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Abstract 

Genetic regulatory variant effects across tissues and individuals 

Elise Flynn 

 

 Gene expression is regulated by local genetic sequence, and researchers have identified 

thousands of common genetic variants in the human population that associate with altered gene 

expression. These expression quantitative trait loci (eQTLs) often co-localize with genome wide 

association study (GWAS) loci, suggesting that they may hold the key to understanding genetic 

effects on human phenotype and cause disease. eQTLs are enriched in cis-regulatory elements, 

suggesting that many affect gene expression via non-coding mechanisms. However, many of the 

discovered loci lie in noncoding regions of the genome for which we lack understanding, and 

determining their mechanisms of action remains a challenge. To complicate matters further, 

genetic variants may have varied effects in different tissues or under different environmental 

conditions. The research presented here uses statistical methods to investigate genetic variants’ 

mechanisms of actions and context specificity. In Chapter 1, we introduce eQTLs and discuss 

challenges associated with their discovery and analysis. In Chapter 2, we investigate cross-tissue 

eQTL and gene expression patterns, including for GWAS genes. We find that eQTL effects show 

increasing, decreasing, and non-monotonic relationships with gene expression levels across 

tissues, and we observe higher eQTL effects and eGene expression for GWAS genes in disease-



 

 

relevant tissues. In Chapter 3, we use the natural variation of transcription factor activity among 

tissues and between individuals to elucidate mechanisms of action of eQTL regulatory variants 

and understand context specificity of eQTL effects. We discover thousands of potential 

transcription factor mechanisms of eQTL effects, and we investigate the transcription factors’ roles 

with orthogonal datasets and experimental approaches. Finally, in Chapter 4, we focus on a locus 

implicated in coronary artery disease risk and unravel the likely causal variants and functional 

mechanisms of the locus’s effects on gene expression and disease. We confirm the locus’s 

colocalization with an eQTL for the LIPA gene, and using statistical, functional, and experimental 

approaches, we highlight two potential causal variants in partial linkage disequilibrium. Taken 

together, this work develops a framework for understanding eQTL context variability and 

highlights the complex genetic and environmental contributions to gene regulation. It provides a 

deeper understanding of gene regulation and of genetic and environmental contributions to 

complex traits and disease, enabling future research surrounding the context variability of genetic 

effects on gene expression and disease
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Chapter 1: Introduction 

 

1.1 Genetics of human traits and disease 

It has long been understood that genetic variants in our DNA sequence can affect 

phenotype and cause disease. In the late 1980s, several seminal discoveries successfully 

determined genes and mutations that cause monogenic disease. In cystic fibrosis, researchers 

determined that a majority of cases were caused by a three base-pair deletion that affected the 

amino acid sequence of the chloride ion channel coded by the CFTR gene (Kerem et al. 1989; 

Rommens et al. 1989; Riordan et al. 1989). Since then, thousands of Mendelian disease genes and 

mutations have been discovered and many are catalogued in online databases (“OMIM - Online 

Mendelian Inheritance in Man” 1985; Cooper and Krawczak 1996; Landrum et al. 2014). 

With the advent of microarrays and next-generation sequencing, scientists can now 

perform more high-throughput analyses to investigate genetic diseases caused by multiple genes 

as well as genetic variants with smaller individual effects. One widely applied method, the 

genome-wide association study (GWAS), detects genetic variants that are associated with complex 

traits and diseases in a large population of individuals (thousands to millions). This method arose 

from the “common disease, common variant” hypothesis, which argued that many common 

genetic diseases were caused by relatively common variants with small effect sizes and/or low 

penetrance (Schork et al. 2009). Thus far, GWASs have highlighted genetic loci for thousands of 

traits and diseases, but the majority of these variants fall into noncoding regions of the genome for 

which we often lack functional understanding. 
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Researchers have taken many approaches to elucidate the mechanisms of action of GWAS 

loci (Cano-Gamez and Trynka 2020) with various success stories (Smemo et al. 2014; Benjamin 

Joachim Schmiedel et al. 2016; D.-L. Zhu et al. 2018; Sobreira et al. 2021), but the molecular 

mechanisms of the vast majority of GWAS associations remains unknown. One approach which 

we will explore here is the association of genetic variants with an intermediate phenotype, namely 

gene expression levels. These expression quantitative trait loci (eQTLs) can help to elucidate 

functions of GWAS loci as well as offer a deeper understanding of biology and the genetic 

regulation of genes. We set out to review genetic variant effects and eQTLs as well as discuss 

some of the challenges with eQTL discovery, analysis, and association with GWAS loci. 

 

1.2 Genetic effects on gene function and expression 

1.2.1 Types of genetic variant effects 

 Genetic variants have various mechanisms by which they can affect gene or protein level 

and function, which may go on to influence complex traits and diseases. Variants may directly 

affect protein function, such as in the common cystic fibrosis mutation discovered in 1989: a three 

base pair deletion in the coding sequence of CFTR results in a deletion of phenylalanine in the 

protein’s amino acid sequence, which leads to its misfolding and inability to function as a chloride 

ion channel in airway epithelia (Lukacs and Verkman 2012). Similarly, genetic variants may alter 

amino acid sequences which can, for example, disrupt binding sites or subcellular localization of 

the protein. In addition to altering a single amino acid residue, variants can exert more widespread 

effects by altering transcript and protein structure. Genetic variants in or near splice sites can alter 
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the inclusion/exclusion of exons and introns which lead to altered transcript and protein structures, 

and variants can alter transcription start and end sites. 

 In addition to altering protein structure and function, genetic variants within transcripts 

can affect levels of protein or transcript via post-transcriptional regulation, such as altered 

transcript stability and translation rate. A common mechanism of decreased transcript stability is 

nonsense-mediated decay caused by variants that produce premature termination codons (also 

called stop-gain mutations) that fall more than 50-55 bases upstream of the 3' untranslated region 

of the transcript  (Kurosaki, Popp, and Maquat 2019; Brandt, Gokden, et al. 2020). Premature 

termination codons can be produced by single nucleotide changes that create a stop codon, by 

frameshift mutations that alter codon sequences, or by splicing mutations that lead to frameshifts 

or improper transcript structure. Genetic variants in the 3' untranslated can also alter protein and 

RNA binding to the transcript and lead to altered degradation or localization of the transcript in 

the cell (Tushev et al. 2018; Vejnar et al. 2019; López-Martínez et al. 2020). These mechanisms 

can lead to altered transcript levels, which are detectable by RNA sequencing, or they may affect 

translation rate and protein levels without clear differences in mRNA abundance. 

 Finally, genetic variants that alter transcription rates can affect transcript and subsequently 

protein levels. Ultimately, transcription rate is determined by the genomic binding of and 

subsequent transcription by RNA polymerase II. This protein complex is directed where to bind in 

the genome by hundreds of proteins called transcription factors, which recognize and bind to 

patterns in the DNA sequence. These transcription factor binding sites may be located near the 

transcription start site in a region called the promoter, or up to hundreds of thousands of bases 

away in regions called enhancers. Genetic variants may alter transcript factor affinity for the 

genetic sequence, leading to altered transcription factor binding and subsequently altered 
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chromatin accessibility, histone modifications, chromosomal looping, and/or RNA polymerase II 

recruitment (Kilpinen et al. 2013; McVicker et al. 2013; Kasowski et al. 2013; Waszak et al. 2015; 

Grubert et al. 2015). These mechanisms will lead to altered transcript levels and potentially affect 

protein levels and phenotype as well. 

 

Table 1.1. Variant effects on expression, protein, and function 

Primary variant 

effect/location 
∆ Expression  

level 

∆ Protein  

level 

∆ Protein  

structure or 

function 

Protein amino acid 

deletion/substitution 

Unlikely Unlikely Possible 

Splice site Possible Possible Yes 

Altered transcription start 

site / 5' untranslated region 

Possible Possible Possible 

Premature termination 

codon (>50 bases from 

TTS) 

Yes Yes Possible 

Premature termination 

codon (<50 bases from 

TTS) 

Possible Possible Possible 

3' untranslated region Possible Yes Possible 

Promoter Yes Yes No 

Enhancer Yes Yes No 

 

1.2.2 Expression quantitative trait loci 

We can detect variants that are associated with changes in gene expression across 

individuals with expression quantitative trait loci, or eQTLs. Understanding these associations can 

offer a deeper understanding of the genetic regulation of gene expression, as well as help us explain 

any effects on phenotype and disease. We discover cis-eQTLs in large groups of individuals (tens 

to thousands) by comparing gene expression with genotype for all variants near the gene’s 

transcription start site (often within one megabase) [FIG 1.1]. Multiple eVariants are tested per 
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eGene, which may lead to multiple associated eVariants – the challenges associated with this are 

discussed below in 1.3.1 Statistical fine-mapping. 

 

Figure 1.1. Schematic of an eQTL. (Top) Three example individuals with different genotypes for a variant that 

associates with altered gene expression. (Bottom) Population data for an eQTL for AGA gene. Individual eGene 

expression is plotted by individual eVariant genotype. Adapted from (Brandt and Lappalainen 2017) 

 

We generally use linear models to discover eQTLs, by regressing normalized and log-

transformed gene expression on alternative allele dosage across individuals (Ongen et al. 2016). 

Most eQTL studies also include covariates in the linear model to remove noise in expression 

measurements caused by population stratification or non-genetic sources of variation in gene 

expression (e.g., environmental, technical). For instance, differences in gene expression between 
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populations could associate with every genetic variant that has different allele frequencies in the 

two populations. Thus, the first few principal components of the samples’ genotype matrix are 

included as covariates in the eQTL discovery model. On the other hand, environmental conditions 

or technical artefacts could introduce changes in gene expression that obscure differences caused 

by local genetic regulation. These covariates can be known, such as sequencing run or individual 

sex, or they can be discovered by examining gene expression patterns across the transcriptome. 

One method, probabilistic estimation of expression residuals (PEER), discovers hidden factors 

underlying gene expression variation across individuals (Stegle et al. 2010, 2012). Known and 

learned factors can then be used as covariates in the eQTL linear model in order to remove 

confounding effects on gene expression and increase the power to discover genetic effects on gene 

expression. 

We can quantify the magnitude of eQTLs with effect sizes. Previously, researchers 

reported regression coefficients learned from the eQTL linear model. However, regression 

coefficients have different meanings based on the unit of expression used, and they are not easily 

comparable across expression levels. (E.g., a variant associated with doubled gene expression 

could have a beta of 1 if expression doubled from 1 to 2, or 1000 if expression doubled from 1000 

to 2000.) Therefore, we use the log2 allelic fold change statistic, or aFC, to interpret eQTL effects 

[FIG 1.2]. aFC is computed on a logarithmic scale, thus it is stable at different gene expression 

levels. It can be quantified using learned parameters from the eQTL linear model, or it can be 

determined using allele-specific expression data in individuals heterozygous for the eVariant [FIG 

1.2]. 
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Figure 1.2. Log2 allelic fold change statistic. (First row) General equation for the log allelic fold change statistics 

(aFC). (Second row) aFC calculation in a population. aFC is calculated using parameters from the linear model fit to 

the population expression and genotype data. (Third row) aFC calculation in a heterozygous individual. aFC is 

calculated from the number of alleles measured from each haplotype (Mohammadi et al. 2017a). 

 

1.2.3 Other QTLs 

The same methods used for eQTL discovery can be applied to a variety of molecular 

traits to discover other types of quantitative trait loci. From gene expression data, we can 

measure promoter usage (Kimura et al. 2006; Garieri et al. 2017; Alasoo et al. 2019), splicing 

patterns (Heinzen et al. 2008; Monlong et al. 2014), and transcript structure (Glinos et al. 2021) 

and determine which genetic variants are associated with differences in these measures. We can 

also measure protein levels to discover protein QTLs (Chick et al. 2016; Mirauta et al. 2020; B. 

He et al. 2020; Robins et al. 2021). Protein QTLs tend to overlap with eQTLs, with recent 

studies finding that 58% of protein QTLs in induced pluripotent stem cells (Mirauta et al. 2020), 

59% in liver (B. He et al. 2020), and 75% in brain prefrontal cortex (Robins et al. 2021) were 
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also eQTLs. However, the significant portion of non-overlapping protein QTLs highlight the 

potential role of genetic control of post-transcriptional modifications. 

We can also detect QTLs for epigenomic traits, such as chromatin accessibility (Degner 

et al. 2012), histone modification (McVicker et al. 2013; Kasowski et al. 2013; Waszak et al. 

2015; Grubert et al. 2015), or transcription factor binding (Kasowski et al. 2013; Ding et al. 

2014; Waszak et al. 2015; Tehranchi et al. 2016). These epigenomic QTLs can be used to help 

elucidate the functional effects of eQTL variants, as is discussed in 1.3.2 Genomic Annotations. 

 

1.3 Determining eQTL mechanisms 

1.3.1 Statistical fine-mapping 

 A large challenge in interpreting eQTL effects is determining which variant(s) is/are causal 

for the observed effect. Because of haplotype structure and linkage disequilibrium (LD) between 

variants, multiple variants in a region may show statistically significant associations, even if only 

one is causal, and the lead variant may not always be a causal variant. Adding complexity, recent 

massively parallel reporter assay (MPRA)-based studies have suggested that many associated loci 

(estimates range from 17% to 40% of tested loci) may have multiple functional variants in high 

LD (Abell et al. 2021; Mouri et al. 2021). Statistical fine-mapping approaches attempt to address 

the issues of LD by assigning a causal probability to the lead variant of the association or by 

narrowing the potential causal variants to a small set, though they cannot differentiate between 

multiple causal variants in high LD. 

Statistical fine-mapping approaches often, but not always, use Bayesian statistical 

frameworks to estimate variants’ posterior probabilities of being causal, based on the distribution 
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of associations of all variants in a region. The causal variants identification in associated regions 

(CAVIAR) method jointly models association of all variants in a locus and determines variant sets 

at a certain posterior probability threshold, such that one can be that amount certain that the causal 

variant(s) lie in the variant set (Hormozdiari et al. 2014). This method improved on previous 

methods by allowing the modeling of multiple causal variants without the drawbacks of 

conditioning approaches (Hormozdiari et al. 2014). On the other hand, the causal-variant evidence 

mapping using nonparametric resampling (CaVEMaN) method uses a frequentist approach with 

resampling to estimate each variant’s probability of being causal (Brown et al. 2017). Briefly, 

genetic and expression data are sampled with replacement, and eQTL associations are calculated 

for each new dataset. The assigned probability for each variant is based on the probability that it 

was ranked first through tenth in the resampled data (pi), times the probability that a simulated 

causal variant was ranked first- through tenth-ranked variant in separate simulations (Fi): 

∑ 𝑝𝑖𝐹𝑖
10
𝑖=1 .  

Statistical fine-mapping methods may also incorporate genomic annotations to improve the 

prediction of causal variants. As discussed below, certain types of variants are more likely to cause 

changes in phenotype, so we may choose to prioritize those variants during fine-mapping. For 

example, the deterministic approximation of posteriors (DAP-G) method tests for the enrichment 

of genomic annotations among associated variants, and then re-performs associations and fine-

mapping using the learned importance of the genomic annotations (Wen et al. 2016; Y. Lee et al. 

2018). The enrichment of annotations in the associated variants is performed using an expectation-

maximization algorithm, calculating posterior inclusion probabilities across variants with the 

current estimation of annotation enrichments, then fitting an updated estimation of annotation 

enrichments to the given annotations and resulting probabilities across variants. These estimated 
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enrichment parameters are used to perform variant association testing, assign final posterior 

probabilities per variant, and determine credible sets of potentially causal variants. 

 

1.3.2 Genomic annotations 

 When determining mechanisms of eQTLs, we expect to see eVariants fall into regions that 

can alter gene expression levels. Indeed, it has been well established that lead eQTL variants are 

enriched near the transcription start sites of their eGenes (Stranger et al. 2007; Lappalainen et al. 

2013; GTEx Consortium 2015). eQTLs in GTEx are significantly enriched in a variety of 

regulatory regions from Ensembl Regulatory Build and Variant Effect Predictor, including 

promoters, enhancers, 5' UTR, 3' UTR, and splice sites [FIG 1.3] (Zerbino et al. 2015; McLaren 

et al. 2016; Cunningham et al. 2019; GTEx Consortium 2020). As expected, we also observe an 

enrichment of stop-gain coding and splice site variants. We additionally see an enrichment for 

missense and synonymous coding variants – these would be expected to alter protein function, and 

their direct impact on transcript level is less clear but could be caused by altered RNA binding 

proteins, RNA stability, or splicing patterns. The disruption of post-transcriptional regulation is 

certainly one mechanism that can lead to changes in gene expression but will not be the focus of 

this dissertation. 
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Figure 1.3. eQTL enrichment in genomic annotations. Enrichment of lead eQTL variants in various genomic 

annotations from Ensembl Regulatory Build and Variant Effect Predictor. Adapted from (GTEx Consortium 2020). 

To note, the observed lack of enrichment in “open chromatin” and “transcription factor binding sites” in GTEx 

eQTLs is explained by the fact that this Ensembl Regulatory Build annotation is only for sites that do not already 

fall into one of the other regulatory categories, thus it does not include putative transcription factor binding sites in 

promoters and enhancers (EMBL-EBI 2021). 

 

As many eQTLs lie in noncoding regions of the genome, assigning function to these loci 

requires additional data. For example, chromatin accessibility data (DNase1 hypersensitivity sites 

(DHS) or ATAC-seq) (Boyle et al. 2008; Buenrostro et al. 2013) and histone modification ChIP-

seq peaks (Barski et al. 2007; Heintzman et al. 2009) can highlight which regions of the genome 

contain accessible chromatin or are likely to bind transcription factors. Large consortium efforts 

have catalogued these regulatory features across a wide range of human cell types (ENCODE 

Project Consortium 2012; PsychENCODE Consortium 2018; Roadmap Epigenomics Consortium 

et al. 2015; Stunnenberg, The International Human Epigenome Consortium, and Hirst 2016). 

Multiple eQTL studies have investigated the overlap of lead eQTL variants with these regions, 
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with similar results. Gaffney et al. and Lappalainen et al. both investigated eQTLs discovered in 

lymphoblastoid cell lines (LCLs) and discovered 4-fold and 3.4-fold enrichment in DHS open 

chromatin, ~2-fold and 3.5-fold enrichment in histone marks associated with active promoters, and 

1.4- to 3-fold and 2.5-fold enrichment in histone marks associated with active enhancers, 

respectively (Gaffney et al. 2012; Lappalainen et al. 2013). 

Noncoding eQTL function can be also inferred by integration with other types of QTLs. If 

a variant is associated with changes in gene expression and for example, chromatin accessibility, 

it can be inferred that the locus alters accessibility which then affects gene expression. Multiple 

studies have found that eQTLs, chromatin accessibility QTLs, and histone modification QTLs are 

often overlapping (Kasowski et al. 2013; Waszak et al. 2015; Grubert et al. 2015; McVicker et al. 

2013), with one study estimating that 78% of LCL eQTL effects were mediated by chromatin 

activity (Waszak et al. 2015). This is compatible with GTEx eQTL genomic annotation results, 

which uncovered that approximately 15% of lead eQTL variants fell into 5' UTRs, 3' UTRs, coding 

sequence, or splice sites, leaving 85% of eQTLs with potential transcriptional regulation 

mechanisms [FIG 1.3] (GTEx Consortium 2020). eQTLs have been shown to have greater 

enrichment for transcription factor binding QTLs than other intermediate phenotype QTLs 

(Kilpinen et al. 2013), leading scientists to speculate that  transcription factor binding may be the 

main mediator of regulatory genetic variant effects. 

 

1.3.3 Transcription factor binding 

Common approaches to investigate transcription factor mechanisms of eQTL effects rely 

on transcription factor binding information from transcription factor ChIP-seq and other 

experiments and predicted binding motifs. Determining overlap with transcription factor ChIP-seq 
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peaks (Johnson et al. 2007) is straightforward, and eQTL studies observe overlap enrichment of 

eVariants in peaks for many transcription factors (Gaffney et al. 2012; Lappalainen et al. 2013). 

