 88.7 88.9 82.6 82.3 76.7 76.9
NPE 98.8 98.5 87.1 87.7 86.1 86.7 82.5 83.6 74.9 74.7 64.5 64.7
LDA 99.2 99.4 96.2 96.0 92.5 92.6 91.0 90.8 84.4 84.3 80.2 81.7

COS
Orig 99.4 99.5 89.9 92.5 87.3 88.1 85.1 86.5 79.3 81.2 72.3 74.9

LSDA 99.7 99.5 98.9 99.2 97.1 96.8 92.5 92.1 87.0 88.2 82.6 83.2

Baseline 84.7 85.1 72.9 73.4 61.6 63.2 57.7 56.9 48.6 49.4 42.7 44.1

Table 2.5: Performance comparison of speaker clustering based on
frame-based NMIs.

2 spk 5 spk 10 spk 20 spk 50 spk 100 spk
×100% ∼ 60 utt ∼ 150 utt ∼ 300 utt ∼ 600 utt ∼ 1500 utt ∼ 3000 utt

k h k h k h k h k h k h

EU

Orig 93.4 95.0 81.2 84.9 78.4 80.1 71.5 80.2 60.7 72.4 51.0 61.6
PCA 95.0 95.6 83.5 84.5 81.9 82.7 78.9 80.1 72.2 72.1 63.4 65.1
LPP 96.8 96.8 92.4 92.3 87.6 88.2 86.2 86.9 80.1 80.1 74.0 74.6
NPE 96.2 95.7 84.7 85.0 83.5 84.6 80.2 80.8 72.0 72.5 61.8 62.0
LDA 97.0 96.5 93.6 93.2 89.5 90.4 88.7 88.0 81.6 81.7 77.2 79.2

COS
Orig 97.1 97.0 87.8 89.9 84.7 85.8 82.2 84.4 76.8 78.7 69.5 72.6

LSDA 97.4 97.3 96.1 96.5 94.9 94.5 89.9 89.4 84.5 86.2 79.8 81.0

Baseline 82.5 82.8 70.2 71.3 59.4 60.7 55.4 54.1 46.3 47.0 40.2 41.7

2.6.4 Discussion

Our experiment results show that our speaker clustering methods based on

the GMM mean supervector representation and vector-based distance met-

rics significantly outperform traditional speaker clustering methods based

on the bag of acoustic features representation and likelihood-based distance

metric such as the BIC. It is worth mentioning that in the Gaussian+BIC

method, if we utilize agglomerative clustering, the computational load can

become prohibitive as the number of speakers increases. This is because at

each iteration, along with a new cluster being formed by merging the two

closest ones, a new statistical model representing the new cluster has to be
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Table 2.6: Performance comparison of the proposed LDA transformed
acoustic features with the traditional acoustic features based on clustering
accuracies.

2 spk 5 spk 10 spk 20 spk 50 spk 100 spk
×100% ∼ 60 utt ∼ 150 utt ∼ 300 utt ∼ 600 utt ∼ 1500 utt ∼ 3000 utt

k h k h k h k h k h k h

EU
Trad 93.5 94.7 80.1 83.7 76.2 81.3 69.0 76.6 57.5 68.4 46.0 56.6
LDA 94.7 96.0 81.6 85.0 77.3 82.6 70.5 78.1 58.4 69.4 47.2 57.7

COS
Trad 97.4 97.7 87.3 89.4 82.9 85.4 79.6 81.2 73.5 76.4 64.9 67.8
LDA 99.0 99.1 88.3 90.7 84.1 86.5 80.6 82.2 74.7 77.7 66.4 69.3

re-trained, and the distance between the new model and any other model up-

dated. On the contrary, agglomerative clustering can be done very efficiently

in the GMM mean supervector space by using the “ward” linkage.

In the GMM mean supervector space, although speaker clustering based

on the Euclidean distance metric achieves reasonably good results, the co-

sine distance metric consistently outperforms the Euclidean distance metric,

thanks to the directional scattering property of the GMM mean supervectors.

Due to the difficulty of handling high-dimensional data, and in order to

alleviate the “curse of dimensionality,” linear subspace learning methods are

used to derive various subspaces in which the final speaker clustering is per-

formed. From the experiment results, we see that the unsupervised methods

(i.e. PCA or the eigenface approach, LPP, NPE) more or less improve the

performance, but significant improvements of the performance are achieved

by supervised methods (i.e. LDA or the fishervoice approach, LSDA). No-

tably, our proposed LSDA algorithm leads to the state-of-the-art speaker

clustering performance.

Also noted is that the frame-based performance is better than the utterance-

based performance. The rationale behind this is that longer utterances tend

to be correctly classified more than shorter utterances, which is reasonable

because longer utterances can provide more speaker-discriminative informa-

tion than shorter ones.

In every experiment, we employ two clustering algorithms, namely k-means

and agglomerative clustering. Although there are pros and cons in each al-

gorithm, we observe that in the same subspace, the speaker clustering per-

formance of the two algorithms is comparable. However, k-means is sensitive
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to initialization, which means the result of a single run is not deterministic.

Thus, we need to restart the k-means algorithm many times (e.g. 50) with a

different initialization at each time, and record the best result. Therefore, k-

means is normally much slower than agglomerative clustering. On the other

hand, agglomerative clustering with the “ward” linkage method runs very

fast. For the case of 100 speakers (about 3000 utterances), it takes our Mat-

lab program less than one minute to complete the job on a Linux machine

with a mainstream configuration.

Finally, the proposed discriminative acoustic feature transformation by

itself can yield increased speaker clustering performance as compared to

traditional acoustic features used for speaker clustering or diarization, as

demonstrated by a separate experiment.

An issue that is not addressed in this chapter is the determination of the

number of speakers. Automatically finding the number of clusters in a dataset

in a completely unsupervised manner is still an open research problem. Many

speaker diarization systems deal with this problem through hierarchical clus-

tering using a BIC-based stopping criterion [39]. A similar method could

have been used to determine the number of speakers automatically in this

chapter. However, the exact number of speakers is hardly found by this

simple method. In general, clustering results may vary dramatically for dif-

ferent numbers of speakers determined. In order to eliminate the influence

of the number of speakers and single out the extent to which the proposed

semi-supervised strategies may improve the speaker clustering performance,

we assume that the number of test speakers is known a priori, and defer the

investigation of this issue to our future work.

2.7 Summary

In this chapter, we propose the conceptually new idea of, and offer a complete

treatment of, semi-supervised speaker clustering. By means of an indepen-

dent training data set, our strategies are to encode the prior knowledge of

speakers in general at the various stages of the speaker clustering pipeline

via (1) learning a speaker-discriminative acoustic feature transformation, (2)

learning a universal speaker prior model, and (3) learning a discriminative

speaker subspace, or equivalently, a speaker-discriminative distance metric.
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We discover the directional scattering property of the GMM mean supervec-

tor representation of utterances and advocate the use of the cosine distance

metric instead of the Euclidean distance metric. We propose to perform dis-

criminant analysis based on the cosine distance metric, leading to a novel dis-

tance metric learning algorithm – LSDA. We show that the proposed LSDA

formulation can be systematically solved within the elegant graph embed-

ding framework. Our speaker clustering experiments indicate that (1) our

speaker clustering methods based on the GMM mean supervector representa-

tion and vector-based distance metrics outperform traditional methods based

on the bag of acoustic features representation and likelihood-based distance

metrics, (2) our advocated use of the cosine distance metric yields consistent

increases in the speaker clustering performance as compared to the commonly

used Euclidean distance metric, thanks to the directional scattering property

of the GMM mean supervectors discovered, (3) our semi-supervised speaker

clustering concept and strategies significantly improve the speaker cluster-

ing performance over the baselines, and (4) our proposed LSDA algorithm

further leads to the state-of-the-art speaker clustering performance.

This chapter specifically treats the problem of speaker clustering, which is

of great value by itself. However, it is seemingly stand-alone from the rest

of the dissertation. We emphasize that this chapter serves as an important

motivation of the study of one-vector representations of stochastic signals for

pattern recognition, which is the main theme of the subsequent chapters in

the dissertation. The use of the GMM mean supervector representation of

utterances for speaker clustering in this chapter is very successful. The GMM

mean supervector representation is a good example of one-vector represen-

tations of stochastic signals, whose essential concepts and many benefits are

well illustrated within the application context of speaker clustering in this

chapter.
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CHAPTER 3

HIDDEN MARKOV MODELS

This chapter provides a somehow detailed review of the basics of hidden

Markov models (HMMs) [26, 27, 28]. Since most of the techniques developed

in this dissertation are for or based on HMMs, a fundamental review of this

fascinating tool is necessary and inevitable. We begin with the basic concepts

and definitions of HMMs, and proceed to the solutions to three fundamental

problems of HMMs. We then introduce the concept and strategy of universal

background modeling in the context of HMMs, and close this chapter with a

description of two popular model adaptation techniques for HMMs, namely

the maximum likelihood linear regression (MLLR) and maximum a posteriori

(MAP) adaptation techniques [67].

3.1 Basic Concepts and Definitions

A hidden Markov model (HMM) is a doubly stochastic process which consists

of an underlying, hidden, discrete random process possessing the Markov

property (namely a Markov chain having a finite number of states) and an

observed, discrete, continuous, or mixed discrete-continuous random process

generated by a set of probabilistic functions of the underlying Markov chain,

one of which is associated with each state of the Markov chain. At a discrete

time instant, the HMM is assumed to be at a certain state, and an observation

is generated by the probabilistic function associated with that particular

state. The underlying Markov chain changes its state at every time instant

according to some state transition probability distribution. In an HMM, it

is only the observations that are seen by an observer, who does not have

any direct knowledge of the underlying state sequence that generated these

observations. HMMs have been proven to be flexible and natural probabilistic

models for describing sequential data such as speech signals (and other time
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series), sequences of the DNA, sequences of characters in English sentences,

and so forth. They are generative models which we can take advantage of

to learn about and characterize the properties of many data sources without

having (or having to create) the actual data sources. In the real world, HMMs

have been successfully applied to a number of practical applications including

automatic speech recognition [46, 68], automatic speech understanding [28],

natural language processing [69], on-line handwriting recognition [70], etc.,

just to name a few.

From the state-space perspective, by definition an HMM consists of the

following elements:

1. The number of discrete states in the model N

2. A set of discrete states S = {S1, S2, · · · , SN}

3. The number of discrete observation symbols M

4. A set of discrete observation symbols V = {v1, v2, · · · , vM}

5. The state transition probability distribution A = [aij ]N×N

aij = P (qt+1 = Sj|qt = Si), i = 1, 2, · · · , N, j = 1, 2, · · · , N (3.1)

6. The state-dependent observation probability distribution B = [bj(k)]N×M

bj(k) = P (vk at t|qt = Sj), j = 1, 2, · · · , N, k = 1, 2, · · · ,M (3.2)

7. The initial state probability distribution Π = [πi]1×N

πi = P (q1 = Si), i = 1, 2, · · · , N (3.3)

Note that the above definitions are given for a special kind of HMM, that

is, those HMMs whose observations are drawn from a discrete finite alpha-

bet according to the discrete observation probability distributions associated

with the states of the underlying Markov chain. This kind of HMM is re-

ferred to as a discrete-observation HMM. There is another kind of HMM,

namely the continuous-observation HMM, whose observations are continu-

ous quantities drawn from a set of continuous state-dependent observation
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probability distributions. The state-dependent observation probability dis-

tributions can be either univariate or multivariate. The extension of the

above definitions for continuous-observation HMMs is natural. In the case

of continuous-observation HMMs, a state-dependent observation probabil-

ity distribution bj(k) is specified by a continuous univariate or multivariate

probability density function (PDF) [71], normally a finite mixture model [72],

whereM in this case denotes the number of mixture components in the finite

mixture model.

From the above definitions, an HMM is completely determined by its pa-

rameters λ = {A,B,Π}. Note that in the definitions of an HMM, the specifi-

cation of the initial state probability distribution Π is not mandatory. Instead

of starting from the time instant t = 1 with a specified initial state probabil-

ity distribution Π, we can start from the time instant t = 0 at a deterministic

state (e.g. state 1). In this way, the initial state probability distribution Π

is absorbed into the state transition probability distribution A. The benefit

of doing so is that it reduces the number of parameters of an HMM to be

estimated and can potentially increase the robustness of HMM training.

3.2 Three Fundamental Problems of HMMs

Historically, there are three fundamental problems associated with HMMs

[27]: scoring (or evaluation), structure identification, and learning (or train-

ing). These three fundamental problems of HMMs are critically important

and must be solved before we can apply HMMs to practical applications in

the real world. Here, we offer concise definitions of these three problems:

1. Scoring: Given an observation sequence O = o1o2 · · · oT and an HMM

λ, the scoring problem aims to compute the probability of the obser-

vation sequence given the model P (O|λ).

2. Structure identification: Given an observation sequence O = o1o2 · · · oT
and an HMM λ, the structure identification problem aims to determine

a state sequence Q = q1q2 · · · qT which is optimal in some meaningful

sense.

3. Leaning: Given an observation sequence O = o1o2 · · · oT , the learning

problem aims to adjust the model parameters λ to satisfy a certain
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given criterion. For example, if the criterion is to maximize P (O|λ),
we end up with maximum likelihood learning for HMMs.

In the following subsections, we will discuss in detail how these three prob-

lems are tackled.

3.2.1 Problem 1: Scoring

The goal of scoring is to compute P (O|λ). If we assume that O is generated

from a fixed state sequence Q = q1q2 · · · qT , then

P (O|Q, λ) = bq1(o1)bq2(o2) · · · bqT (oT ) (3.4)

The probability of this state sequence, Q, is given by

P (Q|λ) = πq1aq1q2 · · · aqT−1qT (3.5)

From the product rule of probability, we have

P (O,Q|λ) = P (O|Q, λ)P (Q|λ) (3.6)

Marginalizing over all possible state sequences Q, we obtain

P (O|λ) =
∑

Q

P (O,Q|λ) (3.7)

At a first sight, we might think that this is the end of the story. However,

this “brute-force” approach is computationally intractable. There is an effi-

cient algorithm, called the forward-backward algorithm (or α-β algorithm),

that can solve the same problem dramatically faster.

Let us define a “forward” variable, αt(i), as the probability of the partial

observation sequence up to time t and state Si being occupied at time t

αt(i) = P (o1o2 · · · ot, qt = Si|λ) (3.8)

It is obvious that at time t = 1

α1(i) = P (o1, q1 = Si|λ) = πibi(o1), i = 1, 2, · · · , N (3.9)
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For t = 2, 3, · · · , T , by induction, we have

αt(j) =

[

N
∑

i=1

αt−1(i)aij

]

bj(ot), j = 1, 2, · · · , N (3.10)

We can then compute P (O|λ) from the forward variable by

P (O|λ) =
N
∑

i=1

P (o1o2 · · · oT , qT = Si|λ) =
N
∑

i=1

αT (i) (3.11)

Compared to the “brute force” approach, which requires approximately 2TNT

arithmetic operations, the forward algorithm only requires N2T arithmetic

operations, which implies a tremendous reduction in computational complex-

ity.

Although the forward algorithm alone suffices for solving the scoring prob-

lem of HMMs, the backward algorithm is equally important. The reason for

this will become obvious when we discuss the learning problem of HMMs.

Let us define a “backward” variable, βt(i), as the probability of the partial

observation sequence from time t+1 to T given that the state Si is occupied

at time t

βt(i) = P (ot+1ot+2 · · · oT |qt = Si, λ) (3.12)

We let

βT (i) = 1, i = 1, 2, · · · , N (3.13)

For t = T − 1, T − 2, · · · , 1, by induction, we have

βt(i) =
N
∑

j=1

aijbj(ot+1)βt+1(j), i = 1, 2, · · · , N (3.14)

As in the forward algorithm, the backward algorithm requires N2T arithmetic

operations. Likewise, we can compute P (O|λ) from the backward variable

by

P (O|λ) =
N
∑

i=1

P (o1o2 · · · oT |q1 = Si, λ)P (q1 = Si|λ) =
N
∑

i=1

β1(i)πi (3.15)

In general, P (O|λ) can be computed using both forward and backward

variables. In the following derivation, without causing any ambiguity, we
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drop the notion of the model parameters λ to avoid cluttering the formulas.

P (O|λ) =

N
∑

i=1

N
∑

j=1

P (o1o2 · · · oT , qt = Si, qt+1 = Sj)

=
N
∑

i=1

N
∑

j=1

αt(i)aijbj(ot+1)βt+1(j)

=
N
∑

i=1

αt(i)βt(i) for arbitrary t : 1 ≤ t ≤ T (3.16)

It is worth mentioning that when we compute P (O|λ) using the forward-

backward algorithm, we marginalize over all the possible state sequences

that could have generated the observation sequence O. This is distinct from

a suboptimal alternative to computing P , which is to find the maximum P

among all the possible state sequences that could have produced O, namely

P = max
Q

P (O,Q|λ) (3.17)

However, most often, P ≈ P (O|λ), because the majority of P (O|λ) is at-
tributed to the P that is produced by the maximum likelihood state sequence.

In the next subsection, we will discuss how we compute this maximum likeli-

hood state sequence Q as well as the associated probability P which we can

then use to approximate P (O|λ).

3.2.2 Problem 2: Structure Identification

The goal of structure identification is to compute the “best” state sequence

Q of an HMM λ that could have produced the observation sequence O in

some optimal sense. Usually, we are interested in finding the single best state

sequence that maximizes P (O,Q|λ), referred to as the maximum likelihood

state sequence. The probability P (O,Q∗|λ) associated with the maximum

likelihood state sequence Q∗ is called the maximum likelihood observation

probability. In practice, we may at times favor this maximum likelihood

observation probability over the total observation probability computed by

the forward-backward algorithm. This is not only because the maximum

likelihood observation probability requires less computation than the total

observation probability, but also because the maximum likelihood observa-
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tion probability can better facilitate embedded training for HMMs (required

by large vocabulary continuous speech recognition) than the total observa-

tion probability [67]. The solution to the structure identification problem is

known as the Viterbi algorithm – a dynamic programming algorithm that

finds the maximum likelihood or Viterbi path in a time-state trellis [73].

