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ABSTRACT 

In fractured materials of very low matrix permeability, fracture connectivity is the first-

order determinant of the occurrence of flow. For systems having a narrow distribution of 

object sizes (short-range percolation), a first-order percolation criterion is given by the total 

excluded volume that is almost constant at threshold. In the case of fractured media,  recent 

observations have demonstrated that the fracture-length distribution is extremely large. 

Because of this widely-scattered fracture-length distribution, the classical expression of the 

total excluded volume is no longer scale invariant at the percolation threshold and has no 

finite limit for infinitely large systems. Thus, the classical estimation method of the 

percolation threshold established in short-range percolation becomes useless for the 

connectivity determination of fractured media. In this study, we derive a new expression of 

the total excluded volume that remains scale invariant at the percolation threshold and that 

can thus be used as the proper control parameter, called parameter of percolation in 

percolation theory. We show that the scale-invariant expression of the total excluded volume 

is the geometrical union normalized by the system volume rather than the summation of the 

mutual excluded volumes normalized by the system volume. The summation of the mutual 

excluded volume (classical expression) remains linked to the number of intersections between 

fractures, whereas the normalized geometrical union of the mutual excluded volume (new 

expression) can be basically identified to the percolation parameter. Moreover, fluctuations of 

this percolation parameter at threshold with length and eccentricity distributions remain 

limited within a range of less than one order magnitude, giving in turn a first rough 

percolation criterion. We finally show that the scale-dependence of the percolation parameter 

causes the connectivity of fractured media to increase with scale, meaning especially that the 

hydraulic properties of fractured media can dramatically change with scale. 
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In fractured rocks of very low matrix permeability, such as crystalline rocks, fluid flow 

is often restricted to a few fractures, as shown by hydraulic field experiments [1]. The 

occurrence of flow and transport in such fractured media is thus conditioned by the fracture-

network connectivity at the system scale. The connectivity of fracture networks, which may 

be defined through the probability of connection of a system, has been determined for a 

variety of two- and three-dimensional elements. The early models using sticks in two 

dimensions [2,3] were followed by plates and polygons in three dimensions [4,5], in order to 

account for more complex shapes of elements. According to more recent observations of 

fractured rocks, fractures are not only characterized by a variety of shapes but also by a broad 

range of lengths. Their length distribution is currently modeled by a power-law such as: 

 n(l)=α.l-a (1) 

where n(l).dl is the number of fractures having a length in the range [l,l+dl], α is the 

coefficient of proportionality, and a is an exponent varying generally between 1 and 3 [6,7]. 

The consequences of this wide and non-limited range of fracture lengths on connectivity have 

been studied in two dimensions on off-lattice stick networks [8] as well as in three dimensions 

on on-lattice stick networks and on off-lattice networks of orthogonal planes [9]. In this paper, 

we propose an enhanced analysis of the connectivity properties of multi-scale fracture 

networks. Fractures are modeled by more realistic elliptic shapes [1] and the connectivity is 

analyzed for off-lattice networks of ellipses with widely-scattered distributions of eccentricity 

and length (Fig. 1).  

In the scope of percolation theory, there is a single control parameter - the percolation 

parameter - that statistically measures the state of connection [10]. In short-range percolation, 

i.e. when all elements are much smaller than the system size, the control parameter is the 

density of objects. When systems are made up of elements of different shapes, the total 

excluded volume gives a better percolation criterion than the density of object and can thus be 

used as a better parameter of percolation [11].  

However, because the natural fracture length distribution appears to be a power-law (1), 

fractures of the size of the system appear with a non-negligible probability and introduce 

long-range correlations. As a consequence, some systems may be connected at all scales by a 

single crossing fracture. The probability of including in the system such a fracture increases 

with scale provided that the length distribution is broad enough, implying that the density of 

objects at threshold, averaged over a large number of simulations, decreases with the system 
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 3 

size. The density is thus no longer suitable for defining alone the connection state of the 

system. In this study, we show that there still exists a scale-invariant parameter for such long-

range percolation problems, which is no longer the average of the mutual excluded volumes 

but their geometrical union.  

