
c© 2010 John Henry Kelm

HYBRID COHERENCE FOR SCALABLE MULTICORE ARCHITECTURES

BY

JOHN HENRY KELM

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2010

Urbana, Illinois

Doctoral Committee:

Associate Professor Steven S. Lumetta, Chair
Associate Professor Sanjay J. Patel
Matthew I. Frank, Ph.D.
Assistant Professor Deming Chen

ABSTRACT

This dissertation describes a cache architecture and memory model for 1000-

core microprocessors. Our approach exploits workload characteristics and pro-

gramming model assumptions to build a hybrid memory model that incorporates

features from both software-managed coherence schemes and hardware-managed

cache coherence. The goal is to achieve the scalability found in compute accel-

erators, which support relaxed ordering of memory operations and programmer-

managed coherence, while providing a programming interface that is akin to the

strongly ordered cache coherent memory models found in general-purpose multi-

core processors today.

The research presented in this dissertation supports the following thesis: To

be scalable and programmable, future multicore systems require a cached, single-

address space memory hierarchy. A hybrid software and hardware approach to

coherence management is required to support such a memory hierarchy in 1000-

core processors and is achievable only by leveraging the characteristics of target

applications and system software.

We motivate a hybrid memory model and present our approach to addressing

the challenges facing such a model. We discuss and evaluate a scalable 1024-

core architecture, workloads that we see as targets for such an architecture, a

memory model that relies on software management of coherence, and scalable

hardware coherence schemes. Using these components, we develop the software

and hardware support for a hybrid memory model. We demonstrate that our

techniques can be used to reduce hardware design complexity, to increase software

scalability, or to combine the two.

ii

I dedicate this dissertation to my mother for her inspiration as a person and

unwaivering support in all my academic, professional, and personal pursuits.

iii

ACKNOWLEDGMENTS

The work presented in this dissertation is the result of the efforts of many indi-

viduals. The students and faculty I have interacted with during my time at the

University of Illinois have enriched the last five and a half years of my life and I

apologize if I make any omission in acknowledging those who supported me during

my stay in graduate school.

I thank the Rigel group for their assistance in cultivating the ideas that went

into this dissertation. Danny Johnson and Matt Johnson were instrumental in

the design and implementation of many aspects of this dissertation. Without

Danny’s seemingly infinite capacity to take opposing sides of any argument I put

forth, I doubt any of our papers would have had the rigor necessary for acceptance

to conferences. Matt’s work extending various parts of the Rigel infrastructure

and his efforts helping to develop WayPoint were key to the success of this

dissertation. Neal Crago has always provided helpful feedback on all aspects of my

work and has given me an opportunity to help him develop his own dissertation

ideas, which has been very rewarding in itself. Aqeel Mahesri, whose in-depth

knowledge a variety of information is unmatched, was key to motivating the initial

Rigel design. I thank Bill Tuohy for his experienced guidance and the high-quality

compiler infrastructure used in this work. Above all, the Rigel team has served

as a close group of friends from whom I have many fond memories to take with

me beyond graduation.

Advanced Micro Devices has provided material support for my research through

iv

grants and a fellowship in 2007, for which I am thankful. Moreover, my summer

spent interning at AMD and the people I met played a key role in my development

as a computer architect. In particular, I would like to thank my mentor at AMD,

Ben Serebrin, for his patience and guidance that has continued to this day.

I thank my committee members Deming Chen, Matthew Frank, and Sanjay

Patel for providing feedback and guidance. In particular, I thank Matt Frank for

his advice on bringing a systems project from nothing into a reality. Moreover,

if it were not for his urging in 2007 that I take ownership of the initial design

documents for Rigel, none of this would have come into being. Sanjay Patel, who

provided the original concept of Rigel, has provided a great deal of support in the

development of Rigel. His efforts have been critical to the success and visibility of

the project. I also want to thank Rose Harris, Marie-Pierre Lassiva-Moulin, and

Lila Rhodes for all of their administrative support.

Without the support of my adviser, Steven Lumetta, this dissertation would

not be possible. Steve’s meticulous attention to detail, mastery of all things tech-

nical (and many things arcane), professional and personal advice, and unwaivering

pursuit of excellence have improved my work and shaped my world view in in-

numerable ways. I am deeply indebted to the great patience Steve has shown in

my path from a näıve and unfocused first-year graduate student to a where I am

today.

Graduate school is as much about personal development as it is professional

development. As such, I must thank my many friends for their support during my

time in Illinois. My dear friend, David Albrecht, has served as a close confidant

and general instigator of trouble. I owe him much gratitude for keeping graduate

school interesting. Shane Ryoo provided countless hours of professional advice

early on in my career and continues to be one of my closest friends. Greg Colombo,

Isaac Gelado, Tom Hughes, David Kaplan, Mark Murphy, and Kirsten Stark have

v

all supported me professionally and personally during my time in graduate school.

I cannot thank Brandon and Melissa Swamy enough for their personal support

during my first two years of graduate school and their continued support to this

day. Lastly, I thank Bethany Krebs for her love and support during the last year

and a half of graduate school. She has brought much joy into my life and given

me a different perspective on the world.

I am deeply indebted to my mother Cynthia for always putting my education

and upbringing ahead of all other concerns. She has served as a constant source

of inspiration and demonstrated true perseverance. Without her support and love

this dissertation would not have been possible. Above all else, her unequivocal

and unconditional support of my decisions and desires I have come to appreciate

more than any other form of support I have ever received.

vi

TABLE OF CONTENTS

LIST OF TABLES . xi

LIST OF FIGURES . xii

LIST OF ABBREVIATIONS . xv

CHAPTER 1 Introduction . 1

CHAPTER 2 Motivation and Background 10
2.1 Trends in Increased Parallelism 10
2.2 The Limits of CMP Scalability . 12
2.3 Elements of Parallel Accelerator Design 15

2.3.1 Element 1: Execution Model 17
2.3.2 Element 2: Work Distribution 18
2.3.3 Element 3: Synchronization 19
2.3.4 Element 4: Locality Management 20
2.3.5 Element 5: Memory Model 21
2.3.6 Low-Level Programming Interface 23

2.4 Design Space of Cache Coherence Protocols 25
2.5 Discussion and Summary . 30

CHAPTER 3 Architecture Baseline . 31
3.1 Rigel Architecture . 31

3.1.1 Overview . 31
3.1.2 Cache Management . 33
3.1.3 Coherence and Synchronization 37
3.1.4 Scalability . 38

3.2 Rigel Task Model . 39
3.2.1 Software API . 40
3.2.2 Queue Management . 40
3.2.3 Implementation . 42

3.3 Feasibility of Physical Design . 46
3.4 Discussion and Summary . 46

vii

CHAPTER 4 Workload Characterization 48
4.1 Workload Description . 48
4.2 Bulk-Synchronous Patterns in Accelerator Workloads 53

4.2.1 Parallelism Structure . 53
4.2.2 Sharing Patterns . 54
4.2.3 Accelerator Workload Characteristics 56
4.2.4 Cache Coherence Management 58

4.3 Coherence Overhead for Accelerator Workloads 58
4.3.1 Network Traffic . 59
4.3.2 Software-Managed Coherence Efficiency 60
4.3.3 Performance Trade-Offs in Coherence Management 61

4.4 Discussion and Summary . 62

CHAPTER 5 Task-Centric Memory Model 63
5.1 Design . 63

5.1.1 Coherence Algorithm . 65
5.1.2 Memory Ordering . 68

5.2 Optimizations . 69
5.3 Coherence Management Placement 72
5.4 Summary and Discussion . 76

CHAPTER 6 Scalable Probe Filtering 77
6.1 Baseline Probe Filter Architecture 78
6.2 Scalable Probe Filtering Architecture 79

6.2.1 Broadcast . 80
6.2.2 Collection . 81

6.3 Summary and Discussion . 82

CHAPTER 7 Waypoint . 84
7.1 Motivation . 84

7.1.1 Sharer Tracking . 85
7.1.2 Directory Size . 85
7.1.3 Directory Associativity . 86
7.1.4 Replacement Policy . 88

7.2 Design . 90
7.2.1 Directory Coherence Protocol 90
7.2.2 WayPoint Design . 91
7.2.3 WayPoint Operation . 93
7.2.4 Accessing Entries in the Overflow Directory 93
7.2.5 Release Messages . 94
7.2.6 Overflow Directory Removal 95
7.2.7 Hardware Directory Cache Eviction 95

7.3 Summary and Discussion . 97
7.3.1 Optimizations . 97
7.3.2 Impact of Other Workloads 98

viii

7.4 Summary . 99

CHAPTER 8 Cohesion . 100
8.1 Motivation . 100

8.1.1 The Case for Software-Managed Cache Coherence 101
8.1.2 The Case for Hardware Cache Coherence 102
8.1.3 A Hybrid Memory Model 104
8.1.4 Summary . 105

8.2 Design . 106
8.2.1 Hardware Coherence Protocol 107
8.2.2 Software Coherence Protocol 109
8.2.3 Cohesion: A Hybrid Memory Model 110
8.2.4 Software Interface to Cohesion 113
8.2.5 Coherence Domain Transitions 114
8.2.6 HWcc ⇒ SWcc Transitions 116
8.2.7 SWcc ⇒ HWcc Transitions 117

8.3 Protocol Optimizations . 119
8.4 Software Use Cases . 120
8.5 Programming Examples . 123

8.5.1 Static Partitioning . 123
8.5.2 Dynamic Partitioning . 124
8.5.3 System Software . 125

8.6 Compatibility . 127
8.7 Summary . 129

CHAPTER 9 Evaluation . 130
9.1 Methodology . 130
9.2 Results: Task-Centric Memory Model 132

9.2.1 Policy Selection . 133
9.2.2 Software Coherence Action Utility 135

9.3 Results: Scalable Probe Filtering 137
9.4 Results: WayPoint . 138

9.4.1 Directory Cache Sizing . 138
9.4.2 Directory Cache Associativity 140
9.4.3 Power and Area Estimates 142

9.5 Results: Cohesion . 143
9.5.1 Message Reduction . 143
9.5.2 Directory Entry Savings 144
9.5.3 Directory Area Estimates 146
9.5.4 Application Performance 147
9.5.5 Cohesion Summary . 148

9.6 Summary and Discussion . 149

ix

CHAPTER 10 Related Work . 150
10.1 Task-Centric Memory Model Related Work 150

10.1.1 Parallel Programming Models 152
10.1.2 Parallel Memory Models 152
10.1.3 Accelerator Workloads . 154

10.2 WayPoint Related Work . 154
10.2.1 Coherence Management 154
10.2.2 Directory Cache Associativity 157

10.3 Cohesion Related Work . 158
10.3.1 Hardware Schemes . 159
10.3.2 Software-Based and Hybrid Schemes 160

CHAPTER 11 Summary and Conclusions 163
11.1 Implementing Coherence in Future Processors 164
11.2 Symmetry Versus Asymmetry . 164
11.3 Summary . 168

11.3.1 The Task-Centric Memory Model 168
11.3.2 WayPoint: Scalable Hardware Cache Coherence 169
11.3.3 Cohesion: A Hybrid Memory Model for Accelerators . . 170

11.4 Conclusions . 170

APPENDIX A Task-Centric Memory Model Formal Specification 172

REFERENCES . 179

AUTHOR’S BIOGRAPHY . 192

x

LIST OF TABLES

2.1 Design parameters for coherence on throughput-oriented architec-

tures similar to our baseline. We use the following abbreviations

with values used in our evaluation in parentheses: n: Potential shar-

ers (128). S: Number of active sharers (0 ≤ S ≤ 128). i: Number

of sharer pointers in limited schemes (4). C: Sharers covered by a

coarse-grained vector bit (often 4). L2s: Number of sets per sharer

L2 (128). L2w: Number of ways per sharer L2 (16). M: Total

lines in memory (roughly 128 million for 4GB of memory). E: Max-

imum number of cache lines tracked by on-die structure (1 ≤ E

≤ L2s × L2w × n). F: Probe filter size. T: Tag size. 25

4.1 Characterization of the ten workloads used in this dissertation
run using a 1024-core variant of the Rigel architecture with
software-managed coherence. 52

4.2 Characterization run in Table 4.1 with an on-die full-directory
hardware coherence implementation. 52

5.1 Comparative advantages and disadvantages for different coher-
ence action placements. 75

8.1 Differences in design goals and architectural features between
general-purpose CPUs and accelerators such as GPUs. 101

8.2 Trade-offs for HWcc, SWcc, and Cohesion. 106
8.3 Programmer-visible software API for Cohesion. 113

9.1 Timing parameters for the baseline architecture. 131
9.2 Additional sizing and timing parameters for Rigel with cache

coherence. 131
9.3 GDDR5 DRAM memory timings used in our simulations. All

units are DRAM cycles assuming 3 GHz DDR at 6.0 Gbps per pin. 132
9.4 Overview of coherence management policies for TCMM. 133
9.5 Power and area estimates for a 2048-entry WayPoint imple-

mentation. 143

xi

LIST OF FIGURES

1.1 Goal of hybrid coherence: Seamless transitions between hardware-
managed and software-managed coherence domains. 8

2.1 Software stack for accelerator architectures. API: application-
level programming interface, LPI: low-level programming inter-
face, ISA: instruction set architecture. 17

2.2 Classification of cache coherence schemes. We evaluate sparse
directories with full-map (DirnNB) and limited (Dir4B) direc-
tory entries. We evaluate probe filtering, broadcast invalidate,
and WayPoint directory cache eviction policies. (Figure cour-
tesy of Matt R. Johnson.) . 26

2.3 Illustration of the difficulty in selecting a directory replacement
policy due to the information disconnect between L2 caches and
the directory. 29

3.1 Baseline Rigel Architecture. 32
3.2 Baseline kernel speedup relative to a single eight-core cluster. . . . 39

4.1 Categorization of memory access types in Rigel and VISBench
benchmarks. Letters X, Y, and Z represent distinct addresses,
and t1 and t2 represent distinct tasks. 55

4.2 Relative fraction of memory misses for each access type for VISBench. 56
4.3 Relative fraction of memory misses for each access type for the

Rigel benchmarks. 56
4.4 Message count from the L2 cache to the shared L3 normalized

to software coherence (SWcc) results. Note that HWcc contains
some software flushes as an optimization for data known to be
no longer needed in the L2. 59

4.5 Writeback and invalidate efficiency for different L2 cache sizes.
An inefficient access is one that is performed by software to a line
no longer present in the cache. For all of our other experiments
we use a 64 kB cache. 60

4.6 Runtime of idealized hardware and software-managed coher-
ence compared to the best case implementation using the Task-
Centric memory model. 61

xii

5.1 State transitions for memory blocks in the Task-Centric Mem-
ory Model. Actions include: Local loads (L.LD), local stores
(L.ST), global loads (G.LD), global stores (G.ST), write backs
to the global cache (WB), and cluster cache invalidates (INV).
The † notes states that may cache a block at the cluster cache.
The set of tasks sharing a block in state X is denoted by TX .
Any transition absent from the diagram is disallowed by the
model. 66

5.2 Logical flow of tasks and coherence actions in the Task-Centric
Memory Model. 70

5.3 Choice of coherence action locations using the Task-Centric
Memory Model. 73

6.1 Illustration of the difficulty in selecting a directory replacement
policy due to the information disconnect between L2 caches and
the directory. 78

6.2 Probe filter block diagram. 80

7.1 Time varying set distribution at last-level (L3) shared cache.
The figure demonstrates that directory cache thrashing can vary
in time and it may shift across sets, implying that over-provisioning
of directory cache entries may be required to avoid performance
impact due to directory cache conflicts. 87

7.2 General pattern for directory accesses. 89
7.3 Architecture of WayPoint. 92

8.1 Cohesion state diagram. 107
8.2 Cohesion architecture. 110
8.3 Cache state transitions between HWcc and SWcc. 117
8.4 Cache state transitions between SWcc and HWcc. 117
8.5 The static Cohesion pattern demonstrated for a 2D stencil

computation. The goal is to place the per-cell private regions in
the SWcc domain and only use HWcc domain for a small border
region where communication is necessary. 124

8.6 The dynamic Cohesion pattern demonstrated using a two-
phase parallel sort on four processor cores. The goal is to use
HWcc as-needed during the divide phase and avoid HWcc dur-
ing periods of independent execution, shown as the serial sort
in the figure. When the results are ready, HWcc is used to make
the produced data available to consumers. 126

xiii

9.1 Runtime for different eviction policies compared to a highly op-
timistic hardware coherence scheme. Software schemes can be
selected on a per-application basis. OmniscientCC corresponds
to an implementation with hardware coherence disabled, no co-
herence traffic for writebacks or invalidates, and an omniscient
memory model that provides correct values. 134

9.2 The impact of L2 (cluster) cache sizing on writeback efficiency. . . 135
9.3 The impact of L2 (cluster) cache sizing on invalidate efficiency. . . 135
9.4 Scalability of baseline probe filtering with 2048 entries com-

pared to SPF with broadcast-collective support and an on-die
full directory. Perfect speedup would be 128× in this figure. . . . 137

9.5 The runtime normalized to the optimistic hardware cache co-
herence implementation is shown for different sizes of directory
cache. Configurations without WayPoint are shown on the
left and those with it on the right. 139

9.6 Runtime of WayPoint-enabled simulations with different as-
sociativities with fixed directory size. Results normalized to
optimistic hardware cache coherence. Note that we have a one-
to-one correspondence between sets and WayPoint lists in (a),
resulting in slightly less contention and thus better performance
for less-associative on-die caches. 141

9.7 Number of messages sent out of the L2 (cluster) cache. 144
9.8 Runtime with different directory cache sizes (in thousands) for

our baseline without Cohesion (a) and with Cohesion (b).
Part (c) shows the average and maximum number of directory
entries used at runtime out of the total number of entries. 145

9.9 Runtime of Cohesion compared to software-managed coher-
ence (SWcc) and hardware-managed coherence (HWcc) using
limited directories with four pointers be entry and full-map
directories. We show both optimistic assumptions for HWcc,
which provides infinite-sized directory caches, and a large, but
realizable 16k-entry directory caches. 147

xiv

LIST OF ABBREVIATIONS

API Application Programming Interface

CMOS Complementary Metal-Oxide Semiconductor

CMP Chip Multiprocessor

CPU Central Processing Unit

DLP Data-Level Parallelism

DDR Double Data Rate

DRAM Dynamic Random Access Memory

EIEW Eager Invalidate, Eager Writeback

EILW Eager Invalidate, Lazy Writeback

FLOPS Floating-Point Operations Per Second

FP Floating-Point

FPGA Field-Programmable Gate Array

GDDR Graphics Double Data Rate

GPU Graphics Processing Unit

HPC High-Performance Computing

ILP Instruction-Level Parallelism

IP Internet Protocol

IPC Instructions Per Cycle

LIEW Lazy Invalidate, Eager Writeback

LILW Lazy Invalidate, Lazy Writeback

xv

LPI Low-Level Programming Interface

MIMD Multiple-Instruction Multiple-Data

MLP Memory-Level Parallelism

MSHR Miss Status Holding Register

PGAS Partitioned Global Address Space

RISC Reduced Instruction Set Computer

RTL Register-Transfer Level

RTM Rigel Task Model

SIMD Single-Instruction Multiple-Data

SMVM Sparse Matrix-Vector Multiply

SoC System on a Chip

SPMD Single-Program Multiple-Data

SRAM Static Random Access Memory

TCP Transmission Control Protocol

TLP Thread-Level Parallelism

xvi

CHAPTER 1

Introduction

There are two dominant multicore architectures deployed: general-purpose chip

multiprocessors (CMPs) with multiple general-purpose cores [1–3] and domain-

specific multicore accelerators, such as graphics processing units [4] (GPUs). The

current trend in integration is leading toward GPU cores and conventional general-

purpose cores coexisting on the same die [3]. The next generation of processors

will see the distinction between accelerator and general-purpose cores blur as

the highly parallel resources begin to expand their reach from supporting purely

graphics workloads to more general forms of parallel acceleration. Future systems

are likely to be highly parallel architectures with resources for performing sequen-

tial processing, data-parallel compute, and graphics all integrated on the same die

and supported by a set of consistent and interrelated architecture abstractions and

memory models [5].

Integration of heterogeneous cores offers the sequential performance and flex-

ibility of general-purpose cores complemented by area and power efficiency of

accelerator cores for parallel execution. From a systems perspective, integration

reduces latency between devices and can increase inter-core bandwidth, albeit

potentially at the expense of aggregate off-chip bandwidth provided by a multi-

chip implementation. However, the first generation of heterogeneous multicore

processors has adopted an interface between GPU and CPU that maintains the

host-device divide [6] and forces communication to occur via a bus interface not

unlike conventional CPU to discrete GPU interconnect protocols that are preva-

1

lent today. Moreover, the memory model and runtime software support for the

CPU and GPU are sufficiently different such that software developed for one is

unlikely to execute efficiently or at all on the other. The implication of increased

heterogeneity in compute resources in contemporary architectures is that we must

revisit the memory model from a full system perspective and not just in terms of

the main processor. Current systems lack a consistent memory model that spans

highly parallel accelerators and general-purpose processors. The lack of a consis-

tent software target limits applications’ ability to support both accelerators and

general-purpose processors. As such we are not yet exploiting the full capabilities

of integrating accelerator and general-purpose resources. Moreover, the hetero-

geneity in the memory model and software support is increasing the complexity

faced by software developers already strained by the task of developing parallel

software to achieve better performance for their applications.

The recent shift toward multicore designs was due in large part to the re-

duced utility of increased transistor budgets for improving sequential performance,

mostly due to power and design complexity constraints [7]. Until recently, the

additional transistors provided by advances in process technologies allowed for

microarchitectural advances to increase the performance of microprocessors while

leaving the programming and memory models relatively unchanged. As an exam-

ple, current Intel x86 CPUs still support legacy code execution allowing software

written over thirty years ago to continue executing on modern CMPs unmodi-

fied [8].

The fact that software applications have a much longer lifespan than the sys-

tems that they run on [9], coupled with the fact that the software industry is an

order of magnitude larger than the semiconductor industry in terms of spending

and revenue, makes the impact of continued advances in silicon manufacturing

on the need to alter software a critical economic concern for the computing in-

2

dustry as a whole. However, the increased design complexity and growing power

budget of processors that pursue instruction-level parallelism (ILP) have made

performance scaling through microarchitectural innovation alone untenable. Put

another way, the rate at which microarchitectural complexity and, by extension,

die area increased could not keep pace with the additional area provided by pro-

cess scaling; microarchitecture advances alone appear to have achieved a roughly

20% increase in performance for industry standard integer CPU benchmarks [10]

across the last two generations1 while Moore’s law scaling provides a much larger

2× increase in the transistor budget with each process node. To fill the gap be-

tween the performance delivered by sequential microarchitecture techniques and

the increased transistor budgets provided by Moore’s law scaling, we must inves-

tigate scalable techniques that can continue to provide performance per watt and

performance per area in a way that is useful to software developers. However, as

evidenced by the diminishing returns of Moore’s law scaling for sequential code,

it is unlikely that these techniques will solely be ILP-driven.

The scalability limitations of ILP processors motivate the integration of mul-

tiple cores on a single die [11]. However, continuing to simply integrate more

ILP cores on-die will provide a poor trade-off between performance, power, area,

and complexity for highly parallel workloads that can achieve high per-core effi-

ciency with simpler, more area-efficient cores [12] and may not result in additional

performance for commercial applications as more cores are added [13].

Compared to integrating more ILP cores, higher performance and lower power

can be achieved by integrating a larger number of throughput-oriented, simpler

cores [14] capable of exploiting thread-level parallelism (TLP) and data-level par-

1We compare two four-core Intel processors running at 3.2 GHz with 130 watt TDP, both
on the same 45 nm process. One is the Penryn-class QX9770 while the other is an i7-965.
We use the reference performance numbers for SPECint CPU2006 benchmark runs to estimate
performance changes across microarchitectures.

3

allelism (DLP). Moreover, TLP and DLP abound in scalable workloads [12, 15].

However, supporting only throughput-oriented cores would result in decreased

performance for workloads with limited parallelism. A method for supporting both

ILP-centric cores and DLP-/TLP-centric cores with a consistent memory model

and programming abstraction is the limiting factor for exploiting the advances in

integration to take advantage of both CMP-style processing and accelerator-style

processing; such a method is the focus of this dissertation.

The benefit of integration is a reduction in off-chip power and reduced packag-

ing costs. Integration also provides lower latency and higher bandwidth between

integrated devices. To achieve these benefits, it is sufficient to treat the accelera-

tor resources as subordinate, under the control of a host processor core, similarly

to how GPUs are accessed today. However, to fully exploit the programmability

benefits of integrated systems, a consistent memory model that extends to both

devices must exist. Without a consistent memory model, the cost in terms of

programmer effort and time-to-solution of explicit address remapping for point-

ers, data marshalling, and hiding the cost of copy operations is born directly

by the developer. Support for the assertion that a consistent memory model is

key to the success of platforms with heterogeneous compute resources comes from

industry [5,16] and academia [17,18], where research groups are investigating sup-

porting heterogeneous resources under a single address space. Moreover, industry

is moving forward with heterogeneous systems that share a single address space.

However, it is unclear what the underlying hardware and software support should

be.

Processors integrating hundreds of execution units, such as GPUs, have been

used as programmable compute accelerators [19]. Accelerator designs available

commercially have generally lacked support for cache coherence, requiring the

use of multiple address spaces both off-die between host and device and on-die

4

to achieve good performance using software-managed local memories in lieu of

hardware-managed caches. These features are a departure from the conventional

single address space, cached, shared memory approach found in general-purpose

CMPs available today. The lack of support for the current programming and appli-

cation ecosystem is a programmability disadvantage that hinders more widespread

adoption of accelerator systems. The inherent differences in these memory models

interferes with portability across CPUs and GPUs, in terms of both correctness

and performance. Moreover, the lack of familiar programming abstractions and

memory models will result in forthcoming 100+ core CMPs being ill suited to the

needs of programmers. Therefore work must be done to build a scalable memory

system to enable future 100–1000 core multiprocessors that provide most of the

benefits of contemporary CMPs, while achieving the scalability found in GPUs

today.

Our approach to providing a scalable memory model for 1000-core multicore

systems is manifold. We develop a lightweight hardware coherence scheme, a

scalable software-managed coherence protocol, and the mechanisms necessary to

efficiently migrate control of coherence between the two coherence domains, thus

enabling what we call a hybrid memory model. The goal is to provide hardware

coherence as a fall-back mechanism for maintaining a shared single address space

to developers, while relying on more scalable software techniques in the common

case. A limited form of hardware coherence allows for synchronization, collective,

and communication operations to be supported efficiently as needed. Moreover,

coherence allows applications to be supported that would otherwise be difficult

to map to a software-managed memory model, albeit at some cost in terms of

performance. Developers can use the base hardware coherent system to more

easily port existing shared memory applications and debug and test new shared

memory applications on a hybrid memory model. When possible software, in

5

the form of either a tools-driven or developer-driven mechanism, can migrate

data from the hardware coherence domain to the software-managed domain, thus

reducing the pressure on the hardware coherence mechanisms and interconnect

using an iterative refinement approach.

Designing and implementing a memory model for a CMP, as is proposed in

this work, is a challenging problem because it involves balancing many aspects of

the system. Striking a proper balance is confounded by the facts that application

characteristics play a large role in the effectiveness of a given memory subsystem

and that applications for CMPs are numerous and vary greatly. In fact, the

applications that will run on future CMPs with more than a thousand cores likely

do not exist yet. Moreover, the ease with which applications can be mapped to

a platform, i.e., programmer hours-to-solution, is often at odds with the compute

density of the platform, i.e., high FLOPS
mm2 . The root of the conflict is the cost of

providing latency reducing mechanisms. Examples of latency reducing techniques

include out-of-order cores and large caches, which are used to smooth performance

cliffs, but do not provide performance benefits commensurate with hardware and

complexity costs [20]. What we aim to do is provide limited support for otherwise

costly mechanisms, thus reducing initial programming effort, but then provide

support for scalable low-cost mechanisms that allow developers concerned with

performance to achieve that performance when desired.

The memory system trade-offs have a profound impact on performance, pro-

grammability, power dissipation, required verification effort, and design complex-

ity. Furthermore, the memory model is pervasive in that it impacts and is im-

pacted by the choice of network topology, cache sizes, core complexity, and latency

tolerance mechanisms, such as multi-threading or out-of-order execution, mem-

ory bandwidth, and programming model and language support. The design of

a hybrid memory model involves those same trade-offs while adding another di-

6

mension: a hybrid memory model must trade off hardware overhead and network

utilization overhead of hardware coherence for potentially increased software com-

plexity or degraded application performance when software-managed coherence is

inefficient. The goal of this dissertation is explore this new dimension and, in

doing so, to demonstrate that a hybrid memory model is critical to achieving

scalability for 1000-core processors.

We motivate our work by evaluating the design space of coherence architec-

tures and then present a set of design considerations, which we refer to as elements,

that represent the space of design choices for 1000-core architectures such as Rigel

(Chapter 2). We present the design and evaluation of a 1024-core accelerator ar-

chitecture called Rigel and a task-based programming model called the Rigel Task

Model (RTM) that we use as our baseline (Chapter 3). We present the analysis of

data- and task-parallel workloads targeting Rigel and show patterns in data access

streams and program execution that can be exploited in the design of a scalable

memory model (Chapter 4). Building on Rigel, we introduce a novel software-

managed coherence scheme that we call the Task-Centric Memory Model (TCMM)

(Chapter 5). We evaluate techniques for extending the scalability of probe filter-

ing, which is a common technique used in CMPs today (Chapter 6). We present a

lightweight hardware coherence scheme that we call WayPoint (Chapter 7). The

synthesis of hardware cache coherence and a software-managed scheme is investi-

gated as part of Cohesion (Chapter 8) and serves as the baseline for our work

on a hybrid memory model. The result is a hybrid coherence scheme that allows

designers to trade off hardware complexity and performance without sacrificing

the programming model. Hybrid coherence, as shown in Figure 1.1, also enables

developers to trade off ease of use for performance by re-partitioning data across

coherence domains dynamically.

The scope of a project tasked with developing a new memory model is broad

7

Time=t0
0x100

0x140
0x160
0x180

0x1C0
…

0x120

0x1A0

Software-managed
Coherence Protocol

Hardware-managed
Coherence ProtocolSW-to-HW Transitions

COHESION

SWcc Cache Line HWcc Cache Line Transition

Ad
dr

es
s S

pa
ce

Time=t1 Time=t2 Time=t3 Time=t4

Figure 1.1: Goal of hybrid coherence: Seamless transitions between hardware-
managed and software-managed coherence domains.

enough such that addressing all of the issues in a single dissertation is not feasible.

We choose to explicitly exclude a set of topics and make what we believe to be

reasonable assumptions or projections in lieu of attempting to address those issues.

We see the need for more support for software-managed coherence from both the

runtime and code generation tools, neither of which are addressed in great detail in

this dissertation. Exhaustive verification of the hardware and software protocols

found in this dissertation could be performed, but may provide little additional

insight and may be infeasible given the current tools’ inability to support large

designs. For pieces of our design that can be mapped to existing systems, we elide

proof of correctness since a similar system has already been realized. Moreover,

we adopt existing protocols, such as an MSI directory protocol, and thus obviate

the need for proof of correctness while focusing on novel implementation and

integration strategies.

The contributions of this work include:

1. A Task-Centric Memory Model: A protocol for maintaining a coherent single

address space on a cached processor that uses software-management in lieu

of hardware cache coherence.

2. WayPoint: A lightweight hardware coherence scheme that reduces the

on-die directory overhead without greatly impacting performance.

8

3. Cohesion: A set of protocols for dynamically transitioning between hardware-

managed and software-managed cache coherence.

4. An evaluation of a hybrid coherent system that allows heterogeneous cores

to share a single address space that supports a variety of hardware and

software coherence options.

9

CHAPTER 2

Motivation and Background

In this chapter we motivate the study of hybrid approaches to coherence man-

agement for future chip multiprocessors. We discuss the trends in the industry

supporting our design choices. We discuss the limitations of current approaches

that will confound scalability in the coming generations of CMPs. As a framework

for exploring the design space of accelerators, we present a set of design elements

that we find to be key considerations for building a 1000-core architecture. We

conclude by surveying the current approaches to coherence management and form

a taxonomy of existing schemes.

2.1 Trends in Increased Parallelism

Prior to the advent of general-purpose chip multiprocessors, parallel architec-

tures were mostly relegated to server-class systems [21]. The introduction of the

POWER4 from IBM [22], Intel’s Itanium 2 [23] and Smithfield [24], and AMD’s

Opteron processors [25] marked the start of the current trend of increasing core

count in lieu of core frequency. For a single application to exploit the full com-

putational power of a CMP, that application must be parallel. If application

performance that improves with newer CMPs is to be expected, those applica-

tions must be programmed in a way that exposes greater parallelism than can

be exploited at development time. The need for programmers to expose paral-

lelism to achieve performance is a profound departure from the previous model

10

of sequential software, which took advantage of microarchitectural advances and

frequency scaling to continue to provide greater performance without additional

burden being placed on the programmer.

The compute accelerator is another class of parallel architecture that is be-

coming pervasive. Unlike the specialized parallel computers of the past owned

only by large businesses, universities, and government labs [21], compute accel-

erators are available as commodity pieces of hardware. As such, these devices

are being programmed by larger numbers of developers. A dominate example of

an accelerator is the GPU. GPUs incorporate as many as 1600 processing cores

on a single die [26]. The initial developers that tried to exploit the performance

potential of GPUs, such as [27], were required to use low-level, graphics-specific

APIs such as OpenGL [28]. Eventually higher level tools were developed, such

as Brook [29], and today GPUs and multicore CPUs can be programmed using

industry standard cross-platform data-parallel languages such as OpenCL [30].

The interest in large-scale parallelism in the consumer market is evidenced by the

adoption of accelerator-centric languages at the operating system level [31] and

the large number widely used applications that use GPUs outside of graphics and

other accelerators to achieve greater performance.

If a greater level of performance is to be achieved from future CMPs, it is clear

that parallelism must be exploited. Power is also a key concern for all market seg-

ments including mobile devices, HPC, and data centers where the total cost of

ownership is forecast to be dominated by power and cooling costs rather than

software or hardware [32]. One way large systems builders have tried to increase

computation without increasing power is to employ parallelism. As an example,

the NVIDIA GTX480 GPU [4] achieves 1344 GFLOPS1 single precision at 250

1This number is derived from NVIDIA product sheets that state the processor has a 1.4 GHz
processor clock and 480 shaders. We assume 2 FLOPs per cycle with FMAC.

11

watts (max.) using 3 billion transistors while the latest six-core i7 CPU from In-

tel [3] achieves 518.4 GFLOPS2 at 130 watts (max.) using 1.17 billion transistors.

The Roadrunner supercomputer [33], which incorporates both AMD CPUs and

Cell processors, is an example of accelerators being used to increase FLOPS per

watt. The trend of increasing parallelism to reduce energy consumption is also

becoming more prevalent in the mobile world, where systems-on-a-chip include

accelerators to reduce power [34] and multicore applications processors are now

available [35].

While parallelism offers the promise of increased performance, reduced design

complexity, and a better power-performance trade-off, there are many factors con-

founding the greater adoption and exploitation of parallel architectures. Increas-

ing the programmability of parallel systems is a key concern with many efforts

to build tools and train users underway. The programming models are a topic

of active research, but are not the focus of this dissertation. We focus on the

scalability concerns for current programming practices and parallel architecture;

in the next section we discuss them more fully.

2.2 The Limits of CMP Scalability

Scalability is the capacity of a parallel computer system to continue to provide

increased performance commensurate with the increase in processing or memory

resources provided to that system. The delivered performance can be measured

in terms of the time to complete a fixed task, i.e. latency, or the number of tasks

that can be done in a fixed time, i.e., throughput. In this dissertation, we consider

performance scalability in terms of throughput.

In discussing scalability, we assume a parallel hardware system is running soft-

2This number is derived from Intel’s product sheet for the i7-980x at peak frequency. We
assume 2 FLOPs per cycle with fused FMAC as is done with the quoted GPU numbers.

12

ware in parallel as prerequisite to discussing scalability of the system as a whole.

Sequential code is inherently unscalable and is not considered here. However, we

do not place constraints on what kind of parallelism the application expresses. In

other words, for a scalable system running scalable software, we expect that dou-

bling the number of cores in a single processor doubles the aggregate application

throughput. An example is a web server able to process 100 requests per second

with 10 ms latency with one CPU that is able to process 200 requests per second

with two CPUs while still achieving 10 ms average latency.

Scalability is of great concern in parallel architecture, as it is the means by

which one achieves greater levels of performance by adding more cores to a pro-

cessor, adding more processor sockets on a motherboard, or adding more racks to

a datacenter. Scalability can be limited by hardware or software factors. In the

era of multicore processors, there is no incentive to upgrade hardware if the ap-

plication and the hardware are not scalable, since most of the benefit of switching

to a newer processor today is the additional cores or added memory bandwidth

and is generally not a reduction in latency.

In this section we discuss factors that contribute to limiting the scalability

of future CMPs. Most of this dissertation is focused on the hardware factors

related to scalability of memory models and cache hierarchies for future CMPs.

As such, this section focuses primarily on those topics, and we only introduce

software-related topics and more general hardware implications of scaling.

Achieving scalability requires that an application express sufficient parallelism

relative to the amount of sequential work present in the program. The sequential

work is the critical path that sets a floor on the improved runtime any paralleliza-

tion strategy could hope to achieve. The relationship between sequential work

and parallel scalability, or Amdahl’s law [36], is attributed to Gene Amdahl who

pointed out the inability of multiprocessors to scale when there is a high degree

13

of irregularity or data management overhead present in the nonparallel version of

the software.

It is necessary also to consider the scalability relative to dataset size. The

relationship between dataset size and scalability is known as Gustafson’s law [37].

Accounting for larger dataset sizes may provide maintained scalability of an appli-

cation over multiple generations of CMP. The reason for the continued scalability

is that over time users may not want to do the same thing faster, but they may

want to do more in the same amount of time. However, even if core counts continue

to scale, Gustafson’s law may be stymied by the inability of cache, networking

resources, and/or memory bandwidth to scale commensurate with the number of

cores.

While these simple models of scalability provide insight into how aspects of a

parallel application may impede or extend scalability, they fail to account for the

full space of design trade-offs [38]. One such trade-off is between the relative ben-

efit of increased per-core area, power, and complexity to achieve faster sequential

performance versus the greater degree of compute resources possible with smaller,

more area efficient cores [39]. We revisit this trade-off in greater detail throughout

the dissertation.

Even when there is sufficient parallelism, scalable applications must limit com-

munication among parallel threads or overlap it with computation, thus hiding

the latency. An application that has sufficient parallelism and adopts practices

that hide or remove communication latency may still be limited by the parallel

hardware upon which it runs. In a cached shared memory architecture, such as

the CMPs that we evaluate in this work, the location of each block of data is

tracked implicitly by software or explicitly by a hardware mechanism, i.e., cache

coherence. When communication between two threads occurs at the software

level, it may have the unintended side effect of generating multiple network mes-

14

sages or increasing the storage necessary for tracking shared state maintained by

hardware. The storage and network costs associated with communication among

parallel threads of execution is fundamental to the scalability of a CMP. Network

communication and coherence storage costs add overhead that may mitigate any

performance gained by increased parallelism; the reduction of both is the topic of

this dissertation.

