
c⃝ 2010 Hui Kong

NEW STRATEGIES FOR PCB ROUTING

BY

HUI KONG

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2010

Urbana, Illinois

Doctoral Committee:

Professor Martin D. F. Wong, Chair
Associate Professor Sanjay Jeram Patel
Assistant Professor Deming Chen
Muhammet Mustafa Ozdal, Ph.D., Intel Corporation

ABSTRACT

As IC technology advances rapidly, the dimensions of packages and PCBs are decreasing

while the pin counts and routing layers keep increasing. Today, a high-performance PCB

usually contains thousands of pins and more than ten signal layers. Moreover, the manu-

facturing constraints require all nets to be routed in the planar fashion and the designer

requires nets in the same bus to be routed together without any other net. All these factors

pose new challenges for the PCB routing problem, making the PCB routing so difficult that

no commercial CAD software can provide an automatic solution. Today, all high-end circuit

boards are routed manually, in a time-consuming manner. In this dissertation, we present

new strategies for automatic PCB routing. In particular, we present novel algorithms for

bus sequencing, pin assignment, bus planning, bus escape, and escape routing.

ii

This dissertation is dedicated to my wife, my parents and my parents-in-law and my two

lovely kids, for their love and support. I definitely did not have enough time for them due

to my study for the Ph.D.

iii

ACKNOWLEDGMENTS

I am heartily thankful to my advisor, Professor Martin D.F. Wong, whose patience, encour-

agement, guidance and support throughout my study enabled me to complete this research

work.

I would also like to thank the members of my dissertation committee, Professor San-

jay Jeram Patel, Professor Deming Chen and Doctor Muhammet Mustafa Ozdal, for their

constructive comments.

In addition, I would like to thank all members of the VLSI CAD group at the University

of Illinois at Urbana-Champaign. In particular, many thanks to Liang Deng, Lei Cheng,

Tan Yan, Lijuan Luo, Hongbo Zhang, Qiang Ma and Pei-Ci Wu, for their support and help

during my study and research.

iv

TABLE OF CONTENTS

LIST OF TABLES . vii

LIST OF FIGURES . viii

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 BUS SEQUENCING . 6
2.1 Introduction . 6
2.2 Problem Formulation . 8
2.3 Optimal LCIS Algorithm . 11
2.4 Experimental Results . 18
2.5 Conclusions . 20

CHAPTER 3 PIN ASSIGNMENT . 21
3.1 Introduction . 21
3.2 Optimal Algorithms . 22
3.3 An Effective Escape Strategy . 26
3.4 Experimental Results . 31
3.5 Conclusions . 33

CHAPTER 4 BUS PLANNING . 36
4.1 Introduction . 36
4.2 Bus Planning Problem . 38
4.3 Global Routing . 40
4.4 Layer Assignment . 46
4.5 Iterative Improvement . 47
4.6 Experimental Results . 48
4.7 Conclusions . 50

CHAPTER 5 BUS ESCAPE . 51
5.1 Introduction . 51
5.2 Optimal Algorithms . 54
5.3 Experimental Results . 64
5.4 Conclusions . 65

v

CHAPTER 6 ESCAPE ROUTING . 66
6.1 Introduction . 66
6.2 Algorithm . 67
6.3 Applications in the PCB Routing System . 80
6.4 Experimental Results . 81
6.5 Conclusions . 82

REFERENCES . 83

vi

LIST OF TABLES

2.1 Comparison of the escape routing results between the escape router with
and without using the LCIS algorithm. 18

4.1 Comparison between our layer assignment and the manual layer assignment. 50

5.1 Experimental results. 65

6.1 Escape routing statistics. 82

vii

LIST OF FIGURES

1.1 A PCB with five components. Each component corresponds to a pin array
on the PCB. 2

1.2 A PCB routing solution with bus structures. The zoom-in part shows the
escape routing solution and the area routing solution of nets in a bus. 3

2.1 A sample net-centric escape routing solution for a problem with two buses.
Nets of these two buses are mixed up. 7

2.2 Illustration of the bus projection interval. 8
2.3 A sample bus sequencing problem with five buses. Each bus is represented

by the bounding boxes of their pin clusters. The thick edge of each bound-
ing box should be projected to the boundary to get the projection interval.
The number inside the box represents the bus weight. The dashed lines
show the solution. 10

2.4 The net-centric escape routing solution for bus D in the example shown in
Figure 2.3. The solid lines show the escape routes inside the components
and the dashed lines show the connections between component boundaries. 11

2.5 Illustration for the definitions and Lemma 1. 12
2.6 Example problem configuration. 16
2.7 Execution of our algorithm. Bold means newly modified in UPPER or

added into LCISset. Underlined item means newly removed from LCISset. 16
2.8 A bus-centric escape routing problem with 10 buses from A to J and its

solution. Here, wA = 8, wB = 24, wC = 26, wD = 27, wE = 25, wF = 6,
wG = 21, wH = 19, wI = 7, and wJ = 20. (a) The original bus-centric
escape routing problem. The bounding boxes of all buses are shown. (b)
The solution of the bus sequencing problem. Buses A, C, E, F, H, I and
J, whose bounding boxes are highlighted, are chosen to be routed on the
same layer. (c) The final escape routing solution of this problem by using
the net-centric escape routing algorithm for buses A, C, E, F, H, I and J,
respectively. In total 111 nets are routed. 19

3.1 Pin assignment has great influence on later routing. Some assignments like
(a) lead to simple and short routes while others like (b) lead to complex routes. 22

viii

3.2 Capacity constraints and the basic flow model inside a tile. (a) The or-
thogonal capacity constraint O cap and the diagonal capacity constraint
D cap. The dashed box represents a tile. (b) Basic flow model inside a tile.
The numbers and letters marked on edges represent their capacities, where
O = O cap and x = ⌊O cap/2⌋. Node C has capacity D cap− 2 · ⌊O cap/2⌋. 23

3.3 A two-layer flow model. In the zoomed-in view, the black circles are the
boundary pin nodes in M11 and M21, and the boxes labeled with E and
W are the boundary tile nodes of M11 and M21 respectively. 25

3.4 Single-layer solution vs. multi-layer solution. 27
3.5 Bus projection interval on a component. 29
3.6 Random layer assignment vs. cut-like layer assignment. 30
3.7 Two single-layer pin assignment and escape routing solutions for a GPU

with 100 signals. (a) Single-layer solution with orthogonal capacity 2 and
diagonal capacity 3 in the left component. (b) Another single-layer so-
lution but the orthogonal and diagonal capacities of the left component
are changed to 3 and 4. In both (a) and (b), the right component has
orthogonal capacity 1 and diagonal capacity 2. 32

3.8 An equal-length single-layer simultaneous pin assignment and escape rout-
ing solution of a bus. 34

3.9 An equal-length cut-like two-layer simultaneous pin assignment and escape
routing solution of a bus. 35

4.1 One layer of bus planning solution. 37
4.2 Internal route conflicts. 38
4.3 Given bus escape intervals (a) and bus internal conflict graph (b) as input,

the expected output of planning buses to two layers is (c) and (d). 39
4.4 Hanan grid. 40
4.5 The dynamic routing graphs in a Hanan grid cell. (a) and (b) The routing

graphs before and after a bus is routed. The thin dashed lines in (b)
represent edges intersecting with the routed bus and they may be given
high penalties. 42

4.6 The dynamic routing graphs of a PCB before (a) and after (b) a bus is
routed. The thin dashed lines in (b) represent routing graph edges that
are given high penalties. 42

4.7 The dynamic routing graph in a Hanan grid cell as three buses b1, b2 and
b3 pass through it consecutively. Here b1 has internal conflict with b3. (a)
Initial routing graph. (b), (c) and (d) Routing graphs when b1, b2 and b3
are routed consecutively. 43

4.8 An example of all the routing paths on one layer. 44
4.9 The critical cuts from corner v. 44
4.10 An example of bin-packing-based congestion estimation. 45
4.11 An example of bubble-sort-like improvement. 48

ix

4.12 Layer-by-layer comparison between our routing solution and manual rout-
ing solution. y-axis is the percentage over the total number of nets in the
design. 49

5.1 Bus projection interval and bus boundary rectangle (the shaded rectangle). . 52
5.2 A set of boundary rectangles (a) and its maximum disjoint subset (b). . . . 52
5.3 Bus structure needs to be considered in solving the maximum escape rout-

ing problem. (a) and (b) The maximum escape routing solutions of two
buses with and without considering the bus structure of nets, respectively. . 53

5.4 The DAG constructed on the Hanan grid of four boundary rectangles
is displayed in (a). The longest path from v0,0 to vp,q is highlighted in
(b). The solid edges are connectivity edges and the dashed edges are the
rectangle edges. 56

5.5 (a) Flat contours, (b) Z-shape contours. 58
5.6 Illustration on how to recursively compute the M(R(c)) for each kind of

contour c. 59
5.7 R is divided into three regions: R1, R2 and R3, where R1 and R2 are two

corner case subproblems, R3 is an opposite case subproblem. 62
5.8 (a) a counter-clockwise wheel structure of M(R); (b) the whole region R

is divided into 5 subregions. 64

6.1 Bus projection interval. 67
6.2 L-shape escape routing. 67
6.3 L-shape and non-L-shape escape routes. 68
6.4 A single component L-shape escape routing example with nine nets is

displayed in (a) and its corresponding solutions by applying the one com-
ponent escape routing algorithm in “down” and “up” net orderings are
demonstrated in (b) and (d). (c) and (e) The compacted routing solutions
corresponding to (b) and (d). 70

6.5 A two component escape routing example. 72
6.6 Escape routing and compaction along LU and RU orderings. 74
6.7 Escape routing and compaction along LD and RD orderings. 75
6.8 Examples of differential pairs. 76
6.9 An escape routing example with differential pairs. 76
6.10 Same-ordering same-row net pair and the reverse-ordering same-row net pair. 77
6.11 Routing ordering swap in LU and LD orderings for a same-ordering net pair. 78
6.12 Routing ordering swap in LU and LD orderings for a reverse-ordering net pair. 78
6.13 The L-shape escape routing and compacted solutions for the case in Fig-

ure 6.9. (a) and (b) The LU routing and compaction solutions. (c) and
(d), (e) and (f), and (g) and (h) The LD, RU and RD routing and com-
paction solutions, respectively. Red circles represent pins of a differential
pair. 79

6.14 All possible escape directions for a bus. 80
6.15 A two-layer escape routing solution of a bus in (a). 81

x

CHAPTER 1

INTRODUCTION

A typical printed circuit board (PCB) contains several components such as MCMs (multi-

chip modules), memory, and I/O modules, as shown in Figure 1.1. These components are

either mounted on or plugged into the board such that each component pin is accessible from

every layer of the board. As IC technology advances rapidly, the dimensions of packages and

PCBs are decreasing while the pin counts and routing layers keep increasing. Today, a

high-end PCB usually contains thousands of pins and more than ten signal layers [1–3]. For

instance, we have worked on several state-of-the-art industrial boards, which have been fully

routed in manual efforts. One contains more than 7000 nets and 12 signal layers and another

contains more than 10000 nets and 14 signal layers. Therefore, the current high-end PCBs

have the following characteristics. On one hand, due to the high-density fine-pitch packages

used, the available routing resources in the areas beneath components are extremely limited.

Furthermore, there are large numbers of nets that need to escape from dense pin arrays to the

corresponding component boundaries. For example, an MCM of the IBM z9 enterprise class

server [4] (introduced in 2007) consists of sixteen chips, including eight dual-core CPUs, four

10-MB cache chips, one system control chip, two memory storage controllers and one clock

chip. This MCM is only 95 mm × 95 mm in area, but there are 2970 signal I/O pins on its

bottom. On the other hand, there are relatively more routing resources outside components

since there are few blockages between components. According to these characteristics, the

PCB routing is decomposed into two subproblems: the escape routing, which is to route nets

from pins to their corresponding component boundaries, and the area routing, which is to

route nets between component boundaries. The zoomed-in part of Figure 1.2 demonstrates

the escape routing solution and the area routing solution of nets in a bus.

Due to manufacturing constraints, buried vias are not allowed in some board designs.

1

MCM

Memory

MCM

Memory

I/O Module

Me
m

ry

Me
m

ry
o

o

Printed Circuit Board

Pin Arrays

Components

Figure 1.1: A PCB with five components. Each component corresponds to a pin array on
the PCB.

In some other designs, buried vias are permitted, but they need to be kept at minimum,

since vias have adverse effects on performance and signal integrity characteristics of nets,

and they lower the manufacturing yields. Moreover, the triplate layer structure (i.e only

one signal layer between power/GND layers) used in the recent IBM server boards [5, 6]

eliminates the vertical coupling problems among signal wires, and allows full utilization of

routing resources on each signal layer. In other words, we do not need to route signal nets

on x-y layer pairs anymore. So, routing nets in a planar fashion on every layer becomes

very important, both in terms of minimization (or complete avoidance) of buried vias, and

effective utilization of routing resources on every layer. However, planar routing is a different

problem, especially when all source-destination pin pairs are fixed. Furthermore, the scarcity

of routing resources inside dense components, and the large number of nets (on the order of

tens of thousands) make this routing problem even harder. In addition, several other design

constraints need to be enforced during routing due to performance and manufacturing related

issues (e.g. min/max length constraints, adjacency/separation constraints, differential pairs,

2

Escape

Routing

Escape

Routing

Area

Routing

Bus Routes

Obstacles

Figure 1.2: A PCB routing solution with bus structures. The zoom-in part shows the
escape routing solution and the area routing solution of nets in a bus.

etc.). Whenever the design constraints permit, designers prefer the nets in a PCB to be

bundled together as buses. All the nets in a bus are expected to be routed together. In

some high-end boards, more than 90% of signal nets belong to buses. Figure 1.2 gives a

designer-preferred PCB routing solution, where the bus structure is honored.

All the above factors pose new challenges for the board routing problem, making the PCB

routing so difficult that no commercial CAD software can provide an automatic solution.

Today, all high-end circuit boards are routed manually, in a time-consuming manner. In this

dissertation, we will propose some new routing strategies to handle these challenges.

In Chapter 2, we will propose an optimal bus sequencing algorithm for escape routing.

As mentioned above, nets have bus structures and nets in a bus are preferred to be routed

together without foreigners. But now all existing algorithms for escape routing are net-

centric and directly applying these algorithms will result in mixing nets of different buses

together. Thus the bus-centric escape routing problem can be naturally divided into two

3

subproblems: (1) finding a subset of buses that can be routed on the same layer without

net mixings and crossings, which we refer to as the bus sequencing problem, and (2) finding

the escape routing solutions for each chosen bus, which can be solved by a net-centric

escape router. In this chapter, we solve the bus sequencing problem. We introduce a new

optimization problem called the Longest Common Interval Sequence (LCIS) problem and

model the bus sequencing problem as an LCIS problem. By using dynamic programming

and balanced search tree data structure, we present an LCIS algorithm which can find an

optimal solution in O(n log n) time. We also show that O(n log n) is a lower-bound for this

problem and thus the time complexity of our algorithm is also the best possible.

In Chapter 3, we will propose some simultaneous pin assignment and escape routing

approaches. In PCB designs, pin positions greatly affect routability of the design. State-

of-the-art pin assignment algorithms are guided by simple (heuristic) metrics to estimate

routability and thus have no guarantee to obtain a routable solution. In this chapter, we

present a novel approach to obtain a pin assignment solution that guarantees routability.

We show that the problem of simultaneous pin assignment and escape routing can be solved

optimally in polynomial time. We then focus on the pin assignment and escape routing

for the terminals in a bus, and present algorithmic enhancements as well as discuss the

trade-offs between single-layer and multi-layer implementations. We tested our approach on

a state-of-the-art industrial board with 80 buses (over 7000 nets). The pin assignment and

escape routing solutions for all the 80 buses are successfully obtained in less than 5 minutes

of CPU time.

In Chapter 4, we will propose an automatic bus planner. Bus planning is one of the most

time-consuming steps of PCB routing. It consists of assigning buses to multiple layers of

the PCB and routing them in a planar fashion on each layer. Routing congestion between

on-board components and the min-max length bounds of the buses must also be considered

during routing. In this chapter, we present the first automatic bus planner. We tested our

system on a state-of-the-art industrial circuit board with over 7000 nets and 12 signal layers.

All the nets on this board were already manually routed. Our bus planner is able to achieve

100% routing completion using the layer assignment extracted from manual design. For

simultaneous layer assignment and bus routing, we are able to successfully route 98.5% of

4

the nets. The remaining 1.5% can be routed either manually or by using vias. The runtime

of our bus planner is less than 3 hours on a 3 GHz workstation.

In Chapter 5, we will propose an optimal maximum disjoint subset (MDS) algorithm

to escape the maximum number of buses from one component. The MDS of rectangles is

a subset of non-overlapping rectangles with the maximum total weight. The problem of

finding the MDS of general rectangles has been proved to be NP-complete in [7]. In this

chapter, we focus on the problem of finding the MDS of boundary rectangles, which is an

open problem and is closely related to some difficult problems in PCB routing. We propose

a polynomial time algorithm to optimally solve the MDS problem of boundary rectangles.

Then we show this algorithm can be applied to find the optimal solution of the bus escape

routing problem.