Let us define a variable φt(i) as the maximum probability of the partial

observation sequence up to time t along any path that ends at state i at time

t

φt(i) = max
q1q2···qt−1

P (o1o2 · · · ot, q1q2 · · · qt−1, qt = i) (3.18)

We need to introduce an accompanying variable, ψt(i), to keep track of the

index of the state that transitions to state i at time t to facilitate a subsequent

back-tracking step.

The Viterbi algorithm proceeds as follows:

1. Initialization

φ1(i) = πibi(o1), i = 1, 2, · · · , N (3.19)

ψ1(i) = 0, i = 1, 2, · · · , N (3.20)

2. Reclusion

φt(j) = max
1≤i≤N

[φt−1(i)aij ] bj(ot) (3.21)

j = 1, 2, · · · , N, t = 2, 3, · · · , T
ψt(j) = arg max

1≤i≤N
[φt−1(i)aij] (3.22)

j = 1, 2, · · · , N, t = 2, 3, · · · , T

3. Termination

P = max
1≤i≤N

φT (i) (3.23)

qT = arg max
1≤i≤N

φT (i) (3.24)

4. Back-tracking

qt = ψt+1(qt+1), t = T − 1, T − 2, · · · , 1 (3.25)
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As one can see, the Viterbi algorithm efficiently computes the maximum

likelihood observation probability P and the maximum likelihood state se-

quence Q = {q1q2 · · · qT } with a computational complexity of N2T arithmetic

operations.

An alternative but equivalent way of implementing the Viterbi algorithm

is to work in the log domain. Let

π̃i = log π (3.26)

b̃j(ot) = log bj(ot) (3.27)

ãij = log aij (3.28)

The Viterbi algorithm then proceeds as follows:

1. Initialization

φ1(i) = π̃i + b̃i(o1), i = 1, 2, · · · , N (3.29)

ψ1(i) = 0, i = 1, 2, · · · , N (3.30)

2. Reclusion

φt(j) = max
1≤i≤N

[φt−1(i) + ãij ] + b̃j(ot) (3.31)

j = 1, 2, · · · , N, t = 2, 3, · · · , T
ψt(j) = arg max

1≤i≤N
[φt−1(i) + ãij ] (3.32)

j = 1, 2, · · · , N, t = 2, 3, · · · , T

3. Termination

P = max
1≤i≤N

φT (i) (3.33)

qT = arg max
1≤i≤N

φT (i) (3.34)

4. Back-tracking

qt = ψt+1(qt+1), t = T − 1, T − 2, · · · , 1 (3.35)

Working in the log domain avoids numerical problems such as “under-

flows.” As we will see in the next subsection, numerical problems occur
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during the HMM learning process, which has to be resolved by a scaling

mechanism. By working in the log domain, the Viterbi algorithm avoids the

numerical problems and thus does not need such a scaling mechanism.

3.2.3 Problem 3: Learning

We finally arrive at the hardest problem of the three – the learning prob-

lem. The learning problem aims to estimate the parameters of an HMM,

λ, given an observation sequence, O, such that a certain criterion is sat-

isfied. Although there are a variety of criteria that can be employed, we

typically perform maximum likelihood estimation of the model parameters.

The famous classic algorithm that performs maximum likelihood estimation

of the parameters of an HMM is known as the Baum-Welch algorithm [74].

As we will discuss later in this subsection, the Baum-Welch algorithm is in

fact a particular form of the more general expectation-maximization (EM)

algorithm [50] widely recognized in the machine learning literature.

Just like the EM algorithm, the Baum-Welch algorithm is an iterative re-

estimation procedure. The basic idea is that, given the current parameter

estimate at the lth iteration, λ(l), we compute the expected values of certain

model events and, based on these computed expected values, obtain a refined

estimate of the model parameters, λ(l + 1), at the (l + 1)th iteration. This

procedure continues iteratively, each step producing a refined estimate of the

model parameters over the previous estimate, until convergence is achieved.

The Baum-Welch algorithm is guaranteed to converge to a local maximum

of the log likelihood function logP (O|λ). However, since the log likelihood

function is highly non-linear and non-convex, there is no guarantee that the

algorithm converges to the global maximum. Therefore, the result of param-

eter estimation by the Baum-Welch algorithm is not deterministic, which

means, different initializations can possibly lead to different final parameter

estimates, each of which corresponds to a different local maximum of the log

likelihood function. In practice, the Baum-Welch algorithm works reason-

ably well given the proper initialization of the model parameters. It may be

worthwhile to note that in most situations it is not necessary, nor useful, for

the algorithm to converge to the global maximum of the log likelihood func-

tion, because the global maximum is sometimes related to a severe problem
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known as over-fitting [3, 1] in the pattern recognition literature and it is for

sure that we want to prevent this from happening. For example, in the case

where there is little training data available, if the model is flexible enough

(i.e. having a large number of free parameters), we will most likely find the

global maximum of the log likelihood function. In this case, however, we

should definitely avoid the global maximum because by finding the global

maximum we are actually over-fitting the model to the data. As the data is

noisy (that is why we want to describe it using a stochastic model such as

an HMM rather than a deterministic model), we are likely to have fitted the

model to the noise present in the data rather than to have captured the un-

derlying regularities of the data itself. We should be aware that over-fitting

is an inherent problem of maximum likelihood estimation techniques that

aries naturally when there is little training data available, as maximum like-

lihood estimation techniques are aimed at finding the model that can “best”

explain the data without assuming any form of prior knowledge about the

regularities of the data. When there is insufficient training data available,

maximum likelihood estimation techniques will most likely find “too best” a

model, in the sense that the model explains everything present in the data,

including the noise, which is highly undesired.

Now let us return to the discussion of the Baum-Welch algorithm for learn-

ing the HMM parameters. We define a variable, γt(i, j), to be the probability

of being in state Si at time t and in state Sj at time t+1 given the observa-

tion sequence O, and define a variable, γt(i), to be the probability of being

in state Si at time t given O, namely

γt(i, j) = P (qt = Si, qt+1 = Sj|O, λ) (3.36)

i, j = 1, 2, · · · , N, t = 1, 2, · · · , T
γt(i) = P (qt = Si|O, λ) (3.37)

i = 1, 2, · · · , N, t = 1, 2, · · · , T

Obviously,

γt(i) =
N
∑

j=1

γt(i, j) (3.38)
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We further let

γij =
T−1
∑

t=1

γt(i, j) (3.39)

γi =
T−1
∑

t=1

γt(i) (3.40)

Both γij and γi have specific physical meanings that are related to a model

event counting mechanism. That is, γij refers to the expected number of

transitions from state Si to state Sj given the HMM λ and observation se-

quence O, and γi refers to the expected number of transitions from state

Si (regardless of whichever states the transitions are to), conditioned on λ

and O. Through this model event counting mechanism, the Baum-Welch

re-estimation formulas may be intuitively obtained from the following:

π̂i = Expected number of times in state Si at time t = 1

= γ1(i) (3.41)

âij =
Expected number of transitions from state Si to Sj

Expected number of transitions from state Si

=
γij
γi

(3.42)

b̂j(vk) =
Expected number of times in state Sj while emitting vk

Expected number of times in state Sj

=

∑

t:ot=vk
γt(j)

∑T
t=1 γt(i)

(3.43)

Formally, the Baum-Welch algorithm for learning the parameters of an

HMM is stated as follows:

1. Initialization: The initial parameters of the model, λ0, must be pro-

vided, either randomly or a by smarter initialization scheme.

2. Re-estimation: The iterative Baum-Welch re-estimation formulas are
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derived as follows:

π̂i = P (q1 = Si|O, λ)

=
P (O, q1 = Si|λ)

P (O|λ)

=
α1(i)β1(i)

∑N
i=1 α1(i)β1(i)

(3.44)

âij =

∑T−1
t=1 P (qt = Si, qt+1 = Sj |O, λ)
∑T−1

t=1 P (qt = Si|O, λ)

=

∑T−1
t=1 P (O, qt = Si, qt+1 = Sj |λ)
∑T−1

t=1 P (O, qt = Si|λ)

=

∑T−1
t=1 αt(i)aijbj(ot+1)βt+1(j)

∑T−1
t=1 αt(i)βt(i)

(3.45)

b̂j(vk) =

∑

t:ot=vk
P (qt = Sj|O, λ)

∑T
t=1 P (qt = Sj |O, λ)

=

∑

t:ot=vk
P (O, qt = Sj |λ)

∑T
t=1 P (O, qt = Sj |λ)

=

∑

t:ot=vk
αt(j)βt(j)

∑T
t=1 αt(j)βt(j)

(3.46)

3. Convergence test: The Baum-Welch re-estimation formulas are applied

iteratively, each step increasing the value of the log likelihood function

by a certain amount. It is intuitive to employ such a convergence cri-

terion: if the value of the log likelihood function no longer increases,

or the value increase is smaller than a threshold, then we claim that

convergence is achieved. This could be problematic, however. Since

the log likelihood function is highly non-linear and non-convex, it is

very likely that at some iterations, the value of the log likelihood func-

tion remains about the same yet a local maximum is not reached. We

call such places in the domain of the log likelihood function the saddle

points. Preferably, we expect that the saddle points should be by-

passed. Therefore, a better convergence criterion is to test whether the

new estimated parameters are close enough to the previous estimated

parameters. That is, if the Euclidean distance between the parame-

ter vector at iteration l and the parameter vector at iteration l − 1 is
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smaller than a threshold, then we can safely say that convergence is

achieved.

Note that the Baum-Welch re-estimation formulas can also be directly de-

rived from the EM framework, which will not be covered in detail here. In

addition, in the above derivations, we mainly focus on learning the param-

eters of a discrete-observation HMM with the state-dependent observation

probability distributions described by (table-form) probability mass func-

tions (PMFs) [75]. In a continuous-observation HMM, the state-dependent

observation probability distributions are described by (function-form) PDFs.

While a continuous-observation HMM may be equipped with various forms

of state-dependent observation PDFs, the Gaussian PDFs and Gaussian

mixture PDFs [15] are the two most well-known forms in practice. For a

continuous-observation HMM, the Baum-Welch re-estimation formulas should

need to be modified accordingly.

In a Gaussian mixture continuous-observation HMM, a state-dependent

observation probability distribution is given by a Gaussian mixture PDF of

the form

bj(ot) =

M
∑

k=1

cjkN (ot|µjk,Σjk)

1 ≤ j ≤ N, 1 ≤ k ≤M (3.47)

where M is the number of Gaussian components, cjk is the kth mixture

weight, and N(ot|µjk,Σjk) is a multivariate Gaussian PDF with mean vector

µjk and covariance matrix Σjk

N (ot|µjk,Σjk) =
1

(2π)
d
2 |Σjk|

1
2

e−
1
2
(ot−µjk)

TΣ−1
jk (ot−µjk) (3.48)

The Baum-Welch re-estimation formulas for the Gaussian mixture state-
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dependent observation probability distributions are given as follows:

ĉjk =

∑T
t=1 γt(j, k)

∑T
t=1

∑M
k=1 γt(j, k)

(3.49)

µ̂jk =

∑T
t=1 γt(j, k)ot
∑T

t=1 γt(j, k)
(3.50)

Σ̂jk =

∑T
t=1 γt(j, k)(ot − µ̂jk)(ot − µ̂jk)

T

∑T
t=1 γt(j, k)

(3.51)

where 1 ≤ i, j ≤ N, 1 ≤ k ≤M , and

γt(j, k) =
αt(j)βt(j)

∑N
i=1 αt(i)βt(i)

cjkN (ot|µjk,Σjk)
∑M

m=1 cjmN (ot|µjm,Σjm)
(3.52)

Note that for Gaussian mixture continuous-observation HMMs, the Baum-

Welch re-estimation formulas for the initial state probability distribution

and state transition probability distribution remain the same as in case of

discrete-observation HMMs.

In the solutions to the three fundamental problems of HMMs presented

above, there are several practical implementation issues that must be ad-

dressed in order to write a working computer program for the solutions.

These issues include scaling, multiple observation sequences, initial parame-

ter estimates, missing data, choice of model size and type, etc. For a detailed

prescription of these issues, please refer to the widely read and now classic

papers [26, 27].

One last note in this section is on state duration modeling in HMMs.

Perhaps the major weakness of conventional HMMs is that they lack the

capability of modeling state durations in the desirable way, as the inherent

distribution of state durations in an HMM is implicitly exponential. For most

real-world stochastic signals, the exponential state duration distribution is

inappropriate. Therefore, values have been added to the theory of HMMs by

the inclusion of explicit state duration distributions of some analytic forms

[76, 77].
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3.3 Universal Background Modeling

The Baum-Welch algorithm presented above is a maximum likelihood learn-

ing technique for learning the model parameters of an HMM given a set of

training observation sequences. Given a sufficient amount of training data,

the Baum-Welch algorithm can be used to learn high-quality HMMs. To-

gether with other techniques such as scoring and decoding, the HMMs learned

by the Baum-Welch algorithm can produce high-performance results in a va-

riety of real-world applications such as large vocabulary automatic speech

recognition. However, in situations where there is insufficient training data

available for learning an HMM, the Baum-Welch algorithm is likely to lead

to a poorly estimated model. This is known as the over-fitting problem,

which is a general property of maximum likelihood estimation techniques.

To overcome this difficulty, we introduce universal background modeling.

Universal background modeling was originally proposed for biometric verifi-

cation systems which use a universal background model (UBM) to represent

the general and person-independent feature characteristics to be compared

against a model of person-specific feature characteristics when making an

accept or reject decision. For example, in a speaker verification system, the

UBM is a speaker-independent Gaussian mixture model (GMM) trained with

speech samples that come from a large set of speakers, which is used when

training the speaker-specific model by acting as the prior model in MAP

parameter estimation [78]. Under the context of HMMs, the UBM is ob-

tained as follows. We first pool the separate training data for learning the

individual HMMs together to form an aggregated training data set. This

aggregated training data set is normally large enough that we can assume

that it is likely to capture sufficient variations in the population of the data.

We then use the Baum-Welch algorithm to learn a single global HMM based

on the aggregated training data set. We call this single global HMM learned

on the aggregated training data set the UBM, as this single global HMM is

supposed to represent the probability distribution of the observations drawn

from the population of the data. The UBM is in general a well-trained and

robust model, from which we can derive particular individual HMMs specific

to small amounts of training data using one of the available model adapta-

tion techniques for HMMs, as described in the next section. An HMM that

is adapted from the well-trained UBM with a small amount of training data
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is proven to be far more robust than an HMM that is learned directly with

the same small amount of training data using the Baum-Welch algorithm.

A deeper understanding of universal background modeling may be acquired

by connecting it to statistical classification problems. In the Bayesian or min-

imum error classification rule [3, 1], an optimal decision boundary is formed

by the posterior probability distributions of two classes, which may be com-

puted from the class-dependent likelihood probability distributions of the

two classes, respectively. There may be a lot of fine structures in the class-

dependent likelihood probability distribution of either class, and normally

we require a lot of training data to learn these fine structures. However, as

far as the classification problem is concerned, only the regions of the class-

dependent likelihood probability distributions near the decision boundary

are important. The fine structures of the class-dependent likelihood prob-

ability distributions which are away from the decision boundary are of no

use. Therefore, it is a waste of the precious training data to try to learn

these fine structures all over, and more disastrously, the fine structures (both

near and away from the decision boundary) will never be properly learned

if the available training data is insufficient. The introduction of universal

background modeling allows us to learn the fine structures irrelevant to the

classification problem using a large aggregated training data set, and focus

on the regions near the decision boundary by learning the fine structures

within these regions using small amounts of training data.

The concept of universal background modeling is related to the more ele-

gant Bayesian learning theory [1]. In Bayesian learning, a prior probability

distribution is imposed on the model parameters, which will be adjusted as

more and more evidence is present. The UBM may be considered as a prior

model corresponding to the prior probability distribution of the model pa-

rameters. Bayesian learning is a powerful learning paradigm which has many

advantages over maximum likelihood learning. However, it is computation-

ally very expensive. Universal background modeling serves as a good trade-off

point between full Bayesian learning and maximum likelihood learning.
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3.4 Adaptation Techniques for HMMs

Once we have a well-trained UBM that has been learned from an aggregated

training data set, we can derive the individual HMMs from small amounts

of training data using one of the model adaptation techniques for HMMs. In

the literature, there are two popular model adaptation techniques for HMMs,

namely the maximum likelihood linear regression (MLLR) and maximum a

posteriori (MAP) adaptation techniques [67].

3.4.1 MLLR

The maximum likelihood linear regression or MLLR adaptation technique

computes a set of transformations that will reduce the mismatch between

the UBM and a small amount of available training or adaptation data. More

specifically, MLLR estimates a set of linear transformations for the mean

and variance parameters of a Gaussian mixture HMM. The effect of these

transformations is to alter the mean and variance parameters of the HMM

so that it is more likely to generate the adaptation data.

The linear transformation for the mean parameters is given by

µ̂ =Wξ (3.53)

whereW is the d×(d+1) transformation matrix to be estimated, with d being

the dimension of the observation vectors, and ξ is the (d + 1)× 1 extended

mean vector ξ = [1 µT ]T . We may decompose W into W = [b A]. In

this case, A represents a d× d transformation matrix and b represents a bias

vector.