As we will show, current approaches for increasing the scalability of CMPs

are insufficient at a high core count. A common addition to contemporary CMPs

are probe filters. As shown in [40, 41], probe filters become a limiting factor for

scalability even at a small number of cores. We survey contemporary approaches

to scalable cache coherence in the next section. System-level factors can also

contribute to limited scalability. A survey of common desktop and workstation

applications [13] shows that even after parallelization, these applications fail to

make use of the parallel hardware available to them. The problem facing architects

is thus not just how to achieve greater hardware scalability at the architecture

level, but how we can provide a scalable hardware abstraction that allows software

to effectively utilize the parallel hardware to achieve realized scalability at the

application level.

2.3 Elements of Parallel Accelerator Design

This dissertation focuses on developing scalable memory models for compute ac-

celerators. We use the Rigel [42] architecture as our baseline. Before considering

the memory model of our proposed accelerator design, we provide a top-down

motivation of the design choices for the Rigel programming interface. The design

choices include the set of functionality to be supported by the architecture and

low-level software of a programmable compute accelerator.

15

Programmable accelerators span a wide spectrum of possible architectural

models. At one end of the spectrum are FPGAs, which can provide high compute

density and fine-grained configurability at the cost of a very low-level native ap-

plication programming interface (API). The gate-level orientation of the FPGA

interface, i.e., netlist, creates a large semantic gap between traditional program-

ming languages, such as C or Java, and the low-level programming interface (LPI).

The semantic gap requires that the programmer make algorithmic transformations

to facilitate mapping or bear the loss of efficiency in the translation—and often,

both. The other end of the spectrum is represented by hardware accelerators and

off-load engines tightly coupled to general-purpose processors. Examples include

TCP/IP and video codec accelerators incorporated into systems-on-a-chip (SoC).

Here the LPI is an extended version of the traditional CPU LPI, i.e., the ISA,

and thus makes an easier target for programmers and programming tools.

Akin to an instruction set architecture, the LPI is the interface between the

applications development environment and the underlying software/hardware sys-

tem of the accelerator. We show the entire software stack for accelerator architec-

tures in Figure 2.1. The LPI subsumes the ISA: as with any uniprocessor interface,

the accelerator interface needs to provide a suitable abstraction for memory, op-

erations, and data types. Given that programmable accelerators provide their

performance through large-scale parallel execution, the LPI also needs to include

primitive operations for expressing and managing parallelism. The accelerator

LPI needs to be implemented in a scalable and efficient manner using a combina-

tion of hardware and low-level system software.

What is desirable from a software development point of view is a programmable

accelerator with an LPI that is a relatively small departure from a conventional

programming interface. The LPI should also provide an effective way to exploit

the accelerator’s compute throughput. In this section, we motivate the trade-offs

16

Algorithms

API

LPI

ISA

Microarchitecture

Application

Programmer

Systems

Programmer

Tools

Developer

Domain Expert

Architect

Atomics

Cache Management

Prefetching

Loads/Stores

Optimized

Libraries

&

Compilers

Application

Code

Barriers

Task Queue
Implementation

Locality Management

Locks

Runtime

Software

&

Libraries

EnqueueTask()

DequeueTask()

Figure 2.1: Software stack for accelerator architectures. API: application-level
programming interface, LPI: low-level programming interface, ISA: instruction
set architecture.

made in Rigel between generality in the LPI and accelerator performance. To that

end, we describe the elements that we identify as necessary for supporting these

objectives. The elements described include the execution model, the memory

model, work distribution, synchronization, and locality management.

2.3.1 Element 1: Execution Model

The execution model is the mapping of the task to be performed, specified by

the application binary, to the functional units of the processor. The choice of

execution model is ultimately driven by characteristics of the application domain

and its development environment. The overarching goal for accelerators is for

the execution model to be powerful enough to efficiently support common con-

currency patterns, yet be simple enough for an implementation to achieve high

compute density. The execution model encompasses the instruction set, including

17

its level of abstraction and use of specialized instructions, static versus dynamic

instruction-level parallelism, e.g., VLIW versus out-of-order execution, and SIMD

execution versus MIMD.

The execution model may be virtual, thus decoupling the software instruction

set from the hardware instruction set. Doing so allows for just-in-time optimiza-

tion as is done in Java compilers where the binary targets the Java Virtual Ma-

chine [43] and in the LLVM compiler [44] where an intermediate representation

of the code, the virtualized execution model, can be optimized independently of

the underlying hardware execution model. However, while such systems allow for

binary portability and backwards compatibility, it is unclear whether performance

portability can be assured when moving from one parallel hardware platform to

another.

The goal for Rigel is to develop a general-purpose execution model suitable

for compact silicon implementation. The choice of the SPMD execution model

is backed by previous studies and experience that show that the SIMD model

imposes undue optimization costs for many irregular applications. Mahesri et

al. [12] show that even considering the area benefit of SIMD, some parallel appli-

cations scale poorly on long vector architectures, reducing the effective compute

density of the accelerator. In fact, it has been shown that code written for a

SIMD architecture can match or exceed the performance on a MIMD system [45].

However, with proper hardware and software support, the cost of mapping of

MIMD-friendly codes to SIMD can be mitigated [46,47].

2.3.2 Element 2: Work Distribution

When an application reaches a section of code suitable for parallel acceleration,

work is systematically distributed to available chip resources, ideally in a fashion

18

that maximizes the throughput of the accelerator. With Rigel, we adopt a task-

based work distribution model where parallel regions are divided into parallel tasks

by the programmer, and the underlying LPI provides mechanisms for distributing

tasks across the parallel resources at runtime in a fashion that minimizes overhead.

Such an approach is more amenable to dynamic and irregular parallelism than

approaches that are fixed to parallel loop iterations.

In Chapter 3 we discuss the actual programmer interface for the Rigel Task

Model (RTM), an API for enqueing and dequeuing tasks, supported by a small

number of primitives in the underlying LPI. We show that RTM can support

fine-grain tasks at negligible overhead at the scale of 1000 cores.

2.3.3 Element 3: Synchronization

Selection and implementation of synchronization primitives abounds in the lit-

erature. Blelloch [48] describes the generality of reduction-based computations.

The implementation of barriers in particular has been accomplished with cache

coherence mechanisms [49], explicit hardware support such as the Cray T3E [50],

and, more recently, a combination of the two on-chip multiprocessors [51]. Using

message passing networks to accelerate interprocess communication and synchro-

nization was evaluated on the CM-5 [52]. Interprocessor communication using

in-network combining in shared-memory machines such as in the NYU Ultra-

computer [53] and using fetch-and-φ operations as found in the Illinois CEDAR

computer [54] have also been studied. These designs give relevant examples that

influence our work as we reevaluate the trade-offs of past designs in the context

of single-chip, thosuand-core, hierarchical accelerators.

The ability to support fine-grained tasks, and thus a high degree of parallelism,

requires low-latency global synchronization mechanisms. Limiting the scope to

19

data- and task-parallel computation focuses the support required for Rigel to

two classes of global synchronization: global barrier support, which is required

to synchronize at the end of a parallel section, and atomic primitive support,

which is useful for supporting shared state, such as updating a global histogram

using the atomic increment primitive. Local atomic operations, which allow read-

modify-write operations to occur at higher levels of the cache, are invaluable for

achieving scalable performance when designing hierarchical algorithms and task

management systems. Both cases are discussed in later chapters.

2.3.4 Element 4: Locality Management

Locality management involves the co-location of tasks onto processing resources

with the goal of increased local data sharing to reduce the latency and frequency

of communication and synchronization among co-located tasks. Locality manage-

ment can be performed by a combination of programmer effort, compiler tools,

runtime systems, and hardware support. In programming parallel systems, per-

forming locality-based optimization constitutes a significant portion of the ap-

plication tuning process. An example of locality management is blocked dense

matrix multiply, in which blocking factors for parallel iterations increase the util-

ity of shared caches by maximizing data reuse and implicit prefetching across

threads while amortizing the cost of cache misses.

Accelerator hardware and programming models also rely heavily on locality

management. Modern GPUs such as the NVIDIA G80 make use of programmer-

managed local caches and provide implicit barrier semantics at the warp-level

using SIMD execution [4]. The CUDA programming model allows for the pro-

grammer to exploit the benefits of shared data using the shared memories of the

GPU, fast synchronization across warps using syncthreads primitives, and the

20

implicit gang scheduling of threads through warps and thread blocks. Models such

as Sequoia [55] and HTA [56] demonstrate examples of how to manage locality on

accelerators such as the Cell Processor [57] and for clusters of workstations.

Memory bandwidth has historically lagged available compute throughput;

thus, the memory bandwidth a single chip can support limits achievable per-

formance [58]. The cost of communicating has grown to hundreds of cycles to

perform cross-chip synchronization or memory operation between two cores [59].

Because they are optimized for compute throughput on kernels, accelerators tend

to have smaller amounts of on-chip cache per core. The fraction of per-core cache

allocated to each processing element in modern accelerators, which can be on the

order of kilobytes [4], is a fraction of the megabytes per core available on a contem-

porary multicore CPU. The communication latency, synchronization overheads,

and limited per-core caching all indicate that the locality management interface

is a critical component of an LPI.

2.3.5 Element 5: Memory Model

The design of a memory model for a parallel programmable system involves

a choice of memory hierarchy, including software-managed memories such as

those found in the Cell Processor or multiple specialized address spaces found in

GPUs [4], as well as choices regarding explicit versus implicit interprocessor com-

munication and allowable memory orderings. Trade-offs between these choices

are hard to quantify, but it is understood that one can generally reduce hardware

complexity, thus increasing compute throughput, by choosing simpler, software-

controlled mechanisms, albeit at additional complexity in software development.

The baseline model of computation for uniprocessor machines is that of von

Neumann where a single stream of computation fetches data from a single memory.

21

In this model there is no intermediate level of storage between memory and the

instruction stream, there is no remapping of addresses, and there is no sense

of ordering between memory operations other than program order. The simple

model, while still serving as a mental model employed by programmers today, has

long since been replaced in hardware by processors with multiple interconnected

cores and multiple levels of shared or private caches.

The conventional cache hierarchy of a uniprocessor is meant to exploit the

common patterns of temporal and spatial locality found in most workloads to pro-

vide lower latency for memory accesses, which translates into increased sequential

performance. Caches are functionally transparent to software, thus reducing pro-

grammer investment in transcribing algorithms from the von Neumann mental

model into code. Hardware-managed caches are an alternative approach in lieu of

scratchpad memories where the illusion of a single memory is broken by the need

to explicitly move data between levels of the hierarchy.

Processors with multiple cores add further constraints to the design of the

cache and interconnect. Both memory ordering and coherence guaranties be-

tween cores come from the need to support a reasonable machine model for soft-

ware to target. Common patterns from software demonstrate the need to reduce

contention at higher levels of the hierarchy. Physical limitations of the design

constrain port count, which determines the number of concurrent accessors per-

missible at a particular cache bank in one cycle, while signaling delays limit the

size of arrays at various levels in the cache. Interconnecting a small number of

cores can be accomplished with an area-efficient shared structure such as a bus

or a more complex, concurrent interconnect such as a crossbar.

Accelerators represent an evolution of the trends motivating cache design. The

large numbers of cores represent a challenge for hardware designers who must

balance programmability against physical implementation constraints. Software

22

developers too face challenges, as they must reason about ordering, contention,

and—no matter how transparent functional—the impact on performance of the

caching hierarchy and interconnect topology. As the number of cores grows, the

relative size of per-core structures shrinks and can lead to area-inefficient memory

arrays and replication of possibly complex controller logic.

The LPI needs to incorporate a set of rules that defines allowable orderings for

access to shared state. Moreover, the interface also must allow the user to manage

data accesses in such a way that it provides reasonable orderings when proper

synchronization is used. Examples here are global versus local cache accesses,

memory barriers, flush instructions, etc. This critical piece of the LPI, the memory

model for accelerator architectures, is the key contribution of this dissertation.

2.3.6 Low-Level Programming Interface

Now that we have introduced the general concept of an LPI and discussed its

components, we conclude this section with an overview of the complete Rigel LPI,

addressing the points raised in the earlier subsections. The low-level programming

interface to Rigel supports a simple API for packaging up tasks that are managed

using a work queue model. The individual tasks are generated by the programmer,

who uses the SPMD execution model and single global address space memory

model in specifying the tasks. It is the responsibility of the work distribution

mechanism, the RTM implementation, to collect, schedule, and orchestrate the

execution of these tasks. Execution of these tasks is based on the prevalent bulk

synchronous parallel (BSP) [60] execution model, which is also the de facto model

for many other accelerator platforms such as CUDA-based GPUs. With BSP, a

parallel section of tasks is followed by barrier synchronization, followed by the

next parallel section.

23

The Rigel LPI supports task queues as a means to distribute tasks. Global

synchronization is provided by an implicit barrier when all tasks for a given phase

of the computation have completed, forming an intuitive model for developers.

The Rigel LPI also provides a means to implicitly (at barriers) or explicitly (under

software control) make updates to globally visible shared state before entering a

barrier to provide a coherent view of memory to programmers.

Locality management at the low-level programming interface is provided via

a combination of mechanisms to co-locate groups of tasks to clusters of cores on

chip and to manage the cache hierarchy. Much of the locality management is pro-

vided implicitly by hardware-managed caches that exploit temporal and spatial

locality, as with a typical CPU. A programmer can tune the effectiveness of these

implicit structures through co-location of tasks to increase reuse of shared data.

To that end, the Rigel LPI supports grouping of tasks that have similar data ac-

cess streams, thus increasing the effectiveness of local caches for co-located tasks.

Similarly, tasks that require local synchronization can be co-located onto the same

cluster of cores, thus synchronizing through the local caches with less overhead

than with global synchronization. To provide explicit control when necessary, the

Rigel LPI supports cache management instructions, explicit software-controlled

flushes, memory operation that bypass local caches, and prefetch instructions for

explicit control for performance-minded programmers to extract higher perfor-

mance from the accelerator when desired.

With the LPI for Rigel, we choose to present application software a general-

purpose memory model typical of multicore CPUs: a single global address space

across the various cores of the accelerator. The address space can be cached and

is presented to the programmer in a coherent way; however, the actual hardware

may not provide coherence directly. With such a model, managing the memory

hierarchy can be done implicitly by the software. Interprocessor communication

24

Table 2.1: Design parameters for coherence on throughput-oriented architectures simi-
lar to our baseline. We use the following abbreviations with values used in our evaluation
in parentheses: n: Potential sharers (128). S: Number of active sharers (0 ≤ S ≤ 128).
i: Number of sharer pointers in limited schemes (4). C: Sharers covered by a coarse-
grained vector bit (often 4). L2s: Number of sets per sharer L2 (128). L2w: Number
of ways per sharer L2 (16). M: Total lines in memory (roughly 128 million for 4GB
of memory). E: Maximum number of cache lines tracked by on-die structure (1 ≤ E
≤ L2s × L2w × n). F: Probe filter size. T: Tag size.

Snoop [61] Snoop+Filter [62,63] Duplicate Tags [64]
Storage εL2sL2w× n (εL2sL2w + F) × n T ×L2sL2w× n

Broadcast Frequency Always Filter Misses Never
Network Traffic High Low for small n Low

On-die

Structure Bits w/L2 Tag Tagged SRAM CAMs
Location Local Centralized (@LLC/DRAM)
Capacity Negligible O(10-100kB) O(1MB)

Associativity NA Low [62]/NA [63] L2w ∗ n

Sparse [65,66]
Full Directory [67] Full-map [68] Coarse-vector Limited

Storage n× M n × E n
C
× E i× log2 n× E

Broadcast Frequency Never Multicast of C if (S > i)
Network Traffic Low ∝C Low if(S ≤ i)

On-die

Storage SRAM/DRAM Banked/Tagged SRAM
Location Centralized (@LLC/DRAM) Centralized (Banked)
Capacity O(1 GB) O(4MB) O(1MB)

Associativity If caches, arbitrary 1 ≤ A ≤ (L2w ∗ n)

is implicit through memory, reducing the semantic gap between high-level pro-

gramming and the LPI. Providing implicit support for the memory model creates

an implementation burden on the underlying LPI: if the address space is cached,

which is required to conserve memory bandwidth, then one needs to consider the

overheads of caching and also coherence, discussed with respect to hardware and

software in Chapter 3 and Chapter 5, respectively.

2.4 Design Space of Cache Coherence Protocols

In this section, we present a range of design choices for implementing coherence

on a CMP. The taxonomy of choices is given in Figure 2.2. We discuss messaging

overhead and area required for coherence state tracking, which are the first-order

concerns for building a scalable on-die coherence architecture. We conclude by

discussing the design space of sparse, limited directories, which is the subclass of

directory protocols used throughout most of this dissertation.

We limit our evaluation to directory schemes due to the excessive bandwidth

25

D
u

p
lic

at
e

Ta
gs

D
ir

ec
to

ry

Fu
ll

D
ir

ec
to

ry

Sp
ar

se
 D

ir
ec

to
ry

Li
m

it
ed

Fu
ll-

m
ap

C
o

ar
se

Li
n

ke
d

 L
is

t(
SC
I)

D
ro

p

B
ro

ad
ca

st
 IN

V

Sp
ill

D
R
A
M
D
ir

W
ay

Po
in

t

Fu
ll

b
ac

ki
n

g
st

o
re

Sp
ar

se

b
ac

ki
n

g
st

o
re

O
n

 d
ir

ec
to

ry

ca
ch

e
ev

ic
ti

o
n

:

P
ro

b
e

Fi
lt

er

Sn
o

o
p

 F
ilt

er
Lo

ca
ti

o
n

Tr
ac

k
al

l o
f

m
em

o
ry

O
n

ly
 t

ra
ck

 a
ct

iv
el

y
sh

ar
ed

 li
n

es

En
tr

y
 f

o
rm

at

In
tr

o
d

u
ce

d
 in

 t
h

is
 w

o
rk

Ev
al

u
at

ed
 in

 t
h

is
 w

o
rk

Sn
o

o
p

So
u

rc
e

Fi
lt

er
in

g

D
es

ti
n

at
io

n
 F

ilt
er

in
g

In
-n

et
w

o
rk

 F
ilt

er
in

g

N
o

 F
ilt

er
in

g

Se
t

B
ro

ad
ca

st
 B

it
 (
D
ir
iB

)

R
ep

la
ce

 S
h

ar
er

 (
D
ir
iN
B

)

Tr
ap

 t
o

 S
W

 (
D
ir
iS
W

)

O
n

 s
h

ar
er

 li
st

o

ve
rf

lo
w

:

N
ex

t-
le

ve
l d

ir
ec

to
ry

 c
ac

h
e

Li
m

it
ed

Ex
te

n
d

ed
 in

 t
h

is
 w

o
rk

F
ig

u
re

2.
2:

C
la

ss
ifi

ca
ti

on
of

ca
ch

e
co

h
er

en
ce

sc
h
em

es
.

W
e

ev
al

u
at

e
sp

ar
se

d
ir

ec
to

ri
es

w
it

h
fu

ll
-m

ap
(D

ir
n
N
B

)
an

d
li
m

it
ed

(D
ir

4
B

)
d
ir

ec
to

ry
en

tr
ie

s.
W

e
ev

al
u
at

e
p
ro

b
e

fi
lt

er
in

g,
b
ro

ad
ca

st
in

va
li
d
at

e,
an

d
W
a
y
P
o
in
t

d
ir

ec
to

ry
ca

ch
e

ev
ic

ti
on

p
ol

ic
ie

s.
(F

ig
u
re

co
u
rt

es
y

of
M

at
t

R
.

J
oh

n
so

n
.)

26

requirements of snoop-based protocols [61] and the highly associative lookups re-

quired by duplicate tag schemes [64]. The high-level trade-offs between these

approaches are summarized in Table 2.1. Within the class of directory schemes,

we consider full directories and sparse directories. A full directory has one entry

per cache line in the address space. The state for a full directory may be held

strictly in off-chip memory [67] or cached on-die [68]. Even assuming a compact

directory entry format, a full directory requires hundreds of megabytes to giga-

bytes of storage for systems with gigabytes of memory and hundreds of sharers.

In contrast, sparse directories [65] only track lines that are actively shared. For a

CMP, the storage overhead of a sparse directory is proportional to on-die cache

capacity rather than the size of the address space. The pathological case for sparse

directories is when every line in every sharer cache is unique. We refer to sparse

directories with enough entries to handle this case without evictions as complete

sparse directories, and to those with fewer entries as subset sparse directories. We

evaluate several variants of complete and subset sparse directories throughout this

dissertation.

Full directories may be cached [69], but entries evicted from the directory

cache must be written back to memory. Sparse directories may also need to evict

valid entries. One choice for handling evictions is to have the directory invalidate

all sharers before evicting. A directory miss then implies zero sharers, and the

directory maintains perfect sharing information. A second approach rebuilds the

sharing state when a miss occurs at the directory. This approach is referred to

as probe filtering, because the directory caches can be viewed as caching some

number of sharing vectors to eliminate broadcast probes for those lines. On a

miss, the directory can either broadcast invalidate to ensure there are no sharers,

or broadcast probe to reconstruct the sharer list. Modified lines are dealt with

using a separate writeback message when a probe discovers the line in a modified

27

state or by never evicting modified entries from the directory. We investigate probe

filtering further in Chapter 6. A third approach is to spill the entry to a second-

level directory cache or a backing store in memory. If evicted directory entries

are spilled to memory, the backing store can be full [68] or sparse. In Chapter 7,

we propose a complete sparse directory cache scheme called WayPoint which

includes a sparse backing store in cacheable system memory.

Sparse directories can be further classified by their entry format and their

eviction policy. Consider a system with n potential sharers. Full-map entries

(DirnNB) maintain a complete list of sharers and thus support all sharing pat-

terns equally well, but require n bits per entry. Empirically, we have found that

our workloads have bimodal sharing patterns where each line has either a small

number of concurrent sharers or close to n concurrent sharers. Such sharing pat-

terns are efficiently supported by limited directory entries which maintain a list

of i pointers to sharers and only require i log2 n bits per entry. The benefit of

this approach is that for the two common cases, where s ≈ n and s ≤ i, there

are few additional messages sent in the former case and none sent in the latter

compared to implementing a much more costly full-map directory. Limited di-

rectory schemes differ in how they respond to sharer list overflows; the entry can

either revert to broadcasting on the next coherence state transition, invalidate an

existing sharer to replace it with the requester that caused the overflow, or trap

to a software routine which can dynamically decide between the two or maintain

a sharer list in memory [70,71].

While a variety of directory schemes were originally developed for use in sys-

tems where aggregate memory bandwidth and capacity scaled in tandem with

processor count, none were engineered specifically for CMPs, which represent a

different design point. Moreover, none of these designs considered heterogeneous

systems where highly parallel compute accelerators and general-purpose cores are

28

Frequency of
Directory
Accesses

Accesses in the L2 CacheCold in Cache Hot in Cache

Directory
LRU

Directory
MRU

Critical
Entries

Figure 2.3: Illustration of the difficulty in selecting a directory replacement policy
due to the information disconnect between L2 caches and the directory.

integrated on a single device. While last-level cache capacity and total avail-

able memory may scale with the number of cores, the memory bandwidth and

local cache capacities are not scaling commensurately with the number of cores.

Moreover, the latency to memory has grown considerably. Furthermore, when

coherence state was stored off-die in memory, die area dedicated to compute did

not need to be compromised for the sake of coherence storage. However in a CMP

with coherence state tracked on-die, the trade-off is present, thus adding an extra

dimension over which to optimize. These factors lead us to focus on directory

storage costs and network messages in our evaluation of CMP cache coherence

architectures.

For implementations that support incomplete directory caches, directory en-

tries containing active sharers may need to be evicted to accommodate newly

arriving requests. Directory cache replacement policies must deal with the dis-

connect between directory access recency and core access recency, as shown in

Figure 2.3. The most frequently accessed entries are those frequently requested

and released by the L2s. An MRU policy would evict these entries, possibly forc-

ing actively shared data to be invalidated. On the other hand, an LRU policy is

able to remove cold data, but runs the risk of invalidating lines which are hot in

the L2 and unlikely to generate directory traffic. Moreover, throughput-oriented

workloads typically contain a large amount of touch-once and private data which

may thrash the directory cache and evict widely-shared data.

29

2.5 Discussion and Summary

In this section we provide an overview of the challenges facing CMP scaling.

We focus on the hardware factors that will limit scalability of future systems if

these factors are not addressed. With the proliferation of parallel architectures,

increased heterogeneity in the hands of developers, and the re-purposing of ac-

celerators for general-purpose computation, we see an opportunity and a need to

raise the level of abstraction that developers target. We enumerate the design

goals of a raised abstraction and use these elements to guide our investigation

of highly parallel accelerator architectures and their memory models. To better

understand what techniques are available today for providing a coherent view of

memory to the developer, we provide a taxonomy of proposed techniques for scal-

able cache coherence. With an understanding of where parallel development is

going, the challenges faced by the systems builders attempting to scale out CMPs

toward 1000-cores, the design goals of a 1000-core processor, and the state of the

art in coherence protocols, we are prepared to investigate the characteristics of the

workloads these systems will target and novel approaches to scaling the memory

models for these workloads.

30

CHAPTER 3

Architecture Baseline

In this chapter we review our baseline architecture and programming model. The

proposed work builds upon the platform described in this chapter. For those

readers familiar with Kelm et al. [42], this section may be skipped.

3.1 Rigel Architecture

We use the Rigel architecture [42] as the baseline for our evaluation. Rigel is a

1024-core MIMD compute accelerator that targets highly task- and data-parallel

applications in the areas of computer vision, imaging, and physical simulation

that scale up to thousands of concurrent tasks, collectively known as visual com-

puting workloads. The design goal of Rigel is to provide high compute density by

minimizing per-core area while still enabling a conventional programming model.

Density is improved by removing features found in conventional designs that are

of minimal benefit to the workloads targeted by Rigel. A block diagram of the

baseline Rigel architecture is given in Figure 3.1.

3.1.1 Overview

The fundamental processing element of Rigel is an area-optimized 32-bit dual-

issue in-order core. Each core can issue up to two ALU operations per cycle, one

of which may be a branch. The pipeline has one single-precision floating-point

unit that supports floating-point addition, multiplication, reciprocal square root,

31

DRAM DRAM
DRAM

DRAM DRAM
DRAM DRAM DRAM

Multi-Stage Crossbar

…

Rigel Tile

Tile0 Tile6 Tile7

Rigel Cluster

C0

L3$0 L3$1 L3$2 L3$3 L3$4 L3$5 L3$6 L3$7

L2 Cache

C1 C2 C3

C4 C5 C6 C7

Tile1

Figure 3.1: Baseline Rigel Architecture.

and division. Integer division is implemented in software. The single instruction

stream for each core is supported by an independent fetch unit which executes

a RISC instruction set. The choice of the MIMD execution model and simple

two-issue in-order cores is supported by recent studies [12, 39] that find such a

configuration to be optimal across a number of parallel workloads targeting a

throughput-oriented architecture such as Rigel.

Eight Rigel cores are attached to a unified L2 cache named the cluster cache.

The cores, core-to-cluster-cache interconnect, and the cluster-to-global intercon-

nect logic comprise a single Rigel cluster. The core-to-cluster-cache interconnect

is a pipelined split-transaction bus with two cache-line-wide lanes. Each core

has independent L1 data and instruction caches. The core-level caches are kept

coherent by snooping the core-to-cluster interconnect. The L1 data caches are

write-through to the L2. In effect, the cluster acts logically as an eight-way SMP.

Each cluster cache is 64 kB in size. In aggregate, the 128 Rigel clusters provide

8 MB of L2 cache.

Clusters are connected and grouped logically into a tile using a bi-directional

tree-structured interconnect. Eight tiles are distributed across the chip. The

32

tiles aggregate traffic from the clusters and attach to the global L3 cache banks

via a crossbar interconnect. The L3 cache is configured as a shared, unified,

centralized, last-level cache. The L3 caches provide buffering for multiple high-

bandwidth memory controllers. Global L3 cache banks provide a serialization

point for inter-cluster shared data for maintaining a coherent view of memory.

No communication occurs between clusters independent of the L3 cache. There

are 32 L3 cache banks for the entire chip, arranged into 8 clusters that share ports

on to the global interconnect, totaling 4 MB of last-level cache.

Our design incorporates 8 GDDR5 memory controllers. The memory con-

trollers use a banked first-ready, first-come, first-serve (FR-FCFS) [72] policy

with 16 scheduler entries per DRAM bank. We use open page row switching. To

exploit DRAM row locality to increase memory bandwidth, L3 misses trigger a

block prefetch of four lines.

3.1.2 Cache Management

The material in this section pertains to the baseline Rigel system supporting

software-managed coherence. Discussion of the modifications necessary to support

hardware coherence and hybrid coherence is delegated to Chapter 7 and Chapter 8,

respectively. Briefly, the hardware coherence extensions to the baseline presented

in this chapter include extra messages for L2 cache evictions of clean data, request

messages on write misses at the L2, probe requests and replies, and hardware

structures co-located with the last-level cache for tracking coherence state, i.e., a

coherence directory.

All cores share a single global address space. Cores within a cluster have

the same view of memory due to the shared cluster cache, while global coherence

between clusters is not maintained by the hardware. When serialization of accesses

33

between clusters is necessary, the global cache is the point of coherence. To access

each level of cache directly, Rigel implements two classes of memory operations:

local and global.

Local memory operations are intended to constitute the majority of memory

operations. Low-latency and high-bandwidth memory accesses are achieved using

local operations. Local read operations are cacheable at the cluster cache, but are

not kept coherent between clusters by hardware. Local memory writes follow a

writeback policy at the cluster cache; on eviction from the cluster cache, modified

data is written back to the global cache. From the perspective of the programming

model, local operations are used for accessing read-only data, private data, and

data that is shared intra-cluster. Rigel provides a cluster-level load-linked/store-

conditional pair for atomic operations at the cluster cache. The period between

two global barrier operations is referred to as an interval. Software must enforce

cache consistency when inter-cluster read-write sharing exists within an interval.

On the other hand, read-to-read sharing is permissible without additional software

management.

Global loads, global stores, and atomic read-modify-write operations on Rigel

bypass the cluster cache and complete at the global cache, which serves as the

point of global coherence. Global memory operations, in essence, enforce a write-

through semantic at the L2 for the data upon which they operate. Memory loca-

tions operated on solely by global memory operations are kept coherent across the

chip. Globally visible operations are key to supporting system resource manage-

ment and synchronization for a chip that supports cache coherence in software.

Global memory operations also enable fine-grained inter-cluster communica-

tion by way of the global caches without the need to obtain ownership as is

necessary in invalidation-based coherence protocols. To be clear, what is saved in

the Rigel model is the exposed latency of cluster-to-cluster communications. On

34

a conventional CMP with cache coherence, every cache-to-cache transfer requires

a network traversal that is exposed to all pending accessors. The Rigel model

allows those accesses to be pipelined and only exposes the latency of performing

the read-modify-write operation at the L3. Even so, the cost of global memory

operations is high relative to local operations due to the greater latency of access-

ing the global caches versus the local cluster caches. Furthermore, the achievable

global memory operation throughput is limited by the number of global cache

ports, the latency of performing a global operation, and cluster-to-global cache

interconnect bandwidth.

The cache controller and coherence policies are designed to tolerate an un-

ordered network. Any message from any cluster can be reordered between the L2

and the L3 by the network. Messages sent by any one L2 are not guaranteed to

arrive at the L3 in the same order as they were sent. Similarly, replies from the

L3 are unordered. As such, the L2 cache controller handles global operations with

special care to avoid ordering violations as dictated by the memory model. L2 fill

operations resulting from local cache accesses can be merged at any point. When

the response returns from the network, the L2 fills the line and marks all words

valid. Requesters then access the line as if the line was always cached. Note that

for our cache coherence additions to the baseline Rigel design, we force requests

to complete in-order at the L2 to avoid starvation.

If a global operation is issued to a line that is cached in the L2, that line must

be invalidated or, if modified, written back to the L3 before the global operation

can be issued to the network. If a core issues a global operation request and

there is an L2 fill pending request present at the L2 cache controller, the cache

controller waits for the fill to complete and then performs the invalidation and

writeback operations described above before issuing the global operation request

to the network. Local operations that miss in the L2 when a global operation is

35

pending generate a fill request, but the fill request is not issued to the network

until the global operation completes. Only one global operation per address may

be outstanding at the L2 cache controller. To provide proper memory consistency

across cores, only one global operation per core may be outstanding.

The software protocol we build on top of Rigel’s cache hierarchy, the Task-

Centric Memory Model that is described in greater detail in Chapter 5, works at

the word granularity. Word-granularity in the coherence protocol is advantageous

because the memory operations have the granularity of a word in the Rigel ar-

chitecture. However, caching occurs at the line granularity, nominally 32 bytes in

our design. The difference in granularity requires further consideration to avoid

lost updates to shared cache lines under our software protocol. If the coherence

granularity were a full cache line, a writes by multiple cores to the same line

would result in a race condition even if the write sets within the word did not

overlap. For a hardware cache coherent design, the discrepancy between sharing

granularity and memory operation granularity would not present a correctness

problem; however, such sharing could manifest as false sharing. False sharing is

the situation where two cores concurrently access distinct sets of words that reside

on the same line. False sharing would only affect performance but not correctness.

The mutual exclusion property for writes under hardware cache coherence would

disallow two updates to distinct words on the same line to race.

To lift the burden of software management of false sharing in Rigel, we include

per-word dirty and valid bits in the L2 caches. When a core writes to a line, the

L2 allocates an entry for the line, if not already present, and sets the dirty bit

for the written word. The dirty and valid bits are propagated to the L3 where

the valid and dirty words are merged with the existing entry, when present, or a

new dirty entry is allocated with only the dirty and valid words set as valid at the

L3. For writes to distinct words in the same line, the merging at the L3 ensures

36

that no updates are lost, since the words being updated are mutually exclusive.

If true sharing exists, it represents a race in the software protocol. This race is no

different than one that would occur in a hardware coherent system with a relaxed

memory model. The hardware at the L3 handles races by allowing the last update

to persist; the hardware is unaware that a race exists. While allowing races may

seem to be an additional burden brought on by the software-managed coherence

protocol, it is no different from unsynchronized writes in a cache coherent system.

3.1.3 Coherence and Synchronization

Without hardware mechanisms to enforce coherence between cluster caches, alter-

native approaches must be used for conflicting shared data access. Write-shared

data on Rigel could be kept coherent between sharers by forcing all modification

to be made using global stores and all reads using global loads; however, the cost

of using only global memory operations would be high and strain global network

and cache resources. From a software perspective, global stores can be thought

of as put operations in a partitioned global address space (PGAS) model [73–76].

Similarly, a global load can be thought of as a get.

One of the key motivations for RTM, our task-based programming model,

which is described in greater detail in Chapter 5, is the low frequency of inter-

core write-shared data between two consecutive barriers. Instead, most read-write

sharing occurs across barriers and RTM exploits this fact to hide or avoid long-

latency global memory operations by implementing a software-managed coherence

protocol on top of the Rigel architecture.

The sharing pattern present in our target workloads allows applications tar-

geting RTM to leverage local caches for storing shared data between barriers and

then lazily to make modifications globally visible. Lazy updates can be performed

37

as long as coherence actions performed to output data are complete before a bar-

rier is passed. Rigel enables software management of cache coherence by RTM in

two ways. One is by providing instructions for explicit cluster cache management

that include cache flushes and invalidate operations at the granularity of both the

line and the entire cache. Explicit cluster cache flushes update the value at the

global cache, but do not modify nor invalidate copies that may be cached by other

clusters.

The second is broadcast invalidation and broadcast update operations that

are provided to allow software to implement data synchronization and wakeup

operations that rely on invalidation or update-based coherence in conventional

cache coherent CMP designs. Broadcast operations will be revisited in the context

of parallel reductions and synchronization barriers.

Note that the baseline Rigel implementation does not eliminate cache coher-

ence from hardware, but instead minimizes the hardware cost of maintaining a

coherent view of memory by adopting a combined software-hardware approach.

The hardware mechanisms for maintaining coherence in Rigel, such as global op-

erations that stall and complete at a high level of the cache hierarchy, trade off

complexity and generality for implementation efficiency. Rigel does provide loci

of coherence at the cluster, but without the need for additional coherence state

or logic due to our choice of implementation.

3.1.4 Scalability

In Kelm et al. [42] we evaluated the scalability of the Rigel architecture in sim-

ulation using a set of data- and task-parallel workloads. Expanded and updated

scalability results are shown in Figure 3.2. The figure demonstrates that we can

achieve near-linear scalability for many of our benchmarks and within 3× of linear

38

Some Results: Scalability

14

• Based on cycle-accurate, execution-driven simulation
• Library and run-time system code simulated
• Regular C code + parallel library, standard C compiler

John H. Kelm

0x

20x

40x

60x

80x

100x

120x

dmm heat kmeans mri gjk cg sobel

Sp
ee

du
p

vs
. 1

 C
lu

st
er

16 Clusters (128 Cores) 32 Clusters (256 Cores)

64 Clusters (512 Cores) 128 Clusters (1024 Cores)

Figure 3.2: Baseline kernel speedup relative to a single eight-core cluster.

speedup across all workloads at 1024 cores. A more thorough analysis of the 1024-

core configuration and our extensions to the baseline architecture are presented

in Chapter 9.

3.2 Rigel Task Model

The Rigel Task Model is a queue-based low-level programming model, described

in [42,77] that enforces coherence in software and performs synchronization using

barriers. The Rigel ISA provides instruction primitives useful for implementing

task management, such as local and global atomic operations, but does not provide

explicit support for task management. Moreover, the lack of hardware-managed

coherence represents an interesting challenges for the design of a parallel runtime

system.

In this section we describe the relevant pieces of the API of RTM to pro-

vide background and the implementation details relevant to supporting the Task-

Centric Memory Model.

39

3.2.1 Software API

The software API for RTM is composed of basic operations for managing the

resources of queues located in memory and inserting and removing units of work

from those queues. Applications are written for RTM using a single-program

multiple-data (SPMD) execution model where all cores share a single address

space and application binary. The programmer defines tasks that are inserted

and removed from queues between barrier operations. The barriers thus provide

a partial ordering of tasks. The model fits the bulk-synchronous processing (BSP)

pattern first described by Valiant [60].

Barriers are used to synchronize the execution of all cores using the queue

and to define a point at which all locally cached non-private data modified during

that interval must be made coherent. Coherence is enforced by writing back mod-

ified output data to the global L3 cache and invalidating read-only non-private

input data in the cluster L2 cache. Write-shared data within an interval must

be specified by the programmer and is generally implemented by global memory

operations on Rigel. The details of the protocol governing these actions are dis-

cussed further in Chapter 5. Intrinsics are provided by the API for global memory

operations and atomic operations that are kept coherent across tasks within an

interval.

3.2.2 Queue Management

RTM provides the following set of API calls to the programmer: TQ Create,

TQ EnqueueLoop, and TQ Dequeue. TQ Create allocates resources for the queue

and makes it available to the system. Each TQ Dequeue action operates on a single

task descriptor. A unique task descriptor is generated for each task enqueued and

contains two user-defined word-sized data fields and two parameters set by the

40

runtime to a range that can represent values such as loop iterations. For tasks

that require more than two words for input parameters, the fields can be used for

pointers to auxiliary data structures. The TQ EnqueueLoop operation provides

a single operation to enqueue a DO-ALL-style parallel loop similar to the loop

operation available for Carbon [78]. The runtime uses parameters to the enqueue

call to select the proper range to deliver to dequeuing cores.

