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I. Tellier

Learnability of Pregroup

Grammars

Abstract. This paper investigates the learnability by positive examples in the sense of

Gold of Pregroup Grammars. In a first part, Pregroup Grammars are presented and a new

parsing strategy is proposed. Then, theoretical learnability and non-learnability results

for subclasses of Pregroup Grammars are proved. In the last two parts, we focus on

learning Pregroup Grammars from a special kind of input called feature-tagged examples.

A learning algorithm based on the parsing strategy presented in the first part is given. Its

validity is proved and its properties are examplified.

Keywords: Learning from positive examples, Pregroup grammars, Computational linguis-

tics, parsing, Categorial Grammars, constraints.

1. Introduction

Pregroup Grammars [18] (PGs in short) is a context-free grammar formalism
recently appeared in the field of computational linguistics. This formalism
allies expressivity (in this respect it is close to Lambek Grammars) and
computational efficiency. Subtle linguistic phenomena have already been
treated in this framework [1, 9]. PGs share many features with Categorial
Grammars of which they are inheritors, especially their lexicalized nature.

Since the seminal works of Kanazawa [17] (using unification procedures
from [8]), a lot of learnability results in Gold’s model [16] have been obtained
for various classes of Categorial Grammars and various input data. The
learnability of PGs has yet received much less attention, except a negative
result in [3]. This paper is an extended version of an article presented at
ICGI in 2004 [4] on this subject. In Section 3, we prove several results of
learnability or of non-learnability for classes of PGs. These first results are
mainly theoretical and are not associated with learning algorithms.

Section 4 defines a new learning algorithm to specify a set of PGs compat-
ible with some input data1. The input data considered, called feature-tagged
examples, are richer than strings but chosen to be language-independent
(inspired by [12, 13, 11]). The algorithm, whose properties are detailed in

Presented by Name of Editor; Received December 1, 2002
1a PG is said compatible with some examples when it generates at least these examples.
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Section 5, implements a specialization strategy. One of its originalities is to
reconsider the learning problem as a constraints resolution problem.

2. Pregroup grammars

2.1. Background

Definition 2.1 (Pregroup). A pregroup is a structure (P,≤, ·, l, r, 1) such
that (P,≤, ·, 1) is a partially ordered monoid2 and l, r are two unary op-
erations on P that satisfy: ∀a ∈ P : ala ≤ 1 ≤ aal and aar ≤ 1 ≤ ara.
The following equations follow from this definition: ∀a, b ∈ P , we have
arl = a = alr , 1r = 1 = 1l , (a · b)r = br · ar , (a · b)l = bl · al. Iterated

adjoints3 are defined for i∈ Z : a(0) = a , for i ≤ 0 : a(i−1) =
(
a(i)

)l
, for

i ≥ 0 : a(i+1) =
(
a(i)

)r

Definition 2.2 (Free Pregroup). Let (P,≤) be a partially ordered set of
primitive categories4, P (Z) = {p(i) | p ∈ P, i ∈ Z} is the set of atomic cate-

gories and Cat(P,≤) =
(
P (Z)

)∗
= {p

(i1)
1 · · · p

(in)
n | 1 ≤ k ≤ n, pk ∈ P, ik ∈ Z} is

the set of categories. For X,Y ∈ Cat(P,≤), X ≤ Y iff this relation is deducible
in the system in Fig. 1 where p, q ∈ P , n, k ∈ Z and X,Y,Z ∈ Cat(P,≤). This
construction, proposed by Buszkowski [7], defines a pregroup that extends
≤ on P to Cat(P,≤).

X ≤ X (Id)
XY ≤Z

(AL)
Xp(n)p(n+1)Y ≤Z

Xp(k)Y≤Z
(INDL)

Xq(k)Y ≤Z

X≤Y Y ≤Z
(Cut)

X ≤ Z

X≤Y Z
(AR)

X≤Y p(n+1)p(n)Z

X≤Y q(k)Z
(INDR)

X≤Y p(k)Z

q ≤ p if k is even

or p ≤ q if k is odd
Figure 1. System for Pregroup Grammars

Cut elimination. Every derivable inequality has a cut-free derivation.

Simple free pregroup. A simple free pregroup is a free pregroup where
the order on primitive categories is equality.

2a monoid is a structure < M, ·, 1 >, such that · is associative and has a neutral element
1 (∀x ∈ M : 1 · x = x · 1 = x). A partially ordered monoid is a monoid (M, ·, 1) with a
partial order ≤ that satisfies ∀a, b, c: a ≤ b ⇒ c · a ≤ c · b and a · c ≤ b · c.

3we use this notation in technical parts.
4we use the word “category” when one usually uses “type” to distinguish syntactical

properties from semantical properties.
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Definition 2.3 (Pregroup Grammars). (P,≤) is a finite partially ordered
set. A pregroup grammar based on (P,≤) is a lexicalized5 grammar G =
(Σ, I, s) such that s ∈ P ; G assigns a category X to a string v1 · · · vn of Σ∗

iff for 1 ≤ i ≤ n, ∃Xi ∈ I(vi) such that X1 · · ·Xn ≤ X in the free pregroup
based on (P,≤). The language L(G) is the set of strings in Σ∗ that are
assigned s by G.

Rigid and k-valued grammars. Grammars that assign at most k cate-
gories to each symbol in the alphabet are called k-valued grammars; 1-valued
grammars are also called rigid grammars.

Width. We define the width of a category C = pu1
1 . . . pun

n as wd(C) = n (the
number of atomic categories). The width of a grammar G is the maximum
width of the categories assigned by G.

Example 2.4. Our first example is taken from [19] with the basic categories:
π2 = second person, s1 = statement in present tense, p1 = present participle,
p2 = past participle, o = object. The sentence “You have been seeing her”
gets category s1 (s1 ≤ s), with successive reductions on π2π

r
2 ≤ 1, pl

2p2 ≤ 1,
pl
1p1 ≤ 1, olo ≤ 1:

You have been seeing her
π2 (πr

2 s1 pl
2) (p2 pl

1) (p1 ol) o

2.2. Parsing

Pregroup languages are context-free languages and their parsing is polyno-
mial [6, 22]. We use here a parsing algorithm that works directly on lists
of words [2]. The relations noted Γ ⊢R ∆ where R consists in one or sev-
eral rules are defined on lists of categories (p, q are atomic, X,Y range over
categories and Γ,∆ over lists of categories):

M (merge): Γ,X, Y,∆ ⊢M Γ,XY,∆.