The linear transformation for the variance parameters is given by

Σ̂ = BTHB (3.54)

where H is a d × d transformation matrix to be estimated, and B is the

inverse of the Choleski factor of Σ−1, namely

B = C−1, Σ−1 = CCT (3.55)

An alternative and more efficient form of the linear transformation for the
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variance parameters is given by

Σ̂ = HΣHT (3.56)

where H is the d×d transformation matrix to be estimated. This form of the

linear transformation for the variance parameters allows it to be efficiently

implemented as a transformation of the means and observation vectors, as

follows:

N (o|µ,HΣH) =
1

|H|N (H−1o|H−1µ,Σ) = |A|N (Ao|Aµ,Σ) (3.57)

where A = H−1.

In MLLR, the transform matrices in the above equations are obtained by

solving an optimization problem using the EM algorithm with a standard

auxiliary function. For the details of how to derive the formulas for MLLR

using the EM algorithm, please refer to [67].

3.4.2 MAP

The maximum a posteriori or MAP adaptation technique, sometimes re-

ferred to as the Bayesian adaptation technique for reasons mentioned earlier,

involves the use of the prior knowledge about the distribution of the model

parameters. The rationale behind MAP is that if we know what the model

parameters are likely to be, then we have a better chance to learn a decent

model from a small amount of training data. For the MAP adaptation pur-

pose, the prior knowledge about the distribution of the model parameters is

encoded in the parameters of the UBM.

In the Baum-Welch algorithm described above, when we re-estimate the

parameters of the Gaussian mixture state observation PDFs, ĉjk, µ̂jk, Σ̂jk, 1 ≤
j ≤ N, 1 ≤ k ≤M , instead of starting with randomly initialized parameters,

we start with a UBM with parameters c̄jk, µ̄jk, Σ̄jk, 1 ≤ j ≤ N, 1 ≤ k ≤
M . In the following, we will drop the index ranges to avoid cluttering the

equations by assuming that 1 ≤ j ≤ N, 1 ≤ k ≤ M, 1 ≤ t ≤ T . For

each observation vector ot, we compute the posterior probability of ot being
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generated by state Sj and Gaussian component k of the UBM

γt(j, k) =
αt(j)βt(j)

∑N
i=1 αt(i)βt(i)

c̄jkN(ot|µ̄jk, Σ̄jk)
∑M

m=1 c̄jmN(ot|µ̄jm, Σ̄jm)
(3.58)

Based on these posterior probabilities, we compute the data sufficient

statistics

n(j, k) =

T
∑

t=1

γt(j, k) (3.59)

µ(j, k) =
1

n(j, k)

T
∑

t=1

γt(j, k)ot (3.60)

S(j, k) =
1

n(j, k)

T
∑

t=1

γt(j, k)oto
T
t (3.61)

where n(j, k) can be interpreted as the (fractional) number of observation

vectors for which the state Sj and Gaussian component k of the UBM are

responsible. Notice that the model sufficient statistics given by the UBM are

ñ(j, k) = T c̄jk (3.62)

µ̃(j, k) = µ̄jk (3.63)

S̃(j, k) = Σ̄jk + µ̄jkµ̄
T
jk (3.64)

The MAP adaptation technique generates a new set of sufficient statistics

by interpolating the data and model sufficient statistics, namely

n̂(j, k) = ρ(1)n(j, k) + (1− ρ(1))ñ(j, k) (3.65)

µ̂(j, k) = ρ(2)µ(j, k) + (1− ρ(2))µ̃(j, k) (3.66)

Ŝ(j, k) = ρ(3)S(j, k) + (1− ρ(3))S̃(j, k) (3.67)

where the interpolation coefficients, ρ(1), ρ(2), ρ(3), are smartly adaptive to

the amount of available training data according to the following empirical

formula:

ρ(l) =
n(j, k)

n(j, k) + r(l)
, l = 1, 2, 3 (3.68)

with r(l) being a tunable constant specified by the user.

The new set of sufficient statistics is now used for re-estimating the model
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parameters

ĉjk = n̂(j, k)/T (3.69)

µ̂jk = µ̂(j, k) (3.70)

Σ̂jk = Ŝ(j, k)− µ̂jkµ̂
T
jk (3.71)

In the MAP adaptation algorithm, the re-estimation formulas for the Gaus-

sian mixture state observation PDFs are replaced by the above MAP adapta-

tion formulas. Note that in the second iteration of the algorithm, the newly

adapted Gaussian mixture state observation PDFs will replace the UBM in

the re-estimation formulas. From then on, the estimated Gaussian mixture

observation PDFs at a current iteration will serve as a prior model for the

next iteration. The MAP adaptation of the state initial probability distri-

bution and state transition probability distribution may be likewise derived

[67].

It is worth mentioning that in Equation (3.68), when the number of obser-

vation vectors for which state Sj and Gaussian component k are responsible

is small, i.e., n(j, k) ≈ 0, ρ(l) approaches 1/r(l). In this case, the model

sufficient statistics will dominate the new sufficient statistics, and hence the

new model parameters will remain close to those of the prior model (e.g.

the UBM). When the number of observation vectors for which state Sj and

Gaussian component k are responsible is large, i.e., n(j, k) → ∞, ρ(l) ap-

proaches 1. In this case, the model sufficient statistics will vanish from the

interpolation formulas, and the new sufficient statistics consist of only the

data sufficient statistics. This is exactly the case of the original Baum-Welch

algorithm.

One drawback of the MAP adaptation technique as compared to the MLLR

adaptation technique is that MAP requires more adaptation data than MLLR

in order to yield a good estimate. When the amount of adaptation data is

extremely small, MLLR outperforms MAP. However, as the amount of adap-

tation data increases, MAP begins to perform better than MLLR. Therefore,

if we can make good use of the complementary advantages and disadvan-

tages of MAP and MLLR, both adaptation techniques may be combined in a

smart way to further improve the performance of the adaptation for HMMs.

One practical way of combining the two adaptation techniques is to first use

MLLR to adapt the UBM with the available adaptation data, and the model
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generated by MLLR is then used as the prior model for MAP adaptation

with the same adaptation data. In this way, the Gaussian components of

the state-dependent observation probability distributions that have a low oc-

cupation likelihood in the adaptation data (which hence would not change

much using MAP alone) have been adapted by MLLR [67].
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CHAPTER 4

BOOSTING LEARNING FOR HMMS

As reviewed in Chapter 3, the traditional Baum-Welch or EM algorithm for

learning the model parameters of an HMM is a maximum likelihood estima-

tion technique which suffers from a serious problem known as the over-fitting

problem [3, 1], especially when there is insufficient training data available.

Over-fitting is regarded as a general and inherent property of maximum like-

lihood estimation techniques, where a solution is obtained by optimizing an

objective function in a model parameter space. In this chapter, we propose

a new maximum likelihood learning algorithm for HMMs, which we call the

boosting Baum-Welch algorithm for reasons that will become obvious later

in the chapter. In the proposed boosting Baum-Welch algorithm, we formu-

late the HMM learning problem as an incremental optimization procedure

which performs a sequential gradient descent search on a loss functional for

a good fit in an inner product function space. The boosting Baum-Welch al-

gorithm can serve as an alternative maximum likelihood learning algorithm

for HMMs to the traditional Baum-Welch or EM algorithm, and a preferred

method for use in situations where there is insufficient training data avail-

able. The reason that the boosting Baum-Welch algorithm – being itself a

maximum likelihood estimation technique – is less susceptible to the over-

fitting problem than the traditional Baum-Welch or EM algorithm is that

the boosting Baum-Welch algorithm tends to produce a “large margin” ef-

fect. Our experiments show that the boosting Baum-Welch algorithm can

lead to a significant performance increase in an HMM-based speech emotion

classification task in the case of the small-size training data sets.
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4.1 Boosting Probability Density Estimation

In recent years, ensemble methods such as boosting [79] have gained consid-

erable interest in the pattern recognition and machine learning community.

Boosting is essentially a “voting” method which incrementally builds a lin-

ear combination of a set of “weak” learners to generate a single “strong”

predictive model. The method sequentially fits weak learners to weighted

versions of the training samples, where the weights at the current step are

determined according to the performance of the model built by the previous

step to give more emphasis to those training samples which are difficult to

predict. The success of boosting is attributed to the “boosting” effect that

the linear combination of weak learners achieves as compared to the perfor-

mance of the individual weak learners, thanks to a nice property of boosting

that was discovered several years after the method was invented, namely the

separating or margin maximizing property [80].

Given a data set {zi}ni=1, a space of weak learners H, and a loss function

L, the objective of boosting is to sequentially find a set of weak learners

h1, h2, · · · , hT ∈ H and a set of corresponding constants α1, α2, · · · , αT ∈
R which minimize a total loss on the data set

∑n
i=1 L

(

zi,
∑T

t=1 αtht(zi)
)

.

For example, in the famous AdaBoost algorithm [7], which is a boosting

algorithm originally proposed for the binary classification task, zi = (xi, yi),

yi ∈ {−1,+1}, and L = L
(

yi,
∑T

t=1 αtht(xi)
)

.

The theoretical study of Mason et al. [81] shows that AdaBoost can be

described as a gradient descent search algorithm, where the weights at each

step of the algorithm correspond to the gradient of the following exponential

loss function at the “current” fit:

L =

n
∑

i=1

exp

(

−yi
T
∑

t=1

αtht(xi)

)

(4.1)

Note that the loss function in Equation (4.1) implies the tendency of Ad-

aBoost to produce “large margin” classifiers.

This view of boosting as a gradient descent search for a good fit in a func-

tion space has motivated a general boosting framework for the unsupervised

learning problem of probability density estimation [82]. Let F = lin{H}
be a function space of all linear combinations of weak learners in H, and
L : F → R a loss functional on F . The goal of a boosting algorithm is
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to find a function F ∈ F such that L(F ) is minimized. This goal may be

achieved iteratively via a gradient descent procedure, described as follows.

Assume that at step t of a boosting algorithm, the model built so far is

Ft−1(z) =
∑

j<t

αjhj(z) (4.2)

We now seek a weak learner from H and add it to the current model with a

small positive coefficient ǫ

Ft(z) = Ft−1(z) + ǫh(z) (4.3)

Naturally, we want the loss functional on Ft(z) to decrease. Viewed in

function space terms, we look for the “direction” in the function space such

that L(Ft) decreases the most rapidly. Without any constraints, the desired

direction would be simply the negative gradient of the loss functional on the

current model

h = −∇L(Ft−1) (4.4)

However, the choice of an h is restricted to be from the space H. Therefore,
we instead search for an h at step t to maximize the inner product between

h and the negative gradient of the loss functional on the current model

ht = argmax
h∈H
〈−∇L(Ft−1), h〉 (4.5)

The validity of Equation (4.5) may be seen from a first-order Taylor approx-

imation of the loss functional (if ǫ is small enough)

L(Ft−1 + ǫh) ≈ L(Ft−1) + ǫ 〈∇L(Ft−1), h〉 (4.6)

Equation (4.6) indicates that in order to decrease the loss functional on the

augmented model, we need to minimize the term 〈∇L(Ft−1), h〉. This leads

to Equation (4.5).

For the problem of probability density estimation, we adopt a maximum

likelihood criterion. Let the loss functional be the negative log likelihood of

the data set

L(Ft) = −
n
∑

i=1

log (Ft(zi)) (4.7)
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We have

〈−∇L(Ft−1), h〉 =
n
∑

i=1

1

Ft−1(zi)
h(zi) (4.8)

Thus, for the problem of probability density estimation, a weak learner is

chosen at time t according to the following criterion:

ht = argmax
h∈H

n
∑

i=1

1

Ft−1(zi)
h(zi) (4.9)

One might have noticed that the model augmentation scheme given by

Equation (4.3) does not guarantee a valid probability density function (PDF).

To ensure the validity of a PDF at all steps, we use the following model

augmentation scheme instead:

Ft(z) = (1− α)Ft−1(z) + αh(z), 0 ≤ α ≤ 1 (4.10)

It can be shown that the new model augmentation scheme in Equation

(4.10) does not change the result in Equation (4.9). If we expand L(Ft)

around Ft−1, we have

L(Ft) = L ((1− α)Ft−1 + αh)

= L (Ft−1 + α(h− Ft−1))

≈ L(Ft−1) + α 〈∇L(Ft−1), h− Ft−1〉 (4.11)

In Equation (4.11), the term 〈∇L(Ft−1), h− Ft−1〉 must be negative in order

to ensure the decrease of the loss functional. Whenever this term is equal to

or greater then zero, we say that the algorithm converge to a critical point

of the loss functional. For probability density estimation, we have

〈∇L(Ft−1), h− Ft−1〉 = n−
n
∑

i=1

h(zi)

Ft−1

(4.12)

In summary, the general boosting framework for probability density esti-

mation is given in Algorithm (4.1).
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Algorithm 4.1 A general boosting framework for probability density esti-
mation.

Set F0(z) to uniform on the domain of z
for t = 1 to T do

(a) Set wi =
1

Ft−1(zi)

(b) Find ht ∈ H to maximize
∑

i wiht(zi)
(c) Convergence test: if

∑

i wiht(zi) ≤ n then break
(d) Find αt = argmin0≤α≤1−

∑

i log ((1− α)Ft−1(zi) + αht(zi))
(e) Set Ft = (1− αt)Ft−1(zi) + αtht(zi)

end for

Output the final model FT

4.2 Boosting Learning for GMMs

Gaussian mixture models (GMMs) are popular parametric models widely

used for probability density estimation. A GMM is a finite sum of weighted

Gaussian distributions, which has a nice property that it is capable of ap-

proximating arbitrary continuous PDFs arbitrarily closely provided that a

sufficiently large number of Gaussian components are present in the finite

sum. In the section, we focus on the maximum likelihood learning of GMMs.

We show how we derive a novel boosting learning algorithm for GMMs,

following the methodology of the general boosting framework for probabil-

ity density estimation, which was introduced in the previous section. The

resulting boosting learning algorithm for GMMs is thus referred to as the

boosting GMM algorithm.

For the learning of GMMs, the space of weak learners is constrained to be

all Gaussian mixture models having M mixture components

H = {All GMMs having M mixture components} (4.13)

We start with an initial estimate, which is a GMM

F0(x) =

M
∑

k=1

c0kN (x|µ0k,Σ0k) (4.14)

and iteratively add to this estimate a small component at step t

Ft(x) = (1− αt)Ft−1(x) + αtht(x) (4.15)
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where ht(x) is also a GMM

ht(x) =
M
∑

k=1

ctkN (x|µtk,Σtk) (4.16)

It can be easily proved that Ft(x) is a valid PDF and a GMM at all steps of

the boosting algorithm.

Let the loss functional on Ft be

L(Ft) = −
∑

i

log (Ft(xi)) (4.17)

The first-order Taylor expansion of L(Ft) around Ft−1 reads

L(Ft) = L ((1− αt)Ft−1 + αtht)

= L (Ft−1 + αt(ht − Ft−1))

≈ L(Ft−1)− αt

∑

i

ht(xi)− Ft−1(xi)

Ft−1(xi)

= L(Ft−1)− αt

∑

i

ht(xi)

Ft−1(xi)
+ nαt (4.18)

Thus, in order to decrease L(Ft), we form an optimization problem

h∗t = argmax
ht

∑

i

ht(xi)

Ft−1(xi)

= argmax
ht

∑

i

wt(xi)ht(xi) (4.19)

where wt(xi) may be considered as the weight on the training sample xi at

step t, which is defined as

wt(xi) =
1

Ft−1(xi)
(4.20)

The optimization problem in Equation (4.19) may be solved iteratively

via the EM algorithm. The re-estimation formulas for the parameters of ht
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Algorithm 4.2 The boosting GMM algorithm.

Input: X = {x1, x2, · · · , xn}, T
Initialize: w(xi) =

1
n
, F0 = 0

for t = 1 to T do

(a) Estimate a GMM ht according to Equations (4.21), (4.22), and (4.23)
(b) Find αt = argmax0≤α≤1

∑

i log ((1− α)Ft−1(xi) + αht(xi))
(c) If

∑

i log ((1− αt)Ft−1(xi) + αtht(xi)) ≤
∑

i log (Ft−1(xi)) then
break
(d) Set Ft = (1− αt)Ft−1 + αtht
(e) Update the weights w(xi) =

1
Ft(xi)

end for

Output the final model FT

(reminder: ht is a GMM) are given by

ĉk =
∑

i

wt(xi)γk(xi) (4.21)

µ̂k =

∑

i wt(xi)γk(xi)xi
∑

i wt(xi)γk(xi)
(4.22)

Σ̂k =

∑

i wt(xi)γk(xi)(xi − µ̂k)(xi − µ̂k)
T

∑

iwt(xi)γk(xi)
(4.23)

where γk(xi) is the posterior probability of the kth Gaussian component of

the GMM given the training sample xi, namely γk(xi) = P (k|xi), and is

computed as follows:

γk(xi) =
ckN (xi|µk,Σk)
∑

j cjN (xi|µj,Σj)
(4.24)

where γk(xi) may be intuitively interpreted as the “responsibility” of the kth

Gaussian component of the GMM for the training sample xi. The resulting

boosting GMM algorithm is summarized in Algorithm (4.2).

Equations (4.21), (4.22), and (4.23) suggest that a GMM ht may also be

learned from a weighted version of the training samples in the standard EM

manner, where the weights on the training samples rely on the (reciprocal)

probabilities of the training samples given by the model built at the previous

step. This meets our intuition of boosting that strong emphasis is put on

those training samples which have low probabilities given by the previous

model. Thus, an alternative boosting GMM algorithm is described in Algo-
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Algorithm 4.3 The alternative boosting GMM algorithm.