An initialized queue can be in one of the following states: tasks-available,

empty, or completed. A newly-initialized task queue, or more generally any ini-

tialized task queue without available tasks but not all cores blocking on dequeue,

will be in the empty state waiting for tasks to be enqueued. Any core that attempts

a dequeue operation with an empty queue will block. When tasks are enqueued,

the state of the queue becomes tasks-available. When tasks are available, dequeue

operations return tasks without blocking. If cores are blocking on the task queue

and the queue transitions to the tasks-available state, blocking cores are allocated

newly available tasks and become unblocked. Tasks are removed in–order from

the front of the queue, but may complete in any order between barriers.

The completed state is used to provide an implicit barrier in the Rigel Task

Model. When all cores participating in a barrier interval have completed all tasks,

all cores will be blocking on the task queue and the task queue will transition into

the completed state. When the completed state is reached, a barrier is executed.

Although our task generation operation does not have the synchronization seman-

tics found in other models, such as TBB [79] and Cilk [80] where a fork operation

is a synchronization between parent and child, the semantics of the completed

state are such that tasks can be enqueued at any point within an interval—tasks

are not constrained to only be enqueued at the start of an interval. An example

of where enqueing tasks during an interval may be useful is in the traversal of a

tree structure where sibling subtrees can be processed in parallel, but the number

41

of tasks is not known a priori.

3.2.3 Implementation

RTM is a multi-level hierarchical task queuing system running on Rigel. Note

that the implementation detailed here allows for a task queuing system to be built

without the use of global cache coherence but rather through the use of memory

operations that bypass possibly incoherent local caches. Coherence management

is intertwined with the RTM implementation. Multiple policies for managing

coherence are described and evaluated in Chapter 9.

There is a single circular global task queue comprising groups of pointers to

task descriptors. The global task queue is located in the application’s address

space that is resident in main memory or, more likely, cached at the L3, avoiding

coherence concerns. The insertions and deletions at the global task queue are

synchronized using head and tail pointers that are updated atomically using global

atomic operations. Task descriptors inserted into the global task queue are not

linked into the task queue until they are flushed to the L3 by the enqueing core.

On enqueue operations, the enqueing core fills in the task descriptor locally, flushes

it to the L3, and then inserts it into the global task queue. Reducing the exposed

latency of enqueue is critical for achieving high speed fanout of work. Here the only

exposed latency is the read-modify-write operation to link in the new descriptors.

Moreover, we amortize the cost of enqueue and dequeue by inserting groups of

tasks at once when possible, nominally eight in our implementation.

Local task queues are used as a local buffer for task descriptors. The local task

queue is implemented as a NULL-terminated linked list. Access to the linked list

is synchronized using a ticket lock [49]. A ticket lock is used to reduce contention

on the L2 bus for situations where the local task queue is empty and many cores

42

are waiting on another core within the cluster to enqueue more tasks from the

global task queue. Insertions into the local task queue, which occur when a core

attempts a dequeue operation and finds the local task queue head pointer to be

NULL, are synchronized by a spin lock that ensures only one core is attempting to

fill the local task queue at any time; multiple global-to-local enqueuers complicate

the design of barriers and could lead to increased load imbalance and contention

at the L3.

The implementation of RTM relies heavily on global operations and atomic

primitives provided by the architecture. Global operations are used to access

global barrier state and poll head and tail pointers for the global task queue.

Local atomic operations synchronize the insertion and removal of tasks at the

local task queues. While global and atomic operations are seldom used directly by

application code, high performance global operations are imperative for achieving

low-latency enqueue, dequeue, and barrier operations. As such, the latency of

global operations has a strong influence on the overall scalability of the design.

As the amount of work per interval remains constant and the number of cores

scales up, there is less work per core. Therefore, a higher fraction of execution is

spent in the runtime executing barriers and performing task queue management

relative to task execution.

Dequeue operations are split into a fast path and a slow path. For the common

case where there are tasks in the local task queue and no barrier is pending, we

use load-link and store-conditional operations to obtain the local task queue lock

and unlink a task descriptor from the local task queue. We find this operation,

including transferring task descriptor contents into registers, can be accomplished

in fewer than 50 cycles, but may require many more on average if there is a high

degree of contention.

If the local task queue is empty, the core that finds it empty enters the slow

43

path and attempts to grab the per-cluster global task queue lock. The purpose of

this lock is to limit the number of cores per cluster attempting to dequeue from

the global task queue to one. If the lock is held, it implies another core is accessing

the global task queue and will either fill in tasks later or will notify the cores that

a barrier has been reached. While the lock is held, cores waiting at the local

task queue must check for more tasks by checking the value of the head pointer

and the cores must check if a barrier has been reached. The cores thus alternate

between checking the local barrier sense and checking the local task queue for

more work. Both operations require no locks and can be performed locally at the

L1 cache. When either the local task queue has tasks appended to it or a barrier

is reached, the cluster-level coherence implementation invalidates the local copy

of those values.

The performance of enqueue operations is critical to the scalability of RTM.

If the fan-out for tasks is not fast enough, cores will starve waiting for task de-

scriptors. If enqueue operations cannot happen fast enough, dequeued tasks will

finish before new tasks are available, thus leaving cores unutilized. Similarly, if

the latency of dequeue operations grows with the number of cores, scalability will

be limited. We address the problem of fast enqueue by performing enqueue in

parallel when possible. We can achieve this due to the SPMD execution model

that ensure all threads execute the same code given certain constraints placed on

synchronization and control flow. One core from each cluster is designated the

enqueing core. That core determines for which section of the tasks enqueued by

the user it should generate task descriptors and locally begins building up groups

of task descriptors. To address the problem of fast initial dequeue, the enqueing

core inserts tasks locally until a predefined number of task descriptors exists at

the local task queue before it begins enqueing tasks at the global task queue. The

design achieves very low overhead for enqueue operations across all our workloads.

44

A particularly difficult aspect of the RTM implementation is the barrier op-

eration. The general structure of the barrier is as a reduction operation where

cores enter into a cluster-level barrier and then one core from the cluster enters a

tile-level barrier. One core from each tile-level barrier then participates in a global

barrier. When the global barrier is reached, all cores are notified. We make use

of the broadcast update operation supported by Rigel to efficiently perform the

wake up. The broadcast operation on Rigel is a multicast message initiated by

one core and sent from the L3 to each of the tiles where the message is replicated

at each level of the interconnect down to the cores. If such a message did not ex-

ist, cores would be required to poll using global memory operations which would

result in a high degree of contention at the L3. The problem would be worse when

most tasks are polling and few tasks remain thus exacerbating the effect of load

imbalance.

The challenge in implementing RTM barriers correctly stems from RTM sup-

porting arbitrary enqueue between two barriers. Some BSP-like models force all

enqueue operations to occur before any tasks begin; no tasks may enqueue other

tasks. Fork-join models that allow for task enqueues, or forks, to occur at arbi-

trary points in the program have a parent-child relationship not present in RTM

that allows for synchronization at post-dominators, i.e., points where all children

join with their parents recursively. The implementation difficulty that this de-

sign aspect creates is that barriers must be two-phased. When there is no work

pending locally, a task will check at the next level for more work. If no work is

found globally, the core assumes a barrier is reached and waits. Only when all

other cores have entered the barrier can the barrier proceed, as with a conven-

tional barrier. However, there is the possibility that one of the cores not in the

barrier could insert more work. Adding more work while other cores are waiting

at the barrier requires that cores already in the barrier have the ability to back

45

out and begin dequeuing work again. The two-phase barrier is implemented by

having each core waiting on the barrier check the status of the task queue and

the number of other cores in the barrier, and only allowing the barrier to proceed

once all cores are in the barrier and no new work is in the task queue.

3.3 Feasibility of Physical Design

Initial area and power analysis [42] shows that the design is achievable in 320 mm2

in 45 nm technology, while consuming approximately 100 Watts. For comparison,

a contemporary Intel four-core processor such as the i7-960 is 263 mm2 with a

power envelope of 130 Watts on 45 nm technology. As such, the design represents

an achievable target for next generation accelerators and hybrid CPU-accelerator

systems. We believe that the reasonable area and power budget for the design

makes it amenable to being integrated with a CMP consisting of ILP-centric

cores either by reducing the number of Rigel cores or by using future process

technologies that will increase the available transistor budget.

3.4 Discussion and Summary

In summary, the Rigel design contains eight tiles, each tile contains 16 clusters, and

each cluster consists of eight cores and a shared cluster cache totaling 1024 cores.

The baseline architecture supports a task-based parallel programming model and

a shared memory abstraction. Rigel supports these features without specialized

hardware and without chip-wide hardware cache coherence. A novel approach

taken by Rigel is the use of a software protocol for maintaining a coherent view

of its cached memory system without the need for hardware cache coherence.

The implications of this design choice are explored in great detail throughout the

46

remainder of this dissertation.

For the runtime and basic programming model for Rigel, a simple barrier-

synchronized model with enqueue/dequeue semantics is sufficient for expressing

the parallelism in our workloads. Both fast dequeue operations and scalable en-

queue operations are important for supporting fine-grained tasks. Moreover, we

find avoiding unnecessary blocking at the cluster by decoupling dequeue opera-

tions at different levels of the task queue hierarchy and overlapping enqueue and

dequeue operations to be important to scalability. We find that our choice of

allowing arbitrary enqueue operations between barriers leads to implementation

difficulty due to the need to distinguish between the point when there is no work

currently available, but other tasks are still executing, and the point when there

is no work available and no new work will be created. Finally, we are able to

provide the appearance of a single, coherent address space to application software

without hardware coherence. However, we find it necessary to use global memory

operations, which achieve coherence by not caching locally, to build our runtime.

47

CHAPTER 4

Workload Characterization

In this chapter, we provide analysis of parallel workloads running on the Rigel ac-

celerator. We describe each of our benchmarks in detail. We characterize the run-

time overheads, task granularities, and data sharing patterns of the workloads. We

evaluate the cost and efficacy of coherence management in the software-managed

coherence case and for hardware coherence. The patterns discussed in this chapter

are used as the motivation for the architecture and coherence protocols discussed

in the remainder of this work.

4.1 Workload Description

The applications that we evaluate are optimized kernels extracted from scientific

and visual computing applications. The SWcc variants have explicit invalidate and

writeback instructions. The instructions exist in the code at both task boundaries

and at barriers. The benchmarks are written using RTM, the task-based, barrier-

synchronized work queue model presented in Chapter 3. We now summarize each

benchmark and provide qualitative details regarding their implementation and

parallel structure.

The kernels used in this work are extracted from workloads in the visual com-

puting domain. Visual computing encompasses visualization, simulation, high-

performance computing for scientific and engineering modeling, and interactive

graphical computing environments. Many of these workloads are highly parallel

48

and scalable [12,15], and similar workloads are cited as economically relevant for

multicore processor manufacturers [81]. The benchmarks used in this work are

listed below.

1. Conjugate Gradient Linear Solver (cg): We use a variant of the sparse linear

systems solver described in [82]. We use data sets from the Harwell-Boeing

sparse matrix collection. The algorithm consists of five phases that repeat

until convergence criteria are met. The five phases, in program order, are a

sparse matrix-vector multiply (SMVM), a reduction, a dot product of two

vectors, a second reduction, and a second dot product. In our implemen-

tation, the three compute phases are parallelized and the two reductions

use a hierarchically structured reduction tuned to the Rigel architecture.

The key features of this benchmark are irregular task lengths, sensitivity to

reduction costs, and an even mix of read-only and write-to-read-many data.

2. Dense Matrix Multiply (dmm): We perform a blocked single-precision dense

matrix multiply on a pair of 1024×1024 matrices. Our implementation per-

forms the multiplication in stages with barriers separating each stage. The

intent is to reduce the divergence between threads to limit the working set

to the size of the L3 cache. Note that a good deal of inter-thread skew

is possible leading to some cache thrashing, but our technique avoids the

more pathological cases of parts of the matrix being in the on-die working

set simultaneously. The data structure used is an array of pointers to ar-

rays which allows us to stagger the start of rows in memory, thus limiting

conflict misses due to limited associativity at the L2. The key features of

this benchmark are regular task lengths, a high ratio of read-to-write data,

highly structured computation, and a relationship between working set size

at multiple levels of the computation. Furthermore, reuse and sharing across

49

threads must be leveraged if high efficiency is to be obtained.

3. Fast-Fourier Transform (fft): We use a variant of the FFT proposed by

Cooley and Tukey [83]. The FFT performed is a 2D FFT which consists

of two phases of 1D FFTs that are separated by a transposition. The FFT

phases are data-parallel and have a high floating-point operation density.

The transpose stresses the interconnect due to all-to-all communication.

The key features of this benchmark are high memory bandwidth and a

phase that places a large strain on the interconnect.

4. Collision Detection (gjk): We use the Gilbert, Johnson, and Keerthi (GJK)

minimum distance algorithm [84]. The algorithm computes the minimum

distance between sets of convex polytopes. GJK is used in collision detection

algorithms found in modeling and gaming applications. The key features of

this benchmark are small and irregular task sizes.

5. 2D Stencil (heat): The benchmark code is derived from the heat benchmark

in the Cilk benchmark suite [80]. The computation performs a stencil com-

putation to determine the heat flow in a 2D space. The key features of this

algorithm are a large degree of read-write sharing across time steps and low

arithmetic intensity and little reuse for large datasets. The benchmark also

makes use of double buffering for input/output datasets. One characteristic

of this workload is its sensitivity to replacement policy. The high degree

of read sharing at the L2 coupled with the large volume of data accessed

makes proper replacement critical for avoiding unnecessary capacity misses

at the L2.

6. K-means Clustering (kmeans): We implement a variant of the K-means

clustering algorithm [85]. The algorithm takes a set of N points in a D-

50

dimensional space and determines K D-dimensional points that minimize

the sum of the average error between the N points and K-means. The key

features of this benchmark are the local and global histogramming opera-

tions.

7. Marching Cubes (march): We implement a variant of the marching cubes

algorithm for constructing three-dimensional surfaces [86] from a 3D scalar

field. This benchmark is dominated by integer operations, so the FLOPS

counts presented are expected to be low.

8. Medical Image Reconstruction (mri): The mri kernel is derived from from

the work of Stone et al. [87]. The key features of the benchmark are its high

FLOP density and use of transcendental functions inside the inner loop.

The transcendental functions can be sped up using approximate methods or

specialized hardware if available.

9. Edge Detection (sobel): The kernel performs Sobel edge detection on a 2D

image. The computation comprises a set of convolution operations. The

key features of the benchmark are its potential for false sharing due to

shared edge regions and sensitivity to data layout. There is also a high

degree of read sharing among tasks working on a section of the image. The

dimension and size of the tasks has an impact on the intra-task read sharing,

while co-location of tasks that access adjacent regions of the image increases

inter-task read sharing.

10. 3D stencil (stencil): We perform a 7-point stencil over a 3D grid of data

points. The key features of this algorithm are its high memory bandwidth

requirements. This benchmark is not written using RTM and instead does

a static assignment of tasks to cores.

51

Table 4.1: Characterization of the ten workloads used in this dissertation run using
a 1024-core variant of the Rigel architecture with software-managed coherence.

Task Length (Instructions) GFLOPS Cache Hit Rate (%) Memory BW
Benchmark Min. Max. Mean IPC % of Peak L1D L1I L2D L3 % of Peak
cg 189 18418 1630 0.741 2.42 0.924 0.994 0.928 0.887 8.04
dmm 25298 28682 26852 0.930 25.47 0.947 0.999 0.762 0.945 4.47
fft 2076 1944107 105669 0.397 8.61 0.864 0.999 0.788 0.419 76.34
gjk 757 84300 16027 0.694 6.30 0.882 0.997 0.948 0.865 7.11
heat 21938 71542 41207 0.695 8.88 0.903 0.998 0.846 0.506 70.29
kmeans 27721 29310 27940 0.842 16.60 0.975 0.999 0.963 0.826 1.12
march 59555 510229 141802 0.741 1.98 0.907 0.999 0.812 0.757 58.73
mri 259938 270671 265326 0.679 18.42 0.788 0.999 0.028 0.990 0.31
sobel 44045 53572 44448 0.945 22.76 0.966 0.999 0.906 0.112 12.80
stencil – – – 0.810 9.51 0.844 0.999 0.792 0.572 77.01

Table 4.2: Characterization run in Table 4.1 with an on-die full-directory hardware
coherence implementation.

Task Length (Instructions) GFLOPS Cache Hit Rate (%) Memory BW
Benchmark Min. Max. Mean IPC % of Peak L1D L1I L2D L3 % of Peak

cg 151 14264 1673 0.712 2.32 0.917 0.995 0.909 0.906 7.25
dmm 24491 27836 26107 0.937 27.21 0.936 0.999 0.809 0.955 4.93
fft 3431 1990425 106573 0.408 8.45 0.852 0.999 0.826 0.545 78.49
gjk 673 82917 15922 0.700 6.12 0.882 0.998 0.954 0.860 4.90
heat 19409 77783 35238 0.716 9.54 0.895 0.998 0.875 0.501 60.24
kmeans 27697 29957 27915 0.819 19.00 0.973 0.999 0.969 0.750 1.16
march 55638 502935 137052 0.760 2.04 0.895 0.999 0.829 0.783 57.72
mri 232292 248663 238419 0.583 20.44 0.762 0.999 0.560 0.979 0.37
sobel 43720 45597 43961 0.936 22.91 0.963 0.999 0.905 0.136 7.43
stencil – – – 0.812 9.90 0.833 0.999 0.820 0.448 80.30

Table 4.1 provides an overview of the statistics collected on 1024-core runs of

a baseline Rigel implementation. Table 4.2 shows the same statistics, but with an

optimistic hardware coherence implementation that uses a full directory on-die.

A full on-die directory is unrealistic due to area and power constraints, but the

data demonstrates the impact of hardware coherence on performance even under

highly optimistic conditions. The dataset is not a complete characterization of

the workloads nor the architecture. It is meant to demonstrate some of the first-

order performance issues for the design such as memory bandwidth and achieved

performance. Also note that we tune the task sizes to provide the best absolute

performance, which may lead to higher than expected task distribution overhead

and poorer cache performance compared to configurations optimized for those

metrics. More details regarding our methodology are presented in Chapter 9.

52

4.2 Bulk-Synchronous Patterns in Accelerator Workloads

Accelerators place different constraints on caches and coherence management rel-

ative to contemporary general-purpose CMPs. An opportunity exists, chiefly

driven by characteristics of accelerator workloads, to exploit these differing con-

straints. However, optimizations that exploit characteristics of current workloads

may come into conflict with the desire to support the variety present in emerging

future workloads. To enlarge the space of applications accelerators target, they

must not only support the data-parallel execution model prevalent today, but

irregular task-parallel computation not well-suited to contemporary accelerators

such as single-instruction multiple-data (SIMD) GPUs. Support for flexible and

evolving task management models is not easily implemented with area-efficient

hardware mechanisms. Therefore, we are motivated to investigate software mech-

anisms when possible, and general hardware mechanisms as required, for support-

ing a memory model tuned for accelerators.

4.2.1 Parallelism Structure

We observe that the programming styles adopted by developers for accelerator ap-

plications share a common structure, similar to bulk synchronous processing [60].

These large-scale parallel applications are composed of collections of concurrently

executing tasks comprising mostly data-parallel units of work. Tasks execute be-

tween two barrier operations. The period between two barriers we define as an

interval. The tasks exchange little or no data within an interval. At a barrier,

modified shared data is made globally visible, and the next phase of computation

begins.

Updates by a task during an interval can only be assumed by the programmer

to be visible after the current interval has ended. Moreover, the programmer

53

cannot assume updates are invisible during the interval in which the update oc-

curs. That is, updates are not buffered nor deferred and may take effect any time

between the update and the end of the interval. Sharing modified data within an

interval requires explicit programmer annotation.

We observe that popular programming models used in developing large-scale

data-parallel applications do not depend on the hardware support provided by

conventional systems, i.e., hardware coherence, for arbitrary sharing. In a barrier-

synchronized, mostly data-parallel, task-based shared-memory programming model,

coherence management is required to enable sharing; however, the mechanisms

found in conventional CMP architectures to support arbitrary sharing through

cache coherence are of marginal utility. As such, mechanisms for enabling some

data, such as work queues or data structures, to be shared are required but need

not cover all of memory at all times. Furthermore, the common structure present

in these parallel applications is rooted in the programmer’s attempt to create scal-

able code in a manner that is conceptually simple; thus there is minimal sharing.

4.2.2 Sharing Patterns

We provide analysis of a set of parallel visual computing workloads from VIS-

Bench [12] and from the Rigel kernel benchmark suite. VISBench consists of a

set of full applications that we run on the x86 platform. Analysis of these work-

loads shows similar data sharing and synchronization patterns across workloads

and between the two different platforms we target. Specifically, we investigate the

sharing patterns of our workloads across synchronization boundaries. Figure 4.1

shows the naming scheme of these memory operations pictorially. Figure 4.2 gives

the number of unique memory references that are shared across intervals, marked

as input and output, and within an interval, marked as conflict, for VISBench

54

5 John H. Kelm

ST Z

LD Z

ST X

LD X

ST Y

LD Y LD Y

Input
Read by t2, written by
t1 in previous interval

Output
Produced before a
barrier, read after it

Private
Read and written by
only one task

Conflict
Written by t1, read by
t2 within an interval

Barrier

Barrier

Figure 4.1: Categorization of memory access types in Rigel and VISBench bench-
marks. Letters X, Y, and Z represent distinct addresses, and t1 and t2 represent
distinct tasks.

applications, and Figure 4.3 gives the same for the Rigel benchmark suite. Note

that the analysis results for MRI versions differ due to the larger degree of regis-

ter spilling on x86, resulting in more private reads on x86 compared to the Rigel

variant. We exclude work distribution-related sharing from results to highlight

application-level characteristics.

Figures 4.2 and 4.3 give the frequency of non-private loads and stores, which

are data produced by one task and consumed by one or more other tasks. Non-

private accesses are further broken down into whether the values are shared be-

tween tasks within an interval, which we call conflict reads and writes, or across

intervals, which we call input reads and output writes. The figures show that the

majority of non-private loads are reads to data produced before the current in-

terval began, i.e., input reads. At the same time, both conflict reads and writes

to data shared within an interval are rare. Output writes, which are writes from

one task in the current interval consumed by another task in the next interval,

are more common in real applications than true shared writes which require intra-

interval synchronization; moreover, true shared writes constitute a small fraction

55

h

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

W
ri

te

Re
ad

W
ri

te

Re
ad

W
ri

te

Re
ad

W
ri

te

Re
ad

W
ri

te

Re
ad

W
ri

te

Re
ad

PovRay MRI FaceDetect H.264 Blender ODE

Output Conflict Private Input

Figure 4.2: Relative fraction of memory misses for each access type for VISBench.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

W
ri

te

Re
ad

W
ri

te

Re
ad

W
ri

te

Re
ad

W
ri

te

Re
ad

W
ri

te

Re
ad

W
ri

te

Re
ad

W
ri

te

Re
ad

CG DMM GJK HEAT KMEANS MRI SOBEL

Output Conflict Private Input

Figure 4.3: Relative fraction of memory misses for each access type for the Rigel
benchmarks.

of overall execution. Also note that the number of unique output writes is much

smaller than the number of input reads in the figure due to one-to-many sharing

across intervals.

4.2.3 Accelerator Workload Characteristics

To summarize, we list five common characteristics in accelerator workloads:

1. Large amounts of immutable, read-shared data are present within an inter-

val. Examples of read-shared data from our workloads include scene and

56

model descriptions or blocks of streaming media data.

2. Synchronization is coarse grained. Coarse-grained synchronization moti-

vates our investigation of bulk coherence management at task boundaries.

Indicative of this pattern are output writes and corresponding input reads

in Figure 4.2 and Figure 4.3, which demonstrate that modified data is often

read by a task after the interval in which the data was written ends.

3. There exist only small amounts of write-shared data within an interval.

The small amount of write-shared data indicates that tasks are highly data-

parallel with few data dependences between tasks within an interval. The

effect is indicated in Figure 4.2 and Figure 4.3 as a lack of conflict reads and

writes. Furthermore, the conflicts that do exist are structured, such as the

histogramming operation on kmeans and reduction operations in cg. The

structured conflicts are supported by collective operations such as atomic

accumulate instructions in our workloads.

4. Fine-grained synchronization is present but rare. An example of such syn-

chronization is atomic updates to shared data structures. Although not

shown in the figures directly, we observe that much of the fine-grained syn-

chronization that we do find is used for task management and not for appli-

cation code.

5. When write sharing within an interval does exist, it is usually between few

sharers.

Collectively, these characteristics demonstrate that little coherence manage-

ment is required within an interval, indicating the potential for pushing coherence

management into software to be performed logically at the end of an interval. At

the same time, mechanisms must be present to allow small amounts of fine-grained

57

synchronization and data sharing within an interval for supporting task manage-

ment efficiently. Our findings further motivate the use of shared caches that can

amortize the costs associated with data access to read-shared data, a prevalent

access pattern in our target workloads.

4.2.4 Cache Coherence Management

A mechanism for maintaining coherence, whether fully supported in hardware or

a software protocol partially supported by hardware, cannot simply be omitted

from the design of future accelerators, but the constraints placed on accelerators

with respect to coherence differ from those of general-purpose CMPs. CMPs rely

on cache coherence and global synchronization mechanisms to provide shared re-

source management. Alternatively, an accelerator architecture can employ relaxed

memory models, explicit local and global memory operations, and a task-based

programming model to execute the coherence actions needed to enforce the mem-

ory model at barriers, thus providing structure without sacrificing performance.

As a substitute for hardware cache coherence, we investigate the use of software

enforcement of our Task-Centric Memory Model, as described in Chapter 5. In

the next section, we provide a more detailed overview of coherence management

costs for accelerators.

4.3 Coherence Overhead for Accelerator Workloads

In this section we discuss coherence overheads for accelerator workloads when

using hardware coherence and software-managed coherence. We evaluate the

additional network traffic and the efficiency of cache management instructions

executed by software-managed coherence.

58

0.0

0.5

1.0

1.5

2.0

2.5

SWcc HWcc SWcc HWcc SWcc HWcc SWcc HWcc SWcc HWcc SWcc HWcc SWcc HWcc SWcc HWcc

cg dmm gjk heat kmeans mri sobel stencil

Re
la

ti
ve

 N
um

be
r

of
 M

es
sa

ge
s

L2 Cache Output Message Count

Probe Responses

Read Releases

Software Flushes

Cache Evictions

Uncached/Atomic Operations

Instruction Requests

Write Requests

Read Requests

Figure 4.4: Message count from the L2 cache to the shared L3 normalized to
software coherence (SWcc) results. Note that HWcc contains some software flushes
as an optimization for data known to be no longer needed in the L2.

4.3.1 Network Traffic

We simulate the Rigel benchmark suite running on a 1024-core Rigel system. The

details of the simulation methodology are further described in Chapter 9. Fig-

ure 4.4 gives the messaging overhead for an optimistic implementation of hardware

coherence (HWcc). For this experiment, we assume a complete full-map on-die

directory with infinite capacity and full associativity. We choose this aggressive

and potentially unrealizable design point since it eliminates broadcasts and ca-

pacity or conflict evictions at the directory. The design point thus represents an

optimistic picture of the overhead of directory-based hardware cache coherence.

The software-managed protocol (SWcc) uses explicit flush and invalidation

instructions inserted into the software to manage coherence. Moreover, SWcc re-

duces instruction stream efficiency since it must issue explicit cache flush instruc-

tions, which show up as additional software flush messages in Figure 4.4.

Figure 4.4 indicates markedly increased message traffic across all benchmarks

for HWcc except for kmeans, which is dominated by atomic read-modify-write his-

togramming operations that are simulated similarly for both SWcc and HWcc. The

additional messages come primarily from two sources: write misses and read re-

lease/invalidation operations. For SWcc, software is responsible for tracking own-

59

0.03
0.10
0.23
0.46
0.77

0.00

0.20

0.40

0.60

0.80

1.00

8K 16
K

32
K

64
K

12
8K 8K 16

K
32

K
64

K
12

8K 8K 16
K

32
K

64
K

12
8K 8K 16

K
32

K
64

K
12

8K 8K 16
K

32
K

64
K

12
8K 8K 16

K
32

K
64

K
12

8K 8K 16
K

32
K

64
K

12
8K 8K 16

K
32

K
64

K
12

8K

cg dmm gjk heat kmeans mri sobel stencilU
se

fu
l C

oh
er

en
ce

 In
st

ru
ct

io
ns

Useful Invalidations Useful Writebacks

Figure 4.5: Writeback and invalidate efficiency for different L2 cache sizes. An
inefficient access is one that is performed by software to a line no longer present
in the cache. For all of our other experiments we use a 64 kB cache.

ership. For a non-inclusive cache hierarchy [1,64] per-word dirty and valid bits are

maintained in cache. Writes can be issued as write-allocates under SWcc without

waiting on a directory response. Under HWcc we do not support silent evictions,

and thus read releases are issued to the directory when a clean line is evicted

from a local cache (L2). For SWcc, there is no need to send any message, and the

invalidation occurs locally. Even if a protocol without read releases were used,

HWcc would still show significant message overhead for invalidation cache probes;

the implications of a protocol without read releases is discussed in a later section.

4.3.2 Software-Managed Coherence Efficiency

Figure 4.5 evaluates the efficiency of issued flush and invalidate instructions under

SWcc by counting the number of such instructions that operate on valid lines in

the cache. Under a software protocol with deferred coherence actions, the state

of lines must be tracked in memory, which can be less efficient than maintaining

a small number of bits with each cache tag, which is the conventional method for

tracking coherence state. Furthermore, flush instructions can be wasteful, as the

lines they target may have already been evicted from the cache by the time the

SWcc actions occur. We show this effect quantitatively in Figure 4.5 where we

60

Opportunity: HWcc v. SWcc Shootout

John H. Kelm 8

• Note: Lower bars are better
• Question: Can we leverage both HW+SW protocols?

* SWcc based on the Task-centric Memory Model [Kelm et al. PACT’09][Kelm et al. IEEEMicro’10]

0.0 x

0.2 x

0.4 x

0.6 x

0.8 x

1.0 x

1.2 x

1.4 x

cg dmm gjk sobel kmeans mri march heat stencilRu
nt

im
e

N
or

m
al

iz
ed

 to
 Id

ea
lS

W
cc

Ideal SWcc Best SWcc (of 4 policies) Full Directory (ideal on-die)

SWcc
Wins

HWcc
Wins

Parity

Figure 4.6: Runtime of idealized hardware and software-managed coherence com-
pared to the best case implementation using the Task-Centric memory model.

measure the number of SWcc actions that are performed to lines valid in the L2.

Indeed, many of the coherence instructions issued dynamically are superfluous,

operating on lines not present in the cache.

4.3.3 Performance Trade-Offs in Coherence Management

Figure 4.6 compares the runtime of our workloads under hardware-managed and

software-managed coherence. The hardware-managed coherence implementation

is a full on-die directory which allows us to evaluate best-case directory perfor-

mance. We also include an ideal software-managed coherence implementation that

removes all unnecessary writeback operations to evaluate optimistic performance

for a software-managed scheme. Note that it is possible for the optimistic variant

to be slower than realistic SWccdue to network reordering, additional contention

due to self-synchronization of tasks, and variation in task scheduling. The fig-

ure shows that no one policy provides a clear performance advantage, suggesting

that a mix of policies is necessary to achieve optimal performance. Moreover, the

programmability implications of moving from one method to another might make

one model more advantageous than another.

61

4.4 Discussion and Summary

In this chapter we have described the applications we evaluate in this dissertation.

We discussed the bulk-synchronous processing pattern common to accelerator

workloads. Using this structure, we described the prevalent data sharing patterns

in accelerator workloads and how they can be exploited by a memory model tuned

to accelerators. We evaluated the overhead of coherence management for accel-

erators and found that from a performance perspective, neither software-manged

coherence nor hardware-managed coherence is always the best choice. In the case

of software-managed coherence, conservative actions necessary to maintain cor-

rectness when hardware caches are in use can lead to high instruction stream

overhead due to unnecessary cache management operations. Hardware-managed

coherence suffers from an unnecessary increase in network messages and on-die

coherence state storage. The unnecessary increases have two causes. One is that

the data is unshared, thus obviating the need for coherence. The other is that the

workload fits the BSP pattern well and has a predictable sharing pattern where

software management overhead would be minimal.

62

CHAPTER 5

Task-Centric Memory Model

In this chapter, we present the Task-Centric Memory Model (TCMM) for 1000-

core compute accelerators. Visual computing applications, examples of which

are discussed in Chapter 4, are emerging as an important class of workloads that

can exploit 1000-core processors. In these workloads, we observe data sharing and

communication patterns that can be leveraged in the design of memory systems for

future 1000-core processors. Based on these insights, we propose a memory model

that uses a software protocol, working in collaboration with hardware caches, to

maintain a coherent, single-address space view of memory without the need for

hardware coherence support. An abbreviated form of this work was previously

published in [77] and [88].

5.1 Design

Our baseline system is a multicore processor with a single address space and hard-

ware caches, but without hardware cache coherence. In the absence of hardware

support for coherence in a single address space multicore processor, a software-

defined memory model is necessary to achieve consistent behavior for cases where

data may need to be shared between threads executing on different cores. A

share-nothing approach and explicitly managed address spaces are ways to avoid

the coherence problem inherent to CMPs with a single address space; similar ap-

proaches are taken on the Cell [57] and GPUs [4]. Our goal, however, is to address

63

the coherence problem using scalable hardware while leveraging the characteristics

of scalable applications.

The distinction between the multiple address space paradigm for accelerators,

e.g., GPUs and Cell, and the single address space paradigm for accelerators, e.g.,

Rigel, is pertinent to this dissertation. While the former lends well to SIMD

execution, scratchpad memories, and explicit software management of locality,

the latter is more amenable to MIMD execution, hardware caches, and hardware

management of locality. The motivation for why these features are beneficial for

SIMD and MIMD, respectively, is discussed in greater detail in the motivation

in Chapter 2. While SIMD accelerators with software-managed local memories

are prevalent, we assert that the limiting factor for wide-scale adoption of cached

MIMD accelerators is the lack of a scalable, low-complexity means to solve the

coherence problem for 1000-core processors similar to Rigel. This section presents

one such solution.

In this section, we discuss the design of the software-defined memory model

used by the baseline Rigel processor. In our approach, we leverage the bulk-

synchronous structure of many parallel applications as well as the implications

for sharing patterns of this structure, as illustrated in Chapter 4, to develop the

Task-Centric Memory Model. By having the programmer reason about mem-

ory blocks that are read-only, shared, or private during each interval, the memory

model we define allows software to achieve the behavior of a coherent design with-

out hardware cache coherence. The goal is to achieve the semantics of a shared

single address space without the need for the complex hardware and performance

overheads associated with building a cache coherent CMP. The problems related

to scaling hardware cache coherence that we address include: the need for or-

dered and/or complex interconnects, false sharing, coherence state storage area

overheads, e.g., directories or snoop filters, and the difficulty inherent to eliminat-

64

ing microarchitectural races from hardware coherence protocols.

The Task-Centric Memory Model defines a coherence domain as a logical

grouping of memory blocks for which coherence guarantees are provided collec-

tively by the memory model. The model requires that software performs the nec-

essary actions to transition blocks between the different domains during program

execution. Software in this case refers to either a developer explicitly managing

sharing, a library that hides the transitions from the developers, or a tool, such

as a compiler, that inserts operations to orchestrate the transitions automatically.

Once a block is moved into a state other than the initial (clean) state during

an interval, it cannot transition to another coherence domain until after a global

synchronization point is reached; this constraint is relaxed later, but serves as a

conservative simplifying assumption for the model.

5.1.1 Coherence Algorithm

A block of memory follows the state machine diagrammed in Figure 5.1. Tasks

ti operate on blocks using the following memory instructions: local loads (L.LD),

local stores (L.ST), global loads (G.LD), global stores (G.ST), writeback operations

(WB), and invalidate operations (INV). Writeback operations write a line back to the

global (L3) cache if present in the cluster (L2) cache and mark the line unmodified

at the cluster cache. Invalidate operations make a line invalid in the cluster cache

if present. Note that in our implementation, L1 caches are transparent to software,

so the coherence algorithm need not consider their state. Each set Tx represents

the collection of tasks sharing a block in a particular state: clean (TC), globally

coherent (TG), immutable (TI), and private (TP). The private domain is broken

into two states for clarity. The two states also enable optimizations since a clean

line in the private state can simply be dropped when an invalidation is issued

65

Clean

Globally Coherent

Immutable†

Private (Clean)†

Private (Dirty)†

G.ST,
G.LD INV

TG ←TG ∪ {ti}
TG ←TG \ {ti}

G.ST,
G.LD

TG ←TG ∪ {ti}

L.LD
TI ←TI ∪ {ti}

(TG ≡ Ø)
ε

L.LD
TP ← {ti}

INV
TP ← Ø

(TG ∪ TP ≡ Ø)

(TG ∪ TP ∪ TI ≡ Ø)

(TI ∪ TP ≡ Ø)

(|TP|≡ 1)

(|TP|≡ 1)

L.LD
TI ←TI ∪ {ti}

L.LD
TP ← TP

WB
TP ← TPL.ST

TP ← TP

L.LD,
L.ST

TP ← TP

INV
TI ←TI \ {ti}

(TI ≡ Ø)
ε

L.ST
TP ← {ti}

Figure 5.1: State transitions for memory blocks in the Task-Centric Memory
Model. Actions include: Local loads (L.LD), local stores (L.ST), global loads
(G.LD), global stores (G.ST), write backs to the global cache (WB), and cluster
cache invalidates (INV). The † notes states that may cache a block at the cluster
cache. The set of tasks sharing a block in state X is denoted by TX . Any transition
absent from the diagram is disallowed by the model.

66

while a writeback in the private state requires communication with the L3.

There are six properties defined for the memory model:

1. All blocks start in the clean state. (∅ ≡ TI ∪ TG ∪ TP |time = 0)

2. A barrier is a global point of synchronization. All memory operations per-

formed before a barrier must be complete before any processor leaves the

barrier.

3. Blocks may only transition between accessible states by first passing through

the clean state and after a barrier is reached.

4. A block may be in exactly one (non-clean) accessible state from the per-

spective of all cores in the system at any time. ((∅ ≡ TI ∩ TG) ∧ (∅ ≡

TI ∩ TP) ∧ (∅ ≡ TG ∩ TP))

5. A block in the private state must have ‖TP‖ ≡ 1.

6. Loads (G.LD) that target a block in the globally coherent state return

the last write to that location. All cores in the system see the same ordering

of updates to that location, i.e., the block is kept coherent.

The software coherence protocol must interact properly with the underlying

hardware to ensure correct execution. For instance, the private (clean) state

corresponds to a data value in the cluster cache that does not have its dirty bit

set. The cluster cache controller may invalidate the line on an eviction, implicitly

moving the line into the clean state. Should the core previously holding the block

in the private state reissue a load to that location, the cluster cache controller

must fetch the value from the global cache. The value is guaranteed to return

the same value as if the eviction had not occurred since, by properties 4 and 5

above, ownership of the block is held solely by the core issuing the load. Global

67

atomics are restricted to be only performed on globally coherent blocks and

have the same semantics from the perspective of the memory model as global loads

and stores. Having two distinct cluster caches hold the same block in the dirty

state represents a race condition that is possible in hardware, but is disallowed

by software that obeys the memory model defined above.