I (internal): Γ,Xq(n)p(n+1)Y,∆ ⊢I Γ,XY,∆, if q ≤ p and n is even
or if p ≤ q and n is odd.

E (external): Γ,Xq(n), p(n+1)Y,∆ ⊢E Γ,X, Y,∆, if q ≤ p and n is
even or if p ≤ q and n is odd.

⊢∗R is the reflexive-transitive closure of ⊢R. This system is equivalent with
the deduction system when the final right element is a primitive category.
As a consequence, parsing can be done using ⊢∗MIE.

5a lexicalized grammar is a triple (Σ, I, s): Σ is a finite alphabet, I assigns a finite set
of categories to each c ∈ Σ, s is a category associated to correct sentences.
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Lemma 2.5. For X1, . . . ,Xn ∈ Cat(P,≤) and s ∈ P :
X1 · · ·Xn ≤ s iff ∃p ∈ P such that X1, . . . ,Xn ⊢

∗
MIE p and p ≤ s.

Corollary 2.6. G = (Σ, I, s) generates a string v1 · · · vn iff for 1 ≤ i ≤ N ,
∃Xi ∈ I(vi) and ∃p ∈ P such that X1, · · · ,Xn ⊢

∗
MIE p and p ≤ s.

3. Learning

3.1. Background

We now recall some useful definitions and known properties on learning
in the limit [16]. Let G be a class of grammars, that we wish to learn
from positive examples. Formally, let L(G) denote the language associated
with a grammar G, and let V be a given alphabet, a learning algorithm
is a computable function φ from finite sets of words in V ∗ to G, such that
∀G∈G, ∀(ei)i∈N such that L(G)={ei | i ∈ N} ∃G′∈G and ∃n0∈N such that
∀n > n0 φ(e1, . . . , en) = G′∈G and L(G′) = L(G).

Limit points. A class CL of languages has a limit point iff there exists an
infinite sequence (Ln)n∈N of languages in CL and a language L ∈ CL such
that: L0⊂L1 . . . Li⊂Li+1⊂ . . . and L =

⋃

n∈N
Ln (L is a limit point of CL).

If the languages of the grammars in a class G have a limit point then the
class G is unlearnable in Gold’s model.

Elasticity. A class CL of languages has infinite elasticity iff there exists
(ei)i∈N a sequence of sentences and (Li)i∈N a sequence of languages in CL
such that : ∀i ∈ N : ei 6∈ Li and {e1, . . . , ei} ⊆ Li+1. It has finite elasticity
in the opposite case. If CL has finite elasticity then the corresponding class
of grammars is learnable in Gold’s model6.

3.2. Non-learnability from strings – a review

The class of rigid (also k-valued for any k) PGs has been shown not learnable
from strings in [14] using [15]. So, no learning algorithm is possible. This has
also been shown for subclasses of rigid PGs as summarized below (from [3]).

Pregroups of order n and of order n + 1/2. A PG on (P,≤) is of order
n ∈ N when its primitive categories are in {a(i)|a ∈ P , −n ≤ i ≤ n} ;
it is of order n + 1/2, n ∈ N when its primitive categories are in {a(i)|a ∈
P , −n−1 ≤ i ≤ n}.

6we also need to assume that (1) the class of grammars is recursively enumerable and
(2) the universal membership problem for this class is decidable.
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Construction of rigid limit points. We have proved [3] that the smallest
such class (except order 0) has a limit point. Let P = {p, q, r, s} and Σ =
{a, b, c, d, e}. We consider grammars on (P,=) :

Gn = (Σ, In, s) G∗ = (Σ, I∗, s)

a 7→ (pl)nql

b 7→ qpql

c 7→ qrl

d 7→ rplrl

e 7→ rpns

a 7→ ql

b 7→ qplql

c 7→ qrl

d 7→ rprl

e 7→ rs

Theorem 3.1. The language of G∗ is a limit point for the languages of
grammars Gn on (P,=) in the class of languages of rigid simple PGs of
order 1/2 : for n ≥ 0, L(Gn) = {abkcdke | 0 ≤ k ≤ n} and L(G∗) =
{abkcdke | k ≥ 0}.

For P = {p, q, r, s}, we write P l = {pl, ql, rl, sl} and we define R, R∗ by:

R : XzlzY
R
→ XY , for z ∈ P and X,Y ∈ (P ∪ P l)∗

R∗: the reflexive and transitive closure of R, written
R∗

→.

Lemma 3.2. For X ∈ (P ∪ P l)∗ and u ∈ P , X ≤ u if and only if X
R∗

→ u

Proof. This lemma is shown by considering the (cut-free) system for simple
free pregroups: the only possible rules on (P ∪P l)∗ are the identity (Id) and
(AL) with specific exponents that correspond to R

Lemma 3.3. For X,Y ∈ (P ∪ P l)∗ and z, u ∈ P , if XzluY
R
→ s then z = u

Proof. In a string on (P ∪ P l)∗, each xl of P l will disappear with an x
of P on its right; symetrically, each y of P will disappear with an yl of P l

on its left; hence, a pair of two consecutive zl and u cannot disappear by

application of rule
R
→ unless z = u.

We now prove theorem 3.1 (language descriptions).

Proof. Lemmas 3.2 and 3.3 indicate that only members of ab∗cd∗e can
belong to L(Gn) and similarly for L(G∗).

For i ≥ 0 and j ≥ 0, we consider abicdje ∈ ab∗cd∗e:
-if i = j and i < n, then abicdje ∈ ab∗cd∗e belongs to L(Gn), since:

(pl)nql(qpql)iqrl(rplrl)jrpns
R∗
→ s

-if i = j then abicdje ∈ ab∗cd∗e belongs to L(G∗), since:
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ql(qplql)iqrl(rprl)jrs
R∗
→ s

-if abicdje ∈ L(Gn), we get, by replacing q and r by 1 :

(pl)n(p)i(pl)jpns
R∗
→ s that necessitates i = j and i ≤ n

-if abicdje ∈ L(G∗), we get, by replacing p, q and r by 1 :

(pl)i(p)js
R∗
→ s that necessitates i = j

Remark. This construction can be simplified, taking p = s (similar).