I. CLASSICAL EXPRESSION OF THE EXCLUDED VOLUME FOR A WIDELY-
SCATTERED LENGTH DISTRIBUTION OF OBJECTS 

Because of its key role in this study, we give the detailed definition and expression of 

the total excluded volume as it has been classically derived firstly in short-range percolation 

and secondly in long-range percolation. In short-range percolation when all elements are 

identical, Balberg [11] defines the excluded volume of an object (Ve) “as the volume around 

an object into which the center of another similar object is not allowed to enter if overlapping 

of the two objects is to be avoided”. The total excluded volume is this volume multiplied by 

the number of elements at threshold Nc. For systems made up of non-identical elements, the 

total excluded volume <Vex> is modified by replacing the mutual excluded volume Ve by its 

average over all possible pairs of elements <Ve>. The variations of <Vex> at the percolation 

threshold with respect to the element shape remains limited so that <Vex>=0.7-2.8 in three 

dimensions [12,13]. In long-range percolation, the total excluded volume has been classically 

derived according to the same two-stages method: (i) the calculation of the mutual excluded 

volume Ve for two ellipses of different size and (ii) the average over all possible pairs of 

ellipses to get the total excluded volume <Vex>. 

(i) The mutual excluded volume Ve for any two convex overlapping objects can be derived 

theoretically as it depends only on the mean radii of curvature R1 and R2, on the surface areas 

A1 and A2 and on the volumes of the objects V1 and V2 [14]: 

 
π4

.RA.RAVVV 1221
21e

+
++=  (2) 

The expression of the mutual excluded volume of two discs of radii R has been analytically 

calculated and is: Ve=π2.R3 [4]. In the more complex case of ellipses of eccentricities e1 and e2 

and of major-axis length l1 and l2, we computed the excluded volume numerically following 

the procedure of [13] and found: 
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 4 

This last expression (3) is of the form of (2) and generalizes the expression of the mutual 

excluded volume of two discs. 

(ii) When averaged over all possible pair of ellipses having both a distribution of 

eccentricities e and major axes l, expression (3) leads to ><><><>=< lleVe ... 22π . For 

a network made up of N elements, the total excluded volume is simply the mutual excluded 

volume multiplied by N [11]: 

 ><><><>=< lleNVex .... 22π  (4) 

In order to test our algorithms, we have computed <Vex> for systems of volume V made 

up of discs having all the same radius much smaller than the system size, i.e. when the 

exponent a in equation (1) tends toward infinity. We find a normalized total excluded volume 

<Vex>/V of 2.2 which is in close agreement with [5] but different from [13,15]. The 

discrepancy of 20% with Charlaix’s result is likely to result from the different way of 

generating the Poisson distribution of the disc centers.  

When applied to systems having widely-scattered distributions of element size such that 

their power-law length exponent a in expression (1) is lower than 4, Equation (4) normalized 

by the system volume was found to vary over several orders of magnitude at the percolation 

threshold (Fig. 2). This conclusion confirms the results previously obtained for perpendicular 

plans networks [9]. Because of its scale-dependence, the normalized total excluded volume 

cannot be used as a single order parameter for defining the state of connection of the system 

as it is in short-range percolation theory. However it is still exactly proportional to the density 

of intersections I (Fig. 3). The number of intersections per ellipse is given by the probability 

of intersection between two ellipses <Ve>/V times the number of ellipses N, which leads to 

I=<Vex>/V. As a consequence, at threshold, the number of intersections per object is no longer 

scale invariant as in short-range percolation [16]; more precisely it decreases by orders of 

magnitude. It especially implies that the density of interconnected objects at percolation 

threshold decreases with scale. 

II. EXPRESSION OF THE PARAMETER OF PERCOLATION FOR A WIDELY-
SCATTERED LENGTH DISTRIBUTION OF OBJECTS 

Previous numerical results obtained on orthogonal plans seem to indicate that a scale-

invariant expression is given by the third moment of the length distribution <l3> rather than 

by the multiplication of the first moment by the second moment <l>.<l2> [4,9]. We denote 

this new expression by <V*> and derive it by replacing <l>.<l2> by <l3> in (4): 

ha
l-0

01
35

82
1,

 v
er

si
on

 1
 - 

9 
M

ar
 2

00
7



 5 

 ><><>=< 32 ...* leNV π  (5) 

We have checked that, whatever the length distribution, <V*>/V remain scale-invariant 

for systems made up of discs (Fig. 4a) or of ellipses having either constant eccentricity or a 

uniform distribution of eccentricity (Fig. 4b). Because of its scale-invariance, V*/V can be 

used as the parameter of percolation p, proving meanwhile that the state of connection of the 

system can still be characterized by a single order parameter. We thus propose the following 

expression for the parameter of percolation p: 

 3

3
2 ...