5.1.2 Memory Ordering

Ordering of memory operations is defined separately for operations performed

within distinct coherence domains. Ordering must be defined when conflicting

accesses exist. A conflict is defined as at least two cores accessing the same

block with at least one access being a write. Blocks in the clean and immutable

states can never have conflicting accesses by definition. Blocks in the clean and

immutable states have a single value that is visible to all cores.

Property 5 of the memory model ensures that updates to private blocks are

only ever visible to a single core and therefore by definition no conflicting accesses

may occur. Loads by a core return the last store to the block performed by the

core while in the private state or, if the block has not been written by the core

since becoming private, the value of the block when it was in the clean state

is returned. Blocks in the private state therefore need only respect dependences

implied by program order. Access by more than one core to private blocks is

disallowed by the model.

Conflicts may occur for blocks in the globally coherent state. Blocks in the

globally coherent state are kept cache coherent. We define the ordering of all

accesses to all blocks in the globally coherent state to conform to processor

consistency [89]. Processor consistency states that all memory operations from

any one core appear in the same order to all other cores, but different cores can see

68

the different interleavings of accesses from two other cores. Processor consistency

is weaker than sequential consistency [90], which defines a single global ordering

of memory operations. However, processor consistency allows for optimizations

not possible with a stricter model [91,92].

A stricter model for globally coherent data is required to enable accesses

to that data to be used as synchronization primitives when necessary. When

used as synchronization variables, globally coherent data can impose a partial

order on memory operations across coherence domains. A global ordering of ac-

cesses is defined at barriers by property 2. For implementation and optimization

reasons, the memory model defines ordering between dependent operations that

cross coherence domains from a single core similarly to weakly consistent models.

The memory model defines that reads to private blocks followed by writes to

globally coherent blocks from a single core respect program order. Reads to

immutable or globally coherent blocks followed by writes to private blocks

from a single core respect program order. Other orderings across cores and coher-

ence domains are undefined by the model. A memory fence operation is provided

by the ISA to ensure that all memory operations, including writebacks and inval-

idates, issued by a core executing the fence complete before the fence retires. No

new memory operation may be initiated until after the fence has retired. A global

memory fence can be constructed by having all cores issuing a memory fence prior

to entering a global synchronization barrier.

5.2 Optimizations

The Task-Centric Memory Model is able to provide the appearance of a coher-

ent single address space on a chip multiprocessor without hardware cache coher-

ence. However, strict adherence to the model unnecessarily limits optimizations.

69

John H. Kelm

Task Execution

Enqueue

Dequeue

Load Imbalance

Barrier

Barrier

One-to-One Mapping
Tasks to threads

Coherence Actions
Logically occur at barrier

Figure 5.2: Logical flow of tasks and coherence actions in the Task-Centric Mem-
ory Model.

The baseline model limits software and hardware prefetching capabilities. The

model forces inter-task shared accesses that occur within an interval to make use

of the globally coherent state and thus to conservatively access high-latency

global caches on all accesses to that data throughout the interval. The globally

coherent state is particularly relevant to the produce-consumer sharing pattern

that does not lend well to cross-barrier synchronization. Forcing all data to the

clean state also requires aggressive invalidation and cache flushing that is unnec-

essary in many cases. A simple example is stack data that is allocated to each core

once and ownership, and by extension its classification as private data, will not

change across barriers. By extending the baseline Task-Centric Memory Model

presented, many of these limitations can be addressed.

We evaluate different policies for deciding when to perform coherence actions

before the end of an interval. In the baseline model, all tasks are considered inde-

pendent and all explicit coherence actions are performed at interval boundaries as

shown in Figure 5.2. Further optimization can be performed by taking a thread-

70

centric view of coherence management, i.e., a view that considers the sequence of

all tasks run on a single core within an interval as one unit for which to sched-

ule coherence actions instead of at the completion of tasks. As an example, we

can weaken property 3 by adding: Not all blocks need to be clean at barriers,

only those that undergo state transition across the barrier. While the general

problem of determining what data may be made coherent lazily is difficult, there

are opportunities to exploit always-private data, such as stack allocations, and

programmer assertions for immutable data, such as the const keyword in the C

programming langauge.

When available, locality can be exploited by augmenting an underlying as-

sumption of the model that a task maps to a single core. Optimization can be

performed using cluster-level sharing by extending the model to map groups of

tasks to clusters instead of a single task to a core. By reconsidering the level

at which work is mapped to execution resources, a first level of shared cache,

such as the cluster cache on Rigel, can now be used as the point of coherence for

data. Doing so allows for data that would otherwise be required to exist in the

globally coherent state, thus suffering high latency to access the furthest level

of the hierarchy, to be effectively privatized to more local caches when all tasks

accessing the data can be co-located as part of a group.

The Task-Centric Memory Model supports staged porting of applications ini-

tially developed assuming full hardware cache coherence and porting efforts start-

ing from a sequential implementation. To do so, initially the globally coherent

state is used for all data in the application to provide the appearance that all data

is kept coherent at all times. We call this the debug model. While a performance

penalty is paid for using the globally coherent state for all data due to the

restrictions on local caching, the assumption of coherence holds, and thus enables

correctness for ported software. The performance penalty on Rigel is attributed

71

to the order of magnitude reduction in cache bandwidth, i.e., L2s with 256 ports

versus L3s with 32, and the order of magnitude increase in latency due to L2 to

L3 network traversals on every load and store. Queueing and contention in the

network magnifies the costs. However, even at a 10×–100× slowdown, the debug

model is still orders of magnitude faster than simulation without any discrepancies

in execution between the production system and the simulator.

With a correct implementation on the new platform to serve as a baseline,

software can be modified to make use of other states in the memory model to

improve performance by relaxing coherence guarantees as needed. Supporting

both a strict and weak coherence model in one platform allows programmers

to achieve the benefit of a 1000-core processor during development while also

achieving scalable results in production.

5.3 Coherence Management Placement

A näıve implementation of the memory model, which strictly adheres to task-

centric actions, requires a large number of writebacks and invalidates to occur

at task boundaries. The added memory traffic at the start and end of each task

may lead to poor bandwidth utilization. Due to queuing delays in the network

and at the memory controller, the latency for memory operations during these

periods also grows precipitously. Lastly, the read sharing benefit of immutable

data is decreased if shared data are aggressively invalidated from the shared cluster

caches. For data that does not change state intra-interval, coherence actions are

unnecessary within the interval. The combination of these effects leads us to

explore alternative policies for scheduling coherence actions.

Coherence actions need not occur at task boundaries. Figure 5.3 illustrates

different locations where coherence actions may be placed relative to task execu-

72

John H. Kelm

Task Execution

Enqueue

Dequeue

Load Imbalance

Lazy Coherence
Occur at barrier

Eager Coherence
Occur at end of task

Barrier

Barrier

Figure 5.3: Choice of coherence action locations using the Task-Centric Memory
Model.

73

tion. Coherence actions can be deferred by the runtime as long as state changes

that occur across a barrier are completed by the end of the interval. To that end,

we evaluate combinations of two policies, lazy and eager, for the writeback and

invalidate components of coherence management. In our evaluation, we use an op-

timistic baseline that mimics the effects of write-update hardware coherence with

zero-cost updates between cluster caches; no software coherence actions are taken

in the baseline. Lazy actions occur en masse at barriers and eager actions occur

at task boundaries. The four policies we implement are eager invalidate-eager

writeback (EIEW), lazy invalidate-eager writeback (LIEW), eager invalidate-lazy

writeback (EILW), and lazy invalidate-lazy writeback (LILW) relative to the op-

timistic baseline. We evaluate each of these policies in Chapter 9.

More generally, there is a spectrum of eagerness that we can employ in the

TCMM. We list the advantages and disadvantages of each level in Table 5.1. The

most coarse, or lazy, form of coherence actions is to place them after the barrier

has executed but before the next interval begins. The caches are flushed when a

barrier is reached. The benefit of this approach is that no state tracking must be

done within the interval and the instruction overhead is minimal. However, such

an approach unnecessarily removes still valid data from the caches and creates a

bursty load on the network, dilating the barrier in time.

At the other extreme end of the spectrum, we could elect to implement the

TCMM by performing all coherence actions immediately following any shared

read or write. This represents the most eager form of coherence management

placement. The benefit is that the compiler could trivially insert invalidates and

writebacks without any assistance from the runtime. With more complex analysis,

it might be possible to eliminate all but the last access to a shared word and remove

coherence actions from all persistently private data. The disadvantage is the high

coherence management overhead since the loads and stores are word granularity,

74

Table 5.1: Comparative advantages and disadvantages for different coherence ac-
tion placements.

Placement Advantages Disadvantages Comments
Every ld/st Easily automated;

Zero overhead for
tracking

High network over-
head; Low cache uti-
lization for shared
data

Implementable in the
compiler [93]

Basic block/function Automatable;
Avoids excessive
use of global opera-
tions

Limited scope may
preclude optimiza-
tions

Avoids inter-
procedural analysis

Task Boundary Allows cores to
overlap coherence
actions with task
execution; may evict
useless data

Requires program-
ming model with
restrictions on
data accesses to
be amenable to
automation

Eager approach eval-
uated in this work

Thread Boundary Allows inter-task
read sharing; Over-
laps coherence
actions when thread
length is irregular

Does not overlap
writebacks from one
task with the next

Lazy approach evalu-
ated in this work

In-bulk at Barrier Trivial implementa-
tion; Low overhead
for tracking

Fails to exploit inter-
interval sharing;
Does not overlap
communication and
computation

Additional tracking
hardware could ac-
celerate flushes and
reduce unnecessary
invalidations

75

but invalidations and writebacks can be performed once for an entire line.

With our choice of end-of-task and end-of-thread for instrumenting code with

eager and lazy coherence actions, respectively, we believe we achieve most of the

benefits of more aggressive policies without the additional complexity of compiler-

driven analysis and instrumentation. We leave such investigation to future work.

5.4 Summary and Discussion

In this section we have motivated and described the Task-Centric Memory Model.

The goal of TCMM is to achieve the illusion of a shared single address space for

applications that use a task queue-based programming model synchronized by

barriers. We evaluate the sharing patterns in a representative selection of appli-

cations developed using such a programming model. Our analysis demonstrates

that a large fraction of write-to-read sharing is performed across barriers. The

TCMM exploits this fact to implement coherence actions in software logically at

barriers.

76

CHAPTER 6

Scalable Probe Filtering

In this chapter we describe a probe filtering coherence implementation and an

extension to the scheme, scalable probe filtering (SPF), to increase scalability.

The purpose of evaluating probe filtering is to better understand the benefits

and limitations of similar schemes used in CMPs today [94, 95]. We assume an

architecture with a shared last-level cache (LLC), common in many accelera-

tors [4, 14, 57, 96] and throughput-oriented architectures [2, 97]. If no coherence

information is tracked at the LLC, all coherence actions require broadcasts to

determine the sharing state of the line. Fundamentally, a probe filter attempts to

capture recent coherence requests at the LLC in a cache-like structure to avoid

broadcasts when possible.

Duplicate tag schemes [64] and complete sparse directories eliminate all broad-

casts by tracking complete sharing information at the LLC, but require high as-

sociativity and capacity. Subset sparse directories that drop entries on eviction,

which are in effect probe filters, can eliminate a large fraction of broadcasts with

smaller and less associative structures. Tracking subsets of coherence information

has also been used to accelerate SMP coherence protocols by reducing LLC tag

accesses [63] and reducing the number of coherence probes [62]. In our scheme,

we keep a cache of sharing vectors, called the probe filter cache (PFC) to reduce

the frequency of on-chip broadcasts. We show that a PFC increases scalability of

broadcast schemes, but it is insufficient for scaling to a thousand cores.

77

Frequency of
Directory
Accesses

Accesses in the L2 CacheCold in Cache Hot in Cache

Directory
LRU

Directory
MRU

Critical
Entries

Figure 6.1: Illustration of the difficulty in selecting a directory replacement policy
due to the information disconnect between L2 caches and the directory.

6.1 Baseline Probe Filter Architecture

A PFC is basically a cache of directory entries. Implementing a PFC enables

accesses that hit in the PFC to be completed without broadcasting. Figure 6.1

shows the relationship between access frequency at the LLC or directory and

access at the L2 cache, close to the cores. The PFC reconstructs evicted directory

entries the next time the entry is allocated, rather than invalidating all copies on

eviction, to avoid needless invalidations for read-shared data, as represented on

the right side of Figure 6.1. The PFC broadcasts probes on each PFC miss and

uses the L2 responses to reconstruct the sharing vector.

The probe filter performs well for two common patterns in our workloads. One

pattern of directory access is data that adds and remove sharers frequently, due

to the true sharing pattern or frequent L2 evictions and re-requests. These PFC

entries, shown in the middle of Figure 6.1, will typically stay in the MRU position

and will not be evicted if an LRU policy is used. Based on our analysis, we select

an LRU policy for this dissertation. There is a potential for adaptive policies that

address variations in workload, but an LRU policy was found to be sufficient for

our purposes. Another possible mechanism would use sideband information sent

from the L2 to the directory. The out-of-band information would indicate the

hottest lines in the L2 which would in turn indicate to the directory which lines

it should avoid evicting.

78

The second pattern is data that is requested once and remains in the L2s for

a long period of time, due to frequent accesses by the cores. It is shown on the

right of Figure 6.1. These entries will become cold in the PFC and be evicted.

However, since PFC evictions do not invalidate the entries at the L2s, the cores

can continue to access the lines and performance is not adversely affected.

6.2 Scalable Probe Filtering Architecture

Probe filtering’s performance is limited by the broadcasts required on all PFC

misses. PFC misses are common for workloads with large datasets and those

with a large fraction of touch-once data. For large working sets, or datasets with

imbalanced access patterns where LLC accesses are biased toward certain PFC

banks, the PFC is unable to capture shared entries long enough to be effective.

The näıve solution is to enlarge the PFC, but that comes at a prohibitive cost

in area and power, as we will show in our evaluation. Data that is accessed only

once at the PFC and considered touch-once at the LLC may be reused heavily

at higher levels of the cache, i.e., the L1 and L2 caches. The application is not

memory-bound as it may have good cache hit rates at the L2, but every new access

at the PFC misses, causing touch-once data to continually evict potentially useful

shared lines.

We investigate scalable probe filtering whereby a high-priority network for

broadcast-collective operations and additional logic in the routers between the

L2 and LLC are added to the PFC to accelerate broadcast probes. While the

SPF implementation is tailored to our baseline architecture, it exploits the gen-

eral design features of a high-bandwidth cache hierarchy and interconnect tuned

for throughput-oriented workloads. In such a configuration, the goal is to maxi-

mize memory bandwidth and route data from the LLC and DRAM to the cores.

79

LLC
Cache
Bank Directory

Controller

Probe Filter
Cache

Inter-Tile
Network

Crossbar

Tile Broadcast
Pending Table (TBPT)

LLC2

…

Tile0

Tile1

Tile2

Tile7

…
Level-2 Tile Router

L1R0 L1R1 L1R2 L1R3

LLC0

LLC1

LLC31

Sharer Vector (16b) Count (4b) Addr. (32b)

C0

L2 Cache

C1 C2 C3

C4 C5 C6 C7
Core

Group

3 4

5

7

8

2

9

6

1
Modified (1b)

Figure 6.2: Probe filter block diagram.

The network is not optimized for arbitrary core-to-core sharing. SPF could be

extended to support arbitrary topologies and system architectures, but we fo-

cus on throughput-oriented CMP topologies, similar to those found in GPU-like

architectures, because throughput-oriented workloads are the focus of this work.

A broadcast probe consists of two phases and is illustrated in Figure 6.2. We

describe the process in greater detail in the paragraphs that follow.

6.2.1 Broadcast

When a probe filter miss occurs and a broadcast is required
1

, the directory

controller injects one message into the crossbar for each of the tiles
2

. The

message is a BCastInvReq if the request missing in the PFC is a write request,

and a BCastShareReq if it is a read request. Each PFC supports a finite

number of concurrent broadcasts, but PFC hits can be serviced under misses.

For this dissertation, we assume a single outstanding broadcast per PFC bank,

or 32 total outstanding broadcasts. We evaluated allowing more outstanding

broadcasts, but found the marginal benefit to be negligible.

When a broadcast arrives at the root of the tile interconnect, an entry is in-

serted into the tile broadcast pending table (TBPT)
3

. The TBPT is a small

80

set-associative structure with a set for each PFC bank and a path for each out-

standing request allowed per PFC bank. The set is indexed based on a subset of

the bits in the address. Each entry consists of a bit vector to record the ACK

or NAK L2 responses, a bit to denote whether or not the line was detected as

modified at one of the L2s, and a count of received responses. In our design, a

32-entry direct-mapped TBPT is used, totaling 212 bytes per tile or 1696 bytes

for the entire chip. When an entry is inserted, the bit vector is cleared and the

counter is reset. The incoming message is then replicated on each outgoing port

of each router
4

until each L2 receives a broadcast probe
5

.

6.2.2 Collection

Each L2 responds to a BCastInvReq by invalidating the line, if present, and

sending a BCastInvRep
6

. A BCastShareReq results in either a BCast-

ShareAck if the L2 shares the line, or a BCastShareNak otherwise. If the

line is dirty in the cache, the L2 is the sole owner and must source the data. In

this case, the L2 then issues two response messages: a writeback containing the

data and a BCastInvWB to notify the PFC to wait for the data.

When a broadcast reply arrives at the root of the tile interconnect, the TBPT

entry is updated by incrementing its counter and setting the L2’s corresponding bit

if the reply is an ACK
7

. In response to receiving a BCastInvWB, the TBPT

will also set the modified bit in the TBPT entry for the line. When all responses

are collected, indicated by the counter saturating, the TBPT generates a response

message for the tile that includes the sharing vector and the modified bit. The

TBPT sends the message to the PFC bank that initiated the broadcast
8

. The

PFC collects the TBPT responses and merges them into a single reconstructed

directory entry. When all broadcasts have been collected, the pending request

81

is serviced and the reconstructed entry is inserted into the PFC
9

. If the line

corresponding to the PFC miss is modified in one of the L2s, the PFC will not

service the missing request until all broadcast replies and the writeback have

arrived. Note that no ordering is required between the broadcast replies and the

writeback since the directory must wait for both before proceeding.

As an optimization, the response could be sent as soon as the writeback arrived

at the PFC. However, that would allow transient hardware state to cross a protocol

state change, potentially greatly complicating the protocol implementation.

6.3 Summary and Discussion

The probe filter cache is an approach to scalable coherence that is similar to

existing CMP implementations. We add greater scalability to a baseline PFC

by using what we call the scalable probe filter. The SPF adds a small amount

of support to the network for broadcast and collective operations. The benefits

of our additions include increased broadcast throughput when invalidations are

needed and accelerated collection of responses. Without an SPF, these operations

can take time linear in the number of nodes. With SPF, the time to complete

broadcasts and collections becomes the logarithm of the number of nodes. The

linear-log trade-off is also true for the aggregate number of invalidation messages

sent, which would otherwise compete with other network transactions.

The SPF leverages the hierarchical nature of our baseline CMP design. While

we believe that a hierarchy in the network will be a common design pattern in

future CMPs, the SPF could be adapted to other topologies by placing more

complexity in the network and distributing the PFC banks in the case of a dis-

tributed NUCA cache. However, the SPF may be a suboptimal design choice

for these systems if the load on the network cannot be easily reduced and the

82

complexity in the routers grows too high. Regardless, we find that the SPF is a

reasonable approach to large CMPs, and we demonstrate its ability to scale using

an architecture similar to those of CMP and accelerators available today.

As our results will demonstrate, the SPF is more scalable than a PFC alone.

However, the SPF approach has pathologies that hinder performance for common

data access patterns found in accelerator workloads. Large amounts of touch-once

data and large working sets are not captured by a reasonably sized PFC. While

the SPF improves performance under these conditions, it still fails to achieve

scalability to 1024 cores across all workloads. While a CMP equipped with SPF

could scale to perhaps 100 cores, we find it inadequate for achieving our goal of

1024-core scalability. As such, in the next chapter we present another hardware

coherence mechanism that addresses the PFC sizing limitations of SPF.

83

CHAPTER 7

Waypoint

In this section we present WayPoint, a lightweight directory coherence architec-

ture for chip multiprocessors. Our evaluation of a 1024-core CMP demonstrates

that banked, set-associative on-die directory caches provide a viable alternative to

full directories. Moreover, on-die full directories would require high associativity

and capacity to be effective, making WayPoint a viable option for hardware co-

herence at 1024 cores. Analysis of parallel workloads shows that directory cache

associativity and capacity demands vary in time, across sets, and between bench-

marks, requiring over-provisioning to avoid conflicts at the directory.

To address these issues, we present WayPoint, a coherence architecture for

handling associativity overflow conditions by evicting conflicting directory cache

entries into a next-level cache stored in cached system memory. WayPoint en-

ables the implementation of a scalable coherence protocol with low hardware com-

plexity and relaxed network ordering requirements. Furthermore, WayPoint en-

ables a non-inclusive, non-exclusive cache hierarchy that decouples the associa-

tivity and sizing requirements at different levels of the cache—a key problem for

CMPs with many independent first-level caches.

7.1 Motivation

We motivate the design of WayPoint by examining data sharing behavior of

data-parallel kernels. We investigate the varying requirements placed on the as-

84

sociativity and capacity of directory caches over time and give insight into issues

related to directory replacement policy.

7.1.1 Sharer Tracking

Two prevalent mechanisms for tracking sharer state are (1) pointer-based limited

directories, which generally require s log2 p bits per entry for tracking s sharers

in a system with p potential sharers, and (2) full-map directories, which require

p bits. A limited directory can be implemented with less storage for up to p
log2 p

tracked sharers. If the directory is sparse, tag overhead must also be considered.

For highly scaled CMPs with hundreds of cores or more, workloads will be

dominated by data-level parallelism. Data-parallel applications tend to exhibit

large amounts of read-shared data. Writes to this data do occur, but they are

infrequent. Furthermore, fine-grained synchronization and data sharing are un-

common in these applications [12, 98]. We have evaluated both limited and full-

map directories. Our results show that limited directories impact performance

minimally for most workloads when compared to full directories. For consistency

and to provide a more scalable implementation, we evaluate a limited directory

with s = 4 in Chapter 9.

7.1.2 Directory Size

A system with p sharers, where each sharer has a w-way, l-set cache, may cache

up to p × w × l distinct cache lines at a time. A simple directory scheme that

tracks all cached lines would therefore at a minimum require a sharer vector or

pointer list, t tag bits, a modified and shared indicator bit, and a valid bit for each

cached line. This amounts to (b+t+2
8

)× p× w × l total bytes of storage required,

where b is the size of the sharer bit vector or pointer list in bits.

85

For the CMP architecture evaluated in this dissertation, a full-map directory

(b = 128) with 64 kB caches would require (128+27+2
8

)× 128× 8× 256 ≈ 4.94MB,

61.3% of the 8 MB aggregate L2 cache capacity. While a directory area overhead

of 61.3% is potentially implementable, it is extremely over-provisioned in the

common case when many lines are not unique due to data sharing. Per-sharer

cache capacities exceeding the modest 64 kB in the evaluated system would lead

to even higher degrees of over-provisioning.

The need for and resulting cost of over-provisioning motivates an approach

analogous to a sparse directory [65] for memory-based coherence schemes, in which

the directory capacity is decoupled from the aggregate first-level cache capacity,

enabling smaller on-die directory caches. Like a sparse directory, a directory cache

must invalidate all shared copies of a line when the line’s directory entry is evicted.

The performance impact of a directory cache eviction may be even greater than

that of a data or instruction cache eviction; a number of invalidation messages

proportional to the number of sharers of the evicted line must be sent over the

network, causing congestion, and sharers must re-request the line if they access it

again. Given this high cost of evictions, and the power and area costs of sufficiently

associative directory caches, a mechanism for minimizing evictions by increasing

the effective capacity of an on-die directory cache is desirable.

7.1.3 Directory Associativity

We observe that the associativity required by sets in a directory cache varies

in three ways. First, at a given point in the execution of a program, different

directory sets may have working sets of much different sizes, meaning that one

set may require a much more associative directory to achieve good performance

than another. Second, a given directory set’s working set will grow and shrink

86

50

100

150

200

250

300

350

400

450

500

Time
D

ire
ct

or
y

C
ac

he
 S

et
 N

um
be

r

Directory Cache Thrashing
128 cores, 8−way associative directory caches

DMM HEAT

Figure 7.1: Time varying set distribution at last-level (L3) shared cache. The
figure demonstrates that directory cache thrashing can vary in time and it may
shift across sets, implying that over-provisioning of directory cache entries may
be required to avoid performance impact due to directory cache conflicts.

over time. Thus, at different points in time, different directory sets may require

high associativity while others are sparsely populated with valid directory entries.

Finally, we observe varied associativity profiles across benchmarks, depending on

the nature of their computation and communication patterns. These three types

of variability imply that a fixed-associativity directory cache cannot adequately

address the associativity demands of all directory cache sets across all workloads.

The first type of variability is shown in Figure 7.1. An 8-way set-associative

directory cache was simulated for a 128-core (16-sharer) CMP executing a dense

matrix multiplication kernel (dmm) and a 2D stencil code (heat). Figure 7.1

demonstrates that at any point in time, a small number of sets are experiencing

the vast majority of evictions. Additionally, this small group of sets is different

during different program phases, suggesting that an effective directory scheme

must dynamically provide high effective associativity to those sets which require

it.

The directory cache thrashing effect is influenced by data layout. In our eval-

uation, we use workloads that have a high degree of optimization applied to them

87

to avoid these pathologies. These optimizations generally consist of skewing the

addresses in memory for segments of data structures with otherwise regular and

correlated access patterns across tasks. An example is taking a dense matrix laid

out in row-major format and changing its implementation to be an array of point-

ers. Each pointer points to the start of a row which has been shifted in memory

to avoid set conflicts for accesses to the same column in multiple rows. Similarly,

the workloads have skewed stacks and heap allocations to avoid conflicts due to

local variables and temporary dynamic allocations.

The degree to which conflicts occur at the directory cache banks is also related

to the hashing function that maps the address space to DRAM and L3 banks. We

have experimented with many permutations of address bits and arrived at one that

is sufficient for our workloads. However, even with a good general hash function,

there will always be pathological access patterns that lead to set conflicts at the

directory cache. Through extensive effort on testing hardware mappings and

software modification to reduce conflicts, we have removed all known pathologies

from our workloads. We believe our implementation is generally good for most

workloads and is robust. However, the existence of pathological cases and the

difficulty in finding a generally good mapping function lead us to believe that this

is a generally difficult problem that will be an issue for highly banked processors

with large numbers of cores.

7.1.4 Replacement Policy

As with data and instruction caches, the replacement policy employed by a di-

rectory cache strongly influences the extent to which the cache can capture the

working set of an application, along with capacity and associativity. The re-

lationship between high-level cache access frequency and directory cache access

88

D
ir

ec
to

ry
 A

cc
es

se
s

Accesses in Low-level CacheCold in
Cache

Hot in
Cache

Directory
LRU

Directory
MRU

Critical
Entries

Figure 7.2: General pattern for directory accesses.

frequency is shown in Figure 7.2. In directory coherence schemes, the high-level

caches filter the stream of memory references in a program and present a reduced

stream at the directory. While a reduced number of accesses at lower levels of

the cache and memory is the primary purpose of caches, the filtering reduces the

amount of information available for the directory cache to determine line criti-

cality as part of the replacement policy. More concretely, the more frequently

accessed, and thus more critical, a line is in a high-level cache, the less likely

it is to be evicted from the high-level cache and re-requested from the directory

later. Thus, the line will be accessed infrequently at the directory cache and will

be a likely candidate for eviction under an LRU replacement policy, as will data

infrequently referenced in the program itself.

Given this information gap between first-level caches and directory caches, an

LRU replacement policy will incorrectly evict those lines that are most critical

to program execution. An MRU policy generally avoids this pathology, but it is

still suboptimal because it fails to evict those entries which are truly cold in the

first-level cache, and instead evicts entries which are accessed with intermediate

frequency. A least-recently allocated (LRA) policy incorrectly evicts long-lived

hot data, making it inappropriate as well. The information loss between first-

level cache and directory cache makes effective replacement difficult.

Our experiments have shown that lines holding instructions and stack-allocated

data from inner-loops of our benchmarks, which are some of the critical entries

89

in the figure, are particularly pathological because they quickly become LRU

in a fixed-sized directory cache while streaming through large volumes of data.

WayPoint capitalizes on the infrequency of directory accesses for actively shared

lines by removing them from the directory cache, freeing up space for other entries,

while not forcing invalidations for performance-critical data nor greatly increasing

misses at the directory cache because the actively shared lines remain stable in

the directory cache.

7.2 Design

The goal of WayPoint is to approach the performance of a full on-chip directory

while requiring much less on-chip storage. To achieve this goal, WayPoint uses

set-associative directory caches implemented in hardware with modest associativ-

ity. When a directory conflict occurs, WayPoint selects an entry in the cache

to evict to a second-level overflow directory resident in cacheable system memory

and places the new entry into the directory cache in place of the evicted entry.

The remainder of this section describes the design and implementation of the

WayPoint first-level on-chip directory cache and second-level overflow directory

implemented with linked lists resident in cached memory.

7.2.1 Directory Coherence Protocol

The WayPoint architecture can support various types of directory schemes. We

evaluate two common schemes: a full-map directory (DirnNB) and a pointer-

based limited directory similar to DiriB [99]. A DirnNB scheme keeps a record

of each sharer of a line in a central location and only sends invalidation messages to

the exact set of sharers of a line when a read-to-write transition or eviction occurs.

Tracking the exact set of sharers results in the minimum number of invalidation

90

messages being sent on a state transition.

A limited directory scheme requires maintaining a pointer to a single write

sharer or up to a fixed number of read sharers, as in O’Krafka et al. [66] or

Gupta et al. [65]. If the list of pointers overflows, the limited scheme reverts to

keeping a count of sharers. After overflowing, at a state transition, the scheme

broadcasts an invalidation message to all L2 caches and waits to receive the num-

ber of acknowledgements indicated by the counter.

In our evaluation, a set-associative directory cache is used to keep directory

entries on-die for both schemes. The directory protocol used is similar to the

exclusive-shared-invalid protocol as presented by Hennessy and Patterson [100].

Alternate directory schemes, such as coarse vector [65] or LimitLESS [70], would

change the storage efficiency of on-die directory caches by trading off a reduced

number of messages sent for a greater number of bits tracked. However, the

issue of storage efficiency is distinct from that of directory cache associativity

and capacity. Regardless of the composition of directory entries, all directory

schemes use a structure to map addresses for cached data to directory entries.

Our mechanism provides a way to reduce the capacity and associativity of the

mapping structure independent of directory entry composition.

7.2.2 WayPoint Design

The WayPoint architecture is composed of a first-level set-associative on-die

cache of directory entries, a collection of head pointers to linked lists holding

overflow entries, and WayPoint records and descriptors resident in memory.

The architecture also includes top-of-heap and free list pointers for controlling

the allocation of overflow entries in memory. A block diagram of the architecture

is given in Figure 7.3.

91

sharers1

WAYPOINT

Record

…

Directory Cache

wm-1wm-2w0 w1 …
set0

set1

setn-2

setn-1

Overflow List
Head Pointers

WAYPOINT Descriptor WAYPOINT Descriptor

WAYPOINT Descriptor Format

next ptrptr0 tag00 S00 tag01 S01 ptr1 tag10 S10 tag11 S11 ……

WAYPOINT Record Format

sharers0 sharersr-1
…Top of Heap

Free List Head

Base Address Overflow Directory
in Cached Memory

Free cache line Free cache line

WAYPOINT

Controller

sharersi tagi Si

Directory Entry Format

Figure 7.3: Architecture of WayPoint.

A linked list is maintained for each set in the hardware directory cache, form-

ing something akin to a hash table. When an entry must be evicted from the

directory cache, it is inserted into the linked list for the set. Each linked list is

accessed by dereferencing the appropriate head pointer. Empty linked lists are

indicated using a valid bit. Each linked list is composed of WayPoint descrip-

tors, which hold the tag and state from some number of directory entries, a set of

pointers to WayPoint records, which hold sharer state, and a pointer to the next

WayPoint descriptor in the list. The metadata for the entries is separated from

the sharing list to allow the linked lists to be searched more quickly by accessing

the fewest possible number of data elements in memory.

To reduce design complexity, each WayPoint record and descriptor is sized

to fit on a single cache line, which is 32 bytes in this dissertation. WayPoint de-

scriptors and records are addressed as an offset from the base address register.

The base address register is set to the base physical address of the memory region

allocated to WayPoint. The offsets are calculated such that the records and de-

scriptors for a given directory cache are resident in the address space allocated to

that directory cache. Mapping directory entries to their respective last-level cache

92

banks allows memory accesses related to WayPoint to occur locally, without the

design complexity and latency of injecting them into the network.

For a full-map directory, we can place two sharer lists into each WayPoint record

and enough pointers and associated tag and state information for up to four

records in each WayPoint descriptor. For the limited directory scheme with

four pointers per entry, we can place up to eight directory entries in each record

and need two WayPoint descriptors to hold the associated metadata.

7.2.3 WayPoint Operation

When an entry is not present in the directory cache, the WayPoint controller

must respond to events generated by the baseline directory controller logic. The

following sections describe each event and how the WayPoint controller responds

to the directory controller requests.

7.2.4 Accessing Entries in the Overflow Directory

When a coherence request misses in the directory cache, WayPoint indexes into

the table of head pointers. If the valid bit is cleared, i.e., there are no overflow

entries for the set, the line is currently not tracked and the directory allocates an

entry in the directory cache for the line. We consider this situation a cold cache

miss at the directory. If the directory cache has high enough associativity, this

becomes the common case for directory cache misses. As a latency optimization,

the directory cache and the list of head pointers can be queried in parallel.

When the list is non-empty, the controller traverses the linked list of Way-

Point descriptors, comparing the tag of the request to each tag in the descriptors.

The controller also checks the state of each entry, comparing against shared and

modified entries while skipping invalid entries. If the tag of a valid entry matches

93

the request, the pointer to the WayPoint record is dereferenced to obtain the

sharer list of the directory entry. The directory entry is then reconstructed from

the metadata in the descriptor and the sharer list in the record and is provided

to the directory cache.

7.2.5 Release Messages

The L2 caches use release messages to notify the directory cache that they no

longer hold a line due to an eviction or explicit flush. When a request to the

overflow directory is a read-release or a write-release, we could choose to traverse

the overflow list for the set to retrieve the directory entry, allocate the entry in

the directory cache, and perform the update there, or simply update the overflow

entry in-place without modifying the contents of the directory cache. Since most

releases are due to capacity-related evictions at the L2 caches, many of these

releases are to lines that will not be accessed for some time. The lack of temporal

locality would make filling the directory entry into the directory cache a low-utility

operation since it is likely to get evicted to the overflow list; therefore, we do not

fill on a release. Moreover, releases do not block the cores. The release messages

are processed by the L2 cache controller which operates concurrently with the

first-level cache of the core. The cores in a cluster can continue to issue requests

into the network while releases are occurring, and thus low latency is not critical.

For write releases, or the last read-release to a shared line, the WayPoint en-

try holding the line can simply be invalidated since the only sharer has now

relinquished ownership. When no valid WayPoint data is in the line that was

holding the entry or descriptor, those lines are unlinked and returned to the free

list.

94

7.2.6 Overflow Directory Removal

Read or write requests that hit in the directory cache proceed as normal. A miss

in the directory cache will traverse the overflow list for the set, if valid, and fill into

the directory cache. If the entry is not found in the overflow list or the directory

cache, a new entry is allocated. In the case of requests that hit in the overflow

list and thus must replace an entry in the directory cache, eviction is simplified

since the LRU entry in the directory cache can be swapped with the record. If

a free directory cache entry exists, the swap is obviated and the controller fills

the request into the free entry and invalidates the existing entry in the overflow

list. Once the directory entry for the request is in the cache, the directory access

proceeds as normal.

For performance reasons, it may be necessary to have a mismatch between the

number of overflow lists and the number of sets to reduce the average length of

a list or to minimize the number of head pointers. When the number of overflow

head pointers does not match the number of sets, a swap cannot always occur. A

swap can fail to work when the list holding the requesting entry does not match

the list that the entry being evicted from the directory cache must be inserted

into. In such cases, WayPoint performs a removal and an insertion using two

separate lists. The additional traversals result in additional overhead; but in

directory caches with a small number of sets, the performance gained by having

more overflow lists far outweighs the cost added to swap operations.

7.2.7 Hardware Directory Cache Eviction

In the case where a swap cannot be used to evict an entry from the directory

cache, the WayPoint controller must traverse the linked list of overflow entries,

find or allocate a free record and descriptor, and fill the evicted entry into those

95

lines resident in memory. An example of when a swap would not occur is when

a line is accessed for the first time at the directory, and thus needs to fill into

the directory cache, but all directory entries in the set that the access maps to

are valid. Under these conditions, an eviction is necessary and there is no swap

candidate.

Note that entries in the directory cache that are in a transient state are not

allowed to be evicted. An example of a transient state is an entry that is stalled

waiting to collect invalidation requests while transitioning from the shared state

to modified or exclusive state. The eviction can stall while the controller waits for

responses to return. When the responses are collected, the target of the eviction is

moved into a non-transient state. If transient requests were allowed to be evicted

to the overflow directory, thrashing could occur.

When an allocation in the overflow directory is required, the free list register

is checked. If it is non-NULL, the head of the free list is swapped with its next

pointer, and the allocated line is linked into the overflow list as a descriptor or

into a descriptor as a new WayPoint record. Deallocation of a cleared descriptor

or record is performed by setting the next pointer of the free block to the value

in free list and then overwriting free list with the address of the free block.

Note that operations performed to the free list are LIFO to increase the probability

of a cache hit when the list is accessed. Since the values in lines in the free list are

irrelevant, write-to-own semantics at the L3 for WayPoint could also reduce the

latency of accessing lines in the free list by avoiding unnecessary off-chip memory

accesses.

If the free list pointer is NULL, a new line is allocated by incrementing the

top of heap register to generate an address that maps into the address region

cached by the cache bank associated with the directory. The heap is only used

to allocate lines since allocated lines are either used by the overflow directory or

96

the lines are in the free list. We allocate the maximum space required for all

possible entries expected, i.e., there will never be an out-of-memory condition. It

is possible to handle out-of-memory conditions by invalidating current overflow

entries, but for simplicity we do not investigate such measures in this dissertation.

Fragmentation may also be possible in overflow lists if a large number of records

are allocated and then freed, but not cleared and deallocated. Compaction could

be performed periodically to address this issue, but fragmentation was not found

to be an issue in our implementation.

7.3 Summary and Discussion

In the design, implementation, and evaluation of WayPoint, we observe poten-

tial bottlenecks and optimization opportunities to be addressed in future work.