In Chapter 6, we will propose a wire packing based escape routing algorithm, which can

provide a simultaneous L-shape escape routing solution in a very short time. All existing

escape routing algorithms which can provide comparable escape routing solutions are slower

than this algorithm. In this chapter, we will also introduce the applications of this L-shape

escape routing algorithm in the whole PCB routing process.

5

CHAPTER 2

BUS SEQUENCING

2.1 Introduction

As was pointed out in Chapter 1, today the printed circuit board (PCB) routing problem

becomes more and more challenging such that it cannot be solved fully automatically. It is

decomposed into two separate problems: (1) routing nets from pin terminals to component

(MCM, memory, etc.) boundaries, which is called escape routing (see the solid line in

Figure 2.1), and (2) routing nets between component boundaries, which is called area routing

(see the dashed line in Figure 2.1). In this chapter, we only discuss the escape routing

problem for a single layer.

Previous escape routing algorithms [8, 9] are net-centric. However, in practice, as shown

in industrial manual routing solutions, nets are usually organized in bus structures, and nets

in a bus are expected to be routed together without foreign wires in between. Obviously,

directly applying the net-centric algorithms in [8, 9] to all the buses will result in mixing

nets of different buses together as shown in Figure 2.1. Thus, the escape routing problem is

bus-centric and can be defined as finding the maximum number of nets, such that (1) the

routed nets in a bus are bundled together without foreign wire (i.e., the buses are not mixed

up), and (2) the nets escaped from the components do not lead to any crossing between

component boundaries. Therefore, the bus-centric escape routing problem can naturally be

divided into two subproblems: (1) finding a subset of buses that can be routed on the same

layer without net mixings and crossings, which we refer to as the bus sequencing problem,

and (2) finding the escape routing solution for each chosen bus, which can be solved by

1This work has been published as “Optimal Bus Sequencing for Escape Routing in Dense PCBs,” pages
390-395, Proceedings of the 2007 IEEE/ACM International Conference on Computer-Aided Design (ICCAD
2007).

6

existing net-centric escape routing algorithms.

Pins of bus 1 Pins of bus 2

Figure 2.1: A sample net-centric escape routing solution for a problem with two buses.
Nets of these two buses are mixed up.

In this chapter, we solve the bus sequencing problem. We introduce a new optimization

problem called the Longest Common Interval Sequence (LCIS) problem and formulate the

bus sequencing problem as an LCIS problem. The LCIS problem is a generalized version

of the well-known longest common subsequence (LCS) problem. But traditional LCS al-

gorithms cannot be directly applied to solve it. We propose an LCIS algorithm based on

dynamic programming and balanced binary search tree (BST) data structure. Our algorithm

guarantees finding an optimal solution in O(n log n) time. We also show that O(n log n) is

a lower bound and thus the time complexity of our algorithm is also the best possible.

The rest of this chapter is organized as follows: in Section 2.2, we formulate the bus

sequencing problem as the LCIS problem. Then we present our algorithm and its time

complexity analysis in Section 2.3. Section 2.4 demonstrates some experimental results to

compare the escape routing results with and without using the LCIS algorithm. Finally,

concluding remarks are given in Section 2.5.

7

2.2 Problem Formulation

A typical circuit board contains several chip components such as MCM, memory, and I/O

module. These components are mounted on or plugged into the board, making a number of

dense pin arrays on the board. Let a component be defined as a 2-D array of pins. The input

to the escape routing problem is assumed to contain two components separated by a channel.

A bus is a group of 2-pin nets, and it has a pin cluster in each component. The escape route

for a given net is defined as the route from its terminal pins (within components) to the

respective component boundaries. Then the bus sequencing problem for the escape routing

is to find a subset of buses, such that: (1) the sum of the number of nets in the chosen buses

is maximum, (2) the net escape routes belonging to different buses will not be mixed up, and

(3) the net escape routes of different buses will not have crossings in the intermediate channel.

For simplicity of presentation, we focus on a horizontal problem, where one component is to

the right of the other. It is straightforward to extend the algorithm to a vertical problem.

Interval
Projection

Component
Boundary

Cluster
PinBounding

Box

Figure 2.2: Illustration of the bus projection interval.

For each bus, its projection interval on a component can be obtained by projecting the

bounding box of its pin cluster onto the component boundary, as shown in Figure 2.2. From

industrial manual routing solutions, we observe that the nets of a bus typically escape a com-

ponent from its projection interval. Based on this observation, each bus can be represented

8

by two intervals located in different components.

Naturally, if two bus intervals overlap in a component, the net escape routes of the corre-

sponding buses are mixed up. Therefore, for the buses chosen to be routed together, their

intervals in each component should have no overlapping. If we define the ordering of a group

of intervals in a component without overlapping by counting them from top to bottom, then

the intervals of the chosen buses correspond to two sequences of intervals, one in each com-

ponent. For example, in Figure 2.3, intervals of buses B, C, and D overlap in component 1,

so they do not form a sequence, but intervals of buses B, D, and E do form a sequence in

component 1. Furthermore, these two sequences of intervals should have the same ordering;

otherwise their nets have crossings in the intermediate channel. In Figure 2.3, the intervals

of buses A, B, and D in component 1 correspond to interval sequence ⟨A,B,D⟩, but those

in component 2 correspond to a different interval sequence ⟨B,A,D⟩. Therefore, a common

interval sequence is a bus interval sequence existing on both components, such as ⟨A,D,E⟩

in Figure 2.3. In addition, we define the weight of a bus as the number of its nets. Then the

bus sequencing problem looks for an optimal common interval sequence, which is a common

interval sequence with maximum sum of weights (i.e. ⟨A,D,E⟩ in Figure 2.3). Thus the bus

sequencing problem is equivalent to the LCIS problem defined as follows:

Definition 1 Given a bus set B = {b1, b2, . . . , bn}, its corresponding intervals on the left

side are L = {l1, l2, . . . , ln} and the intervals on the right side are R = {r1, r2, . . . , rn}. Each

bus bi also has a weight wi. The LCIS problem is to find a common interval sequence of L

and R such that the total weight of the corresponding buses is maximized. This total weight

is denoted as LCIS(L,R).

A related problem in the literature is the LCS problem [10–13], in which each sequence

defines a linear ordering on its elements. But in our LCIS problem, due to the interval

overlappings, the intervals in a component only have a partial ordering. Thus, the LCIS

problem is a generalization of the LCS problem since if the intervals do not overlap, it is

reduced to the LCS problem. No LCS algorithm can be applied to solve it directly. In the

9

D

E

A

Component1

C

B8

5 B

7

12

10

5

E 10

12D

C 7

8A

Component2

Figure 2.3: A sample bus sequencing problem with five buses. Each bus is represented by
the bounding boxes of their pin clusters. The thick edge of each bounding box should be
projected to the boundary to get the projection interval. The number inside the box
represents the bus weight. The dashed lines show the solution.

next section, we propose an LCIS algorithm which can find an optimal solution in O(n log n)

time.

In practice, the bus sequencing algorithm can be applied to the bus-centric escape routing

problem followed by the net-centric escape routing algorithm in [8, 9]. Here, the net-centric

algorithm is applied to the buses chosen by the bus sequencing algorithm one by one, but

not to all the buses directly. For the example in Figure 2.3, ⟨A,D,E⟩ is the longest common

interval sequence, so buses A, D, and E are chosen to be routed on the same layer. Figure

2.4 gives a net-centric escape routing solution for bus D in the example in Figure 2.3. It is

easy to see that all the nets in bus D escape the components from its projection intervals,

so the net escape routes of bus D cannot mix or cross with those belonging to other buses.

Similarly, apply the net-centric escape routing algorithm to bus A and E; we can then get

the escape routing solution for this bus-centric escape routing problem, where 30 nets are

routed.

10

Component
Boundary

Bounding box
for bus D

Bounding box
for bus D

Figure 2.4: The net-centric escape routing solution for bus D in the example shown in
Figure 2.3. The solid lines show the escape routes inside the components and the dashed
lines show the connections between component boundaries.

2.3 Optimal LCIS Algorithm

Before we present our algorithm, we first introduce some terminology and some definitions.

For bus set B with left intervals L and R, assume all intervals are parallel with the y axis,

where the y coordinates increase from top to bottom. Then each interval li = [lli, l
u
i] in L is

specified by its lower endpoint lli and upper endpoint lui , with lli > lui . Similarly, in R, rli and

rui are the lower and upper endpoints of interval ri, with rli > rui .

Definition 2 For a bus bi, we define the set of buses above its lower endpoints on both sides

as its above set Ai:

Ai = {bj|llj < lli and rlj < rli}

We also define the set of buses above its upper endpoints on both sides as its strictly above

set SAi:

SAi = {bj|llj < lui and rlj < rui }

11

See Figure 2.5 for an example. For bus b2, the buses that are above the solid line in both

sides compose A2 (A2 = {b1, b3, b6}), and the buses that are above the dashed line in both

sides compose SA2 (SA2 = {b1, b6}).

Definition 3 For a bus bi, we also define the longest common interval sequence length

LCIS(bi) as the longest length of the common interval sequence that is (inclusively) above

the lower endpoint of bi.

In other words, if we draw a line between the lower endpoints of the two intervals of bi,

LCIS(bi) gives the length of the longest common interval sequence problem above that line.

See Figure 2.5 for an example. LCIS(b2) defines a problem of the region above the solid

line.

1l

2l

4l

6l

1r

2r

3r

r4

6r

r5

5l

3l

Figure 2.5: Illustration for the definitions and Lemma 1.

2.3.1 The Algorithm

For bus bi, there are two cases: either bus bi is included in LCIS(bi) or it is not included.

If it is included, then LCIS(bi) is the maximum of all LCIS(bj), in which bj is in the strict

12

above set of bi, plus the weight of bi. Otherwise, LCIS(bi) is the maximum of all LCIS(bk),

in which bk is in the above set of bi. We can formally describe this fact in Lemma 1:

Lemma 1 LCIS(bi) = max(maxbj∈SAi
LCIS(bj)+wi, maxbk∈Ai

LCIS(bk)). If such SAi =

∅ or Ak = ∅, then LCIS(bj) or LCIS(bk) is zero.

We can see that this lemma gives a great hint: one LCIS problem could be solved by

combining the solutions of two LCIS subproblems. Figure 2.5 gives an illustration. The

LCIS length of bus b2 is either the maximum of the LCIS of all the buses above the dashed

line (the maximum of LCIS(b1) and LCIS(b6)) plus the weight of b2, or the maximum of

the LCIS length of all the buses above the solid line (the maximum of LCIS(b1),LCIS(b6),

and LCIS(b3)). It should be the larger one of the two.

It is trivial that:

Lemma 2 The solution of the LCIS problem is the maximum of the LCIS length of each

bus:

LCIS(L,R) = max
bi∈B

(LCIS(bi))

The two lemmas naturally lead to a dynamic programming approach. Our basic idea is as

follows: we scan through the end points on the left side from top to bottom. When we meet

an upper end of a bus bi, we find maxbj∈SAi
LCIS(bj) as in Lemma 1 and associate it with this

upper endpoint. When we meet a lower endpoint of an interval bi, we find maxbk∈Ai
LCIS(bk)

and compare it with the LCIS value associated with the upper endpoint of this interval plus

the weight of bi. The larger value becomes the LCIS value of this bus. Finally, we find the

largest LCIS value among all the buses. The algorithm is shown in Algorithm 1. In the

algorithm, LCISset is a sorted array that collects the lower endpoint of each interval on the

right side and the LCIS length of its corresponding bus. The array is then sorted by the

13

Algorithm 1 LCIS length computation

1: LCISset = ∅
2: UPPER[i] = 0 for all i
3: sort the upper and lower ends on the left side
4: for i = 1 to 2n do
5: value = 0
6: e = the ith end on the left side
7: if e is an upper end lup of bus bp then
8: By binary search, find (endpoint, value) in LCISset satisfying

(endpoint, value) = maxu{(u, v)|(u, v) ∈ LCISset and u < rup}
9: UPPER[p] = value
10: else
11: //e is a lower end llq of bus bq
12: By binary search, find (endpoint, value) in LCISset satisfying

(endpoint, value) = maxu{(u, v)|(u, v) ∈ LCISset and u < rlq}
13: lowerq = max(UPPER[q] + wq, value)
14: add (rlq, lowerq) to LCISset
15: remove all (u, v) from LCISset satisfying

u > rlq and v < lowerq
16: end if
17: end for
18: find (endpoint, value) in LCISset with the largest value
19: return value

right lower endpoints of the intervals. Each of its elements is in the form of (rli, LCIS(bi)).

The UPPER array records all the LCIS values associated with the upper endpoints on the

right.

We show the correctness of this algorithm by comparing it with Lemma 1. Lines 8 and 9

calculate maxbj∈SAi
LCIS(bj), line 12 calculates maxbk∈Ai

LCIS(bk), then line 13 compares

maxbj∈SAi
LCIS(bj)+wi with maxbk∈Ai

LCIS(bk) and LCIS(bi) is equal to the larger of the

two. Since the endpoints on the left side are sorted and since we scan from top to bottom,

we process a lower or upper endpoint on the left side only when all the lower endpoints

above it are processed. On the right side, whenever we query for the LCIS, we enforce that

the endpoint we query is above the upper endpoint or lower endpoint of the bus (u < rup in

line 8 and u < rlq in line 12). These two properties guarantee bj ∈ SAi and bk ∈ Ai in the

lemma. (Notice that if nothing can be found in line 8 and line 12, value = 0.) To find the

maximal LCIS for all bj and bk as in the lemma, we use the LCISset to keep track of the

LCIS value for all the buses that are processed. LCISset records the lower endpoints in the

14

right side and the LCIS values of their corresponding buses (LCISset = {(rli, LCIS(bi))}).

Whenever we obtained the LCIS(bi) for bus bi, we store its lower endpoint on the right

side together with LCIS(bi) into LCISset (line 14). After that, we should remove all the

entries in LCISset that have the lower endpoint below the newly added one but have an

LCIS value smaller than the newly added one. Such an entry cannot lead to an optimal

solution. This removing step guarantees that the LCIS(bi) value in LCISset is increasing

as the lower endpoint coordinate rli increases. Then, whenever we need to find the maximal

LCIS above an endpoint a on the right side, we just use a as the key to query in LCISset

and find the lowest lower-endpoint that is above a. The LCIS value associated with a must

be the largest among all the LCIS values above a. This also explains why, in lines 8 and

12, we find the lowest endpoint (u) instead of largest LCIS value. The two are consistent:

the lowest endpoint in LCISset above the endpoint a means the largest LCIS length above

it. In a later example, we will show how this guarantees that the maximal LCIS for all

possible j and k are selected. Finally, we take the largest LCIS length from the LCISset,

which reflects Lemma 2. From the discussion above, we can see that:

Theorem 1 Algorithm 1 gives the correct LCIS length.

By this algorithm, we can obtain only the LCIS length. However, it is easy to obtain the

LCIS sequence by adding a postprocess to back track LCISset.

2.3.2 An Example

Now we give a simple example to illustrate how our algorithm works. Figure 2.6 gives the

problem configuration: the weights of each bus and the locations of each interval.

Now we simulate the process of our algorithm. Please refer to Figure 2.7 as we go through

the whole process. We scan from top to bottom on the left side. The first two endpoints

we encounter are lu1 (the upper endpoint of l1) and then lu3 ; since nothing has been added to

LCISset till now, we cannot find anything by line 8. Therefore, elements in UPPER array

15

1l

2l

3l

4l

2r

1r

3r

4r

w =52 w =73w =31 w =44

9

12

1

8
7

3

1

4

6

4
5

7

10

8

11

13

Figure 2.6: Example problem configuration.

are still 0 (Figure 2.7 (a) and (b)). We keep going and meet ll1. At this time, UPPER[1] = 0

and LCISset = ∅. Therefore, lowerq = w1 = 3, and we add (8, 3) into LCISset, where

8 = rl1 (Figure 2.7(c)). We then meet lu2 . We try to find the largest endpoint smaller than

ru2 = 1 in LCISset, but cannot find anything. Therefore, UPPER[2] = 0 (Figure 2.7(d)).

For ll3, we use rl3 = 11 to query in LCISset and get 8 < 11. We then compare 3 with

w3 + UPPER[3] = 7 and choose lowerq = 7. After this, (11, 7) is added into LCISset.

UPPER = [0, 0, 0, 0] UPPER = [0, 0,0, 0]
LCISset = ∅ LCISset = ∅
(a) Processing lu1 (b) Processing lu3

UPPER = [0, 0, 0, 0] UPPER = [0,0, 0, 0]
LCISset = {(8,3)} LCISset = {(8,3)}
(c) Processing ll1 (d) Processing lu2

UPPER = [0, 0, 0, 0] UPPER = [0, 0, 0, 0]
LCISset = {(8,3), (11,7)} LCISset = {(5,5),(8, 3), (11,7)}
(e) Processing ll3 (f) Processing ll2

UPPER = [0, 0, 0,5] UPPER = [0, 0, 0, 0]
LCISset = {(5,5), (11,7)} LCISset = {(5,5), (11,7), (13,9)}
(g) Processing lu4 (h) Processing ll4

Figure 2.7: Execution of our algorithm. Bold means newly modified in UPPER or added
into LCISset. Underlined item means newly removed from LCISset.