However, this approach provides limited information on whether the variant might directly perturb 

transcription factor binding. Towards this end, we can use ex vivo allele-specific transcription 

factor binding, in vitro low- or high-throughput transcription factor binding experiments, and 

transcription factor preferred binding motifs to predict if a variant will alter a transcription factor’s 

affinity for the genetic sequence.  

Several studies have experimentally investigated allelic effects of genetic variants on ex 

vivo transcription factor binding. In cases where the assayed cell line is heterozygous for an 

eVariant, we may be able to use allele-specific binding data to assess if either allele is preferentially 

bound by the transcription factor. Several efforts have catalogued allele-specific binding in 

individual transcription factor ChIP-seq experiments (J. Chen et al. 2016; Abramov et al. 2021). 

These analyses have determined thousands of common variants in the population with allelic 

imbalance for hundreds of specific transcription factors, but their causality cannot be assumed. 

Allele-specific transcription factor binding has also been assessed across individuals, discovering 

thousands of genetic variants associated with changes in transcription factor binding for a range of 

factors (Kilpinen et al. 2013; Kasowski et al. 2013; Ding et al. 2014; Waszak et al. 2015; Tehranchi 

et al. 2016). However, due to the high workload burden of ChIP-seq experiments, these association 

studies have only covered a handful of factors, mostly in relatively small sample sizes (<100 

individuals). Interestingly, these studies have found limited overlap between QTL variants and 

transcription factor binding sites. One study of PU.1 binding found that only 33% of PU.1 QTLs 

mapped inside of PU.1 ChIP-seq peaks (Waszak et al. 2015), while another found that less than 

1% of QTLs for five transcription factors fell into the respective transcription factor motif 
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(Tehranchi et al. 2016). These results suggest that in vivo transcription factor binding is likely 

coordinated between multiple factors and determining the causal transcription factor of a QTL 

effect may require more complex modeling. 

Multiple low- and high-throughput methods can assess in vitro transcription factor binding 

affinity to genetic sequences. The electrophoretic mobility shift assay (EMSA) tests binding of 

transcription factors to specific DNA sequences by incubating the two together, then using gel 

electrophoresis to quantify transcription factor binding to the DNA sequence (Garner and Revzin 

1981; Leblanc and Moss 2009). This method can identify sequences that bind transcription factors 

as well as quantify differences in binding between sequences, though it is low-throughput and 

requires hypothesized protein-DNA interactions to begin with. Systematic evolution of ligands by 

exponential enrichment (SELEX) performs multiple rounds of selection for protein-nucleotide 

binding on multiple nucleotide sequences in parallel, thus allowing more binding sites to be 

assayed in a single run (Tuerk and Gold 1990). SELEX-seq has also emerged as a high-throughput 

application of the SELEX method, capable of interrogating hundreds of thousands of DNA 

sequences pooled together in a single experiment (Jolma et al. 2010; Slattery et al. 2011). SELEX 

technologies also have the benefit of multiple rounds of data for quantification of DNA binding 

affinities: each round of selection represents a higher affinity of the transcription factor for the 

DNA sequence, which can be incorporated into biophysical models of transcription factor binding. 

In vitro interrogation cannot capture all of the complex protein-protein interactions and genomic 

context present in a cell’s nucleus, but initial applications of SELEX-seq investigated Hox protein 

complexes and confirmed ex vivo results suggesting complex binding interactions between 

multiple transcription factors (Slattery et al. 2011). 
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Finally, transcription factor affinity for genetic sequence can be predicted in silico using 

preferred transcription factor binding motifs. Determining these motifs generally involves two 

steps: 1) determining which sequences a transcription factor binds to, and 2) discovering common 

patterns in those sequences. Transcription factor binding can be measured ex vivo (Kheradpour 

and Kellis 2014; Kulakovskiy et al. 2018; Mathelier et al. 2016) or in vitro (Kheradpour et al. 

2013; Jolma et al. 2013; Slattery et al. 2011), and sequence affinities can be assessed by simple 

position weight matrices or more complex frameworks, such as biophysical models (Rastogi et al. 

2018) or convolutional neural networks (Zhou and Troyanskaya 2015). Transcription factor motifs 

are enriched to overlap QTLs for gene expression and for intermediate phenotypes (McVicker et 

al. 2013; Kasowski et al. 2013; Waszak et al. 2015), solidifying the hypothesis that they are the 

main mediators of genetic regulatory effects on transcription. 

 

1.3.4 Experimental approaches 

 In addition to using genomic annotations and transcription factor binding information to 

predict which eQTL variants are causal and hypothesize their mechanisms, researchers can also 

use experimental assays to directly profile the effects of a genetic variant on gene expression. A 

common method is the luciferase assay: potentially regulatory genetic sequences are inserted into 

a plasmid upstream of the luciferase gene, which is then added into a cell where expression is 

measured via the fluorescence produced when the mature luciferase enzyme degrades the added 

luciferin substrate (de Wet et al. 1987; Brasier, Tate, and Habener 1989). By comparing 

fluorescence between genetic sequences with each variant allele, we can detect expression 

differences caused by genetic variants.  
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Massively parallel reporter assays (MPRAs) also use a plasmid-based approach, inserting 

putative regulatory sequences into plasmids along with an arbitrary short transcript and unique 

reporter tags (Melnikov et al. 2012). By comparing the ratio of each tag in the expressed RNA and 

the plasmid DNA for thousands of regulatory sequences, researchers can determine which 

sequences drive expression and which genetic variants have allelic effects. MPRAs can assay tens 

of thousands of genetic variants at a time, which while impressive, amounts to only one or two 

variants tested per gene on average (Melnikov et al. 2012; Kheradpour et al. 2013; Abell et al. 

2021). An even higher-throughput MPRA method, survey of regulatory elements (SuRE) reporter 

technology, can assess millions of sequences to determine if any produce promoter activity (van 

Arensbergen et al. 2019). Though all these methods measure expression in human cell nuclei with 

endogenous transcription factors concentrations, the regulatory sequences are present in plasmids, 

not their native genomic context. This means that any effects caused by local and distal sequence 

interactions or chromatin states cannot be assessed. To assess the effects of genetic variants in their 

native genomic context, we can directly edit the genomic sequence using CRISPR-Cas9 

technology (Jinek et al. 2012; Ran et al. 2013). Of course, this method cannot achieve the highly 

parallel throughput of MPRAs, but it has the benefit of querying genetic variant effects in their 

native genomic context. 

 

1.4 Context specificity of eQTLs 

1.4.1 Tissues and cell types 

 Context specificity adds another dimension to genetic variant analysis, as many genetic 

variants may exert their regulatory effects in only some cell types or conditions. For instance, 
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GTEx eQTLs exhibit a bimodal pattern of activity across 49 surveyed tissues, where 

approximately a third of eQTLs are estimated to be active in all or almost all tissues, while ~20% 

are estimated to be active in five or fewer tissues (GTEx Consortium 2020). Multiple methods 

have been developed to aid researchers in determining eQTL sharing across contexts. Multiple 

adaptive shrinkage (mash) was used in the GTEx analysis to quantify sharing of genetic variant 

effects across conditions and then use those patterns to re-compute eQTL significance and effects 

in each tissue (Urbut et al. 2019). Another method, sn-spMF, uses matrix factorization to determine 

patterns of tissue-sharing and tissue-specificity (Y. He et al. 2020). When applied to GTEx eQTLs, 

sn-spMF learned one ubiquitous pattern, eight patterns that represent multiple tissues but not all, 

and 14 patterns that represent a single tissue. They found that 20% of tested eQTLs matched the 

ubiquitous pattern, while 53% matched a tissue-specific pattern – ~12% matched both. 

Interestingly, eQTLs that were active across tissues were enriched for more transcription factors 

in promoters than enhancers, while tissue-specific eQTLs showed the opposite pattern (Y. He et 

al. 2020). Complicating matters farther, some eQTLs appear to have opposite directional effects 

in different tissues, suggesting the presence of multiple causal variants in the locus and/or distinct 

gene regulation mechanisms between tissues (Mizuno and Okada 2019). 

 However, most tissues are heterogeneous compositions of multiple cell types, complicating 

interpretation of tissue eQTLs. Studies have investigated eQTLs in patient-derived cell lines, 

especially lymphoblastoid cell lines, fibroblasts, and induced pluripotent stem cells (Gaffney et al. 

2012; Lappalainen et al. 2013; Gutierrez-Arcelus et al. 2015; GTEx Consortium 2015). However, 

cell lines cannot recapitulate all cell types observed in vivo, and they may be unstable, especially 

after many passages (Oh et al. 2013). Alternatively, cell types can be sorted from heterogeneous 

patient tissue samples. This approach has been mainly applied for blood and immune cell eQTLs 
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(Fairfax et al. 2012; Raj et al. 2014; Naranbhai et al. 2015; Kasela et al. 2017; Kim-Hellmuth et 

al. 2017), notably by the BLUEPRINT epigenome project and the Database of Immune Cell 

Expression, eQTLs, and Epigenomics (DICE) that have assayed eQTLs in a variety of blood and 

immune cell types (L. Chen et al. 2016; Benjamin J. Schmiedel et al. 2018; Chandra et al. 2021). 

However, cell sorting and isolation from other tissues are time and cost intensive, and in some 

cases cell sorting may be impossible if, for example, cell surface markers are not known. Thus, 

these methods have not been widely applied to other cell types (T. Zhang et al. 2018; Young et al. 

2021). Recently, single cell sequencing has also been applied to discover cell type eQTLs in cell 

lines (Sarkar et al. 2019; Cuomo et al. 2020; Jerber et al. 2021; Neavin et al. 2021) and blood and 

immune cells (van der Wijst et al. 2018), though future efforts should be able to apply single cell 

sequencing to additional tissues to discover eQTLs for adequately abundant cell types (Mandric et 

al. 2020). 

 Cell type specificity of eQTLs can also be inferred from tissue bulk sequencing data in 

silico. Briefly, cell type composition estimates are calculated based on sample gene expression, 

and these estimates can be included in an interaction model of genotype and cell type composition 

on gene expression: 

𝐸 ~ 𝑢 + 𝛽𝐺 ∗ 𝐺 + 𝛽𝐶 ∗ 𝐶 + 𝛽𝐺𝑥𝐶 ∗ 𝐺 ∗ 𝐶 + 𝑐𝑜𝑣 

where E is eGene expression, G is eVariant genotype, and C is cell type composition estimate. The 

𝛽𝐺𝑥𝐶 term represents the interaction of cell type and genotype on gene expression and when 

significantly different from zero, implies that allelic effects differ between cell types. These 

methods may use a set of marker genes (Westra et al. 2015; Patel et al. 2021) or more complex 

algorithms (Aran, Hu, and Butte 2017; Kim-Hellmuth et al. 2020; Aguirre-Gamboa et al. 2020; 

Park et al. 2021) to estimate a cell type’s abundance in gene expression data. Kim-Hellmuth et al. 
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discovered cell-type-interacting eQTLs in GTEx tissues using seven cell type estimates from 

XCell (Aran, Hu, and Butte 2017; Kim-Hellmuth et al. 2020). Interestingly, cell-type-interacting 

eQTLs were more tissue-specific than general eQTLs, as well as being predictive of the original 

eQTL for the eGene being tissue-specific (Kim-Hellmuth et al. 2020). 

 

1.4.2 Environmental conditions and immune stimulation 

eQTL effects may also vary within the same cell type across environmental conditions. 

eQTL activity in various conditions can be investigated to discover context-specific and context-

variable eQTL effects, including clinical phenotypes (Knowles et al. 2017; Taylor et al. 2018) and 

in vitro treatments (Maranville et al. 2011; Smirnov et al. 2012; Kariuki et al. 2016; Moyerbrailean 

et al. 2016; Knowles et al. 2018; Findley et al. 2019, 2021). These approaches may detect eQTLs 

and then compare between conditions, or they may use genotype-environment interaction models 

to discover eQTLs that vary across contexts. One major advance for the discovery of gene-by-

environment interactions on gene expression was the use of allele-specific expression data. Since 

allele-specific expression is measured within an individual, confounding genetic background and 

environmental effects are controlled for. 

Many studies have investigated immune response eQTLs, or those whose effects change 

when immune or immune-responsive cells are treated with viral (M. N. Lee et al. 2014; Randolph 

et al. 2020), microbial (Barreiro et al. 2012; M. N. Lee et al. 2014; Fairfax et al. 2014; Kim et al. 

2014; Kim-Hellmuth et al. 2017; Alasoo et al. 2018; Brandt, Kim-Hellmuth, et al. 2020; Nédélec 

et al. 2016), signaling (M. N. Lee et al. 2014; Fairfax et al. 2014; Alasoo et al. 2018), or other 

stimuli. These studies have found many eQTLs that are not detectable at baseline, non-stimulated 

conditions, highlighting the importance of context specificity in eQTL effects. Many of these 



20 

 

 

effects have also been shown to be time-dependent: for instance, Kim-Hellmuth et al. measured 

gene expression at three timepoints and discovered activating and suppressive immune response 

eQTLs with early transient, late, and prolonged effects (Kim-Hellmuth et al. 2017). They found 

that prolonged immune response eQTLs tended to show congruent gene expression (i.e., higher 

gene expression at the time points with a significant eQTL), whereas early transient and late 

immune response eQTLs were split between congruent and non-congruent gene expression, 

suggesting that higher gene expression was not directly driving the observed eQTL. Similarly, 

Gutierrez-Arcelus et al. investigated allelic gene expression across eight time points of memory 

CD4+ T cell stimulation and found examples of both positive and negative correlation between 

gene expression and allelic imbalance (Gutierrez-Arcelus et al. 2020). These results suggest that 

context-specific genetic effects on gene expression involve complex regulation and cannot be 

explained by binary gene expression effects. 

 

1.5 Interpreting GWAS loci 

Determining molecular mechanisms of GWAS loci faces many of the same challenges as 

eQTLs, namely fine-mapping, functional effects, and context specificity. eQTLs can be used to 

understand one layer of the GWAS loci’s molecular mechanism, as we can infer that the genetic 

effect on a GWAS trait is mediated by an eGene’s expression if the GWAS trait and eQTL share 

a genetic signal. Colocalization approaches determine whether GWAS and eQTL signals are 

consistent with (a) shared causal variant(s), or if they are more likely to be caused by separate 

signals. These approaches generally examine all possible causal variant configurations in a given 

region and determine their posterior probabilities based on GWAS and eQTL summary statistics 

as well as prior signal sharing estimates (Giambartolomei et al. 2014; Hormozdiari et al. 2016). 
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The ENLOC method additionally estimates prior signal sharing probability from the genome-wide 

enrichment of eQTLs in GWAS loci (Wen, Pique-Regi, and Luca 2017), which offers a solution 

for the practical problems with prior selection when using the coloc method (Wallace 2020). 

Colocalization has led to candidate molecular mechanisms of many GWAS loci, especially 

when combined with experimental and functional information. For instance, Barbeira et al. 

investigated the colocalization of 87 GWAS traits with GTEx eQTLs and splicing QTLs and 

identified target genes for 47% of investigated GWAS loci (Barbeira et al. 2021). However, due 

to pleiotropy, a single GWAS locus may colocalize with eQTLs for multiple genes, complicating 

interpretation of the relevant molecular mechanisms. Additionally, even with eQTLs and splicing 

QTLs measured in 49 tissues, 53% of GWAS loci remained without a colocalized signal (Barbeira 

et al. 2021), perhaps highlighting the need for eQTLs in a wider variety of contexts or suggesting 

that many GWAS loci have molecular mechanisms that do not involve transcriptional regulation. 

On the first point, cell-type interacting eQTLs have been shown to colocalize with GWAS loci in 

cases where tissue-wide eQTLs do not (Kim-Hellmuth et al. 2020), and gene-by-environment 

interactions are enriched for target GWAS genes (Moyerbrailean et al. 2016; Findley et al. 2021). 

These results suggest that understanding genetic regulation in additional contexts may be an 

important key to elucidating functions of GWAS loci. 
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Chapter 2: Gene expression and genetic regulation across tissues1 

 

2.1 Introduction 

High-throughput sequencing has enabled the study of genetics and gene expression across 

large populations of individuals. Microarrays and exome sequencing have given way to genome 

sequencing, allowing researchers to investigate the extensive noncoding regions of the genome, 

while RNA sequencing allows for the study of gene expression across tissues and environmental 

conditions. Using these data, two important methods have arisen to link genetic variation in the 

population with phenotype. Expression quantitative trait loci (eQTLs) associate variants with 

changes in gene expression in specific tissues or conditions, while genome wide association studies 

(GWASs) associate genetic variants in the human population with changes in disease risk or 

phenotype. 

Recently, the Genotype Tissue Expression (GTEx) Consortium has identified thousands of 

cis-eQTLs in the human population that affect gene expression across 49 tissues (GTEx 

Consortium 2015, 2020; GTEx Consortium et al. 2017). These variants are enriched in cis-

regulatory elements (CREs) such as promoters and enhancers, implying that many eQTLs impact 

gene regulation via non-coding mechanisms. We observe that GTEx eQTLs exhibit a bimodal 

 

 

1 Portions of this chapter are adapted from GTEx Consortium. (2020). The GTEx Consortium atlas of genetic 

regulatory effects across human tissues. Science. 2020;369: 1318–1330. 

 

Genetic, gene expression, eQTL, fine-mapping, and GWAS colocalization data used in these analyses were provided 

by the GTEx Consortium. Pejman Mohammadi performed the non-monotonic cross-tissue model fitting. All 

remaining analyses were performed by Elise Flynn. 

 



23 

 

 

pattern of activity across the 49 surveyed tissues, where over a third of eQTLs are estimated to be 

active in all or almost all tissues, while another third are estimated to be active in five or fewer 

tissues (GTEx Consortium 2020). Though this large portion of eQTLs are ubiquitously active, they 

may display variable effect sizes across tissues; the reasons for this variability have not yet been 

investigated. 

Similarly to eQTLs, many discovered GWAS loci lie in noncoding regions of the genome. 

However, adding another layer of complexity to the interpretation of GWAS loci, the causal tissues 

and cell types of complex diseases and traits are not always known (Cano-Gamez and Trynka 

2020). While biological and medical research of specific diseases can shed light on the causal 

tissues of the disease etiology, we can also use colocalization with eQTLs to pinpoint cell types 

and conditions where the genetic variants may be regulating gene expression. This can help 

determine the biological mechanisms by which genetic variants affect gene expression and 

subsequent disease risk. 

In this chapter, we investigate cross-tissue patterns of eQTLs and gene expression in the 

GTEx v8 dataset (GTEx Consortium 2020). First, we determined how eQTL effect size and eGene 

expression are related across tissues, finding cases of both increasing and decreasing correlations 

between the two measures. Next, we discovered non-monotonic relationships between eQTL effect 

size and eGene expression, highlighting several examples. Finally, we investigated GWAS genes 

to determine if putative causal tissues show specific patterns of gene expression or eQTL effects, 

observing higher magnitudes of both measurements in relevant tissues. These analyses highlight 

the complex relationships between eQTL effects and gene expression across tissues, emphasizing 

the need for further research into the tissue specificity of regulatory variant effects. 
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2.2 Materials and Methods 

2.2.1 Allelic fold change calculation 

We used the log2 allelic fold change statistic (aFC) to quantify variant effects on gene 

expression (Mohammadi et al. 2017b). This measurement should be stable across gene expression 

levels and is calculated from population-level data with the basic formula: 

𝑎𝐹𝐶 =  𝑙𝑜𝑔2 (
𝛽1

𝛽𝑜
+ 1)    (Eq 2.1) 

where 𝝱1 is the slope and 𝝱0 is the intercept of a linear model fit to the gene expression and 

alternative allele dosage across individuals. For this analysis, we did not include tissue-specific 

covariates in the linear model. 

We chose to focus our analyses on one “top” eVariant per eGene across tissues. For each 

eGene, we looked at significant eQTLs across all tissues and selected the eVariant with the largest 

aFC effect size. This eVariant became known as the “top eVariant,” and the tissue that it was found 

in (that with the largest significant effect size) was called the “discovery tissue.” For each top 

eVariant, we calculated an effect size for the effect of that eVariant on eGene expression in each 

GTEx tissue. To enable discovery of cross-tissue patterns, we only included eQTLs where at least 

half of the GTEx tissues had median expression greater than zero TPM in further analysis. 