Input: X = {x1, x2, · · · , xn}, r, T
Initialize: w(xi) =

1
n
, F0 = 0

for t = 1 to T do

(a) Sample Xt from X according to w and r
(b) Estimate a GMM ht from Xt

(c) Find αt = argmax0≤α≤1

∑

i log ((1− α)Ft−1(xi) + αht(xi))
(d) If

∑

i log ((1− αt)Ft−1(xi) + αtht(xi)) ≤
∑

i log (Ft−1(xi)) then
break
(e) Set Ft = (1− αt)Ft−1 + αtht
(f) Update the weights w(xi) =

1
Ft(xi)

end for

Output the final model FT

rithm (4.3), which is similar to the ones in [83, 25], where at each boosting

step, we randomly re-sample the training data set according to the weights

on the training samples and train a GMM on the re-sampled training data

set with the standard EM algorithm.

In the alternative boosting GMM algorithm presented in Algorithm (4.3),

a remaining question is how we re-sample the training data set. In general,

we can sort the training samples in the training data set by their weights

in descending order and keep only a fraction r (e.g. r = 0.3) of the train-

ing samples from the beginning of the sorted list. Another heuristic is to

keep only the first l training samples in the sorted list where l is a quantity

motivated by the entropy of the weight distribution

l = ROUND(exp{−
∑

i

wt(xi)logwt(xi)}) (4.25)

4.3 Boosting Learning for HMMs

Hidden Markov models (HMMs) are another kind of powerful parametric

model for probability density estimation. Unlike GMMs and many other

parametric probability density models, which are used to model the marginal

probability distribution of independent and identically distributed (i.i.d.) ob-

servations, HMMs are used to model the joint probability distribution of an

entire sequence of observations. Therefore, the general boosting framework

for probability density estimation is not directly applicable to the learning of

67



HMMs. In this section, we show how we derive a boosting learning algorithm

for HMMs, following the methodology of the general boosting framework for

probability density estimation. This leads to a novel maximum likelihood

learning algorithm for HMMs that we refer to as the boosting Baum-Welch

algorithm.

If we were to directly apply the general boosting framework for probability

density estimation to the learning of HMMs, we would end up with a so-called

“finite mixture of HMMs” model. While the finite mixture of HMMs model

can potentially be an extension of the current HMM framework, we will not

adopt such an approach here, as it would require that we completely re-design

the training and decoding algorithms. Noting that in an HMM, the initial

state probability distribution and state transition probability distribution

are relatively easy to learn robustly, we will focus on the much more difficult

problem of learning the Gaussian mixture state observation PDFs.

To apply the boosting framework to the learning of the Gaussian mixture

state observation PDFs of an HMM, an ad-hoc solution is to first perform

Viterbi segmentation of the observation sequence and then apply the boost-

ing GMM algorithm to learning the state observation PDFs independently

based on the observations aligned to the individual states of the HMM. After

that, the initial state probability distribution and state transition probabil-

ity distribution are updated in the same way as in the original Baum-Welch

algorithm. These steps are repeated until convergence is achieved.

Such a “hard” partition of the observation sequence into the individual

states of the HMM using the Viterbi algorithm is somehow heuristic. In the

following, we show that a boosting Baum-Welch algorithm can be achieved

in a systematic manner by performing a “soft” partition of the observation

sequence.

At a certain step of a boosting learning algorithm for HMMs, if the only

thing that we want to update is the state observation PDF at state j, we can

compute the negative gradient of the loss functional on the HMM likelihood
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function with respect to the the state observation PDF at state j

−∇L(P )|bj = −∂ − logP (O|λ)
∂bj

=
1

P (O|λ)
∑

q1···qτ=j,qτ+1···qT

πq1aq1q2aqτ−1jajqτ+1 · · · aqT−1qT

T
∏

t=1

bqt(ot))/bj(oτ ) (4.26)

where P (O|λ) is the HMM likelihood function given by

P (O|λ) =
∑

q1q2···qT

[

πq1bq1(o1)
T
∏

t=2

aqt−1qtbqt(ot)

]

(4.27)

By some manipulations, we have

−∇L(p)|bj =
p(O, qt = j|λ)
P (O|λ)bj(ot)

=
P (qt = j|O, λ)

bj(ot)

=
γt(j)

bj(ot)
(4.28)

where γt(j) = P (qt = j|O, λ) and may be computed as

γt(j) =
αt(j)βt(j)

∑N
i=1 αt(i)βt(i)

(4.29)

In Equation (4.29), γt(j) may be interpreted as the “responsibility” of state

j for the observation ot. Thus, at this step of a boosting learning algorithm

for HMMs, we find

hj = argmax
h

〈

−∇L(p)|bj , h
〉

= argmax
h

T
∑

t=1

γt(j)

bj(ot)
h(ot) (4.30)

If we define the weight on the training sample ot as

wj(ot) =
γt(j)

bj(ot)
(4.31)
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Algorithm 4.4 The boosting Baum-Welch algorithm.

Input: O = {o1, o2, · · · , oT}, L
Initialize: Flat start on πi, aij , bj(ot)
for l = 1 to L do

(a) Compute wj(ot) according to Equations (4.29) and (4.31)
(b) Estimate a GMM hj according to Equations (4.33), (4.34), (4.35)

(c) Find αj = argmax0≤α≤1

∑T
t=1 log ((1− α)bj(ot) + αhj(ot))

(d) Set bj = (1− αj)bj + αjhj
(e) Update πi, aij

end for

Output: πi, aij , bj(ot)

the optimization problem in Equation (4.30) becomes

hj = argmax
h

T
∑

t=1

wj(ot)h(ot) (4.32)

which is identical to the optimization problem for the boosting GMM al-

gorithm in Equation (4.19). The re-estimation formulas for the Gaussian

mixture state observation PDF at state j are given as follows:

ĉjk =

T
∑

t=1

wj(ot)γjk(ot) (4.33)

µ̂jk =

∑T
t=1wj(ot)γjk(ot)ot
∑T

t=1 wj(ot)γjk(ot)
(4.34)

Σ̂jk =

∑T
t=1wj(ot)γjk(ot)(ot − µ̂jk)(ot − µ̂jk)

T

∑T
t=1 wj(ot)γjk(ot)

(4.35)

where

γjk(ot) =
cjkN (ot|µjk,Σjk)

∑

m cjmN (ot|µjm,Σjm)
(4.36)

After the state observation PDFs are updated, the initial state probability

distribution and state transition probability distribution are updated in the

same way as in the original Baum-Welch algorithm. The boosting Baum-

Welch algorithm is summarized in Algorithm (4.4).
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4.4 Experiments

4.4.1 Bayesian Classification

In order to demonstrate the effectiveness of the boosting GMM algorithm

and boosting Baum-Welch algorithm for learning GMMs and HMMs re-

spectively, we conduct GMM-based and HMM-based emotion classification

experiments over an emotional speech database that we collected for sev-

eral emotional speech analysis and synthesis purposes. In the experiments,

we adopt a Bayesian or minimum error rate classifier for both classification

tasks. Without loss of generality, we assume that a speech utterance is ef-

fectively represented by a sequence of observation vectors O = o1o2 · · · oT .
The joint probability distribution of O is a described by a generative model

which could have generated O. Let P (O|c) denote the generative model for

the cth emotion category. A Bayesian classifier or the minimum-error-rate

classification rule [3, 1] is given by

c∗ = argmax
c
P (c|O)

= argmax
c
P (O|c)P (c) (4.37)

where P (c) is the prior probability distribution of the cth emotion category.

For the GMM-based classification experiments, P (O|c) is modeled by a

GMM, trained on the observation sequences belonging to the cth emotion

category. Likewise, for the HMM-based classification experiments, P (O|c) is
modeled by an HMM, trained on the observation sequences belonging to the

cth emotion category.

4.4.2 Speech Emotion Recognition

Speech emotion recognition is a relatively new direction in the areas of speech

signal processing and pattern recognition [84, 85, 86, 87, 88]. Unlike speech

recognition, which aims to extract the linguistic content from a speech sig-

nal while considering the emotions carried in the signal as irrelevant noise,

speech emotion recognition aims to extract the non-lexical, paralinguistic in-

formation from the speech signal regardless of its verbal content. Like speech

recognition, speech emotion recognition has turned out to be an important
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research topic and has many useful applications in our daily lives.

Just like speech recognition and many other pattern recognition problems,

the problem of speech emotion recognition is often tackled by generative

model based pattern recognition methods such as Bayesian classification with

Gaussian mixture models (GMMs) [89] and hidden Markov models (HMMs)

[28] as well as through classification of low-level acoustic features such as mel-

frequency cesptral coefficients (MFCCs) [46] or perceptual linear prediction

(PLP) coefficients [47].

4.4.3 Emotional Speech Database

We have collected an emotional speech database for several analysis and syn-

thesis tasks. Our script consists of 720 semantically-neutral English sentences

which were chosen to maximize the phonetic coverage [90]. A student actress

whose mother language is American English was hired to speak each of these

sentences, as naturally as possible, in the neutral, happy, sad, and angry

manners. The speech waveforms were recorded in a studio environment at

44.1 kHz using a MOTU 8pre firewire audio interface and a Studio Projects

B1 condenser microphone, and were downsampled to 16 kHz prior to further

processing. The average length of the utterances in the database is about

3 to 4 seconds, depending on the emotion category. Thus, each of the four

emotion categories in the database contains 720 utterances, that is speech

data about 36 to 48 minutes long.

4.4.4 Experiment Results

Boosting GMM

We perform speech emotion recognition experiments on the emotional speech

database described above using Bayesian classification with GMMs. For each

experiment, we randomly selected from the database a training set consisting

of 10 utterances per emotion and a test set consisting of 90 utterances per

emotion. Therefore, the training set consisted of 40 utterances in total and

the test set 360 utterances in total. Note that there were no overlapping

utterances in the training and test sets. Instead of conducting a complete

72



1 2 3 4 5 6

75

80

85

90

Number of iterations

O
v

e
ra

ll
 r

e
co

g
n

it
io

n
 r

a
te

 (
%

)

Overall recognition rates on test set versus number of boosting iterations

 

 

BoostedGMM (r=0.2)

BoostedGMM (r=0.3)

GMM

Figure 4.1: Comparison of the overall emotion recognition rates of the
boosting GMM algorithm and the EM algorithm.

cross-validation process, which would be very time-consuming, we ran 10 such

experiments independently, each of which involved a random selection of the

training set and test set from the database, and the emotion recognition rates

of these 10 experiments were averaged. We believed that in this way such

average would represent a well generalized emotion recognition rate over the

database. An experiment was carried out as follows. For each speech frame

in an utterance, we extracted a set of acoustic features including 12 MFCCs,

the log energy, and the pitch value (f0) using a 25 ms hamming window at

a 10 ms frame rate. These basic parameters were augmented with their first

derivative to form for each frame a 28-dimensional feature vector. Based

on the training set, the class-conditional feature vector distributions were

modeled by GMMs and estimated using both the boosting GMM algorithm

and the standard EM algorithm, and the same Bayesian classifier was applied

with two sets of estimated class-conditional GMMs.

Figure 4.1 shows the average overall emotion recognition rates (i.e., the av-

erage recognition rates across all 4 emotions of 10 independent experiments)

of the boosting GMM algorithm on the test sets with two sampling fractions r

versus the number of boosting iterations used during training, and the figure

compares these recognition rates with the average overall emotion recogni-

tion rate of the EM algorithm on the same test sets. The number of Gaus-
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sian mixtures in the GMMs and the number of EM iterations required for

convergence were automatically determined by the F-J algorithm [91]. Our

experiment results demonstrate that the emotion recognition rates can be ef-

fectively and significantly “boosted” by the boosting GMM algorithm, which

is a natural, expected result and clear indication that the class-conditional

probability distributions can be more accurately estimated by the boosting

GMM algorithm than by the EM algorithm. It is worth mentioning that

the boosting GMM algorithm converges very fast - only a few iterations (less

than 5) would be sufficient to lead to a stable result. This relaxes the possible

concern that the boosting GMM might require a lot more training time than

the EM algorithm.

Boosting Baum-Welch

We perform speech emotion recognition experiments based on the same emo-

tional speech database using Bayesian classification with HMMs. For each

experiment, we randomly selected from the database a training set consisting

of 180 utterances per emotion and a test set consisting of 540 utterances per

emotion. Therefore, the training set consists of 180× 4 = 720 utterances in

total and the test set 540 × 4 = 2160 utterances in total. Note that there

are no overlapping utterances in the training and test sets. We ran 10 ex-

periments independently, each of which involved a random selection of the

training set and test set from the database, and the emotion recognition rates

of these 10 experiments were averaged. We believe that in this way such av-

erage would represent a well generalized emotion recognition rate over the

entire database. An experiment was carried out as follows. For each speech

frame in an utterance, we extracted a set of basic acoustic features including

19 MFCCs, log energy, and pitch (f0) using a 25 ms hamming window at a

10 ms frame rate. These basic acoustic features were augmented with their

first and second derivatives to form a 63-dimensional feature vector.

For each emotion category, we trained an HMM using the Baum-Welch

algorithm and the boosting Baum-Welch algorithm, respectively. The HMM

was designed to have a left-to-right topology with 10 states, and each state is

modeled by a Gaussian mixture state observation PDF. Maximum likelihood

classification of the emotion was performed for every utterance in the test

set.
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Table 4.1: HMM-based speech emotion recognition experiment results.

Algorithm Average Recognition Rate

Baum-Welch 87.8%
Boosting Baum-Welch 91.2%

Table 4.2: Average confusion matrices for HMM-based speech emotion
recognition experiment results. The numbers are percentages. A/B stands
for A: the Baum-Welch algorithm and B: the boosting Baum-Welch
algorithm.

Neutral Happiness Sadness Anger
Neutral 94.4/96.9 6.0/3.1 0/0 0/0

Happiness 0/0 71.3/79.4 0/0 28.7/20.6
Sadness 1.9/0.9 0/0 93.2/95.5 4.9/3.6
Anger 0/0 9.4/7.0 0/0 90.6/93.0

We compare the average recognition results of the two HMM learning al-

gorithms, namely the Baum-Welch algorithm and the boosting Baum-Welch

algorithms, in Table 4.1. The experiment results clearly show that the pro-

posed boosting Baum-Welch algorithm indeed improves the learning accuracy

of the Gaussian mixture state observation PDFs of the emotion category de-

pendent HMMs, leading to better emotion recognition performance than the

original Baum-Welch algorithm. Further details of the experiment results

may be revealed by the average confusion matrices shown in Table 4.2.

4.5 Summary

In this chapter, we propose a new maximum likelihood learning algorithm

for HMMs, which we refer to as the boosting Baum-Welch algorithm. In

the proposed boosting Baum-Welch algorithm, the problem HMM learning

is formulated as a sequential optimization problem on a loss functional in an

inner product function space instead of an iterative optimization problem on

a log likelihood objective function in a model parameter space. Such a se-

quential optimization procedure in a function space may be used to provide

a theoretical interpretation for the boosting algorithm from a very differ-
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ent perspective. Hence the name of boosting Baum-Welch algorithm. The

boosting Baum-Welch algorithm can serve as an alternative maximum like-

lihood learning algorithm for HMMs to the traditional Baum-Welch or EM

algorithm, and a preferred method for use in situations where there is insuf-

ficient training data available. The reason that the boosting Baum-Welch

algorithm – being itself a maximum likelihood estimation technique – is less

susceptible to the over-fitting problem than the traditional Baum-Welch or

EM algorithm is that by design the boosting Baum-Welch algorithm tends

to produce a “large margin” effect. Our experiments show that the boost-

ing Baum-Welch algorithm can lead to a significant performance increase in

an HMM-based speech emotion classification task in the case of small-size

training data sets.
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CHAPTER 5

ONE-VECTOR REPRESENTATION OF

STOCHASTIC SIGNALS BASED ON

ADAPTED ERGODIC HMMS

In this chapter, we propose a novel one-vector representation of stochastic sig-

nals for pattern recognition based on adapted ergodic HMMs. First, a single

global HMM known as a universal background model (UBM) is learned from

all stochastic signals in a training data set. Then, the UBM is adapted to the

individual stochastic signals in the training data set using one of the HMM

adaptation techniques described in Chapter 3 to produce the signal-specific

HMMs. Finally, based on these signal-specific HMMs, we derive a one-vector

representation of the stochastic signals by means of an upper bound approx-

imation of the Kullback-Leibler divergence rate (KLDR) [92, 93] between

two HMMs. Our experiments on an image-based recognition task, namely

gender recognition from facial images, clearly demonstrate the effectiveness

of the proposed one-vector representation of stochastic signals for potential

use in many pattern recognition systems. To further demonstrate that the

proposed one-vector representation of stochastic signals based on adapted

ergodic HMMs can be an effective one-vector representation of images, we

apply it to a practical application in computer vision, namely the challeng-

ing problem of automatic facial expression recognition from non-frontal view

facial images. Our experiments of recognizing six universal facial expressions

over extensive multiview facial images with seven pan angles and five tilt

angles (i.e. a total of 35 views), which are synthesized from the BU-3DFE

facial expression database [94], show promising results that outperform the

state of the art recently reported.

The significant contribution of the proposed one-vector representation is

that it possesses the following advantageous properties:

• The representation summarizes the probability distribution of the fea-

ture vectors in the feature vector set compactly and accurately and

allows the statistical dependence among the feature vectors to be mod-

eled with a systematic underlying structure of first-order Markov chain
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[95].

• The representation performs unsupervised segmentation of the stochas-

tic signals implicitly to reveal the local structures of the signals and to

allow localized, segment-wise comparison of the signals.

• The representation is in a one-vector form ready for either supervised,

semi-supervised, or unsupervised distance metric learning from the

data to further reenforce its discriminatory power for classification.