Then we process ll2; r
l
2 is 5 and the lowerq we obtain is also 5. We insert (5, 5) into LCISset.

16

Notice that we should now remove (8, 3) because 8 > 5 and 3 < 5. Otherwise, if we keep

(8, 3) in LCISset, we will have problems when processing lu4 . In that case, we will use

ru4 = 10 to query in LCISset, and the largest endpoint that is smaller than 10 is 8. We

would think that the LCIS length above ru4 is 3 (bus 1 is selected). However, the best choice

should be bus 2, and the LCIS should be 5. Therefore, we can see that if we do not remove

(8, 3) from LCISset, we cannot guarantee that the best choice is made every time we query

LCISset, and we may lose the optimal solution. The rest of the simulation is similar to the

previous steps. Finally, the longest LCIS length in this case is 9 (by choosing bus 2 and 4),

which is optimal.

2.3.3 Time Complexity

Assuming we have n buses, sorting the endpoints on the left takes O(n log n) time. With

the LCISset implemented by a height-balanced BST using the endpoint as key and its

corresponding LCIS as value, finding the endpoint in LCISset as in lines 8 and 12 takes

O(n log n) time. Adding (line 14) one entry into the BST can also be done in O(log n). So

the total time for one iteration in the for loop takes O(log n), except for line 15 in which

there might be multiple entries to be removed in one iteration. We will discuss the time

complexity of line 15 by amortized analysis. Removing one entry takes O(log n). Since we

will add at most n lower endpoints into the BST, we have at most n entries to remove.

Therefore, line 15 takes O(n log n) time for all iterations. Line 18 takes O(n). Summing

them up, we get O(n log n) time complexity for this algorithm.

Theorem 2 O(n log n) is the lower bound time complexity for the LCIS problem.

The proof of this theorem is similar to the proof of theO(n log n) lower bound for comparison-

based sorting. Here we give a proof sketch. Since all the decisions can be made only by

comparisons (of the interval endpoints and of the weights), we can model any algorithm

as a decision tree with the leaves as solution and internal nodes as comparison operation.

17

Since we have more than n! possible solutions for this problem, the tree height must be over

O(n log n). This indicates that we must do at least O(n log n) comparisons before we can

reach a solution. The details of the proof are omitted.

2.4 Experimental Results

In this section, we derive some two-component experiments from industrial data to compare

the escape routing results between the escape router with and without using the LCIS

algorithm. Table 2.1 gives the experimental results. From Table 2.1, it is easy to see that

the number of nets routed by the router with LCIS algorithm is much more than the number

of nets routed by the original escape router [8] after eliminating all mixed-up nets. Through

this comparison, we can conclude that the LCIS algorithm significantly improves the bus-

centric escape router. For all our experiments, the LCIS algorithm is very efficient and it

can be done in 1 second or less. We also illustrate a one-layer bus-centric escape routing

problem and its solution in Figure 2.8. In this example, seven buses are chosen by the LCIS

algorithm and 111 nets are routed finally.

Table 2.1: Comparison of the escape routing results between the escape router with and
without using the LCIS algorithm.

Data # of routed nets
Escape without LCIS Escape with LCIS

Ex1 42 54
Ex2 47 56
Ex3 45 65
Ex4 62 80
Ex5 87 111
Ex6 91 128

18

A

J

D

I

H

F

B

E

C

G

J

I

H

G

F

E

D

B

C

A

(a) Original problem

J

I

H

G

F

E

D

B

C

A A

J

D

I

H

F

B

E

C

G

(b) Bus sequencing solution (c) Final escape routing solution

Figure 2.8: A bus-centric escape routing problem with 10 buses from A to J and its
solution. Here, wA = 8, wB = 24, wC = 26, wD = 27, wE = 25, wF = 6, wG = 21, wH = 19,
wI = 7, and wJ = 20. (a) The original bus-centric escape routing problem. The bounding
boxes of all buses are shown. (b) The solution of the bus sequencing problem. Buses A, C,
E, F, H, I and J, whose bounding boxes are highlighted, are chosen to be routed on the
same layer. (c) The final escape routing solution of this problem by using the net-centric
escape routing algorithm for buses A, C, E, F, H, I and J, respectively. In total 111 nets
are routed.

19

2.5 Conclusions

In this chapter, we gave the bus sequencing problem, which is a subproblem of the bus-

centric escape routing problem, and then solved it. We introduced a new optimization

problem called the Longest Common Interval Sequence (LCIS) problem and formulated the

bus sequencing problem as an LCIS problem. We proposed an LCIS algorithm that can find

an optimal solution in O(n log n) time. We also showed that O(n log n) is a lower-bound

and thus the time complexity is also the best possible. Experimental results show that our

algorithm performs well.

20

CHAPTER 3

PIN ASSIGNMENT

3.1 Introduction

In PCB designs, pin assignment is to assign signals to pins in components on the board

(a component is usually a pin array). Pins that are assigned the same signal are expected

to be connected in a later routing stage. Therefore, pin assignment can also be viewed as

a correspondence between pins from different components. It is an important step after

placement because it greatly affects the later routing solution. Some assignments lead to

very simple and clean routing while others may result in very complex or even unsolvable

routing. Figure 3.1 gives such an example, whose 6 pins in a pin array are expected to be

connected to 6 pins in the other array. We need to establish a pin-to-pin correspondence

between them. It can be seen that the assignment in (a) leads to a very simple routing

with short wirelength while the assignment in (b) results in back detours and thus longer

wirelength.

In the past few years, as circuit designs become more and more dense, boards and packages

are decreasing in size while the pin count is increasing. Today high-density fine pitch packages

contain thousands of pins while they only occupy minimal board space. Such a large-scale

problem makes early works on pin assignment for PCBs [14–17] inapplicable because those

works focus on fairly small problems with around 20 pins [18]. Recently, Meister et al. [18]

presented several pin assignment algorithms for large-scale PCB designs, but they are guided

by some heuristic metrics to estimate routability and have no guarantee to obtain a routable

solution. In this chapter, we present a novel pin assignment algorithm that guarantees

2This work has been published as “Optimal Simultaneous Pin Assignment and Escape Routing for Dense
PCBs,” pages 275-280, Proceedings of the 2010 Asia and South Pacific Design Automation Conference (ASP-
DAC 2010).

21

(a) (b)

Figure 3.1: Pin assignment has great influence on later routing. Some assignments like (a)
lead to simple and short routes while others like (b) lead to complex routes.

routability. We show that the problem of simultaneous pin assignment and escape routing

can be solved optimally in polynomial time.

In high-end PCBs, nets are usually grouped into buses. In this work, we also discuss

the advantages of using multiple layers to escape a bus, rather than a single layer, and

we present an effective strategy for multi-layer escape routing of buses. We show that our

routing strategy usually leads to the minimum wire length and occupies the minimum routing

space. We test our approach on a state-of-the-art industrial board with 80 buses (over 7000

nets). The pin assignment and escape routing solutions for all the 80 buses are successfully

obtained in less than 5 minutes of CPU time.

The rest of this chapter is organized as follows: Section 3.2 formulates the multi-layer

simultaneous pin assignment and escape routing problem and then presents optimal algo-

rithms to solve it. Section 3.3 focuses on pin assignment and escape routing for pins in

buses, and proposes an effective bus escape strategy. Section 3.4 and Section 3.5 give the

experimental results and the concluding remarks.

3.2 Optimal Algorithms

In [19], a flow-based algorithm is proposed, which can escape the maxinum number of pins

from one component on one layer. This work will extend its flow model to escape pins from

two components on multiple layers. In this section, we will briefly introduce the basic flow

22

model in [19], and then propose an optimal multi-layer simultaneous pin assignment and

escape routing algorithm and a fast optimal single-layer algorithm.

First of all, let us give some terminology. A component is defined as a 2-D pin array. A

tile is a square formed by 4 adjacent pins in a pin array and the capacities of its four sides are

equal to the orthogonal capacity constraint O cap, which gives the maximum number of nets

between two orthogonally adjacent pins, and the capacities of its two diagonals are equal to

the diagonal capacity constraint D cap, which gives the maximum number of nets between

two diagnonal adjacent pins, as shown in Figure 3.2(a). An escape routing solution is feasible

if all nets are routed to component boundaries in a planar fashion and the orthogonal and

diagonal capacity constraints are satisfied everywhere inside components.

O-cap

O-cap

D-cap

W

S

N

E

1

1

1

1

x

C

x

xx

O

O

O

O

(a) Capacity constraints (b) Basic flow model in a tile

Figure 3.2: Capacity constraints and the basic flow model inside a tile. (a) The orthogonal
capacity constraint O cap and the diagonal capacity constraint D cap. The dashed box
represents a tile. (b) Basic flow model inside a tile. The numbers and letters marked on
edges represent their capacities, where O = O cap and x = ⌊O cap/2⌋. Node C has
capacity D cap− 2 · ⌊O cap/2⌋.

3.2.1 Basic Network Flow Model

Given a pin grid with orthogonal capacity O cap and diagonal capacity D cap, the basic

flow model M in [19] consists of two kinds of nodes:

• Pin Nodes : Pin nodes represent pins. In Figure 3.2(b), 4 circles represent 4 pin nodes

on the corners of the tile.

23

• Tile Nodes : In each tile, there are 5 tile nodes: 4 peripheral nodes E, S,W and N

represent 4 tile sides and have infinite capacity and one central node C has capacity

D cap− 2 · ⌊O cap/2⌋.

and two kinds of directed edges:

• Intra-tile edges: The directed edges between peripheral nodes have capacity ⌊O cap/2⌋.

The directed edges between 4 peripheral nodes and the central node have infinite

capacities. The directed edge from a pin node on the corner to a peripheral tile node

has capacity 1 if the pin node corresponds to a to-be-escaped pin; otherwise it has

capacity 0.

• Inter-tile edges: All inter-tile edges have capacity O cap.

In the basic flow model, the peripheral nodes corresponding to the tile sides on the com-

ponent boundaries are called the boundary tile nodes, and the pin nodes corresponding to

the pins on the component boundaries are called the boundary pin node. Obviously, a pin

escape route corresponds to a path from a pin node to a boundary node in the basic flow

model.

[19] shows that if the max-flow of this basic network is equal to the number of to-be-

escaped pins, there exists a feasible escape routing solution; otherwise there is no feasible

solution. The max-flow solution can be converted into a planar topology of the escape

routing by splitting nodes and edges whose flows are larger than 1. By using the algorithms

in [20,21], the escape routing topology can then be converted into detailed routing.

3.2.2 Multi-Layer Algorithm

The k-layer simultaneous pin assignment and escape routing problem can be defined as

follows: Given k (k ≥ 1) routing layers, two components C1, C2 with n to-be-escaped pins in

each and n nets, the k-layer simultaneous pin assignment and escape routing problem is to

find a pin assignment such that each net must have exactly one pin in C1 and C2 respectively,

and the corresponding feasible k-layer escape routing solution. Here C1 is a m1 × n1 pin

array with orthogonal capacity O cap1 and diagonal capacity D cap1, C2 is a m2 × n2 pin

array with orthogonal capacity O cap2 and diagonal capacity D cap2, and p1, . . . , pn and

24

M12 M22

M11 M21

Qj2

Qj1

Pi2

Pi1

Qj
Pis

L2

t

L1

1

: capacity=1

: capacity=O_cap1

: capacity=O_cap2

Figure 3.3: A two-layer flow model. In the zoomed-in view, the black circles are the
boundary pin nodes in M11 and M21, and the boxes labeled with E and W are the
boundary tile nodes of M11 and M21 respectively.

q1, . . . , qn denote the specified pins in C1 and C2 respectively.

To solve this problem, we extend the network model in [19] to multiple layers as follows

(see Figure 3.3) : Firstly, we construct a single-layer network for each layer l (1 ≤ l ≤ k) to

model two component pin grids and their connections. We create the basic flow models M1l

and M2l for the pin arrays of C1 and C2 on each layer l respectively. Then we add a node Ll

for each layer l and create directed edges from all boundary nodes of M1l to Ll and from Ll

to all boundary nodes of M2l. As shown in the zoomed-in view of Figure 3.3, the directed

edges between Ll and the boundary pin nodes of M1l and M2l have capacity 1. The directed

edges from the boundary tile nodes of M1l to L1 have capacity O cap1 and the directed edges

from Ll to the boundary tile nodes of M2l have capacity O cap2. Secondly, we connect pin

nodes corresponding to the same to-be-escaped pin together. We create a node Pi for each

pin pi and connect directed edges from Pi to Pil, where Pil is the pin node corresponding to

pi in each layer l and 1 ≤ i ≤ n and 1 ≤ l ≤ k. Similarly, we create a node Qj for each pin qj

and connect directed edges from Qjl to Qj, where Qjl is the pin node corresponding to qj in

M2l and 1 ≤ j ≤ n and 1 ≤ l ≤ k. Finally, we introduce a super source node s and a super

sink node t. We create directed edges from s to Pi and directed edges from Qj to t, where

1 ≤ i, j ≤ n. All directed edges created in the last two steps have capacity 1. It is easy

25

to verify that our model can correctly model the multi-layer simultaneous pin assignment

and escape routing problem if the flow model in [19] can correctly model the escape routing

problem in one component on one layer.

The complexity of this algorithm is O(k3(m1n1+m2n2)
3). In order to minimize the escape

routing wirelength, we can assign cost 1 to all inter-tile edges of M1l and M2l (1 ≤ l ≤ k)

and assign cost 0 to all other edges, then compute the min-cost max-flow of the network.

3.2.3 Faster Single-Layer Algorithm

If the problem contains only 1 layer (i.e. k = 1), we can directly run the flow-based algorithm

in [19] to escape all pins from C1 and C2 independently and then assign pins to nets by

sweeping pin escape positions along boundaries of C1 and C2 in reverse orderings.

The time complexity of this algorithm is O((m1n1)
3 + (m2n2)

3), which is faster than the

algorithm in Section 3.2.2, whose running time is O((m1n1 +m2n2)
3) when k = 1.

3.3 An Effective Escape Strategy

Today nets in high-end PCBs are always organized in bus structures. Nets in a bus have

similar pin locations, which leads to dense routing inside components. In this section, we

focus on pin assignment and escape routing for pins in buses. We will discuss the advantages

of multi-layer solutions compared to single-layer solutions, then we will introduce projection-

style escape routing and propose a cut-like algorithm to find a projection-style solution with

minimal routing area inside components.

3.3.1 Single-Layer vs. Multi-Layer

When studying the simultaneous pin assignment and escape routing for buses, we discover

that multi-layer solutions have some advantages over single-layer solutions. Here we use an

example (Figure 3.4) to illustrate such advantages.

• Shorter wirelength: As shown in Figure 3.4(a), wires in the single-layer solution are

26

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

112

113

114

115

116

117

118

119

120

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

112

113

114

115

116

117

118

119

120

56

101

55

102

43

103

54

104

42

81

41

82

53

105

52

83

51

61

4

1061

62

2

84

3

63

11

85

12

64

13

107

21 86

22

65

31

87

5

66

32

10823

67

14

8833 68

24 8934 69

15

109

25 7035 90

26 7136 9116

7237 9227 112

38 73

17

9328 113

39 7429 94

40 75

18

114

30

76

7

95

19

77

20

96

8

78

10

97

9

79

6

11560

80

59

98

58

116

50

99

57

100

49

117

48

118

47

119

46

120

(a) Single-layer solution (b) 3-layer solution
(layer 1)

(c) 3-layer solution (d) 3-layer solution
(layer 2) (layer 3)

Figure 3.4: Single-layer solution vs. multi-layer solution.

very complicated. We can see a lot of wires with back detours in the left component. On

the other hand, as shown in Figure 3.4 (b), (c) and (d), the 3-layer solution has very clean

and simple escape routing; almost all pins escape components by the shortest route.

• Less routing space: In the single-layer solution (Figure 3.4(a)), pins escape components

from a very wide range on the component boundaries, and the back detour wires on the left

component take a lot of extra routing space on the left of the pin cluster. Due to this issue,

the single-layer solution may force other nets to be routed on different layers, potentially

leading to the routing layer increase. But the 3-layer solution (Figure 3.4 (b), (c) and (d))

does not cause this problem since pins escape the left component from a small interval on

27

the component boundary and no extra routing space is needed.

• Smaller wirelength variation: If we take a close look at the wires on the left component

in Figure 3.4(a), we can see that the escape routes of pins on the leftmost pin column are

back detoured a lot, so they are very long. But the escape routes of pin on the rightmost

pin column are very short. So the escape wirelength difference is large in the single-layer

solution. In high frequency designs, signals in a bus are often expected to arrive almost

at the same time, so their routes should have the same length. In order to find an equal-

length routing solution, the escape wirelength variations need to be compensated outside the

components, which is handled by length-matching routers [22, 23]. If the length difference

of the net escape routing is large, it would be very difficult for length-matching routers to

find a feasible solution. Therefore, the single-layer solution increases the difficulty of length-

matching routing. However, the escape wirelength difference in the 3-layer solution is very

small because almost all pin escape routes have been minimized.

3.3.2 Projection-Style Escapes

Section 3.3.1 shows that compared to single-layer solutions, multi-layer simultaneous pin

assignment and escape routing solutions have some benefits, such as short escape wirelength.

To obtain a multi-layer solution, we can limit the number of nets routed on the same layer.