 

2.2.2 Cross-tissue aFC and expression correlation 

To examine if there were relationships between eQTL effect size and eGene expression level, we 

performed cross-tissue Spearman correlations. For each top eVariant, we correlated tissue aFC 

with eGene median transcripts per million (TPM) for all tissues that had a median TPM greater 

than zero. In order to make the sign of the correlation coefficient interpretable for both positive 
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and negative effect size eQTLs, we flipped the sign of the effect sizes (multiplied by −1) if the 

discovery tissue eQTL effect size was negative. This ensured that the discovery effect size was 

always labeled as positive and correlations could be interpreted the same way for both positive 

and negative effect size eQTLs. 

To keep our analysis straightforward, we chose to focus on eQTLs where most tissues 

showed effects in the same direction. Thus, we filtered out eQTL correlations that had “unclear” 

directions based on any of the following conditions: 1) over half of the tissue effect sizes were in 

the opposite direction of the discovery tissue effect; 2) any tissue effect size was in the opposite 

direction of the discovery tissue effect and had a magnitude of at least half the discovery tissue 

magnitude; or 3) the discovery effect size was 6.64 or higher, which is the maximum possible 

calculated aFC and often corresponds to eQTLs with low allele frequency and unstable effect sizes 

[FIG 2.1C]. By filtering “unclear” direction correlations and transforming effect sizes such that 

the discovery tissue effect was always positive, positive correlations could be interpreted as an 

increase in effect size magnitude with increasing eGene expression [FIG 2.1B], and negative 

correlations could be interpreted as a decrease in effect size magnitude with increasing eGene 

expression [FIG 2.1A]. 

 

2.2.3 Non-monotonic cross-tissue models 

 We next examined non-monotonic relationships between eQTL effect size and eGene 

expression across tissues. We fit flat (M0), linear (M1), and normal bell-curve (M2) models across 

tissues to quantile-normalized eQTL aFC effect sizes and log10 median eGene TPM for our top 

eQTLs. The M0 model was based on the average eQTL aFC across tissues, and the M1 model was 

based on a linear regression of aFC vs. log10(TPM) values across tissues. The M2 model was fit 
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using a non-linear least squares method for a scaled version of the normal distribution probability 

density function: 

𝑓(𝑥)  = 𝑎 ∗  
1

𝜎√2𝛱
𝑒−

1

2
(

𝑥−𝜇

𝜎
)

2

+ 𝑏     (Eq 2.2) 

resulting in mu (𝝁), sigma (𝝈), scale (a), and intercept (b) parameters.  

The optimal model was chosen using Bayesian information criteria (BIC). This method 

balances the fact that the addition of parameters can lead to overfitting by penalizing the number 

of parameters versus the resulting residuals. We calculated BIC for each model with the following 

equation: 

𝐵𝐼𝐶 =  𝑛 ∗ 𝑙𝑛(𝑣𝑎𝑟(𝑟, 1))  +  𝑘 ∗ 𝑙𝑛(𝑛)   (Eq 2.3) 

where n was the number of datapoints, r was the residuals of real data from the model, and k was 

the number of parameters fit by each model.  

The best model was chosen in a stepwise fashion. If M2 had the lowest BIC, its significance 

was tested by finding the standard deviation of 20 bootstrapped M2 BIC calculations, then dividing 

the differences between M2/M0 and M2/M1 by this standard deviation. If the standardized 

differences versus both M0 and M1 were greater than one, M2 was chosen as the best model. If 

those criteria were not achieved and M1 was lower than M0, the significance of M1 vs M0 was 

tested in a similar manner: dividing the difference in BICs by the standard deviation of M1 BIC 

based on bootstrapping and requiring that number to be greater than one. In all other cases, M0 

was chosen as the best model. 
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2.2.4 Allele-specific expression analysis 

 For eQTLs that were determined to fit the M2 model, we examined individual allele-

specific expression (ASE) effect sizes to confirm the observed eQTL effect patterns. ASE can be 

calculated in heterozygous individual using the general equation: 

  𝐴𝑆𝐸 𝑎𝐹𝐶 =  𝑙𝑜𝑔2 (
𝐸𝐴+𝑐

𝐸𝑅+𝑐
)     (Eq 2.4) 

where EA/ER is measured expression of the alternative and reference alleles, respectively, and c is 

the pseudocount value to account for cases of mono-allelic expression. ASE hypothetically 

controls for many confounding factors, since expression of each allele is measured in the same 

individual. For our ASE calculations, we used RNA-seq reads aligned with allele-specific 

correction by WASP (van de Geijn et al. 2015). Individual genotypes were phased using 

population-based and read-backed phasing with Phaser, which allowed us to phase eQTL variants 

with expressed coding variant genotypes and calqculate ASE for each selected eQTL variant and 

associated gene (Castel et al. 2016). We used a pseudocount of one and included samples 

heterozygous for the eQTL variant where at least twenty RNA-seq reads aligned to a phased and 

measurable coding variant. We then calculated the median ASE per tissue across all individuals 

heterozygous for the eQTL variant. We included tissues with at least ten individuals in our further 

analyses, including visual examination of cross-tissue relationships between eQTL ASE effect size 

and log10(eGene TPM) expression. 

 We next examined within-tissue eQTL ASE-based effect sizes across individuals within 

each tissue. Our motivation was to determine if within-tissue slopes fit the cross-tissue pattern we 

observed, such that tissues at the rising side of the bell curve should have positive slopes, while 

tissues on the falling side should have negative slopes. We used two approaches to determine 
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within tissue slopes, one parametric and one non-parametric. For our parametric method, we fit a 

linear model to ASE effect sizes versus log10(eGene TPM) per tissue across all individuals with at 

least ten reads aligned to the coding SNP. For our non-parametric method, we determined the 

median ASE of the lower and higher halves of individuals based on log10(eGene TPM), as well as 

the median log10(eGene TPM) of each half. We then calculated the line between the two median 

points. For each method, we then compared the calculated slopes across tissues to determine if 

tissues on the rising and falling sides had positive and negative slopes, respectively. We formalized 

this comparison with a Wilcoxon rank sum test of the two sets of slopes. 

 

2.2.5 eGene and eVariant properties 

 To get a deeper understanding of expression-correlated eQTLs, we examined properties of 

their associated eGenes and eVariants. We fine-mapped all top eQTLs and selected those that had 

a single top CaVEMaN fine-mapped eVariant (Brown et al. 2017). We gathered information on 

median eGene TPM, median eQTL effect size, and the eVariant’s GTEx minor allele frequency 

across tissues for each top eQTL, and we compared these statistics between correlated and non-

correlated eQTLs using Wilcoxon rank sum tests.  We then overlapped the fine-mapped eVariants 

with transcription factor ChIP-seq peaks and DNase-seq peaks from Ensembl Regulatory Build 

v91 (Cunningham et al. 2019). We compared overlaps between fine-mapped eVariants for 

correlated and non-correlated eQTLs using Fisher’s exact tests and Wilcoxon rank sum tests. 

 

2.2.6 Determining GWAS genes 

In order to study the cross-tissue eQTL effect size and eGene expression patterns in GWAS 

loci, we linked genes to GWAS loci using colocalization and nearest gene methods. Colocalization 
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between GWAS loci and GTEx tissue eQTLs was performed using ENLOC, with colocalization 

defined by a regional conditional probability greater (rcp) than 0.5 (Barbeira et al. 2021; Wen, 

Pique-Regi, and Luca 2017). For each colocalized GWAS/eQTL locus, we determined the nearest 

protein-coding or lncRNA gene based on absolute distance of the lead colocalizing variant to a 

gene’s transcription start site (TSS). Because GWAS signals were colocalized with eQTLs from 

all 49 tissues, many colocalized eGenes and nearest genes appeared multiple times for the same 

GWAS trait with different lead SNPs. In order to remove this redundancy, we removed duplicated 

colocalized genes and nearest genes for each GWAS trait by first choosing one colocalized eGene 

with the highest rcp per each nearest gene-GWAS trait pair, and then choosing one nearest gene 

with the closest TSS per each colocalized eGene-GWAS trait pair. This resulted in two gene sets, 

1,110 colocalized eGenes and 1,096 nearest genes, with each gene associated with one or more 

GWAS traits. The union of these gene sets is referred to as GWAS genes. 

 

2.2.7 Properties of GWAS genes 

We next explored the tissue properties of colocalized and nearest GWAS genes, with the 

hypothesis that tissues with a potential causal role in disease should be enriched for high eQTL 

effect size, high gene expression, or both. In order to achieve a fair comparison of tissues that 

differ in their overall expression profiles or regulatory effects, we used an additional genome-wide 

background set of tissue expression and eQTL effects in all protein-coding and lincRNA genes. 

First, we determined the tissue with the highest significant eQTL effect size (absolute aFC) 

and the tissue with the maximum median expression (transcripts per million, TPM) for each gene 

in the GWAS gene sets and the background gene set. Next, we analyzed properties of GWAS 
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genes in GWAS-trait-relevant tissues. We calculated tissue aFC and expression ranks of tissue t 

for gene i using rank statistics: 

aFC rank statistic: rit = rank(|ait| in |Ai|)/Ni  

expression rank statistic: rit = rank(eit in Ei)/Ni   

These were intended to normalize ranks based on N, the number of tissues that were not NA for 

the given measurement. Tissues that had a median TPM of 0 were assigned an expression rank 

statistic of 1/N; all other expression and aFC measurements were assigned a rank statistic of 

rank/N, with a higher rank statistic corresponding to a higher relative aFC or expression level. aFC 

rank statistics were calculated for the top eVariant for the eGene, as described in Allelic fold 

change calculation. 

For a subset of GWAS traits with less ambiguous tissue of origin, we assigned a tissue 

group (blood, brain, immune, or metabolic) to the trait, and we then performed literature research 

to select hypothesized trait-relevant tissues for each trait [TABLE 2.1]. We examined the 

distributions of aFC and expression rank statistics for trait-relevant tissues for colocalized eGenes 

and nearest genes, with the hypothesis that an eQTL should have high effect size or eGene 

expression in tissues relevant to causal disease mechanisms. To account for the tissue-specific aFC 

and gene expression patterns (e.g. blood has low expression levels for most genes), we performed 

paired Wilcoxon signed-rank tests between trait-relevant tissue rank statistics for colocalized and 

nearest genes and tissue-specific null rank statistics (the median rank statistic of a given tissue in 

our background gene set). 
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2.3 Results 

2.3.1 Cross-tissue correlation of eQTL effects and eGene expression 

We set out to determine if eQTL effect sizes across tissues correlated with eGene 

expression. Of those eQTLs where at least half of the GTEx tissues had a non-zero median eGene 

expression, eQTL effect size and eGene expression level were significantly correlated across 

tissues for 2,637 top eQTLs (5% Benjamini-Hochberg FDR; N=26,499) (FIG 2.1D). Of these, 666 

are filtered out because of an unclear correlation direction. The remaining correlations are split 

among positive correlations with a positive discovery tissue effect size (n=400), positive 

correlations with a negative discovery tissue effect size (n=634), negative correlations with a 

positive discovery tissue effect size (n=526), and negative correlations with a negative discovery 

tissue effect size (n=411) (FIG 2.1D). The sign of the discovery tissue effect size represents 

whether the alternative allele of the eVariant is associated with an increase or decrease in eGene 

expression. Positive correlations represent increasing effect size magnitude with increasing eGene 

expression, and negative correlations represent decreasing effect size magnitude with increasing 

eGene expression. These findings demonstrate that regulation of eQTL effects is complex and 

cannot be explained by straightforward on versus off expression-based mechanisms. 
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Figure 2.1: Cross-tissue eGene expression-eQTL effect correlations. A-C) Cartoon examples of negative (A), 

positive (B), and uncertain (C) correlation directions are shown. Each dot is a tissue and eQTL effect size is plotted 

versus median eGene expression. D) Top eQTLs with a significant correlation between eQTL effect size and median 

cis-eGene expression across tissues (5% Benjamini-Hochberg FDR; N=26,499). 
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2.3.2 Properties of expression-correlated eQTLs 

 Next, we examined gene and variant properties of expression-correlated eQTLs. We found 

that correlated eQTLs had higher eGene expression than non-correlated eQTLs (difference = 0.43 

TPM, Wilcoxon p = 1.6x10-13) [FIG 2.2A,D]. This could potentially be explained by the expression 

levels needed to detect accurate eQTL effects across multiple tissues: if a gene is very lowly 

expressed across tissues, we would have limited power to detect changes in expression or eQTL 

effects. However, we also found that negatively correlated eQTLs had higher eGene expression 

than positively correlated eQTLs (median difference = 2.95 TPM, Wilcoxon p = 1.3x10-130) [FIG 

2.2A,D]. This pattern suggests that eQTL activity may tend to increase and then decrease as eGene 

expression increases. 

We then examined properties of fine-mapped eQTL variants and found that correlated 

eQTLs had eVariants with higher absolute median effect sizes and higher minor allele frequencies 

(MAF) than non-correlated eQTLs (differences = 0.11 aFC, 0.07 MAF, Wilcoxon ps = 7.6x10-294, 

4.4x10-87, respectively) [FIG 2.2B,C,D]. Similarly to our findings of higher eGene expression in 

correlated eQTLs, this could be related to power issues of detecting changes in eQTL effects across 

tissues. We also found that positively correlated eVariants had larger effect sizes and were more 

common than negatively correlated eVariants (differences = 0.05 aFC, 0.05 MAF, Wilcoxon ps = 

2.7x10-12, 2.7x10-15) [FIG2.2B,C,D]. 
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Figure 2.2: eGene, eQTL, and eVariant features of cross-tissue correlated and uncorrelated eQTLs. A) 

Histogram of the median of median per-tissue eGene expression across tissues with greater than 0 TPM per eQTL 

gene. B) Histogram of median effect size across tissues per eQTL. C) Histogram of median minor allele frequency 

across tissues per eQTL variant. D) Summary statistics table of medians and Wilcoxon rank sum tests between 

correlation types for the listed eQTL features. Wilcoxon tests were run vs. eQTLs with no significant correlation, 

except for the last row of tests of positively-correlated eQTLs vs. negatively-correlated eQTLs. 

 

We next looked at transcription factor binding and chromatin accessibility annotations to 

understand the mechanisms and context variability of correlated eQTLs. We found that 

significantly correlated eQTLs were enriched for transcription factor ChIP-seq and DNase I 

hypersensitivity site (DHS) peaks compared to non-significant eQTLs (TFBS OR = 1.69, Fisher’s 

p = 5.0x10-15; DHS OR = 1.57, Fisher’s p=3.0x10-11) [FIG 2.3A]. When correlated eQTLs were 

split by direction, negatively correlated eQTLs had higher enrichment than positively correlated 

eQTLs (TFBS ORs = 2.06, 1.31, Fisher’s ps = 1.9x10-15, 4.6x10-3; DHS ORs = 2.07, 1.57, Fisher’s 

ps = 8.2x10-16, 0.29, for negative and positive direction eQTLs, respectively). Out of all eQTLs 

that overlapped at least one TFBS or DHS, significantly correlated eQTLs overlapped sites in more 

ENCODE cell types/tissues than non-significantly correlated eQTLs (Wilcoxon ps = 5.2x10-3, 

2.1x10-4) [FIG 2.3B], implying that surrounding regions of correlated eQTLs are accessible in 

more cell types than non-correlated eQTLs. 
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Figure 2.3: TF binding of cross-tissue correlated and uncorrelated eQTLs. Left) We examined annotations of 

fine-mapped eQTLs that had a single top CaVEMaN finemapped variant (e.g. no perfect linkage). Significantly 

correlated eQTLs were enriched for TFBS and DHS compared to non-significant eQTLs (TFBS OR=1.6, Fisher’s 

p=7.2e-15; DNase OR=1.3, Fisher’s p=6.5e-12). Negatively-correlated eQTLs were more significantly enriched than 

positively-correlated eQTLs. Right) Out of all eQTLs that overlapped at least one TFBS or DHS, significantly 

correlated eQTLs overlapped sites in more ENCODE cell types/tissues than non-significantly correlated eQTLs 

(Wilcoxon p=5.2e-3, 2.1e-4), implying that surrounding regions of correlated eQTLs are accessible in more cell types 

than non-significantly correlated eQTLs. 

 

2.3.3 Non-monotonic relationships of eQTL effects and  eGene expression 

 Given that we discovered eQTLs with both increasing and decreasing effects with 

increasing eGene expression, we next investigated if any eQTLs had non-monotonic relationships 

with eGene expression. To do this, we fit flat, linear, and bell-curve models to normalized eQTL 

aFCs and log10(eGene TPMs) across tissues for our top eQTLs. We found 1,043 eQTLs that best 

fit the linear model and 233 eQTLs that best fit the bell-curve model of the three models, based on 

Bayesian information criteria [FIG 2.4]. We found that 95.8% of linear eQTLs and 68.7% of bell 

curve eQTLs were also discovered by correlation, though 31.3% of bell curve eQTLs were not 

previously discovered. 
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Figure 2.4:  Non-monotonic model of cross-tissue eGene expression-eQTL effect. Top eQTLs plotted by best 

model. Bars are colored by their Spearman correlation status/direction. 1,043 eQTLs best fit the linear model (1) and 

233 eQTLs that best fit the bell-curve model (2). 22,249 eQTLs that fit model 0 and were not significant in the 

Spearman correlation analysis are not shown. 

 

 We next examined eGene and eQTL properties of linear and bell curve eQTLs. Similarly 

to our analysis of correlated eQTLs, we found that linear eQTLs had higher effect sizes and higher 

minor allele frequencies than eQTLs that fit neither model [FIG 2.5]. Interestingly, bell curve 

eQTLs had even higher effect sizes and minor allele frequencies. We also observed that linear 

eQTLs had lower eGene expression than eQTLs that fit neither model, while bell curve eQTLs 

had even lower eGene expression [FIG 2.5]. While the effect size and allele frequency findings 
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could be explained by increasing magnitudes needed to discover variability with each more 

complex model, the decreased expression levels do not have a clear explanation. 

 

 

Figure 2.5:  eGene, eQTL, and eVariant features of eQTLs by model. Density histograms of various features of 

top eQTLs are plotted per model (0 = flat, 1 = linear, 2 = bell-curve). Medians are plotted as vertical black lines. 

 

We next visually inspected data from bell curve eQTL examples, including allele specific 

expression (ASE)-based effect sizes. ASE-based effect sizes averaged across individuals 
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heterozygous for the lead eQTL variant and population-based effect sizes correlate but are not 

identical, with correlation rhos ranging from 0.75 to 0.84 in GTEx tissues (GTEx Consortium 

2020). We visually inspected scatterplots of ASE-based aFC vs. median tissue TPM to see if the 

bell curve patterns were still reasonable [FIG 2C]. However, ASE-based effect sizes were not 

available in all tissues, especially those with lower eGene expression. We also calculated within-

tissue eQTL-expression slopes based on ASE aFC and log10(eGene TPM). Three eQTL examples 

where within-tissue slopes visually match the bell curve model are displayed in Figure 2. In these 

three eQTLs, tissues with lower expression appear to have increasing eQTL effects with increasing 

expression, while tissues with higher expression appear to have decreasing eQTL effects. These 

examples demonstrate that complex relationships between eQTL effects and eGene expression 

exist, though true non-monotonic relationships between the two measures are difficult to reliably 

detect with this limited number of datapoints. 
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Figure 2.6: Examples of non-monotonic relationships between eGene expression and eQTL effect sizes. Cross-

tissue data for eQTLs for three genes (ASB16, GTF2A1L, CBLN3). First column: Quantile-normalized aFC vs. 

log10(eGene TPM) across tissues, plotted with the best fit M2 model in red. Second column: Non-normalized aFC vs. 

log10(eGene TPM) across tissues. Third column: Allele-specific-expression-based aFC vs. log10(eGene TPM) in 

eQTL-variant-heterozygous individuals across tissues. Fourth column: Within-tissue slopes of Allele-specific-

expression-based aFC vs. log10(eGene TPM) across eQTL-variant-heterozygous individuals. 