In addition to the above properties, the proposed one-vector representation

is rather generic in nature and may be used with various types of stochastic

signals (e.g. image, video, speech, etc.) and applied to a broad range of

pattern recognition tasks (e.g. classification, regression, etc.). It does not

require the signals to be of the same size, nor does it require alignment of

the signals. It is supposed to be robust to partial occlusions or corruption in

the signals.

5.1 UBM and HMM Adaptation

As described in Chapter 3, HMMs are powerful statistical tools for model-

ing sequential data. An HMM is a doubly stochastic process consisting of

an underlying, hidden, discrete random process which possesses the Markov

property (namely a Markov chain having a finite number of states) and an

observed, discrete, continuous, or mixed discrete-continuous random process

which is a probabilistic function of the underlying Markov chain. The likeli-

hood function of an HMM is given by

P (O|λ) =
∑

q1q2···qT

[

πq1bq1(o1)

T
∏

t=2

aqt−1qtbqt(ot)

]

(5.1)

Here, an HMM is completely determined by its parameters λ = {A,B,Π},
where A is the state transition probability distribution matrix whose entries,

aij = p(qt = Sj|qt−1 = Si), 1 ≤ i, j ≤ N , specify the probabilities of transition

from state Si to state Sj at time t; B is the state-dependent observation

probability distribution matrix whose entries, bjk = p(ot = vk|qt = Sj),

1 ≤ j ≤ N, 1 ≤ k ≤ M , specify the probabilities of emitting an observation
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symbol vk given that the model is in state Sj at time t; and Π is the initial

state probability distribution matrix whose entries, πi = p(q1 = Si), 1 ≤
i ≤ N , specify the probabilities of the model being initially in state Si. For

the case of continuous observations, the entries of B are given by continuous

probability density functions, namely bj(ot) = p(ot|qt = Sj), 1 ≤ j ≤ N .

One important class of continuous probability density function widely used

for the state-dependent observation probability distributions of continuous-

observation HMMs is the Gaussian mixture probability density function of

the form

bj(ot) =

M
∑

k=1

cjkN(ot|µjk,Σjk) (5.2)

1 ≤ j ≤ N, 1 ≤ k ≤M

whereM is the number of Gaussian components, cjk is the k
th mixture weight,

and N(ot|µjk,Σjk) is a multivariate Gaussian probability density function

with mean vector µjk and covariance matrix Σjk.

It is very important to note that an HMM does not necessarily have to

be used to model time series. Rather, it is capable of modeling a variety

of stochastic signals. Different typologies of the HMM may be designed for

different types of stochastic signals. For instance, a left-to-right HMM may

be used for time series such as speech signals which have a clear temporal

dimension, and an ergodic HMMmay be used for data which is non-sequential

in nature (e.g. images) by presenting the feature vectors in sequence. A

single-state HMM reduces to a Gaussian mixture model (GMM), which may

be used to model i.i.d. signals.

As described in Chapter 3, an HMM may be trained directly for each

stochastic signal O = o1, o2, · · · , oT using the classical Bawm-Welch or ex-

pectation maximization (EM) algorithm [27]. However, since both Bawm-

Welch and EM belong to maximum likelihood estimation techniques, training

an HMM in this way will not be robust due to data scarcity. The development

of Bayesian learning for HMMs provides a better solution. First, a single

global HMM known as a universal background model (UBM) is learned (by

the Baum-Welch or EM algorithm) from all stochastic signals in a training

data set (or from all stochastic signals in a separate “universal” training set).

Then, the UBM is adapted to the individual stochastic signals to produce
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the signal-specific HMMs via the linear transformation adaptation technique

(i.e. maximum likelihood linear regression, or MLLR) [96] or maximum a

posteriori (MAP) adaptation technique [52]. An HMM obtained for each

stochastic signal in this manner is considered to be a robust statistical model

for the signal in the sense that it describes the joint probability distribution

of the feature vectors extracted from the signal accurately.

5.2 One-Vector Representation Formation

In the previous section, a stochastic signal is encoded by an adapted HMM.

We now turn to derive a one-vector representation of the stochastic signals

out of the adapted HMMs. Our objective is that the Euclidean distance

between any two representational vectors is equivalent to the “distance” be-

tween the two corresponding HMMs in a statistical sense. A popular dis-

tance measure between two statistical models, f(x) and g(x), is given by the

Kullback-Leibler divergence (KLD) [92]

D(f‖g) =
∫

x

f(x) log
f(x)

g(x)
dx (5.3)

Given two N-state HMMs with M-component Gaussian mixture state ob-

servation densities, λ1 = {A1, B1,Π1} and λ2 = {A2, B2,Π2}, where Ap =

{a[p]
i }Ni=1 = {a[p]ij }Ni,j=1, Bp = {b[p]i }Ni=1 = {c[p]i = {c[p]ik }Mk=1, {µ[p]

ik ,Σ
[p]
ik }Mk=1}Ni=1,

and Πp = {π[p]
i }Ni=1, with p = 1, 2 denoting the model index, a natural exten-

sion of the KLD is the KLD rate (KLDR) [92, 93]

R(λ1‖λ2) = lim
T−>∞

1

T
D(λ1‖λ2) (5.4)

For two HMMs, the KLDR does not have a closed-form expression. However,

Do [97] shows that there is a simple closed-form expression for a fairly tight

upper bound of the KLDR between two ergodic HMMs

R(λ1‖λ2) ≤
N
∑

i=1

π
[1]
i

[

D(a
[1]
i ‖a[2]

i ) +D(b
[1]
i ‖b[2]i )

]

(5.5)

Similarly, there is no closed-form expression for the KLD between two Gaus-
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sian mixture densities. However, there exists an upper bound of the KLD

D(b
[1]
i ‖b[2]i ) ≤ D(c

[1]
i ‖c[2]i )+

M
∑

k=1

c
[1]
ikD

(

N(·|µ[1]
ik ,Σ

[1]
ik )‖N(·|µ[2]

ik ,Σ
[2]
ik )
)

(5.6)

For two d-dimensional Gaussians, we can obtain a closed-form solution to

the KLD as follows:

D
(

N(·|µ[1]
ik ,Σ

[1]
ik )‖N(·|µ[2]

ik ,Σ
[2]
ik )
)

=

1

2
log

det Σ
[2]
ik

det Σ
[1]
ik

+
1

2
trace(Σ

[2]
ik

−1
Σ

[1]
ik ) +

1

2
(µ

[1]
ik − µ

[2]
ik )

TΣ
[2]
ik

−1
(µ

[1]
ik − µ

[2]
ik )−

d

2
(5.7)

Combining Equations (5.5), (5.6), and (5.7), we have

R(λ1‖λ2) ≤
N
∑

i=1

π
[1]
i

[

N
∑

l=1

a
[1]
i log

a
[1]
i

a
[2]
i

+
N
∑

l=1

c
[1]
i log

c
[1]
i

c
[2]
i

+

M
∑

k=1

c
[1]
ik

(

1

2
log

det Σ
[2]
ik

det Σ
[1]
ik

+
1

2
trace(Σ

[2]
ik

−1
Σ

[1]
ik )+

1

2
(µ

[1]
ik − µ

[2]
ik )

TΣ
[2]
ik

−1
(µ

[1]
ik − µ

[2]
ik )−

d

2

)]

(5.8)

Normally, λ1 and λ2 are both obtained by adapting a UBM λ = {A,B,Π}
to a small amount of adaptation data using one of the adaptation techniques

described in the previous section and Chapter 3. Since the available adap-

tation data is scarce (i.e. just a single stochastic signal), from a pattern

recognition perspective, it is advantageous to merely adapt a limited num-

ber of model parameters of the UBM in order to avoid over-fitting. In the

following, we will discuss four cases.

5.2.1 Case 1: Adaptation of Means Only

Suppose during the model adaptation process only the Gaussian component

means of λ1 and λ2 are adapted from the UBM λ. That is, Π1 = Π2 = Π,

A1 = A2 = A, and {{c[1]ik }Mk=1, {Σ[1]
ik }Mk=1}Ni=1 = {{c[2]ik }Mk=1, {Σ[2]

ik }Mk=1}Ni=1 =
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{{cik}Mk=1, {Σik}Mk=1}Ni=1. In this case, by some linear algebra, Equation (5.8)

becomes

R(λ1‖λ2) ≤
N
∑

i=1

πi

[

M
∑

k=1

cik

(

1

2
(µ

[1]
ik − µ

[2]
ik )

TΣ−1
ik (µ

[1]
ik − µ

[2]
ik )

)

]

=
1

2

N
∑

i=1

M
∑

k=1

∥

∥

∥

∥

√

πicikΣ
−1
ik µ

[1]
ik −

√

πicikΣ
−1
ik µ

[2]
ik

∥

∥

∥

∥

2

(5.9)

where ‖ · ‖ denotes the L2 norm or Euclidean distance.

From Equation (5.9), if we approximate R(λ1‖λ2) by its upper bound and

form the augmented vectors

sp =

[

√

πicikΣ
−1
ik µ

[p]
ik

]N M

i=1k=1

(5.10)

where p = 1, 2, the squared Euclidean distance between s1 and s2 is equivalent

to the KLDR between the two corresponding adapted HMMs λ1 and λ2 (up

to a constant scale 1
2
).

5.2.2 Case 2: Adaptation of Means and Variances

Suppose during the model adaptation process the Gaussian component means

and variances of λ1 and λ2 are both adapted from the UBM λ. That is,

Π1 = Π2 = Π, A1 = A2 = A, and {c[1]i }Ni=1 = {c[2]i }Ni=1 = {ci}Ni=1. We further

assume that all covariance matrices of the Gaussian mixture densities are di-

agonal. (Note: It is a general property that a Gaussian mixture density with

non-diagonal covariance matrices may be approximated arbitrarily closely by

a Gaussian mixture density with diagonal covariance matrices given a suf-

ficient number of Gaussian components.) That is, Σik = diag(σ2
ik). In this

case, unlike in Case 1, we adopt a symmetric version of the KLDR

Rs(λ1‖λ2) =
1

2
[R(λ1‖λ2) +R(λ2‖λ1)] (5.11)
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Substituting Equation (5.5) into Equation (5.11), we have

Rs(λ1‖λ2) ≤
N
∑

i=1

πiDs(b
[1]
i ‖b[2]i ) (5.12)

where

Ds(b
[1]
i ‖b[2]i ) =

1

2

[

D(b
[1]
i ‖b[2]i ) +D(b

[2]
i ‖b[1]i )

]

(5.13)

is the symmetric version of the KLD between two Gaussian mixture densities

b
[1]
i and b

[2]
i . Here, the terms involving a

[1]
i and a

[2]
i all vanish by symme-

try, and π
[1]
i and π

[2]
i are both replaced by πi given the assumed conditions.

Campbell [16] shows that the symmetric KLD between two Gaussians can

be approximated by

Ds

(

N(·|µ[1]
ik ,Σ

[1]
ik )‖N(·|µ[2]

ik ,Σ
[2]
ik )
)

≈ 1

4
trace

(

(Σ
[1]
ik − Σ

[2]
ik )Σ

−2
ik (Σ

[1]
ik − Σ

[2]
ik )
)

+

1

4
(µ

[1]
ik − µ

[2]
ik )

T (Σ
[1]
ik

−1
+ Σ

[2]
ik

−1
)(µ

[1]
ik − µ

[2]
ik )

=
1

2
(σ2

ik
[1] − σ2

ik
[2]
)T

1

2
Σ−2

ik (σ
2
ik

[1] − σ2
ik

[2]
) +

1

2
(µ

[1]
ik − µ

[2]
ik )

T (
1

2
Σ

[1]
ik

−1
+

1

2
Σ

[2]
ik

−1
)(µ

[1]
ik − µ

[2]
ik ) (5.14)

Substituting Equation (5.14) into Equation (5.12), we have

Rs(λ1‖λ2) ≤
1

2

N
∑

i=1

πi

M
∑

k=1

cik(σ
2
ik

[1] − σ2
ik

[2]
)T

1

2
Σ−2

ik (σ2
ik

[1] − σ2
ik

[2]
)+

1

2

N
∑

i=1

M
∑

k=1

πicik(µ
[1]
ik − µ

[2]
ik )

T (
1

2
Σ

[1]
ik

−1
+

1

2
Σ

[2]
ik

−1
)(µ

[1]
ik − µ

[2]
ik )

≈ 1

2

N
∑

i=1

M
∑

k=1

πicik(σ
2
ik

[1] − σ2
ik

[2]
)T

1

2
Σ−2

ik (σ2
ik

[1] − σ2
ik

[2]
) +

1

2

N
∑

i=1

M
∑

k=1

πicik(µ
[1]
ik − µ

[2]
ik )

TΣ−1
ik (µ

[1]
ik − µ

[2]
ik ) (5.15)

Here, the terms involving c1 and c2 vanish by symmetry, c
[1]
ik and c

[2]
ik are

both replaced by cik, and we have made a further approximation which re-

places the average of the two adapted covariance matrices by the correspond-
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ing covariance matrix of the UBM. Through some linear algebra, we can

re-write Equation (5.15) as

Rs(λ1‖λ2) ≤
1

2

N
∑

i=1

M
∑

k=1

∥

∥

∥

√

πicik/2Σ
−1
ik σ

2
ik

[1] −
√

πicik/2Σ
−1
ik σ

2
ik

[2]
∥

∥

∥

2

+
1

2

N
∑

i=1

M
∑

k=1

∥

∥

∥

∥

√

πicikΣ
−1
ik µ

[1]
ik −

√

πicikΣ
−1
ik µ

[2]
ik

∥

∥

∥

∥

2

(5.16)

From Equation (5.16), if we approximate Rs(λ1‖λ2) by its upper bound

and form the augmented vectors

sp =

[

√

πicikΣ
−1
ik µ

[p]
ik ;
√

πicik/2Σ
−1
ik σ

2
ik

[p]
]N M

i=1k=1

(5.17)

where p = 1, 2, the squared Euclidean distance between s1 and s2 is equivalent

to the symmetric KLDR between λ1 and λ2 (up to a constant scale 1
2
).

5.2.3 Case 3: Adaptation of Means, Variances, and Mixture

Weights

Suppose during the model adaptation process the Gaussian component means

and variances as well as the mixture weights of λ1 and λ2 are all adapted

from the UBM λ. In this case, Equation (5.11) becomes
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Next, we have

M
∑

k=1

(c
[1]
ik − c

[2]
ik ) log

c
[1]
ik

c
[2]
ik

=
M
∑

k=1

(c
[1]
ik − c

[2]
ik )(log

c
[1]
ik

cik
− log

c
[2]
ik

cik
)

≈
M
∑

k=1

(c
[1]
ik − c

[2]
ik )(

c
[1]
ik

cik
− c

[2]
ik

cik
)

=
M
∑

k=1

(c
[1]
ik − c

[2]
ik )

2

cik
(5.19)

84



Here, we have used the lemma log x ≈ x− 1 when x→ 1. Thus, we have
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From Equation (5.20), if we approximate Rs(λ1‖λ2) by its upper bound

and form the augmented vectors

sp =
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where p = 1, 2, the squared Euclidean distance between s1 and s2 is equivalent

to the symmetric KLDR between λ1 and λ2 (up to a constant scale 1
2
).

5.2.4 Case 4: Full Adaptation

Suppose during the model adaptation process all parameters of λ1 and λ2

are adapted from the UBM λ. Without loss of generality, we assume that

Π1 = Π2 = Π, as in an HMM, the initial state probability distribution

may be absorbed in the state transition probability distribution and become

irrelevant. In this case, Equation (5.11) becomes
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Likewise, we have
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Here, we have again used the lemma log x ≈ x− 1 when x→ 1. Together

with the similar expression obtained for the term
∑M
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Case 3, we have
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From Equation (5.24), if we approximate Rs(λ1‖λ2) by its upper bound

and form the augmented vectors
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where p = 1, 2, the squared Euclidean distance between s1 and s2 is equivalent

to the symmetric KLDR between λ1 and λ2 (up to a constant scale 1
2
).
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Figure 5.1: Male and female faces from the FERET database. SIFT feature
vectors are extracted from a dense grid of pixels indicated by the blue dots.

5.3 Experiments

To show the effectiveness of the proposed one-vector representation of stochas-

tic signals based on adapted ergodic HMMs, we carry out experiments on

an image-based recognition task, namely gender recognition from facial im-

ages. Our data set consists of 4109 facial images from the grayscale FERET

database [98]. Figure 5.1 shows a male face (left) and a female face (right)

from the database. To increase the difficulty of the recognition task, the

resolution of the faces is first reduced to 40×40 pixels. We then use the first

50% of the images for training and the remaining 50% for test. The faces

in the images need not be aligned, and we simply use the outcome of a face

detector [99]. For each image, we extract a set of 128-d SIFT [100] feature

vectors from a dense grid of pixels, as illustrated in Figure 5.1 (left). These

SIFT feature vectors form a sequence of observations for the image, which is

used to learn a representational vector based on the techniques correspond-

ing to Cases 1, 2, 3, and 4 in the one-vector representation formation process

described in the previous section. The underlying MAP-adapted HMMs are

ergodic, having 3 states, each modeled by Gaussian mixture densities. PCA

is first used to reduce the dimensionality of the representational vectors to

500, and then LDA is used to learn an optimal distance metric from the

training set. Finally, a simple, fast nearest-centroid classifier is used to per-

form gender classification. Table 5.1 displays the experiment results for the

four cases and different numbers of Gaussian components in the Gaussian

mixture state observation densities. Although we have not explored all pos-

sible design choices, the experiment results are very promising for the task.

For comparison, the performance based on the “holistic” one-vector repre-

sentation that the same classifier can achieve is 88.18%. Also note that our
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Table 5.1: Experiment results in terms of gender recognition accuracy.