Ordering of overflow entries in the overflow directory, replacement policy for the

directory cache, and the extra time required to determine if a directory cache

miss is an overflow directory hit are potential bottlenecks. While added overhead

due to ordering of overflow lists and traversals for determining residency in the

overflow list would appear to be performance-limiting, they were not found to

be a first-order concern in our initial implementation. LRU replacement in the

directory cache was also suitable for WayPoint; however, we found it to be a

poor choice for a fixed directory without WayPoint due to the filtration effect

of lower-level caches with regard to directory cache criticality information.

7.3.1 Optimizations

The length of overflow lists could be reduced by increasing the number of lists in

the WayPoint design. Such a technique trades off additional area to implement

more head pointer registers for faster searches due to reduced list length. A second

97

potential mechanism is a counting Bloom filter [101] that uses hashes of directory

entry addresses to increment counters when an entry is inserted into the overflow

list. Finally, the order of entries in the lists could be modified dynamically to put

frequently accessed entries near the beginning of the list to reduce traversal time.

Incomplete knowledge of memory access patterns limits the performance of di-

rectory cache replacement policies. Propagating LRU status from low-level caches

to the directory using a side channel could mitigate the problem of LRU invali-

dating directory cache entries that are often accessed by first-level caches but are

seldom accessed at the directory. However, WayPoint already deals with such

cases by avoiding invalidation, and instead WayPoint uses overflow lists making

replacement policy much less of a concern.

The WayPoint controller must access memory where the overflow lists are

stored. In doing so, WayPoint must contend with normal requests for access

to the top-level caches and the memory controller. In practice, the impact of

contention is low since WayPoint must only access the data cache on a miss in

the directory cache, which is the infrequent case, and many of those accesses hit

in the LLC, minimizing the memory bandwidth requirements of the directory.

7.3.2 Impact of Other Workloads

In this dissertation we focus on data- and task-parallel workloads similar to those

investigated in previous work for accelerators and CMPs with 64+ cores [12,15,98].

We note that other applications may change the rate and nature of directory

requests and would thus impact the performance of the design described here.

However, the parameters of the WayPoint design can be changed to re-target

different workloads by increasing the allowed number of outstanding requests or

the number of directory banks in the design. Moreover, the interaction between

98

number of invalidation messages sent and choice of limited versus full-map di-

rectory scheme is strongly influenced by the sharing patterns of the workloads,

but the choice of scheme to implement is independent of WayPoint. We leave

the investigation of other workloads and the comparison of limited, full-map, and

other directory schemes to future work.

7.4 Summary

In this chapter we present WayPoint, a lightweight hardware mechanism for

virtualizing the directory cache size by placing evicted directory entries into linked

lists in cached memory. The result is a smooth degradation in performance when

the on-die working set exceeds the on-die directory cache capacity. This smoothing

enables the use of smaller on-die directory caches, which in turn reduces power

and area overhead of coherence management. The advantage of WayPoint is its

ability to implement cached directories that cover a large fraction of LLC requests

while making the small fraction that WayPoint does not capture in its on-die

cache only marginally more expensive to access.

WayPoint provides tolerance for unbalanced set and bank accesses at the

directory and reduces the need to over-provision directory cache resources. Way-

Point allows for both inclusive and exclusive last-level cache implementations

and supports small, low-associative directory caches.

99

CHAPTER 8

Cohesion

The main contribution of this dissertation is the exploration and evaluation of a

hybrid memory model for multicore processors with 1024+ cores. The defining

characteristic of a system supporting a hybrid memory model is the existence of

a method by which responsibility of coherence management can be transferred

between software and hardware. Cohesion is a protocol that enables the nec-

essary transitions between coherence domains at runtime. Cohesion works at

the granularity of a cache line. It relies upon the existence of a software-managed

coherence protocol, such as the Task-Centric Memory Model presented in Chap-

ter 5, and an underlying hardware coherence mechanism, such as the SPF or

WayPoint presented in Chapters 6 and 7, respectively, to expose a single coher-

ent view of memory to software without full hardware coherence support. With

small additions to the hardware, Cohesion allows software to move cache lines

in and out of the hardware coherence protocol.

8.1 Motivation

We motivate Cohesion by demonstrating that both software-managed and hard-

ware-managed coherence have overheads that can be mitigated by a hybrid mem-

ory model. We also motivate Cohesion from a programmability and optimization

perspective. Having hardware cache coherence available, even if a high perfor-

mance penalty is paid for its use, can enable an optimization path via iterative

100

Table 8.1: Differences in design goals and architectural features between general-
purpose CPUs and accelerators such as GPUs.

Conventional Multicore Accelerators
Examples Intel i7, Sun Niagara, AMD Opteron Cell, NVIDIA GPUs, ATI GPUs
Optimized for • Minimal latency

• Tightly coupled sharing

• Fine-grained synchronization

• Coherence transparent to pro-
grammer

• Maximal throughput

• Loosely coupled sharing

• Coarse-grained synchronization

• Special-purpose functionality

Architecture supports • Single address space

• Hardware caching

• Strict consistency models

• Hardware cache coherence

• Multiple address spaces

• Software-managed scratchpads

• Relaxed consistency models

• Software-managed coherence

refinement. Developers and tools can migrate data into software-managed co-

herence when possible and profitable, but such remapping is not required for

correctness.

We find a compelling use case in heterogeneous processors with general-purpose

and accelerator cores with a shared single address space. In such a design, where

the coherence needs and capabilities vary by type of core, a hybrid approach may

be beneficial by reducing the need for data marshalling and the cost of data copies.

Table 8.1 lists the differences in the design goals and the features present in those

architectures. We would like to build a system tuned to the applications that are

scalable while supporting a more conventional programming model. To do that,

we borrow the design goals of accelerators from the table and use Cohesion to

support the architecture features of more conventional general-purpose platforms.

The end result is a system with CPU-like programmability with accelerator-like

scalability and performance.

8.1.1 The Case for Software-Managed Cache Coherence

A software-managed coherence protocol embedded in the compiler [74, 93], run-

time [102, 103], or programming model [71, 88] avoids the overheads of hardware

101

coherence management. No memory is required for directories [67, 99] or dupli-

cate tags [2, 64]. No design effort is expended implementing and verifying the

coherence protocol. There is potential for reduced network traffic and relaxed de-

sign constraints. Furthermore, software protocols can mitigate or eliminate false

sharing.

Software-managed cache coherence (SWcc) has the ability to mass invalidate

shared data, signaling many invalidations with only a few messages. To coordinate

this action, a global synchronization event such as a barrier is used. As shown

in Chapter 7, the equivalent operation in hardware requires sending potentially

many invalidation messages exactly when a state transition or eviction is needed.

Such an invalidation mechanism lengthens the critical path for coherence actions,

increases contention in the network, and requires greater capacity from the net-

work to handle the invalidation traffic. SWcc can eliminate false sharing since

multiple write sharers that access disjoint sets of words on a line will not gener-

ate coherence probes that would otherwise cause the line to ping-pong between

sharers in hardware cache coherence.

8.1.2 The Case for Hardware Cache Coherence

Hardware cache coherence (HWcc) provides a number of programmability ben-

efits. HWcc can enforce strict memory models whereby hardware ensures that

all reads receive the latest write to a word in memory, which makes it easier to

reason about sharing in some applications. HWcc enables speculative prefetching

and data migration. Shared memory applications can be ported to a HWcc de-

sign without a full rewrite, albeit with possibly degraded performance. While

it is unlikely that shared memory applications targeting contemporary multicore

processors with four to eight cores will trivially scale onto 1000-core CMPs, it is

102

possible that a developer can decompose the parallelism such that the same code

will run reasonably well on past, present, and future systems spanning one to per-

haps 32 or 64 cores without a rewrite. However, this projection is predicated on

maintaining the same ISA and memory model across generations of the processor.

Regardless of performance scaling, if a 1000-core CMP supports the same ISA and

coherent memory model as that of a contemporary processor, it is reasonable to

assume the same code written for today’s multicore will at least run correctly on

future 1000-core CMPs. The situation is akin to sequential applications written

before the advent of multicore processors that are able to continue running on

contemporary CMPs, which maintain a backwards compatible ISA and memory

model. Cross-generational parallel application support may be infeasible if the

coherence mechanisms are built into the application and are dependent on a fixed

microarchitecture.

Another way to characterize the difference between SWcc and HWcc is by

observing the semantics of their communication. SWcc is a push mechanism, and

thus explicit actions must occur to make data modified by one sharer visible to

other sharers. HWcc, though, is a pull mechanism, allowing a requester to locate

the latest copy of the data on-demand. The implication is that SWcc protocols

may be more conservative than necessary, pushing all data that may be read

by another core to a globally visible point, e.g., memory or the globally shared

last-level cache. Hardware coherence protocols do not constrain software from a

correctness perspective since they rely on hardware to track or discover coherence

state as needed. Furthermore, while the additional traffic required for read release

messages under HWcc makes up a significant portion of the message traffic, these

messages are not on the critical path for a waiting access as is an invalidation

sent by the directory. SWcc pushes all data out of the cache that may be read,

while HWcc, ignoring the impact of prefetching, only moves data that are needed,

103

which results in greatly reduced traffic and cache misses for a class of workloads.

8.1.3 A Hybrid Memory Model

Supporting multiple coherence implementations enables software to dynamically

select the appropriate mechanism for blocks of memory. Supporting incoherent re-

gions of memory allows more scalable hardware by reducing the number of shared

lines, resulting in fewer coherence messages and less directory overhead for track-

ing sharer state. Furthermore, having coherence as an option enables trade-offs to

be made regarding software design complexity and performance. Even for appli-

cations that do not need data to transition frequently between SWcc and HWcc,

a hybrid memory model provides the runtime with a mechanism for managing

coherence needs across applications. Put another way, hardware cache coherence

allows the runtime or operating system to put memory into a consistent state

even when software performs an incorrect action.

From the perspective of system software, HWcc has many benefits. HWcc al-

lows for migratory data patterns not easily supported under SWcc. As discussed in

Chapter 3, the implementation of Rigel’s runtime system, the Rigel Task Model,

required coherence. The lack of hardware coherence for all memory led to the

use of global memory operations, which are not locally cacheable, resulting in

increased bandwidth and latency for RTM memory accesses that are otherwise

amenable to caching.

Threads that sleep on one core and resume execution on another would need

to have their local modified stack data available, forcing coherence actions at each

thread swap under SWcc. Likewise, task-based programming models [79, 80] are

aided by coherence. HWcc allows children tasks to be scheduled on the same core

as their parent, incurring no coherence overhead, or stolen by another core which

104

would allow data to be pulled using HWcc.

Systems-on-a-chip, which incorporate accelerators and general-purpose cores,

are available commercially [104] and are a topic of current research [16]. The

assortment of cores makes supporting multiple memory models on the same chip

attractive. A hybrid approach allows for cores without HWcc support, such as ac-

celerator cores, to cooperate with cores that do have HWcc support and interface

with coherent general-purpose cores. While a single address space is not a require-

ment for heterogeneous systems, as demonstrated by the Cell processor [57] and

GPUs [4], it may aid in portability and programmability by extending the current

shared memory model to future heterogeneous systems. A hybrid approach allows

for HWcc to be leveraged for easier application porting from conventional shared

memory machines and easier debugging for new applications. SWcc could then

be used to reduce the stress on the hardware coherence mechanisms to improve

performance.

8.1.4 Summary

Hardware-managed and software-managed cache coherence offer both advantages

and disadvantages for applications and system software. We list many of the

trade-offs in Table 8.2. A hybrid memory model such as Cohesion leverages the

benefits of each while mitigating the negative effects of the respective models. The

key benefits from SWcc are reduced network and directory costs and the potential

to avoid false sharing without programmer intervention. The key benefits from

HWcc are its ability to share data without explicit software actions, which, as we

demonstrate, can be costly in terms of message overhead and instruction stream

inefficiency. A hybrid approach can enable scalable hardware-managed coherence

by supporting HWcc for the regions of memory that require it using SWcc for data

105

Table 8.2: Trade-offs for HWcc, SWcc, and Cohesion.
Programmability Network Constraints On-die Storage

HWcc Conventional CMP shared-
memory paradigm; supports
fine-grained, irregular sharing
without relying on compiler or
programmer for correctness

Potential dependences handled
by hardware instead of extra in-
structions and coherence traffic

Optimized for HWcc:
when HWcc desired,
coherence data stored
efficiently

SWcc Used in accelerators; provides
programmer/compiler control
over sharing

Eliminates probes/broadcasts
for independent data, e.g.,
stack, private, immutable data

Optimized for SWcc:
minimal hardware over-
head beyond hardware-
managed caches

Cohesion Supports HWcc and SWcc;
clear performance opti-
mization strategies allowing
SWcc ⇔ HWcc transitions

SWcc used to eliminate traffic
for coarse-grain/regular shar-
ing patterns; HWcc for unpre-
dictable dependences

Reduces pressure on
HWcc structures; en-
ables hardware design
optimizations based on
HWcc and SWcc needs

that does not. In comparison to a software-only approach, a hybrid memory model

makes coherence management an optimization opportunity and not a correctness

burden.

8.2 Design

Cohesion provides hardware support and a protocol to allow data to migrate be-

tween coherence domains at runtime, with fine granularity, and without the need

for copy operations. Figure 8.1 shows the relationship between the HWcc and

SWcc protocols. The default behavior for Cohesion is to keep all of memory

coherent in the HWcc domain. Software can alter the default behavior by mod-

ifying tables in memory that control how the system enforces coherence. Data

that are not shared, or that can have coherence handled at a coarse granularity

by software, use the SWcc domain and no hardware coherence management is

applied.

The rest of this section describes the protocols and hardware support required

for Cohesion that enable on-the-fly coherence domain changes. Note that with

minor restrictions, the selected hardware and software protocols used by Co-

hesion could be exchanged for other implementations, but the basic technique

106

Clean
SWCL

Immutable
SWIM

Private (Dirty)
SWPD

Shared
HWS

Modified
HWM

(Per Line)(Per Word)

LD Load
ST Store
INV Software Invalidation
WB Software Flush

WrReq Write Request (ST)
RdReq Read Request (LD)
WrRel Write back dirty line
RdRel Release Line, invalidate locally

LD

LD WB

ST

LD

INV

ST

ST

LD

LD INV

WrReq WrReq

RdReq

WrRel

RdRel

LD

Private (Clean)
SWPC

Invalid
HWI

LD ST

LD

ST

Synchronize

SW-to-HW
Transitions

Figure 8.1: Cohesion state diagram.

provided by this work would remain the same.

8.2.1 Hardware Coherence Protocol

We now describe the hardware coherence protocol that we use to demonstrate

Cohesion. These choices are not fundamental to Cohesion and could be altered

without changing its underlying benefits. Data in the HWcc domain is tracked

by an on-die full-map directory [67] implementing an MSI protocol. An exclusive

state is not used due to the high cost of exclusive to shared downgrades for read-

shared data. Owned state is omitted since we use the L3 to communicate data

and the directory to serialize accesses, removing much of the benefit of sourcing

shared data from another L2.

While developing the protocol we analyze the benefit of sourcing data from

another L2 and found the benefit to be minimal for most workloads. Most L2

misses that could be serviced by another L2 were serviced by the L3. For those

L2 misses that also generated L3 misses, but could be serviced by another L2, the

added latency of going to memory versus accessing another L2 was not sufficient

to make any benefit of L2-to-L2 transfers significant.

107

For overall runtime experiments, a limited directory scheme [99] (Dir4B) is used

due to its lower storage overhead. For limits studies, we use a full-map scheme,

which we use to provide a lower bound on the performance impact and message

overhead of pure hardware coherence. We employ sparse directories [65,66] where

the directory only holds directory entries for lines present in at least one L2. For

evaluating Cohesion we avoid a full directory due to the resulting high memory

overhead. Note that the storage overhead is worse for CMPs than multi-socket

systems since the overhead grows linearly in the number of sharers, i.e., cores, and

not sockets. Therefore, memory bandwidth does not scale with directory size as

in multi-socket multiprocessors with directories.

Duplicate tags [64] were not chosen due to their high required associativity

(2048 ways) and the difficulty of supporting a multi-banked last-level cache, which

may require replicating the duplicate tags across L3 banks. The difficulty with

duplicate tags arises when trying to develop a mapping from addresses to sets

in the L2 and banks in the L3. If a set in the L2 can hold lines from different

banks of the L3, the duplicate tags at the L3 must be over-provisioned by a factor

proportional to the number of different L3 banks that may be present in each L2

set. More generally, duplicate tag schemes add constraints to the design of the

cache hierarchy. The design of the duplicate tag scheme in [105] illustrates the L1-

to-L2 mapping constraints the designers used to make duplicate tags tractable. In

such a design, the last-level cache, which is the L2 in [105] and the L3 in our design,

must be inclusive, which may be a poor choice for a system with a large number

of cores and thus a high aggregate private cache capacity. Moreover, duplicate

tags require high associativity and thus require structures that are difficult to

implement in CMOS.

The baseline architecture is non-inclusive between L2 and L3 caches. The

directory is inclusive of the L2s and thus may contain entries for lines not in the

108

L3 cache. L2 evictions notify the directory. If the sharer count drops to zero,

the entry is deallocated from the directory. Entries evicted from the directory

have all sharers invalidated. We could choose to invalidate lazily, relying on

broadcasts when a directory miss occurs and thus saving the cost of issuing release

messages from the L2 on a clean eviction. However, doing so increases the cost of

cold cache misses since all L2s must be probed before a directory allocation can

occur. Moreover, the scalable probe filter is an extension of that idea evaluated

in Chapter 6 and was found not to scale to 1024 cores for many workloads.

One bank of the directory is attached to each L3 cache bank. All directory

requests are serialized through a home directory bank, thus avoiding many of the

potential races in three-party directory protocols [106]. Associating each L3 bank

with a slice of the directory allows the two mechanisms to be co-located, reducing

the complexity of the protocol implementation compared to a design where a

directory access may initiate a request to a third-party structure, such as another

L2 cache as in Origin [106] or an L3 bank that is across the network.

8.2.2 Software Coherence Protocol

Our software coherence protocol is a variant of the Task-Centric Memory Model [88]

adapted to our platform to support hybrid coherence, as shown on the left side

of Figure 8.1. The protocol leverages the bulk-synchronous [60] (BSP) compute

pattern. BSP comprises phases of mostly data-parallel execution followed by com-

munication, with barriers separating each phase. The software protocol makes use

of the fact that most data is not read-to-write shared across tasks between two

barriers and most inter-task communication occurs across barriers. Other proto-

cols for managing coherence in software could be used, but we restrict ourselves

to a model based on BSP for simplicity of illustration and its broad applicability

109

code
segment

stack
segment

…

wm-1wm-2w0 w1
set0
set1

setn-2
setn-1

sharers tag I/M/S
global
data

Coherence
bit vectors

(1 bit/line in
memory)

base_addr

0x00000000

0xFFFFE000start_addr size valid

16 MB table
4 GB memory

Sparse Directory
Coarse-grain
Region Table

Fine-grain
Region Table

(One per L3 bank) (Strided across L3 banks)(Global Table)

Figure 8.2: Cohesion architecture.

to existing scalable programming models.

The software protocol provides a set of state transitions, which are initiated

explicitly by software or implicitly by hardware, that allow for a programmer

or compiler to reason about coherence for a block of data. The motivation for

designing such a protocol is that in a system with caches, not scratchpads, and

without coherence there is the potential for hardware to implicitly move data into

a globally visible location. These implicit actions are uncontrollable by software,

and thus the SWcc protocol, and by extension Cohesion, must take them into

account.

8.2.3 Cohesion: A Hybrid Memory Model

Cohesion achieves hybrid coherence by tracking the coherence domain to which

regions of memory belong and orchestrating coherence domain transitions. As

shown in Figure 8.2, the system is composed of a directory for tracking currently

shared HWcc lines, a coarse-grained region table for tracking common large regions

of memory that are SWcc, and a fine-grained region table that is used for tracking

the rest of memory that may transition between HWcc and SWcc. One bit of

state per line, the incoherent bit, is added to the L2 cache to track which cached

110

lines are not HWcc. A compressed hardware structure, such as the structure used

in [107], was considered to move all tracking information on-die. However, we find

a bitmap cached at the L3 to be a sufficient approach. If additional L3 latency

for table accesses becomes a concern, the dense structure of the table is amenable

to on-die caching similar to the approach used in WayPoint.

When a request arrives at the L3, the directory is queried. If the line is a

directory hit, the line is in HWcc and the response is handled by the directory. If

the line is accessible to the requester, the L3 is accessed in the next cycle and the

response is returned to the requesting L2. A directory hit with an L3 miss will

result in the directory access blocking. A response is generated when the fill from

memory occurs or a response from an L2 when the line is in the modified state at

the directory. A directory miss results in the region tables being examined.

The coarse-grained region table is a small on-die structure that contains a

map of address ranges that are in the SWcc domain. The structure is accessed in

parallel with the directory. The three regions used most frequently are for code,

private stacks, and persistent globally immutable data. When an access misses

in the directory and the address maps into one of these ranges, the L3 cache

controller responds with the data. The message includes a bit signalling to the

L2 that an incoherent access has occurred. When the response arrives, the L2

sets the incoherent bit in the L2 cache tag for the line. Under SWcc, if the line is

invalidated by software or evicted while in the clean state, the line is dropped and

no message is sent from the L2 to the L3. While global visibility is not required

for SWcc data, e.g., private stack data, any modification to such data must be

persistent even when such lines overflow the capacity of the L2 cache. When dirty

data in the L2 with the incoherent bit set is evicted, it is written back.

For all other accesses, the fine-grained region table is queried. The table may

be cached in the L3 since the L3 is outside of the coherence protocol, which only

111

applies between the L2 caches in our implementation. We map all of memory

using one bit per cache line. For a 4 GB address space, a map of all memory

would require 16 MB total. To reduce the footprint of the table, a subset of

memory could be designated as the Cohesion-enabled region. A fine-grained

region table lookup must access the L3. A minimum of one cycle of delay is

incurred by fine-grained lookups and more if contention at the L3 or an L3 cache

miss for the table occurs. If the bit in the table is set, the L3 responds with the

data and sends the incoherent bit along with the message. If the bit is cleared, an

entry for the corresponding line is placed into the directory. The line is returned

to the requester and thereafter it is kept hardware coherent. Should a directory

eviction occur that is followed by a future access to the table, the directory entry

will be reinserted.

The region tables are set up by the runtime at initialization. The bootstrap

core allocates a 16 MB region for the fine-grained region table, zeroes it, and sets

a machine specific register to the base address of the table in physical memory.

The process is akin to setting up a hardware-walked page table. To toggle the

coherence domain of a line, the runtime uses global atomic instructions, atom.or

and atom.and, that bypass local caches and perform bitwise operations at the L3

to set or clear bits in the table, respectively. Atomic read-modify-write operations

are necessary to avoid races between concurrent updates to bits within a word of

the table.

To make Cohesion microarchitecturally agnostic, we must provide special

consideration for how we calculate an address to modify an entry in the table.

The table is distributed across the L3 banks in our design. To remove the need

for one L3 bank to query another L3 bank on a table lookup, we map the slice

of the table covering one L3 bank into the same L3 bank it maps to. Since the

address space strides across L3 banks, the target address that we want to update

112

Table 8.3: Programmer-visible software API for Cohesion.
API Call Description
void * malloc(size t sz) Allocate memory on coherent heap. Data is always in

HWcc domain. Standard libc implementation.
void free(void * hwccptr) Deallocate object pointed to by hwccptr. Standard libc

implementation.
void * coh malloc(size t sz) Allocate memory on the incoherent heap. Data is al-

lowed to transition coherence domains. Initial state is
SWcc and the data is not present in any private cache.

void coh free(void * swccptr) Deallocate object pointed to by ptr.
void coh SWcc region(void * ptr, size t sz) Make region ptr part of the SWcc domain. Data may

be HWcc or SWcc data.
void coh HWcc region(void * ptr, size t sz) Make region ptr part of the HWcc domain. Data may

be HWcc or SWcc data.

in the table must be hashed before being added to the table base address1. Since

the hash function is dependent upon the number of L3 banks, we choose to add

an instruction to perform the hashing. The hybrid.tbloff instruction takes the

target address and produces a word offset into the table that can be added to the

base address before accessing the table from hardware. The instruction makes

Cohesion microarchitecture-agnostic since the number and size of L3 banks and

the stride pattern can be changed without modifying software.

8.2.4 Software Interface to Cohesion

In this section we discuss the application programming interface (API) to Cohe-

sion. The API calls are listed in Table 8.3. For this work we make two simplifying

assumptions. First, we assume there is a single application running on the system.

Second, we assume a single 32-bit address space where physical addresses match

virtual addresses. The architecture we propose could be virtualized to support

multiple applications and address spaces concurrently by using per-process region

tables. However, the full details of such an implementation are outside the scope

of this work.

1DRAM row stride is used. We use addr[10..0] map to the same memory controller and
addr[13..11] are used to stride across controllers. The hashing function for an eight-controller
configuration would use addr[9..5] to index into the word, and table word offset address would
be addr[31..24] ◦ addr[13..11] ◦ addr[23..14] ◦ addr[10] << 2.

113

The Cohesion region tables are initialized by the runtime when the applica-

tion is loaded. The coarse-grained SWcc regions are set for the code segment, the

constant data region, and the per-core stack region. The code segment and con-

stant data address ranges are found in the ELF header for the application binary.

Our architecture does not support self-modifying code so HWcc is not required

for cached instructions.

The stack address range ends at the top of memory and starts at the base

of the per-core stack region, whose size is nominally the number of hardware

threads times the initial stack size per thread. Variable-sized stacks are possible

by treating the stack region as a SWcc heap, but fixed-sized stacks were found to

be sufficient for our current implementation.

There are two heaps in our implementation: a conventional C-style heap that is

kept coherent, and another that is not kept HWcc by default. The incoherent heap

is used for data that may transition coherence domains during execution. Note

that the minimum-sized allocation on the incoherent heap is 64 bytes, or two

cache lines, so that the metadata for the allocation can be kept coherent. We ran

an experiment on Ubuntu Linux 9.10 running glibc 2.10 to determine minimum

heap allocation sizes. Our evaluation confirmed that current libc implementations

require 16 to 32 byte minimum allocations, so we believe 64 bytes to be reasonable.

8.2.5 Coherence Domain Transitions

A transition between SWcc and HWcc is initiated by word-aligned, uncached read-

modify-write operations performed by the runtime to the fine-grained region table.

The issuing core blocks until the transition is completed by the directory for the

purposes of memory ordering. Blocking allows for software to enforce an order

between accesses before and after the table modification. To implement a synchro-

114

nization construct at the point of table modification, the modifying core would

need to globally synchronize, perform the transition operation, and synchronize

again to notify the cores that the new state is in effect. While this may seem

heavy handed, updates can be done in-bulk by making use of programmatic bar-

riers, such as those used in RTM, thus amortizing the synchronization overhead.

There are minor aspects of the hardware coherence protocol implementation

that are necessary for domain transitions to occur correctly. All coherence actions

initiated by the L2, such as read releases and writeback operations, are acknowl-

edged by the directory to ensure there are no lost updates occur while coherence

domain transitions are in progress. Acknowledging coherence messages also re-

duces the complexity of the protocol and allows for reordering in the network,

both of which were design objectives for our implementation. Writebacks are

always acknowledged, even when the line being written back is not kept coher-

ent by hardware, to avoid lost updates due to domain transitions and writebacks

racing in the network. Even if ordering between the L2 and directory were disal-

lowed, messages of different classes could pass one another in the network leading

to deadlock or lost updates. We also use no timeouts in our protocol or negative

acknowledgments that require retransmission on the part of the sender. Other im-

plementations and more complicated protocols could be implemented and shown

correct, but those are outside the scope of this work.

The runtime can transition SWcc (HWcc) lines to be HWcc (SWcc) by clearing

(setting) the corresponding state bits in the fine-grained region table. If a request

for multiple line state transitions occurs, the directory serializes the requests line-

by-line. State transition requests require a single MSHR at the L2 regardless of

the number of lines to be modified by the request. We pack coherence domain

state information densely into a contiguous region of memory with one bit of state

per tracked line denoting HWcc or SWcc. In this way, up to 256 state transitions

115

are possible given that we use a line size of 32 bytes. All lines that may transition

between coherence domains are initially allocated using the incoherent heap in

our implementation, and the initial state of these lines is SWcc.

The directory controller is responsible for orchestrating theHWcc⇔ SWcc tran-

sitions. The directory snoops the address range for the fine-grained region table

and upon an access that changes the coherence domain of a line, the directory

performs the actions described below to transition between SWcc and HWcc. The

request completes by sending an acknowledgment to the issuing core. Handling

the transitions at the directory allows for requests for a line to be serialized across

the system. It also imposes order between domain transitions and normal memory

accesses that arrive at the directory and L3. Coherence domain transitions for a

single line thus occur in a total order across the system with all other coherent

and non-coherent accesses at the L3 being partially ordered by the transitions.

8.2.6 HWcc ⇒ SWcc Transitions

To move a line out of the hardware coherent domain requires removing any di-

rectory state associated with the line, updating the table, and putting the line in

a consistent state known to software. Figure 8.3 shows the potential states a line

can be in when software initiates a HWcc ⇒ SWcc transition. In our examples,

we only show two L2 caches for simplicity. Each of the states corresponds to a

possible state allowed by the MSI directory protocol. After a transition is com-

plete, the line is not present in any L2 and the current value is present in the L3

or memory.

For Case 1a of Figure 8.3, the directory controller queries the directory and

finds the entry not present, indicating that there are no sharers. Therefore, no

action must be taken other than to set the bit in the region table. Case 2a has the

116

I I I I

A B A B

Case 1a

Case 2a

Case 3

Case 3a

CACHE0 CACHE1 MEMORY

A B

DIRECTORY

STATE

I

S

ALL CACHES MEMORY
DIRECTORY

STATE

I I A B

A B A B MI I

A B

A’ B’ A B MI I

I I A B

I I A B

I I A’ B’

1 1

0 1

Figure 8.3: Cache state transitions between HWcc and SWcc.

I I I I

A B A B

A’ B

A’ B A B’

A’ B A’’ B

A B

A B

A B

A B

Case 1b

Case 2b

Case 3b

Case 4b

Case 5b

CACHE0 CACHE1 MEMORY

A B

I I

I I I I

A B A B

A’ B

A’ B A’’ B

A B

A B

A’ B’

?? B

CACHE0 CACHE1 MEMORY

A B

I I

Disallowed by SWcc
Race in HWcc

I II I

DIRECTORY

STATE

I

S

M

I

I

1 1

1 0

DIRECTORY

STATE

Figure 8.4: Cache state transitions between SWcc and HWcc.

line in the shared state with one or more sharers. The directory performs a direc-

tory eviction that invalidates all sharers of the line. When all acknowledgments

are received, the directory entry is removed, the bit is set in the region table, and

the response is returned to the core requesting the transition. When a line is in

the modified state, shown in Case 3a, a newer version of the data exists in some

L2. The directory sends a writeback request to the owner. When the response

arrives, the L3 is updated, the table is modified, and a response is sent to the

requester to unblock it.

8.2.7 SWcc ⇒ HWcc Transitions

The left half of Figure 8.4 shows the potential states that a line may be in for two

L2 caches when a line is under SWcc. Since the directory has no knowledge of the

line state, a transition to HWcc initiates a broadcast clean request sent from the

directory. When the line is found in an L2 in the clean state, the incoherent bit is

117

cleared, i.e., the line is now susceptible to cache probes, but the line is not evicted

from the L2. Clean lines send an acknowledgment message to the directory, which

adds the L2 to the list of sharers. If the line is not found in the L2, a negative

acknowledgment is sent to the directory. Figure 8.4, Cases 1b and 2b demonstrate

transitions for lines that are not modified.

If a dirty line is found, shown in Cases 3b and 4b, the L2 sends the directory

a notification. If there are any read sharers, the directory sends messages forcing

all readers to invalidate the line and the owner to writeback the dirty copy. If the

line is dirty in only one cache, the sharer is upgraded to owner at the directory

and no writeback occurs, saving bandwidth.

If multiple writers are found, writeback requests are sent to all L2s holding

modified lines and invalidations are sent to all L2s holding clean lines. Our ar-

chitecture maintains per-word dirty bits with the cache lines allowing the L3 to

merge the result of multiple writers if the write sets are disjoint. When either

operation is complete, the line is not present in any L2 and the L3 or memory

holds the most recent copy of the line.

Note that the system can always force a SWcc ⇒ HWcc transition to make

caches consistent, such as between task swaps, but the data values may not be

safe. It is possible for faulty software to modify the same word of the same line

in two L2 caches concurrently when under the control of SWcc(Figure 8.4, Case

5b). This represents a hardware race. To safely clean the state of a word, the

runtime can always turn on coherence and then zero the value. It will cause the

dirty values in the separate caches to be thrown away and the zeroed value to

persist. For debugging, it may be useful to have the directory signal an exception

with its return message to the requesting core.

118

8.3 Protocol Optimizations

In most synchronized programs, one can expect the number of active sharers to

be zero after the point of synchronization preceding a write. Likewise, the number

of readers after the write, but before synchronization, should also be zero. The

fact that most read-to-write sharing occurs across synchronization points was

leveraged in past systems, such as the Dir1SW protocol [71], and is used by our

own SWcc protocol, with barriers acting as the synchronization point. The same

pattern of sharing can be leveraged to optimize for two common cases we see in

HWcc⇔ SWcc transitions.

Lines known to software to be modified and only in one cache can make use of

an optimization under SWcc ⇒ HWcc transition when no false sharing of the line

exists. We can add an operation to allocate an entry in the directory with the L2

holding the line set as owner. The operation removes the need for invalidation

and acknowledgment messages to be sent. Such an optimization adds complexity

to the protocol and therefore was not evaluated in this work. The optimization

requires holding a modified line in the L2 while the directory update occurs, which

may be an unwanted design constraint. Without the constraints, a cache eviction

of a modified line could race with the directory update, resulting in the directory

holding an inconsistent value, i.e., a dirty line held in a cache when in fact no cache

holds the line. There is precedence for such an operation. The use of a specialized

output write operation is similar to write-back commit optimization used in some

hardware transactional memory implementations, such as [108], where a commit

in our case is a SWcc⇒ HWcc transition. The optimization makes data visible,

i.e., places it back into the coherence protocol, without forcing a cache eviction

or transmitting data.

Similarly, widely read-shared data that is HWcc is made SWcc trivially if the

119

sharer count drops to zero, which can occur when all shares invalidate the line

in the L2 or the clean line is evicted from the L2. Under SWcc, this should be

the case at a synchronization point. Similar optimizations could be applied to

protocols that have exclusive or owned states allowing a single owner in HWcc to

acquire sole ownership in SWcc. When the transition is requested, if the sharer

count is zero, the directory incurs a miss and thus requires no coherence probes

to be sent. The state change request is acknowledged immediately.

8.4 Software Use Cases

In this section, we discuss the use of objects that use Cohesion to interleave

coherent and non-coherent data as a natural extension of object-based synchro-

nization. We discuss the problem facing contemporary accelerators that try to

adopt applications and programming models that assume hardware coherence.

We discuss how contemporary programming patterns can be supported by Co-

hesion. We conclude by discussing two issues not addressed in this dissertation

that have potential as future work: (1) quantifying the design complexity of a

system with both HWcc and SWcc and (2) the difficulty in determining the ap-

propriate amount of hardware to dedicate toward supporting HWcc on a hybrid

memory model architecture.

A general pattern where we see Cohesion being useful is for mixed-coherence-

domain objects. These are objects where some data must be kept coherent, but

other data is amenable to software-managed coherence. Using the fine-grained

region table, it is possible to allocate objects that leave some fields hardware

coherent while others remain untracked by hardware. A simple example where

this would be used is for keeping a reference count on a read-only data structure.

The count must be kept coherent, but the data is immutable. In Cohesion, the

120

object would be allocated as incoherent and the counter value would be placed

alone on a line and marked as coherent.

A problem exists with accelerator systems today. Applications with data struc-

tures or compute patterns that heavily leverage hardware cache coherence are un-

able to easily exploit the parallel processing power of available accelerators, e.g.

GPUs, if at all. For those applications that are amenable to GPU acceleration,

but were developed with programming models where hardware cache coherence

was assumed, a rewrite is required. For software that has a data-parallel kernel

without need for coherence, but requires a host application that may find coher-

ence beneficial, a similar problem exists. For applications with shared irregular

data structures that require irregular updates, such as graphs or kd-trees, there

may be no way to efficiently support their execution without hardware cache

coherence. To make accelerators and future general-purpose systems with large

numbers of cores efficient platforms for applications, there must be a means to

support hardware cache coherence at some level.

Having the ability to support current programming models that require hard-

ware coherence will open up future platforms to more developers. The key is to

make coherence management an optimization choice instead of making it a bur-

den for correctness. For applications that use task stealing, mutexes, reductions,

mailboxes, and shared data regions, Cohesion has the ability to support those

constructs efficiently with its HWcc protocol while using the SWcc protocol for

the data-parallel regions of execution.

While the industry standard OpenCL [30] model does not require coherence,

it offers the opportunity to greatly simplify host-device semantics and lower per-

formance overhead for heterogeneous systems, while making software targeting a

compatible platform portable. By providing some amount of coherence, shared

data can be made resident in local memories, which would be caches in this case,

121

without the need for explicit programmer intervention. Performance could be in-

creased by removing the explicit copy operation from host to device memory; on a

heterogeneous system with CPU cores and accelerator cores with a single address

space supporting a hybrid memory model, there is no such distinction.

There are implementation concerns for Cohesion not fully addressed in this

dissertation. One is the additional cost of designing two protocols for one proces-

sor, i.e., a HWcc protocol implementation and a SWcc protocol implementation.

While it is true that designing a hardware coherence implementation is difficult,

we argue that Cohesion reduces the importance of having a highly optimized co-

herence protocol since the goal in developing highly parallel software for a hybrid

memory model architecture is to reduce the use of coherence to its bare minimum.

Thus, the performance of the system will be less sensitive to hardware coherence

overhead than a comparable system that only supports hardware coherence. The

marginal hardware design cost of adding support for software-managed coherence

is minimal. There are extra bits that need to be kept at the L2 and L3 caches

in our design and a small amount of merging logic kept at the L3. Otherwise,

most of the complexity of implementing a software-managed coherence protocol

is embedded in the runtime or the compiler and not in the architecture.

The one additional concern for an architecture supporting Cohesion is how

to choose an allocation of hardware coherence resources. In a conventional HWcc-

only design, the size of the directories or capacity of the network is determined

by the number of lines that must be tracked by the coherence protocol and the

amount of coherence traffic expected. For Cohesion, those characteristics can

vary between applications and depend greatly on how much optimization has been

performed by software. For some workloads, there may be almost no use of HWcc,

while others depend on it heavily. The promise of Cohesion is to make scalable

applications perform correctly with little effort and achieve high performance when

122

optimization efforts are focused on removing the use of HWcc, all while using

modest hardware. Therefore, we believe that the area overhead thresholds of

approximately 10% that we use in evaluating this work are reasonable, based

on our performance evaluations. However, there is no clear guiding principle for

choosing this threshold, and more hybrid memory model systems may need to be

built before any generalizations can be made.

8.5 Programming Examples

In this section we present high-level programming examples that use Cohesion.

We break the examples into three categories, which represent the predominate pat-

terns used by Cohesion applications. Static Cohesion divides the address space

of the application into HWcc and SWcc partitions at initialization. Throughout

the runtime of the application, this partition does not change. Dynamic Cohe-

sion supports the migration of fine-grained regions of memory between coherence

domains throughout the runtime of the application. System software is distinct

from the static and dynamic patterns since it is not meant for applications soft-

ware, but is a pattern that is found in runtimes, synchronization libraries, and

operating systems. We now go through each pattern in detail.