 

2.3.4 Patterns of GWAS genes across tissues 

We next investigated cross-tissue gene expression and eQTL patterns of genes associated 

with GWAS loci to try to gain insight into biological mechanisms of phenotype and disease. We 

analyzed data from 73 GWASs with previously identified colocalization between GWAS signals 

and GTEx eQTLs, and we identified 2,157 GWAS-eQTL ENLOC loci, corresponding to 1,110 

colocalized genes and 42 GWAS traits. We also looked at the location of these loci and identified 
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1,096 nearest genes. 697 of the identified loci had different colocalized and nearest genes, and the 

union of all colocalized and nearest genes is referred to as “GWAS genes.”  

We next examined eQTL effects and eGene expression for GWAS genes versus all protein-

coding and lncRNA genes. For each gene, we determined the discovery tissue of its top eQTL as 

well as the tissue with the highest gene expression, and we counted how many times each tissue 

met these criteria per gene set [FIG 2.7]. We saw some interesting patterns emerge for top eQTLs 

and max gene expression as well as between GWAS genes and all genes. For instance, we observed 

that testis had the largest number of all genes with the highest expression or as the discovery tissue, 

but the magnitude of its lead was decreased or eliminated when investigating only GWAS genes. 

We also saw that blood was often the discovery tissue of top eQTLs for all genes and GWAS 

genes, while blood and LCLs were often the tissues with the highest gene expression for GWAS 

genes. Tissues that are often discovery tissues of top eQTL are likely skewed towards tissues with 

larger sample sizes, as these tissues have a larger number of significant eQTLs. The causes of 

tissues with frequent high gene expression are more difficult to interpret. However, tissues that 

have high expression or large eQTL effect sizes for GWAS genes may be more relevant to the 

disease etiology of the tested GWAS traits. We investigated this hypothesis further by analyzing 

which tissues showed high gene expression and large eQTL effects sizes for different categories 

of GWAS traits. 
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Figure 2.7: Properties of GWAS genes. Left) GTEx tissues plotted by number of GWAS genes with the highest 

gene expression vs. all genes with the highest gene expression. Right) GTEx tissues plotted by number of GWAS 

genes with the top eQTL vs. all genes with the top eQTL. Black lines plot expected number of GWAS genes based 

on number of all genes. 
 

For each GWAS trait, we determined which tissue group (blood, brain, immune, or 

metabolic) may exhibit primary effects that lead to the disease’s symptoms, and we analyzed where 

these tissues ranked in terms of gene expression and eQTL effects for GWAS genes associated 

with each trait. Since tissues are not evenly distributed across all genes, we compared our GWAS 

gene statistics to the distribution across all genes [FIG 2.8]. We found that GWAS genes had 

significantly higher effect sizes and expressions levels in the trait-relevant tissues than expected 

based on tissue median ranks in the background gene set (Paired Wilcoxon sign test, p < 10-3) 

[TABLE 2.1]. These results suggest that both eQTL effect size and expression level carry relevant 

information about the tissue that mediates downstream GWAS phenotype effects of genetic 

variants. 
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Figure 2.8: Tissue rank statistics of effect size and expression for GWAS and all genes. In GWAS Genes plots 

(A, B, D, E), each dot represents the rank statistic of a tissue in a GWAS gene. Tissue-gene pairs are plotted for 

colocalized genes (A, D) and nearest genes (B, E) for aFC (A, B) and expression (D, E) rank statistics. In All Genes 

plots, aFC (C) and expression (F) rank statistics are plotted for all protein-coding and lncRNA genes, for reference. 

 

Table 2.1: aFC and expression rank statistics of GWAS genes vs. all genes. 

 

 

2.4 Discussion 

We investigated cross-tissue patterns of eQTL effects and gene expression and discovered 

complex regulatory patterns that suggest that the relationship between eQTL effects and gene 

expression is non-trivial. When analyzing the relationship of eQTL effect size and eGene 

expression across tissues, we found both increasing and decreasing correlations in roughly equal 

amounts (increasing = 1034, decreasing = 937), totaling to 7.4% of all tested eQTLs. These 

correlated eQTLs had higher eQTL effect magnitudes and larger minor allele frequencies than 
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non-correlated eQTLs, likely reflective of their wider variability and higher power to detect 

patterns, and we also observed that positively-correlated eQTLs had lower eGene expression than 

negatively-correlated eQTLs, which may have biological relevance. We also found 233 eQTLs 

with non-monotonic relationships between eQTL effect size and eGene expression, highlighting 

that complex regulatory relationship between eQTLs and eGene expression. Finally, we 

investigated GWAS trait genes as defined by nearest genes and colocalized eGenes to GWAS loci. 

We found that GWAS genes had higher gene expression and larger eQTL effects in the putative 

biologically relevant tissues for the GWAS trait. 

One interesting finding was the presence of both positively- and negatively-correlated 

eQTLs, which confirm previous reports of both positive and negative relationships between eGene 

expression and eQTL effects under immune stimulation (Kim-Hellmuth et al. 2017; Gutierrez-

Arcelus et al. 2020). While both correlation directions had higher eQTL effect magnitudes and 

larger minor allele frequencies than non-correlated eQTLs, we found that positively-correlated 

eQTLs had lower eGene expression than negatively-correlated eQTLs. Given the discovery of 

many non-monotonic relationships between eQTL effects and eGene expression levels, these 

results are consistent with the idea that many genes may show increasing and then decreasing 

eQTL effects across the entire gene expression spectrum, but we are only able to observe single 

correlation directions because the measured eGene expression does not encompass the entire 

range. The non-monotonic pattern could be explained by eQTL detection and expression 

saturation: at very low gene expression levels, we would not have power to detect reliably measure 

the gene, thus we would not have power to observe any eQTL effects. As gene expression 

increases, we would be able to reliably measure eGene expression and detect eQTL effects. 

However, at very high gene expression levels, perhaps cells are maximizing transcription from 
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both alleles, thus there is no longer an observable eQTL as both alleles are being maximally 

expressed. This theory would result in increasing eQTL effects from low to medium eGene 

expression levels and decreasing eQTL effects from medium to high eGene expression levels and 

is explored more in Chapter 3. However, we likely were underpowered to accurately detect non-

monotonic relationships across only 49 tissues, thus this hypothesis remains highly speculatory. 

Our exploration of GWAS genes showed higher gene expression and larger eQTL effect 

sizes in relevant trait tissues, suggesting that examining both may be the best approach for 

understanding tissues that are causally relevant for human GWAS loci. Interestingly, results for 

nearest genes and colocalized genes appeared very similar, with both showing significantly higher 

gene expression and eQTL effect size than all genes in the relevant tissues. This brings up recent 

research that has suggested that colocalization approaches may be ill-equipped to pinpoint GWAS 

genes, because true GWAS genes tend to have highly conserved regulation which would impede 

the presence and discovery of eQTL effects (Wang and Goldstein 2020). However, this theory 

directly conflicts with our discovery of larger effect sizes for both types of GWAS genes, and 

further investigation is needed. 

Our research highlights the complex gene regulation patterns across tissues. We confirm 

previously reported bi-directional relationships between gene expression and allelic effects across 

contexts, showing that eQTL effects cannot be explained by on versus off gene expression across 

tissues. We find that both gene expression and eQTL effects are higher in GWAS genes in relevant 

tissues, implying that they both may be informative for determining relevant tissues for traits with 

unknown etiologies. These analyses highlight the complex relationships between eQTL effects and 

gene expression across tissues, emphasizing the need for further research into the tissue specificity 

of regulatory variant effects.  
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Chapter 3: Transcription factor regulation of genetic variant 

effects2 

 

3.1 Introduction 

Gene expression is regulated by local genomic sequence and can be affected by genetic 

variants. In the human population, tens of thousands of cis-regulatory variants have been 

discovered by expression quantitative trait locus (eQTL) mapping that associates genetic variation 

to gene expression levels. These variants are enriched to fall in cis-regulatory elements and 

transcription factor binding sites (GTEx Consortium 2015; Gaffney et al. 2012; Kilpinen et al. 

2013), implying that many eQTLs act via allelic difference in transcription factor affinity. 

However, specific mechanisms of individual eQTL effects and their variation across tissues or 

other contexts remain elusive. Understanding eQTL mechanisms, as well as the contexts in which 

they are active, can shed light on the regulatory code of the genome and how genetic variation 

perturbs this regulation. 

 

 

2 This chapter is adapted from Flynn, E. D., Tsu, A. L., Kasela, S., Kim-Hellmuth, S., Aguet, F., Ardlie, K. G., 

Bussemaker, H. J., Mohammadi P. & Lappalainen, T. (2021). Transcription factor regulation of eQTL activity 

across individuals and tissues (p. 2021.07.20.453075). doi:10.1101/2021.07.20.453075 

 

Supplementary Figures and Tables available Supplementary Figures and Tables are available at  

https://www.biorxiv.org/content/10.1101/2021.07.20.453075v2.supplementary-material. 

 

Genetic, gene expression, eQTL, fine-mapping, and GWAS colocalization data used in these analyses were provided 

by the GTEx Consortium. Athena Tsu ran the protein-based TF-eQTL correlations, performed enrichment analysis 

for the ADASTRA allele-specific binding data, and investigated TF-eQTL examples including the IKZF1-APBB1IP 

eQTL interaction. Sarah Kim-Hellmuth provided XCell cell type composition enrichment estimates. All remaining 

analyses were performed by Elise Flynn. 

 

 

https://www.biorxiv.org/content/10.1101/2021.07.20.453075v2.supplementary-material
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Multiple efforts have sought to catalog eQTL effects across different contexts. The GTEx 

Consortium profiled gene expression in 49 tissues across 838 donors and discovered eQTLs for 

1,260-18,795 genes per tissue (GTEx Consortium et al. 2017; GTEx Consortium 2020). 

Approximately a third of these eQTLs were estimated to be active in all or almost all tissues, while 

a fifth were estimated to be active in five or fewer tissues. Further work using computational cell 

type deconvolution has discovered approximately three thousand GTEx eQTLs whose effects are 

likely cell-type-specific (Kim-Hellmuth et al. 2020). Additional context-specific eQTL effects 

have been assayed in a variety of settings, including during immune stimulation (Alasoo et al. 

2018; Kim-Hellmuth et al. 2017), cell stress (Ward et al. 2020; Dombroski et al. 2010), cell 

differentiation (Strober et al. 2019), and drug or nutrient exposure (Findley et al. 2021; 

Moyerbrailean et al. 2016; Knowles et al. 2018). 

However, few studies have been conducted to investigate what causes eQTL context 

specificity, i.e., why eQTLs are differentially active across contexts. Some of this variation is of 

course explained by gene expression: genes that are not expressed will not have a measurable 

eQTL. However, multiple studies have found that the link between gene expression and eQTL 

effect is not straightforward, observing both increasing and decreasing allelic effects with 

increasing gene expression (Gutierrez-Arcelus et al. 2020; GTEx Consortium 2020). When 

investigating the tissue variability of GTEx eQTLs, we discovered that ~4% of eQTLs show 

increasing effects with increasing gene expression across tissues, and ~4% show decreasing effects 

(GTEx Consortium 2020). These findings show that the context variability of eQTL effects cannot 

be explained by gene expression alone and must depend on other features, such as chromatin 

accessibility, enhancer looping, or variable levels of transcription factor binding.  
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Determining eQTLs’ mechanisms of action is challenging. The first obstacle lies in 

identifying the causal variant(s) of a locus from the typically numerous associated variants in high 

linkage disequilibrium (LD). Putatively functional variants can be pinpointed by statistical fine-

mapping approaches, complemented with genomic annotations such as regions of open chromatin, 

TF binding sites predicted by motifs, or allele-specific binding of TF ChIP-seq data (Kichaev et 

al. 2014, 2019; GTEx Consortium 2020; Weissbrod et al. 2020; Kubota and Suyama 2021). 

However, these annotations suffer from both low specificity and low sensitivity. In terms of 

specificity, a large percentage of variants in the genome overlap some functional annotation; for 

instance, Gaffney et al found that 40% of SNPs in eQTLs overlapped a DNAse I hypersensitive 

site or histone-modified region (Gaffney et al. 2012). In terms of sensitivity, functional data may 

be missing for the context in which the eQTL is active, and especially the highly informative allelic 

binding data are relatively sparse (J. Chen et al. 2016; Tehranchi et al. 2016; Abramov et al. 2021). 

While experimental assays that directly measure regulatory effects of variants are increasing in 

scale, they may miss in vivo interactions or chromatin-specific regulation (Inoue et al. 2017), and 

intensive experimental approaches to directly profile the effects and mechanisms of genetic 

variants in an eQTL (Lou et al. 2009; Meyer et al. 2013; Gupta et al. 2017; Zhao et al. 2020) are 

difficult to conduct in a high-throughput manner. 

One thing made clear by functional annotation data is that both eQTLs and chromatin-

QTLs are enriched in known TF binding sites (GTEx Consortium et al. 2017; Gaffney et al. 2012; 

Waszak et al. 2015). Given that TFs are one of the few sequence-specific interactors with the 

genome, it follows that noncoding eQTLs may exert their effects by altering TF binding, which 

would then affect chromatin accessibility, histone modifications, and gene expression. Adding to 

the hypothesis that TF binding may control eQTL variability, many cross-tissue eQTLs are 
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enriched in TF binding sites for TFs with broad activity, while tissue-specific eQTLs are enriched 

for those relevant to their observed tissue (Y. He et al. 2020). By determining which TF’s binding 

is being altered by an eQTL, we would be able to identify its mechanism of action, as well as 

understand what could be regulating the eQTL’s context variability.  

In this study, we set out to discover TF regulators of eQTLs by identifying eQTL effects 

that correlate with TF levels across or within tissues, using primarily GTEx data. We use the 

natural variation of TF levels between tissues, individuals, and conditions to elucidate mechanisms 

of action of eQTL regulatory variants and understand the context specificity of eQTL effects. We 

hypothesize that a portion of the observed context variability of an eQTL may be explained by the 

level of the TFs that bind to the eQTL to regulate gene expression [Fig. 3.1A-C]. In the simplest 

form of the model, an allele may increase the affinity of an activating TF in a cis-regulatory site, 

which would lead to higher gene expression of that allele [Fig. 3.1A]. However, at low TF levels, 

the TF would not bind to either allele, resulting in the same low level of background gene 

expression from each allele. Conversely, at very high TF levels of saturated binding, even the 

lower affinity allele could bind the TF, and both alleles would have equal gene expression. This 

would translate to increasing and then decreasing eQTL effects as TF levels increase [Fig. 3.1C]. 

Other models are explored in the supplement [SFig. 1]. 

Our approach links variation in TF levels to variation in eQTL effect size and requires no 

additional datatypes to be captured, using the same genetic and gene expression data that are used 

for eQTL discovery. It offers a novel approach to understanding regulatory variant context 

specificity that can refine and complement existing approaches based on statistical fine-mapping 

and functional genomic experiments. Applying it to GTEx data, we find thousands of interactions 

between TF levels and eQTL effects both across tissues and within tissues which represent 
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potential TF regulators of eQTL effects, and we validate these data using numerous approaches 

and datasets. Finally, we highlight an example of an IKZF1-regulated eQTL that colocalizes with 

multiple GWAS blood traits, evidencing how this TF-based model can be used to unravel effects 

on human health and disease. 

 

 

Figure 3.1: TF model of eQTL effects. A) TF binding to an eQTL variant with different allelic TF affinities is 

depicted at low, medium, and high TF levels. B) TF binding occupancy, resulting in target gene expression, for the 

two eQTL alleles across TF levels. C) Difference in expression of alleles or eQTL effect size, quantified as log2 allelic 

fold change, across TF levels. Our applied models only examine monotonic effects, which can be imagined as different 

sides of the hill. D) Tissues are plotted by eQTL effect size vs. median TF expression for an example MS4A14 eQTL 

and the FOSL2 TF. Cross-tissue TF-eQTL interactions are discovered by a Spearman correlation of these two 

measures, or with TF protein levels for the protein-based analysis. E) & F) Individuals are plotted by eGene expression 

vs. TF expression in Skeletal Muscle (E) or Adipose Visceral (F) tissue and are shaded by the genotype of the eQTL 

variant. Within-tissue TF-eQTL interactions are discovered using a linear regression interaction model of normalized 

eGene expression by TF level, genotype, and TF level by genotype. Linear regression lines are plotted or each 

genotype. In Muscle, a TF-eQTL interaction is present, as the difference gets larger as TF expression increases. In 

Adipose, an eQTL is present, but no TF-eQTL interaction is observed. 
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3.2 Materials and Methods 

3.2.1 GTEx data 

For the bulk of our analysis, we used the GTEx v8 dataset, including whole genome 

sequencing for 838 individuals and mRNA sequencing from 15,201 samples across 49 tissues 

[Table 3.1, STable 1]. RNA-seq data were aligned using STAR v2.5.3a, and gene counts were 

based on GENCODE Release 26 and analyzed using RNA-SeQC (GTEx Consortium 2020). cis-

eQTL calculations in each tissue and Caviar fine-mapping 95% confidence sets for those eQTLs 

were also previously generated [Table 3.1] (GTEx Consortium 2020). High-throughput mass 

spectrometry protein measurements were separately available for 201 GTEx samples across 32 

tissues (Jiang et al. 2020) [Table 3.1, STable 1]. GTEx tissues were categorized into 

Blood/Immune, Adipose, Brain, Nervous System (non-brain), Epithelial, Muscle, or Organ/Other 

via a cursory literature search on biological composition and function.  
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Table 3.1: Data Sources. 

Data Type Publication DOI / 

Citation 

Website 

GTEx v8 genetic, gene 

expression, eQTL, and 

fine-mapping data 

10.1126/science.aaz1776 / 

(GTEx Consortium 2020) 
https://gtexportal.org/home/  

GTEx protein data 
10.1016/j.cell.2020.08.036 / 

(Jiang et al. 2020) 
 

GTEx GWAS 

colocalization 

10.1186/s13059-020-

02252-4 / (Barbeira et al. 

2021) 

 

ENCODE TF ChIP-seq 

peaks 
Multiple experiments 

https://www.encodeproject.org/ 

search/?type=Experiment  

HOCOMOCO TF motifs 
10.1093/nar/gkx1106 / 

(Kulakovskiy et al. 2018) 
https://hocomoco11.autosome.ru/  

ADASTRA allele-specific 

binding data 

10.1038/s41467-021-

23007-0 / (Abramov et al. 

2021) 

https://adastra.autosome.ru/susan  

HEK293-TLR4 IRF1 

knockdown experiment 

10.1101/2020.02.21.959734 

/ (Brandt, Kim-Hellmuth, et 

al. 2020) 

 

HEK293-TLR4 genome 

sequence 

10.1038/ncomms5767 / 

(Lin et al. 2014) 
http://hek293genome.org/v2  

Gene-by-environment 

interactions 

10.7554/eLife.67077 / 

(Findley et al. 2021) 
 

 

3.2.2 Filtering variants 

We limit our analysis to variants where we have prior evidence to suggest that this could 

be a variant affecting gene expression that is regulated by a TF. We filtered for variants that 

matched four criteria: 1) >=5% minor allele frequency in GTEx v8 samples; 2) present in a Caviar 

fine-mapped 95% credible set for an eQTL in any GTEx tissue; 3) overlap an ENCODE TF ChIP-

seq peak for at least one of 169 TFs; 4) match a HOCOMOCO consensus sequence motif for at 

least one of 169 TFs. We used ENCODE narrowPeak regions in all available experiments that 

https://gtexportal.org/home/
https://www.encodeproject.org/search/?type=Experiment
https://www.encodeproject.org/search/?type=Experiment
https://hocomoco11.autosome.ru/
https://adastra.autosome.ru/susan
http://hek293genome.org/v2
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passed filtering criteria (as of January 2020) and HOCOMOCO v11 IUPAC consensus motifs 

[Table 2].  For the ENCODE TF ChIP-seq overlap, we used ChIP-seq optimal irreproducible 

discovery rate (IDR) threshold peak files for experiments with a biological replicate, no red or 

orange audit categories, and no experimental conditions. We used a union of regions if multiple 

IDR files were available per TF. For HOCOMOCO TF motif matching, we converted the IUPAC 

consensus sequence motif to a regular-expression string for both the forward and reverse-

compliment motif, trimming any less confident bases (lowercase letters) from the ends of the 

sequence. We extracted the genomic sequence surrounding each variant (motif length minus one 

on either side of the variant) using samtools, and we used grep to check if the forward or reverse-

compliment motif was present in the reference and/or the alternative alleles. The above filtering 

left us with 473,057 variants. Using the Caviar fine-mapping data, we associated each filtered 

variant with one or more eGenes, which resulted in 1,032,124 eVariant-eGene pairs across 32,151 

genes. 