Corollary 3.4. The classes CGk
n of k-valued simple PGs of order n, n > 0

and CGk
n+1/2 of k-valued simple PGs of order n+1/2, n ≥ 0 are not learnable

from strings.

3.3. Learnability for restricted categories

We consider three cases of restricted categories. Case (ii) is used in next
section.

Width and order bounded categories. It is first to be noted that when
we bind the width and the order (the length) of categories, as well as the
number of categories (k-valued), the class is learnable from strings (since we
have a finite number of grammars - up to renaming).

Width bounded categories. We will establish that when we bind the
width of categories, as well as the number of categories (k-valued), the class
is also learnable from strings (however this class of grammars is infinite since

there is no bound on the exponents, for example π
(1)
3 s1o

(−1) and π
(5)
3 s1o

(−1)

are both of width 3).

Category patterns. In what follows, we use known relationships between
categorial formalisms, to obtain a case of learnability from strings for pre-
group grammars. We refer to [5, 20] for definitions and details.

3.3.1. From Lambek calculus L to pregroup

We have a translation A → [A] on formulas and sequents from L to the
simple free pregroup, that translates a valid sequent in a valid inequality :7

[A] = A when A is primitive
[A \ B] = [A]r[B]
[B / A] = [B][A]l

[A1, . . . , An ⊢ B] = [A1] · · · [An] ≤ [B]

7the converse is not true : [(a · b) / c] = abcl = [a · (b / c)] but (a · b) / c ⊢/ a · (b / c)
and [(p / ((p / p) / p)) / p] = ppllpllplpl

≤ [p] but (p / ((p / p) / p)) / p ⊢/ p
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L∅ will denote the variant of L allowing empty left-hand side in sequents.

Categorial order. In categorial grammars with operators \ , / the order
of a category o(A) is :

o(A)=0 when A is primitive
o(A \ B)=o(B / A)=max(o(A)+1, o(B))

Lemma 3.5. [Buszkowski [6]] If B is primitive and o(Ai)≤1 for 1≤ i≤n:
A1, . . . , An ⊢AB B (AB denotes classical categorial grammars)

iff A1, . . . , An ⊢L∅B

iff [A1] · · · [An] ≤ B valid in the simple free pregroup.

In fact, this lemma leads to a learnabilty result:

Corollary 3.6. The class Ck
L of k-valued PGs with categories of this form

(hereafter called pattern P1) : gr
n . . . gr

1pdl
1 . . . dl

m, for n ≥ 0 et m ≥ 0 is
learnable in Gold’s model.

Proof. Lemma 3.5 shows that the class of pregroup grammars that are
images of k-valued Lambek grammars of order 1 is learnable (in Gold’s
sense). And when o(A) ≤ 1, then [A] must be written as: gr

n . . . gr
1pdl

1 . . . dl
m.

Use of patterns P1. We have observed that many examples [18, 1, 9]
follow pattern P1 (as in example 4.2) or may be approximated by these in
the following sense : by an increasing category function we mean h such that
x ≤ h(x) (type-raise introduction h<raise,y>(x) = yylx as in I(“every′′) =
{sslπ3n

l} is an example) ; if G = 〈Σ, I, s〉 assigns I(ci) = {hi(ti)}, where all
hi are increasing and all ti have the pattern P1, we get L(G) ⊆ L(GP ) where
GP = 〈Σ, IP , s〉 assigns IP (ci) = {ti} and all GP belong to a class learnable
from strings.

3.3.2. Width bounded categories

We define a normalization of grammars [4] which is very similar to the con-
cept of centered dictionaries introduced in [24] and that leads to another
learnable class of grammar:

Theorem 3.7. The class of rigid (or k-valued for each k) pregroup grammars
with categories of width less than N is learnable from strings for each N .

Proof. Let G denote a rigid grammar on Σ, let r be the size of the alpha-
bet Σ, and n be the width of G. We can show that G is equivalent (same
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language) to a similar grammar of order not greater than 2× n× r ;
this grammar can be seen as the normalized version of G obtained by re-
peating shifts (i) and (ii) as follows:

(i) consider possible iterations of r, if two consecutive integer exponents

(u), (u + 1) with u ≥ 0 never appear in the iterated adjoints p
(ui)
i in

categories assigned by G, (this is a gap of length at least two in the
succession of exponents occurring in categories assigned by G) ;

then decrement all above exponents in G: in each C = p
(u1)
1 . . . p

(um)
n

assigned by G replace each p
(ui)
i such that ui>u+1 with p

(ui−1)
i

(ii) proceed similarly for iterations of l: consider (u−1), (u) with u ≤ 0
corresponding to a gap and increment by 1 exponents lower than (u−1).

Therefore, a width bound induces an order bound for rigid grammars ; we
then apply the learnability result for a class with a width and an order
bounds. In the k-valued case, we proceed similarly with an order ≤ 2× n×
r × k

Note that a bound on the width does not give a bound on the categories:
the class of grammars is still infinite since there is no bound on the expo-
nents. In fact, the above proof shows how to transform any grammar to
an equivalent one using (repeated) exponent shifts ; it also shows that each
class of languages generated by k-valued grammars of width less than N is
finite and thus has finite elasticity.

Example 3.8. Let P = {π3, o, s, s1, n} with s1 ≤ s, n ≤ o, π3, let Σ =

{he, loves, cats}, grammar G = (Σ, I, s) with I(he) = {π
(4)
3 }, I(cat) = {n},

I(loves) = {π
(5)
3 s1o

(−1)} will become I(he)={π
(2)
3 }, I(loves)={π

(3)
3 s1o

(−1)}

4. Learning pregroup grammars from feature-tagged

examples

Previous learnability results do not lead to any tractable algorithm. But an
idea from Categorial Grammar learning is worth being applied to PGs: the
learnability from typed examples. Types are to be understood here in the
sense Montague’s logic gave them.