8.5.1 Static Partitioning

For many of our workloads, the data can be partitioned into that which would

best be served by HWcc and that which would best be served by SWcc. Static

partitioning is similar to systems with multiple address spaces where one is coher-

ent. However, since Cohesion covers the entire address space, Cohesion adds

the advantage of allowing software to choose the partition. A trivial case for

static partitioning would put all code and stack data into SWcc and put the rest

123

Static COHESION Example (1 of 3)

• COHESION provides static partitioning of data

• (Large) read-only/private regions SWcc

• (Small) shared regions HWcc

John H. Kelm 15

HWcc (writer)

SWcc
(private)

HWcc (writer)

SWcc
(private)

HWcc (reader) HWcc (reader)Data regions for
two grid blocks
from a 2D stencil
computation

Figure 8.5: The static Cohesion pattern demonstrated for a 2D stencil computa-
tion. The goal is to place the per-cell private regions in the SWcc domain and only
use HWcc domain for a small border region where communication is necessary.

into HWcc. More elaborate partitioning could be performed based on compiler

analysis for read-write sets and liveness.

Figure 8.5 demonstrates an example of static partitioning. The figure shows

two grid cells from a 2D stencil computation such as our heat benchmark. Each

task is allocated a cell and uses two buffers, one to read from, and one to write to,

in each of a number of time steps. A vast majority of the data is only accessed by

a single task and therefore need not be kept coherent. The boundary regions are

shared across tasks. To enable such sharing trivially, we can statically partition

the dataset of each task to have the private data kept SWcc and the shared

perimeter data kept HWcc. The advantages of this approach are that only the

truly shared data must pay the cost of coherence and that the software must only

change trivially to support Cohesion.

8.5.2 Dynamic Partitioning

An advantage of Cohesion over systems that support only static partition-

ing is the ability to transition between coherence domains at runtime. Cohe-

sion achieves performance advantages when transitions are optimally placed by

minimizing the amount of data that must be tracked by the coherence protocol at

124

any instant in time. Moreover, Cohesion is able to use the entire address space

and can be virtualized. If only static partitioning is allowed, the developer is

left with a fixed partition that he must manage explicitly. Moreover, having only

static partitions would require splitting and reorganizing data structures across

HWcc and SWcc domains. The need to reorganize data structures can cause large

amounts of code to be re-factored, which is undesirable. Cohesion avoids these

programmability and performance bottlenecks by using fine-grained remapping

between coherence domains that can occur at runtime.

Figure 8.6 provides an example of dynamic partitioning. The figure shows

four cores performing a divide-and-conquer sort operation. During the divide

phase, Cohesion is used to distribute a partition of the working set to another

processor using HWcc while the processor performing the pivot keeps the data in

SWcc. Once the processors reach the sequential phase of the sort, they can rely

on SWcc alone to avoid any coherence costs since there is no sharing. When the

results are available, the processors can simply place them in the HWcc domain,

which allows consumers to source the data and avoids cache flushing.

Another example includes ray tracing where a spatial data structure, such as a

kd-tree, is built during one phase and consumed in a mostly data-parallel fashion

during another phase. More advanced implementation may allow updates while

reading. These cases can be handled by forcing the data HWcc before an update

and then transitioning back to SWcc after the update.

8.5.3 System Software

System software is aided by Cohesion. Software-managed coherence does not

allow for migration of tasks that may have modified data in the local caches.

Moreover, after a task or application completes, there is no way to assure all data

125

Dynamic COHESION Example (2 of 3)

John H. Kelm 16

P0

P0 P1

P0 P2 P1 P3

… … … …

1. Parallel Quicksort

2. Sequential Selection
Sort (Phase 0)

3. Sequential Selection
Sort (Phases 1-N)

4. Result Visible to All

SWcc Data

HWcc Data

SWcc HWcc
SWcc Data

HWcc Data

SWcc HWcc
(Unsorted)

(Sorted)

Figure 8.6: The dynamic Cohesion pattern demonstrated using a two-phase
parallel sort on four processor cores. The goal is to use HWcc as-needed during
the divide phase and avoid HWcc during periods of independent execution, shown
as the serial sort in the figure. When the results are ready, HWcc is used to make
the produced data available to consumers.

touched by the tasks is consistent with the L3 and memory without flushing the

entire shared cache. Having the ability to force data into a hardware-tracked

state, albeit at some cost, is an advantage of Cohesion. Moreover, should the

runtime need to preempt a task and migrate it, the task’s working set can be

made HWcc and the data will migrate with the task.

As described in Chapter 3, the runtime on the baseline Rigel system required

that all shared data be flushed from local caches before being made globally

visible. The implication was that the runtime had to be conservative and would

force accesses to go to the L3 to read data that may have been produced locally.

Moreover, it was unclear how to design a runtime that would support work stealing

or task migration without the use of coherence. For short-lived tasks, migration

was less of an issue. However, work stealing may have proved a better option as

was shown in a study done using a similar runtime implemented on a system with

coherence support [78].

126

8.6 Compatibility

Supporting Cohesion raises the concern of forward compatibility. A valuable

and often necessary requirement for architectures is that software written for the

current platform can be run on future derivative platforms. While it is not always

critical that software run faster, it is desirable that the software not run signif-

icantly slower on future platforms. More importantly, to achieve compatibility

software must not need source- or binary-level modification to be correct across

generations. We now discuss some of the design requirements so Cohesion can

be made to run correctly across different platform configurations.

For systems supporting Cohesion, there is the question of how software-

managed coherence will work if the size and number of levels of the cache are

changed across generations. The key design attribute of Cohesion that allows

future platforms to continue supporting Cohesion-enabled software from previ-

ous versions of the platform is the lack of guaranteed incoherence. The software-

managed coherence scheme used in Cohesion, the Task-Centric Memory Model,

does not allow for two caches to hold different values for the same address. De-

fined inconsistencies across local memories is permissible by design in systems with

software-managed local memories, such as GPUs, where software alone manages

the contents of the local memories. However, our model is based on hardware

caches and supports a shared single address space thus avoiding incoherence by

design. While it is possible to write software in defiance of the Task-Centric

Memory Model on the baseline architecture, it is disallowed by our software im-

plementation. As such, if the size of caches grows or shrinks across generations,

there will be no problem of incoherence being lost since it is disallowed in current

implementations.

Another concern is running Cohesion-enabled software on architectures that

127

only support hardware-managed coherence such as contemporary CMPs. In such

cases, the appearance of a coherent single address space is maintained trivially

in hardware. The software management operations are used as hints or can sim-

ply be disregarded by the hardware, and hardware-managed coherence is used

instead. Furthermore, the writeback and invalidate operations that we use in our

baseline architecture are supported by analogous cache-management operations

in most contemporary instruction set architectures. Thus even ISA-level back-

wards compatibility could be added to contemporary ISAs extended for use with

Cohesion.

Adding extra levels of cache hierarchy can represent trade-offs in the imple-

mentation of a hybrid memory model. As new levels are added, software may be

required to manage data movement to achieve better performance if the hierarchy

is coherent. Moreover, application software using a software-managed coherence

scheme may need to reconsider correctness if new levels are added to the cache

hierarchy. For this work, we assume that Cohesion must operate between two

levels of cache: the cluster caches (L2) and the global caches (L3). The global

cache is the point of coherence for the processor. If the value in the L3 is con-

sistent with all values in the L2, any read on the chip will obtain a consistent

copy. If an extra level of cache is inserted between the L2 and L3, coherence for

the software-managed coherence scheme requires that writebacks and invalidates

force values not only from the L2, as is true in our implementation, but also from

the intermediate level between the L2 and L3. More complex software-managed

coherence protocols that take into account more than two levels of cache that

must be managed by the protocol are possible, but not evaluated in this work.

The Task-Centric Memory Model will continue to provide coherence regardless

of the number of levels of cache as long as the coherence management opera-

tions invalidate or writeback lines up to the level of cache serving as the point of

128

coherence.

8.7 Summary

In this section we presented Cohesion, a scheme for enabling coherence do-

main transitions at runtime. Cohesion is a proof-of-principle implementation

of a hybrid memory model. We described the baseline software and hardware

coherence protocols used in this work. We then described the protocols neces-

sary for transitioning between the software-managed coherence domain and the

hardware-managed coherence domain. We discussed the basic software interface

to Cohesion and a simple implementation of its hardware mechanisms. We con-

cluded by discussing potential optimizations to the Cohesion design presented

in this section. The end result is a 1000-core chip that exports a conventional

memory model to developers while incorporating heterogeneous coherence mech-

anisms. It provides accelerator-like scalability while supporting a conventional

general-purpose memory model.

129

CHAPTER 9

Evaluation

In this section we evaluate the memory model and related protocols and mech-

anisms presented in this work. We first discuss our methodology, including our

benchmark suite and simulation infrastructure. We evaluate the Task-Centric

Memory Model by executing various policies that determine when coherence ac-

tions occur, and we evaluate the efficiency of the software coherence actions.

WayPoint, our mechanism for lightweight hardware coherence, is evaluated.

WayPoint is shown to reduce the on-die directory overhead and associativity

needs with little performance impact relative to an aggressive and high-overhead

design. Lastly, we evaluate the initial implementation of a hybrid memory model,

Cohesion.

9.1 Methodology

We simulate the architecture described in Chapter 3 using RigelSim, our execution-

driven 1024-core simulator of the Rigel processor. The parameters used for runs

without hardware cache coherence are listed in Table 9.1. The additional param-

eters relevant to simulations with cache coherence enabled are listed in Table 9.2.

We use an execution-driven simulation of the design and run each benchmark

for at least one billion instructions after initialization. We model cores, caches,

interconnects, and memory controllers. The cycle-accurate DRAM model and

memory controller use the GDDR5 timings listed in Table 9.3. Our simulator is

130

Table 9.1: Timing parameters for the baseline architecture.

Parameter Value Unit Parameter Value Unit
Cores 1024 – Line Size 32 bytes
Memory BW 192 GB/s Core Freq. 1.5 GHz
DRAM Channels 8 – DRAM Type GDDR5 –
L1I Size 2 kB L1I Assoc. 2 way
L1D Size 1 kB L1D Assoc. 2 way
L2 Size 64 kB L2 Assoc. 16 way
L2 Size (Total) 8 MB L2 Latency 4 clks
L3 Size 4 MB L3 Assoc. 8 way
L2 Ports 2 R/W L3 Ports 1 R/W
L3 Latency 16+ clks L3 Banks 32 –

Table 9.2: Additional sizing and timing parameters for Rigel with cache coherence.

Cohesion Optimistic Directory

Parameter Value Unit Parameter Value Unit

Directory Access Lat. 2 Cycles Directory Access Lat. 2 Cycles

Directory Size 16K entries
L3 bank Directory Size ∞ entries

L3 bank

Directory Assoc. 128 ways Directory Assoc. Full –

structural in that there are analogues in hardware for each software component

used for timing. Interfaces to these blocks are meant to approximate an RTL

implementation.

The applications that we evaluate are optimized kernels extracted from scien-

tific and visual computing applications. The SWcc variants have explicit invalidate

and writeback instructions in the code at task boundaries. The Cohesion vari-

ants have such instructions when SWcc is used and none for data in the HWcc do-

main. The Cohesion API is used to allocate the SWcc and non-coherent data

on the incoherent heap. The HWcc versions eliminate programmed coherence ac-

tions in the benchmark code. The benchmarks are written using a task-based,

barrier-synchronized work queue model. The kernels include conjugate gradient

linear solver (cg), dense matrix multiply (dmm), 2D fast Fourier transform (fft),

collision detection (gjk), 2D stencil (heat), K-means clustering (kmeans), march-

131

Table 9.3: GDDR5 DRAM memory timings used in our simulations. All units
are DRAM cycles assuming 3 GHz DDR at 6.0 Gbps per pin.

Parameter Timing Parameter Timing
tRAS 44-48 tRC 61-66
tRRD 5-7 tFAW 22-25
tRCDR 20-24 tRCDW 11-14
tRP 16-19 tCL 16-20
tWR 20-23 tWTR 8-12
tWL 2 tRTP 3-5
tCCDL 3-4

ing cubes (march), medical image reconstruction (mri), edge detection (sobel),

and 3D stencil (stencil). Complete descriptions of the benchmarks are available

in Chapter 4.

9.2 Results: Task-Centric Memory Model

In this section, we evaluate the Task-Centric Memory Model using an implementa-

tion of the Rigel Task Model running on RigelSim. In this section, we demonstrate

two key results. The first is that the overhead of software-enforced coherence is

less than 10% in most cases compared to an optimistic hardware-coherent base-

line. Eager software-managed coherence actions, which are performed at task

completion, can even improve performance in other cases by reducing instanta-

neous bandwidth demands placed on the system at barriers. The second result is

that a common hardware optimization, hardware prefetching, is highly beneficial

to performance when performed by the global cache, a case allowed trivially by our

model; but it is of questionable benefit when performed at the cluster cache, the

case that is handled with difficulty by software-managed cache coherence alone.

132

Table 9.4: Overview of coherence management policies for TCMM.

Mode Description Patterns
EIEW Invalidate and writeback at

task completion
Low reuse/sharing of read-
input data, need to overlap
output writes with execution

EILW Invalidate at task comple-
tion, writeback before bar-
rier

Low reuse/sharing read-
input data, reuse of written
data

LIEW Invalidate before barrier,
writeback at end of task

High read sharing and read
reuse, overlaps output writes
with execution

LILW Invalidate and writeback be-
fore barrier

Large reuse and sharing sets
for all data, may simply
flush caches at barriers

9.2.1 Policy Selection

Our implementation permits coherence actions to be performed lazily at barriers

or eagerly at task boundaries. Moreover, we can split writeback operations that

write a dirty line back to the last-level cache from invalidate operations that set

a clean line in the private caches to invalid. In Figure 9.1, we evaluate eager

invalidate-eager writeback (EIEW), lazy invalidate-eager writeback (LIEW), ea-

ger invalidate-lazy writeback (EILW), and lazy invalidate-lazy writeback (LILW)

relative to the optimistic baseline that removes all writebacks and invalidates and

provides correct values without coherence traffic. For reference, Table 9.4 shows

the different policies and how they are used. The results show that different poli-

cies provide the best performance for each benchmark. Only one benchmark (mri)

suffers greater than 10% overhead relative to an optimistic zero-cost hardware co-

herence baseline due to software coherence actions.

The reason for the high overhead for mri is likely due to the large volume

of data touched combined with long task lengths. Even for eager policies, there

are a large number of writeback and invalidates that much be executed for the

133

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

cg dmm gjk heat kmeans march mri sobel stencil

Ru
nt

im
e

N
or

m
al

iz
ed

 to
 O

m
ni

ci
en

tC
C

HWccOpti

NONE

LILW

LIEW

EILW

EIEW

Figure 9.1: Runtime for different eviction policies compared to a highly optimistic
hardware coherence scheme. Software schemes can be selected on a per-application
basis. OmniscientCC corresponds to an implementation with hardware coherence
disabled, no coherence traffic for writebacks or invalidates, and an omniscient
memory model that provides correct values.

benchmark, many of which have low utility, as we show in a later section. One

other benchmark-specific note is heat. For this benchmark, eager invalidates

improve performance noticeably. The reason for the effect is that heat has large

input and output sets that are touch-once data inter-task. The eager invalidation

policies have the advantage of providing a better replacement policy at the L2

cache by evicting streaming data in lieu of older data that may be used again.

Since the model is under software control, a mix of policies across applications

can be deployed. In general we find two trends. First, eager writebacks overlap

write traffic with useful execution and should be used as much as possible to

increase memory system concurrency. The coherence actions result in less bursty

load on the interconnect, increasing performance. Brewer and Kuszmaul observe

a similar effect due to output port contention on the CM-5 [109]. Second, lazy

invalidation allows for shared read-input data to be exploited opportunistically

when two tasks share read values and execute on the same core, or in the same

cluster on Rigel, during an interval.

134

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

8 16 32 64 12
8 8 16 32 64 12
8 8 16 32 64 12
8 8 16 32 64 12
8 8 16 32 64 12
8 8 16 32 64 12
8 8 16 32 64 12
8 8 16 32 64 12
8 8 16 32 64 12
8 8 16 32 64 12
8

cg dmm fft gjk heat kmeans march mri sobel stencil

Writeback (LIEW) Writeback (EIEW) Writeback (LILW)

Figure 9.2: The impact of L2 (cluster) cache sizing on writeback efficiency.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

8 16 32 64 12
8 8 16 32 64 12
8 8 16 32 64 12
8 8 16 32 64 12
8 8 16 32 64 12
8 8 16 32 64 12
8 8 16 32 64 12
8 8 16 32 64 12
8 8 16 32 64 12
8 8 16 32 64 12
8

cg dmm fft gjk heat kmeans march mri sobel stencil

Invalidation (LIEW) Invalidation (EIEW) Invalidation (LILW)

Figure 9.3: The impact of L2 (cluster) cache sizing on invalidate efficiency.

9.2.2 Software Coherence Action Utility

Figure 9.2 and Figure 9.3 illustrate the utility of writeback and invalidation op-

erations for the Task-Centric Memory Model, respectively. We define utility as

the number of invalidation or writeback instructions that are issued to lines valid

in the cache at the time of the issue. Writebacks with utility force an action to

occur at the L2 while those without utility are nops. A larger utility implies that

fewer wasted instructions are issued and that TCMM is efficient. For cases where

the writebacks and invalidations have low utility, TCMM is forced to be overly

conservative and is wasting fetch and issue bandwidth on useless instructions.

135

The results demonstrate four general trends. First, writeback efficiency is high

for most workloads and policies. Second, invalidate utility is much lower. This

effect is likely due to most applications performing writes to output data near the

end of the task while reads are performed closer to the start. The reduction in

time between last access and coherence action increases the probability that an

action has utility. Third, eager policies, which invalidate or writeback data at the

end of a task instead of waiting until the end of an interval, have higher utility.

Moreover, eager policies require less bookkeeping since they only require tracking

coherence state over the length of a task and not the entire interval. Finally,

efficiency tends to increase with cache size, which is due to the fact that conflicts

and capacity misses that generate evictions are less likely to occur between the

last access to a line and the coherence action.

For roughly half the benchmarks, utility is below 15%. The low level of util-

ity for explicit coherence actions indicates that instruction issue bandwidth and

tracking state are being wasted on lines that are evicted from the cache due to

implicit causes, e.g., cache eviction due to a capacity miss. The extra actions

cannot be eliminated a priori in software in a trivial, way and these actions must

be present to ensure correctness.

The conservatism required results in an overhead for SWcc that we would like

to avoid. While not evaluated in this work, there are opportunities for hardware

structures at the L2 cache and additional bits associated with each L2 line to re-

duce the need to issue unnecessary cache management operations. Better software

techniques, either compiler-driven or developer-driven, could potentially lower the

overhead. Finally, a trivial solution is to simply flush the caches at a barrier if

the number of writebacks and invalidates grows to be too high.

We find that even with the increased overhead, software-managed coherence

can be a low-overhead coherence scheme for 1000-core processors. However, we

136

0x

20x

40x

60x

80x

100x

120x

PF
 (B

as
el

in
e)

PF
 +

 B
C

D
ir

FU
LL

PF
 (B

as
el

in
e)

PF
 +

 B
C

D
ir

FU
LL

PF
 (B

as
el

in
e)

PF
 +

 B
C

D
ir

FU
LL

PF
 (B

as
el

in
e)

PF
 +

 B
C

D
ir

FU
LL

PF
 (B

as
el

in
e)

PF
 +

 B
C

D
ir

FU
LL

PF
 (B

as
el

in
e)

PF
 +

 B
C

D
ir

FU
LL

PF
 (B

as
el

in
e)

PF
 +

 B
C

D
ir

FU
LL

PF
 (B

as
el

in
e)

PF
 +

 B
C

D
ir

FU
LL

PF
 (B

as
el

in
e)

PF
 +

 B
C

D
ir

FU
LL

PF
 (B

as
el

in
e)

PF
 +

 B
C

D
ir

FU
LL

CG DMM FFT GJK HEAT KMEANS MARCH MRI SOBEL STENCILSp
ee

du
p

vs
. O

ne
 C

or
e

G
ro

up
 (8

 c
or

es
)

32 cores 64 cores 128 cores 256 cores 512 cores 1024 cores

Figure 9.4: Scalability of baseline probe filtering with 2048 entries compared
to SPF with broadcast-collective support and an on-die full directory. Perfect
speedup would be 128× in this figure.

do see an opportunity for adding mechanisms in hardware and tools support that

could reduce the inefficiencies in software-managed coherence. In this work, we

explore one mechanism, Cohesion, which allows for data to be moved into the

hardware coherence domain when software management is inappropriate, thus

reducing one of the causes of inefficiencies in software-managed coherence.

9.3 Results: Scalable Probe Filtering

Here we evaluate the performance of the probe filter with and without a broad-

cast network for accelerating coherence messages. We use 2048-entry fully as-

sociative probe filter cache (PFC) banks to minimize the effects of conflict and

capacity misses. The result, as shown in Figure 9.4, is that a PFC alone is not

generally scalable, but with SPF scalability can be extended. We find that re-

building sharing vectors in the collective network can improve scalability over an

invalidation-based policy, but that probe filter misses still limit scalability.

One potential solution is to build larger PFCs. However, building larger PFCs

is confounded by area and power constraints and the large datasets of throughput-

oriented and streaming workloads. Coarse-grained tracking mechanisms such as

137

RegionScout [63] decrease PFC area overhead, but may have limited utility for

workloads with low spatial locality.

The essential problem with the probe filtering approach is that sharer state

that is not explicitly tracked, such as in a directory entry, must be handled conser-

vatively on the first access, necessitating broadcasts. The power and performance

costs of broadcasts can be reduced with techniques such as SPF that reduce the

number of messages with additional complexity, area, and power overhead, but

scalability is still limited. To eliminate PFC miss broadcasts all together, we next

evaluate WayPoint, which captures the performance benefits of exact sharing

information with small hardware structures.

9.4 Results: WayPoint

Here we evaluate the performance of WayPoint. We use a subset directory cache

implementation with varying sizes and associativities for comparison. We also use

an optimistic, albeit unrealizable, full on-die directory to serve as a baseline. The

optimistic full directory is infinitely sized, thus removing all but cold-cache misses

from the performance overhead of the baseline.

9.4.1 Directory Cache Sizing

Figure 9.5 shows the runtime of the benchmarks normalized to the optimistic co-

herence baseline. The data on the left are configurations without WayPoint where

invalidations occur when the directory cache capacity is reached. The data on the

right are for configurations with WayPoint. An eviction with WayPoint re-

sults in an entry being placed in an overflow list in cached memory, thus avoiding

the overhead of invalidations. Note that the directory sizes, measured in en-

tries per L3 bank, are not equal between the two configurations because the non-

138

0.0 x

1.0 x

2.0 x

3.0 x

4.0 x

5.0 x

cg dmm gjk heat kmeans march mri sobel stencil

Ru
nt

im
e

N
or

m
al

iz
ed

 t
o

H
W

cc
O

pt
i

16384 baseline 8192 baseline 4096 baseline 2048 baseline

2048 Waypoint 1024 WayPoint 512 WayPoint 256 WayPoint

Figure 9.5: The runtime normalized to the optimistic hardware cache coherence
implementation is shown for different sizes of directory cache. Configurations
without WayPoint are shown on the left and those with it on the right.

WayPoint configurations slow down precipitously with fewer than 2048 directory

entries per bank.

The results in Figure 9.5 indicate that at least 8192 entries per bank would be

needed to eliminate large slowdowns when using a conventional directory cache.

With WayPoint, that number can be 2048 or fewer, thus providing compara-

ble performance across all benchmarks with over 4× fewer resources. Moreover,

performance degradation for designs with WayPoint follows a much smoother

curve leading us to believe that even for pathological workloads that we may not

have evaluated, WayPoint should be far more robust to workload variation than

configurations without WayPoint. Note that the one benchmark with apprecia-

ble overhead for WayPoint is stencil. The accesses for this benchmark tend to

have little locality and little reuse since the benchmark streams through every out-

put once and each input a small number of times each iteration. Furthermore, the

read sharing is limited. Therefore, stencil tends to thrash in the directory cache

more than the other workloads. Even so, the overhead for stencil is much less

with a directory cache supplemented by WayPoint than without WayPoint.

139

9.4.2 Directory Cache Associativity

Figures 9.6(a) and 9.6(b) give the execution time with and without WayPoint while

varying the associativity of a fixed-sized directory. The goal of these experiments

is to demonstrate the ability of WayPoint to reduce the associativity demands

of the directory cache. All results vary the number of ways and sets inversely

to maintain a constant 16384-entry directory cache except for the infinite-sized

on-die directory baseline, which has one set and unlimited ways. We show 32–

512 way directory caches with WayPoint and 128–512 way without WayPoint.

The discrepancy is due to the greatly increased runtime due to thrashing and sub-

sequent invalidations for lower associativity directory caches without WayPoint.

The results show that for highly associative directory caches, the configura-

tions perform comparably. However, for the configurations without WayPoint,

there is a clear performance cliff where runtime increases dramatically below a

threshold associativity. The performance versus associativity curve is smoother

for WayPoint. With WayPoint, performance varies by less than 10% across all

configurations. We find that some benchmarks have critical associativities where

performance is constant while reducing associativity until a threshold is reached.

The benchmarks cg, gjk, march, sobel, and stencil exhibit critical associativi-

ties. The reason for this performance cliff is that these benchmarks have working

sets that are spread evenly across caches and have a regular access pattern, which

means many lines in lower-level caches map to the same bank of the last-level

cache and its slice of the directory cache. When the number of lines per cache

times the number of caches exceeds the available directory associativity, thrashing

occurs, thus greatly reducing performance.

Also note that the results we present in this section have had optimizations

140

0.0 x

0.2 x

0.4 x

0.6 x

0.8 x

1.0 x

1.2 x

cg dmm gjk heat kmeans march mri sobel stencilRu
nt

im
e

N
or

m
al

iz
ed

 to
 H

W
cc

O
pt

i

HWccOpt 512waysWP 256waysWP 128waysWP 64waysWP 32waysWP

(a) With WayPoint

0.0 x

2.0 x

4.0 x

6.0 x

8.0 x

10.0 x

cg dmm gjk heat kmeans march mri sobel stencil

Ru
nt

im
e

N
or

m
al

iz
ed

 t
o

H
W

cc
O

pt
i

HWccOpt 512ways 256ways 128ways

(b) Without WayPoint

Figure 9.6: Runtime of WayPoint-enabled simulations with different associativ-
ities with fixed directory size. Results normalized to optimistic hardware cache
coherence. Note that we have a one-to-one correspondence between sets and Way-
Point lists in (a), resulting in slightly less contention and thus better performance
for less-associative on-die caches.

141

performed to the software to remove conflicts at the directory. A deeper discus-

sion of the software optimizations is given in Chapter 7. What is important to

note is that without these optimizations, the results for configurations without

WayPoint would have much higher runtimes. Some of the configurations had

such a high degree of thrashing that simulation became intractable.

9.4.3 Power and Area Estimates

We evaluate the area required for our directory cache architecture with and with-

out WayPoint and show the results in Table 9.5. Each of the 32 L3 banks is

assigned a disjoint region of the address space, and has a corresponding directory

cache bank that handles the same address space region. We use CACTI 6.5 [110] to

estimate area and power of the directory caches. We evaluate a high-performance

45 nm process at 1.2 GHz with two-cycle pipelined accesses and separate read

and write ports. We assume a total die area of 300 mm2 based on the analysis

performed in [42]. We use average activity factors from our timing simulator to

estimate dynamic power usage.

The results show that the power and area efficiency of the structures degrades

linearly with the degree of associativity; these results motivate a mechanism such

as WayPoint, which provides good performance with a low-associativity direc-

tory cache. Moreover, we find that directory cache capacity can be doubled at a

much lower marginal power and area cost than can associativity—generally less

than a 2× area and power increase for every 2× capacity increase. However, we

have found that the marginal utility of more than 2048 entries per bank to be

small with WayPoint. Note that while Table 9.5 shows the area overhead of

a 64-way directory cache to be sizeable (23.4% of chip die area), Figure 9.6(b)

indicates that even at a much higher capacity, four times that associativity would

142

Table 9.5: Power and area estimates for a 2048-entry WayPoint implementation.

Configuration Bank Dimension (mm) Combined Area Combined Power (W)
Sets Ways Width Height mm2 Chip Area Static Dynamic Total

512 4 0.567 0.484 8.78 2.93% 1.48 0.15 1.63
256 8 0.396 0.878 11.14 3.71% 1.64 0.23 1.87
128 16 0.324 1.660 17.23 5.74% 1.99 0.43 2.42
64 32 0.305 3.323 32.43 10.8% 2.74 0.75 3.50
32 64 0.341 6.596 71.93 23.4% 4.94 1.44 6.38

be required to approach the performance of a WayPoint, which requires greatly

reduced hardware overheads.

9.5 Results: Cohesion

We evaluate four design points: SWcc, optimistic HWcc, HWcc with realistic hard-

ware assumptions, and Cohesion with the same realistic hardware assumptions.

The hardware configuration for SWcc is equivalent to our baseline described in

Chapter 5, but with no directory and all sharing handled by software. For SWcc,

writes occur at the L2 with no delay, and evictions performed to clean data hap-

pen without creating any network traffic. The optimistic HWcc case removes

all directory conflicts by making the on-die directory infinitely sized and fully-

associative. The behavior is equivalent to a full-map directory in memory [67],

but with single-cycle latency to the directory. The HWcc realistic case comprises

a 16k entry, 128-way sparse directory at each L3 cache bank. The Cohesion con-

figuration uses the same hardware as the realistic HWcc configurations.

9.5.1 Message Reduction

Figure 9.7 gives the number of messages sent by the L2s to the directory, normal-

ized to SWcc. There is a reduction in messages relative to the HWcc configurations

across all benchmarks. kmeans is the only benchmark where SWcc shows higher

143

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

SW
cc

Co
he

si
on

H
W

cc
Id

ea
l

H
W

cc
Re

al

SW
cc

Co
he

si
on

H
W

cc
Id

ea
l

H
W

cc
Re

al

SW
cc

Co
he

si
on

H
W

cc
Id

ea
l

H
W

cc
Re

al

SW
cc

Co
he

si
on

H
W

cc
Id

ea
l

H
W

cc
Re

al

SW
cc

Co
he

si
on

H
W

cc
Id

ea
l

H
W

cc
Re

al

SW
cc

Co
he

si
on

H
W

cc
Id

ea
l

H
W

cc
Re

al

SW
cc

Co
he

si
on

H
W

cc
Id

ea
l

H
W

cc
Re

al

SW
cc

Co
he

si
on

H
W

cc
Id

ea
l

H
W

cc
Re

al

cg dmm gjk heat kmeans mri sobel stencil

Re
la

ti
ve

 N
um

be
r

of
 M

es
sa

ge
s

Probe Responses

Read Releases

Software Flushes

Cache Evictions

Uncached/Atomics

Instruction Requests

Write Requests

Read Requests

Figure 9.7: Number of messages sent out of the L2 (cluster) cache.

message counts than Cohesion. This reduction is due to optimizations that re-

duce the number of uncached operations issued by the benchmark by relying upon

HWcc under Cohesion. For some benchmarks, the number of messages is nearly

identical across Cohesion and optimistic HWcc configurations, such as heat and

stencil. We see potential to remove many of these messages by applying fur-

ther, albeit more complicated, optimization strategies using Cohesion. While

we leave more elaborate coherence domain remapping strategies to future work,

our initial efforts here show that combining SWcc and HWcc can greatly reduce

the number of network messages. The benefits include less contention, resulting

in lower latency for network messages and the opportunity for architects to reduce

network costs while maintaining the same level of performance.

9.5.2 Directory Entry Savings

Figures 9.8 (a) and 9.8 (b) show the normalized runtime for different directory sizes

under HWcc and Cohesion, respectively, compared to an infinite-sized directory.

We make directories fully associative to isolate the influence of capacity. The rapid

drop-off in performance shown in Figure 9.8 (a) demonstrates the sensitivity of

144

0K

50K

100K

150K

200K

250K

300K

Co
he

si
on

H
W

cc

Co
he

si
on

H
W

cc

Co
he

si
on

H
W

cc

Co
he

si
on

H
W

cc

Co
he

si
on

H
W

cc

Co
he

si
on

H
W

cc

Co
he

si
on

H
W

cc

Co
he

si
on

H
W

cc

Co
he

si
on

H
W

cc

CG DMM GJK HEAT KMEANS MRI SOBEL STENCIL Mean

A
ve

ra
ge

 #
 D

ir
ec

to
ry

 E
nt

ri
es

 A
llo

ca
te

d

Code Heap/Global Stack Maximum Allocated

0.0x

1.0x

2.0x

3.0x

4.0x

5.0x

6.0x

7.0x

8.0x

256 512 1024 2048 4096 8192 16384

Directory Entries per L3 Cache Bank

cg
dmm
gjk
heat
kmeans
mri
sobel
stencil

0.0x

1.0x

2.0x

3.0x

4.0x

5.0x

6.0x

7.0x

8.0x

256 512 1024 2048 4096 8192 16384

Sl
ow

do
w

n
N

or
m

al
iz

ed
 to

 In
fin

it
e

En
tr

ie
s

Directory Entries per L3 Cache Bank

(B) (C)(A)

Figure 9.8: Runtime with different directory cache sizes (in thousands) for our
baseline without Cohesion (a) and with Cohesion (b). Part (c) shows the
average and maximum number of directory entries used at runtime out of the
total number of entries.

HWccto directory cache sizing. The explosion in runtime stems from capacity

misses generating evictions at the directory cache, thus triggering L2 invalidates.

Figure 9.8 (b) shows that Cohesion reduces the performance sensitivity with

respect to directory sizing across all benchmarks. Figure 9.8 (b) indicates a greatly

reduced sensitivity to smaller directory cache sizes, allowing for directory cache

resources to be reduced without impacting performance.

Figure 9.8 (c) shows the mean and maximum number of directory entries used

by Cohesion and the optimistic HWcc baseline. We average samples taken every

1000 cycles. We classify the entries as to whether they map to code, which is

negligible, private stack data, or heap allocations and static global data. The

HWcc data in Figure 9.8 (c) is a proxy for the on-die working set of the bench-

marks, because all lines cached in an L2 have allocated directory entries and all

uncached lines are removed from the directory when the L2 sharer count drops

to zero. The data also demonstrates the degree of read sharing, because the ratio

of directory entries to valid L2 cache lines is smaller when there are more sharers

and thus fewer directory entries are needed.

Across all benchmarks, Cohesion provides a reduction in average directory

utilization of 2.1×. For some benchmarks, simply keeping the stack incoherent

145

achieves most of the benefit, but, on average, the stack alone only represents

15% of the directory resources. Code makes up a trivial portion of the directory

entries because our benchmarks have large datasets, but code entries may be

evicted by touch-once data when streaming through large datasets, thus impacting

performance. These results show that most of the savings comes from using

Cohesion to allocate globally shared data on the incoherent heap, thus avoiding

coherence overhead for that data.

9.5.3 Directory Area Estimates

To quantify the area savings Cohesion could provide, we evaluate the on-die area

costs for HWcc by comparing the number of bits necessary for each Cohesion.

The 128 L2 caches have a capacity of 2048 lines, each resulting in 262,144 32-byte

lines on-die, for a total of 8 MB. A full-map directory would require 128 bits for

sharer data and 2 bits of state for each line. For Cohesion, which uses a sparse

directory with a set-associative structure for holding directory entries, 16 tag bits

would also be required. A limited Cohesion with four pointers (Dir4B) would

require 28 bits per entry for sharer state and 2 bits for coherence state. The

sparse directory structure is banked to mitigate the effects port conflicts and load

imbalance across L3 banks. The HWcc configuration has 16k entries per bank.

The overhead for a full-map directory is 9.28 MB (113% of L2) and a limited

Cohesion would be 2.88 MB (35.1% of L2).

Duplicate tags [64] would require 21 bits for each L2 tag. Since the directories

are distributed across L3 banks, it may be necessary to replicate duplicate tag

entries across banks, which leads to a 1× to 8× overhead. Duplicate tags require

736 kB * Nreplicas. While a single set of duplicate tags would result in only 736 kB

(8.98% of L2) overhead, the structure would still be 2048-way associative and

146

SWcc 1.10
HWccReal 0.97
HWccIdeal 0.96
CohesionLimited 1.00 2782885
HWccLimited 0.98 2716739

sobel HybridReal 1.00
SWcc 0.84
HWccReal 3.56
HWccIdeal 1.09
CohesionLimited 1.03 620945
HWccLimited 3.88 2329727

stencil HybridReal 1.00
SWcc 1.03
HWccReal 1.10
HWccIdeal 1.03
CohesionLimited 1.00 2898234
HWccLimited 1.10 3201156

6.69x 9.47x 9.61x 3.56x7.09x 10.45x 9.21x 3.88x

0.00

0.50

1.00

1.50

2.00

cg dmm gjk heat kmeans mri sobel stencil

Ru
nt

im
e

N
or

m
al

iz
ed

 to
 C

oh
es

io
n

Cohesion

Cohesion (Limited)

SWcc

HWccOpt

HWccReal

HWcc (Limited)

Figure 9.9: Runtime of Cohesion compared to software-managed coherence
(SWcc) and hardware-managed coherence (HWcc) using limited directories with
four pointers be entry and full-map directories. We show both optimistic assump-
tions for HWcc, which provides infinite-sized directory caches, and a large, but
realizable 16k-entry directory caches.

need to service up to 32 requests per cycle on behalf of the L3 cache banks.

Clearly, none of these optimistic options is attractive for a practical design.

However, Cohesion has the potential to reduce hardware overhead by building

smaller directories, or fewer replicas and ports for duplicate tags, compared to a

pure HWcc system, thus making known techniques more scalable and attractive.

Our results indicate that a greater than 2× reduction in directory utilization is

possible, which could yield 5% to 55% reduction in L2 overhead for directory

storage on-die.

9.5.4 Application Performance

Figure 9.9 shows the runtime of our benchmarks normalized to Cohesion. As the

results demonstrate, two benchmarks perform better and two slightly worse with

Cohesion relative to SWcc and optimistic HWcc, while the others show insignifi-

cant differences. Compared to realistic hardware assumptions, Cohesion delivers

many times better performance. These benefits come from reduced message traf-

fic (Section 9.5.1) and a reduction in the number of flush operations issued by the

147

SWcc configurations, many of which may be unnecessary, as shown in Figure 9.2.

The negative performance difference between Cohesion and optimisticHWcc is

less than 5% for gjk and mri and could be improved to parity with optimistic

HWcc using more complex coherence domain transitions not evaluated in this

work. Moreover, neither benchmark is limited by coherence costs, but rather by

task scheduling overhead, which is due to task granularity in the case of gjk and

execution efficiency for mri because of its high arithmetic intensity. kmeans has

a large number of atomic operations that can conflict with SWcc coherence ac-

tions and lead to decreased performance due to queuing effects in the network. In

some cases, HWcc has the effect of dispersing the coherence actions in time, thus

reducing the effect of queuing delays.