 

3.2.3 Within-tissue TF-eQTL interactions 

For our within-tissue TF-eQTL interaction discovery, we selected twenty tissues that best 

represented all 49 GTEx eQTL tissues based on gene expression clustering. We clustered tissues 

based on median TPM across all genes using Euclidean distances and Ward.D clustering, cut the 

resulting tree to generate twenty clusters, and selected the tissue with the largest sample size from 

each cluster. If a tissue was removed for cell type composition variability (below), the next largest 

tissue was selected from the cluster, if one was available. 

For each selected tissue, we applied an eQTL interaction model to discover TF-eQTL 

interactions on gene expression. We ran tensorQTL software per TF and per tissue for 32,151 
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genes and all filtered variants within a 10 mega-base window of the transcription start site, 

inputting individuals’ genotypes, normalized eGene expression, and normalized TF expression for 

each eQTL-TF pair, as well as genotype principal components and tissue covariates described in 

The GTEx Consortium, 2020 (GTEx Consortium 2020). TensorQTL software applied a gene-level 

p-value correction based on the effective number of independent variants tested per gene, 

estimated with eigenMT (emt), and selected the variant with the lowest p-value per gene (Taylor-

Weiner et al. 2019; Davis et al. 2016). We then applied a Benjamini-Hochberg (BH) correction to 

the emt-corrected p-values across each tissue and TF. For all TF-eQTL interactions with BH FDR 

<= 20%, we selected those where the top TF-eQTL variant had a significant eQTL signal in the 

respective tissue and where the gene was not the implicated TF. 

We removed four tissues with high cell type composition variability so that our results 

were not dominated by non-causal TF-eQTL relationships due to cell type composition (Whole 

Blood, Fibroblast, Colon, Stomach), and we removed one tissue due to its high number of results 

and unique gene expression patterns (Testis). Cell type composition was estimated in Kim-

Hellmuth et al., 2020 (Kim-Hellmuth et al. 2020): briefly, XCell was used to calculate enrichment 

of cell-type-specific gene expression signals in GTEx samples (Aran, Hu, and Butte 2017). Since 

these estimates were not all experimentally validated, we ignored cell type estimates with high 

variability across tissues (aDC, iDC) [SFig. 5]. Four cell type estimates had high variability in a 

GTEx tissue (variance > 0.04; Th2 cells in fibroblasts, epithelial cells in the colon, epithelial cells 

in the stomach, and basophils in blood) and those tissues were removed from the analysis to avoid 

strong cell type interaction signals in our results. Stomach clustered with other tissues [SFig. 4], 

so we added the next largest tissue in that group, Pancreas, to our within-tissue TF-eQTL analysis. 
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3.2.4 Cross-tissue TF-eQTL correlations 

We correlated eQTL effect sizes and TF expression levels across up to 49 GTEx tissues. 

We used the aFC software package to calculate eQTL effect sizes based on log2 allelic fold change 

(aFC) for all eVariant-eGene pairs in each tissue (Mohammadi et al. 2017b), using genotype 

principal components and tissue covariates described in The GTEx Consortium, 2020 (GTEx 

Consortium 2020). We determined the median TF level per tissue based on transcripts per million 

(TPM). Then we performed a cross-tissue Spearman correlation of eQTL aFC and TF median TPM 

for each eQTL-TF pair in all tissues with median eGene expression greater than 0 TPM, i.e., in all 

tissues where the eQTL target gene was sufficiently expressed. We tested 1-249 eVariants per 

eGene, and we selected the top variant per gene and calculated a corrected p-value using the 

effective number of independent variants tested per gene. We defined the effective number of tests 

per gene as the number of eigenvectors needed to capture 95% of the variance in the GTEx 

genotype matrix of all tested variants, using the Gao method in the poolr package (Gao, Starmer, 

and Martin 2008). We then performed a Benjamini-Hochberg TF-level correction of the meff-

corrected p-values across the top variants of each gene, and we selected variants with up to a 5% 

false discovery rate (FDR). 

For our protein-based analysis, we used a similar approach, substituting TF protein levels 

for TF expression levels. We examined median protein levels in 32 GTEx tissues using normalized 

high-throughput mass spectrometry data (Jiang et al. 2020). We filtered for TFs with at least 20 

unique protein values across tissues, then performed a cross-tissue Spearman correlation of eQTL 

aFC and TF median protein level. We tested 1,032,124 eQTLs and 72 TFs using the same p-value 

calculation procedure described above, then selected variants with up to a 20% FDR. 
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3.2.5 Dataset comparison 

We tested for TF-eQTL sharing across multiple datasets: cross-tissue expression-based, 

cross-tissue protein-based, and each within-tissue expression-based dataset. We performed 

Fisher’s tests based on every TF-eGene pair’s presence in the significant interactions from each 

dataset. For comparisons with cross-tissue protein-based data, we only used TF-eGene pairs for 

72 TFs tested in the protein data. 

 

3.2.6 TF binding overlap enrichment 

We tested whether our predicted TF-eQTL interactions overlap TF binding sites (TFBS) 

based on two orthogonal datasets: ENCODE TF ChIP-seq peaks and HOCOMOCO predicted TF 

binding motifs [Table 2]. Given the complicated structure of our data, with multiple variants tested 

per gene and LD between variants, we used an expectation/observation model to test TFBS overlap 

enrichment of TF-eQTL interactions.  

For each TF (f), we calculated the number of expected overlaps per gene (g) based on the 

number of variants tested (v) and the probability that any variant overlapped that annotation (p), 

and compared that to the observed number variants that overlap the annotation (o): 

𝑆𝑓,𝑔 = 𝑜𝑏𝑠𝑓,𝑔 − 𝑒𝑥𝑝𝑓,𝑔 = 𝑜𝑓,𝑔 − 𝑣𝑔 ∗ 𝑝𝑓  (Eq 3.1) 

We then averaged the per gene statistics across all genes with a significant TF-eQTL interaction 

(Gf): 

𝑆𝑓 =
∑ 𝑆𝑓,𝑔𝑔∈𝐺𝑓

|𝐺𝑓|
      (Eq 3.2) 
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And we averaged across all 169 TFs to get our final enrichment statistic: 

𝑆𝑜𝑣𝑒𝑟𝑙𝑎𝑝 =  
∑ 𝑆𝑓∗|𝐺𝑓|169

𝑓=1  

∑ |𝐺𝑓|169
𝑓=1

    (Eq 3.3) 

The resulting statistic can be interpreted as the average extra number of overlaps per gene. For 

instance, an overlap enrichment statistic of 0.01 would mean that we observed 0.01 more variants 

with overlap per TF-eQTL gene than expected – or one additional overlap per 100 genes. 

Permutations were carried out by shuffling overlap annotations across all tested variants 

and recalculating the overlap statistic 104 times. Permutation p-values were calculated by counting 

the number of times the permuted TF statistic is larger or smaller than the observed statistic, adding 

one, dividing by the number of permutations, and multiplying by two for a two-sided test. 

 

3.2.7 Allele-specific TF binding validation 

We examined TF allele-specific binding (ASB) data to determine if our high-confidence 

set of potential TF regulators led to altered TF binding ex vivo. We based our analysis on the 

ADASTRA dataset (Susan version), which contains a meta-analysis of allele-specific TF binding 

results from over 7,000 TF ChIP-seq experiments [Table 4.1] (Abramov et al. 2021). Similar to 

our TFBS overlap enrichment analysis, we used an expectation/observation model to test allele-

specific binding of TF-eQTL interactions, then permuted allele-specific binding annotations to 

calculate the enrichment significance.  

For the un-matched TF ASB overlap analysis, we calculated the number of expected 

variants with ASB per gene based on the number of tested variants that were assayed in the ASB 

dataset (v) and the probability that any variant had ASB for any TF (p). We then compared the 
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expected to the observed number of variants with ASB (o) in each gene, and we averaged across 

all genes that had a significant TF-eQTL interaction for any TF (Gany): 

𝑆𝑎𝑛𝑦 =
∑ 𝑆,𝑔𝑔∈𝐺𝑎𝑛𝑦

|𝐺𝑎𝑛𝑦|
      (Eq 3.4) 

For our matched TF analysis, we calculated the number of expected variants with ASB per 

gene based on the number of tested variants that were assayed in the ASB dataset (v) and the 

probability that any variant had ASB for the specified TF (p). We then compared the expected to 

the observed number of variants with ASB (o) using the equation for Sg described previously (Eq 

1), then averaged the per gene statistics across all correlated genes using the equation for Sf (Eq 

2). 

The overall enrichment was calculated using Sg and Sf, with genes with a significant TF-

eQTL interaction per TF (Gf) and 124 total TFs, using the full equation: 

𝑆𝑚𝑎𝑡𝑐ℎ𝑒𝑑 =  
∑ ∑ 𝑜𝑓,𝑔− 𝑣𝑔∗𝑝𝑓𝑔∈𝐺𝑓

124
𝑓=1  

∑ |𝐺𝑓|124
𝑓=1

    (Eq 3.5) 

We then permuted ASB annotations across all tested variants and recalculated the ASB statistic 

104 times. We calculated permutation p-values using the same two-sided test procedure described 

in our TFBS overlap enrichment analysis. 

 

3.2.8 IRF1 knockdown analysis 

Our high confidence set of potential TF regulators included 58 eQTL effects predicted to 

be regulated by IRF1. To test these, we used a CRISPR-i knockdown of IRF1 in TLR4-expressing 

HEK cells (HEK293T) and measured allele-specific expression (ASE) at varying IRF1 levels 
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[Table 4.1] (Brandt, Kim-Hellmuth, et al. 2020). If we observe that ASE changes with IRF1 levels, 

this would suggest that IRF1 is truly regulating the effect of the eQTL on gene expression. First, 

we filtered the aligned HEK293T RNA-seq data for coding variants that had adequate coverage to 

call ASE: at least 60 reads across all conditions, at least 5% reference allele and 5% alternative 

allele, and less than 5% of other alleles. Then, we used Fisher's test to compare the allelic balance 

across all promoter knockdown samples and all control samples. As our test was likely 

underpowered, we looked at genes with a 0.05 nominal p-value cutoff. We then checked which 

IRF1-eQTL top variants were heterozygous in the HEK293T cell line using VCF files from 

Complete Genomics [Table 4.1] (Lin et al. 2014). All seven testable IRF1-eQTL were 

heterozygous for a top IRF1-eQTL variant in the HEK293T cell line. 

 

3.2.9 Comparison with GxE genes 

Gene-by-environment interaction analysis results were attained from Supplemental Table 

4 in  Findley et al., 2021 [Table 4.1] (Findley et al. 2021). We matched these results by ENSG 

number with our dual-evidence TF-eQTL genes and used Fisher’s exact test to calculate overlap 

compared to all tested genes in our dataset. 

 

3.2.10 GWAS colocalization 

To discover TF regulators of GWAS loci, we examined colocalization of GTEx eQTLs 

and 76 GWAS traits. We obtained ENLOC colocalization results (regional conditional probability 

> 0.5) from the GTEx Consortium [Table 4.1] (Wen, Pique-Regi, and Luca 2017; Barbeira et al. 

2021) and overlapped these eQTL genes with our high confidence TF-eQTL genes. To test if our 

TF-eQTLs were enriched to colocalize with GWAS signals, we looked at all significant eQTL 
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genes in any tissue and performed a Fisher's exact test for whether or not the gene had an eQTL 

that colocalized with a GWAS phenotype and whether or not we found a TF-eQTL interaction for 

that gene. We also performed a tissue-specific analysis where we looked at all significant eQTL 

genes in the 16 tissues where we performed within-tissue TF-eQTL discovery, and we performed 

a Fisher's exact test for whether or not the tissue’s eQTL signal colocalized with a GWAS 

phenotype and whether or not a high confidence TF-eQTL was found for that gene in the tissue. 

Our list of 205 colocalizing GWAS-eQTLs with a TF-eQTL were based on this tissue-specific 

comparison and were additionally filtered such that the r2 of the top TF-eQTL variant and the lead 

ENLOC colocalizing variant was great than 0.4. 

 

3.3 Results 

3.3.1 Selection of putative regulatory variants 

For the bulk of our analysis, we used the GTEx v8 dataset, including whole genome 

sequencing for 838 individuals and RNA sequencing from 73-706 samples across 49 tissues 

[STable 1]. We focused our analysis on common variants (>5% MAF) that have prior evidence of 

affecting gene expression and being regulated by a TF [Table 3.2]. We used Caviar fine-mapping 

of GTEx eQTLs in 49 tissues to select variants that fell into a 95% credible set in at least one tissue 

(Hormozdiari et al. 2014; GTEx Consortium 2020). We also required evidence that a TF binds in 

the vicinity of the variant. We focused our analysis on 169 TFs with both ENCODE ChIP-seq and 

HOCOMOCO motif information and included variants that overlapped at least one ChIP-seq peak 

and matched at least one motif for these TFs.  
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Filtering based on an intersection of these fine-mapping and functional annotations left us 

with 473,057 variants that corresponded to 1,032,124 eQTLs across 32,151 genes. Each variant 

was associated with a median of two genes, and each gene was associated with a median of 28 

variants across tissues [SFig. 2]. Next, we used cross-individual and cross-tissue analyses to 

discover which of this large number of candidate variants had additional evidence of TF 

mechanisms underlying their eQTL effects. 

 

Table 3.2: GTEx variant annotations. Overlap of variants with >5% minor allele frequency (MAF) in the GTEx 

dataset that overlap various eQTL and TF annotations. Percent is based on all 5% MAF variants. Filtering eQTL 

variants for TF binding sites based on TF ChIP-seq peak overlaps and TF motif matches still results in a large number 

of potentially causal eQTL variants. 

Dataset 
>5% MAF GTEx variants 

Count Percent 

All 6,539,590 - 

Caviar fine-mapped set 2,867,556 44% 

ENCODE TF ChIP-seq peak 1,425,613 22% 

HOCOMOCO TF motif 3,716,312 57% 

Intersection 473,057 7% 

 

 

3.3.2 Interaction of eQTL effects and TF expression levels within tissues 

We first investigated how inter-individual variation in TF levels within a tissue impacts 

eQTL effect size, with the hypothesis that such effects could represent TF regulators of specific 

eQTLs. We chose 20 diverse tissues that best represented all 49 GTEx eQTL tissues based on gene 

expression clustering [SFig. 3]. For each of those tissues and each of our 169 TFs, we applied a 

linear regression with an interaction term to discover TF level - genotype interactions on gene 
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expression for our filtered variants across 32,151 genes, selecting the top eQTL variant per gene 

for each analysis (Taylor-Weiner et al. 2019) [Fig. 3.1E,F]. We discovered 13 to 39,693 TF-eQTLs 

(eQTLs with TF interaction) per tissue at a 20% TF-level Benjamini-Hochberg (BH) FDR, with 

133,111 relationships supported by at least one tissue [SFig. 4]. These TF-eQTL pairs represent 

potential TF regulators of eQTL effects. 

We observed that five tissues (Whole Blood, Fibroblast, Colon, Stomach, and Testis) were 

outliers in the number of TF-eQTLs, which could not be explained by tissue sample size alone 

[SFig. 4]. Analysis of in silico cell type estimates revealed that four of these tissues (Whole Blood, 

Fibroblast, Colon, and Stomach) had particularly high inter-individual variability in cell type 

composition [SFig. 5]. Assuming that this high cell type composition variability was likely 

contributing to the large number of TF-eQTLs, we removed these tissues from our analysis so that 

our TF-eQTL results were not dominated by non-causal correlations of TFs with cell type 

composition. We also removed the Testis tissue due to its outlier status in previously reported gene 

expression and trans-regulation analyses (GTEx Consortium 2015; GTEx Consortium et al. 2017), 

so that TF-eQTLs in this one tissue would not dominate the results. 

Our final within-tissue dataset consisted of 26,038 TF-eQTL relationships supported by at 

least one tissue, of which 2,315 were supported by multiple tissues [Fig. 3.2A; SFig. 6]. Some TFs 

with many interacting eQTLs in a tissue made clear biological sense. For instance, the TFs with 

the most interactions in Brain Cortex and Nucleus Accumbens tissues were BCL11A and MEF2D, 

respectively, both of which are involved in neuronal functions (Simon, Wiegreffe, and Britsch 

2020; Akhtar et al. 2012), and the TF with the most interactions in Adipose tissue was CEBPA, 

which is a key driver of adipogenesis (Gregoire, Smas, and Sul 1998) [Fig. 3.2A]. We see that 

90/120 tissue pairs were enriched for one another’s TF-eQTLs (OR = 14.1 to 2251, Fisher’s exact 
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test, all p < 0.05) [Fig. 3.2C]. All those pairs with a negative direction of enrichment included a 

brain tissue and/or the lymphoblastoid cell line and did not have any overlapping TF-eQTL 

interactions, likely due to the small sample sizes and these tissue types being highly distinct from 

others (all ORs = 0, Fisher’s exact test ps = 1) (GTEx Consortium 2020). In general, within-tissue 

TF-eQTL relationships follow a similar clustering pattern to tissue gene expression [SFig. 3]. 

These results highlight unique and shared potential TF regulators of eQTL effects within different 

tissue contexts. 

3.3.3 Correlation of eQTL effect sizes and TF levels across tissues  

To obtain further insights into TFs driving eQTL effect size variation between tissues, we 

next investigated how TF levels across the 49 GTEx tissues correlated with eQTL effect sizes. We 

calculated log2 allelic fold change effect sizes (aFCs) in every GTEx tissue for each filtered 

variant-gene pair; by ignoring eQTL significance cutoffs, we captured tissues lacking eQTL effects 

and avoided power differences in eQTL detection caused by varying tissue sample sizes. We 

correlated aFCs for each eQTL with expression levels for each of 169 TFs [Fig. 3.1D] and selected 

the top eQTL variant per gene for each TF. We found 420,248 TF-eQTL correlations at a 5% TF-

level BH FDR [Fig. 3.2B]. These TF-eQTL pairs represent potential TF regulators of eQTL effects 

that may explain the variability of these eQTLs across tissues. Many of the TFs with the most 

correlations in the cross-tissue analysis were involved in immune (ELF1, IRF2, RELB, STAT3, 

RELA) or hormone response (THRA) (Seifert et al. 2019; Taniguchi et al. 2001; Hayden and 

Ghosh 2011; Hillmer et al. 2016; Ortiga-Carvalho, Sidhaye, and Wondisford 2014) [Fig. 3.2B]. 

Though we discovered many more potential TF-eQTL relationships across tissues than within 

tissues, the two sets of TF-eQTL interactions are enriched for one another (OR = 2.43, Fisher’s 
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exact test p < 10-300), and cross-tissue correlations showed a positive direction of enrichment for 

all individual tissues except brain cerebellum [Fig. 3.2C].  

Gene expression levels do not always directly correspond to protein levels (Greenbaum et 

al. 2003; Gry et al. 2009), so we performed a similar correlation analysis using TF protein levels 

across tissues, as assessed by high-throughput mass spectrometry (Jiang et al. 2020). Protein 

quantification was available for 72/169 TFs in 20 or more tissues, with one to 11 samples per tissue 

[STable 1]. We discovered 12,289 TF protein-eQTL correlations at a 20% TF-level BH FDR [Fig. 