In this context, semantic types are derived from syntactic categories by
a homomorphism. Under some conditions concerning this homomorphism,
interesting subclasses of AB-Categorial Grammars and of Lambek Gram-
mars have been proved learnable from typed examples, i.e. from sentences
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S V O S O V O S V
π3 πr

3s1o
l o π3 o orπr

3s1 o π3 πr
3o

rs1

O V S V O S V S O
o ors1π

l
3 π3 s1π

l
3o

l o π3 s1o
lπl

3 π3 o

Figure 2. Pregroup Grammars and possible word orders

where each word is associated with its semantic type [13, 11]. In this case,
learning algorithms implement a specialization strategy. We want to adapt
this strategy to PGs.

4.1. Conditions of learning

The first problem met is that the link between PGs and semantics is not
clearly stated, although the problem has been recently addressed in [23].
So, the notion of semantic types has no obvious relevance in our context and
our first task is to identify what can play the role of language-independent
features for PGs. We call feature-tagged examples the resulting input data.
We then define a subclass of PGs learnable from feature-tagged examples in
the sense of Gold.

4.1.1. Specification of input data

Let us consider how the six possible word orders for a basic sentence ex-
pressing a statement at the present tense, with a third person subject S, a
transitive verb V and a direct object O would be treated by PGs (Figure
2). The common points between every possible analysis are the primitive
categories associated with S and O. The category of V is always a concate-
nation (in various orders) of the elements of the set {s1, π

u
3 , ov} where u

and v are either r or l: this set simply expresses that V expects a subject
and an object. But the nature of the exponent (r or l or a combination
of them) and their relative positions in the category associated with V are
language-specific.

This comparison suggests that multisets of primitive categories play the
role of language-independent features in PGs.

Definition 4.1 (Multisets M(P ), mapping fP , feature-tagged language).
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• For any set (P,≤), we call M(P ) the set of multisets of elements of
P and fP the mapping from Cat(P,≤) to M(P ) that transforms any
category into the multiset of its primitive categories.

• For any PG G = (Σ, I, s), the feature-tagged language of G, noted
FT (G), is defined by:

FT (G) = {〈v1, T1〉...〈vn, Tn〉 | ∀i ∈ {1, ..., n},∃Xi ∈ I(vi) such that
X1...Xn ≤ s and Ti = fP (Xi)}.

• A pair 〈a,M〉 is called a feature-tagged symbol and an element of FT (G)
is called a feature-tagged example.

Example 4.2. Let P = {π3, o, s, s1, n} with s1 ≤ s, n ≤ o, π3, let Σ =
{he, loves, small, cats} and let G = (Σ, I, s) with I(he) = {π3}, I(loves) =
{πr

3s1o
l}, I(small) = {nnl}, I(cat) = {n}. Because π3π

r
3s1o

lnnln ≤ s,
fP (π3) = {π3}, fP (πr

3s1o
l) = {s1, π3, o}, fP (nnl) = {n, n} and fP (n) = {n},

we have: 〈he, {π3}〉〈loves, {s1, π3, o}〉〈small, {n, n}〉〈cats, {n}〉 ∈ FT (G).

We want to study how PGs can be learned from feature-tagged examples.
For this, we need to have a condition on the mapping fP that transforms a
category into a multiset.

Definition 4.3. For any sets Σ and P , we call Gf the set of PGs G = (Σ, I, s)
satisfying: ∀v ∈ Σ, ∀X1,X2 ∈ I(v): fP (X1) = fP (X2) =⇒ X1 = X2

The mapping fP plays for PGs the role of the homomorphism transform-
ing syntactic categories into semantic types for Categorial Grammars. So,
the previous condition corresponds to the one used in the context of Cate-
gorial Grammars [13, 11]. It means that for each word in the vocabulary of
a PG, each initial assignment of a category corresponds to a distinct multi-
set. This would for example forbid that, in our previous example, the verb
“loves” be assigned I(loves) = {πr

3s1o
l, ors1π

l
3} because both categories give

rise to the same multiset: fP (πr
3s1o

l) = fP (ors1π
l
3) = {s1, π3, o}.

Theorem 4.4. The class Gf is learnable in Gold’s model from feature-tagged
examples (i.e. where, in Gold’s model, FT plays the role of L and V =
Σ×M(P )).

Proof. The theorem is a Corollary of Theorem 3.7 and the condition ex-
pressed in definition 4.3 that entails Fact (i) below:

• (i) For a grammar G in Gf , for any v in Σ, the number of distinct
multisets fp(Xi) for the set of Xi assigned to v is the number of distinct
Xi assigned to v.
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• We consider an algorithm φ<n,k>, that learns k-valued pregroup gram-
mars with categories of width at most n (from Theorem 3.7).

• We define the following algorithm φf , that takes a finite list En of
feature-tagged examples ei = 〈vi, Ti〉, (for i < n) and returns a pre-
group grammar on Σ (or fails):

(1) compute wn = the maximum length of multisets Ti in En ;

(2) let k<i,n> denote the number of distinct multisets Tj associated to
the same vi in En ; compute kn = the maximum value of k<i,n>, for
i < n (clearly if n′>n, then kn′ ≥ kn) ;

(3) apply φ<wn,kn> on En.

• For every G in Gf , for every enumeration ei = 〈vi, Ti〉 of L = FT (G)
there exists some N , such that TN (with eN = 〈vN , TN 〉) has the
maximum length of multisets in L. For n>N , we thus apply φ<N,kn>.

Let k∗ denote the maximum number of categories assigned to a symbol
by G.

There exists also some N ′ > N , such that TN ′ has the maximum value
of kn, written k, with k ≤ k∗ from fact (i) (k = k∗ if there is no useless
category8).

For n>N ′>N , we thus apply φ<N,k> that converges to a grammar in
Gf , having the same feature language as G.

Notice that this version does not require the knowledge of P .