Since nets in a bus usually have the same escape directions, their escape wirelength is

minimized when all nets escape components from bus projection intervals, which can be

obtained by projecting the bus pin cluster bounding boxes to the component boundaries

along the escape directions, as shown in Figure 3.5. A bus escape routing is in projection-

style if all its nets escape components from bus projection intervals. Projection-style bus

escape routing is also discussed in [24]. Figure 3.4 (b), (c) and (d) show a 3-layer projection-

style escape routing for a bus.

28

Interval
Projection

Bounding
Box

Figure 3.5: Bus projection interval on a component.

3.3.3 Cut-Like Layer Assignment

When the pins in a bus are dense, it is not possible to escape all pins on one layer using

the projection style. In this case, we need to assign pins to different layers. However, there

exist many layer assignments which lead to different routing resource consumptions. Some

assignments may be preferable to others. Here we propose a cut-like layer assignment.

A cut-like layer assignment is to cut the bounding box of the pins into several rectangular

pieces and assign pins in each piece onto an individual layer. We observe that this cut-

like layer assignment usually consumes less routing space and can therefore lead to better

solution. Figure 3.6 gives an example. Given two buses A (represented by gray pins in (a))

and B (represented by black pins in (a)), we expect to escape A through the left boundary

and B through the top boundary. Since pins in A are very dense, we need to escape them

on two layers using projection style. Pins in B can be escaped on one layer. If we randomly

choose pins in A to be escaped in one layer and escape the rest in the other layer like shown

in (b), we will end up with the escape routing of B conflicting with the escape routing of A

in both layers, as shown in (d) and (e). Therefore, we have to use a third layer to escape B.

However, if we cut the pins into two rectangular pieces and escape them on different layers

as shown in (c), the escape routing of B can then be routed with one rectangular piece of

pins without conflict as shown in (g). As a result, we can escape both buses using only two

layers.

The cut-like layer assignment can be obtained by repeatedly applying the fast single-layer

algorithm in Section 3.2.3. However, we need to make some minor changes to the flow model

29

(a) A two bus problem (b) Random assignment (c) Cut-like assignment

(d) Layer 1 of (b) (e) Layer 2 of (b) (f) Layer 1 of (c)

(g) Layer 2 of (c)

Figure 3.6: Random layer assignment vs. cut-like layer assignment.

in order to obtain the cut-like effect. First, we need to compute the number of wires that

can be escaped through the projection interval, which we denote as p. This number limits

the number of pins that can be assigned on one layer in our cut-like assignment. Next we

compute the distance from each pin Pi to the boundary of the component, which we denote

as di. Then we change the weight of the edge from super source s to Pi to di ×M , in which

M is a very large number. Now by applying the fast single-layer algorithm in Section 3.2.3

to compute the min cost p-flow of the network, we can obtain p pins with smallest distances

to the boundary. We assign them to one layer and delete these pins from our network. We

then repeat this procedure to assign pins to new layers until all pins are assigned. Because

30

pins are assigned according to their distances to the boundary, pins with similar distances

are assigned to the same layer, which leads to the cut-like effect we want.

If the algorithm produces a k layer routing, the runtime would be O(k(m1n1)
3+(m2n2)

3),

which is much faster than the k-layer algorithm in Section 3.2.2, whose complexity is

O(k3(m1n1 +m2n2)
3).

3.4 Experimental Results

We implement our simultanous pin assignment and escape routing algorithms in C++ and

use the min-cost flow solver CS2 [25] to obtain the flow solutions of our networks. We

performed three experiments to test our simultaneous pin assginment and escape routing

approaches, and all of them are run on a workstation with two 3.0 GHz Intel Xeon CPUs

and 4 GB memory.

A) GPU Example

We tested our simultaneous pin assignment and escape routing algorithms on an industrial

example in [18], which is to perform pin assignment for a 100-signal graphics processor

unit (GPU). [18] only gives a possible pin assignment without routablity guarantee, but our

algorithms produced two routable pin assignments and their corresponding escape routing

solutions. In this test, first we set the orthogonal and diagonal capacity constraints for the

left and right components to be 2, 3 and 1, 2, respectively, and we obtained a single-layer

pin assignment and escape routing solution, as shown in Figure 3.7(a). Then we changed

the orthogonal and diagonal capacity constraints of the left component to be 3 and 4, and

we got another single-layer solution, as shown in Figure 3.7(b).

B) Single-Layer vs. Multi-Layer

We performed an experiment to compare the pin-to-pin wirelengths of a single-layer and a

cut-like two-layer pin assignment and escape routing solutions for a bus with 62 nets. In

this experiment, we applied our single-layer and cut-like multi-layer algorithms to assign

31

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

10

101

9

151

8

102

7

152

27

103

6

153

5

104

4

154

3

105

25

155

2

106

1

156

23

107

22

157

21

108

24

158

41

109

42

159

26

110

61

160

43

111

81

161

62

112

44

162

82

113

63

163

45

114

83

164

64

115

46

165

84

116

65

166

47

117

85

167

66

118

28

168

86

169

67

119

48

170

87

120

29

171

68

121

88

172

49

122

69

173

89

123

30

174

70

124

90 12550 175

31 12691 17671

127

51

17792

128

72

178

52

129

93

179

32

130

73

180

94

131

53

181

74

132

95

182

54

133

75

183

96

184

33

134

76

185

97

135

55

186

77

136

98

187

56

137

78

188

99

138

57

189

79

139

100

190

58

140

80

191

34

141

59

192

60

142

38

193

40

143

39

194

37

144

20

195

19

145

18

196

36

146

17

197

35

147

16

198

15

148

14

199

13

149

12

200

11

150

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

1

101

2

151

3

102

4

152

21

103

5

153

22

104

41

154

6

105

42

155

61

106

23

156

81

107

24

157

62

108

43

158

82

109

25

159

63

110

44

160

83

111

7

161

64

112

45

162

84

113

26

163

65

114

8

164

85

115

46

165

66

116

27

166

86

117

47

167

67

118

28

168

87

169

48

119

9

170

68

120

88

171

29

121

49

172

69

122

89

173

10

123

30

174

50

124

90 12570 175

11 12631 17691

127

71

177

51

128

32

178

92

129

72

179

52

130

12

180

93

131

73

181

53

132

33

182

94

133

13

183

74

184

54

134

95

185

34

135

75

186

14

136

96

187

55

137

76

188

35

138

97

189

56

139

77

190

15

140

98

191

57

141

78

192

36

142

99

193

58

143

79

194

16

144

100

195

59

145

80

196

37

146

38

197

60

147

39

198

17

148

40

199

18

149

19

200

20

150

(a) (b)

Figure 3.7: Two single-layer pin assignment and escape routing solutions for a GPU with
100 signals. (a) Single-layer solution with orthogonal capacity 2 and diagonal capacity 3 in
the left component. (b) Another single-layer solution but the orthogonal and diagonal
capacities of the left component are changed to 3 and 4. In both (a) and (b), the right
component has orthogonal capacity 1 and diagonal capacity 2.

32

pins to nets and route nets inside components, and applied the length-matching router

in [22] to route nets between components. Figure 3.8 and Figure 3.9 display the single-

layer and two-layer solutions respectively, where all net routes have the same length in each

solution. It is clear that the single-layer solution in Figure 3.8 has much longer escape

routes inside components and has much more length extensions outside components than

the two-layer solution in Figure 3.9. In this experiment, we set the distance between centers

of two orthogonally adjacent pins to 1 and the distance between two components to 43.

The total wirelength of the single-layer solution is 5792.11, which is 37.15% longer than the

total wirelength of the two-layer solution, 4223.05. The escape wirelength and the detailed

wirelength of the single-layer solution are 1695.21 and 4096.90, increases of 21.36% and

44.96% over the two-layer solution respectively.

C) Industrial Board

Finally, we tested our cut-like simultaneous pin assignment and escape routing algorithm

on a state-of-the-art industrial PCB, which has 80 buses (over 7000 nets) and has been

manually routed (usually it takes about two months to manually route a PCB of this scale).

The largest bus has 338 nets which are routed in 6 layers in the manual solution. In this

experiment, we extract bus escape directions from the manual solution. Finally all 80 buses

are successfully assigned and routed in less than 5 minutes of CPU time, and for each bus,

the number of layers it utilized is no more than that in the manual routing solution.

3.5 Conclusions

In this chapter, we first presented a novel algorithm to obtain a pin assignment solution

that guarantees routability. We showed that the problem of simultaneous pin assignment

and escape routing can be solved optimally in polynomial time. We then focused on the

pin assignment and escape routing for the terminals in a bus; we discussed advantages of

multi-layer solutions over single-layer solutions and then proposed an effective strategy for

multi-layer pin assignment and escape routing for buses. We showed that our strategy usually

33

Figure 3.8: An equal-length single-layer simultaneous pin assignment and escape routing
solution of a bus.

leads to multi-layer solutions having minimum wirelength and occupying minimum routing

space. We tested our approach on a state-of-the-art industrial board with 80 buses (over

7000 nets). The pin assignment and escape routing solutions for all 80 buses are successfully

obtainted in less than 5 minutes of CPU time.

34

(a)

(b)

Figure 3.9: An equal-length cut-like two-layer simultaneous pin assignment and escape
routing solution of a bus.

35

CHAPTER 4

BUS PLANNING

4.1 Introduction

As introduced in Chapater 1, the PCB routing problem is so difficult that current auto-

routers are not able to produce acceptable solutions. Today many industrial designs are still

completed by manual efforts. In the future, PCB designs will be substantially more complex,

making manual routing approaches infeasible.

Designers always prefer the nets in a PCB to be bundled together as buses. All the nets in

a bus are expected to be routed together. Planning the buses, which consists of assigning the

buses to the routing layers and topologically routing them on each layer in a planar fashion,

is one of the most time-consuming steps in PCB routing. Figure 4.1 shows an example of the

bus planning result on one layer. Practical boards may contain many such layers. During

the planning, we have to consider crossings of the bus topologies and the routing congestion

between the on-board components as well as the min-max length bounds of the nets. As far

as we know, existing commercial tools that help bus planning are interactive tools [26–28].

Notice that the bus planning problem is different from the multi-layer global routing

problem for ICs [29–31] because the X-Y style for IC routing breaks a net into horizontal

and vertical segments on different layers, while in PCBs, all the nets in a bus are expected to

be routed on a single layer because any via introduced to the net can reduce the reliability

and performance of circuits, damage signal integrity and increase the manufacturing cost.

This fundamental difference makes IC routers incapable of performing bus planning.

We are developing a complete PCB auto-routing system, and this chapter reports the bus

3This work has been published as “Automatic Bus Planner for Dense PCBs,” pages 326-331, Proceedings
of the 46th Annual Design Automation Conference (DAC 2009).

36

Figure 4.1: One layer of bus planning solution.

planning part of the system. To the best of our knowledge, this is the first automatic bus

planner for complex PCB design. Our bus planner consists of three main stages:

1. Global routing, which routes all buses on a single layer with all routing resources

mapped onto one layer.

2. Layer assignment of the routed bus.

3. Iterative improvement by reassignment and rerouting.

Our bus planner has the following features:

• We introduce a novel dynamic routing graph to guide the search of topological bus

routes. The dynamic structure of the graph enables us to find planar routes for the

buses more efficiently.

• We introduce a bin-packing-based congestion estimation. It provides a more accurate

estimation than traditional congestion models. Owing to its accuracy, our planner

effectively avoids violations of routing capacity constraints.

• We introduce an iterative improvement technique that resembles the bubble-sort. It

helps further improve the routing solution.

We tested our bus planner on a state-of-the-art industrial circuit board with over 7000

nets and 12 signal layers. It has been completely routed by manual efforts. We perform two

experiments. First, we take the layer assignment of the buses from the manual solution and

apply our bus planner to route each layer. We are able to achieve 100% routing completion

37

while satisfying the length constraints within 40 minutes. Then, we use our bus planner

to perform simultaneous layer assignment and topological bus routing. We are able to

successfully route 98.5% of the nets while satisfying length constraints. The remaining 1.5%

can be routed either manually or by using vias. The runtime of our planner is less than 3

hours.

The rest of this chapter is organized as follows: Section 4.2 introduces the bus planning

problem. The three stages of our planner—global routing, layer assignment and iterative

improvement—are introduced in Section 4.3, Section 4.4 and Section 4.5 respectively. Ex-

perimental results are given in Section 4.6, and Section 4.7 concludes the chapter.

4.2 Bus Planning Problem

A typical high-end PCB contains a number of components, such as MCM, memory, and I/O

modules, and a large number of bus structures between these components. Each bus is a

group of two-pin nets between components. Inside the component, the nets of a bus will

be escaped to the component boundaries to generate bus escape intervals, which are the

starting points of our bus planner. Each bus can be represented by a pair of escape intervals

on the component boundaries. We note that for any pair of buses, their internal escape

routes may conflict with each other, as displayed in Figure 4.2, which means they cannot be

assigned to the same layer.

(a) (b)

Figure 4.2: Internal route conflicts.

38

The input of our bus planning problem is the number of routing layers and a set of bus

intervals as well as a bus internal conflict graph, whose vertices correspond to buses and

whose edges correspond to internal route conflicts between buses. The expected output is

the layer assignment of the topological routes of buses, where each bus is routed in planar

fashion considering crossings, routing congestion and min-max length bounds. Figure 4.3

gives an example of a bus planning problem and its two-layer planning solution. In this

paper, we define the bus net count as its number of nets and the bus route width as the

width of the space its net routes need to occupy, which is proportional to the bus net count.

(a) (b)

(c) (d)

Figure 4.3: Given bus escape intervals (a) and bus internal conflict graph (b) as input, the
expected output of planning buses to two layers is (c) and (d).

Our bus planning consists of 3 stages: (1) bus global routing, (2) bus layer assignment

and (3) iterative improvement by rerouting and reassigning. We will explain them in detail

39

one by one.

4.3 Global Routing

Global routing is the first stage of our bus planner. It generates the initial topological bus

routes by routing buses on a single layer which includes the routing resources of all routing

layers. A negotiated-congestion router is applied in this stage. The generated initial routes

are then assigned to given routing layers in the layer assignment stage and then the planning

solution will be improved in the iterative improvement stage.

In this section, we first introduce the Hanan grid and the dynamic routing graph data

structure; then we present the bin-packing-based congestion estimation approach and finally

describe the negotiated-congestion router.

4.3.1 Hanan Grid

The routing graph of our global routing is based on the Hanan grid, which is constructed

from the components by extending their boundaries until they touch other components or

the board boundaries. The board and its components are all represented by their bounding

boxes. Figure 4.4 shows a Hanan grid for three components. The grid cells and edges are

refined to Hanan grid cells and Hanan grid edges, respectively.

cell
cell

C1

C2

C3

edge

Figure 4.4: Hanan grid.

40

4.3.2 Dynamic Routing Graph

In the global routing stage, we route all buses on a single layer in which the routing resources

of all routing layers are lumped together. On one hand, we want to avoid crossings between

buses without internal conflicts since we do not know if they will be assigned to the same

layer in later stages. On the other hand, we allow crossings between buses with internal

conflicts since we know they will not be assigned to the same layer. Thus we need a flexible

data structure to handle both of these situations.

For this purpose, we introduce a dynamic routing graph, whose vertices are the middle

points of all Hanan grid edges and whose edges are connections of vertices in the same cell.

When an edge is occupied by a bus, the cell is split into two parts and new vertices and new

edges are created. Figure 4.5 gives an example. Figure 4.5(a) shows the initial routing graph

in a Hanan grid cell, and Figure 4.5(b) shows the new routing graph after a bus b passes

through this cell, where two vertices (l and r) representing the left and right Hanan grid

edges are eliminated and four vertices (l1, l2, r1 and r2) representing four smaller grid edges

are added. In Figure 4.5(b), the thick solid lines represent the route of bus b, which cuts

the left and right Hanan grid edges into two smaller ones. The thin solid lines represent the

new routing graph edges that do not cross with bus b. The dashed lines represent the new

routing graph edges that cross b. The edges represented by dashed lines will be given high

penalties to avoid bus crossings with b. Figure 4.6 gives a global view of how the routing

graph change happens after a bus is routed.

By using this dynamic routing graph, our global router can handle all possible bus topolo-

gies, and each topological bus route is a path on this graph. Figure 4.7 gives an example,

where three buses b1, b2 and b3 pass through a Hanan grid cell consecutively and b1 and b3

have internal conflict. In Figure 4.7, to simplify the demonstration, we only show the graph

vertices. Figure 4.7(a) gives the initial routing graph. As shown in Figure 4.7(b), when

b1 is routed, four new graph vertices are added and two old vertices are deleted. When

routing b2, the routing graph edges crossing with b1 are given high penalties. As a result, b2

passes through this cell without crossing b1 and the routing graph changes again, as shown

in Figure 4.7(c). When routing b3, since b3 has internal conflict with b1, the two nets will

41

1

2
2

1

l

Figure 4.5: The dynamic routing graphs in a Hanan grid cell. (a) and (b) The routing
graphs before and after a bus is routed. The thin dashed lines in (b) represent edges
intersecting with the routed bus and they may be given high penalties.