3.2B]. These protein-based TF-eQTL correlations were not enriched for expression-based cross-

tissue or within-tissue TF-eQTL correlations (OR = 0.95, 0.47; Fisher’s exact test p = 0.097, 

7.9x10-7, respectively) [Fig. 3.2C, SFig. 7]. As discussed in Jiang et al., gene and protein levels 

may differ due to biological phenomena of RNA dynamics and translational regulation as well as 

technical variation in mass spectrometry technology that plagues especially lowly expressed 

proteins (Jiang et al. 2020). Given that TF protein levels are lower than other genes (Wilcoxon 

rank sum test p < 10-300) [SFig. 8] and the number of assayed tissues and samples is small, these 

protein measurements may be less suitable measurements of TF levels for the purposes of this 

analysis. 
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Figure 3.2: Discovered TF-eQTL interactions. A) Number of within-tissue TF-eQTL interactions at 20% FDR is 

plotted per TF for each tissue analyzed. The TF with the most interactions per tissue is highlighted. B) Number of 

discovered cross-tissue TF-eQTL interactions per TF for expression-based interactions (at 5% FDR) and for protein-

based interactions (at 20% FDR). TFs with the most correlations per analysis are highlighted. C) Sharing of TF-eQTL 

interactions between tissues and within/cross-tissues. Red indicates positive enrichment and blue, negative 

enrichment. Grey squares indicate no shared TF-eQTL gene pairs between the two datasets. 
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3.3.4 Annotation and TF-binding of TF-eQTL interactions 

Next, we set out to evaluate our discovered sets of putative TF regulators of eQTLs, based 

on orthogonal data of functional annotations and TF binding. We examined four TF-eQTL 

datasets: cross-tissue expression-based, cross-tissue protein-based, within-tissue expression-

based, and at least two lines of expression-based evidence (at least two tissues, or cross-tissue + at 

least one tissue). First, we examined genomic annotations of the top TF-eQTL variant for each 

gene and found that all three expression-based datasets were enriched to overlap promoters, 5' 

UTR, and 3' UTRs compared to all tested eQTL variants [SFig. 9]. This is consistent with overall 

eQTL enrichments (GTEx Consortium et al. 2017; GTEx Consortium 2015), suggesting that TF-

eQTL variants are further enriched for true causal regulatory variants. 

We tested whether our four sets of putative TF-eQTL interactions overlapped TF binding 

sites (TFBS) based on two datasets: ENCODE TF ChIP-seq peaks and HOCOMOCO predicted 

TF binding motifs. The top TF-eQTL variants showed enrichment for TF ChIP-seq overlap in most 

datasets and mixed results on TF motif matching enrichment [SFig. 10]. Given the complicated 

structure of our data, with multiple variants tested per gene and LD between variants [SFig. 2, 11], 

we set up a more sophisticated test of TFBS overlap enrichment of TF-eQTL interactions to 

account for this unusual data structure. We compared the observed overlap per gene to a null 

expectation and calculated significance using a permutation scheme of TFBS overlap annotations 

(see Methods). Our enrichment statistic can be interpreted as the average number of extra variants 

with overlap per TF-eQTL gene. Both cross-tissue and within-tissue expression-based datasets 

were significantly enriched for ChIP-seq overlap (cross-tissue enrichment statistic = 0.024, p < 

2x10-4; within-tissue enrichment statistic = 0.053, p = 8x10-4), and cross-tissue expression-based 

TF-eQTLs showed a small trend of motif matching enrichment (enrichment statistic = 0.004, p = 
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0.06) [Fig. 3.3A; SFig. 11]. TF-eQTLs with at least two lines of expression-based evidence did 

not reach nominal significance for ChIP-seq overlap or motif matching, but they showed a similar 

magnitude of enrichment to the individual datasets [Fig. 3.3A; SFig. 11]. The cross-tissue protein-

based TF-eQTL interactions had low enrichment for ChIP-seq overlap and motif matching [Fig. 

3.3A; SFig. 10, 11]; thus, taken together with their low concordance with expression-based 

interactions [Fig. 3.2C], we decided not to pursue these interactions any farther. 

Though our discovered expression-based TF-eQTL relationships were generated using 

only genetic and gene expression data, those eQTLs were more likely to overlap a TFBS of their 

interacting TF than expected [Fig. 3.3A]. We included all TF-eQTL interactions with at least two 

lines of expression-based evidence to represent a high-confidence set of putative TF regulators of 

genetic variant effects. These TF-eQTL genes were also enriched to fall into the regulon of the 

interacting TF (any regulon set OR = 1.54, Fisher’s exact test p = 1x10-17) (Garcia-Alonso et al. 

2019), with the strongest enrichment seen for regulons defined by co-expression analysis (OR = 

2.08, Fisher’s exact test p = 1x10-22) [Fig. 3.3B]. These 6,262 dual-evidence TF-eQTL interactions, 

observed across 154 TFs and 1,598 genes, represent potential TF regulators of genetic variant 

effects [STable 2] that we then analyzed further. 

 

3.3.5 Allele-specific TF binding of dual-evidence TF-eQTL interactions 

We next examined TF ChIP-seq allele-specific binding data to determine if our dual-

evidence TF regulators of genetic variant effects manifested altered TF binding ex vivo. To 

accomplish this, we used the ADASTRA dataset, which contains allele-specific TF binding (ASB) 

results from over seven thousand TF ChIP-seq experiments, normalized for cell-type-specific 

background allelic dosage (Abramov et al. 2021). Like our TFBS overlap enrichment analysis, we 
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compared the observed allele-specific TF binding of TF-eQTL interactions to a null expectation, 

followed by permutation of ASB annotations to estimate the enrichment significance.  

We observed that TF-eQTL variants were significantly more likely to have ASB in general, 

with any TF (enrichment statistic = 0.09, p=0.002) [Fig. 3.3C]. Testing for the enrichment of ASB 

for the matching TF-eQTL TF was limited by the sparsity of the ASB data: only 9 out of 124 

analyzed TFs were expected to have more than one interacting TF-eQTL with an ASB event [SFig. 

13]. However, 8/9 of these TFs showed more ASB than expected, though none to a significant 

degree [Fig. 3.3C], and the overall enrichment was modest but again non-significant (enrichment 

statistic = 0.011, p=0.10). These results demonstrate that our dual-evidence TF-eQTL interactions 

are enriched for variants that alter TF binding, though these data are too sparse to validate this 

specifically for the implicated TF. 
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Figure 3.3: TF binding of TF-eQTL interactions. A) Overlap enrichment of TFBS, based on TF ChIP-seq peaks, 

of TF-eQTL interactions by dataset. Permutation-based p-values are plotted above each measurement. Datasets 

include within-tissue (blue) interactions, cross-tissue expression-based (red), cross-tissue protein-based (yellow), and 

TF-eQTL interactions with at least two lines of evidence from cross-tissue expression-based and within-tissue 

interactions (purple). B) The enrichment of target genes with two lines of evidence for TF-eQTL interactions falling 

into that TF’s regulon. Large black dots depict overall enrichment across TFs. C) Enrichment for allele-specific TF 

binding (ASB) for TF-eQTL interactions with two lines of evidence. Shaded area contains statistics for unmatched 

TF ASB analysis. Below that, statistics for matched TF ASB analysis is shown, with TFs with more than one expected 

ASB event plotted individually, and all other TFs combined (other). 

 

3.3.6 IRF1 knockdown validates IRF1-eQTL interactions 

Our dual-evidence TF regulators included 58 eQTL effects putatively regulated by IRF1, 

which we assessed further with an IRF1 knockdown experiment. We used data from a CRISPR-

interference-mediated knockdown of IRF1 in HEK293-TLR4 cells (Brandt, Kim-Hellmuth, et al. 

2020) and measured genes’ allele-specific expression (ASE) at knocked-down and control IRF1 

levels [Fig. 3.4A,B]. A change in ASE between IRF1 conditions would suggest that IRF1 is 

regulating the effect of the heterozygous eQTL on gene expression. 
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We compared allele-specific gene expression in IRF1-knockdown and control cells, 

combining reads across all samples per condition to increase our power to discover differences in 

allelic expression. After filtering for sufficient coverage of a heterozygous coding SNP (>60 reads, 

>5% REF reads, >5% ALT reads, and <5% non-REF/ALT reads), we were left with 1,221 genes 

for which we performed Fisher’s exact test for imbalanced allelic expression across conditions. A 

low Fisher’s test p-value indicates that the two alleles are expressed at different ratios in the 

knockdown and control conditions, suggesting that IRF1 controls the expression of the gene in an 

allele-specific manner in this cell line. 

We discovered 87 nominally significant genes with differing ASE between IRF1 

conditions (Fisher’s exact test p < 0.05). These genes were significantly enriched to overlap our 

previously discovered IRF1-eQTL genes (dual evidence TF-eQTLs OR = 8.03, Fisher’s exact test 

p = 0.015) [Fig. 3.4C]. Of the dual-evidence TF-eQTL genes with measurable ASE, all seven were 

heterozygous for an implicated top IRF1-eQTL variant, thus we could expect all to show differing 

ASE between IRF1 conditions. Indeed, three genes, ERI1, MYOM2, and lncRNA RP5-1092A3.4 

were nominally significant, and all seven genes had p values in the lower quartile of tested genes, 

with a maximum p value of 0.31 [Fig. 3.4E; SFig. 14, 15]. Examining ASE in this IRF1 knockdown 

experiment validated 3/7 of our testable IRF1-eQTL interactions and demonstrates the high 

promise of this method to generate useful TF regulation information that can be applied to 

understand allele-specific regulation in new contexts.  
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Figure 3.4: IRF1-eQTL interactions in HEK293-TLR4 IRF1 knockdown. A) Depiction of allele-specific 

expression, with IRF1 preferentially binding to the G-allele in the regulatory region of the ERI1 target gene. This leads 

to higher expression of allele 1, which we can measure based on the presence of a heterozygous coding SNP in the 

ERI1 transcript. B) Read counts for ERI1 coding SNP alleles in both knockdown and control conditions. In this 

example, we observe allelic effects at lower (knockdown) IRF1 levels, while higher (control) levels of IRF1 may 

saturate binding to both alleles. Conditions are compared using Fisher’s exact test of allelic counts. C) Sharing of 

IRF1-interacting eQTL genes in within-tissue (blue), cross-tissue expression-based (red), and HEK293 IRF1 

knockdown (green) datasets. Inset shows enrichment for overlap between HEK293T IRF1-eQTL genes and listed 

datasets. D) HEK293 coding SNP alternative allele frequency in dual-evidence IRF1-eQTL genes that were 

heterozygous for a top TF-eQTL variant and had adequate coverage of a heterozygous coding SNP. * indicates a 

Fisher’s p value < 0.05, ** < 0.01 of allelic counts vs. condition. 

 

3.3.7 TF regulation of gene-by-environment effects and genetic effects on phenotype 

We hypothesized that our TF-eQTLs could shed light on mechanisms of gene-by-

environment (GxE) interactions that represent environmental conditions that affect genetic control 

of a phenotype, and altered TF level could be the mechanism by which the environmental condition 

regulates the genetic effects. In a recent large-scale study, Findley et al. tested the effects of 14 

environmental treatments on allele-specific gene expression in three cell lines, discovering 979 

genes with GxE effects, 850 of which were also found to have a GxE interaction by a previous 

study (Findley et al. 2021). We overlapped our dual evidence TF-eQTL genes with these replicated 
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GxE interacting genes and found 92 overlaps (OR = 2.67, Fisher’s exact test p = 1.4x10-14) [Fig. 

3.5A], which offer potential direct mechanistic interpretations of the environmental effects on 

genetic control of gene expression [STable 3]. For instance, we found multiple GxE interactions 

for copper treatment that overlapped TF-eQTL genes for MITF or RELA; both TFs have been 

found to respond to copper exposure (McElwee, Song, and Freedman 2009; Hu Frisk et al. 2017), 

thus they could be the mechanism by which copper regulates genetic effects at these loci. Thus, 

combining TF-eQTL mechanisms with GxE interactions therefore has the potential to elucidate 

direct mechanisms of environmental effects. 

We next assessed if we could use our TF-eQTLs to discover TF regulators of GWAS loci. 

Colocalization methods can combine statistical signals from eQTLs and GWAS loci to determine 

if the gene and phenotype regulation share a causal variant, implying that genetic regulation of the 

gene may be the causal mechanism of the genetic effect on phenotype. We obtained GWAS-eQTL 

colocalization data of GTEx eQTLs and 76 GWAS traits (Wen, Pique-Regi, and Luca 2017; 

Barbeira et al. 2021) and combined these with our dual-evidence TF-eQTLs. We saw that our TF-

eQTL genes were more likely to colocalize with GWAS loci than all tested eQTL genes, with 27% 

of our TF-eQTL genes showing colocalization between a GWAS signal and an eQTL in any tissue 

and 9.5% showing colocalization between a GWAS signal and an eQTL in the same tissue where 

the TF-eQTL was discovered (OR = 2.00, 1.65, Fisher’s exact test p = 2.1x10-29, 1.1x10-10, 

respectively) [Fig. 3.5B]. We found 205 colocalizations between a GWAS signal and an eQTL 

signal in a tissue with a dual evidence TF-eQTL that had high LD between the lead colocalization 

and TF-eQTL variants (r2 > 0.4), which represent potential TF regulators of genetic effects on 

phenotype [STable 3]. 
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One example of this relationship is an APBB1IP eQTL that interacts with transcription 

factor IKZF1. This eQTL is present in 31 GTEx tissues and colocalized with GWAS signals for 

four red and white blood cell traits (ENLOC regional conditional probability > 0.5), suggesting 

that genetic control of these traits could be mediated by APBB1IP expression (Astle et al. 2016; 

Barbeira et al. 2021; Wen, Pique-Regi, and Luca 2017) [Fig. 3.5C; SFig. 16; STable 4]. We 

observed three tissues (pituitary gland, thyroid, and tibial artery) with TF-eQTL interactions for 

the APBB1IP gene with IKZF1 (Georgopoulos 2002; Ezzat et al. 2006) [Fig. 3.5D,E; SFig. 17]. 

Supporting IKZF1 regulation of this eQTL, the top TF-eQTL and GWAS variants were highly 

linked (r2 > 0.85) to rs1335540, a SNP found 15 bases upstream of an APBB1IP transcript start 

site that overlaps an IKZF1 ChIP-seq peak and matches a IKZF1 motif (Kheradpour and Kellis 

2014; Kulakovskiy et al. 2018; ENCODE Project Consortium et al. 2007) [Fig. 3.5F, SFig. 17, 

18]. APBB1IP eQTLs in all three tissues with an IKZF1-eQTL interaction showed colocalization 

with blood cell traits. APBB1IP mediates blood cell adhesion and immune response (Patsoukis et 

al. 2017; Lagarrigue, Kim, and Ginsberg 2016). It is also involved in integrin-mediated changes 

in the actin cytoskeleton of mammalian cells (Lafuente et al. 2004; Lagarrigue et al. 2015) and its 

orthologue MIG-10 has been shown to regulate axon outgrowth in C. elegans neurons (Chang et 

al. 2006). IKZF1 is a chromatin-remodeling TF involved in lymphocyte development as well as 

the neuroendocrine system (Georgopoulos 2002; Ezzat et al. 2006). These findings offer two 

explanations for the genetic control of blood cell traits by APBB1IP expression: 1) via altered gene 

expression in the blood cells themselves, or 2) via neuroendocrine control of blood cell counts 

originating with altered gene expression in neurons. Offering further support to the neuroendocrine 

hypothesis, thyroid dysfunction has been shown to alter red and white blood cell counts (Irvine et 

al. 1977; Ahmed and Mohammed 2020), and the IKZF1-eQTL interactions were observed in 
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neuroendocrine tissues. Regardless, given the shared genetic signal in multiple tissues, we can 

hypothesize that IKZF1 regulates both APBB1IP expression and the implicated blood traits, 

suggesting a TF regulator of a complex trait’s genetic association. 

 

 

Figure 3.5: TF-eQTL implications for gene-by-environment and GWAS effects. A) Overlap of TF-eQTL genes 

with GxE genes from Findley et al. 2021. B) Overlap of TF-eQTL genes with GWAS colocalizing eQTL genes from 

GTEx. Left: overlap for a gene with a TF-eQTL in any tissue and colocalizing eQTL in any tissue. Right: overlap of 

tissue eQTLs with TF-eQTL and/or colocalizing GWAS locus in the given tissue. C) Representative eQTL and GWAS 

p-values are plotted for variants in the region of an APBB1IP eQTL and blood trait GWAS locus. Lead variants from 

IKZF1-eQTL interactions in thyroid, pituitary, and tibial artery are larger and outlined in black. (The lead variant from 

pituitary/artery cannot be seen as it falls behind rs1335540.) D) & E) Individual samples in thyroid and pituitary 

tissues are plotted by IKZF1 and APBB1IP expression, and linear regression lines are plotted by genotype. The 

difference in APBB1IP expression between the genotypes gets smaller as IKZF1 expression increases across the 

samples. F) Schematic of IKZF1 regulation of APBB1IP and blood cell counts. An IKZF1 binding site predicted by 

the HOCOMOCO IKZF1 motif lies nine bases upstream of APBB1IP’s transcription start site, which is disrupted by 

the alternative allele of rs1335540. Under our neuroendocrine signaling hypothesis, APBB1IP expression in 

neuroendocrine tissues goes on to alter system-wide neuroendocrine signaling, which would cause changes in blood 

cell counts. As IKZF1 appears to regulate the APBB1IP eQTLs in these tissues, it would follow that IKZF1 TF 

therefore may regulate the effect of this locus on blood cell counts.  
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3.4 Discussion 

In this chapter, we used the natural variation of TFs across tissues and individuals to 

discover 6,262 TF-eQTL interactions across 1,598 genes, which represent putative TF-based 

mechanisms of genetic effects on gene expression. These TF-eQTLs were supported by at least 

two lines of evidence, including cross-tissue and/or within-tissue variation. They were enriched to 

overlap ChIP-seq peaks and fall into the regulon of the implicated TF, corroborating with 

orthogonal evidence that these eQTLs are regulated by the implicated TFs. Furthermore, analysis 

of an IRF1-knockdown experiment validated three out of seven testable IRF1-eQTLs. We see that 

TF-eQTL genes are more likely to colocalize with GWAS loci and overlap genes with gene-by-

environment effects, and our example of IKZF1 regulation of an APBB1IP eQTL that colocalizes 

with GWAS signals for blood cell traits illustrates how our TF model can be used to discover likely 

TF regulators of GWAS effects. 

Given the high number of possible causal genetic variants and putative regulatory 

mechanisms based on statistical fine-mapping and functional annotation overlap, it is clear that 

additional methods are needed to pinpoint causal variants and mechanisms of quantitative trait 

loci. Our method offers a new approach to discovering TF regulation of a genetic variant’s effects, 

which can help us determine the eQTL’s potential mechanism of action and explain its context 

variability. One major advantage to our method is its accessibility. While functional annotations 

were used to choose variants to test and to validate our results, the main discoveries of the model 

were powered by sample genotypes and gene expression levels – the same data available in most 

eQTL analyses. We leverage variation cross-tissues and within-tissues, which both have value for 

discovering TF regulators of eQTL effects, but especially the within-tissue TF interaction analysis 
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is applicable to any eQTL data set even when a large number of different conditions may not be 

available. 

Understanding TF regulation of an eQTL effect can allow us to focus functional fine-

mapping efforts only on the implicated TF, hopefully narrowing the focus to one or a handful of 

variants that disrupt binding sites predicted by that TF’s motif or show allele-specific binding in 

its ChIP-seq data. Unlocking these mechanisms allows us to eventually improve our understanding 

of the regulatory code of the genome and how human genetic variation perturbs that system. One 

clear application of our approach is for discovering and interpreting gene-by-environment (GxE) 

effects on gene expression and phenotype. While GxE interactions on human phenotype have been 

difficult to assess, GxE interactions in relation to gene expression have been studied under various 

contexts (Moyerbrailean et al. 2016; Kim-Hellmuth et al. 2017; Findley et al. 2021, 2019; Knowles 

et al. 2018, 2017; Taylor et al. 2018; Gutierrez-Arcelus et al. 2020). Overlapping these effects with 

TF-eQTLs as in our analysis, or even performing TF-eQTL analysis in the environmental exposure 

datasets themselves, provides mechanistic hypotheses of how environmental effects impact 

genetic control of gene expression and phenotype.  