4.2. Learning algorithm

We now present an algorithm whose purpose is to identify every possible
PG of the class Gf compatible with a set of feature-tagged examples. More
precisely, our algorithm will provide a set of constraints on integer variables
specifying a set of PGs, but the constraints resolution mechanism is not
described here. This strategy allows to reconsider the learning problem as a
two-steps process: the first step, detailed here, builds a logical formula where
the propositions are constraints on a set of integer variables, the second one
solves the constraints. This way, we hope to delay as much as possible the
inevitable combinatorial explosion. We prove that the output specified by
our algorithm is exactly, up to basic transformations, the set of every PG

8a category of G that is not necessary for the enumeration of L.
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compatible with the input. Our algorithm itself has two main steps: first
variables are introduced, then constraints are deduced on their values.

4.2.1. Variable introduction (first step of the algorithm)

Although feature-tagged examples provide a lot of information, two things
remain to be learned: the value of the exponents of categories and their rel-
ative positions inside a concatenation. We introduce variables to code both
problems. We consider two (infinite) sets of variables, X a set of position
variables and U a set of exponent variables. Each variable is identified by
(or associated to) a nuplet 〈〈a,M〉, p, k〉 where a ∈ Σ, M ∈ M(P ), p ∈ M
and k ≥ 19.

Definition 4.5. Let 〈a,M〉 be a feature-tagged symbol (a ∈ Σ and M ∈
M(P )). For each occurrence of a primitive category p in M , we create a
position variable x ∈ X and an exponent variable u ∈ U that are associated
to the nuplet (〈a,M〉, p, k). k is the position of this occurrence of p among all
the p in M . There is only one position variable in X and only one exponent
variable in U for each nuplet 〈〈a,M〉, p, k〉. For each 〈a,M〉 in a sentence,
we associate the set T = {(x1, u1), . . . , (xl, ul)} of all the pairs of position
and exponent variables corresponding to 〈a,M〉.

Example 4.6. The feature-tagged example of Example 4.2 defines 7 pairs of
variables distributed in 4 sets corresponding to the 4 feature-tagged symbols:

〈he, {π3}〉: T1 = {(x1, u1)}
〈loves, {s1, π3, o}〉: T2 = {(x2, u2), (x3, u3), (x4, u4)}
〈small, {n, n}〉: T3 = {(x5, u5), (x6, u6)}
〈cats, {n}〉: T4 = {(x7, u7)}

The nuplet corresponding to each couple of variables is as follows:

x1, u1: (〈he, {π3}〉, π3, 1) x2, u2: (〈loves, {s1, π3, o}〉, s1, 1)
x3, u3: (〈loves, {s1, π3, o}〉, π3, 1) x4, u4: (〈loves, {s1, π3, o}〉, o, 1)
x5, u5: (〈small, {n, n}〉, n, 1) x6, u6: (〈small, {n, n}〉, n, 2)
x7, u7: (〈cats, {n}〉, n, 1)

For instance, x6 and u6 are associated to (〈small, {n, n}〉, n, 2) : they cor-
respond to the second occurrence (the right one) of an n in the category
associated to ‘small’ with multiset elements {n, n}. x3 and u3 are associated
to (〈loves, {s1, π3, o}〉, π3, 1) : they correspond to the first (and the only one)

9X and U may be seen as a four-dimensional array
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occurrence of π3 in the category associated to ‘loves’ with multiset elements
{s1, π3, o}.

This coding allows to reformulate the acquisition problem into a variable
assignment problem. Furthermore, as the feature-tagged examples provided
as input are supposed to belong to the same FT (G) for some G in Gf , the
same variables are used for every occurrence of the same feature-tagged
symbol present in the set of feature-tagged examples.

4.2.2. Overview on constraints deductions and definitions

This step consists in deducing constraints applying on the variables. Each
feature-tagged example is treated one after the other. For each one, the
sequence of tags takes the form of a sequence of multisets. The deduction
of constraints is performed by using rules that mimic rules E, I and M used
for parsing PGs in section 2.2, with the addition of an initial rule 0 and a
final rule Z. Constraints coming from the same syntactic analysis are linked
by a conjunction, constraints from distinct alternative syntactic analyses
are linked by a disjunction. For each sentence, after normalization, we thus
obtain a disjunction of conjunctions of basic constraints (that we call data
constraint) as follows:

Definition 4.7 (Basic Constraints). We consider several kinds of basic con-
straints on two sets X , U of integer variables ranging respectively over N−{0}
and Z:

• Position constraints are of the form (strictly positive integer variables):

x < x′ (x, x′ ∈ X )

• Exponent constraints are of four forms (positive or negative integer
variables):

– u = u′ + 1 (u, u′ ∈ U)

– odd(u) (u ∈ U)

– ¬odd(u) (u ∈ U)

– u = 0 (u ∈ U)

• Domain constraints are of the form: {x1, x2, . . . , xn} = {1, 2, . . . , n}

corresponding to a multiset Tj of size n, with xi ∈ X , ui ∈ U (for
1≤ i≤n): Tj = {(x1, u1), (x2, u2), . . . , (xn, un)}
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The set BC will denote the set of basic constraints.

Definition 4.8 (Normal Forms of Constraints). The set of data constraints
DC generated by a set of basic constraints BC is the set of disjunctions (∨)
of conjunctions (∧) of basic constraints in BC without repetition of basic
constraints in each conjunction, and without repetition of conjunctions of
basic constraints in disjunctions 10.

Finiteness. Notice that when the set X of position variables and the set
U of variables are finite, the set of basic constraints BC expressible on them
is then finite, and the set DC (relative to these sets) is also finite.

4.2.3. Constraints deductions for a feature-tagged example

A constraint deduction takes the form of rules that mimic rules E, I and M
used for parsing PGs in section 2.2 with the addition of an initial rule 0 and
a final rule Z; we now detail these rules:

0 (initialization): Let n be the length of the sentence. ∀m, 1 ≤ m ≤ n,
let Tm = {(xm

i , um
i )1≤i≤lm} be the set of pairs of position and expo-

nent variables corresponding to the mth feature-tagged symbol of the
sentence, each pair (xm

i , um
i ) being associated to (〈am,Mm〉, pm

i , km
i ).