L
leNp ><

><= π  (6) 

where L is the system size. 

We note that the two expressions (4) and (5) normalized by the system volume V, i.e. 

<Vex>/V and <V*>/V, lead approximately to the same estimate, as long as the length 

distribution remains bounded and narrow (i.e. for power-law length distributions such that 

a>4). On the other hand, when the radius distribution is widely-scattered –i.e. when a<4 in the 

case of the power-law distribution–, the two formulae lead to very different estimates. It 

especially means that the right theoretical expression can only be found by studying systems 

with widely-scattered length distribution. 

III. RELATION BETWEEN THE CONCEPT OF EXCLUDED VOLUME AND 
THE EXPRESSION OF THE PARAMETER OF PERCOLATION 

We have seen in the previous section that the classical total excluded volume is no 

longer connected to the parameter of percolation. In this section, we show that the parameter 

of percolation p as given by (6) has still a sense in terms of mutual excluded volume. We 

argue that the volume <V*> used in the derivation of the parameter of percolation for a set of 

N ellipses is the union of the mutual excluded volume of the N ellipses, whereas the total 

excluded volume <Vex> is the average of the mutual excluded volume over all possible pairs 

taken in the set formed by the N ellipses. 

We calculate the contribution of the N ellipses to the excluded-volume union by 

ordering them in decreasing size. The contribution of the largest ellipse to the excluded-

volume union, along with all other discs, is given precisely by the excluded volume of the two 

largest elements of sizes l and l-dl, because all other mutual excluded volumes are imbedded 

in the excluded volume of these two largest elements. From the expression of the mutual 

excluded volume (3) and when dl<<l, the contribution of the two largest elements is given by 
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 6 

π2.<e>.l3. We then remove the largest element from the system in order to avoid redundancy 

and calculate the contribution of the remaining ellipses to the excluded-volume union. This 

process iterated over all elements of decreasing size corresponds to the integration over the 

length distribution of ellipses, so that the excluded-volume union is equal to llnl d).(.32 ∫π , 

which is precisely <V*>. We thus demonstrate that the parameter of percolation is the 

geometrical union of the mutual excluded volume. 

The geometrical derivation of the excluded-volume union is closely related to the 

theoretical concept of percolation according to which the percolation threshold is reached 

when the available volume in terms of excluded volume vanishes. Moreover, the excluded-

volume union <V*> can be dominated by the largest elements, reflecting the fact that the 

network can be connected by the largest elements. By averaging the mutual excluded volume 

over all possible pairs of elements, the total excluded volume <Vex> remove this possibility 

and thus underestimates the connection probability of the system. 

IV. ESTIMATES OF THE PERCOLATION THRESHOLD Pc AND 
GEOLOGICAL IMPLICATIONS 

In this section, we use the expression of the percolation parameter p (6) to determine the 

percolation threshold pc as a function of the eccentricity e and of the power-law length 

exponent a (Figs. 5a and 5b). In the case of short-range percolation–i.e. for power-law length 

exponents a larger than 4–, the values of pc remain within the range 0.7-2.8 found by Balberg 

[12] (Fig. 5a). More generally, whatever the length and eccentricity distributions, the values 

of pc remain restricted to a range of width smaller than one order of magnitude, giving in turn 

a first-order criterion of percolation for systems made up of widely-scattered length and 

aspect-ratio distributions.  