(a) (b)

Figure 4.6: The dynamic routing graphs of a PCB before (a) and after (b) a bus is routed.
The thin dashed lines in (b) represent routing graph edges that are given high penalties.

be routed on different layers. Therefore, we do not need to assign a high penalty to the

edges crossing with b1. To avoid bus crossing between b1 and b2, edges crossing with b2 are

given high penalties. Finally, as shown in Figure 4.7(d), b3 is routed to pass through this

cell intersecting b1 but not intersecting b2.

Figure 4.8 gives an example of all the routing paths on one layer. It can be seen that each

routing path goes through either the middle points of a Hanan edge or newly created middle

points after splitting a Hanan cell.

42

1

1

2

1

2

(a) (b)

2

1

1

2

1

2

11

12

1 2

2

1

1

2

1

2

11

12

1
2

22

21

11 12

3

(c) (d)

Figure 4.7: The dynamic routing graph in a Hanan grid cell as three buses b1, b2 and b3
pass through it consecutively. Here b1 has internal conflict with b3. (a) Initial routing
graph. (b), (c) and (d) Routing graphs when b1, b2 and b3 are routed consecutively.

4.3.3 Congestion Estimation

In the global routing stage, to capture the routing space outside the components, we in-

troduce the critical cuts, which are the line segments connecting each component corner to

all its visible component corners or component or board boundaries. A corner is visible to

another corner if the line segment between the two corners does not intersect any other com-

ponent. Similarly, for a component corner, if the line segment that starts from this corner

and is normal to a component or board boundary does not intersect any component, then

the component or board boundary is visible to the corner. The thick lines in Figure 4.9 gives

all critical cuts starting from the component corner v.

Since the critical cuts capture the routing space outside the components, congestion may

happen on them and our global router should be able to estimate the congestion. All critical

43

Figure 4.8: An example of all the routing paths on one layer.

C1

C2

C3

Figure 4.9: The critical cuts from corner v.

cuts can be captured by our routing graph, so their congestion can be estimated. As shown

in Figure 4.9, each orthogonal critical cut consists of a sequence of consecutive Hanan grid

edges, so it can be captured by routing graph vertices on these edges. Each diagonal critical

cut intersects some Hanan grid cells, so it can be captured by routing graph edges crossing

this cut inside these cells. Since our routing graph is dynamic, whenever the graph changes,

the graph vertices and edges capturing critical cuts will be updated.

Given a critical cut t and L routing layers, the traditional approach estimates its congestion

by comparing the total number of nets passing through it and the maximum number of nets

it can accommodate, as listed in Equation 4.1. In the equation, c(t) is the maximum number

of nets t can accommodate on a single layer, bi (1 ≤ i ≤ m) are buses passing through t and

s(bi) is the net count of bi.

44

Congestion(t) = max(0,
m∑
i=1

s(bi)− L · c(t)) (4.1)

But this traditional approach estimates congestion at the net level instead of at the bus

level, so it is not accurate. Figure 4.10 gives an example, where there are five buses b1, b2,

b3, b4 and b5 with 20, 20, 20, 20 and 15 nets respectively passing through a critical cut with

single-layer capacity 50 in two layers. By using capacity-based estimation, this cut is not

congested, since the total net count, 95, is less than its overall capacity, 100. But as shown

in Figure 4.10, we can not assign all five buses onto two layers.

1 2 43 5

Figure 4.10: An example of bin-packing-based congestion estimation.

To estimate congestion at the bus level, we propose the bin-packing-based estimation.

Here we regard critical cut t as a bin with size c(t) and regard a bus bi (1 ≤ i ≤ m) as an

item with size s(bi). The bin number b is the minimum number of bins to accommodate all

these m items. The congestion it estimates is

Congestion(t) = max(0, b− L) (4.2)

For the example shown in Figure 4.10, if we apply the bin-packing-based estimation to

it, the bin number is 3, but the layer number is 2, so the critical cut must be congested on

some layer.

Although the bin packing problem is NP-hard [32], there exist many effective and fast

heuristic algorithms [33].

45

4.3.4 Negotiated-Congestion Routing

In this section, we will present our negotiated-congestion router. Our negotiated-congestion

algorithm is similar to the Pathfinder negotiated-congestion algorithm [34–36], which was

originally proposed for FPGA routing. It rips up and reroutes buses iteratively. In each

iteration, each bus is ripped up and rerouted once by following the same ordering. When

routing a bus b, the router is to find a minimum cost path on the routing graph. The cost

function consists of four terms: length cost, crossing cost, congestion cost and length-bound

violation cost. The length cost is the primary objective and it is proportional to the route

length of b. The other three terms are penalty costs. The crossing cost is proportional to

total net count of buses b crosses. The congestion cost is proportional to the total congestion

of congested critical cuts b passes through. The length-bound violation cost is proportional

to the amount by which b’s route length exceeds its maximum length bound. Note that the

minimum length bound of nets can be satisfied by extending net routes.

4.4 Layer Assignment

Simulated annealing (SA) [37] is used to assign the global routes of the buses obtained from

the previous stage onto the given layers. The initial assignment is a random assignment of

all the buses. In each step of the annealing process, we attempt to move one bus to another

layer and evaluate the cost of the new assignment. The cost of an assignment is a weighted

sum of two parts: (1) intersection cost, which is the total number of nets that have crossings

with each other, and (2) congestion cost, which is the total congestion cost of all critical

cuts by using bin-packing estimation.

The output of this SA procedure is a layer assignment of all the topological bus routes.

Later, we will iteratively improve this layer assignment as well as the individual routes by

using a bubble-sort-like bus recycling technique.

46

4.5 Iterative Improvement

After the initial bus topologies are assigned to multiple layers, there might still be conflicts

between the bus routes on some layers, such as bus intersections and routing congestion. This

is because when we perform global routing, we did not know the subsequent layer assignment

result and thus may have produced suboptimal routes for some buses. To address this issue,

we perform another negotiated-congestion routing to the existing buses on each layer after

the layer assignment. In this routing step, we assign very high cost to bus intersections so

that they are minimized.

If routing conflicts still exist, we perform a bubble-sort-like iterative improvement. First

we collect the conflicting buses on all layers together, reassign them to the first layer and

reroute all buses on this layer. Then we choose and fix the maximum set of non-conflicting

buses on the first layer. The remaining conflicting buses are then moved to the second

layer and rerouted together with the buses already assigned on it. The maximum set of

non-conflicting buses are then selected to be fixed on the second layer and the remaining

conflicting ones are moved to the third layer. Such procedure is performed iteratively until

all buses are routed without conflicts or the result cannot be further improved.

Figure 4.11 gives an example of bubble-sort-like iterative improvement, where the num-

bers in the dark shaded boxes and in the light shaded boxes represent the number of non-

conflicting and conflicting nets assigned to the layers, respectively. Figure 4.11(a) gives the

initial layer assignment result after rerouting nets layer by layer, resulting in 40, 30 and

30 conflicting nets on the three layers. All these 100 conflicting nets need to be recycled.

Figure 4.11(b) shows that all 100 conflicting nets are reassigned to layer 1. In Figure 4.11(c),

20 of 100 conflicting nets are added to layer 1 without conflicts after rerouting all nets on

layer 1; then the remaining 80 conflicting nets are reassigned to layer 2. In Figure 4.11(d),

50 of 80 conflicting nets are added to layer 2 after net rerouting and the remaining 30 nets

are reassigned to layer 3. Finally, these 30 nets are all successfully added to layer 3, as shown

in Figure 4.11(e).

47

130

40

130 150

100

150 150

30

100

140

30

100 150 150 150

140 140 140 170

80

30

Figure 4.11: An example of bubble-sort-like improvement.

4.6 Experimental Results

We test our bus planner on a state-of-the-art PCB from industry that has 7000+ nets and

12 routing layers and has been manually routed. The manual solution is able to route all

buses without any intersection or congestion. We run our experiments on a workstation with

two 3.0 GHz Intel Xeon CPUs and 4 GB memory.

We did two kinds of experiments. The first one was to test the effectiveness of our single-

layer bus router. We directly used the layer assignment extracted from the manual solution

and ran our negotiated-congestion router on each layer to obtain the topological routing

of each bus. We were able to route all the buses with no conflicts or congestion within

40 minutes. The length constraints of all the buses were also satisfied. We compared our

routing with the manual routing and found that most of our routing is the same as the

manual solution. Figure 4.12 shows the distribution of the nets among the 12 layers in the

manual solution and how many of the nets have the same routing as our solution. It can

be seen that on the first four layers, the bus routes are exactly the same while on the other

layers, the majority of the routes are the same.

We performed another experiment to test our bus planner including layer assignment and

48

 0

 2

 4

 6

 8

 10

 12

 14

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

%
 o

f
to

ta
l #

ne
ts

Same
Different

Figure 4.12: Layer-by-layer comparison between our routing solution and manual routing
solution. y-axis is the percentage over the total number of nets in the design.

topological routing. In this experiment, we were only given the intervals of all the buses

and output the layer assignment as well as topological routing. After the layer assignment

stage, 95.9% of the nets were successfully assigned and routed. The iterative improvement

procedure increased the completion rate to 98.5%. This completion rate is very close to

100%. Only 1.5% of the nets are left unrouted. These nets can be routed by manual effort

or by using vias. The total CPU time was less than 3 hours.

Table 4.1 compares our layer assignment result with the manual layer assignment. The

first two columns give the layer as well as the number of nets assigned to each layer by our

planner. The next 12 columns show the number of nets that are assigned to each of the 12

layers in the manual solution. For example, among the 573 nets that our planner assigned to

layer 1, only 81 nets are still assigned to layer 1 in the manual routing. It can be concluded

from this table that the correlation between our layer assignment and the manual assignment

is very small, which means our SA-based approach obtained a very different solution.

49

Table 4.1: Comparison between our layer assignment and the manual layer assignment.

Layer net# L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

1 573 81 183 269 0 0 26 0 0 0 0 0 14
2 486 0 0 0 0 0 91 0 95 103 60 13 124
3 698 56 0 82 84 31 0 117 14 128 0 94 92
4 611 78 14 25 0 31 31 0 0 0 0 280 152
5 741 0 243 42 84 0 0 84 124 41 0 62 61
6 646 173 82 0 28 0 0 84 155 43 81 0 0
7 498 0 81 140 170 62 31 0 0 0 14 0 0
8 507 0 60 0 60 59 113 83 118 0 14 0 0
9 622 78 0 0 0 81 0 155 0 84 102 61 61
10 437 0 159 0 0 185 0 0 0 93 0 0 0
11 557 143 0 225 14 31 62 82 0 0 0 0 0
12 549 89 51 82 14 0 34 81 30 92 76 0 0

4.7 Conclusions

In this chapter, we reported an automatic bus planner, which is one of the key parts of a

complete PCB auto-routing system we are developing. In this bus planner, we use a dy-

namic routing graph to guide the efficient search of planar topologies of the bus routes and

a bin-packing-based congestion estimation to effectively avoid violations of routing capacity

constraints. We also use a bubble-sort-like iterative improvement to further increase the

number of routed nets. We tested our bus planner on a state-of-the-art industrial circuit

board with over 7000 nets and 12 signal layers. Our bus planner is able to achieve 100%

routing completion using the layer assignment extracted from manual design. For simulta-

neous layer assignment and bus routing, we are able to successfully route 98.5% of the nets

while satisfying length bounds. The remaining 1.5% can be routed either manually or by

using vias. The runtime of our bus planner is less than 3 hours.

50

CHAPTER 5

BUS ESCAPE

5.1 Introduction

For a bus, its projection interval on a component can be obtained by projecting the bounding

box of its pin cluster onto the component boundary and its boundary rectangle can be

obtained by extending its pin cluster bounding box to the component boundary along its

escape direction, as shown in Figure 5.1. From industrial manual routing solutions, we

observe that the nets of a bus typically escape a component from its projection interval and

the escape routes of all its nets are within its boundary rectangle. Since a bus can escape the

component from any component boundary, each bus can be represented by four mutually

overlapping boundary rectangles, which are attached to four different component boundaries,

respectively. Here, the weight of a boundary rectangle is assigned to be the number of nets

in its corresponding bus. Obviously, a feasible bus escape routing solution must correspond

to the a disjoint subset of the bus boundary rectangles, and vice versa. Thus, the optimal

solution of the bus escape routing problem must correspond to the maximum disjoint subset

(MDS) of all bus boundary rectangles. In this chapter, we will formulate the bus escape

problem as an MDS problem for boundary rectangles and then solve it optimally.

The MDS of a group of rectangles is defined to be a subset of non-overlapping rectangles

with the maximum total weight. The general MDS problem, which is finding the MDS

of general rectangles, has been proved to be NP-complete in [7]. One special case of this

problem is to find the MDS of a set of boundary rectangles, which still remains as an open

problem and is closely related to some difficult routing problems in PCB designs. In this

4This work has been published as “An Optimal Algorithm for Finding Disjoint Rectangles and Its
Application to PCB Routing,” pages 212-217, Proceedings of the 47th Annual Design Automation Conference
(DAC 2010).

51

Bounding

Box

Component

Boundaries

Projection

Interval

Rectangular

Routing Region

Figure 5.1: Bus projection interval and bus boundary rectangle (the shaded rectangle).

paper, we study this open problem.

Given a rectangular region R, a rectangle r completely lying within R is said to be a

boundary rectangle if r has at least one boundary attached to the boundary of the rectangular

region R. Figure 5.2(a) shows a set of boundary rectangles of the same rectangular region

and Figure 5.2(b) gives the corresponding MDS of these boundary rectangles. To the best

of our knowledge, the MDS problem of boundary rectangles is still open. In this paper, we

will propose a polynomial time optimal algorithm to solve it.

30
15

41

20

25

40
10

32

28

3045

(a) (b)

Figure 5.2: A set of boundary rectangles (a) and its maximum disjoint subset (b).

52

The study of finding the MDS of boundary rectangles is motivated from solving the escape

routing problem on the bus level. In the past few years, as the dimensions of packages and

PCBs keep decreasing and the pin counts and routing layers keep increasing, the escape

routing problem, which is to route nets from their pins to the corresponding component

boundaries, becomes more and more critical. Although a lot of escape routing algorithms

[19, 38–42] have been proposed, all of them are net-centric because they ignore the bus

structures. Directly applying these algorithms may mix up nets from different buses, as seen

in Figure 5.3(a). However, designers always prefer nets in the same bus to be routed together

without foreigners, as in Figure 5.3(b). Therefore, before escaping nets from components,

it is necessary to find a subset of buses without net mixings, which is defined as the bus

escape routing problem. Although some new approaches [24, 43, 44] about bus routing for

PCBs have been presented recently, none of them can simultaneously escape buses from four

component boundaries. In this paper, we will show that the optimal MDS algorithm can be

applied to find the optimal solution of the bus escape routing problem.

(a) (b)

Figure 5.3: Bus structure needs to be considered in solving the maximum escape routing
problem. (a) and (b) The maximum escape routing solutions of two buses with and
without considering the bus structure of nets, respectively.

The rest of this chapter is organized as follows: Section 5.2 will propose an optimal

algorithm to solve the MDS problem of boundary rectangles. Section 5.3 and Section 5.4

will demonstrate the experimental results and the conclusions respectively.

53

5.2 Optimal Algorithms

Given a rectangular region R and a set S of boundary rectangles {1, 2, . . . , n} lying within

R, where each boundary rectangle i is associated with a weight wi, the MDS problem of S

is to find a subset of S such that chosen boundary rectangles do not overlap with each other

while their total weight is maximized.

We now introduce some extra notations in order to facilitate the presentation of our

algorithms. Given an MDS problem instance as defined above, we use M(R) to represent

the set of boundary rectangles in the optimal solution, and we use w(M(R)) to denote the

total weight of its rectangles. Moreover, we divide all the boundary rectangles in S into

four subsets according to their specified attaching boundaries, namely, Sl, Sr, St and Sb,

and they correspond to the subsets whose boundary rectangles’ attaching boundaries are,

respectively, the left, right, top and bottom boundaries of the rectangular region R; thus we

have Sl ∪ Sr ∪ St ∪ Sb = S.

The most general case of the MDS problem is that all the four subsets Sl, Sr, St and Sb

are nonempty, and we call it the 4-boundary case. There are several special or degenerate

cases of the MDS problem, where some of the subsets Sl, Sr, St and Sb is (are) empty;

thus we also have 1-boundary, 2-boundary and 3-boundary cases, in addition to the general

4-boundary case. The 1-boundary case can be easily solved by straightforward dynamic

programming, so we will omit its discussion in our presentation due to the space limitation.

The 2-boundary case can be subdivided into two cases: the corner case (e.g., Sl and Sb are

nonempty) and the opposite case (e.g., Sl and Sr are nonempty). In this section, we first

propose two polynomial time algorithms that optimally solve the corner case and opposite

case, respectively. Then we show that the 3-boundary case can be decomposed into two

corner case instances and one opposite case instance, so the optimal solution can be found

by enumerating all possible decompositions. Finally, we solve the general 4-boundary case

by decomposing it into previously solved cases.

54

5.2.1 The Corner 2-Boundary Case

There are four corners of the rectangular region R, so there are four different corner cases.

For the ease of presentation, here we only discuss the bottom-left corner case, i.e., St and Sr

are empty (other corner cases can be handled by a simple rotation).

We first construct a Hanan grid of on the rectangular region R as follows (an example is

shown in Figure 5.4(a)):

• Extend the top and bottom boundaries of all the rectangles (including rectangle R) to

get a set of horizontal cutlines (only one cutline is kept if multiple cutlines overlap).