9.5.5 Cohesion Summary

Cohesion reduces the number of messages sent compared to a purely hardware

coherent configuration, thus reducing demand on the network. Cohesion is able

to reduce the pressure on the directory, thus reducing the resources needed by the

directory to achieve similar performance to a purely hardware coherent design.

While we find an increase in the total number of messages injected when con-

verting regions from the SWcc domain to the HWcc domain, we show improved

performance due to the reduction in time spent issuing coherence management

instructions under SWcc and the timeliness of HWcc messages. Overall, Cohe-

sion provides increased performance, reduced network demands, and less direc-

tory pressure for most workloads compared to SWcc or HWcc alone.

There is an interplay between message count, directory utilization, and execu-

tion time. Reducing the dependence on the directory by minimizing the number

of lines tracked by HWcc allows for fewer on-die directory resources to be provi-

148

sioned and can avoid pathological cases due to directory-set aliasing and capacity

issues. However, doing so may lead to more messages being injected, thus reduc-

ing performance unless network capacity is increased. The trade-off is the level of

achieved performance and the amount of programming effort beyond developing

an application using HWcc alone that is applied to separate data accesses into

SWcc and HWcc domains.

9.6 Summary and Discussion

In this chapter we evaluate the use of different software and hardware coherence

techniques. We show the scalability of a software-managed coherence scheme that

we call the Task-Centric Memory Model. We show that it can achieve performance

that approaches omniscient coherence implementations and performs slightly bet-

ter than a highly-optimistic hardware coherence implementation. The evaluation

of scalable probe filtering indicates that probe filtering, a common technique in

contemporary CMPs, can be scaled if support is available for accelerating broad-

cast and collective messages. However, when the number of cores grows beyond

128 in our evaluation, SPF fails to scale. We next evaluate WayPoint, a hard-

ware coherence mechanism based on a subset sparse directory resident on-die.

WayPoint can provide additional capacity and associativity to the directories

dynamically. We find that WayPoint can achieve good performance with greatly

reduced area compared to a conventional sparse directory. Lastly, we evaluate Co-

hesion, a technique for combining both our software coherence techniques and a

simple hardware coherence implementation. We find that Cohesion can reduce

network traffic and directory resource demands by roughly a factor of two. These

benefits can be translated into reduced hardware costs without compromising

performance.

149

CHAPTER 10

Related Work

In this section we discuss previous work related to the Task-Centric Memory

Model, WayPoint, and Cohesion.

10.1 Task-Centric Memory Model Related Work

Compute accelerators have developed an array of memory models that emphasize

compute density and parallel scalability. Accelerators have leveraged the lack

of legacy software constraining their design and the high degree of parallelism

inherent in their workloads. By design, existing software APIs and programming

models for accelerator systems are parallel by design with very weak memory

models and implied coherence guarantees. On the other hand, software APIs

and parallel programming models for coherent CMPs have strong consistency

models and hardware coherence. This section discusses existing programming

models and programming languages used by compute accelerators and parallel

coherent CMPs. We illustrate how these models exploit characteristics of their

workloads and the underlying architecture to achieve better performance or to

enhance programmability.

Many of the prevalent models for accelerators exploit the existence of coarse-

grained synchronization and the relative lack of fine-grained sharing in workloads.

Accelerators have achieved success relying on software for handling coherence ac-

tions and allow relaxed memory orderings, thus aiding hardware scalability and

150

improving power and performance density. Here we survey memory models and

programming models for parallel systems and compare the models with the ap-

proach presented in Chapter 5. With the increased interest in accelerator plat-

forms such as GPUs for general-purpose computation, we see an opportunity for

memory models that are less reliant upon hardware to become widespread as core

counts continue to rise and the distinction between CMP and accelerator begins

to blur.

The Task-Centric Memory Model targets systems with a single address space

and hardware-managed caches without hardware-managed coherence. Our ap-

proach contrasts with that of existing accelerators using software-managed scratch-

pads [4,57] or designs more similar to contemporary CMPs, where caches are kept

coherent transparently to software [14]. Friedman [111] discusses a form of hybrid

coherence where there are strong and weak memory operations. Friedman goes

on to construct a memory model that eliminates latencies that are unavoidable

with a conventional memory model. The model is similar to what is supported

on commercially available multicore processors today where synchronization op-

erations are done using a set of atomic operations that adhere to stricter ordering

rules than normal programmed loads and stores. Moreover, the use of strong and

weak operations is very similar to the local versus global distinction used in Rigel

for memory operations.

Leverich et al. [112] investigate the implications of choosing between two dif-

ferent memory system configurations, hardware-coherent caches and software-

managed scratchpads, for future CMPs and demonstrate that software coherence

actions can provide benefit to cached systems. A third choice not investigated in

that work, incoherent software-based architectures, is most similar to the Task-

Centric Memory Model. Furthermore, prototype systems with hardware caches,

but without hardware coherence, such as CEDAR [54], have been built. These

151

same techniques are being reapplied to accelerator systems today, such as the

Rigel accelerator [42] used as the basis for this work.

10.1.1 Parallel Programming Models

Many parallel models for existing CMPs, such as Intel’s Threading Building

Blocks (TBB) [79] and Cilk [80], use explicit task generation. Models such as

OpenMP [113] use implicit task generation. Explicit task generation is also used

in the Rigel Task Model, but we limit RTM to BSP semantics while TBB also

supports fork-join parallelism. TBB and Cilk allow for interactions between tasks

and make use of parent-child communication through shared memory, which relies

upon the existence of a coherent address space.

Underlying many of the models used by accelerators is the bulk-synchronous

parallel model (BSP) [60]. BSP continues to be reflected in accelerator languages

prevalent today, including CUDA [114] from NVIDIA and OpenCL [30]. CUDA

and OpenCL are used to map data-parallel kernels to highly parallel systems com-

prising possibly hundreds of processing elements in a bulk-synchronous fashion.

While CMPs continue to support unrestricted sharing patterns and accelera-

tors usually adopt shared-nothing programing models, we see a potential for an

intermediate design point, such as the Task-Centric Memory Model, that exploits

the structure of accelerator applications by using a software-protocol and minimal

hardware to provide the programmability afforded by CMPs while achieving the

scalability of accelerators.

10.1.2 Parallel Memory Models

The Rigel memory model and coherence mechanisms are akin to software co-

herence mechanisms used to provide the illusion of a single address space for

152

distributed shared memory (DSM) systems [102, 115]. Two DSMs, Midway [116]

and Munin [103], used flexible consistency models to achieve parallel scalability.

Midway allowed for a high degree of latency tolerance by associating individual

data items with synchronization operations and only guaranteeing that the data

was visible after acquiring the associated synchronization object. The system also

supported multiple consistency models concurrently in one program. Munin was

based on data types specified by the programmer that allowed for communication-

based per-type optimizations to be exploited by the runtime. Munin and Midway

are analogous to a software-only hybrid memory model.

The consistency guarantees we investigate for write-output data at RTM task

boundaries are similar to Scope Consistency [117] in that dirty data is implicitly

made coherent at the end of the task’s scope and updates can be deferred until

the scope is reopened. Reopened in the case of RTM means starting a new task

or interval following a barrier. The Cooperative Shared Memory model [71] pro-

vides a similar model to Rigel. Cooperative Shared Memory relies on software to

properly label shared accesses for performance and achieves scalable performance

using a reduced complexity hardware coherence protocol (Dir1SW).

The BSP model was described by Valiant [60]. BSP continues to be reflected in

languages prevalent today including CUDA [114] from NVIDIA and OpenCL [30].

As mentioned previously, CUDA is used to map data-parallel kernels to GPUs

comprising hundreds of processing elements in a bulk-synchronous fashion, but re-

quires SIMD-friendly code to achieve high execution efficiency [12]. DeNovo [118]

is an attempt to exploit race-free and deterministic software to build an archi-

tecture that reduces the strain on hardware coherence mechanisms. The work is

similar to the TCMM because it exploits program structure, in the case of DeNovo

race freedom, to relax the constraints placed on hardware.

153

10.1.3 Accelerator Workloads

Examples of data- and task-parallel workloads that motivate our investigation of

a task-parallel model include recognition, mining, and synthesis (RMS) [81] and

physical simulation applications [15] for providing more realistic virtual worlds

that are being investigated by Intel. A later study from Intel [119] comparing the

performance of GPUs and CPUs for throughput-oriented workloads uses bench-

marks similar to the workloads evaluated here.

A variety of highly-parallel workloads, such as the PARSEC [98] and ALP-

Bench [120] suites, have been evaluated for conventional multicore processors.

Accelerator workloads targeting current-generation GPUs have been studied [19],

while studies motivating future accelerator architectures have focused on char-

acterizing visual computing workloads [12]. While these studies investigate the

scalability of visual computing workloads, we go further to point out the sharing

patterns relevant to coherence management and show how these characteristics

can be exploited in the design of future compute accelerators.

10.2 WayPoint Related Work

In this section we discuss previous work related to scalable cache coherence and

cache associativity.

10.2.1 Coherence Management

Two classes of protocols used for maintaining cache coherence are directories [67]

and snooping or broadcast schemes [61]. On the one hand, the scalability of simple

directory protocols is limited by directory storage overhead, which grows with the

square of the number of processors, and contention at the directory [121]. Limited

154

schemes such as coarse vectors [65], which reduce the size of the sharing vectors,

still have storage overhead that grows super-linearly with the amount of memory

being tracked. On the other hand, broadcast protocols become limited at high

core counts by bandwidth requirements and ordering constraints placed on the

interconnect.

Cooperative Shared Memory and the underlying Dir1SW protocol [71] use

programmer annotations to reduce hardware complexity, achieving good perfor-

mance when the software protocol is respected and correctness even when it is

not. The LimitLESS directory described by Chaiken et al. [70] maintains a small

list of sharers in hardware and faults to software when the list overflows. The

protocol suffers from a high number of faults if the number of sharers is high

or unstable. WayPoint also uses a fallback mechanism to handle uncommon

cases in directory coherence schemes, but, unlike LimitLESS and Dir1SW, Way-

Point addresses directory cache associativity and capacity overflow rather than

sharer list overflow. Furthermore, the fallback mechanism for WayPoint is de-

signed to be implemented as part of the on-die coherence logic, obviating the need

for software intervention—a potentially costly operation if cores are far from the

directory.

Michael and Nanda [69] evaluate the use of a set-associative directory cache at

each of 16 SMP nodes. WayPoint targets workloads with different data sharing

characteristics, using the storage and communication cost models inherent to the

single-chip designs, demonstrating the growing problem of directory associativity

for CMPs. Furthermore, we investigate a novel scheme that uses linked lists of

sharer data, whereas Michael and Nanda do not discuss their implementation of

in-memory directories.

Scalable Cache Interface [122] (SCI) is a sparse directory scheme based on

linked lists of sharers used to minimize storage overhead. SCI reduces overhead

155

by only tracking those lines currently cached and reduces contention by spreading

sharing data across caches. While both SCI and WayPoint use linked list struc-

tures, SCI differs from WayPoint in that it keeps lists of sharers in all cases,

whereas WayPoint has lists of directory entries only in the case of directory

cache overflow. The use of linked lists of directory entries simplifies the design

relative to one that uses linked lists of sharers, since transactions no longer span

multiple cache banks, multiple sharer updates, and multiple interacting cache

controllers, which makes serialization and the atomicity of coherence transactions

easier to guarantee.

Recent work investigating scalable coherence includes Token Coherence [123],

which associates a number of tokens with any given line. While not requiring an

ordered network, as in snoopy protocols, nor requiring large centralized structures,

as in conventional directory schemes, Token Coherence still relies upon broadcasts

to find tokens and requires all sharing state to be resident on-chip. WayPoint al-

lows for even less on-die storage due to its ability to flush noncritical directory

entries to memory. Issues in the initial Token Coherence work were addressed by

adding a directory to the token protocol [124]. However, this later work does not

reduce the overhead of on-die directories, nor does it deal with the associativity

problem addressed by WayPoint.

Many of these schemes are predicated on the empirical observations that there

are generally few concurrent sharers of any given line and that data migrates

between processors over time [125]. However, the SPLASH [126], transaction

processing, and database applications that have been used to evaluate previous

designs have different sharing patterns from those applications used to evaluate

future 1000-core CMPs. The CMP applications tend to have a high degree of

read sharing [12,15,98]. Furthermore, these applications have less migratory data

due to the finer thread granularity and the adoption of task-based programming

156

models, such as NVIDIA’s CUDA [114] and Intel’s Threading Building Blocks [79],

and instead have a greater degree of producer-consumer sharing between tasks [12,

88]. Further note that these tasks are often not required to be concurrently

running, but rather perform consumer-producer communication across the parent-

child spawn point or, in BSP, across barriers.

10.2.2 Directory Cache Associativity

Qureshi et al. [127] present the V-way cache, which decouples data-store sizing

from tag store sizing by implementing an extra level of pointer indirection on a tag

access. The effective associativity provided by the scheme scales with the tag store

associativity, which is still constrained by area, power, and latency considerations.

A victim cache [128] also provides a way to mitigate the effects of limited asso-

ciativity by providing a fully-associative structure that can capture entries that

suffer conflict evictions while still being actively used. However, neither scheme

addresses capacity misses, nor can they compensate for highly imbalanced sets.

The inability to address limited capacity and set imbalance stems from the fact

that either scheme would be limited in capacity by what can be provided on-chip;

WayPoint’s ability to track entries is not limited by on-die resources.

Caches with programmable hashing functions, such as the PADded Cache [129]

or the Balanced Cache [130], are potential solutions to the associativity problem,

but also suffer from the limits of on-die data store capacity. WayPoint alleviates

this limitation by using cacheable memory to store those directory entries which

cause conflict or capacity misses in the directory caches. Kharbutli et al. [131]

use specially constructed hash functions based on prime numbers to index into

tag arrays, preventing conflicts caused by associativity demand imbalance with

traditional hash functions. However, doing so lengthens the critical path for cache

157

accesses by adding extra stages in the directory cache lookup to evaluate the hash

functions and the scheme does not address capacity misses.

The Indirect Index Cache [132] increases the effective associativity of last-

level uniprocessor caches by augmenting a small set-associative primary structure

with a secondary SRAM structure which contains linked lists of conflicting entries

from primary structure sets. WayPoint stores conflicting directory cache entries

in cached memory instead of SRAM, reducing on-die storage requirements and

enabling greater scalability. While storing data cache entries in DRAM would

be counterproductive, doing so for directory cache entries is profitable due to the

higher cost of evictions.

10.3 Cohesion Related Work

In this section, we put Cohesion into context with previous work in scalable

hardware-managed and software-managed coherence. Many of the previous coher-

ence techniques could be adapted to Cohesion, replacing the baseline HWcc and

SWcc protocols in our implementation. Therefore, many of the schemes can be

viewed as complementary approaches to reducing the cost of coherence manage-

ment. Although these protocols could be adapted to Cohesion, previous work

mostly focuses on multi-socket coherence, whereas our work focuses solely on chip

multiprocessor coherence, thus resulting in different design constraints for which

we must account. In our context, the memory and memory bandwidth does not

scale up as more cores are added, as is true with multi-socket systems. More-

over, the latencies involved in on-die communication may be much less than those

expected across sockets.

158

10.3.1 Hardware Schemes

Snoopy coherence protocols [61] rely upon ordered networks and broadcasts to

maintain consistency across caches, but are difficult to scale. Directory schemes [67]

provide a scalable alternative, but full implementations suffer from high memory

overhead. Limited directories [99] and sparse directories [65] can aid in reducing

memory overhead with the potential cost of extra messages.

Marty and Hill [68] leverage the virtualized nature of server consolidation

workloads to reduce message overhead, but do not focus on highly parallel visual

computing and high-performance workloads. Moreover, Marty and Hill use a

full backing store. A full backing store has high memory requirements, while

our designs use sparse directories that only track a subset of cache lines resident

on-die. Coarse-grain coherence tracking [62] and RegionScout [63] both propose

mechanisms to reduce coherence traffic in broadcast-based systems by managing

coherence at a coarser granularity than a line. While these techniques can reduce

storage costs, both mechanisms impose restrictions on alignment and sizing of

coherence regions and may lead to increased message traffic; both are situations

we wish to avoid with Cohesion.

Modern accelerator hardware, such as IBM’s Cell [57] and NVIDIA’s Tesla [4],

provide a variety of access modes to data located in different physical address

spaces, but require explicit software management of data movement between the

various memories. Leverich et al. [112] demonstrate the benefit of software man-

agement of data movement on hardware cached platforms, which Cohesion can

facilitate with the added precision of variable coherence regions. Moreover, Co-

hesion can provide additional benefit by cutting across the quadrants used in the

taxonomy of Leverich et al., thus providing the benefits of two or more models

without the limitations cited in their work.

159

10.3.2 Software-Based and Hybrid Schemes

Distributed shared memory (DSM) provides the illusion of a single coherent ad-

dress space across processors at a coarse grain using virtual memory and a run-

time system, in the case of TreadMarks [102], and at a fine grain using compiler

support such as in Shasta [115]. While these approaches could trivially support

incoherence due to their distributed memory architecture, they synthesized co-

herence when needed fully in software. Cooperative Shared Memory [71] uses

software hints to reduce the complexity and cost of hardware-supported coher-

ence. Software-assisted hardware schemes, such as LimitLESS [70], trap to soft-

ware when the number of sharers supported by hardware is exceeded. CSM and

LimitLESS suffer from high round-trip latency between directory and cores in a

hierarchically cached system, and require all data to be tracked by the coherence

protocol, resulting in unnecessary traffic for some data.

Previous work on distributed memory multiprocessors investigated hybrid

schemes that combine message passing with hardware-managed coherent shared

memory. FLASH [133] and Typhoon [134] utilized programmable protocol con-

trollers that support customized protocols. User-Level Shared Memory in Ty-

phoon made fine-grained access control a key component of customizing protocols.

Cohesion provides a mechanism to allow such customization without a separate

protocol controller. Munin [103] used parallel program access patterns to provide

different consistency guarantees to different classes of data. Multiphase Shared

Arrays [135] provide a means for the programmer to specify access modes for

array data and to change the mode for different program phases. Cohesion on

an integrated shared memory multiprocessor captures these features with modest

hardware and an intuitive programming model that does not require a message

passing component. Moreover, Multiphase Shared Arrays could be adopted to

160

a system that supports Cohesion whereby coherence domain transitions would

coincide with phase changes in the Multiphase Shared Array model.

The ability to change the strictness of regions of memory is available in a

limited form on x86 processors with write combining [8], and PowerPC allows

for pages to be set incoherent [136]. Both mechanisms work at page granularity

and require operating system support. A hybrid x86 system with a consistent

programming model for GPU and CPU cores using a subset of the address space

has been proposed by Saha et al. [137]. Unlike Cohesion, their work does not in-

vestigate dynamic transitions between different coherence domains. Furthermore,

while their work focuses solely on a host-accelerator model with one CPU core,

Cohesion is demonstrated using 1024 cooperating cores.

WildFire [138] used operating system support to transition between line-level

ccNUMA shared memory and a form of COMA known as Coherent Memory Repli-

cation (CMR). CMR and ccNUMA pages trade off coherence space overhead for

coherence message overhead since all lines in the system were tracked by hard-

ware and CMR pages require replication of coherence state. Copy operations are

required by replication under CMR, which are eliminated by Cohesion. Unlike

WildFire, Cohesion provides symmetric access to the last-level cache, analogous

to memory in DSM systems, and does not present a trade off between state and

message overheads; it reduces both when using SWcc.

Reactive NUCA, described by Hardavellas et al. [139], uses operating system

remapping of page-sized regions on a distributed NUCA multicore. Hardavel-

las et al. show that different regions of memory possess different coherence needs,

which offers an opportunity for hybrid coherence, and many of the trade-offs in

scaling distributed versus shared cache architectures. In contrast to Cohesion,

their work evaluates mostly server and multiprogrammed workloads scaling to

eight or 16 cores while we target the class of visual computing applications that

161

tend to have higher degrees of read sharing and a higher degree of structure in

their sharing patterns [12,15,88,98] and are shown to scale to 100+ cores.

162

CHAPTER 11

Summary and Conclusions

This dissertation demonstrates the feasibility and the necessity of a hybrid mem-

ory model for 1000-core microprocessors. We present results for a software-

managed coherence scheme, a lightweight directory-based hardware coherence

protocol, and a mechanism for allowing on-the-fly coherence domain transitions

between these two coherence protocols. While we have shown the viability of our

approach on a symmetric 1024-core accelerator, we believe that there is an oppor-

tunity to extend this work to heterogeneous platforms incorporating both general-

purpose, ILP-oriented cores and accelerator-like, throughput-oriented cores. A

hybrid memory model would allow these systems to achieve better performance

and power levels, while also enabling a more conventional programming abstrac-

tion for developers.

In this chapter we discuss the main conclusions of our work. We provide a

general perspective on the design of memory models for accelerators, we discuss

the observed benefits of using a mix of coherence protocols in a single processor

design, we present an argument for different levels of symmetry for different as-

pects of processor design. We close with a brief summary of the work presented

in this dissertation.

163

11.1 Implementing Coherence in Future Processors

This dissertation demonstrates that a 1000-core processor that exports a coherent

memory model to programmers is feasible. We have presented the trade-offs and

evaluated many of the costs that a 1000-core CMP architect must consider. We

have not defined exactly which choices in the space of hybrid architectures is

appropriate. What will determine the proper set of choices are within the space

of hybrid memory models the emerging applications—many of which have yet to

be developed.

What is clear is that currently implemented protocols for hardware cache co-

herence are inappropriate for 1000-core processors due to their high overhead. We

have evaluated scalable probe filtering and full directories. We find that these ap-

proaches either lack scalability or have prohibitively high implementation costs.

We have provided a set of protocols and mechanisms for wedding diverse coher-

ence mechanisms on a single processor. We believe hybrid memory models that

mix aspects of software-managed and hardware-managed coherent designs will be

necessary for future, highly parallel architectures.

11.2 Symmetry Versus Asymmetry

A trade-off at the heart of this dissertation is the mix of symmetry and asymmetry

in processor design and how it will evolve over the coming generations of CMP.

The choice of symmetry over asymmetry, or homogeneity over heterogeneity, is

not binary for an entire chip design, but rather is a choice that must be made at

a variety of levels within the design. Choices include level of microarchitectural

complexity [140], type of ISA, type and depth of cache hierarchy, the number

of vector units, a SIMD configuration or MIMD configuration (or both [141])

configurations, and, as we discuss in this work, levels of support for accessing a

164

shared address space.

This dissertation takes the view that symmetry is necessary at the mem-

ory model provided to the developer to achieve programmability and portability,

whereas asymmetry should be employed to achieve the best power and area effi-

ciency for compute resources. We list here the key issues related to symmetry in

processor design.

• The value of asymmetry. Having cores of different complexities and

performance characteristics is ideal for exploiting the mix of extreme data

parallelism and the inherent sequential execution present in real applica-

tions [38]. As demonstrated by SoC designs used in embedded devices,

asymmetry can be leveraged to build lower-power devices by incorporating

efficient accelerators and shifting compute from high-speed, yet inefficient,

processing cores when timing slack exists. Asymmetry allows the system to

provide the best mix of area, power, and performance across a broad range

of workloads.

• The cost of asymmetry. Asymmetry leads to extra degrees of freedom

in the design process, which in turn adds to the complexity borne by the

software developer. If the asymmetry is not properly abstracted, the devel-

oper must decide up-front to use one resource or the other, or pay the cost

of developing for both. Otherwise, the chip architect has to build and verify

two mechanisms and make sure that they compose properly. Designing two

mechanisms to achieve a single goal leads to opportunity costs reducing the

efficacy of both. One example of this was the T3D, a commercial system,

where the designers implemented three ways to access memory [50]. In ret-

rospect, the designers found this burdened the compiler and the developer

with the task of deciding how to access memory without having the ability

165

to make an informed decision. Design teams have fixed resources. Should

the decision be made to design three mechanisms in place of one, the added

design effort for the two additional mechanisms comes at the cost of greater

optimization for the one. Moreover, in the initial design phase, it can be

hard to choose the right mix of components to match the broad spectrum

of applications the software developers will want to run on the asymmetric

system.

• The value of symmetry. Design costs of a symmetric design are lower

than an asymmetric design since only one piece is replicated. Moreover,

optimization efforts in both hardware and software can focus on targeting

the sole resource in the design. The software abstraction that targets the

symmetric processor need not compromise the collection of processing re-

sources supported by an asymmetric design. Scheduling complexity in the

runtime or operating system is reduced, since there is only one resource type

to target.

• The cost of symmetry. Using only a single resource is not globally optimal

across multiple workloads. A core that matches a particular workload, or

even a class of workloads, will be sub-optimal for the remaining workloads.

General-purpose processors today have to cater to server-class workloads

that may be throughput-oriented and memory-bound, HPC applications

that may be compute-bound and latency intolerant, and mobile applications

where parsimonious use of energy and fast response times for user requests

are critical design goals. Optimization efforts may in fact be higher in

the symmetric case as developers try to map applications to inappropriate

hardware resources. As an example, attempting to map a highly data-

parallel application with a high degree of divergence between threads to a

166

SIMD-only architecture may lead to much greater programming effort than

using a mix of MIMD and SIMD cores.

These issues motivate a design with as much asymmetry as is necessary, but

no more. Asymmetry can enable hardware optimized for a particular workload,

but it places the onus on software to make proper partitioning, data marshalling,

and scheduling decisions. Symmetry, on the other hand, can reduce design times

and programmer effort, but at the cost of hardware inefficiencies.

Current general-purpose systems are symmetric with each core having the

same complement of features, the same ISA, and the same shared view of memory.

Future systems will have more asymmetries. At the time of this writing, the

major CPU and GPU manufacturers are presently shipping or about to ship

processors that incorporate both a CPU component and a GPU component. These

first generation hybrid systems will have asymmetry at the core level and at

the memory level, with each cluster of cores maintaining independent cache and

memory resources.

This dissertation has made the case for providing a consistent, or symmetric,

memory model to developers by masking the inconsistencies, or asymmetries, in

hardware and runtime as much as possible while still enabling asymmetries in the

hardware to achieve scalability. The goal is to take advantage of the two extremes

of processor core: general-purpose ILP-centric processors tailored to sequential

workloads and special-purpose accelerator cores that deliver area and power ef-

ficiency for parallel workloads. While we have not evaluated a heterogeneous

platform directly, we note that general-purpose systems that are cache coherent

and provide a shared single address space to software exist. We provide the com-

ponents that enable accelerators with weaker hardware-defined memory models

to plug into that model in a consistent fashion.

We see the memory model abstraction as the lingua franca of parallel com-

167

puter systems that can allow disparity in cores to be masked. For these systems

to be useful, the accelerator cores must target a large-enough class of workloads to

make the opportunity cost of choosing to have fewer general-purpose cores on-die

minimal. To achieve this end, we present the Rigel architecture inspired by the

design elements we see as necessary for a scalable, programmable accelerator ar-

chitecture. Likewise, we we must have the ability to achieve reasonable sequential

performance if we are to overcome Amdahl’s law for the applications for which

Gustafson’s law does not fully apply.

11.3 Summary

We now summarize this dissertation. We break the work down into three com-

ponents (1) The motivation for and design of a software-managed memory model

based on task-based parallelization of parallel workloads that synchronize using

barriers, (2) the development of a lightweight directory-based cache coherence

protocol that achieves low hardware overhead while avoiding the performance

pathologies of other minimalistic approaches to hardware cache coherence, and

(3) a method for incorporating both a software and a hardware coherence proto-

col under a single memory model.

11.3.1 The Task-Centric Memory Model

We present a mechanism for providing the appearance of a shared single ad-

dress space cache hierarchy on a system with hardware caches, but not hardware

coherence. Analysis of scalable workloads shows a distinct pattern of sharing

when programmed using a prevalent programming model that includes barriers

for synchronization and task queues for work distribution. These patterns can

be exploited in building a software-managed coherence protocol. Our efforts have

168

shown that a particular software-managed coherence protocol, the Task-Centric

Memory Model, is a feasible design for these workloads. However, we must con-

sider the scheduling policy of invalidations and writeback operations to achieve

good performance. Due to the conservative nature of a software-managed ap-

proach to coherence, we find many of the software coherence actions are performed

on data not present in the cache, representing a loss of execution stream and net-

work efficiency. We also see the need for more tools and additional architecture

support for the Task-Centric Memory Model to make the process of determining

what date to flush and when to flush the data less of a burden for programmers

and to make the process more efficient at runtime.

11.3.2 WayPoint: Scalable Hardware Cache Coherence

We present WayPoint, a lightweight coherence scheme that makes use of small,

on-die caches of directory entries and in-memory lists of directory entries that over-

flow the on-die directory cache. The key idea is that a small subset of sharer infor-

mation must be accessible with low latency while nearly all shared data must be

tracked in some fashion to avoid performance cliffs. We find that WayPoint can

achieve scalable performance with little overhead; furthermore, it serves as the

hardware dual of the Task-Centric Memory Model in our proposed hybrid mem-

ory model. While WayPoint removes performance loss due to invalidations and

can reduce on-die resources considerably, it still requires additional message traf-

fic and may compete with demand accesses to the last-level cache and memory.

Finally, we find that for each of our workloads there is a minimum directory cache

size or associativity below which performance degrades greatly due to thrashing.

However, the performance cliff is at a much reduced point compared to sparse

directory protocols without WayPoint.

169

11.3.3 Cohesion: A Hybrid Memory Model for Accelerators

Our initial effort to construct a hybrid memory model, which we call Cohesion,

provides a proof-of-principle result. Our results show that hybrid coherence can

reduce the on-die directory needs and reduce the demands placed on the network

relative to a design without Cohesion. Cohesion provides a knob that devel-

opers can turn allowing them to trade off programming effort for performance.

Further, work remains to be done optimizing Cohesion to take advantage of

common sharing patterns at coherence domain transitions.

11.4 Conclusions

This dissertation demonstrates the feasibility of a hybrid memory model and shows

that future multicore processors must adopt a hybrid memory model if they are

to continue to scale core counts. Furthermore, we propose using a hybrid memory

model as the means to synthesize future heterogeneous systems that will incor-

porate simple accelerator cores optimized for throughput and larger ILP cores

optimized for latency reduction.

We conclude with two general observations. First, software-managed coher-

ence protocols provide the advantage of executing an arbitrary number of invali-

dations with a single non-local communication. Our software-managed protocol,

the Task-Centric Memory Model, accomplishes low-overhead coherence actions

with distributed invalidation operations, writes that do not require any coherence

actions, and a barrier operation to synchronize. The appearance of a shared single

address space is achieved with near-zero fixed hardware cost. Second, we find that

hardware-managed coherence has the advantage of supporting task migration,

task-stealing, and optimistic privatization of potentially shared data. By integrat-

ing the two coherence mechanisms in the same design, we achieve accelerator-like

170

scalability with a general-purpose programming abstraction.

171

APPENDIX A

Task-Centric Memory Model Formal Specification

This appendix presents a TLA+ [142] specification for the Task-Centric Memory

Model. The specification has been used to verify basic properties of the system,

including liveness and deadlock freedom. More details on the implementation of

the TCMM are available in Chapter 5

172

1 module SWCoherence
2 extends TLC , Naturals, FiniteSets
3 constant Addr , TaskID , OpType, BlockState
4 constant MaxTasksPerInterval , MaxIntervals
5 variable tasks, memstate, inbarrier
6 variable accessesPerTask , intervalsCompleted
7

8 Init
∆
=

9 ∧ tasks = [addr ∈ Addr 7→ {}]
10 ∧memstate = [addr ∈ Addr 7→ “clean”]
11 ∧ inbarrier = {}
12 ∧ accessesPerTask = [task ∈ TaskID 7→ 0]
13 ∧ intervalsCompleted = 0

15 TypeInvariant
∆
=

16 ∧ tasks ∈ [Addr → subset TaskID]
17 ∧memstate ∈ [Addr → BlockState]
18 ∧ accessesPerTask ∈ [TaskID → Nat]
19 ∧ intervalsCompleted ∈ Nat

21 Set the list of permutation that are allowable for constants so that TLC can

22 take advatnage of symmetries in the state space.

23 TaskPerms
∆
= Permutations(TaskID)

24

25 Constraint
∆
= intervalsCompleted ≤ MaxIntervals

26

27 The Allow ∗ () operations are used to inhibit transitions when a block is not

28 held in the proper state or the task is in a barrier

29 AllowGlobal(tid , addr)
∆
=

30 ∧ tid /∈ inbarrier
31 ∧ ((memstate[addr] ∈ {“clean”})
32 ∨ ((tid ∈ tasks[addr]) ∧ (memstate[addr] ∈ {“globally coherent”})))

34 AllowPrivLocalStore(tid , addr)
∆
=

35 ∧ tid /∈ inbarrier
36 ∧ (memstate[addr] ∈ {“clean”}
37 ∨ ((memstate[addr] = “private clean” ∨memstate[addr] = “private dirty”) ∧
38 (tasks[addr] = {tid})))

40 AllowPrivLocalLoad(tid , addr)
∆
=

41 ∧ tid /∈ inbarrier
42 ∧ (memstate[addr] ∈ {“clean”}
43 ∨ ((memstate[addr] = “private clean” ∨memstate[addr] = “private dirty”) ∧
44 (tasks[addr] = {tid})))

46 AllowImmLocalLoad(tid , addr)
∆
=

1

173

47 ∧ tid /∈ inbarrier
48 ∧ ((memstate[addr] ∈ {“clean”})
49 ∨ ((tid ∈ tasks[addr]) ∧ (memstate[addr] ∈ {“immutable”})))

51 AllowInvalidate(tid , addr)
∆
=

52 ∧ tid /∈ inbarrier
53 ∧memstate[addr] ∈ {“private clean”, “immutable”}
54 ∧ tid ∈ tasks[addr]

56 AllowWriteback(tid , addr)
∆
=

57 ∧ tid /∈ inbarrier
58 ∧memstate[addr] ∈ {“private dirty”}
59 ∧ tid ∈ tasks[addr]

61

62 ForceClean(): Make all lines clean and unowned.

63 ForceClean
∆
=

64 ∧ tasks ′ = [addr ∈ Addr 7→ {}]
65 ∧memstate ′ = [addr ∈ Addr 7→ “clean”]

67 EnterBarrier(): Conditions under which a task enters a barrier and stops

68 executing memory operations.

69 EnterBarrierNone(tid)
∆
=

70 Once maximum tasks are reached, enter the barrier.

71 ∧ accessesPerTask [tid] = MaxTasksPerInterval
72 ∧ inbarrier ′ = inbarrier ∪ {tid}
73 ∧ unchanged 〈tasks, memstate, accessesPerTask , intervalsCompleted〉

75 EnterBarrierEager(tid)
∆
=

76 Once maximum tasks are reached, enter the barrier.

77 ∧ accessesPerTask [tid] = MaxTasksPerInterval
78 ∧memstate ′ = [addr ∈ Addr 7→
79 if (tid ∈ tasks[addr] ∧ Cardinality(tasks[addr]) = 1)
80 then “clean”
81 else memstate[addr]]
82 ∧ tasks ′ = [addr ∈ Addr 7→ tasks[addr] \ {tid}]
83 ∧ inbarrier ′ = inbarrier ∪ {tid}
84 ∧ unchanged 〈accessesPerTask , intervalsCompleted〉

86 LimitAccesses(): Internal call to limit the state space of the model.

87 Otherwise, tasks can execute as many tasks per interval as they want.

88 LimitAccesses(tid)
∆
=

89 Only allow accesses when not in the barrier

90 ∧ ¬(tid ∈ inbarrier)
91 Only allow access if the maximum has not yet been reached.

92 ∧ accessesPerTask [tid] < MaxTasksPerInterval
93 Once entering the barrier, reset the count of accesses per interval per task

2

174

94 ∧ accessesPerTask ′ = [accessesPerTask except ![tid] = accessesPerTask [tid] + 1]

96 DoBarrier(): All tasks are waiting on the barrier. Reset barrier. and move

97 on to the next interval. TODO : We could force it to say all tasks must make

98 all data clean before entering the barrier.

99 DoBarrierNone
∆
=

100 When all tasks are waiting on the barrier, the set of tasks in the barrier

101 becomes the empty set.

102 ∧ Cardinality(TaskID) = Cardinality(inbarrier)
103 ∧ inbarrier ′ = {}
104 ∧ accessesPerTask ′ = [tid ∈ TaskID 7→ 0]
105 ∧ intervalsCompleted ′ = intervalsCompleted + 1
106 ∧ unchanged 〈tasks, memstate〉

108 DoBarrierLazy
∆
=

109 When all tasks are waiting on the barrier, the set of tasks in the barrier

110 becomes the empty set.

111 ∧ Cardinality(TaskID) = Cardinality(inbarrier)
112 ∧ inbarrier ′ = {}
113 ∧ accessesPerTask ′ = [tid ∈ TaskID 7→ 0]
114 ∧ intervalsCompleted ′ = intervalsCompleted + 1
115 ∧ ForceClean

117 CoherenceLazy(tid)
∆
= DoBarrierLazy ∨ EnterBarrierNone(tid)

118 CoherenceEager(tid)
∆
= DoBarrierNone ∨ EnterBarrierEager(tid)

119

120 LLDPrivBlock(tid , addr)
∆
=

121 ∧AllowPrivLocalLoad(tid , addr)
122 ∧ LimitAccesses(tid)
123 ∧ tasks ′ = [tasks except ![addr] = @ ∪ {tid}]
124 ∧memstate ′ = [memstate except ![addr] =
125 if @ = “clean” then “private clean” else
126 if @ = “private clean” then “private clean” else
127 if @ = “private dirty” then “private dirty” else
128 if @ = “immutable” then “ERROR STATE” else
129 if @ = “globally coherent” then “ERROR STATE” else “ERROR STATE”]
130 ∧ unchanged 〈inbarrier , intervalsCompleted〉

132 LSTPrivBlock(tid , addr)
∆
=

133 ∧AllowPrivLocalStore(tid , addr)
134 ∧ LimitAccesses(tid)
135 ∧ tasks ′ = [tasks except ![addr] = @ ∪ {tid}]
136 ∧memstate ′ = [memstate except ![addr] =
137 if @ = “clean” then “private dirty” else
138 if @ = “private clean” then “private dirty” else
139 if @ = “private dirty” then “private dirty” else

3

175

140 if @ = “immutable” then “ERROR STATE” else
141 if @ = “globally coherent” then “ERROR STATE” else “ERROR STATE”]
142 ∧ unchanged 〈inbarrier , intervalsCompleted〉

144 LLDImmuteBlock(tid , addr)
∆
=

145 ∧AllowImmLocalLoad(tid , addr)
146 ∧ LimitAccesses(tid)
147 ∧ tasks ′ = [tasks except ![addr] = @ ∪ {tid}]
148 ∧memstate ′ = [memstate except ![addr] =
149 if @ = “clean” then “immutable” else
150 if @ = “private clean” then “ERROR STATE” else
151 if @ = “private dirty” then “ERROR STATE” else
152 if @ = “immutable” then “immutable” else
153 if @ = “globally coherent” then “ERROR STATE” else “ERROR STATE”]
154 ∧ unchanged 〈inbarrier , intervalsCompleted〉

156 InvalidateBlock(tid , addr)
∆
=

157 ∧AllowInvalidate(tid , addr)
158 ∧ LimitAccesses(tid)
159 ∧ tasks ′ = [tasks except ![addr] = @ \ {tid}]
160 ∧memstate ′ = [memstate except ![addr] =
161 if @ = “clean” then “ERROR STATE” else
162 if @ = “private clean” then “clean” else
163 if @ = “private dirty” then “ERROR STATE” else
164 if @ = “immutable” then
165 if Cardinality(tasks[addr]) = 1 then “clean” else “immutable” else
166 if @ = “globally coherent” then “ERROR STATE” else “ERROR STATE”]
167 ∧ unchanged 〈inbarrier , intervalsCompleted〉

169 WritebackBlock(tid , addr)
∆
=

170 ∧AllowWriteback(tid , addr)
171 ∧ LimitAccesses(tid)
172 ∧ tasks ′ = if memstate[addr] = “private dirty”
173 then tasks WB to dirty line is still owned

174 else [tasks except ![addr] = @ \ {tid}]
175 ∧memstate ′ = [memstate except ![addr] =
176 if @ = “clean” then “ERROR STATE” else
177 if @ = “private clean” then “ERROR STATE” else
178 if @ = “private dirty” then “private clean” else
179 if @ = “immutable” then “ERROR STATE” else
180 if @ = “globally coherent” then “ERROR STATE” else “ERROR STATE”]
181 ∧ unchanged 〈inbarrier , intervalsCompleted〉

183 GlobalBlock(tid , addr)
∆
=

184 ∧AllowGlobal(tid , addr)
185 ∧ LimitAccesses(tid)

4

176

186 ∧ tasks ′ = [tasks except ![addr] = @ ∪ {tid}]
187 ∧memstate ′ = [memstate except ![addr] =
188 if @ = “clean” then “globally coherent” else
189 if @ = “private clean” then “ERROR STATE” else
190 if @ = “private dirty” then “ERROR STATE” else
191 if @ = “immutable” then “ERROR STATE” else
192 if @ = “globally coherent” then “globally coherent” else “ERROR STATE”]
193 ∧ unchanged 〈inbarrier , intervalsCompleted〉

195 We need a state transition for the epsilon transition of the global state.

196 ReleaseGlobalBlock(tid , addr)
∆
=

197 ∧ LimitAccesses(tid)
198 ∧memstate[addr] = “globally coherent”
199 ∧ tid ∈ tasks[addr]
200 ∧ tasks ′ = [tasks except ![addr] = @ \ {tid}]
201 If this is the last task dropping the line, we can transition it to clean.