We were surprised by the lack of validation of TF-eQTLs discovered with cross-tissue 

protein levels, since protein measurements should reflect TF activity levels more accurately than 

expression measurements. However, the protein data had less power, from a smaller number of 

individuals and tissues than the expression data, and mass spectrometry may have more technical 

noise than expression quantifications from RNA-seq. Another promising option for TF 

measurement in the model is TF activity as predicted by target gene expression (Alvarez et al. 

2016), which should account for translation rates, post-translational modifications, and subcellular 

localization effects on TF activity that expression measurements cannot capture. Initial analyses 
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with this datatype did not yield strong results, but as activity estimates improve, the option should 

be revisited. 

Though we saw enrichment for TF ChIP-seq peaks and allele-specific binding, our TF 

binding enrichments were quite modest. For instance, the TF ChIP-seq overlap enrichment statistic 

of 0.05 for dual-evidence TF-eQTLs means that we observed 0.05 more variants with ChIP-seq 

overlap per TF-eQTL gene than expected – or one additional overlap per twenty genes. Part of this 

may arise from the lack of ChIP-seq data from relevant tissue and cell type contexts that match the 

GTEx eQTL data. Nonetheless, it is likely that our dual-evidence TF-eQTLs likely contain false 

positives. One of the factors that may contribute to this is the correlated expression between TFs, 

which is difficult to fully account for. Another important factor is TF-eQTL correlations that may 

be caused by cell type composition (Kim-Hellmuth et al. 2020), such that an eQTL only found in 

a given cell type might be correlated with TFs that are highly expressed in that cell type even when 

the TF does not specifically regulate the eQTL. While some of our discovered TF-eQTLs may be 

false positives due to cell type variability, the ChIP-seq enrichments and IRF1 validation indicate 

that the applied filters successfully remove many of the major cell type composition effects. 

Altogether, we consider our 6,262 TF-eQTLs to represent regulatory variants with an indication 

of being regulated by the implicated TFs, but full validation will require additional work.   

In summary, in addition to this catalog of potential TF regulators of eQTLs, we hope that 

our methods of comparing TF level with genetic variant effect can be applied in additional eQTL 

datasets, as well as for splicing QTLs and other molecular phenotypes. Our approach has the 

potential to implicate mechanisms for eQTL effects that vary across contexts without requiring 

additional datatypes or experiments, though its integration with other lines of evidence can further 

strengthen the insights, as shown in this study. Additionally, our method can improve functional 
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fine-mapping efforts by highlighting TFs that may be regulating a locus, which can be further 

investigated with functional genomic data for that TF such as motif prediction or allele-specific 

binding data. We believe this TF-based framework of genetic variant effect variability can advance 

our understanding of QTL and GWAS mechanisms and their context variability, with great 

promise for understanding environmental interactions that impact genetic disease risk.  
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Chapter 4: Unraveling the mechanisms of LIPA locus effects on 

coronary artery disease3 

 

4.1 Introduction 

4.1.1 Coronary artery disease 

Coronary artery disease (CAD), the most common type of heart disease in the United 

States, is caused by cholesterol plaque build-up in the coronary artery, the vessel that supplies 

blood to the heart (CDC 2021). These plaque build-ups cause the coronary artery to narrow, a 

process called atherosclerosis, which blocks blood flow to the heart muscles and can result in heart 

attack or heart failure (CDC 2021). Multiple genome wide association studies (GWASs) have been 

conducted on CAD in European, South Asian, East Asian, and multi-ethnic populations 

(CARDIoGRAMplusC4D Consortium et al. 2013; Coronary Artery Disease (C4D) Genetics 

Consortium 2011; Koyama et al. 2020; Matsunaga et al. 2020; Nelson et al. 2017; Nikpay et al. 

2015; Schunkert et al. 2011; van der Harst and Verweij 2018; Webb et al. 2017; Wild et al. 2011). 

These studies have identified approximately 160 genetic loci that are associated with CAD risk. 

CAD shows pleiotropy with other complex traits. One study found that 39% of CAD-

associated loci were also associated with traditional cardiovascular risk factors, such as cholesterol 

levels, blood pressure, and BMI (Webb et al. 2017). Most of these traits had genetic effects in the 

 

 

3 The molecular biology experiments described in this chapter were performed by Fang Li and Hanrui Zhang. GTEx 

genetic and gene expression data and CARDIoGRAM C4D Coronary Artery Disease GWAS data, including 

colocalization analysis, were provided by the GTEx Consortium. All remaining analyses were performed by Elise 

Flynn. 
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same direction overall (i.e., increased CAD risk and increased cardiovascular measurement 

associated with the same allele), except for HDL cholesterol-associated loci which showed an 

opposite effect (Webb et al. 2017). Additionally, 2/14 LDL cholesterol-associated loci and 3/5 

BMI-associated loci showed opposite effects  (Webb et al. 2017). Using Mendelian randomization 

to dissect the pleiotropy of CAD-associated loci found similar results, finding that increased LDL 

cholesterol and triglyceride levels were associated with increased CAD risk, while increased HDL 

cholesterol levels were not associated with risk  (White et al. 2016). Another GWAS-based study 

using associations of all common variants (minor allele frequency > 0.01) across the genome found 

positive genetic correlation between CAD and BMI (r=0.60) (Nikpay et al. 2015). These results 

suggest common genetic pathways between CAD and cardiovascular measurements, but they also 

highlight a large portion of loci that have no observed associations with traditional cardiovascular 

risk factors. 
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Table 4.1. Pleiotropy of coronary artery disease. 

Study Method Trait 
Direction vs.  

CAD risk 

(Webb et al. 2017) GWAS loci LDL same (12/14 loci) 

(Webb et al. 2017) GWAS loci HDL opposite 

(Webb et al. 2017) GWAS loci triglycerides same 

(Webb et al. 2017) GWAS loci BMI 
mixed (2/5 same, 

3/5 opposite) 

(White et al. 2016) 
Mendelian 

randomization 
LDL same 

(White et al. 2016) 
Mendelian 

randomization 
HDL none 

(White et al. 2016) 
Mendelian 

randomization 
triglycerides same 

(Nikpay, Turner, 

and McPherson 

2018) 

All common 

variants 
BMI same 
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4.1.1 LIPA locus in CAD 

GWASs and candidate gene studies have identified a CAD-associated signal near the LIPA 

gene (IBC 50K CAD Consortium 2011; Nelson et al. 2017; Webb et al. 2017; Nikpay et al. 2015; 

Wild et al. 2011) [TABLE 4.2]. These five studies identified three variants in very high LD (r2 > 

0.95): rs2246942, rs2246833, and rs1412444. These variants fall in or near the LIPA transcript 

and have been previously identified to be associated with changes in LIPA gene expression levels 

in monocytes, such that increased monocyte LIPA expression and increased CAD risk are 

associated with the same allele (Wild et al. 2011). 
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Table 4.2. Lead CAD GWAS variants in LIPA locus. 

Study Method Population Lead LIPA locus 

variant(s) 

(Wild et al. 2011) GWAS 
European; 2078 

cases, 2953 controls 

rs1412444, 

rs2246833 

(IBC 50K CAD 

Consortium 2011) 
Candidate gene 

European and South 

Asian; 15,596 cases, 

34,992 controls 

rs2246942 

(Webb et al. 2017) GWAS 

European and South 

Asian; 30,533 cases, 

42.530 controls 

rs2246833, 

rs11203042 

(Nikpay et al. 2015) GWAS 

Multi-ethnic; 

∼185,000 CAD 

cases and controls 

rs1412444 

(Nelson et al. 2017) GWAS Multi-ethnic rs2246942 
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The LIPA gene encodes lysosomal acid lipase (LAL) protein, an enzyme that hydrolyzes 

cholesteryl esters and triglycerides in the lysosome (H. Zhang 2018). Cholesteryl esters are 

enriched in LDL cholesterol, and once they are transported into the cell, LAL breaks these down 

to free cholesterol and fatty acids before they are further metabolized in the endoplasmic reticulum 

and eventually transported out of the cell (Chistiakov, Bobryshev, and Orekhov 2016) [FIG 4.1]. 

This process is extremely important to the generation of cholesterol plaques that cause 

atherosclerosis. Briefly, these plaques are believed to be initiated by the presence of macrophage 

foam cells, which are macrophage cells filled with high levels of cholesterols and lipids (Yu et al. 

2013). Multiple genes in the macrophage cholesterol metabolism pathway have been shown to 

lead to the formation of foam cells and/or atherosclerosis, but a pathological role of LAL has not 

yet been characterized (Baldán et al. 2006; Chistiakov, Bobryshev, and Orekhov 2016; Dai et al. 

2012; Fazio et al. 2001; Handberg et al. 2012; Igarashi et al. 2010; Ranalletta et al. 2006; Su et al. 

2005). 
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Figure 4.1: Macrophage cholesterol processing pathway. The role of LAL is highlighted in red in the middle of 

the diagram. LAL processes cholesterol esters into free cholesterol. Adapted from (Chistiakov, Bobryshev, and 

Orekhov 2016). 

 

 

Lending further support to a macrophage-specific role of LIPA in CAD, the LIPA locus is 

not associated with other cardiometabolic traits including cholesterol, triglycerides, or BMI (IBC 

50K CAD Consortium 2011; Webb et al. 2017; Wild et al. 2011; Willer et al. 2013). Interestingly, 

monocyte LIPA gene expression has been associated with lower HDL-cholesterol levels and 

impaired endothelial function, but this same study found no association with the lead CAD 

GWAS/LIPA eQTL variants (rs1412444 and rs2246833) and any cardiometabolic traits  (Wild et 

al. 2011). This suggests that the locus either 1) exerts its effects via a mechanism other than 
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lowered gene expression, or 2) has a context-specific effect in macrophages, after they are 

differentiated from monocytes. Supporting the first option, a missense LIPA variant, rs1051338, 

is in very high LD (r2 = 0.86) with rs1412444; however, it was found to have no functional effect 

on LAL activity (Evans et al. 2019). Thus, the functional mechanisms of the LIPA locus on CAD 

risk remain an open question. 

 

4.1.3 Summary 

In this chapter, we seek to characterize the functional mechanisms of the LIPA locus on 

CAD risk with statistical and functional fine-mapping of the LIPA eQTL. We find that a CAD 

GWAS signal colocalizes with LIPA eQTLs in multiple tissues, including Spleen and Whole 

Blood, and the lead SNP of the GWAS locus has eQTL effects in monocytes. We find enhancer 

effects of two variants, rs141444 and rs1320496, in an experimental luciferase assay. These 

variants are in partial LD (r2 = 0.45, D’ = 1) and fall only 100 bases from each other, but we are 

able to see independent statistical effects of the two variants in the eQTL and GWAS data. Finally, 

we find evidence that PU.1 may regulate the effects of rs1320496 on LIPA expression, offering a 

potential regulator of this locus’s effects on gene expression and disease risk. 

 

4.2 Materials and Methods 

4.2.1 Datasets 

One GWAS dataset  (CARDIoGRAM C4D Coronary Artery Disease (Nikpay et al. 2015)) 

and two eQTL datasets (Genotype Tissue Expression (GTEx) v8 (GTEx Consortium 2020), 

Blueprint (L. Chen et al. 2016)) were used for our analyses. CARDIoGRAMplusC4D 1000 
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Genomes-based GWAS data consisted of a multi-ethnic meta-analysis of 60,801 CAD cases and 

123,504 controls (Nikpay et al. 2015). Summary statistics were previously downloaded from the 

CARDIoGRAMplusC4D website and harmonized with GTEx variants by the GTEx Consortium. 

Briefly, GWAS results were lifted over to hg38, variants were matched between the two datasets, 

and z scores were imputed for missing variants using GTEx genotypes from European individuals  

(GTEx Consortium 2020; Barbeira et al. 2021). 

GTEx v8 data were provided by the GTEx Consortium, including whole genome 

sequencing for 838 individuals and RNA sequencing from 15,201 samples across 49 tissues, as 

well as cis-eQTL calculations in each tissue (GTEx Consortium 2020). Blueprint eQTL summary 

statistics were downloaded from the WP10 Data Portal for all LIPA gene traits (L. Chen et al. 

2016). 

 

4.2.2 Colocalization 

Colocalization between CAD GWAS loci and GTEx LIPA eQTLs was previously 

performed by the GTEx Consortium using ENLOC software (Wen, Pique-Regi, and Luca 2017; 

GTEx Consortium 2020; Barbeira et al. 2021). GTEx tissue gene expression levels and genotypes 

were processed with DAPG (Wen et al. 2016), and CAD GWAS variants were split into 

approximately LD-independent regions. ENLOC was run per region and per GTEx tissue to 

generate regional colocalization probabilities (rcp) that the GWAS locus and eQTL share a genetic 

effect (Wen, Pique-Regi, and Luca 2017). 
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4.2.3 TF-eQTL interactions 

 We correlated PU.1 expression levels with LIPA eQTL effects across GTEx tissues, as has 

been previously described (Flynn et al. 2021). For this analysis, we only analyzed 74 transcription 

factors and one variant per gene, that which was the lead CAVEMAN fine-mapped variant (Brown 

et al. 2017) in the GTEx tissue with the largest significant eQTL effect size as calculated by log2 

allelic fold change (aFC) (Mohammadi et al. 2017b). We performed Benjamini-Hochberg multiple 

testing correction across all genes per transcription factor (Benjamini and Hochberg 1995). 

 

4.2.4 Functional overlap of LIPA-/CAD-associated variants 

 The PU.1 motif was taken from ENCODE motifs (Kheradpour and Kellis 2014). PU.1 

allele-specific binding at rs1412445 was first discovered in AlleleDB (J. Chen et al. 2016). 

However, rs1320496 was not tested in this dataset, as it is not found in 1000 Genomes. We found 

that the GM12891 LCL ENCODE PU.1 ChIP-seq sample was heterozygous for all three SNPs of 

interest (rs1412444, rs1412445, and rs1320496) (ENCODE Project Consortium et al. 2007), and 

we used the Integrative Genomics Viewer to count the reads aligned to each allele of each SNP  

(Robinson et al. 2011). 

 

4.2.5 Independent effects of LIPA-/CAD-associated variants 

In order to disentangle the effects of variants in high LD, we used various linear regression 

models to estimate the SNPs’ independent effects on both LIPA gene expression and CAD. Since 

rs1412444 and rs1412445 were in almost perfect LD in both GTEx and CARDIoGRAM C4D 

cohorts, we included only rs1412445 in our models (GP) as well as rs1320496 (GG). 

For LIPA eQTL analysis, we fit four linear models: 
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rs1412445 only:  𝐸 =  𝛽𝑅𝐺𝑅  +  𝛽𝐶𝑐𝑜𝑣 + ɛ    (Eq 4.1) 

rs1320496 only:  𝐸 =  𝛽𝐺𝐺𝐺  +  𝛽𝐶𝑐𝑜𝑣 + ɛ    (Eq 4.2) 

Interaction model:  𝐸 =  𝛽𝑅𝐺𝑅  +  𝛽𝐺𝐺𝐺  +  𝛽𝑅𝐺𝐺𝑅 ∗ 𝐺𝐺 + 𝛽𝐶  𝑐𝑜𝑣 + ɛ (Eq 4.3) 

Conditional model:  𝐸 − 𝛽𝑅
1̂ ∗ 𝐺𝑅 = 𝛽𝐺𝐺𝐺  +  𝛽𝐶𝑐𝑜𝑣 + ɛ   (Eq 4.4) 

where E is log2-transformed LIPA gene count data normalized with deseq2 (Love, Huber, and 

Anders 2014); GR and GG are alternative allele dosages for rs1412445 and rs1320496, 

respectively; and cov are the covariates used by GTEx for eQTL discovery including genotype 

principal components, sequencing information, donor sex, and Probabilistic Estimation of 

Expression Residuals (PEER) method factors (Stegle et al. 2010; GTEx Consortium 2020). For 

the conditional model, we used from the rs1412445 only model to remove the effect of 

rs1412444/rs1412445 on expression, and a linear model using rs1320496 was fit to the residual 

expression. 

For CAD GWAS analysis, we used individual SNP beta estimates and p-values as reported 

in the summary statistics. We calculated the conditional effect of rs1320496 on CAD (conditional 

on rs1412445) using the cojo tool from the GCTA software package (Yang et al. 2011; Z. Zhu et 

al. 2018). GCTA was run with CAD GWAS summary statistics, GTEx genotypes for LD structure, 

and rs1412445 as a conditional SNP. 

4.2.6 Luciferase assay 

To functionally identify the regulatory region of control of LIPA expression, we 

constructed plasmids of human LIPA sequence in rs1412444 region (hg19_dna range= 

chr10:91002499-91003138) and rs2246833 region (hg19_dna range=chr10:91005571- 

91006002). These regions were amplified and cloned into KpnI and XhoI restriction sites of 

pGL4.23 vector (Promega, E8411) to generate pGL4.23-rs1412444-region and pGL4.23-
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rs2246833-region plasmids. The cloned fragments were confirmed by Sanger Sequencing. Primers 

used for plasmid construction were listed as: rs1412444 region, 5'- 

ATATATGGTACCTTTCTGTTAGTATACGAGGAGCC-3'; anti-rs1412444 region, 5'- 

ATATATCTCGAGCAGTGGGGAGTCTTCAAGGA-3'; rs2246833 region, 5'-

ATATATGGTACC CAGTCTCCCACATTAACAAGCA-3'; and anti-rs2246833 region, 5'- 

ATATATCTCGAGCCAGCAGGGGATCTCTCAAA-3'. 

To further identify the causal variants in LIPA rs1412444 region, we performed site-

directed mutagenesis. Cytosine at SNPs of rs1412444, rs1320496, and rs1412445 were replaced 

as thymidine with QuickChange II XL Site-Directed Mutagenesis Kit (Agilent, #200521) 

following manufacturer's instructions. Primers used to each SNP were designed as: rs1412445, 5'-

GGTCATTAGGAGGATGTTGGTGCTATTAATAATAGAGGAGG-3'; anti-rs1412445, 5'-

CCTCCTCTATTATTAATAGCACCAACATCCTCCTAATGACC-3'; rs1320496, 5'- 

GGAGGGGAAGTGGGATGCATG-3'; anti-rs1320496, 5'-CATGCATCCCACTTCCCCTCC-

3'; rs1412444, 5'- GCCTTTAAACACTGGAAATAACACCAGTGGC-3'; and anti-rs1412444, 

5'- GCCACTGGTGTTATTTCCAGTGTTTAAAGGC-3'. The obtained fragments were cloned 

into sites of KpnI/ XhoI in pGL4.23 vector and confirmed by Sanger sequencing. pGL4.23-CCC 

was referred to as plasmids containing LIPA rs1412444 region without mutations. pGL4.23-CTC 

was referred to as plasmids containing the risk allele of SNP rs1320496 in rs1412444 region. 

pGL4.23-TTT represented plasmids containing risk alleles of all three SNPs in rs1412444 region. 

These three plasmids resembled three haplotypes identified in human subjects. 

To detect enhancer activity in the luciferase reporter assay, constructed pGL4.23 plasmids 

containing risk regions or alleles (500 ng) were individually mixed with 10 ng of pGL4.73 Renilla 

vector (Promega, E6911) and co-transfected to THP-1 monocytes or HEK cells through 
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electroporation (Lonza, V4XC-3024). After 24 hours, cells were lysed and subjected to luciferase 

activity assay using Dual-Luciferase Assay System (Promega, E1960). The results were expressed 

as the ratio of firefly luciferase activity over Renilla luciferase activity. 