• Domain constraints:
· ∀m : {xm

1 , . . . , xm
lm} = {1, . . . , lm}

· ∀m, i : um
i ∈ Z

• Position constraints11:
· ∀m, i, j : IF pm

i = pm
j and km

j = km
i + 1 THEN xm

i < xm
j

• Initial list of sets: T1, . . . , Tn

E (external): Let Tm = {(xi, ui)1≤i≤l} and Tm′ = {(x′
j , u

′
j)1≤j≤l′} be two

consecutive sets (at the beginning: m′ = m+1) with (xi, ui) associated
to (〈ai,Mi〉, pi, ki) and (x′

j , u
′
j) associated to (〈a′j ,M

′
j〉, p

′
j , k

′
j). If ∃i0, j0

such that:






pi0 ≤ p′j0 ∨ p′j0 ≤ pi0

ki0 = max{ki | 1 ≤ i ≤ l ∧ ai = ai0 ∧Mi = Mi0 ∧ pi = pi0}
k′

j0
= min{k′

j | 1 ≤ j ≤ l′ ∧ a′j = a′j0 ∧M ′
j = M ′

j0
∧ p′j = p′j0}

10we consider these constraints modulo the associativity-commutativity of ∨ and ∧
11the occurrences of the same primitive category for a word must be ordered from left

to right in the resulting category.
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• Position constraints:
· ∀i 6= i0, 1 ≤ i ≤ l: xi < xi0

· ∀j 6=j0, 1 ≤ j ≤ l′: x′
j0

<x′
j

• Exponent constraints:
· (all cases) u′

j0
= ui0 + 1

· IF p′j0 < pi0 THEN: odd(ui0)
· IF pi0 < p′j0 THEN: ¬odd(ui0)

• Next sets:
· Tm ←− Tm − {(xi0 , ui0)}
· Tm′ ←− Tm′ − {(x′

j0
, u′

j0
)}

I (internal): For internal reductions, where m = m′, the maximal condi-
tion on ki0 and the minimal condition on k′

j0
is replaced by an adjacent

condition but only when ai0 = aj0 ∧Mi0 = Mj0 ∧ pi0 = pj0 :

{
ki0 < kj0

∀i, ai 6= ai0 ∨Mi 6= Mi0 ∨ pi 6= pi0 ∨ ki ≤ ki0 ∨ kj0 ≤ ki

• The position constraints are replaced by:
· xi0 < xj0

· ∀i 6= i0, i 6= j0 (xi < xi0) ∨ (xj0 < xi)

M (merge): Let Tm = {(xi, ui)1≤i≤l} and Tm′ = {(x′
j , u

′
j)1≤j≤l′} be two

consecutive sets (in particular if one is empty).

• Next sets:
· Tm ←− Tm ∪ Tm′

· Drop Tm′

Z (final): The process ends when the list gets reduced to some {(x, u)}
associated to (〈a,M〉, p, k) where p ≤ s (the constraint u = 0 is de-
duced).

Example 4.9. Let us see what this algorithm gives on our basic Example
4.6 where the initial sequence of sets is: T1, T2, T3, T4:

1. Initial constraints: initial domain constraints and, for the two occur-
rences of n of T3, x5 < x6

2. External reduction between T1 and T2: (x1, u1) ∈ T1 and (x3, u3) ∈ T2

satisfy the precondition. The position constraints obtained are: x3 <
x2 and x3 < x4. The exponent constraint is: u3 = u1 + 1, and the
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remaining sets are the following: T1 = ∅, T2 = {(x2, u2), (x4, u4)},
T3 = {(x5, u5), (x6, u6)}, T4 = {(x7, u7)}

3. Merge between T1 and T2: no new constraint. T2 is dropped.

4. External reduction between T1 and T3: (x4, u4) ∈ T1 and (x5, u5) ∈ T3

satisfy the precondition. We deduce: x2 < x4, x5 < x6 (this constraint
was already produced as an initial position constraint), u5 = u4 +1, u4

is odd and the remaining sets are: T1 = {(x2, u2)}, T3 = {(x6, u6)},
T4 = {(x7, u7)}.

5. External reduction between T3 and T4: (x6, u6) ∈ T3 and (x7, u7) ∈ T4

satisfy the precondition. We deduce: u7 = u6 + 1 and the remaining
sets are: T1 = {(x2, u2)}, T3 = ∅, T4 = ∅.

6. Merges (twice) between T1, T3 and T4: no new constraint. T3 and T4

are dropped.

7. As s1 ≤ s, we obtain u2 = 0 and the algorithm stops.

With initial domain constraints {x1} = {x7} = {1}, {x2, x3, x4} = {1, 2, 3}
and {x5, x6} = {1, 2}, from constraints x3 < x2, x3 < x2, x2 < x4 and
x5 < x6, we easily deduce: x2 = 2, x3 = 1, x4 = 3, x5 = 1 and x6 = 2. The
PGs specified by these constraints are defined up to a shift on the exponents.
The solution specified is thus an equivalent class of PGs. If we set u1 =
u5 = u7 = 0 (u4 must be odd), then u3 = 1 (or u3 = r) and u4 = u6 = −1
(or u4 = u6 = l): the only remaining PG associates πr

3s1o
l with “loves” and

nnl with “small”. But, in general, solution PGs are only implicitly specified
by the set of constraints and a constraints resolution mechanism must be
applied. We will see that the set of constraints can be exponentially smaller
than the set of classes (up to shifts) of PGs it specifies.

There is another possibility for this example that gives a different set of
constraints:

1. Initial constraints: initial domain constraints and, for the two occur-
rences of n in T3, x5 < x6

2. Internal reduction inside T3: (x5, u5) ∈ T3 and (x6, u6) ∈ T3 satisfy
the precondition (in this order). We deduce: x5 < x6 (this constraint
was already produced as an initial position constraint) and u6 = u5 +
1, and the remaining sets are the following: T1 = {(x1, u1)}, T2 =
{(x2, u2), (x3, u3), (x4, u4)}, T3 = ∅, T4 = {(x7, u7)}.
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3. Merge between T2 and T3: no new constraint. T3 is dropped.