The horizontal cutlines are indexed with 1, 2, . . . , p from bottom to top.

• Similarly, extend the left and right boundaries of all the rectangles (including rectangle

R) to get a set of vertical cutlines. The vertical cutlines are indexed with 1, 2, . . . , q

from left to right.

We then construct a direct acyclic graph (DAG) based on the Hanan grid:

• We assign a vertex vij to the intersection of horizontal cutline i and vertical cutline j

on the Hanan grid, ∀i = 1, 2, . . . , p, ∀j = 1, 2, . . . , q.

• Connectivity edges are added. For each vertex vij where i < p and j < q, we add a

directed edge from vij to the vertex immediately on its top (namely, (vij → vi+1,j)),

and add a directed edge from vij to the the vertex immediately to its right (namely,

(vij) → vi,j+1). The weights of these connectivity edges are set to 0.

• Rectangle edges are added. For each rectangle in Sl, let horizontal cutlines t and b be

its top boundary and bottom boundary, and let vertical cutline r be its right boundary;

we add the set of edges (vbj → vtj), ∀j ∈ {r, r + 1, . . . , q}. The weights of this set of

edges are set to be the weight of this rectangle. Similarly, for each rectangle in Sb, let

vertical cutlines l and r be its left boundary and right boundary, and let t be its top

boundary; we add the set of edges (vil → vir), ∀i ∈ {t, t + 1, . . . , p}. The weights of

this set of edges are set to be the weight of this rectangle.

An example DAG constructed for four rectangles is shown in Figure 5.4(a), where the solid

edges are the connectivity edges and the dashed edges are the rectangle edges. The longest

55

0,0

p,q p,q

0,0

(a) (b)

Figure 5.4: The DAG constructed on the Hanan grid of four boundary rectangles is
displayed in (a). The longest path from v0,0 to vp,q is highlighted in (b). The solid edges
are connectivity edges and the dashed edges are the rectangle edges.

path from the bottom-left vertex v0,0 to the top-right vertex vp,q on the DAG is highlighted

in Figure 5.4(b). We claim that the longest path from v0,0 to vp,q corresponds to the MDS

of this instance; thus we have the following lemma:

Lemma 3 Given a corner case MDS problem instance, the length of the longest path from

v0,0 to vp,q on the constructed DAG equals the total weight of the boundary rectangles in the

optimal solution, and the optimal solution is exactly the set of rectangles corresponding to

the set of rectangle edges appearing in the longest path.

Proof. Intuitively, any path from v0,0 to vp,q can contain at most one edge among all the

rectangle edges corresponding to the same rectangle. Also, it is easy to observe that any two

edges corresponding to two rectangles can both appear in a path from v0,0 to vp,q if and only

if the two rectangles do not overlap. Thus, we can see the correspondence between a path

from v0,0 to vp,q and a feasible subset of rectangles: each path from v0,0 to vp,q corresponds

to a subset of disjoint rectangles, and a subset of disjoint rectangles corresponds to a path

from v0,0 to vp,q (or multiple paths of equal length). Moreover, the total weight of this set

of disjoint rectangles equals the length of its corresponding path, since the length of a path

is just the total weight of its rectangle edges. Therefore, the longest path from v0,0 to vp,q

corresponds to the optimal solution of this corner case MDS problem instance.

56

Algorithm 2 MDS-Corner(R, Sl, Sb)

1: Construct the Hanan grid.
2: Construct the DAG from the Hanan grid
3: Find the longest path p from v0,0 to vp,q
4: Let M(R) be the set of rectangles corresponding to the rectangle edges on longest path

p
5: return M(R)

The detailed algorithm is in Algorithm 2.

Both the Hanan grid and the DAG can be constructed in O(n2) time, where n is the

total number of rectangles, as there are O(n2) vertices and O(n2) edges in the DAG. The

longest path can be found in O(n2) time by using topological sorting. Thus the complexity

of Algorithm 2 is O(n2) and we have the following theorem.

Theorem 3 Algorithm 2 correctly returns the optimal solution of a corner case MDS in-

stance in O(n2), where n is the total number of boundary rectangles.

5.2.2 The Opposite 2-Boundary Case

There are two situations for the opposite 2-boundary case: (1) St and Sb are empty; (2)

Sl and Sr are empty. In the following presentation, we assume, without loss the generality,

situation (1) is being considered, i.e., St and Sb are empty, so S = Sl ∪ Sr.

Before presenting our algorithm, we first introduce some notations and definitions. For

each boundary rectangle i ∈ S, we use it, ib, il and ir to denote the top, bottom, left and

right boundaries of rectangle i. We now define two types of contours, namely, flat contours

and Z-shape contours, based on the top and bottom boundaries of the rectangles in S.

The flat contours consist of c[it] and c[ib], ∀i ∈ S, where c[it](c[ib]) is a horizontal cutline

obtained by extending the it(ib); and we use R(c[it])(R(c[ib])) to denote the subregion of R

that is below c[it](c[ib]). Figure 5.5(a) shows the c[it] and c[ib] obtained from a boundary

rectangle i. The Z-shape contours contain c[it, jb], c[ib, jt] and c[ib, jb], ∀i ∈ Sl, j ∈ Sr.

Each Z-shape contour is obtained from a rectangle i ∈ Sl and a rectangle j ∈ Sr, and

consists of two horizontal segments and one vertical segment: one horizontal segment is

obtained by extending the higher boundary until it reaches the other rectangle, the other

57

horizontal segment is just the lower boundary, and the vertical segment simply connects

the two horizontal ones. Similarly, we use R(c[it, jb]) (R(c[ib, jt]), R(c[ib, jb])) to denote the

subregion of R that is below c[it, jb](c[ib, jt], c[ib, jb]). Figure 5.5(b) shows a Z-shape contour

c[ib, jb] obtained from a rectangle i ∈ Sl and a rectangle j ∈ Sr. Particularly, if the two

rectangles overlap or if the extension of the higher boundary can never touch the other

rectangle, we say this contour is invalid, e.g., c[it, jb] in Figure 5.5 is an invalid contour.

t

t

rl

b

b

b b

t b

(a) (b)

Figure 5.5: (a) Flat contours, (b) Z-shape contours.

Given a contour c and the subregion R(c) defined by c, we use M(R(c)) to denote the

optimal solution to the MDS subproblem within the subregion R(c). For any two contours c1

and c2, we say c1 ≤ c2 if and only if the region R(c1) lies completely within R(c2). Obviously,

w(M(R(c1))) ≤ w(M(R(c2))) if c1 ≤ c2. Based on this observation, it is easy to figure out

that M(R(c)) can be easily computed if M(R(c′)) is already obtained ∀c′ ≤ c. We list below

how to recursively compute M(R(c)) for each specific kind of contour c. In the following,

we slightly abuse our notation by using M(R(c)) to denote both the set of rectangles in the

optimal solution to the subproblem as well as the total weight of these rectangles.

(1) M(R(c[it])) (Figure 5.6(a)): w.l.o.g., we assume i ∈ Sl. There are two cases: i is either

included or not included in M(R(c[it])). If i is included, M(R(c[it])) = max{M(R(c[ib]))

∪{i},M(R(c[ib, kt
1]))∪{i}}, where k1 is a rectangle in Sr such that c[ib, kt

1] is the largest

valid contour, if such a contour exists. If i is not included, M(R(c[it]) = M(R(c[kt
2])),

where c[kt
2] is the largest contour that is smaller than c[it].

58

t

1

t

b t

2

2

1

b

t

1

b b
t b

b

1

(a) M(it, it) (b) M(ib, ib) (c) M(ib, jb)

2

b b

b tb

2

b t

b t

b b

t b

t b

b b

(d) M(ib, jb) (e) M(ib, jt) (f) M(it, jb)

Figure 5.6: Illustration on how to recursively compute the M(R(c)) for each kind of
contour c.

(2) M(R(c[ib])) (Figure 5.6(b)): w.l.o.g., we assume i ∈ Sl. M(R(c[ib])) = M(R(c[kt])),

where c[kt] is the largest contour that is smaller than c[ib].

(3) M(R(c[ib, jb])) (Figure 5.6(c) and (d)): If ib is higher than jb (Figure 5.6(c)),

M(R(c[ib, jb])) = max {M(R(c[jb, jb])),M(R(c[kt
1, j

b]))}, where k1 is a rectangle in Sl

such that c[kt
1, j

b] is the largest valid contour that is smaller than c[ib, jb]. Things are

similar if jb is higher than ib (Figure 5.6(d)).

(4) M(R(c[ib, jt])) (Figure 5.6(e)): There are two cases: j is either included or not included.

If j is included, M(R(c[ib, jt])) = M(R(c[ib, jb])) ∪ {j}. Otherwise, M(R(c[ib, jt])) =

max {M(R(c[ib])),M(R(c[ib, kt]))}, where k is a rectangle in Sr such that c[ib, kt] is the

largest valid contour that is smaller than c[ib, jt].

(5) M(R(c[it, jb])) (Figure 5.6(f)): M(R(c[it, jb])) can be computed in a similar way as that

of 4, since these two situations are symmetric with each other.

59

Naturally, the above formulas lead to a dynamic programming procedure to find the MDS

of an opposite case instance. Let i ∈ S be the rectangle with highest top boundary; then

computing M(R(c[it])) gives the optimal solution of the problem, i.e., M(R) = M(R(c[it])).

By using the standard memorization technique in dynamic programming, M(R(c)) is com-

puted at most once for each contour c. Each M(R(c)) can be computed in O(n) time, and

there are O(n2) contours, so the time complexity of this procedure is O(n3). Thus we have

the following theorem.

Theorem 4 Algorithm 3 correctly returns the MDS of an opposite case instance in O(n3)

time, where n is the total number of boundary rectangles.

Algorithm 3 MDS-Opposite(R,Sl, Sr)

1: Let i be the rectangle with highest top boundary
2: Compute M(R(c[it])) using dynamic programming according to the formulas in (1)-(5)
3: return M(R(c[it]))

5.2.3 The 3-Boundary Case

Obviously, there are four situations of 3-boundary case. Without loss of generality, we

assume that Sb is empty, so Sl ∪ St ∪ Sr = S.

The 3-boundary case can be solved by decomposing it into opposite case and corner case

subproblems. There are several situations to consider.

1. If the optimal solution M(R) does not contain any rectangle in St, this instance is

degenerated to an opposite case as discussed in subsection 5.2.2. So,

M(R) = Opposite(R, Sl, Sr).

2. Otherwise, M(R) contains at least one rectangle from St. Let i be the rectangle such

that it has the lowest bottom boundary among all the rectangles in M(R) from St, so

the region R can be divided into three subregions R1, R2 and R3 by extending ib, as

displayed in Figure 5.7(a). M(R) can contain at most one rectangle from Sl and one

60

rectangle from Sr that overlap with the extension line of ib, as shown in Figure 5.7(b).

So we need to consider the following cases:

• No rectangle in M(R) overlaps with the extension line of ib. So, R1 is the region

above ib and to the left of il, R2 is the region above ib and to the right of ir, and

R3 is the region below ib. Thus,

M(R) = M(R1) ∪M(R2) ∪M(R3) ∪ {i}.

• M(R) contains only one rectangle j ∈ Sl that overlaps with the extension line of

ib. In this case, R1 is the region above jt and to the left of il, R2 is the region

above ib and to the right of ir, and R3 is the region below the contour c[jb, ib].

So,

M(R) = M(R1) ∪M(R2) ∪M(R3) ∪ {i, j}.

• M(R) contains only one rectangle k ∈ Sr that overlaps with extension line of ib.

In this case, R1 is the region above ib and to the left of il, R2 is the region above

kt and to the right of ir, and R3 is the region below the contour c[ib, kb]. So,

M(R) = M(R1) ∪M(R2) ∪M(R3) ∪ {i, k}.

• M(R) contains both a rectangle j ∈ Sl and a rectangle k ∈ Sr that overlap with

the extension line of ib. In this case, R1 is the region above jt and to the left of

il, R2 is the region above kt and to the right of ir, and R3 is the region below the

contour c[jb, kb]. So,

M(R) = M(R1) ∪M(R2) ∪M(R3) ∪ {i, j, k}.

Our algorithm for the 3-boundary case basically enumerates all the O(n3) possible de-

compositions and returns the best found solution. Before the enumeration step starts, the

solutions to the corner case and opposite case subproblems are pre-computed and stored into

61

b

1

3

2

b

1

3

2

(a) (b)

Figure 5.7: R is divided into three regions: R1, R2 and R3, where R1 and R2 are two
corner case subproblems, R3 is an opposite case subproblem.

a hashing table, so that evaluating each decomposition solution can be done in O(1) time5.

The pseudocode of the algorithm for the 3-boundary case is listed below. Theorem 5 can be

concluded based on the above analysis.

Algorithm 4 MDS-3side(R, Sl, St, Sr)

1: Solve the top-left corner case subproblem
2: Solve the top-right corner case subproblem
3: Solve the left-right opposite case subproblem
4: Enumerate all possible decompositions
5: return The best found solution

Theorem 5 Algorithm 4 correctly returns the MDS of a 3-boundary case in O(n3) time,

where n is the total number of boundary rectangles.

5.2.4 The 4-boundary Case

We first analyze all the possible structures of the optimal solution M(R). Let il, it, ir and

ib be the tallest boundary rectangles in M(R) standing on the left, top, right and bottom

boundaries of the rectangular region of R, respectively. There are several situations to take

into account.

5The opposite case subproblem here is slightly different from the basic version we have discussed, as here
we need to add some extra contours for each i ∈ St (e.g., c[jb, ib], where j ∈ Sl), in order to pre-compute
the solutions to all the opposite case subproblems in region R3.

62

1. Degeneracy - If any of il, it, ir and ib does not exist, then the 4-boundary instance

degenerates to a 3-boundary case and we can find its optimal solution by applying the

3-boundary case solver in Section 5.2.3.

2. Non-wheel structure - We say M(R) contains a non-wheel structure if either the

bottom boundary of it is higher than the top boundary of ib (ibt ≥ itb), or the left

boundary of ir is to the right of the right boundary of il (i
l
r ≥ irl). We assume, without

loss of generality, ibt ≥ itb. We can then divide R into three subregions R1, R2 and R3

by extending the bottom boundary of it, which is very similar to the situation shown in

Figure 5.7. The only difference is that the subproblem in subregion R3 is a 3-boundary

case, which can be solved by calling the 3-boundary case solver.

3. Wheel structure - When irl > ilr and itd > ibu, M(R) is a wheel structure, as shown in

Figure 5.8(a). The wheel structure has two possible orientations: (1) clockwise, where

il is above ir and it is to the left of ib; and (2) counter-clockwise, where il is below

ir and it is to the right of ib. Here we only discuss the counter-clockwise orientation

as shown in Figure 5.8(b). Let jb ∈ Sb be the leftmost rectangle that is to the right

of il in M(R) (note that jb can be ib). Let jl ∈ Sl be the highest rectangle that is

below it in M(R). Similarly, we define rectangles jt and jr, as shown in Figure 5.8.

We then extend jlb until it reaches j
b
r, extend jbr until it reaches jrt , extend jrt until it

reaches jtl , and extend jtl until it reaches jlb. Now the whole region R is divided into

five subregions R1 to R5, where R1, R2, R3 and R4 correspond to four corner case

subproblems, and R5 is dead space in the center. Therefore, if M(R) contains a wheel

structure, the instance can be decomposed into four corner case subproblems, so

M(R) = M(R1) ∪M(R2) ∪M(R3) ∪M(R4).

In summary, the MDS of the 4-boundary case can be computed by enumerating all the

possible degenerate situations, and all the non-wheel and wheel structures. The pseudocode

of algorithm MDS-4side is listed below. There are O(n4) possible wheel structures to enumer-

ate, where each enumerated wheel structure needs to compute four corner case subproblems

63

b

t

r

l

b

t

r

l b

t

l

r

5

1

2 3

4

(a) (b)

Figure 5.8: (a) a counter-clockwise wheel structure of M(R); (b) the whole region R is
divided into 5 subregions.

in O(n2) time. There are O(n3) non-wheel structures to consider, each of which needs to

compute one 3-boundary case subproblem in O(n3) time and two corner case subproblems in

O(n2) time. Therefore, the time complexity of algorithm MDS-4side is O(n6). Note that for

this algorithm, preprocessing steps cannot help to reduce the order of magnitude of its time

complexity, since the 3-boundary case subproblems cannot be computed incrementally like

the 2-boundary cases. The following theorem can be easily concluded based on the above

analysis.

Algorithm 5 MDS-4side (R, Sl, Sr, St, Sb)

1: Compute all the degenerated 3-boundary cases
2: Enumerate and evaluate all possible non-wheel structures
3: Enumerate and evaluate all possible wheel structures
4: return The best found solution

Theorem 6 Algorithm 5 correctly returns the MDS of a 4-boundary case in O(n6) time,

where n is the total number of boundary rectangles.

5.3 Experimental Results

We implemented our optimal MDS algorithm in C++, and applied it to eight bus escape

routing cases from the real industrial data. All the experiments are performed on a Linux

64

Table 5.1: Experimental results.