#Gaussians 8 16 32
Case 1 89.98% 92.02% 93.14%
Case 2 91.39% 92.07% 92.07%
Case 3 91.33% 92.07% 92.63%
Case 4 91.24% 92.07% 92.99%

proposed vector representation is a nonlinear transform of the HMM param-

eters, which has a root in the elegant K-L theory [92]. Clearly, the proposed

vector representation of stochastic signals is effective for potential use in a

variety of pattern recognition applications.

5.4 Application: Non-Frontal View Facial Expression

Recognition

In this section, to further demonstrate that the proposed one-vector repre-

sentation of stochastic signals based on adapted ergodic HMMs can be an

effective one-vector representation of images, we apply it as a means of image

representation to the challenging task of non-frontal view facial expression

recognition and show that our method yields state-of-the-art performance on

this difficult task.

Automatic facial expression recognition has been a popular research topic

in the areas of multimedia, computer vision, and human-computer intelligent

interaction [101]. One obvious reason for this is that machine recognition of

facial expressions can be potentially applied to a variety of application sce-

narios in various facets of the society, for example, natural human-computer

interaction interfaces, behavioral science study, smart advertising, movies

and games, etc. Another reason is that automatic recognition of facial ex-

pressions may play a key role in many other tasks such as face/age/gender

recognition (i.e. hard and soft biometrics) in the presence of facial expres-

sions. For a very good general survey on this topic, refer to [102, 103, 101].

In the past few decades, research on facial expression recognition has

mainly been focused on a particular type of facial image, namely that in

which the facial pose is constrained to be frontal or near-frontal. While

facial expression recognition from frontal or near-frontal facial images is of
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itself important, the heavily constrained facial pose greatly limits its prac-

tical utility. Nevertheless, the problem of facial expression recognition from

non-frontal views has rarely been addressed in the literature. The reasons

for this situation are many. Compared to facial expression recognition from

the frontal or near-frontal view, facial expression recognition from non-frontal

views is far more challenging due to the vast intra-class variations introduced

by the different facial poses. More importantly, the research community has

lacked a multiview facial expression database, partly due to the many diffi-

culties in constructing one. Without such a database, research on non-frontal

view facial expression recognition has been seriously impeded.

Fortunately, the recent development of a 3D facial expression database by

Yin et al. at Binghamton University, known as the BU-3DFE database [94],

offers an alternative opportunity. Based on the BU-3DFE database, a few

researchers have begun to explore this fascinating area of non-frontal view

facial expression recognition. They synthesized multiview facial images from

the BU-3DFE database by rotating the 3D facial expression models in the

database to the desired poses and projecting them onto a 2D image plane.

Using the synthesized multiview facial images, Hu et al. [104] investigated

the problem of facial expression recognition from non-frontal views with five

pan angles: 0o, 30o, 45o, 60o and 90o. They combined the “geometric fea-

tures,” defined by the location of 83 facial feature points, and various classi-

fiers such as nearest neighbor and the support vector machine, to recognize

six universal facial expressions. Zheng et al. [30] studied the same problem

with the same five pan angles. Instead of using the geometric features, they

employed the “texture features,” defined as the scale-invariant feature trans-

form (SIFT) [100] feature vectors extracted from the sparse location of the

83 facial feature points. They proposed a novel method for feature selection

based on minimization of an upper bound of the Bayes error and reduced

the dimensionality of the SIFT feature vectors. The reduced-dimensional fea-

ture vectors were then classified with the k-nearest-neighbor (KNN) classifier.

However, there are two common pitfalls in both works. One is that they only

investigate the non-frontal views of five coarsely-quantized pan angles, which

is apparently far from being sufficient for realistic applications. The other

is that their methods rely on the localization of the 83 facial feature points

which were manually picked in their work. Automatic localization of facial

feature points of itself is still an open research issue, especially for non-frontal
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view facial images. Therefore, these pitfalls have made the practical applica-

bility of their methods very limited. In order to overcome these difficulties,

Zheng et al. [29] extended their work in [30] in three aspects. First, they

investigated 35 non-frontal views (combinations of seven pan angles and five

tilt angles) instead of five. Second, they used dense SIFT features instead

of sparse SIFT features, thus avoiding the difficulty of localizing the facial

feature points. Third, they extended their feature selection method based on

minimization of an upper bound of the Bayes error, assuming the distribution

of the SIFT features is a mixture of Gaussians instead of a Gaussian. Their

work has led to the state-of-the-art performance for non-frontal view facial

expression based on the BU-3DFE database. To the best of our knowledge,

the authors of these above-mentioned works are pioneers in this particular

area of non-frontal view facial expression recognition.

In this section, we apply the proposed one-vector representation of stochas-

tic signals based on adapted ergodic HMMs as a one-vector representation of

facial images to tackling the challenging problem of non-frontal view facial ex-

pression recognition. Figure 5.2 gives a schematic overview of our approach.

First, the SIFT feature vectors are extracted from a dense grid of every facial

images. Next, an EHMM is trained over all facial images in the training set

and is referred to as the universal background model (UBM). The UBM is

then maximum a posteriori (MAP) [52] adapted to each facial image in the

training and test sets to produce the image-specific EHMMs. Based on these

image-specific EHMMs, a supervector representation of the facial images is

obtained by means of our proposed one-vector representation of stochastic

signals (Case 2) described earlier in this chapter. Finally, facial expression

recognition is performed in the linear discriminant subspace of the EHMM

supervectors (defined by a linear projection W ) using the k-nearest-neighbor

(KNN) classification algorithm. We conduct five-fold cross-validation experi-

ments of recognizing six universal facial expressions over extensive multiview

facial images with seven pan angles (−45o ∼ +45o) and five tilt angles (−30o
∼ +30o) (i.e. a total of 35 views), which are synthesized from the BU-3DFE

facial expression database. Our experiment results are shown to be very

promising, better than the state of the art recently reported.
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Figure 5.2: The schematic overview diagram of the proposed approach.

5.4.1 Database and Feature Extraction

The BU-3DFE database is a 3D facial expression database developed by

Yin et al. at Binghamton University. It was designed to sample 3D facial

behaviors with different prototypical emotional states. There are a total

of 100 subjects in the database, 56 female and 44 male. The subjects are

well distributed across different ethnic or racial ancestries, including White,

Black, East-Asian, Middle-East Asian, Hispanic Latino, and others. During

the recording session, each subject performed six universal facial expressions,

namely anger (AN), disgust (DI), fear (FE), happiness (HA), sadness (SA),

and surprise (SU), and the 3D geometric and texture models of the subject

were captured. For a detailed description of the database, please refer to

[94].

In order to synthesize multiview facial images from the BU-3DFE database,

we first rotate every 3D facial expression model in the database by a certain

pan angle and tilt angle. The ranges of pan and tilt angles of interest to our

study are {−45o,−30o,−15o, 0o, 15o, 30o, 45o} and {−30o,−15o, 0o, 15o, 30o},
respectively. We believe that the combination of these seven pan angles

and five tilt angles is able to provide a sufficient level of quantization of

the continuous non-frontal views in realistic environments. Then, we render

the rotated 3D facial expression models into 2D images using OpenGL [105]

with appropriate lighting simulation. Figure 5.3 illustrates a sample of the

multiview facial images synthesized from the BU-3DFE database in the form

of a cube.

For each facial image, we extract a set of dense SIFT features. Specifically,

we place a dense grid on a facial image, and extract a 128-dimensional SIFT
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Figure 5.3: A sample of the multiview facial images synthesized from the
BU-3DFE database in the form of a cube.

descriptor at each node of the grid with a fixed scale and orientation. The

SIFT descriptor is formed from the histogram of intensity gradients within a

neighborhood window of the grid node and is a distinctive feature to represent

the texture variation in this local region. In this way, a facial image is encoded

by a “bag” of SIFT feature vectors, as shown in Figure 5.4(a). Particular to

the synthesized multiview facial images in this chapter, we perform a further

step. Among the extracted SIFT feature vectors, we abandon those with

extremely small magnitudes, which correspond to the SIFT feature vectors

extracted from the black background in the images as well as those extracted

from the low-contrast portion on the face, as shown in Figure 5.4(b).

For each facial image, the extracted SIFT feature vectors are sorted in the

order of the grid node location (x, y), with the x coordinate of the location

being the fastest changing variable. Note that the ordering here is in fact not

important due to the EHMM modeling. Thus, an observation sequence, O =

{o1, o2, · · · , oT}, is formed for each facial image, where ot, t = 1, 2, · · · , T
are the individual SIFT feature vectors (a.k.a. observations) and T is the

total number of SIFT feature vectors for the facial image.
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(a) (b)

Figure 5.4: (a) The SIFT feature vectors are extracted from the grid nodes,
shown as red dots. (b) We abandon the SIFT feature vectors with
extremely small magnitudes, which correspond to the SIFT feature vectors
extracted from the black background in the images as well as those
extracted from the low-contrast portion on the face.

5.4.2 Experimental Results

To demonstrate the effectiveness of the proposed approach for non-frontal

view facial expression recognition, we conduct experiments over extensive

multiview facial images that we synthesize from the BU-3DFE database as

described above. The projected facial images have an original resolution of

512×512 pixels. To speed up the feature extraction process, we downsample

the facial images to 128×128 pixels and convert them into grayscale images.

The 128-D SIFT feature vectors are then extracted from a dense grid with

4 × 4 pixel spacing on every grayscale facial image with a fixed scale (12

pixels) and orientation (0o). The 100 subjects in the database are partitioned

into five groups each of which consists of 20 subjects. We consider all six

universal facial expressions, namely, anger (AN), disgust (DI), fear (FE),

happiness (HA), sadness (SA), and surprise (SU). Thus, each group consists

of 20(subjects)×7(pan angles)×5(tilt angles)×6(facial expressions) = 4200

facial images. For classification purposes, we adopt a “universal” approach

in which the classifier is trained with facial images of all views and tested

with facial images of any view. Such a “universal” approach is very useful as

it does not require the facial pose of a test facial image to be known a priori

or estimated. In order to obtain confident results, we perform five-fold cross

validations on the database. At each validation, four out of the five groups

are used for training and the remaining group is used for test. The average

overall facial expression recognition rate, as well as the average recognition
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Figure 5.5: The average confusion matrix of six universal facial expressions:
anger (AN), disgust (DI), fear (FE), happiness (HA), sadness (SA), and
surprise (SU).

rates for different views and the average recognition rates for different facial

expressions, are reported.

At each validation, all the facial images in the training set are used to

train the UBM (3 states, 64-component Gaussian mixture emission densities),

which is then MAP adapted to every facial image in both training and test

sets to produce the image-specific EHMMs. The image-specific EHMMs are

then used to construct the corresponding EHMM supervectors, corresponding

to Case 2 in the one-vector representation formation process. The EHMM

supervectors in the training set are then used to learn a linear discriminant

analysis (LDA) [1] subspace, into which all the original EHMM supervectors

in both training and test sets are projected. In the LDA subspace, the KNN

classifier (k = 20) is employed to perform facial expression recognition.

The experiment results are shown in Table 5.2. The rightmost column

represents the average recognition error rates for different views (a total of

35 views), the bottom row represents the average recognition error rates for

different facial expressions (a total of six universal facial expressions), and

the bottom-right corner cell represents the average overall recognition error

rate. Figure 5.5 shows the average confusion matrix of the six universal facial

expressions.
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Table 5.2: Experiment results in terms of recognition error rates. The
leftmost column indicates the different views (pan and tilt angles x, y in
degrees), and the top row indicates the different facial expressions.

% AN DI FE HA SA SU Ave.

−45,−30 21.0 34.0 48.0 10.0 45.0 5.0 27.2
−45,−15 23.0 21.0 41.0 7.0 47.0 10.0 24.8
−45,+0 34.0 19.0 35.0 17.0 32.0 7.0 24.0
−45,+15 34.0 12.0 37.0 19.0 40.0 4.0 24.3
−45,+30 40.0 18.0 30.0 14.0 41.0 9.0 25.3
−30,−30 25.0 20.0 33.0 14.0 31.0 8.0 21.8
−30,−15 30.0 24.0 54.0 22.0 37.0 8.0 29.2
−30,+0 26.0 20.0 53.0 11.0 38.0 7.0 25.8
−30,+15 20.0 19.0 41.0 7.0 43.0 6.0 22.7
−30,+30 37.0 12.0 35.0 7.0 37.0 5.0 22.2
−15,−30 37.0 13.0 43.0 11.0 44.0 4.0 25.3
−15,−15 28.0 19.0 35.0 13.0 42.0 6.0 23.8
−15,+0 25.0 18.0 37.0 14.0 38.0 8.0 23.3
−15,+15 33.0 22.0 52.0 19.0 41.0 5.0 28.7
−15,+30 28.0 29.0 38.0 12.0 33.0 6.0 24.3
+0,−30 26.0 21.0 42.0 11.0 35.0 6.0 23.5
+0,−15 36.0 17.0 46.0 11.0 32.0 6.0 24.7
+0,+0 39.0 18.0 38.0 18.0 34.0 3.0 25.0
+0,+15 27.0 15.0 32.0 10.0 42.0 5.0 21.8
+0,+30 30.0 18.0 38.0 10.0 40.0 6.0 23.7
+15,−30 35.0 23.0 45.0 12.0 33.0 6.0 25.7
+15,−15 37.0 22.0 49.0 13.0 26.0 6.0 25.5
+15,+0 37.0 22.0 49.0 11.0 30.0 9.0 26.3
+15,+15 43.0 14.0 41.0 13.0 22.0 7.0 23.3
+15,+30 37.0 13.0 31.0 8.0 41.0 5.0 22.5
+30,−30 37.0 12.0 30.0 10.0 39.0 6.0 22.3
+30,−15 29.0 16.0 39.0 12.0 35.0 4.0 22.5
+30,+0 27.0 24.0 46.0 14.0 42.0 6.0 26.5
+30,+15 32.0 31.0 43.0 15.0 28.0 6.0 25.8
+30,+30 47.0 17.0 45.0 7.0 25.0 6.0 24.5
+45,−30 45.0 14.0 28.0 6.0 32.0 5.0 21.7

+45,−15 36.0 23.0 34.0 18.0 41.0 9.0 26.8
+45,+0 42.0 21.0 38.0 11.0 41.0 9.0 27.0
+45,+15 28.0 13.0 44.0 10.0 42.0 5.0 23.7
+45,+30 24.0 33.0 44.0 15.0 46.0 9.0 28.5
Ave. 32.4 19.6 40.4 12.3 37.0 6.3 24.7
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Table 5.3: Comparison of the recognition error rates of our approach and
previous approaches.

Hu et al. 2008 Zheng et al. 2009 Zheng et al. 2010 Our approach
Average: 33.5% 24.7% 31.8% 24.7%

Best view: 28.5% (45o) 20.5% (60o) 25.2% (0o, 0o) 21.7% (45o,−30o)
Best expr: 20.5% (SU) 9.3% (SU) 12.6% (SU) 6.3% (SU)
5 pan-angle views; Same as Hu 35 total views; Same as Zheng
Manual facial feature et al. 2008 No ffl et al. 2009
localization (ffl)

Our experiment results are promising compared to the state of the art

recently reported. In the work of Hu et al. [104], the best average overall

facial expression recognition error rate was reported to be 33.5% with the

help of a support vector machine (SVM) classifier. In the work of Zheng et

al. [30], they reported a reduced overall facial expression recognition error

rate of 21.7% on the same database under the same experimental settings.

However, note that the experimental settings of both of their works only in-

volve non-frontal views of five pan angles (as compared to 35 combinations

of seven pan angles and five tilt angles in the experimental settings of our

work). Also note that both works completely rely on the location of 83 facial

feature points in all facial images, which have to be labeled manually. The

impractical manual labeling of facial feature point locations seriously limits

the applicability of their approaches. In contrast, our proposed approach is

fully automatic, requiring neither facial alignment nor facial feature point

localization. In our experiments, we achieve an average overall facial expres-

sion recognition error rate of 24.7%, which is significantly lower than that of

Hu et al.’s work and comparable to that of Zheng et al.’s work, but under far

more challenging and useful experimental settings. In addition, our method

significantly outperforms the method in Zheng et al.’s new work [29] under

the same experiment settings and leads to state-of-the-art performance for

the task of non-frontal view facial expression recognition on the BU-3DFE

database. We bring to the reader’s attention that our experiment results in

this chapter should be considered preliminary, as we have not had time to

explore all possible design choices and to find the optimal parameters for the

experiments which could possibly lead to even better experiment results. A

detailed comparison of the results of our approach and those of the previous

approaches on the same task is provided in Table 5.3.
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We note that our approach yields better performance for disgust, happi-

ness, and surprise than for anger, fear, and sadness. Especially, the perfor-

mance for surprise is noticeably the best among all (6.3% average recognition

error rate). The performances across different views are, however, compara-

ble to one another. This observation strongly supports that our approach is

robust to the varying views of the facial images.

5.5 Summary

In this chapter, we propose a novel one-vector representation of stochastic

signals based on adapted ergodic HMMs. This one-vector representation is

generic in nature and may be used with various types of stochastic signals

(e.g. image, video, speech, etc.) and applied to a broad range of pattern

recognition tasks (e.g. classification, regression, etc.). More importantly, by

combining the one-vector representation with optimal distance metric learn-

ing (e.g. linear discriminant analysis) directly from the data, the performance

of a pattern recognition system may be significantly improved. Our experi-

ments on an image-based recognition task, namely gender recognition based

on facial images, clearly demonstrate the effectiveness of the proposed one-

vector representation of stochastic signals for potential use in many pattern

recognition systems. To further demonstrate that the proposed one-vector

representation of stochastic signals based on adapted ergodic HMMs can be

an effective one-vector representation of images, we apply it to a practical

application in computer vision, namely the challenging problem of automatic

facial expression recognition from non-frontal view facial images. Our experi-

ments of recognizing six universal facial expressions over extensive multiview

facial images with seven pan angles and five tilt angles (i.e. a total of 35

views), which are synthesized from the BU-3DFE facial expression database,

show promising results that outperform the state of the art recently reported.
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CHAPTER 6

ONE-VECTOR REPRESENTATION OF

STOCHASTIC SIGNALS BASED ON

ADAPTED LEFT-TO-RIGHT HMMS

In Chapter 5, we propose a one-vector representation of stochastic signals

for pattern recognition based on adapted ergodic HMMs. We experimentally

show that it can be an effective one-vector representation of images. Due

to their fully connected state diagrams of the underlying Markov chains, er-

godic HMMs are capable of characterizing stochastic signals which are non-

sequential in nature, such as images in the two-dimensional spatial space.