 

4.3 Results 

4.3.1 LIPA eQTLs and CAD colocalization 

GWAS-eQTL colocalization is a commonly used method to implicate causal genes 

underlying a genetic association with disease. Significant LIPA eQTLs are observed in multiple 

GTEx tissues, with the largest effects in Whole Blood and Spleen (GTEx Consortium 2020) [FIG 

4.2A], as well as in monocyte, neutrophil, and T-cell cell lines in Blueprint (L. Chen et al. 2016) 

[FIG 4.2B]. Colocalization analysis performed by the GTEx Consortium with ENLOC software 

(Wen, Pique-Regi, and Luca 2017; GTEx Consortium 2020; Barbeira et al. 2021) revealed high 

regional colocalization probabilities for CARDIoGRAM C4D CAD GWAS signal and LIPA 

eQTLs in both Whole Blood and Spleen (rcp = 0.66, 0.76, respectively) [FIG 4.3], indicating that 

CAD risk and LIPA gene expression likely share a genetic regulatory signal. LIPA was the closest 

and the only colocalizing gene in the region in these two tissues [FIG 4.4]. Colocalization with 

Blueprint eQTLs was not available, but monocytes are the only cell type with a significant eQTL 

for the lead CAD GWAS variant (rs1412444), supporting previous findings that monocytes may 

be the causal cell type for the genetic effect of this locus on coronary artery disease. These findings 

suggest that genetic control of CAD risk at this locus could be mediated by LIPA expression, 

especially in blood and immune cell types related to monocytes. 
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Figure 4.2: LIPA eQTLs. (Left) LIPA eQTL effect size of rs1412444 across GTEx tissues. Tissues with largest effect 

sizes are written. (Right) LIPA eQTL significance in BluePrint cell types based on various eQTL detection methods. 

 

 

Figure 4.3: LocusZoom plots of Coronary Artery Disease GWAS and GTEx LIPA eQTLs. Height indicates 

strength (-log10(p value)) of variant’s association with the phenotype, and the linkage with the top GWAS SNP 

(rs1412444) is shown by dot color. All three datasets show a similar p-value landscape, confirmed by ENLOC 

colocalization analysis, indicating that they may share a genetic signal. LIPA is the closest and the only colocalizing 

gene in the region. 
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Figure 4.4: Spleen and Whole Blood eQTLs in GWAS signal region. Height indicates strength (-log10(p value)) 

of variant’s association with gene expression, and the linkage with the top GWAS SNP (rs1412444) is shown by dot 

color. LIPA is the only gene with an ENLOC regional conditional probability (rcp) greater than 0. 

 

4.3.2 Independent variant effects 

Though there are many variants in high LD with rs1412444, the lead variant of the CAD 

GWAS locus, we observed that the specific region of rs1412444 showed enhancer activity in 

monocytes [FIG 4.6]. Thus, we examined the three variants of interest in this region: rs1412445, 

rs1320496, and rs1412444. These variants fall within 150 bases of each other. rs1412444 and 

rs1412445 are in extremely high LD (r2 = 0.99 in GTEx), while rs1320496, the lead variant of the 

LIPA eQTL in Spleen, is partially linked (r2 = 0.44 in GTEx). A luciferase expression assay of all 

possible haplotypes of these three variants showed transcriptional effects of rs1412445 and 

rs1320496 individually, but no effect of rs1412444 [FIG 4.7A]. Combinatorial effects of the 
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variants are more difficult to assess. However, follow up of the three haplotypes regularly observed 

in the human population (CCC, CTC, and TTT), showed incremental effects of rs1320496 and 

rs1412444/rs1412445 on gene expression (ps < 0.05) [FIG 4.7B]. These experimental results 

suggest that rs1320496 and rs1412445 can exert independent effects on gene expression, and we 

next examined if there was statistical evidence that these two variants exert independent effects on 

gene expression and disease risk in population association studies. 

We examined the effect of rs1320496 and rs1412445 individually and in combination on 

Whole Blood LIPA expression levels and on CAD prevalence. This analysis is complicated by the 

high LD (r2 = 0.45, D’ = 1) of the two SNPs in the population, but we used interaction models and 

conditional analysis to disentangle the individual SNP effects. Each SNP had significant 

associations with both LIPA expression and with CAD risk individually (eQTL ps < 10-59, GWAS 

ps < 10-10), and both SNPs had a significant association in an interaction model of LIPA expression 

(ps < 10-11) [FIG 4.8]. Most importantly, rs1320496 still has significant associations with both 

LIPA expression and CAD once the entire effect of rs1412445 is removed from the data (eQTL p 

= 3x10-10, GWAS p = 0.03; see Methods for more detail) [FIG 4.8]. These statistical modeling 

results, combined with the experimental effects of the SNPs in the luciferase assays, suggest that 

both rs1412445 and rs1320496 exert independent effects on LIPA expression and on CAD risk 

and support the presence of multiple causal variants at this locus. 
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Figure 4.6: Luciferase assay of putative regulatory regions. Luciferase expression in THP-1 monocytes is plotted 

for two fine-mapped GWAS regions. rs1412444 region shows expression activity, while rs2246833 does not.  

 

 

 

 

Figure 4.7: Luciferase assay of allelic effects of LIPA/CAD variants. A) Luciferase expression is plotted for all 

possible haplotype combinations of rs1412445, rs1320496, and rs1412444. All haplotypes with alternative alleles for 

rs1412445 and rs1320496 appear to show increased gene expression versus the all-reference haplotype. B) Luciferase 

expression for additional replicates of common population haplotypes of rs1412445, rs1320496, and rs1412444. The 

all-alternative haplotype has nominally significantly higher expression than the haplotype with only rs1320496 

alternative, which has nominally significantly higher expression than the all-reference haplotype. 
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Figure 4.8: Conditional analysis of SNPs of interest. Since both rs1412445 and rs1320496 showed enhancer 

activity in the luciferase assay, we examined the effect of the two SNPs individually and in combination on Blood 

LIPA expression levels and CAD prevalence. The effect size (regression coefficient, or beta) of the SNP is shown 

on the y-axis, with different linear models along the x-axis. Black lines represent standard deviation. Each SNP has 

significant associations with both LIPA expression and with CAD individually (rs1412445 only and rs1320496 

only; eQTL ps<10^-59, GWAS ps<10^-10), and both SNPs have a significant association in an interaction model of 

LIPA expression (interaction; ps<10^-11). Most importantly, rs1320496 still has significant associations with both 

LIPA expression and CAD once the entire effect of rs1412445 is removed from the data (rs1320496 conditional; 

eQTL p=3*10^-10, GWAS p=0.03; see Methods for more detail). 

 

4.3.3 PU.1 regulation of rs1320496 

Many eQTLs are expected to affect gene expression by disrupting transcription factor 

binding, though few transcription factor mechanisms of eQTLs have been directly validated. As 

described in Chapter 3, transcription factor regulators of regulatory variant effects can be 

hypothesized using transcription factor variation across and within contexts. To this end, we 

investigated transcription factor - LIPA eQTL relationships across 49 GTEx tissues, for all top 

LIPA eQTL variants in any GTEx tissue. We observed significant correlations between nine 

transcription factors and cross-tissue eQTL effects of rs1320496; the strongest and most 

significant effect was observed for PU.1, encoded by the SPI1 gene (Spearman rho = 0.57, p = 
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5.8x10-5) [FIG 4.9]. PU.1 is a transcription factor involved in hematopoiesis, including the 

differentiation of monocytes into macrophages (DeKoter, Walsh, and Singh 1998; Tagore et al. 

2015), thus the LIPA eQTL’s high activity in blood, spleen, and monocytes could be explained by 

this transcription factor.  

We next examined transcription factor binding site information at this locus. Many 

transcription factor ChIP-seq peaks overlap the three SNPs in the region, including PU.1 [FIG 

4.10], and we saw that the alternative allele of rs1320496 (T) is predicted to strengthen the motif-

based predicted binding of PU.1. We then examined allele-specific binding (ASB) of PU.1 

ENCODE ChIP-seq reads, with the premise that an allelic imbalance in the ChIP-seq reads would 

suggest that a variant in the locus was disrupting PU.1 binding in vivo. We observed that all three 

variants showed allelic imbalance, with higher levels of the motif-matching alternative T allele 

present in the ChIP-seq reads [FIG 4.11]. rs1412445 showed significant imbalance in the AlleleDB 

dataset (J. Chen et al. 2016). (rs1320496 was not tested.) Though we can’t differentiate between 

the three variants in ChIP-seq binding data due to their proximity, rs1320496 was the only variant 

predicted to disrupt a PU.1 binding site.  Combined with the cross-tissue pattern of PU.1 levels 

and rs1320496 LIPA eQTL effects, these results suggest that rs1320496 exerts its effect on LIPA 

expression (and potentially CAD) via altered PU.1 binding. 
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Figure 4.9: Relationships between transcription factor level and eQTL effect sizes across tissues. rs1320496 

LIPA eQTL effect size (log2 allelic fold change) vs. SPI1 level (log10(median transcripts per million in tissue)) across 

GTEx tissues. eQTL effect sizes increase as SPI1 level increases (Spearman rho=0.48, p=6*10^-4), suggesting PU.1 

binding may influence the eQTL effect. 

 

  

Figure 4.10: Transcription factor binding of rs1320496 region. A) ENCODE TF ChIP-seq peaks (bars) are shown 

for the ~400 base pair flanking region of the SNPs of interest, while ENCODE TF motif disruptions (black dots) are 

shown for the three SNPs (rs1412445 – red dot, rs1320496 – green dot, rs1412444 – purple diamond). TFs are 

organized by family instead of specific TF due to motif similarity within a family. Many TFs have some overlap in 

this region, and three TF families have both an overlapping ENCODE ChIP-seq peak and motif: SPI, MEF, ETS, and 

BCL. B) Allele-specific transcription factor ChIP-seq binding. Two TFs showed allele-specific binding (ASB) 

patterns in published TF ChIP-seq datasets (AlleleDB, ADASTRA). Count of SPI1 ChIP-seq reads aligned to 

reference (C, blue) and alternative (T, red) alleles in ENCODE SPI1 ChIP-seq conducted in LCL cell line. All three 

SNPs appear to show ASB, and rs1412445 was tested in AlleleDB and showed significant ASB.  
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4.4 Discussion 

Our analyses have offered insight into functional mechanisms of the rs1412444 locus on 

LIPA gene expression and coronary artery disease. We have prioritized two variants (rs1412445, 

rs1320496) with observed independent effects on gene expression and disease risk and have 

suggested a PU.1 transcription factor mechanism for rs1320496’s effects. Followup studies 

investigating the role of macrophage LIPA expression in CAD are ongoing but offer much promise 

for disentangling this locus’s unique effects on disease risk. 

One exciting angle of our current analysis is the applicability of our previously described 

transcription factor vs. eQTL effect approach for unraveling mechanisms of genetic control of 

complex traits (Flynn et al. 2021). Our analysis of PU.1 vs LIPA eQTLs prioritized the rs1320496 

variant, leading to discovery of its independent effects on gene expression and disease risk. Prior 

analyses had not investigated the variant as it was only in partial LD with the lead GWAS variant. 

Though further validation of the role of PU.1 is ongoing, the approach succeeded in helping to 

untangle the effects of a complex regulatory region. 

Another exciting angle is the presence of multiple potentially causal variants with 

independent effects in a single GWAS locus. Though rs1412444 and rs1320496 were only in 

partial LD (r2 = 0.48, D’ = 1) and showed independent signals when analyzed, the conditional 

effects of rs1320496 were not strong enough to have been discovered in a gene-wide or genome-

wide analysis. Linked variants’ independent effects can be dissected using functional annotations 

and experimental approaches, but examples of multiple validated causal variants in a single locus 

have been incredibly sparse (D.-L. Zhu et al. 2018; Sobreira et al. 2021). Recently, researchers 

used massively parallel reporter assays to determine which variants in linked variant sets were 

causal across thousands of eQTL loci (Abell et al. 2021). Quite strikingly, they found that 18% of 
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all tested loci had more than one variant with a significant effect on expression, and 39% of all 

loci with at least one significant variant effect had multiple, and they found that multi-variant 

eQTLs were more likely to co-localize with GWAS loci (Abell et al. 2021). These recent findings 

suggest that future analyses will discover more GWAS loci with multiple causal variants, but we 

are happy to propose one of the first examples, to our knowledge. 
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Conclusion 

Gene expression is regulated by local genomic sequence, and researchers have identified 

thousands of common genetic variants in the human population that associate with changes in gene 

expression. Many of these expression quantitative trait loci (eQTLs) lie in noncoding regions of 

the genome for which we have limited functional knowledge, impeding our ability to determine 

their mechanisms of action. Though general patterns of eQTL mechanisms have been researched, 

such as their enrichment in promoters, enhancers, and 5' and 3' untranslated regions, individual 

mechanisms of eQTL effects on gene expression remain largely unknown. Adding another layer 

of complexity, eQTLs have been assayed across tissues and under various environmental 

conditions, but the full range of eQTL activity is not known and is often context specific. 

In this dissertation, we explored the genetic regulatory landscape of gene expression across 

tissues and individuals in order to understand genetic variants’ mechanisms of actions and context 

specificity. In Chapter 2, we investigated cross-tissue eQTL and gene expression patterns, 

including for GWAS genes. We found that eQTL effects show increasing, decreasing, and non-

monotonic relationships with gene expression levels across tissues and that GWAS genes showed 

higher gene expression and larger eQTL effect sizes in relevant tissues for the GWAS trait. In 

Chapter 3, we used the natural variation of transcription factor activity among tissues and between 

individuals to elucidate mechanisms of action of eQTL regulatory variants and understand context 

specificity of eQTL effects. We discovered thousands of potential transcription factor mechanisms 
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of eQTL effects, and we investigated the transcription factors’ roles with orthogonal datasets and 

experimental approaches. Finally, in Chapter 4, we focused on a locus implicated in coronary 

artery disease risk and unraveled the causal variants and functional mechanisms of the locus’s 

effects on gene expression and disease. We confirmed the locus’s colocalization with an eQTL for 

the LIPA gene, and using statistical, functional, and experimental approaches, we highlighted two 

potential causal variants in partial linkage disequilibrium. 

A central theme of our work is our model of transcription factor binding effects [FIG 3.1]. 

This model was supported by the differences in eGene expression between positively and 

negatively correlated eQTLs and the presence of non-monotonic patterns in Chapter 2. While we 

did not extensively investigate correlation directions and transcription factor levels in Chapter 3, 

we observed both positive and negative correlations. Finally, in Chapter 4, we demonstrated the 

usefulness of our model by predicting the PU.1 regulation of a LIPA eQTL and discovering 

rs1320496, a genetic variant with potential independent causal effects on LIPA gene expression 

and coronary artery disease risk. This theoretical transcription factor-based framework can be used 

to propose mechanisms for regulatory variant effects as well as to understand their context 

variability. 

An ongoing challenge highlighted by our results is the difficulty in fine-mapping variants 

and determining their regulatory mechanisms. Many variants in a locus may show statistically 

significant associations with gene expression or phenotype, and we cannot reliably assume that the 

variant with the lowest p-value is the causal variant. Statistical fine-mapping can select a set of 

potentially causal variants with some probability, but these sets are often large – indeed, we saw 

that 44% of common variants in GTEx were in a fine-mapped eQTL set in at least one tissue. Once 

a variant set is statistically fine-mapped, functional annotations and experimental approaches can 
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be used to determine causal variants, but the vast majority of molecular mechanisms of individual 

eQTLs or GWAS loci remain unknown. Adding a layer of complexity, multiple variants in the 

same locus can be causal, such as we discovered with our coronary artery disease and LIPA eQTL 

locus, and recent results suggest that this may happen quite often (Abell et al. 2021; Mouri et al. 

2021). 

We hope that our transcription factor-based approach can be applied by others to determine 

relevant transcription factor(s) driving eQTL mechanisms, which can then be used to inform fine-

mapping and determine causal genetic variants that are predicted to bind the implicated 

transcription factor. The current approach to determine causal genetic variants and their functional 

mechanisms generally consists of statistically fine-mapping a locus, investigating genomic 

annotations overlapping the fine-mapped variants, and performing functional experiments of the 

variants’ effects on gene expression. Our transcription factor analysis could allow researchers to 

fine-tune their genomic annotation investigations, focusing on variants that overlap annotations 

for the relevant transcription factor instead of the high percentage of variants that overlap any 

functional annotation. It could also inform follow-up experimental approaches, such as ensuring 

that the experimental cell line expresses the putative regulatory transcription factor. On its own, 

our transcription factor-based approach cannot provide conclusive evidence for a fine-mapped 

variant or its mechanism, but it adds a valuable layer of evidence to those available with the current 

genomics toolkit. 

Another application of our transcription factor-based framework is to predict regulatory 

variant activity in new contexts. Variant effect predictors for coding effects have existed for many 

years (Ng and Henikoff 2001; Adzhubei et al. 2010; McLaren et al. 2016) and can predict 

deleterious effects of variants on protein structure and function. On the noncoding side, 
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transcription factor binding models are a form of variant effect prediction (Kheradpour and Kellis 

2014; Rastogi et al. 2018; Kulakovskiy et al. 2018), and convolutional neural network models have 

been developed to predict genetic effects on chromatin accessibility, transcription factor binding, 

and histone marks across contexts (Zhou and Troyanskaya 2015; Kelley, Snoek, and Rinn 2016). 

Recently, eQTL activity was predicted between tissues using variant, gene expression, and 

chromatin state annotations (GTEx Consortium 2020). However, these methods depend on 

transcription factor binding, chromatin accessibility, or other epigenomic data in the relevant 

context, as well as suffering from individual drawbacks for each method. While it would be naïve 

to expect that eQTL activity can be perfectly predicted from an eGene’s expression or a single 

transcription factor’s level, this framework could be integrated into existing models and has the 

benefit of requiring only gene expression data from the relevant context. 

Of course, our research does not come without its limitations. Firstly, while our model is 

based on non-monotonic relationships between eQTL effects and transcription factor levels, we 

have not actually discovered any. Our discoveries in Chapter 2 of non-monotonic relationships 

between eQTL effects and eGene expression levels were based on limited datapoints (49 tissues), 

and upon closer examination many examples did not hold up. We did not perform extensive 

analysis of correlation direction for our transcription factor-eQTLs in Chapter 3, though initial 

analyses did discover both increasing and decreasing interactions. Secondly, cell type 

complications plagued multiple parts of our analysis. In Chapter 3, it was difficult to disentangle 

cell type interactions from our transcription factor-eQTL interactions, and our approach of 

removing tissues with large cell type variability did nothing to account for cell type interactions 

from the remaining tissues. We also likely suffered from the lack of transcription factor ChIP-seq 

data in relevant cell types when validating our model, highlighting a need for the genomic research 
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community. Finally, in Chapter 4, the PU.1 ChIP-seq data was assayed in lymphoblastoid cell lines 

and our experiments were mainly conducted in THP-1, a monocyte-like cell line. However, 

previous research has suggested that the coronary artery disease locus effects on LIPA expression 

may be specific to macrophages, though monocytes are closely related. These issues again 

highlight the importance of conducting assays in the relevant context, as we do not yet fully 

understand the context variability of genetic variant effects. 

Our current approach can be expanded and applied in many ways. In this dissertation, we 

used transcription factor expression levels as a proxy for transcription factor activity. We were 

surprised by the lack of validation of transcription factor-eQTLs discovered with transcription 

factor protein levels, but this may be due to mass spectrometry’s reduced resolution at the lower 

levels observed for transcription factors. Another promising option for future research is 

transcription factor activity as predicted by target gene expression (Alvarez et al. 2016), which 

should account for translation rates, post-translational modifications, and subcellular localization 

effects on transcription factor activity that expression measurements cannot capture. Our 

transcription factor model can also be applied for other types of regulatory factors and allelic 

phenotypes, such as RNA binding proteins and gene expression and transcript structure or long 

noncoding RNAs and gene expression. Long noncoding RNAs may have the added benefit of 

being more accurately assayed by RNA-seq, as they are not translated and are generally active in 

their transcribed state. 

Our research provides a deeper understanding of gene regulation and of genetic and 

environmental contributions to complex traits and disease, enabling future research surrounding 

the context variability of genetic effects on gene expression and disease. Unraveling the context 

variability of eQTLs can help us determine the biological contexts in which GWAS loci affect 
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human phenotype and disease, which has great implications for understanding disease etiology 

and for targeting pharmaceutical interventions. Determining eQTL mechanisms can also help us 

understand the non-coding genetic regulatory code, which informs gene expression throughout our 

bodies but still largely remains a mystery. We hope that our work will allow researchers to develop 

stronger functional genomic models and discovery tools and will contribute to a greater 

understanding of the context variability of genetic variant effects in the years to come. 
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