4. External reduction between T1 and T2: (x1, u1) ∈ T1 and (x3, u3) ∈ T2

satisfy the precondition. The position constraints obtained are: x3 <
x2 and x3 < x4. The exponent constraint is: u3 = u1 + 1, and the
remaining sets are the following: T1 = ∅, T2 = {(x2, u2), (x4, u4)},
T4 = {(x7, u7)}

5. Merge between T1 and T2: no new constraint. T2 is dropped.

6. External reduction between T1 and T4: (x4, u4) ∈ T1 and (x7, u7) ∈ T4

satisfy the precondition. We deduce: u7 = u4 + 1, u4 is odd and the
remaining sets are: T1 = {(x2, u2)}, T4 = ∅.

7. Merge between T1 and T4: no new constraint. T4 is dropped.

8. As s1 ≤ s, we obtain u4 = 0 and the algorithm stops.

With the same idea as the previous resolution, we find nearly the same gram-
mar except that the category of “small” is now nnr. In fact, this grammar
is not equivalent to the previous one: the language corresponding to the pre-
vious resolution is strictly included in the language for this resolution.

4.2.4. Global Acquisition Algorithm

Algorithm 1 which searches for the elements of Gf compatible with a set
of feature-tagged examples 〈e1, ..., en〉

Require: 〈e1, ..., en〉 where ∀i, ei ∈ (Σ×M(P ))+ is a feature-tagged exam-
ple for some PG

1: introduce variables on every ei

2: SC0 = ∅
3: for (i = 1, i ≤ n, i + +) do
4: treat the “variabilized” feature-tagged example ei to obtain the con-

straint Ci
5: DCi = normal form of Ci
6: SCi = SCi−1 ∪DCi

7: end for
Ensure: SCn: a set of constraints specifying a set of PGs

The global algorithm we propose is Algorithm 1. For each sentence,
following all the possible applications of rules 0, E, I, M and Z, we obtain
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a complex logical formula of elementary exponent and position constraints
(that we call simple constraints). This formula, the data constraint for this
sentence, reflects its possible syntactic analyses. To formulate it, we can
use the same schema as the parser presented in [2] : rather than using
rules E, I and M, we can use rule I and a combinaison of E and M that
mimics the functional-composition rule in [2]. Thus, if we set a maximal
width for feature-tagged symbols (the maximal cardinality of Ti) and if the
lexicon and the set of primitive categories are finite, we have a polynomial
algorithm (w.r.t. the size of the feature-tagged example) for computing the
data constraint of the sentence.

Example 4.10. Let us see what is the data constraint for our basic example.
In fact, the logical formula corresponding to the different parsings is quite
complex because the rules may be applied in several orders. But, all of them
correspond to one of the two analyses that were presented. Thus, the resulting
data constraint after normalization is (we omit initial domain constraints)12:

(
(x3 < x2) ∧ (x3 < x4) ∧ (x2 < x4) ∧ (x5 < x6)∧
(u3 = u1 + 1) ∧ (u5 = u4 + 1) ∧ (u7 = u6 + 1) ∧ (u2 = 0) ∧ odd(u4)

)

∨

(
(x3 < x2) ∧ (x3 < x4) ∧ (x2 < x4) ∧ (x5 < x6)∧
(u3 = u1 + 1) ∧ (u7 = u4 + 1) ∧ (u6 = u5 + 1) ∧ (u2 = 0) ∧ odd(u4)

)

5. Properties of the acquisition algorithm and data

constraints

We formalize the links between grammars and data constraints as already
sketched in previous examples

Definition 5.1 (Mapping fG and substitution σG). Given a grammar G ∈
Gf , let us call fG the mapping from the set of pairs on Σ×M(P ) to the set
of categories CatP defined by:

fG(a,M) = T iff G assigns T to a and fP (T ) = M

This is indeed a mapping from the definition of Gf . We then define a sub-

12the data constraint can also be written as follows:

(x3 < x2) ∧ (x3 < x4) ∧ (x2 < x4) ∧ (x5 < x6)∧
(u3 = u1 + 1) ∧ (u2 = 0) ∧ odd(u4)∧
((u5 = u4 + 1) ∧ (u7 = u6 + 1) ∨ (u7 = u4 + 1) ∧ (u6 = u5 + 1))
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stitution σG on the variables x ∈ X , u ∈ U , onto Z as follows:

x 7→

{
the position of the kth occurrence of the
primitive category p in the category fG(a,M)

u 7→

{
the exponent of the kth occurrence of the
primitive category p in the category fG(a,M)

such that (〈a,M〉, p, k) is the nuplet associated to (x, u).

Definition 5.2 (Satisfaction of a set of constraints). Let G ∈ Gf denote a
PG and let SC = {C1, . . . , Cn} denote a set of constraints in DC defined on
a set X of position variables and a set U of exponent variables.

G is said to satisfy SC whenever the substitution σG applied to SC is
defined for all variables occurring in SC and yields only true statements on
integers for each constraint Ci of the set of constraints SC.

Example 5.3. Grammar G given in Example 4.2 satisfies the data con-
straint (a singleton) described in Example 4.10. The similar grammar G′

that assigns nnr instead of nnl to “small” also satisfies this constraint.

5.1. Convergence property of the acquisition algorithm

In an acquisition process, each example gives rise to a new data constraints
that is conjoined to the previous ones. We get a convergence property as
follows:

Property 5.4. Let G ∈ Gf and FT (G) = {ei}i∈N, the sets of data con-
straints DCi obtained from the successive sets {e1, . . . , ei} converges: ∃n0 ∈
N such that ∀n ≥ n0,SC(〈e1, . . . , en+1〉) = SC(〈e1, . . . , en〉). Moreover, the
limit does not depend on the order of the enumeration of FT (G). We write
SC∗(FT (G)) this limit.