Test Input Output
Cases Bus Rectangle Bus Rectangle Net Time

(s)
Ex1 8 32 8 8 272 0.1
Ex2 8 32 8 8 680 0.1
Ex3 11 44 10 10 629 1.2
Ex4 13 52 3 3 66 1.3
Ex5 14 56 6 6 276 1.3
Ex6 43 172 15 15 655 159
Ex7 44 176 15 15 659 184
Ex8 64 256 22 22 288 1148

workstation with two 3.0 GHz Intel Xeon CPUs and 4 GB memory. Table 5.1 shows experi-

mental results. In our experiments, four rectangles are created for each bus, whose escaping

directions are respectively left, right, top and bottom. For each rectangle from a specific

bus, its weight is set to be the maximum number of nets that can escape along its direction.

In Table 5.1, the first two columns give the number of input buses as well as the number of

input boundary rectangles. The third and the fourth columns show the number of selected

rectangles in the maximum disjoint subset as well as the number of different buses corre-

sponding to these rectangles. The sixth column gives the total weight of selected boundary

rectangles, which is also the total number of nets in chosen buses. The last column gives

running times of these test cases. From Table 5.1, it is clear that although the complexity of

our MDS algorithm is O(n6), where n is the number of bus boundary rectangles, because

there are not so many buses in one component, the real running time of our algorithm is

still acceptable.

5.4 Conclusions

In this chapter, we proposed a polynomial time algorithm to optimally solve an open prob-

lem, the maximum disjoint subset problem of boundary rectangles. We then showed this

algorithm can be applied to find the optimal solution of the bus escape routing problem.

65

CHAPTER 6

ESCAPE ROUTING

6.1 Introduction

As was pointed out in previous chapters, the PCB routing problem can be decomposed into

two subproblems: the escape routing, which is to route nets from pin terminals to component

boundaries, and the area routing, which is to route nets between component boundaries. In

this chapter, we will propose a fast escape routing algorithm.

In high-end PCBs nets are always organized in bus structures. Nets in a bus have similar

pin locations and they are expected to be routed together without foreigners in between.

From industrial manual routing solutions we observe that nets in a bus always escape a

component from its projection interval, which can be obtained by projecting its pin clus-

ter bounding box onto the component boundary along its escape direction, as shown in

Figure 6.1.

Moreover, within components, nets are typically routed in an L-shape manner: nets always

escape components monotonically and each net bends at most once inside each component,

as shown in Figure 6.2.

Based on these observations, we propose a wire packing based escape routing algorithm,

which only takes a very short time to route nets from their terminals to component bound-

aries in an L-shape manner. We tested it on a state-of-the-art industrial board, which

contains 7000+ nets and 146 buses. It successfully routed 98.2% nets in less than 3 minute

CPU time. All other escape routers [8,9,42] which can provide comparable routing solutions

have much longer running time than ours.

In the rest of this chapter, Section 6.2 will introduce the L-shape escape routing algorithm.

Section 6.3 will introduce the applications of this L-shape routing algorithm in the whole

66

Bounding

Box

Component

Boundaries

Projection

Interval

Rectangular

Routing Region

Figure 6.1: Bus projection interval.

Figure 6.2: L-shape escape routing.

PCB routing process. Section 6.4 will show some experimental results and Section 6.5 will

give some concluding remarks.

6.2 Algorithm

As shown in Figure 6.1, nets in a bus occupy a rectangular region to escape a component,

which can be easily obtained by extending the bus pin cluster bounding box to the component

boundary along the bus escape direction. We assume that each bus escape routing region

covers a regular pin grid and it involves an underlying routing grid as follows: each horizonal

67

line is either a pin row or a horizontal routing track and each vertical line is either a pin

column or a vertical routing track, where each horizontal or vertical routing track allows only

one net to pass. Except for nets whose pins are located on the component boundary, all other

nets can only escape components through routing tracks. Figure 6.3 demonstrates a routing

grid of an escape routing region for a bus whose escape direction is right. In this example,

the routing region contains a 5× 5 pin grid and there is only one routing track between any

two neighboring pin rows or pin columns. According to the bus escape direction, the right

boundary of the routing region is also the component boundary. Therefore all nets, except

nets 3 and 4 whose pins are on the component boundary, can only escape components from

horizonal routing tracks.

1

2

3

4

5

6

7

8

(a) No Bending (b) One Bending (c) Two Bending

Figure 6.3: L-shape and non-L-shape escape routes.

The escape route of a net in the routing grid is its path escaping the routing region. If a

net escape route only passes at most one horizontal routing track and at most one vertical

routing track, it is defined as an L-shape escape route. Figure 6.3(a) and (b) demonstrate

some L-shape escape routes and Figure 6.3(c) demonstrates some escape routes which are in

L-shape. In Figure 6.3(a), net 1 as well as net 2 only passes one horizontal track and net 3

and net 4 only pass their pin rows. In Figure 6.3(b), net 5 passes only one horizontal track

and only one vertical track, as well as net 6. In Figure 6.3(c), both nets 7 and 8 pass two

horizontal tracks.

In PCB designs, each bus is between two components and all their nets must be routed

in a planar fashion. Therefore, each bus must escape two components simultaneously. In

68

the rest of this section, we will first introduce an algorithm which escapes as many nets

as possible in an L-shape manner from one component. Then we will extend it to another

algorithm which escapes nets from two components simultaneously.

6.2.1 One Component L-Shape Algorithm

Given a bus with K nets {1, 2, · · · , K} and a rectangular routing region C with an M ×

N routing grid (M rows and N columns), let the coordinate of the bottom-left corner of

the routing grid be (1,1), the coordinate of the upper-right corner be (N,M) and the pin

coordinate of net i be (xi, yi) (1 ≤ i ≤ K). Without loss of generality, we assume the

escape direction is “right,” which means that nets are only allowed to escape C from its

right boundary. For a bus with other escape direction we can rotate its routing region to

make its escape direction to be “right.” Figure 6.4(a) demonstrates an example which is

composed of a 9-net bus and a 15× 10 routing grid.

We perform a two-step wire packing based algorithm to find an L-shape routing solution

for the given K nets as follows: We first sort all nets according to their pin locations (the net

sorting step), and then route nets in sequence (the net routing step). In the net sorting step,

we sort nets into two orderings: the “up” ordering and the “down” ordering. The “down”

ordering can be obtained by sweeping the pin grid row by row from bottom to top and

counting net pins from left to right in each row. It is denoted as {D(1), D(2), . . . , D(K)},

where 1 ≤ D(j) ≤ K. For the example shown in Figure 6.4(a), its “down” net ordering is

{1, 2, 3, 4, 5, 6, 7, 8, 9}. Similarly, the “up” ordering can be obtained by sweeping the pin grid

row by row from top to bottom and counting net pins from left to right in each row. It is

denoted as {U(1), U(2), . . . , U(K)}, where 1 ≤ U(j) ≤ K. The “up” net ordering for the

example in Figure 6.4(a) is {8, 9, 5, 6, 7, 3, 4, 1, 2}.

In the net routing step, we route given nets twice: one follows the “up” ordering and the

other follows the “down” ordering; and we keep the routing solution which contains more

routed nets. When net D(i) is processed during routing nets along the “down” ordering, if

its pin is on the right boundary of the routing grid, as net 4 in Figure 6.4(b), it escapes C

through its pin row directly and does not pass any horizontal or vertical routing track. If

69

1 2

3 4

5 6 7

8 9

1 2

3 4

5 6 7

8 9

1 2

3 4

5 6 7

8 9

(a) Example (b) “down” routing (c) “down” compaction

1 2

3 4

5 6 7

8 9

1 2

3 4

5 6 7

8 9

(d) “up” routing (e) “up” compaction

Figure 6.4: A single component L-shape escape routing example with nine nets is displayed
in (a) and its corresponding solutions by applying the one component escape routing
algorithm in “down” and “up” net orderings are demonstrated in (b) and (d). (c) and (e)
The compacted routing solutions corresponding to (b) and (d).

D(i)’s pin is not on the right boundary of C, it must pass a horizontal track if it is routable.

We define a feasible escape route of D(i) as an L-shape escape route which satisfies that ∀

j ∈ [1, i− 1] , if D(j) is routed, then:

• It does not intersect with D(j)’s escape route.

• The horizontal track it passes is above the horizontal track D(j)’s route passes.

If there is no feasible escape route, D(i) cannot be routed; otherwise, we keep the feasible

escape route whose horizontal routing track has the maximum vertical coordinate. Fig-

ure 6.4(b) gives the L-shape escape routing solution of the example in Figure 6.4(a) along

70

the “down” net ordering, where all nine nets are routed. Similarly, when we process U(i)

during routing nets along “up” ordering, it escapes C though its pin row directly if its pin

is on the right boundary of the routing grid; otherwise it escapes C along its feasible escape

route whose horizontal routing track has the minimum vertical coordinate. Figure 6.4(d)

gives the L-shape escape routing solution of the example in Figure 6.4(a) along the “up” net

ordering, where only 8 of 9 nets are routed. For this example, we keep the escape routing

solution along “down” net ordering because it contains more routed nets.

It is easy to observe from Figure 6.4(b) that the total route length can be diminished

if some nets, such as net 7, escape C from higher horizontal routing tracks. Similarly, as

shown in Figure 6.4(d), the total route length can be minimized if some nets, such as net 3,

escape C from lower horizontal routing tracks. Therefore, we perform a compaction process

at the end of the net routing step to minimize the total length of the L-shape escape routing

solution.

When compacting the routing solution obtained along the “down” net ordering, we process

nets from D(K) to D(1). When we process D(i), if its pin is on the right boundary of the

pin grid, its escape route cannot be shortened. Otherwise if it is routed, we reroute it along

its feasible escape route which passes the horizontal routing track closest to its pin row.

Figure 6.4(c) compacts the escape routing solution in Figure 6.4(b). Similarly, we process

nets from U(K) to U(1) when compacting the escape routing solution obtained along the

“up” net ordering. If U(i) is routed and does not escape the routing grid through its pin row,

we also reroute it along its feasible escape route which passes the horizontal routing track

closest to its pin row. Figure 6.4(e) compacts the escape routing solution in Figure 6.4(d).

For the example in Figure 6.4(a), Figure 6.4(c) displays its final escape routing solution.

6.2.2 Two Component L-Shape Algorithm

We can extend the one component L-shape escape algorithm to escape nets from two com-

ponents simultaneously. Suppose that a bus with K nets {1, 2, · · · , K} is between two

components and its routing regions within these two components are C1 and C2. Without

loss of generality, we assume that C1 is on the left of C2 and nets escape C1 and C2 along the

71

right and left directions respectively. Let the coordinate of the lower left corner of the rout-

ing grid in C1 be (1, 1) and the coordinate of its upper right corner be (M1, N1). Similarly,

let the coordinate of the lower left and upper right corners of the routing grid in C2 be (1, 1)

and (M1, N1), respectively. Figure 6.5 gives an example containing an 11-net bus. For a bus

whose routing region positions or escape directions do not satisfy the above assumptions, we

can relocate and rotate its routing regions to make assumptions satisfied. The routability of

a bus remains the same before and after relocating and rotating its routing regions.

3

6

5

10

7 8

9

12

3

4

1

8

2

67

5 34

11 91011

Figure 6.5: A two component escape routing example.

During the net sorting step, nets are sorted into four orderings according to their pin

locations in C1 and C2. From C1 nets are sorted into two orderings, the left-up (LU)

ordering and left-down (LD) ordering:

• Left-up (LU) ordering

The LU ordering can be obtained by sweeping the pin grid of C1 row by row from top to

bottom and couting net pins from left to right in each row, denoted by {LU(1), LU(2),

· · · , LU(K)}, where 1 ≤ LU(i) ≤ K. The LU ordering of nets in Figure 6.5 is

{11, 9, 10, 7, 8, 6, 5, 4, 3, 2, 1}.

• Left-down (LD) ordering

The LD ordering can be obtained by sweeping the pin grid of C1 row by row from

72

bottom to top and counting net pins from left to right in each row, denoted by

{LD(1), LD(2), · · · , LD(K)}, where 1 ≤ LD(i) ≤ K. The LD ordering of nets in

Figure 6.5 is {2, 1, 3, 5, 4, 6, 7, 8, 9, 10, 11}.

By applying the similar approach, from C2 nets are sorted into the right-up (RU) ordering

and right-down (RD) ordering:

• Right-up (RU) ordering

The RU ordering can be obtained by sweeping the pin grid of C2 row by row from

top to bottom and counting net pins from right to left in each row, denoted by

{RU(1), RU(2), · · · , RU(K)}, where 1 ≤ RU(i) ≤ K. The RU ordering of nets in

Figure 6.5 is {9, 10, 11, 6, 7, 8, 3, 4, 5, 1, 2}.

• Right-down (RD) ordering

The RD ordering can be obtained by sweeping the pin grid of C2 row by row from

bottom to top and counting net pins from right to left in each row, denoted by

{RD(1), RD(2), · · · , RD(K)}, where 1 ≤ RD(i) ≤ K. The RD ordering of nets

in Figure 6.5 is {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}.

In the net routing step we route all given nets once along each of four routing orderings

and keep the escape routing solution containing the maximum number of routed nets. When

we route net LU(i) along the LU ordering, we regard the LU ordering as the “up” ordering

in each region and escape LU(i) from C1 and C2 respectively. If LU(i) cannot escape either

C1 or C2, it cannot be routed. After all nets are processed we can improve the escape routing

solution by compacting net routes in C1 and C2 respectively. The process of routing nets

along the RU ordering is identical to the process of routing nets along the LU ordering. For

the example in Figure 6.5, 10 of 11 nets are routed along the LU ordering, as displayed in

Figure 6.6(a), and 8 of 11 nets are routed along the RU ordering, as displayed in Figure 6.6(c).

Figure 6.6(b) and (d) display the compacted solutions in Figure 6.6(a) and (c), respectively.

When we process net LD(i) along the LD ordering, we regard the LD ordering as the

“down” ordering in each region and escape LD(i) from C1 and C2 respectively. Only when

both escape routes can be obtained, can LD(i) be routed. After processing all nets the escape

73

3

6

5

10

7 8

9

12

4

1

8

2

67

5 34

11 91011

3

6

5

10

7 8

9

12

4

1

8

2

67

5 34

11 91011

(a) LU Routing (b) LU Compaction

3

6

5

10

7 8

9

12

4

1

8

2

67

5 34

11 91011

3

6

5

10

7 8

9

12

4

1

8

2

67

5 34

11 91011

(c) RU Routing (d) RU Compaction

Figure 6.6: Escape routing and compaction along LU and RU orderings.

routing solution can be improved by compacting net routes in C1 and C2 respectively. We can

follow the same procedure to route nets along the RD ordering. For the example in Figure 6.5,

all 11 nets are routed along the LD and RD orderings, as displayed in Figure 6.7(a) and (c).

Figure 6.7(b) and (d) display the compacted solutions in Figure 6.7(a) and (c), respectively.

Therefore, for the example in Figure 6.5 we can select the escape routing solution obtained

either along the LD ordering or along the RD ordering to be its final solution.

74

3

6

5

10

7 8

9

12

4

1

8

2

67

5 34

11 91011

3

6

5

10

7 8

9

12

4

1

8

2

67

5 34

11 91011

(a) LD Routing (b) LD Compaction

3

6

5

10

7 8

9

12

4

1

8

2

67

5 34

11 91011

3

6

5

10

7 8

9

12

4

1

8

2

67

5 34

11 91011

(c) RD Routing (d) RD Compaction

Figure 6.7: Escape routing and compaction along LD and RD orderings.

6.2.3 Escape Ordering Adjustments

In practice, an high-end PCB always contains a lot of differential pairs. A differential pair is

a pair of nets which transfer a pair of complementary signals. Within components two nets

in a differential pair are required to escape components from neighboring routing tracks,

and outside components they are required to be routed together all the time. Figure 6.8

demonstrates two differential pairs. Directly applying our L-shape escape routing algorithms

may violate the routing constraints of differential pairs. In this section, we will discuss how

to adjust routing orderings in the net routing step.

In addition, in the net routing step we observe that more nets can be routed if we adjust

the net ordering. For example, in Figure 6.6(a) if we process net 10 before net 9, all 11

75

Figure 6.8: Examples of differential pairs.

nets can be routed. In this section we will discuss the net ordering adjustments under some

specific circumstances.

Differential Pair

Let n1 and n2 represent two nets in a differential pair, where 1 ≤ n1, n2 ≤ K. Then when we

process n1 in the net routing step, if n2 has not been processed, we must adjust the escape

ordering to make n2 become the next to-be-processed net after n1, and in both C1 and C2

we escape n1 through a horizontal track whose neighboring track has not been taken. If n2

has been routed, n1 must escape C1 and C2 though horizontal routing tracks neighboring to

n2’s track. If either n1 or n2 is not routed, both of them fail escape routing.

1

2 3

4 5

6

7 8

9

10 11

1 3 2

4 5 6

87 9

10 11

Figure 6.9: An escape routing example with differential pairs.

Figure 6.9 demonstrates a bus with seven single nets and two differential pairs, where

nets 2 and 3 belong to one differential pair and nets 8 and 9 belong to another one. In

76

Figure 6.9 rectangles represent pins of differential pairs. The LD ordering of this example

is 10,11,9,7,8,6,4,5,2,3,1, where nets 8 and 9 are separated. Therefore we adjust the LD

ordering to be 10,11,9,8,7,6,4,5,2,3,1.