202 ∧memstate ′ = if Cardinality(tasks[addr]) = 1
203 then [memstate except ![addr] = “clean”]
204 else [memstate except ![addr] = “globally coherent”]
205 ∧ unchanged 〈inbarrier , intervalsCompleted〉

207

208 Cache actions that SW has no control over. Note that these are tied to

209 tids for right now, but there should probably be some concept of a cluster

210 built around them instead.

211 CacheInvalidate(tid , addr)
∆
=

212 ∧ tid ∈ tasks[addr]
213 ∧memstate[addr] ∈ {“private clean”, “immutable”}
214 ∧ tasks ′ = [tasks except ![addr] = @ \ {tid}]
215 If there is only one holder of the line, send it back to clean state.

216 ∧memstate ′ = if Cardinality(tasks[addr]) = 1
217 then [memstate except ![addr] = “clean”]
218 else memstate
219 ∧ unchanged 〈inbarrier , intervalsCompleted , accessesPerTask〉

221 CacheEviction(tid , addr)
∆
=

222 ∧ tid ∈ tasks[addr]
223 ∧memstate[addr] ∈ {“private dirty”}
224 ∧ tasks ′ = [tasks except ![addr] = @ \ {tid}]
225 If there is only one holder of the line, send it back to clean state.

226 ∧memstate ′ = [memstate except ![addr] = “clean”]
227 ∧ unchanged 〈inbarrier , intervalsCompleted , accessesPerTask〉

229

230 ERROR STATE is the catch all for bad states

231 NoBadState
∆
=

5

177

232 ∧ ∀ addr ∈ Addr : memstate[addr] 6= “ERROR STATE”

234 Ensure that if the block is private, only one task is using it

235 PrivateSafety
∆
=

236 ∧ ∀ addr ∈ Addr :
237 (memstate[addr] 6= “private clean” ∨memstate[addr] 6= “private dirty”)
238 ∨ Cardinality(tasks[addr]) = 1

240 Ensure that all data that becomes dirty can eventually become clean

241 Liveness1
∆
=

242 ∀ addr ∈ Addr : (memstate[addr] = “private dirty”) ⇒
243 (3(memstate[addr] = “clean”) ∨2(memstate[addr] = “private dirty”))

245

246 The next state change may need to change to preculde invalid steps from

247 occuring. One example is forcing local loads to only occur when the current

248 task owns it or it is unowned.

249 Next
∆
=

250 ∨ (∃ tid ∈ TaskID , addr ∈ Addr :
251 ∨ LLDPrivBlock(tid , addr)
252 ∨ LLDImmuteBlock(tid , addr)
253 ∨ LSTPrivBlock(tid , addr)
254 ∨ InvalidateBlock(tid , addr)
255 ∨WritebackBlock(tid , addr)
256 ∨GlobalBlock(tid , addr)
257 ∨ ReleaseGlobalBlock(tid , addr)
258 ∨ CacheInvalidate(tid , addr)
259 ∨ CacheEviction(tid , addr)
260 There are two options here: Eager and Lazy.

261 ∨ CoherenceLazy(tid)
262)

264 Safety
∆
= NoBadState ∧ PrivateSafety

265 Spec
∆
= Init

266 ∧ 2[Next]〈tasks,memstate, inbarrier , accessesPerTask , intervalsCompleted〉
267 Liveness

∆
= Liveness1

268

269 theorem Spec ⇒ Liveness
270

6

178

REFERENCES

[1] J. Dorsey, S. Searles, M. Ciraula, S. Johnson, N. Bujanos, D. Wu, M. Bra-
ganza, S. Meyers, E. Fang, and R. Kumar, “An integrated quad-core opteron
processor,” in IEEE International Solid-State Circuits Conference, 2007.
(ISSCC 2007), Digest of Technical Papers, February 2007, pp. 102–103.

[2] P. Kongetira, K. Aingaran, and K. Olukotun, “Niagara: A 32-way multi-
threaded SPARC processor,” IEEE Micro, vol. 25, no. 2, pp. 21–29, 2005.

[3] S. Rusu, S. Tam, H. Muljono, J. Stinson, D. Ayers, J. Chang, R. Varada,
M. Ratta, and S. Kottapalli, “A 45nm 8-core enterprise xeon processor,”
in IEEE International Solid-State Circuits Conference 2009 (ISSCC 2009),
Digest of Technical Papers, February 2009, pp. 56–57.

[4] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “NVIDIA Tesla: A
unified graphics and computing architecture,” IEEE Micro, vol. 28, no. 2,
pp. 39–55, 2008.

[5] AMD, “The future is fusion: The industry-changing impact of accelerated
computing,” white paper, 2008.

[6] Intel CoreTM i7-600, i5-500, i5-400 and i3-300 Mobile Processor Series,
datasheet, Intel, January 2010.

[7] S. Borkar, “Thousand core chips: A technology perspective,” in DAC ’07:
Proceedings of the 44th Annual Design Automation Conference, 2007, pp.
746–749.

[8] Intel 64 and IA-32 Architectures Software Developer’s Manual, Volume: 1,
Intel Corporation, November 2008.

[9] T. G. Mattson, B. A. Sanders, and B. L. Massingill, Patterns for Parallel
Programming. Reading, Massachusetts: Addison Wesley, 2008.

[10] Standards Performance Evaluation Corporation, “All pub-
lished SPEC CPU results,” May 2010. [Online]. Available:
http://www.spec.org/cpu2006/results/cpu2006.html

179

[11] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. Chang, “The
case for a single-chip multiprocessor,” in ASPLOS-VII: Proceedings of the
Seventh International Conference on Architectural Support for Programming
Languages and Operating Systems, 1996, pp. 2–11.

[12] A. Mahesri, D. Johnson, N. Crago, and S. J. Patel, “Tradeoffs in design-
ing accelerator architectures for visual computing,” in Proceedings of the
International Symposium on Microarchitecture, 2008, pp. 164–175.

[13] G. Blake, R. G. Dreslinski, T. Mudge, and K. Flautner, “Evolution of
thread-level parallelism in desktop applications,” in ISCA ’10: Proceed-
ings of the 37th Annual International Symposium on Computer Architecture,
2010, pp. 302–313.

[14] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey,
S. Junkins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski,
T. Juan, and P. Hanrahan, “Larrabee: A many-core x86 architecture for
visual computing,” ACM Transactions on Graphics, vol. 27, pp. 1–15, 2008.

[15] C. J. Hughes, R. Grzeszczuk, E. Sifakis, D. Kim, S. Kumar, A. P. Selle,
J. Chhugani, M. Holliman, and Y.-K. Chen, “Physical simulation for ani-
mation and visual effects: Parallelization and characterization for chip mul-
tiprocessors,” in Proceedings of the 34th Annual International Symposium
on Computer Architecture, 2007, pp. 220–231.

[16] H. Wong, A. Bracy, E. Schuchman, T. M. Aamodt, J. D. Collins, P. H.
Wang, G. Chinya, A. K. Groen, H. Jiang, and H. Wang, “Pangaea: A
tightly-coupled ia32 heterogeneous chip multiprocessor,” in PACT ’08: Pro-
ceedings of the 17th International Conference on Parallel Architectures and
Compilation Techniques, 2008, pp. 52–61.

[17] I. Gelado, J. E. Stone, J. Cabezas, S. J. Patel, N. Navarro, and W.-M. W.
Hwu, “An asymmetric distributed shared memory model for heterogeneous
parallel systems,” in ASPLOS’10: Proceedings of the 15th International
Conference on Architectural Support for Programming Languagges and Op-
erating Systems, March 2010, pp. 347–358.

[18] J. H. Kelm and S. S. Lumetta, “HybridOS: Runtime support for reconfig-
urable accelerators,” in FPGA’08: Proceedings of the International Sympo-
sium on Field-Programmable Gate Arrays, Februrary 2008, pp. 212–221.

[19] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, and W.-
M. W. Hwu, “Optimization principles and application performance evalua-
tion of a multithreaded GPU using CUDA,” in PPoPP’08: Proceedings of
the 13th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, 2008, pp. 73–82.

180

[20] S. Palacharla, N. P. Jouppi, and J. E. Smith, “Complexity-effective super-
scalar processors,” SIGARCH Computer Architecture News, vol. 25, no. 2,
pp. 206–218, 1997.

[21] G. F. Pfister, In search of clusters, 2nd ed. Upper Saddle River, NJ, USA:
Prentice-Hall, 1998.

[22] J. M. Tendler, J. S. Dodson, J. S. Fields, H. Le, and B. Sinharoy, “POWER4
system microarchitecture,” IBM Journal of Research Development, vol. 46,
no. 1, pp. 5–25, 2002.

[23] S. Naffziger, B. Stackhouse, and T. Grutkowski, “The implementation of a 2-
core multi-threaded itanium-family processor,” in IEEE International Solid-
State Circuits Conference, 2005. (ISSCC2005) Digest of Technical Papers,
vol. 1, February 2005, pp. 182–192.

[24] J. Douglas, “Intel 8xx series and paxville xeon-mp microprocessors,” in
Hotchips 17, August 2005.

[25] M. Golden, S. Arekapudi, G. Dabney, M. Haertel, S. Hale, L. Herlinger,
Y. Kim, K. McGrath, V. Palisetti, and M. Singh, “A 2.6ghz dual-core
64bx86 microprocessor with ddr2 memory support,” in IEEE International
Solid-State Circuits Conference, 2006. (ISSCC 2006), Digest of Technical
Papers, February 2006, pp. 325–332.

[26] ATI, ATI Radeon HD 5870 GPU Feature Summary, 2010. [Online]. Avail-
able: http://www.amd.com/us/products/desktop/graphics/ati-radeon-hd-
5000/hd-5870/Pages/ati-radeon-hd-5870-specifications.aspx

[27] E. S. Larsen and D. McAllister, “Fast matrix multiplies using graphics hard-
ware,” in SC’01: Proceedings of the 2001 ACM/IEEE Conference on Su-
percomputing, 2001, pp. 55–55.

[28] R. J. Rost, OpenGL(R) Shading Language. Redwood City, CA, USA:
Addison Wesley Longman Publishing Co., Inc., 2004.

[29] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and
P. Hanrahan, “Brook for GPUs: stream computing on graphics hardware,”
in SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers, 2004, pp. 777–786.

[30] OpenCL Specification, 1st ed., Khronos OpenCL Working Group, December
2008.

[31] Apple Inc., “Technology brief: Grand central dispatch,” August
2009. [Online]. Available: http://images.apple.com/macosx/technology/
docs/GrandCentral TB brief 20090903.pdf

181

[32] X. Fan, W.-D. Weber, and L. A. Barroso, “Power provisioning for a
warehouse-sized computer,” in ISCA ’07: Proceedings of the 34th Annual
International Symposium on Computer Architecture, 2007, pp. 13–23.

[33] J. Gray, “The roadrunner supercomputer: a petaflop’s no problem,” Linux
Journal, vol. 2008, no. 175, p. 1, 2008.

[34] M. Toksvig, J. Mathieson, B. Cabral, and B. Smith, “NVIDIA Tegra: En-
abling stunning handheld graphics and HD video,” in Hotchips 20, August
2008.

[35] Cortex-A9 Technical Reference Manual, 2nd ed., ARM Ltd., April
2010. [Online]. Available: http://infocenter.arm.com/help/index.jsp?
topic=/com.arm.doc.ddi0388f/index.html

[36] G. M. Amdahl, “Validity of the single processor approach to achieving large
scale computing capabilities,” in AFIPS’67 (Spring): Proceedings of the
April 18-20, 1967, Spring Joint Computer Conference, 1967, pp. 483–485.

[37] J. L. Gustafson, “Reevaluating Amdahl’s law,” Communications of the
ACM, vol. 31, no. 5, pp. 532–533, 1988.

[38] M. D. Hill and M. R. Marty, “Amdahl’s law in the multicore era,” IEEE
Computer, vol. 41, no. 7, pp. 33–38, 2008.

[39] O. Azizi, A. Mahesri, B. C. Lee, S. J. Patel, and M. Horowitz, “Energy-
performance tradeoffs in processor architecture and circuit design: A
marginal cost analysis,” in ISCA ’10: Proceedings of the 37th Annual Inter-
national Symposium on Computer Architecture, 2010, pp. 26–36.

[40] S. W. Williams, “Auto-tuning performance on multicore
computers,” Ph.D. dissertation, EECS Department, Univer-
sity of California, Berkeley, Dec 2008. [Online]. Available:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.html

[41] S. Williams, A. Waterman, and D. Patterson, “Roofline: an insightful vi-
sual performance model for multicore architectures,” Communications of
the ACM, vol. 52, no. 4, pp. 65–76, 2009.

[42] J. H. Kelm, D. R. Johnson, M. R. Johnson, N. C. Crago, W. Tuohy, A. Ma-
hesri, S. S. Lumetta, M. I. Frank, and S. J. Patel, “Rigel: An architecture
and scalable programming interface for a 1000-core accelerator,” in Proceed-
ings of the International Symposium on Computer Architecture, June 2009,
pp. 140–151.

[43] T. Kotzmann, C. Wimmer, H. Mössenböck, T. Rodriguez, K. Russell, and
D. Cox, “Design of the java hotspotTMclient compiler for java 6,” ACM
Transactions on Architecture and Code Optimization, vol. 5, no. 1, pp. 1–
32, 2008.

182

[44] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in CGO ’04: Proceedings of the Inter-
national Symposium on Code Generation and Optimization, 2004, p. 75.

[45] S. M. Kofsky, D. R. Johnson, J. A. Stratton, W.-M. W. Hwu, S. J.
Patel, and S. S. Lumetta, “Implementing a GPU programming model on
a non-GPU accelerator architecture,” in A4MMC’10 : 1st Workshop on
Applications for Multi and Many Core Processors, June 2010. [Online].
Available: http://impact.crhc.illinois.edu/ftp/workshop/rcuda.pdf

[46] W. W. L. Fung, I. Sham, G. Yuan, and T. M. Aamodt, “Dynamic warp
formation and scheduling for efficient gpu control flow,” in MICRO 40:
Proceedings of the 40th Annual IEEE/ACM International Symposium on
Microarchitecture, 2007, pp. 407–420.

[47] J. Meng, D. Tarjan, and K. Skadron, “Dynamic warp subdivision for in-
tegrated branch and memory divergence tolerance,” in ISCA ’10: Proceed-
ings of the 37th Annual International Symposium on Computer Architecture,
2010, pp. 235–246.

[48] G. E. Blelloch, “Scans as primitive parallel operations,” IEEE Transactions
on Computers, vol. 38, no. 11, pp. 1526–1538, 1989.

[49] J. M. Mellor-Crummey and M. L. Scott, “Algorithms for scalable synchro-
nization on shared-memory multiprocessors,” ACM Transactions on Com-
puter Systems, vol. 9, no. 1, pp. 21–65, 1991.

[50] S. L. Scott, “Synchronization and communication in the T3E multiproces-
sor,” in Proceedings of the 7th International Conference on Architectural
Support for Programming Languages and Operating Systems, 1996, pp. 26–
36.

[51] J. Sampson, R. Gonzalez, J.-F. Collard, N. P. Jouppi, M. Schlansker, and
B. Calder, “Exploiting fine-grained data parallelism with chip multipro-
cessors and fast barriers,” in MICRO 39: Proceedings of the 39th Annual
IEEE/ACM International Symposium on Microarchitecture, 2006, pp. 235–
246.

[52] C. E. Leiserson, Z. S. Abuhamdeh, D. C. Douglas, C. R. Feynman, M. N.
Ganmukhi, J. V. Hill, W. D. Hillis, B. C. Kuszmaul, M. A. S. Pierre, D. S.
Wells, M. C. Wong-Chan, S.-W. Yang, and R. Zak, “The network architec-
ture of the connection machine CM-5,” Journal of Parallel Distributed and
Parallel Computing, vol. 33, no. 2, pp. 145–158, 1996.

[53] A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuliffe, L. Rudolph, and
M. Snir, “The NYU Ultracomputer—designing a MIMD, shared-memory
parallel machine,” in ISCA’82: Proceedings of the 9th Annual International
Symposium on Computer Architecture, 1982, pp. 239–254.

183

[54] D. Gajski, D. Kuck, D. Lawrie, and A. Sameh, “CEDAR: A large scale
multiprocessor,” SIGARCH Computer Architecture News, vol. 11, no. 1,
pp. 7–11, 1983.

[55] K. Fatahalian, D. R. Horn, T. J. Knight, L. Leem, M. Houston, J. Y.
Park, M. Erez, M. Ren, A. Aiken, W. J. Dally, and P. Hanrahan, “Se-
quoia: Programming the memory hierarchy,” in SC ’06: Proceedings of the
2006 ACM/IEEE Conference on Supercomputing, 2006, p. 83.

[56] J. Guo, G. Bikshandi, D. Hoeflinger, G. Almasi, B. Fraguela, M. Garzaran,
D. Padua, and C. von Praun, “Hierarchically tiled arrays for parallelism
and locality,” in IPDPS’06: The 20th International Parallel and Distributed
Processing Symposium, April 2006, pp. 316–323.

[57] M. Gschwind, “Chip multiprocessing and the cell broadband engine,” in
Proceedings of the 3rd Conference on Computing Frontiers, 2006, pp. 1–8.

[58] D. Burger, J. R. Goodman, and A. Kägi, “Memory bandwidth limitations
of future microprocessors,” in ISCA ’96: Proceedings of the 23rd Annual
International Symposium on Computer Architecture, 1996, pp. 78–89.

[59] J. Balfour and W. J. Dally, “Design tradeoffs for tiled cmp on-chip net-
works,” in ICS ’06: Proceedings of the 20th Annual International Confer-
ence on Supercomputing, 2006, pp. 187–198.

[60] L. G. Valiant, “A bridging model for parallel computation,” Communica-
tions of the ACM, vol. 33, no. 8, pp. 103–111, 1990.

[61] J. R. Goodman, “Using cache memory to reduce processor-memory traffic,”
in ISCA ’83: Proceedings of the 10th Annual International Symposium on
Computer Architecture, 1983, pp. 124–131.

[62] J. F. Cantin, M. H. Lipasti, and J. E. Smith, “Improving multiprocessor per-
formance with coarse-grain coherence tracking,” in ISCA ’05: Proceedings
of the 32nd Annual International Symposium on Computer Architecture,
2005, pp. 246–257.

[63] A. Moshovos, “RegionScout: Exploiting coarse grain sharing in snoop-based
coherence,” in ISCA ’05: Proceedings of the 32nd Annual International
Symposium on Computer Architecture, 2005, pp. 234–245.

[64] L. A. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk, S. Qadeer,
B. Sano, S. Smith, R. Stets, and B. Verghese, “Piranha: A scalable archi-
tecture based on single-chip multiprocessing,” in ISCA ’00: Proceedings of
the 27th Annual International Symposium on Computer Architecture, 2000,
pp. 282–293.

184

[65] A. Gupta, W. Weber, and T. Mowry, “Reducing memory and traffic require-
ments for scalable directory-based cache coherence schemes,” in Proceedings
of the International Conference on Parallel Processing, 1990, pp. 312–321.

[66] B. W. O’Krafka and A. R. Newton, “An empirical evaluation of two
memory-efficient directory methods,” in ISCA ’90: Proceedings of the 17th
Annual International Symposium on Computer Architecture, 1990, pp. 138–
147.

[67] L. M. Censier and P. Feautrier, “A new solution to coherence problems in
multicache systems,” IEEE Transactions on Computers, vol. 27, no. 12, pp.
1112–1118, 1978.

[68] M. R. Marty and M. D. Hill, “Virtual hierarchies to support server consol-
idation,” in ISCA ’07: Proceedings of the 34th Annual International Sym-
posium on Computer Architecture, 2007, pp. 46–56.

[69] M. M. Michael and A. K. Nanda, “Design and performance of directory
caches for scalable shared memory multiprocessors,” in HPCA ’99: Pro-
ceedings of the 5th International Symposium on High Performance Com-
puter Architecture, 1999, p. 142.

[70] D. Chaiken, J. Kubiatowicz, and A. Agarwal, “LimitLESS directories: A
scalable cache coherence scheme,” in ASPLOS-IV: Proceedings of the Fourth
International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, 1991, pp. 224–234.

[71] M. D. Hill, J. R. Larus, S. K. Reinhardt, and D. A. Wood, “Cooperative
shared memory: software and hardware for scalable multiprocessors,” ACM
Transactions on Computers Systems, vol. 11, no. 4, 1993.

[72] S. Rixner, W. Dally, U. Kapasi, P. Mattson, and J. Owens, “Memory access
scheduling,” Proceedings of the 27th International Symposium on Computer
Architecture, pp. 128–138, 2000.

[73] W. W. Carlson and J. M. Draper, “Distributed data access in ac,” in PPoPP
’95: Proceedings of the Fifth ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, 1995, pp. 39–47.

[74] A. Krishnamurthy, D. E. Culler, A. Dusseau, S. C. Goldstein, S. Lumetta,
T. von Eicken, and K. Yelick, “Parallel programming in Split-C,” in Super-
computing ’93: Proceedings of the 1993 ACM/IEEE conference on Super-
computing, 1993, pp. 262–273.

[75] A. Kamil, J. Su, and K. Yelick, “Making sequential consistency practical in
Titanium,” in SC’05: Proceedings of the 2005 ACM/IEEE Conference on
Supercomputing, 2005, pp. 15–26.

185

[76] W. Carlson, “Introduction to UPC and language specification,” IDA Center
for Comp. Sci., Tech. Rep. CCS-TR-99-157, 1999.

[77] J. H. Kelm, D. R. Johnson, S. S. Lumetta, M. I. Frank, and S. J. Patel,
“A task-centric memory model for accelerator architectures,” IEEE Micro,
vol. 30, no. 1, pp. 2–12, January/February 2010.

[78] S. Kumar, C. J. Hughes, and A. Nguyen, “Carbon: Architectural support
for fine-grained parallelism on chip multiprocessors,” in ISCA ’07: Proceed-
ings of the 34th Annual International Symposium on Computer Architecture,
2007, pp. 162–173.

[79] J. Reinders, Intel Threading Building Blocks: Outfitting C++ for Multi-core
Processor Parallelism. Sebastapol, California: O’Reilly, 2007.

[80] M. Frigo, C. E. Leiserson, and K. H. Randall, “The implementation of the
cilk-5 multithreaded language,” SIGPLAN Notices, vol. 33, no. 5, pp. 212–
223, 1998.

[81] P. Dubey, “Recognition, mining and synthesis moves computers to the era
of tera,” Intel Technology Journal, February 2005.

[82] M. R. Hestenes and E. Stiefel, “Methods of conjugate gradients for solving
linear systems,” Journal of Research of the national Bureau of Standards,
vol. 49, no. 6, pp. 409–436, December 1952.

[83] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation
of complex fourier series,” Mathematics of Computation, vol. 19, no. 90, pp.
297–301, 1965. [Online]. Available: http://www.jstor.org/stable/2003354

[84] E. Gilbert, D. Johnson, and S. Keerthi, “A fast procedure for computing
the distance between complex objects in three space,” in The Proceedings
of the 1987 IEEE International Conference on Robotics and Automation,
March 1987, pp. 1883–1889.

[85] J. A. Hartigan and M. A. Wong, “A k-means clustering algorithm,” Journal
of the Royal Statistical Society. Series C (Applied Statistics), vol. 28, no. 1,
pp. 100–108, 1979.

[86] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution 3d
surface construction algorithm,” in SIGGRAPH ’87: Proceedings of the 14th
annual conference on Computer graphics and interactive techniques, 1987,
pp. 163–169.

[87] S. S. Stone, J. P. Haldar, S. C. Tsao, W.-M. W. Hwu, B. P. Sutton, and
Z. P. Liang, “Accelerating advanced mri reconstructions on gpus,” Journal
of Parallel Distributed Computing, vol. 68, no. 10, pp. 1307–1318, 2008.

186

[88] J. H. Kelm, D. R. Johnson, S. S. Lumetta, M. I. Frank, and S. J. Patel,
“A task-centric memory model for scalable accelerator architectures,” in
Proceedings of the International Conference on Parallel Architectures and
Compilation Techniques, September 2009, pp. 77–87.

[89] J. Goodman, “Cache consistency and sequential consistency,” IEEE Scal-
able Interface Working Group, Tech. Rep. 61, March 1989.

[90] L. Lamport, “How to make a multiprocessor computer that correctly exe-
cutes multiprocess programs,” IEEE Transactions on Computers, vol. C-28,
no. 9, pp. 690–691, September 1979.

[91] M. Dubois, C. Scheurich, and F. Briggs, “Memory access buffering in mul-
tiprocessors,” in ISCA ’86: Proceedings of the 13th Annual International
Symposium on Computer Architecture, 1986, pp. 434–442.

[92] M. Ahamad, R. A. Bazzi, R. John, P. Kohli, and G. Neiger, “The power of
processor consistency,” in SPAA ’93: Proceedings of the Fifth Annual ACM
Symposium on Parallel Algorithms and Architectures, 1993, pp. 251–260.

[93] S. V. Adve, V. S. Adve, M. D. Hill, and M. K. Vernon, “Comparison of
hardware and software cache coherence schemes,” SIGARCH Computer Ar-
chitecture News, vol. 19, no. 3, pp. 298–308, 1991.

[94] Software Optimization Guide for AMD family 10h Processors, 3rd ed.,
AMD, May 2009.

[95] Intel 5000X Chipset Memory Controller Hub (MCH), 3rd ed., Intel, Septem-
ber 2006.

[96] NVIDIA’s Next Generation CUDA Compute Architecture: Fermi, 1st ed.,
NVIDIA, December 2009.

[97] J. Shin, K. Tam, D. Huang, B. Petrick, H. Pham, C. Hwang, H. Li, A. Smith,
T. Johnson, F. Schumacher, D. Greenhill, A. Leon, and A. Strong, “A 40nm
16-core 128-thread CMT SPARC SoC processor,” in IEEE International
Solid-State Circuits Conference 2010 (ISSCC 2010), Digest of Technical
Papers, February 2010, pp. 98–99.

[98] C. Bienia, S. Kumar, J. P. Singh, and K. Li., “The PARSEC benchmark
suite: Characterization and architectural implications,” Princeton Univer-
sity, Tech. Rep. TR-81108, January 2008.

[99] A. Agarwal, R. Simoni, J. Hennessy, and M. Horowitz, “An evaluation of
directory schemes for cache coherence,” in ISCA ’88: Proceedings of the
15th Annual International Symposium on Computer Architecture, 1988, pp.
280–298.

187

[100] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative
Approach, 3rd ed. San Francisco, CA, USA: Morgan-Kaufmann, 2003.

[101] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: A scal-
able wide-area web cache sharing protocol,” IEEE/ACM Transactions on
Networking, vol. 8, no. 3, pp. 281–293, 2000.

[102] C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu,
and W. Zwaenepoel, “Treadmarks: Shared memory computing on networks
of workstations,” IEEE Computer, vol. 29, no. 2, 1996.

[103] J. K. Bennett, J. B. Carter, and W. Zwaenepoel, “Munin: Distributed
shared memory based on type-specific memory coherence,” in PPOPP ’90:
Proceedings of the Second ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, 1990, pp. 168–176.

[104] S. J. Vaughn-Nichols, “Vendors draw up a new graphics-hardware ap-
proach,” IEEE Computer, vol. 42, no. 5, pp. 11–13, 2009.

[105] OpenSPARC T2 SoC Microarchitecture Specification Part 1 of 2, Sun Mi-
crosystems Inc., May 2008.

[106] J. Laudon and D. Lenoski, “The SGI Origin: A ccNUMA highly scalable
server,” SIGARCH Computer Architecture News, vol. 25, no. 2, pp. 241–251,
1997.

[107] E. Witchel, J. Cates, and K. Asanović, “Mondrian memory protection,” in
ASPLOS-X: Proceedings of the 10th International Conference on Architec-
tural Support for Programming Languages and Operating Systems, 2002, pp.
304–316.

[108] L. Yen, J. Bobba, M. R. Marty, K. E. Moore, H. Volos, M. D. Hill, M. M.
Swift, and D. A. Wood, “LogTM-SE: Decoupling hardware transactional
memory from caches,” in HPCA ’07: Proceedings of the 2007 IEEE 13th In-
ternational Symposium on High Performance Computer Architecture, 2007,
pp. 261–272.

[109] E. A. Brewer and B. C. Kuszmaul, “How to get good performance from the
CM-5 data network,” in Proceedings of the 8th International Symposium on
Parallel Processing, 1994, pp. 858–867.

[110] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “Optimizing
NUCA organizations and wiring alternatives for large caches with CACTI
6.0,” in MICRO ’07: Proceedings of the 40th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, 2007, pp. 3–14.

[111] R. Friedman, “Implementing hybrid consistency with high-level synchro-
nization operations,” in PODC ’93: Proceedings of the twelfth annual ACM
symposium on Principles of Distributed Computing, 1993, pp. 229–240.

188

[112] J. Leverich, H. Arakida, A. Solomatnikov, A. Firoozshahian, M. Horowitz,
and C. Kozyrakis, “Comparing memory systems for chip multiprocessors,”
in ISCA ’07: Proceedings of the 34th Annual International Symposium on
Computer Architecture, 2007, pp. 358–368.

[113] OpenMP Architecture Review Board, “OpenMP application program inter-
face,” May 2008.

[114] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel pro-
gramming with CUDA,” Queue, vol. 6, no. 2, pp. 40–53, 2008.

[115] D. J. Scales, K. Gharachorloo, and C. A. Thekkath, “Shasta: A low over-
head, software-only approach for fine-grain shared memory,” in ASPLOS-
VII: Proceedings of the Seventh International Conference on Architectural
Support for Programming Languages and Operating Systems, 1996, pp. 174–
185.

[116] B. Bershad, M. Zekauskas, and W. Sawdon, “The midway distributed shared
memory system,” Compcon Spring ’93, Digest of Papers, pp. 528–537,
February 1993.

[117] L. Iftode, J. P. Singh, and K. Li, “Scope consistency: A bridge between
release consistency and entry consistency,” in Proceedings of the 8th Annual
Symposium on Parallel Algorithms and Architectures, 1996, pp. 277–287.

[118] B. Choi, R. Komuravelli, H. Sung, R. Bocchino, S. V. Adve, and V. V.
Adve, “DeNovo: Rethinking hardware for disciplined parallelism,” in Second
USENIX Workshop on Hot Topics in Parallelism (HotPar), June 2010.

[119] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen,
N. Satish, M. Smelyanskiy, S. Chennupaty, P. Hammarlund, R. Singhal,
and P. Dubey, “Debunking the 100x gpu vs. cpu myth: An evaluation of
throughput computing on cpu and gpu,” in ISCA ’10: Proceedings of the
37th Annual International Symposium on Computer Architecture, 2010, pp.
451–460.

[120] M.-L. Li, R. Sasanka, S. Adve, Y.-K. Chen, and E. Debes, “The ALPBench
benchmark suite for complex multimedia applications,” in Proceedings of the
IEEE International 2005 Workload Characterization Symposium, October
2005, pp. 34–45.

[121] D. Chaiken, C. Fields, K. Kurihara, and A. Agarwal, “Directory-based cache
coherence in large-scale multiprocessors,” IEEE Computer, vol. 23, no. 6,
pp. 49–58, 1990.

[122] IEEE, “IEEE standard for scalable coherent interface (SCI),” IEEE Std.
1596-1992, August 1993.

189

[123] M. M. K. Martin, M. D. Hill, and D. A. Wood, “Token coherence: De-
coupling performance and correctness,” in ISCA ’03: Proceedings of the
30th Annual International Symposium on Computer Architecture, 2003, pp.
182–193.

[124] A. Raghavan, C. Blundell, and M. M. K. Martin, “Token tenure: Patch-
ing token counting using directory-based cache coherence,” in MICRO ’08:
Proceedings of the 2008 41st IEEE/ACM International Symposium on Mi-
croarchitecture, 2008, pp. 47–58.

[125] A. Gupta and W.-D. Weber, “Cache invalidation patterns in shared-memory
multiprocessors,” IEEE Transactions on Computers, vol. 41, no. 7, pp. 794–
810, 1992.

[126] J. P. Singh, W.-D. Weber, and A. Gupta, “SPLASH: Stanford parallel
applications for shared-memory,” SIGARCH Computer Architecture News,
vol. 20, no. 1, pp. 5–44, 1992.

[127] M. K. Qureshi, D. Thompson, and Y. N. Patt, “The v-way cache: Demand
based associativity via global replacement,” in ISCA ’05: Proceedings of the
32nd Annual International Symposium on Computer Architecture, 2005, pp.
544–555.

[128] N. P. Jouppi, “Improving direct-mapped cache performance by the addi-
tion of a small fully-associative cache and prefetch buffers,” in ISCA ’90:
Proceedings of the 17th Annual International Symposium on Computer Ar-
chitecture, 1990, pp. 364–373.

[129] P. P. Shirvani and E. J. McCluskey, “Padded cache: A new fault-tolerance
technique for cache memories,” in VTS ’99: Proceedings of the 1999 17th
IEEE VLSI Test Symposium, 1999, pp. 440–451.

[130] C. Zhang, “Balanced cache: Reducing conflict misses of direct-mapped
caches,” in ISCA ’06: Proceedings of the 33rd Annual International Sympo-
sium on Computer Architecture, 2006, pp. 155–166.

[131] M. Kharbutli, K. Irwin, Y. Solihin, and J. Lee, “Using prime numbers for
cache indexing to eliminate conflict misses,” in HPCA ’04: Proceedings of
the 10th International Symposium on High Performance Computer Archi-
tecture, 2004, pp. 288–297.

[132] E. G. Hallnor and S. K. Reinhardt, “A fully associative software-managed
cache design,” in ISCA ’00: Proceedings of the 27th Annual International
Symposium on Computer Architecture, 2000, pp. 107–116.

[133] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Gharachorloo,
J. Chapin, D. Nakahira, J. Baxter, M. Horowitz, A. Gupta, M. Rosenblum,

190

and J. Hennessy, “The stanford flash multiprocessor,” in ISCA ’98: 25 years
of the International Symposia on Computer Architecture (selected papers),
1998, pp. 485–496.

[134] S. K. Reinhardt, J. R. Larus, and D. A. Wood, “Tempest and typhoon:
User-level shared memory,” in ISCA ’94: Proceedings of the 21st Annual
International Symposium on Computer Architecture, 1994, pp. 325–336.

[135] J. DeSouza and L. V. Kalé, “MSA: Multiphase specifically shared arrays,”
in Proceedings of the 17th International Workshop on Languages and Com-
pilers for Parallel Computing, September 2004.

[136] IBM Staff, PowerPC Microprocessor 32-bit Family: The Programming En-
vironments, February 2000.

[137] B. Saha, X. Zhou, H. Chen, Y. Gao, S. Yan, M. Rajagopalan,
J. Fang, P. Zhang, R. Ronen, and A. Mendelson, “Programming
model for a heterogeneous x86 platform,” in PLDI ’09: Pro-
ceedings of the 2009 ACM SIGPLAN conference on Programming
language design and implementation, Jun 2009. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1542476.1542525

[138] E. Hagersten and M. Koster, “Wildfire: A scalable path for smps,” in HPCA
’99: Proceedings of the 5th International Symposium on High Performance
Computer Architecture, 1999, p. 172.

[139] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, “Reactive NUCA:
Near-optimal block placement and replication in distributed caches,” in
ISCA ’09: Proceedings of the 36th Annual International Symposium on
Computer Architecture, 2009, pp. 184–195.

[140] R. Kumar, D. M. Tullsen, N. P. Jouppi, and P. Ranganathan, “Heteroge-
neous chip multiprocessors,” IEEE Computer, vol. 38, no. 11, pp. 32–38,
2005.

[141] R. Krashinsky, C. Batten, M. Hampton, S. Gerding, B. Pharris, J. Casper,
and K. Asanovic, “The vector-thread architecture,” in ISCA ’04: Proceed-
ings of the 31st Annual International Symposium on Computer Architecture,
2004, pp. 52–63.

[142] L. Lamport, Specifying Systems, 1st ed. Boston, MA: Pearsons Education,
2003.

191

AUTHOR’S BIOGRAPHY

John Kelm was born in 1983 in Nashua, New Hampshire, and grew up in South

Norwalk, Connecticut. He received a bachelor of science and engineering degree in

computer science and engineering with a minor in mathematics from the Univer-

sity of Connecticut in May 2005. He received a master of science in electrical and

computer engineering from the University of Illinois in December of 2006 and his

Doctor of Philosophy in electrical and computer engineering in December 2010.

His research interests have covered reconfigurable computing, operating system

support for compute accelerators, and parallel architecture. His primary research

interests are in hybrid coherence schemes for highly parallel accelerators and chip

multiprocessors.

John received the ATI/AMD Fellowship provided by Advanced Micro Devices,

and the ECE Distinguished Fellowship. He served as a research assistant for

Steven S. Lumetta from 2005 to 2010 and was also assisted in the instruction of

undergraduate classes in computer engineering. He was recognized as one of the

top teaching assistants by student evaluations. While completing his Ph.D., he

interned with Advanced Micro Devices in Sunnyvale, California.

192