The variations of pc according to e and a display two common characteristics: (i) an 

increase when decreasing a at fixed eccentricity e (Fig. 5b) and (ii) a maximum when varying 

the eccentricity e at fixed power-law length exponent a (Fig. 5a). As this topic is still under 

investigations, we report here the most likely origins of these variations. (i) The increase of 

the percolation threshold pc when the power-law length exponent a decreases (Fig. 5b) may 

be due to truncation effects. Indeed ellipses truncated by the sides of the system (see Fig. 1) 

have an internal characteristic length smaller than the original one, and an aspect ratio larger 

than the generic eccentricity e. Since the probability of occurrence of large truncated fractures 

increases when a decreases, we expect deviation due to truncation effect to increase when a 

decreases. (ii) For networks made up of elements having all the same length much smaller 
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 7 

than the system size (a=∞), the presence of the maximum may be an effect of the varying 

aspect ratio. The value of pc(e,a=∞) is thought to increase when the local anisotropy decreases 

from that of sticks to that of spheres [11]. Applying this reasoning to ellipses in 3D, the 

maximum value of the percolation parameter at threshold is attained when the local 

anisotropy is at a minimum. The local anisotropy is a measure of the dispersion of the typical 

lengths of the ellipse in the three dimensions:1,e,0. Since the minimum variance of this triplet 

is reached when  e=0.5, the total excluded volume is expected to reach a maximum value for 

ellipses of eccentricity around 0.5.  

The parameter of percolation p as defined by expression (6) can be derived analytically 

in the case of a power-law length distribution such as (1). As long as a<4, the parameter of 

percolation depends on the system size as L4-a for a given network (i.e. for fixed values of a 

and fracture density). This case is relevant to natural fractures whose power-length exponents 

a are in the range 2.5-4 [17]. The percolation parameter is thus expected to increase with 

system size, implying that systems are on average unconnected at small scales, and connected 

at large scales. The crossover scale above which fracture networks are always well connected 

is defined by p(L)=pc. This has a strong impact on the hydraulic properties of geological 

media. If, at low scales, the crystalline rocks permeability is very low because it is controlled 

by the matrix (non fractured rock), at scales larger than the previously identified crossover 

scale, there is an interconnected network of fractures, whose permeability can be larger by 

several orders of magnitude as observed by Clauser [18]. Similar conclusions have been 

drawn in clayey media [19]. The widely-scattered fracture-length distribution entails an 

increase of connectivity that in turn may change completely the hydraulic properties of the 

fractured media. 

 

In conclusion, we have shown that the state of connection of a system made up of 

elements having a widely-scattered and non-limited length distribution is still determined by a 

single scale-invariant control parameter that we call, like in short-range percolation, the 

parameter of percolation. This parameter of percolation has a meaning in terms of excluded 

volume as it is precisely the geometrical union of the mutual excluded volumes. On the other 

hand, the total excluded volume –average of the mutual excluded volume over all pair of 

elements–, previously proposed as a parameter of percolation, decreases by orders of 

magnitude at threshold but still relates to the number of intersections. Fluctuations of the 

percolation threshold with the eccentricity and length distributions remain limited to a range 

smaller than one order of magnitude, giving thus a first rough percolation criterion. Finally, 
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 8 

the new expression of the parameter of percolation underlines an increase of the connectivity 

of natural fractured media, which is consistent with the observed increase of permeability in 

fractured media. 
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Figure captions 

FIG. 1: Infinite clusters at threshold for a=3.25 and (a) e=1 (563 discs) for the 

network on the left and (b) e=0.1 (4900 ellipses) for the network on the right. The 

grey scale shading is proportional to the size of the element. 

FIG. 2: <Vex>/V at threshold normalized by the excluded volume at the minimal size 

L0 for a=∞ (squares), a=4 (circles), a=3 (upward triangles) and a=2.5 (downward 

triangles). 

FIG. 3: Relation between the number of intersections and the total excluded volume 

I/[<Vex>/V] at threshold normalized by its value at the minimal length L0 in the case 

of discs for a=∞ (upward triangles), a=3.5 (circles) and a=2.5 (squares). 

FIG.4: Scale invariance of V*/V for different length distributions (a) in the case of 

discs and (b) in the case of ellipses having fixed eccentricities (solid symbols) or a 

uniform distribution of eccentricities (open symbols). 

FIG. 5: (a) Percolation threshold pc against the eccentricity e for a=2.5 (open discs), 

a=3 (upward open triangles), a=3.5 (downward open triangles), a=5 (open squares) 

and a=∞ (solid squares). (b) Percolation threshold pc against the power-law length 

exponent a for different values of the eccentricity e. Dashed lines indicate the limits 

found by Balberg [12] for three-dimensional networks. 
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