Same-Row Net Pair

For any two given nets n1 and n2, where 1 ≤ n1, n2 ≤ K, if their pins are located in the

same pin row in both C1 and C2, they are named a same-row net pair. The are two kinds

of same-row net pairs: the same-ordering net pair as shown in Figure 6.10(a), where n1’s

pins are always on the left of n2’s pins or vise versa in both routing regions, and the reverse-

ordering net pair as shown in Figure 6.10(b), where n1’s pins are on different sides of n2’s

pins in C1 and C2.

1 221 2 121

(a) Same-Ordering (b) Reverse-Ordering

Figure 6.10: Same-ordering same-row net pair and the reverse-ordering same-row net pair.

Without loss of generality, we assume that n1’s pin is always located on the left side of

n2’s pin in C1. If n1 and n2 are a same-ordering net pair, n1 is ahead of n2 in both LU and

LD net orderings. When n1 is to be routed along the LU ordering, if the horizontal routing

track which is next to and above n1’s pin row is occupied in C1 and it is available in C2,

then n2 is unable to escape C1, as shown in Figure 6.11(a). In this case, both n1 and n2

can be routed if we swap their routing ordering as shown in Figure 6.11(b). Similarly, when

n1 is to be routed along the LD ordering, if the horizontal routing track which is next to

and below n1’s pin row is occupied in C1 but it is still available in C2, then swapping their

routing ordering makes both of them routed, as shown in Figure 6.11(c) and (d). Under

similar circumstances when we route nets along RU and RD orderings, swapping n1 and n2’s

ordering enables both of them to be routed.

If n1 and n2 is a reverse-ordering net pair, n1 is ahead of n2 in LU and LD net orderings.

When n1 is to be routed along the LU ordering, if the horizontal routing track which is next

77

1 221 21

1

221 21

(a) LU solution before swap (b) LU solution after swap

1 2

21 21

1
2

21 21

(c) LD solution before swap (d) LD solution after swap

Figure 6.11: Routing ordering swap in LU and LD orderings for a same-ordering net pair.

2 1

2

11
2 1

2

1

2

11 1

(a) LU solution before swap (b) LU solution after swap

2
12

1

2
1

21

(c) LD solution before swap (d) LD solution after swap

Figure 6.12: Routing ordering swap in LU and LD orderings for a reverse-ordering net pair.

to and above n1’s pin row in C2 is occupied and it is not taken in C1, then n2 fails escaping

C2 as shown in Figure 6.12(a). In this case, swapping n1 and n2’s ordering can make both

of them routed as shown in Figure 6.12(b). Similarly, when n1 is to be routed along the LD

ordering, if the horizontal routing track which is next to and below n1’s pin row is occupied

in C2 and it is available in C1, then n2 is unable to escape C1 as shown in Figure 6.12(c). If

we swap the ordering of n1 and n2, both of them can be routed as shown in Figure 6.12(d).

Under similar circumstances when routing nets along RU and RD orderings, swapping n1

and n2’s ordering enables both of them to be routed successfully.

Figure 6.13 gives the LU, LD, RU and RD escape routing solutions for the case in Fig-

ure 6.9. All 11 nets are routed along LU and LD orderings, and only 7 and 9 nets are routed

along RU and RD ordering respectively. From Figure 6.13(a), it can be observed that nets

4 and 5 are a same-ordering same-row net pair and their routing orderings are swapped.

78

1 1

2

2

3

3

4 45 5

6

6

7 78 8

9

9

10 1011 11

1 1

2

2

3

3

4 45 5

6

6

7 78 8

9

9

10 1011 11

(a) LU Routing (b) LU Compression
1 1

2

2

3

3

4 45 5

6

6

7 78 8

9

9

10 1011 11

1 1

2

2

3

3

4 45 5

6

6

7 78 8

9

9

10 1011 11

(c) LD Routing (d) LD Compression
1 1

2

2

3

3

4 45 5

6

6

7 78 8

9

9

10 1011 11

1 1

2

2

3

3

4 45 5

6

6

7 78 8

9

9

10 1011 11

(e) RU Routing (f) RU Compression
1 1

2

2

3

3

4 45 5

6

6

7 78 8

9

9

10 1011 11

1 1

2

2

3

3

4 45 5

6

6

7 78 8

9

9

10 1011 11

(g) RD Routing (h) RD Compression

Figure 6.13: The L-shape escape routing and compacted solutions for the case in
Figure 6.9. (a) and (b) The LU routing and compaction solutions. (c) and (d), (e) and (f),
and (g) and (h) The LD, RU and RD routing and compaction solutions, respectively. Red
circles represent pins of a differential pair.

79

6.3 Applications in the PCB Routing System

All our above discussions are based on the assumption that the bus escape ordering is known

before escape routing. In practice, this assumption is not always true. In high-end PCBs

routing resources are very limited inside components; therefore the bus escape direction

determination is quite critical to the whole PCB routing system. Appropriate bus escape

directions can significantly diminish bus routing region overlaps inside components, which

may lead to a successful whole board routing solution.

Component 1 Component 2

C1

C2

Figure 6.14: All possible escape directions for a bus.

As shown in Figure 6.14, each bus is between two components and in each component it

has four optional escape directions: up, down, left and right. Therefore, each bus has 16 ways

to escape both components simultaneously. A high-end board contains hundreds of buses

and in order to utilize the routing resources within components effectively, we should take

into account all buses globally rather than processing them individually. Therefore, for each

bus we may need to find its escape routing solutions for all escape direction combinations.

Our router is suitable to be applied for this purpose.

For each bus, we can perform the L-shape escape routing algorithm to find a routing

solution for each of 16 possible escape direction combinations in Figure 6.14. For one escape

direction combination, if the L-shape escape router cannot escape all nets in one layer, it will

be performed iteratively to find a multi-layer escape solution. A two-layer escape routing

solution is displayed in Figure 6.15.

80

 !"#$%&'&#(

 '"#$%&'&#)

 *"#+,-

Figure 6.15: A two-layer escape routing solution of a bus in (a).

6.4 Experimental Results

We tested our bus L-shape escape algorithm on a state-of-the-art industrial board which

contains 7000+ nets and 12 routing layers and has been manually routed. We performed

our experiments on a workstation with two 3.0 GHz Intel Xeon CPUs and 4 GB memory.

We extracted bus definitions and bus escape directions from the manual solution, where

all nets in a bus can be fully routed in a single layer along the escape direction. We obtained

146 buses from the manual routing solution and each bus contains at most 82 nets. We

applied our L-shape escape routing algorithm to all these buses. Without allowing the net

ordering adjustments, 95.9% nets are successfully routed in less than 1 minute CPU time.

After applying the net ordering adjustments, totally 98.2% nets are routed in less than 3

minute CPU time. We demonstrate the detailed routing results on each routing layer in

Table 6.1. In this table, the second column gives the number of buses we extracted from the

manual solution on each layer. The third and fourth columns show the total number of nets

and the total number of routed nets on each layer. The last column gives the percentages

of routed nets.

81

Table 6.1: Escape routing statistics.

layerID # of buses # of nets # of routed nets % of routed nets

1 10 698 683 97.9%
2 14 873 860 98.5%
3 14 865 854 98.7%
4 10 454 450 99.1%
5 10 480 472 98.3%
6 9 388 382 98.4%
7 19 740 728 98.4%
8 18 562 552 98.2%
9 12 584 573 98.1%
10 10 325 320 98.5%
11 10 510 495 97.1%
12 10 504 488 96.8%

total 146 7033 6907 98.2%

6.5 Conclusions

In this chapter, we first proposed a wire packing based escape routing algorithm, which can

find an L-shape escape routing solution in a very short time. This algorithm is much faster

than all existing escape routing algorithms and is capable of providing comparable escape

routing results. Then we introduced how to utilize this algorithm to explore the escape

routing solutions in the real PCB routing process.

82

REFERENCES

[1] D. Wiens, “Printed circuit board routing at the threshold, ” white paper, Mentor Graph-
ics, 2000.

[2] J. C. Whitaker, The Electronics Handbook, 2nd ed. Boca Raton, FL: CRC Press, 2005.

[3] M. M. Ozdal, “Routing algorithms for high-performance VLSI packaging,” Ph.D. dis-
sertation, University of Illinois at Urbana-Champaign, 2005.

[4] H. Harrer, D. M. Dreps, T.-M. Winkel, W. Scholz, B. G. Truong, A. Huber, T. Zhou,
K. L. Christian, and G. F. Goth, “High-speed interconnect and packaging design of the
ibm system z9 processor cage,” IBM J. Res. Dev., vol. 51, no. 1/2, pp. 37–52, 2007.

[5] H. Harrer, H. Pross, T.-M. Winkel, W. D. Becker, H. Stoller, M. Yamamoto, S. Abe,
B. J. Chamberlin, and G. A. Katopis., “First- and second-level packaging of the z990
processor cage,” IBM J. Res. Dev., vol. 46, no. 4-5, pp. 397–420, 2002.

[6] T.-M. Winkel, W. D. Becker, H. Harrer, H. Pross, D. Kaller, B. Garben, B. J. Cham-
berlin, and S. A. Kuppinger, “First- and second-level packaging of the z990 processor
cage,” IBM J. Res. Dev., vol. 48, no. 3-4, pp. 379–394, 2004.

[7] C. S. Rim and K. Nakajima, “On rectangle intersection and overlap graphs,” IEEE
Transactions on Circuits and Systems-1: Fundamental Theory and Applications, vol. 42,
no. 9, pp. 549–553, 1995.

[8] M. M. Ozdal and M. D. F. Wong, “Simultaneous escape routing and layer assignment
for dense PCBs,” in Proceedings of the 2004 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), 2004, pp. 822–829.

[9] M. M. Ozdal, M. D. F. Wong, and P. S. Honsinger, “An escape routing frame-
work for dense boards with high-speed design constraints,” in Proceedings of the 2005
IEEE/ACM International Conference on Computer-Aided Design (ICCAD), 2005, pp.
759–766.

[10] X. Tang, R. Tian, and D. F. Wong, “Fast evaluation of sequence pair in block placement
by longest common subsequence computation,” in Proceedings of the Conference on
Design, Automation and Test in Europe (DATE), 2000, pp. 106–111.

83

[11] X. Tang and D. F. Wong, “Fast-sp: A fast algorithm for block placement based on
sequence pair,” in Proceedings of the 2001 Conference on Asia South Pacific Design
Automation (ASP-DAC), 2001, pp. 521–526.

[12] J. W. Hunt and T. G. Szymanski, “A fast algorithm for computing longest common
subsequences,” Communications of the ACM, vol. 20, no. 5, pp. 350–353, 1977.

[13] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms. Boston,
MA: MIT Press, 1992.

[14] N. L. Koren, “Pin assignment in automated printed circuit board design,” in DAC ’72:
Proceedings of the 9th Design Automation Workshop, 1972, pp. 72–79.

[15] L. Mory-Rauch, “Pin assignment on a printed circuit board,” in DAC ’78: Proceedings
of the 15th Conference on Design Automation, 1978, pp. 70–73.

[16] H. Brady, “An approach to topological pin assignment,” IEEE Trans. Computer-Aided
Design Integr. Circuits Syst., vol. 3, no. 3, pp. 250–255, July 1984.

[17] T. D. Am, M. Tanaka, and Y. Nakagiri, “An approach to pin assignment in printed
circuit board design,” SIGDA Newsl., vol. 10, no. 2, pp. 21–33, 1980.

[18] T. Meister, J. Lienig, and G. Thomke, “Novel pin assignment algorithms for components
with very high pin counts,” in DATE ’08: Proceedings of the Conference on Design,
Automation and Test in Europe, 2008, pp. 837–842.

[19] T. Yan and M. D. F. Wong, “A correct network flow model for escape routing,” in DAC
’09: Proceedings of the 46th Annual Design Automation Conference, 2009, pp. 332–335.

[20] D. Staepelaere, J. Jue, T. Dayan, and W. Dai, “Surf: Rubber-band routing system for
multichip modules,” in IEEE Design and Test of Computers, 1993, pp. 18–26.

[21] D. J. Staepelaere, “Geometric transformations for a rubber-band sketch,” M.S. thesis,
University of California at Santa Cruz, Santa Cruz, CA, USA, September 1992.

[22] M. M. Ozdal and M. D. F. Wong, “Length-matching routing for high-speed printed
circuit boards,” in ICCAD’03: Proceedings of the 2003 IEEE/ACM International Con-
ference on Computer-Aided Design, 2003, p. 394.

[23] T. Yan and M. D. F. Wong, “BSG-route: A length-matching router for general topol-
ogy,” in ICCAD ’08: Proceedings of the 2008 IEEE/ACM International Conference on
Computer-Aided Design, 2008, pp. 499–505.

[24] H. Kong, T. Yan, M. D. F. Wong, and M. M. Ozdal, “Optimal bus sequencing for
escape routing in dense PCBs,” in ICCAD ’07: Proceedings of the 2007 IEEE/ACM
International Conference on Computer-Aided Design, 2007, pp. 390–395.

[25] “CS2:min-cost flow solver,” 2007, [Online]. Available: http:/www.igsystems.com/cs2/
index.html.

84

[26] “Cadence OrCAD PCB Designer,” 2007, [Online]. Available: http://www.cadence.com/
products/pcb/pcbdesigner.

[27] “Mentor graphics topological router,” 2007, [Online]. Available: http://www.mentor.
com/products/pcb-system-design/layout-routing/topology-router.

[28] “Cadence Allegro PCB Design,” 2007, [Online] Available: http://www.cadence.com/
products/pcb/pcbdesign.

[29] M. Cho, K. Lu, K. Yuan, and D. Z. Pan, “BoxRouter 2.0: Architecture and implemen-
tation of a hybrid and robust global router,” in ICCAD ’07: Proceedings of the 2007
IEEE/ACM International Conference on Computer-Aided Design, 2007, pp. 503–508.

[30] M. Pan and C. Chu, “FastRoute 2.0: A high-quality and efficient global router,” in ASP-
DAC ’07: Proceedings of the 2007 Conference on Asia South Pacific Design Automation,
2007, pp. 250–255.

[31] M. M. Ozdal and M. D. F. Wong, “Archer: A history-driven global routing algo-
rithm,” in ICCAD ’07: Proceedings of the 2007 IEEE/ACM International Conference
on Computer-Aided Design, 2007, pp. 488–495.

[32] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness. New York, NY: W. H. Freeman & Co., 1990.

[33] D. S. Hochbaum, Approximation Algorithms for NP-Hard Problems. Florence, KY:
Course Technology, 1996.

[34] L. McMurchie and C. Ebeling, “PathFinder: A negotiation-based performance-driven
router for FPGAs,” in FPGA ’95: Proceedings of the Third International ACM Sym-
posium on Field-Programmable Gate Arrays, 1995, pp. 111–117.

[35] C. Ebeling, L. McMurchie, S. A. Hauck, and S. Burns, “Placement and routing tools
for the Triptych FPGA,” IEEE Trans. Very Large Scale Integr. Syst., vol. 3, no. 4, pp.
473–482, 1995.

[36] V. Betz and J. Rose, “VPR: A new packing, placement and routing tool for FPGA
research,” in FPL ’97: Proceedings of the 7th International Workshop on Field-
Programmable Logic and Applications, 1997, pp. 213–222.

[37] D. F. Wong, H. W. Leong, and C. L. Liu, Simulated Annealing for VLSI Design. Nor-
well, MA: Kluwer Academic Publishers, 1988.

[38] J.-W. Fang, I.-J. Lin, Y.-W. Chang, and J.-H. Wang, “A network-flow-based RDL
routing algorithm for flip-chip design,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 26, no. 8, pp. 1417–1429, Aug. 2007.

[39] R. Wang, R. Shi, and C.-K. Cheng, “Layer minimization of escape routing in area
array packaging,” in ICCAD ’06: Proceedings of the 2006 IEEE/ACM International
Conference on Computer-Aided Design, 2006, pp. 815–819.

85

[40] W.-T. Chan, F. Y. L. Chin, and H.-F. Ting, “A faster algorithm for finding disjoint
paths in grids,” in ISAAC ’99: Proceedings of the 10th International Symposium on
Algorithms and Computation, 1999, pp. 393–402.

[41] M.-F. Yu and W. W.-M. Dai, “Single-layer fanout routing and routability analysis for
ball grid arrays,” in ICCAD ’95: Proceedings of the 1995 IEEE/ACM International
Conference on Computer-Aided Design, 1995, pp. 581–586.

[42] L. Luo and M. D. F. Wong, “Ordered escape routing based on Boolean satisfiability,”
in ASP-DAC ’08: Proceedings of the 2008 Asia and South Pacific Design Automation
Conference, 2008, pp. 244–249.

[43] T. Yan, H. Kong, and M. D. F. Wong, “Optimal layer assignment for escape routing of
buses,” in ICCAD ’09: Proceedings of the 2009 IEEE/ACM International Conference
on Computer-Aided Design, 2009, pp. 275–280.

[44] H. Kong, T. Yan, and M. D. F. Wong, “Automatic bus planner for dense PCBs,” in
DAC ’09: Proceedings of the 46th Annual Design Automation Conference, 2009, pp.
326–331.

86