However, for certain types of stochastic signals, such as speech, audio, and

video, which are sequential in nature or which have a clear temporal dimen-

sion, left-to-right HMMs might turn out to be better models. A left-to-right

HMM is an HMM with a special left-to-right topology, having the following

constraints imposed on the initial state probability distribution and state

transition probability distribution:

πi =

{

1 i = 1

0 i > 1
(6.1)

aij = 0, i > j (6.2)

aij = 0, j > i+∆(∆ = 1 or 2 typically) (6.3)

That is, in a left-to-right HMM, the underlying hidden state sequence al-

ways starts with the state S1. All states of the HMM are emitting states,

each of which generates an observation whenever it is entered, except that

the last state of the HMM is a non-emitting state, which never generates

observations. Figure 6.1 shows the underlying state diagram of a commonly

seen left-to-right HMM (∆ = 1). Such an HMM with a left-to-right topology

and a final non-emitting absorbing state is transient, meaning that it will

generate a finite number of observations almost surely. A fortunate note on

left-to-right HMMs is that the above constraints on the initial state probabil-

ity distribution and state transition probability distribution in a left-to-right
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S1 S2 SN
SN+1

Figure 6.1: The underlying state diagram of a transient HMM with a
left-to-right topology and a final non-emitting absorbing state.

HMM do not affect the formulas in the HMM learning and adaptation algo-

rithms presented in Chapters 3 and 4.

In this chapter, we propose a novel one-vector representation of stochas-

tic signals for pattern recognition based on adapted left-to-right HMMs.

This one-vector representation of stochastic signals is complimentary to the

one-vector representation of stochastic signals proposed in Chapter 5, and

turns out to be a potentially more appropriate one-vector representation for

stochastic signals such as speech and video which are sequential in nature

or which have a clear temporal dimension of which the dynamics need to be

captured.

6.1 One-Vector Representation Formation

Suppose two left-to-right transient HMMs, λ1 = {A1, B1,π1} and λ2 =

{A2, B2,π2}, are both adapted from a UBM, λ = {A,B,π}, respectively, us-
ing one of the model adaptation techniques for HMMs presented in Chapter

3, where for p = 1, 2 (the model index), πp = [1, 0, · · · , 0]T , Bp = {b[p]i }Ni=1 =

{c[p]i = {c[p]ik }Mk=1, {µ[p]
ik ,Σ

[p]
ik }Mk=1}Ni=1, and

Ap = {a[p]
i }N+1

i=1 =























a
[p]
11 1− a[p]11 0 · · · 0 0

0 a
[p]
22 1− a[p]22 · · · 0 0

...
...

...
...

...
...

0 0 0 · · · 1− a[p]N−1,N−1 0

0 0 0 · · · a
[p]
NN 1− a[p]NN

0 0 0 · · · 0 1























(6.4)
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Here, as shown in Figure 6.1, N denotes the number of emitting states

of the HMM, and M denotes the number of Gaussian components in the

Gaussian mixture state observation PDFs associated with the emitting states

of the HMM. Let the family of all states of the HMM be denoted by X =

Xo∪Xu, where Xo is the family of all emitting states, Xo = {S1, S2, · · · , SN},
and Xu the family of all non-emitting states, Xu = {SN+1}. Let Âp, B̂p and

π̂p denote the model parameters of the HMM which correspond to the family

of emitting states Xo, where, resultantly, π̂p = [1, 0, · · · , 0]T , B̂p = Bp, and

Âp = {a[p]
i }Ni=1 =



















a
[p]
11 1− a[p]11 0 · · · 0

0 a
[p]
22 1− a[p]22 · · · 0

...
...

...
...

...

0 0 0 · · · 1− a[p]N−1,N−1

0 0 0 · · · a
[p]
NN



















(6.5)

It is shown in the recent work of Silva and Narayanan [106] that the KLDR

between two left-to-right transient HMMs, λ1 and λ2, has a computationally

efficient closed-form upper bound

R(λ1‖λ2) ≤ D(π1‖π2) + π̂
T
1 (I − Â1)

−1
[

d̂AKLD + d̂BKLD

]

(6.6)

where d̂AKLD and d̂BKLD are two N -vectors defined as

d̂AKLD =
[

D(a
[1]
1 ‖a[2]

1 ), D(a
[1]
2 ‖a[2]

2 ), · · · , D(a
[1]
N ‖a

[2]
N )
]T

(6.7)

d̂BKLD =
[

D(b
[1]
1 ‖b[2]1 ), D(b

[1]
2 ‖b[2]2 ), · · · , D(b

[1]
N ‖b

[2]
N )
]T

(6.8)

In order to compute the inverse of (I − Â1), we use the result from [107],

which offers an elegant and concise formula for the inverse of an n× n tridi-

agonal matrix MT

MT =



















a1 b1

c1 a2 b2

c2
. . .

. . .
. . .

. . . bn−1

cn−1 an



















(6.9)
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The (i, j) element of the inverse of MT is given by

(M−1
T )ij =

{

(−1)i+jbi · · · bj−1θi−1φj+1/θn if i ≤ j

(−1)i+jcj · · · ci−1θj−1φi+1/θn if i > j
(6.10)

where

θi = aiθi−1 − bi−1ci−1θi−2, for i = 2, · · · , n (6.11)

with initial conditions θ0 = 1 and θ1 = a1, and

φi = aiφi+1 − biciφi+2, for i = n− 1, · · · , 1 (6.12)

with initial conditions φn+1 = 1 and φn = an. The above formula can be

specialized for an upper bidiagonal matrix MB

MB =



















a1 b1

a2 b2
. . .

. . .

. . . bn−1

an



















(6.13)

which turns out to be an even simpler expression

(M−1
B )ij =











1
ai

if i = j

(−1)i+j bi···bj−1

ai···aj if i < j

0 if i > j

(6.14)

Since Â1 is an upper bidiagonal matrix, I − Â1 is also an upper bidiagonal

matrix

I − Â1 =



















1− a[1]11 −(1 − a[1]11) 0 · · · 0

0 1− a[1]22 −(1− a[1]22) · · · 0
...

...
...

...
...

0 0 0 · · · −(1− a[1]N−1,N−1)

0 0 0 · · · 1− a[1]NN



















(6.15)

From Equations (6.14) and (6.15), we can easily identify the (i, j) element of
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the inverse of (I −A1)

(

(I − Â1)
−1
)

ij
=







1−a
[1]
ii

1−a
[1]
jj

i ≤ j

0 i > j
(6.16)

The N ×N matrix (I − Â1)
−1 turns out to be upper triangular. We have

π̂
T
1 (I − Â1)

−1 =

[

1− a[1]11

1− a[1]11

,
1− a[1]11

1− a[1]22

, · · · , 1− a[1]11

1− a[1]NN

]

(6.17)

Thus, the KLDR upper bound in Equation (6.6) becomes

R(λ1‖λ2) ≤
N
∑

i=1

1− a[1]11

1− a[1]ii

(

D(a
[1]
i ‖a[2]

i ) +D(b
[1]
i ‖b[2]i )

)

(6.18)

As in the case of ergodic HMMs, here we adopt the symmetric version of the

KLDR for left-to-right HMMs

Rs(λ1‖λ2) =
1

2
(R(λ1‖λ2) +R(λ2‖λ1)) (6.19)

which, straightforwardly, has an upper bound

Rs(λ1‖λ2) ≤
1

2

N
∑

i=1

1− a[1]11

1− a[1]ii

(

D(a
[1]
i ‖a[2]

i ) +D(b
[1]
i ‖b[2]i )

)

+
1

2

N
∑

i=1

1− a[2]11

1− a[2]ii

(

D(a
[2]
i ‖a[1]

i ) +D(b
[2]
i ‖b[1]i )

)

(6.20)

When the parameters of the adapted HMMs λ1 and λ2 are adapted from

the parameters of the UBM λ, if we impose a constraint that the state tran-

sition probability distribution A be not adapted, that is, A1 = A2 = A, the

upper bound of the symmetric KLDR in Equation (6.20) would become

Rs(λ1‖λ2) ≤
N
∑

i=1

1− a11
1− aii

Ds(b
[1]
i ‖b[2]i ) (6.21)

where

Ds(b
[1]
i ‖b[2]i ) =

1

2

(

D(b
[1]
i ‖b[2]i ) +D(b

[2]
i ‖b[1]i )

)

(6.22)
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is the symmetric KLD between two Gaussian mixture state observation PDFs

b
[1]
i and b

[2]
i .

If the state transition probability distribution A is adapted, that is, A1 6= A

and A1 6= A, the R.H.S. of Equation (6.20) would become

R.H.S.(6.20) ≈
N
∑

i=1

1− a11
1− aii

(

Ds(a
[1]
i ‖a[2]

i ) +Ds(b
[1]
i ‖b[2]i )

)

(6.23)

where

Ds(a
[1]
i ‖a[2]

i ) =
1

2

(

D(a
[1]
i ‖a[2]

i ) +D(a
[2]
i ‖a[1]

i )
)

(6.24)

is the symmetric KLD between two discrete state transition PMFs a
[1]
i and

a
[2]
i (i.e., the ith rows of the stochastic matrices A1 and A2, respectively).

As in the case of ergodic HMMs, in the following, we will discuss four

cases, corresponding to the different levels of adaptation from the UBM.

6.1.1 Case 1: Adaptation of Means Only

Suppose during the model adaptation process only the component mean vec-

tors of the Gaussian mixture state observation PDFs of the HMMs λ1 and

λ2 are adapted from the UBM λ. That is, π1 = π2 = π, A1 = A2 = A, and

{{c[1]ik }Mk=1, {Σ[1]
ik }Mk=1}Ni=1 = {{c[2]ik }Mk=1, {Σ[2]

ik }Mk=1}Ni=1 = {{cik}Mk=1, {Σik}Mk=1}Ni=1.

In this case, it is easy to verify that

Ds(b
[1]
i ‖b[2]i ) ≤

M
∑

k=1

cik
1

2
(µ

[1]
ik − µ

[2]
ik )

TΣ−1
ik (µ

[1]
ik − µ

[2]
ik ) (6.25)

The upper bound of the symmetric KLDR in Equation (6.21) becomes

Rs(λ1‖λ2)

≤
N
∑

i=1

1− a11
1− aii

M
∑

k=1

cik
1

2
(µ

[1]
ik − µ

[2]
ik )

TΣ−1
ik (µ

[1]
ik − µ

[2]
ik )

=
1

2

N
∑

i=1

M
∑

k=1

∥

∥

∥

∥

√

1− a11
1− aii

cikΣ
−1
ik µ

[1]
ik −

√

1− a11
1− aii

cikΣ
−1
ik µ

[2]
ik

∥

∥

∥

∥

2

(6.26)

Equation (6.26) indicates that if we approximate Rs(λ1‖λ2) by its upper

103



bound in Equation (6.26) and form the augmented vectors

sp =

[
√

1− a11
1− aii

cikΣ
−1
ik µ

[p]
ik

]N M

i=1k=1

(6.27)

where p = 1, 2, the squared Euclidean distance between s1 and s2 is equivalent

to the symmetric KLDR between the two corresponding adapted left-to-right

HMMs λ1 and λ2 (up to a constant scale 1
2
).

6.1.2 Case 2: Adaptation of Means and Variances

Suppose during the model adaptation process both the component mean vec-

tors and covariance matrices of the Gaussian mixture state observation PDFs

of the HMMs λ1 and λ2 are adapted from the UBM λ. That is, π1 = π2 = π,

A1 = A2 = A, and {{c[1]ik }Mk=1}Ni=1 = {{c[2]ik }Mk=1}Ni=1 = {{cik}Mk=1}Ni=1. As in the

case of ergodic HMMs, we further assume that all covariance matrices of the

Gaussian mixture state observation PDFs are diagonal. In this case,

Ds(b
[1]
i ‖b[2]i ) ≤

M
∑

k=1

cik
1

2
(σ2

ik
[1] − σ2

ik
[2]
)T

1

2
Σ−2

ik (σ2
ik

[1] − σ2
ik

[2]
)

+

M
∑

k=1

cik
1

2
(µ

[1]
ik − µ

[2]
ik )

T (
1

2
Σ

[1]
ik

−1
+

1

2
Σ

[2]
ik

−1
)(µ

[1]
ik − µ

[2]
ik )

≈ 1

2

M
∑

k=1

cik(σ
2
ik

[1] − σ2
ik

[2]
)T

1

2
Σ−2

ik (σ
2
ik

[1] − σ2
ik

[2]
)

+
1

2

M
∑

k=1

cik(µ
[1]
ik − µ

[2]
ik )

TΣ−1
ik (µ

[1]
ik − µ

[2]
ik ) (6.28)
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The upper bound of the symmetric KLDR in Equation (6.21) becomes

Rs(λ1‖λ2) ≤
1

2

N
∑

i=1

M
∑

k=1

1− a11
1− aii

cik(σ
2
ik

[1] − σ2
ik

[2]
)T

1

2
Σ−2

ik (σ2
ik

[1] − σ2
ik

[2]
) +

1

2

N
∑

i=1

M
∑

k=1

1− a11
1− aii

cik(µ
[1]
ik − µ

[2]
ik )

TΣ−1
ik (µ

[1]
ik − µ

[2]
ik )

=
1

2

N
∑

i=1

M
∑

k=1

∥

∥

∥

∥

√

1− a11
1− aii

cik/2Σ
−1
ik σ

2
ik

[1] −
√

1− a11
1− aii

cik/2Σ
−1
ik σ

2
ik

[2]

∥

∥

∥

∥

2

+
1

2

N
∑

i=1

M
∑

k=1

∥

∥

∥

∥

√

1− a11
1− aii

cikΣ
−1
ik µ

[1]
ik −

√

1− a11
1− aii

cikΣ
−1
ik µ

[2]
ik

∥

∥

∥

∥

2

(6.29)

Equation (6.29) indicates that if we approximate Rs(λ1‖λ2) by its upper

bound in Equation (6.29) and form the augmented vectors

sp =

[
√

1− a11
1− aii

cikΣ
−1
ik µ

[p]
ik ;

√

1− a11
1− aii

cik/2Σ
−1
ik σ

2
ik

[p]
]N M

i=1k=1

(6.30)

where p = 1, 2, the squared Euclidean distance between s1 and s2 is equivalent

to the symmetric KLDR between λ1 and λ2 (up to a constant scale 1
2
).

6.1.3 Case 3: Adaptation of Means, Variances and Mixture

Weights

Suppose during the model adaptation process the component mean vectors,

covariance matrices, and mixture weights of the Gaussian mixture state ob-

servation PDFs of the HMMs λ1 and λ2 are all adapted from the UBM λ.
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That is, π1 = π2 = π, and A1 = A2 = A. In this case,

Ds(b
[1]
i ‖b[2]i ) ≤ Ds(c

[1]
i ‖c[2]i )

+
M
∑

k=1

cik
1

2
(σ2

ik
[1] − σ2

ik
[2]
)T

1

2
Σ−2

ik (σ2
ik

[1] − σ2
ik

[2]
)

+

M
∑

k=1

cik
1

2
(µ

[1]
ik − µ

[2]
ik )

T (
1

2
Σ

[1]
ik

−1
+

1

2
Σ

[2]
ik

−1
)(µ

[1]
ik − µ

[2]
ik )

≈ 1

2

M
∑

k=1

(c
[1]
ik − c

[2]
ik )log

c
[1]
ik

c
[2]
ik

+
1

2

M
∑

k=1

cik(σ
2
ik

[1] − σ2
ik

[2]
)T

1

2
Σ−2

ik (σ2
ik

[1] − σ2
ik

[2]
)

+
1

2

M
∑

k=1

cik(µ
[1]
ik − µ

[2]
ik )

TΣ−1
ik (µ

[1]
ik − µ

[2]
ik ) (6.31)

where from Chapter 5, we know

M
∑

k=1

(c
[1]
ik − c

[2]
ik ) log

c
[1]
ik

c
[2]
ik

≈
M
∑

k=1

(c
[1]
ik − c

[2]
ik )

2

cik
(6.32)

The upper bound of the symmetric KLDR in Equation (6.21) becomes

Rs(λ1‖λ2) ≤
1

2

N
∑

i=1

M
∑

k=1

1− a11
1− aii

(c
[1]
ik − c

[2]
ik )

2

cik

+
1

2

N
∑

i=1

M
∑

k=1

1− a11
1− aii

cik(σ
2
ik

[1] − σ2
ik

[2]
)T

1

2
Σ−2

ik (σ2
ik

[1] − σ2
ik

[2]
)

+
1

2

N
∑

i=1

M
∑

k=1

1− a11
1− aii

cik(µ
[1]
ik − µ

[2]
ik )

TΣ−1
ik (µ

[1]
ik − µ

[2]
ik )

≈ 1

2

N
∑

i=1

M
∑

k=1

(√

1− a11
(1− aii)cik

c
[1]
ik −

√

1− a11
(1− aii)cik

c
[2]
ik

)2

+
1

2

N
∑

i=1

M
∑

k=1

∥

∥

∥

∥

√

1− a11
1− aii

cik/2Σ
−1
ik σ

2
ik

[1] −
√

1− a11
1− aii

cik/2Σ
−1
ik σ

2
ik

[2]

∥

∥

∥

∥

2

+
1

2

N
∑

i=1

M
∑

k=1

∥

∥

∥

∥

√

1− a11
1− aii

cikΣ
−1
ik µ

[1]
ik −

√

1− a11
1− aii

cikΣ
−1
ik µ

[2]
ik

∥

∥

∥

∥

2

(6.33)
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Equation (6.33) indicates that if we approximate Rs(λ1‖λ2) by its upper

bound in Equation (6.33) and form the augmented vectors

sp =

[√

1− a11
(1− aii)cik

c
[p]
ik ;

√

1− a11
1− aii

cikΣ
−1
ik µ

[p]
ik ;

√

1− a11
1− aii

cik/2Σ
−1
ik σ

2
ik

[p]

]N M

i=1k=1
(6.34)

where p = 1, 2, the squared Euclidean distance between s1 and s2 is equivalent

to the symmetric KLDR between λ1 and λ2 (up to a constant scale 1
2
).

6.1.4 Case 4: Full Adaptation

Suppose during the model adaptation process all parameters of the HMMs

λ1 and λ2 are adapted from the UBM λ except the initial state probability

distributions, which are identical for left-to-right HMMs by definition. That

is, π1 = π2 = π. In this case, the upper bound of the symmetric KLDR in

Equation (6.23) becomes

Rs(λ1‖λ2) ≤
1

2

N
∑

i=1

N
∑

l=1

1− a11
1− aii

(a
[1]
il − a

[2]
il )

2

ail

+
1

2

N
∑

i=1

M
∑

k=1

1− a11
1− aii

(c
[1]
ik − c

[2]
ik )

2

cik

+
1

2

N
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Equation (6.35) indicates that if we approximate Rs(λ1‖λ2) by its upper

bound in Equation (6.35) and form the augmented vectors

sp =
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(6.36)

where p = 1, 2, the squared Euclidean distance between s1 and s2 is equivalent

to the symmetric KLDR between λ1 and λ2 (up to a constant scale 1
2
).

6.2 Summary

In this chapter, we propose a novel one-vector representation of stochastic sig-

nals for pattern recognition based on adapted left-to-right HMMs. This one-

vector representation of stochastic signals is complimentary to the one-vector

representation of stochastic signals proposed in Chapter 5, and turns out to

be a potentially more appropriate one-vector representation for stochastic

signals such as speech and video, which are sequential in nature or which

have a clear temporal dimension of which the dynamics need to be captured.
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CHAPTER 7

A GENERAL FRAMEWORK FOR

ONE-VECTOR REPRESENTATIONS OF

STOCHASTIC SIGNALS

In Chapter 5, we propose a novel one-vector representation of stochastic sig-

nals based on adapted ergodic HMMs. Similarly, in Chapter 6, we propose

a novel one-vector representation of stochastic signals based on adapted left-

to-right HMMs. The one-vector representations proposed in Chapter 5 and

Chapter 6 are based on two particular types of powerful statistical models,

namely ergodic HMMs and left-to-right HMMs, respectively. One might have

noticed that in the two proposed one-vector representations, except for the

different choices of the type of the underlying statistical models, the forma-

tion processes of the one-vector representations are highly similar, and in

fact, almost identical. First, an ergodic (or left-to-right) HMM is learned

(through the adaptation of a UBM) to represent the joint probability distri-

bution of the feature vectors extracted from an input stochastic signal. Then,

the model parameters of the learned HMM are nonlinearly transformed to

produce the one-vector representation of the input stochastic signal based on

the criterion that the Euclidean distance between any two representational

vectors is (approximately) equivalent to the Kullback-Leibler divergence rate

between the two corresponding HMMs. Such a two-stage one-vector rep-

resentation formation process can be extended and generalized to form a

general framework for one-vector representations of stochastic signals.

In this chapter, we propose a general framework for one-vector represen-

tations of stochastic signals for pattern recognition. The proposed general

framework is schematically illustrated in Figure 7.1. As shown, the general

framework consists of two successive stages, namely statistical model learning

and nonlinear transform. In the first stage of the framework, namely statis-

tical model learning, a proper statistical model of some type is learned based

on an input stochastic signal. The statistical model should be carefully and

cleverly chosen so that it best characterizes the joint probability distribu-

tion of the feature vectors extracted from the input stochastic signal. In the
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Figure 7.1: A general framework for one-vector representations of stochastic
signals for pattern recognition.

second stage of the framework, namely nonlinear transform, the parameters

of the statistical model learned previously in the first stage are nonlinearly

transformed into a one-vector representation, where the nonlinear transform

may be sought mathematically based on the criterion that a task-motivating

vector-based distance metric (e.g. the Euclidean distance) between any two

representational vectors is (approximately) equivalent to a certain statistical

model based distance measure (e.g. the Kullback-Leibler divergence) between

the two corresponding underlying statistical models. Such a general frame-

work for one-vector representations of stochastic signals can serve as a unified

and principled guide for constructing “the best” one-vector representations of

stochastic signals of various types and for various pattern recognition tasks.

The general framework may also be demonstrated by Equations (7.1) and

(7.2), where, in Equation (7.1), the joint probability distribution of the fea-

ture vectors in the feature vector set of a stochastic signal s is encoded by the

parameters of an underlying statistical model λ, and in Equation (7.2), the

parameters of the underlying statistical model λ are nonlinearly transformed

to construct a one-vector representation which compactly summarizes the

joint probability distribution of the feature vectors.

F (s) = {v1,v2, · · · ,vn} → λ (7.1)

λ→ s = T (λ) (7.2)

Although in general HMMs are very powerful statistical models which may

be appropriate for use to well characterize the joint probability distributions

of the feature vectors for a wide range of stochastic signals such as speech,

audio, images, video, and so on, they may not be the best statistical models
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for all kinds of stochastic signals in the physical world. For example, the

sequential nature of the conventional one-dimensional HMMs would make

them seemingly not quite ideal for use to model stochastic signals which

are obviously non-sequential in nature, such as two-dimensional images. In

Chapter 5, we claim that ergodic HMMs are capable of modeling stochastic

signals which are non-sequential in nature, and experimentally show that

the one-vector representation based on adapted ergodic HMMs can be an

effective one-vector representation of images. The evidence lies in the fact

that ergodic HMMs can implicitly perform unsupervised segmentation of the

stochastic signals and hopefully recover the structures of the signals that

were destroyed when we intentionally feed the feature vectors to the HMMs

in a sequential manner, and in the fact that some important information

regarding the structures of the stochastic signals is encoded in the statistical

dependence among the feature vectors which is captured and described by the

ergodic HMMs. However, there are certainly other types of statistical models

which might turn out to be better than ergodic HMMs to do the same job.

For example, pseudo 2D HMMs [108, 109], embedded 2D HMMs [110, 111],

embedded Bayesian networks [112], true or full 2DHMMs [113, 114, 115, 116]

as well as hidden Markov random fields (HMRFs) [117] are considered by a

number of researchers in the image processing and computer vision commu-

nity as potentially better statistical models for representing two-dimensional

images than the conventional one-dimensional sequential HMMs. Therefore,

it is highly advisable and desirable that, when we construct a one-vector

representation of stochastic signals following the approach guided by the

proposed general framework, the type of the underlying statistical models in

the first stage must be carefully and cleverly chosen according to the nature

of the stochastic signals. Once the type of the underlying statistical models is

chosen, there might be other issues such as those structure- or signal-related

parameters that need to be determined. For example, if HMMs are chosen to

be the underlying statistical models, according to the nature of the stochastic

signals, the topology of the underlying HMMs can be either ergodic or left-

to-right, and the state observation probability distributions of the HMMs can

be represented by either continuous PDFs or discrete PMFs. Figure 7.2 hier-

archically displays an incomplete list of various underlying statistical models

which may be used for constructing one-vector representations of stochastic

signals under the guidance of the general framework.
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Figure 7.2: An incomplete list of various underlying statistical models
which may be used for constructing one-vector representations of stochastic
signals under the guidance of the general framework.

The proposed general framework for one-vector representations of stochas-

tic signals can serve as a unified and principled guide for constructing “the

best” one-vector representations of stochastic signals of various types and

for various pattern recognition tasks. Based on different types of underlying

statistical models carefully and cleverly chosen to best fit the nature of the

stochastic signals, “the best” one-vector representations of the stochastic sig-

nals may be constructed by a nonlinear transform of the parameters of the

underlying statistical models learned from the stochastic signals, where the

nonlinear transform may be mathematically derived from a properly chosen

distance measure between two underlying statistical models that has an el-

egant root in the Kullback-Leibler (KL) theory [118, 92]. In the following,

we close this chapter by summarizing the design choices that are involved

in constructing “the best” one-vector representations of stochastic signals

following the guidance of the proposed general framework for one-vector rep-

resentations of stochastic signals for pattern recognition.

• The choice of underlying statistical model. In the general framework,

the type of the underlying statistical model should be carefully and

cleverly chosen so that it best characterizes the joint probability dis-

tributions of the feature vectors extracted from the stochastic signals.
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The topology of the underlying statistical model should be determined

based on the nature of the stochastic signals, conforming to the physical

or imaginary generative process that would have generated the observa-

tions of the stochastic signals. The type of the observation probability

distributions (continuous or discrete) should be determined together by

the type of the feature vectors and the scales of the problem and data

set.

• The choice of learning and adaptation strategies. In the general frame-

work, the learning and adaptation strategies for the underlying sta-

tistical models should be decided according to the specific statistical

models and the specific the pattern recognition tasks. That is, different

learning and adaptation techniques should be adopted to learn the pa-

rameters of the underlying statistical models for different purposes. In

our HMM-based one-vector representations, we have employed maxi-

mum likelihood estimation techniques to learn the model parameters of

the underlying ergodic or left-to-right HMMs. However, how to choose

the ideal learning and adaptation techniques can be closely related to

the specific pattern recognition tasks that will subsequently make use

of the one-vector representation. For example, if the pattern recogni-

tion task is solely to discriminatively classify the stochastic signals into

different disjoint groups, then a discriminative learning technique [119]

used during the formation process of the one-vector representation may

lead to a performance increase in the final classification results.

• The choice of distance metrics. In the general framework, two kinds

of distance metrics must be determined before we can proceed to de-

rive the formation formulas for the one-vector representation. One is

the vector-based distance metric that we use to measure the distance

between two resulting vectors in our representational space. The other

is the statistical model based distance measure that we use to mea-

sure the dissimilarity between two probability distributions. In our

proposed one-vector representations based on adapted ergodic HMMs

and adapted left-to-right HMMs respectively, we have used the Eu-

clidean distance metric for the vector-based distance metric between

two representational vectors and the K-L divergence rate for the statis-

tical model based distance measure between two ergodic or left-to-right
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HMMs. However, there are other choices of vector-based distance met-

rics, which may be appropriate for a different purpose. For example,

the cosine distance metric should be chosen if the goal is to form a one-

vector representation in the cosine space rather than in the Euclidean

space. Likewise, there are other choices of statistical model based dis-

tance measures, too. For example, the statistical decision theory moti-

vated cross log likelihood ratio (CLLR) [54] may sometimes be a better

choice than the information theory motivated K-L divergence (KLD)

for measuring the dissimilarity between two probability distributions.
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CHAPTER 8

CONCLUSIONS

In this dissertation, we mainly study one-vector representations of stochas-

tic signals for pattern recognition. Notably, we propose a novel one-vector

representation of stochastic signals based on adapted ergodic hidden Markov

models (EHMMs) and a novel one-vector representation of stochastic signals

based on adapted left-to-right hidden Markov models (LRHMMs). These

proposed one-vector representations of stochastic signals are aimed at over-

coming the limitations, constraints, and weaknesses of the existing methods

for constructing one-vector representations of stochastic signals, namely the

holistic method, the bag of words method, and the GMM mean supervector

representation. Specifically, the major contributions of this dissertation are

highlighted as follows.

1. We propose the conceptually new idea of, and novel strategies for,

semi-supervised speaker clustering, where semi-supervision here refers

to the use of our prior knowledge of speakers in general to assist the

unsupervised speaker clustering process. By means of an independent

training data set, we encode the prior knowledge at the various stages of

the speaker clustering pipeline via (1) learning a speaker-discriminative

acoustic feature transformation, (2) learning a universal speaker prior

model, and (3) learning a discriminative speaker subspace, or equiva-

lently, a speaker-discriminative distance metric. We discover the direc-

tional scattering property of the GMMmean supervector representation

of utterances in the high-dimensional space, and advocate the use of

the cosine distance metric instead of the Euclidean distance metric for

speaker clustering in the GMM mean supervector space. We propose

to perform discriminant analysis based on the cosine distance metric,

which leads to a novel distance metric learning algorithm – linear spher-

ical discriminant analysis (LSDA). We show that the proposed LSDA

formulation can be systematically solved within the elegant “graph em-
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bedding” general dimensionality reduction framework. Our speaker

clustering experiments on the GALE database clearly indicate that (1)

our speaker clustering methods based on the GMM mean supervec-

tor representation and vector-based distance metrics outperform tra-

ditional speaker clustering methods based on the bag of acoustic fea-

tures representation and likelihood-based distance metrics, (2) our ad-

vocated use of the cosine distance metric yields consistent increases in

the speaker clustering performance as compared to the commonly used

Euclidean distance metric, (3) our semi-supervised speaker clustering

concept and strategies significantly improve the speaker clustering per-

formance over the baselines, and (4) our proposed LSDA algorithm

further leads to the state-of-the-art speaker clustering performance.

Note that this contribution is seemingly stand-alone from the rest of

the dissertation. However, in addition to being of great value by it-

self, this contribution not only serves as an important motivation for

the study of one-vector representations of stochastic signals for pattern

recognition in this dissertation, but also helps to illustrate the essential

concepts and many benefits of one-vector representations of stochastic

signals (such as optimal distance metric learning from the data).

2. We propose a new maximum likelihood learning algorithm for hidden

Markov models (HMMs), which we refer to as the boosting Baum-

Welch algorithm. In the proposed boosting Baum-Welch algorithm, we

formulate the HMM learning problem as an incremental optimization

procedure which performs a sequential gradient descent search on a loss

functional for a good fit in an inner product function space. Such a

sequential optimization procedure may be used to provide a theoretical

interpretation for the boosting algorithm from a very different perspec-

tive. Hence the name of the boosting Baum-Welch algorithm. The

boosting Baum-Welch algorithm can serve as an alternative maximum

likelihood learning algorithm for HMMs to the traditional Baum-Welch

or expectation-maximization (EM) algorithm, and a preferred method

for use in situations where there is insufficient training data available.

Compared to the traditional Baum-Welch or EM algorithm, the boost-

ing Baum-Welch algorithm is less susceptible to the over-fitting problem

(known as a general property of maximum likelihood estimation tech-
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niques) in that the boosting Baum-Welch algorithm has a tendency to

produce a “large margin” effect. Since HMMs form the basis of the

one-vector representations of stochastic signals proposed in this disser-

tation, this contribution is relevant and important.

3. We propose a novel one-vector representation of stochastic signals based

on adapted ergodic hidden Markov models (EHMMs) and a novel one-

vector representation of stochastic signals based on adapted left-to-

right hidden Markov models (LRHMMs). These one-vector represen-

tations of stochastic signals possess very attractive properties. First,

the representation summarizes the probability distribution of the fea-

ture vectors in the feature vector set compactly and accurately and

allows the statistical dependence among the feature vectors to be mod-

eled with a systematic underlying structure of first-order Markov chain.

Second, the representation performs unsupervised segmentation of the

stochastic signals implicitly to reveal the local structures of the sig-

nals and to allow for localized, segment-wise comparison of the signals.

Third, the representation is in a one-vector form ready for either super-

vised, semi-supervised or unsupervised distance metric learning from

the data to further reenforce its discriminatory power for classifica-

tion. In addition to the above advantages, the representation is rather

generic in nature and may be used with various types of stochastic sig-

nals (e.g. image, video, speech, etc.) and applied to a broad range of

pattern recognition tasks (e.g. classification, regression, etc.). It does

not require the signals to be of the same size, nor does it require the

alignment of the signals. In addition, it is supposed to be robust to

partial occlusions or corruption in the signals.

4. We propose a general framework for one-vector representations of stochas-

tic signals for pattern recognition, of which the proposed one-vector

representation based on adapted ergodic HMMs and one-vector repre-

sentation based on adapted left-to-right HMMs are two special cases.

The general framework claims that, based on different types of un-

derlying statistical models carefully and cleverly chosen to best fit the

nature of the stochastic signals, “the best” one-vector representations

of the stochastic signals may be constructed by a nonlinear transforma-

tion of the parameters of the underlying statistical models which are
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learned from the stochastic signals, where the nonlinear transforma-

tion may be mathematically derived from a properly chosen distance

measure between two statistical models that has an elegant root in

the Kullback-Leibler (KL) theory. The general framework can serve as

a unified and principled guide for constructing “the best” one-vector

representations of stochastic signals of various types and for various

pattern recognition tasks.

Future research following in the path of this dissertation may be focused

on the following aspects:

1. Although the boosting Baum-Welch algorithm for HMM learning pro-

posed in Chapter 4 is based on the maximum likelihood criterion, it is

possible to extend it with discriminative training criteria, the incorpo-

ration of which has been known in the speech recognition community

to boost the speech recognition performance significantly.

2. It is desirable to derive closed-form one-vector representations of stochas-

tic signals based on several concrete types of underlying statistical

models, for instance, 2DHMMs, HMRFs, etc., and based on different

strategies for training and adapting the underlying statistical models,

as well as to investigate the most appropriate stochastic signals and

the most appropriate application domains that the derived one-vector

representations can fit into.
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