Proof. In fact SC(〈e1, . . . , en〉) = {DCi | 1 ≤ i ≤ n} where DCi is the
normal form of the constraints deduced from ei. Because G has a finite
lexicon, there exists a number N such that ∀i ≥ N , each feature-tagged
symbol of ei already appears in at least one of the examples {e1, . . . , eN}:
for SC(〈e1, . . . , en〉), only examples e1, . . . , eN introduce new position and
exponent variables and the set of such variables is finite. Thus, the set
of basic constraints and (normalized) data constraints is also finite. Since
SC(〈e1, . . . , en〉) = SC(〈e1, . . . , en−1〉) ∪ {DCn}, Algorithm 1 must converge
to a subset of the finite set of data constraints on position and exponent
variables corresponding to the N first strings e1, . . . , eN . Moreover, because
SC(〈e1, . . . , en〉) = {DCi | 1 ≤ i ≤ n}, the limit does not depend on the
order of the enumeration of FT (G).
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5.2. Correctness property of the acquisition algorithm

Let G be a grammar in the class Gf , we show that G satisfies the data
constraints computed from its feature-tagged language :

Lemma 5.5. ∀G ∈ Gf : G satisfies SC∗(FT (G))

Proof. Let DC ∈ SC∗(FT (G)). ∃e = 〈〈a1,M1〉 · · · 〈an,Mn〉〉, a feature-
tagged example of FT (G) that generates DC in Algorithm 1. All the po-
sition and exponent variables that appear in DC correspond to a feature-
tagged symbol of e. Because e ∈ FT (G), there exists a parsing of e and
each symbol of e must be associated to at least one category by G. Because
G ∈ Gf , there is at most one category corresponding to a feature-tagged
symbol. As a consequence, σG is defined for all these position and expo-
nent variables. Secondly, since e ∈ FT (G), there exists a parsing of e using
the parsing rules E, I and M of Section 2.2. By induction on this parsing,
we can build a derivation using constraint deduction rules 0, E, I, M and
Z of Section 4.2.3. The list of categories that is produced at each step of
the parsing is replaced by a list of sets of pairs of position and exponent
variables, each pair corresponding to one occurrence of an atomic category
of the list of categories. At each step, the conditions of application of the
corresponding rule are verified and the substitution of generated constraints
by σG is satisfied:

- Beginning of the parsing : we produce a 0 step. There is no condition
of application of rule 0. The domain constraints are obviously satisfied.
The position constraints are also satisfied because in the definition of
σG, the different position variables corresponding to the same primitive
category are ordered from left to right. The list of sets of pairs of
variables corresponds to the initial list of categories in the parsing.

- External parsing rule E : we produce a E step. We have the external
parsing rule Γ,Xp(n), q(n+1)Y,∆ ⊢E Γ,X, Y,∆. q ≤ p and n is even
or p ≤ q and n is odd. By induction hypothesis, the list of categories
Γ,Xp(n), q(n+1)Y,∆ corresponds to a list of sets of pairs of variables
TΓ, TX ∪ {(x, u)}, TY ∪ {(x

′, u′)}, T∆ where (x, u) corresponds to p(n)

and (x′, u′) to q(n+1). TX ∪ {p
(n)} and TY ∪ {q

(n+1)} are consecutive
in the list. The pair of variables (x, u) is associated to 〈a,M, p, k〉 and
the pair of variables (x′, u′) is associated to 〈a′,M ′, q, k′〉. We have
p ≤ q or p ≤ q. Because in Xp(n), p(n) appears on the right, σG(x) is
maximal in {σG(xi) | (xi, ui) ∈ TXp(n)}. Similarly, σG(x′) is minimal.
Thus the position constraints are satisfied by σG. Here, σG(u) = n and
σG(u′) = n + 1 and the exponent constraints are also satisfied. Finally,
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the next list of sets TΓ, TX , TY , T∆ corresponds to the list of categories
Γ,X, Y,∆.

- Internal parsing rule I : we produce a I step. The reasonning is very
similar to the previous case except that there is only one set of pairs.
In fact, by induction hypothesis, each pair of variables corresponds to
one occurrence of the categories in the parsing list of categories: this
set of pairs can be split in four parts TX , {(x, u)}, {(x′, u′)}, TY that
correspond respectively to X, p(n), q(n+1) and Y . The rest of the proof
is straightforward.

- Merge parsing rule M : we produce a M step. there is no particular
difficulty here because no constraint is produced.

- Ending of the parsing : we produce a Z step. This step corresponds
to the end of the parsing: the list of categories is reduced to an atomic
category p such that p ≤ s where s is the primitive category to which
G assigns to the strings of L(G). It corresponds to a unique pair of
variables (x, u) associated to 〈〈a,M〉, p, k〉. Here, we have σG(u) = 0.

Thus there exists a branch of DC that is satisfied by σG and G satisfies
DC (the different branches of DC, at any level, are merged using a logical
“or”).

Let G be a grammar in the class Gf , we show that if G satisfies the data
constraints computed from the feature-tagged language of a grammar G′ in
the class, then G generates these feature-tagged examples:

Lemma 5.6. ∀G,G′ ∈ Gf : if G satisfies SC∗(FT (G′)) then FT (G′) ⊆
FT (G)

Proof. We suppose that G satisfies SC∗(FT (G′)). Let e ∈ FT (G′). Let
DC be the data constraint generated by this string e in Algorithm 1. Be-
cause G satisfies SC∗(FT (G′)), σG is defined for every variable that appears
in DC. Thus, G assigns a (unique) category to each featured-tagged symbol
of e. σG(DC) is true and there exists a branch of DC where σG is satis-
fied. Because DC is generated by searching all the possible parsings of e
using rules 0, E, I, M and Z of Section 4.2.3, this branch corresponds to a
derivation using these rules. Using this derivation, we construct a parsing of
e in G using rules E, I and M of Section 2.2. At each step, we find a list of
categories corresponding to an ordering of the list of sets of pairs of position
and exponent variables given by the constraint deduction derivation:

- Rule 0 : The initial list of sets of pairs of variables corresponds to the
list of feature-tagged symbol of e. G assigns a unique category to each
feature-tagged symbol of e. The list of category is then well defined.
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- Rule E : The parsing continues with a E step. For the constraint
deduction, we have the list of sets of pairs T1, . . . , Tm, Tm′ , . . . , Tn where
Tm = {(xi, ui)1≤i≤l}, (xi, ui) associated to (〈ai,Mi〉, pi, ki) and Tm′ =
{(x′

j , u
′
j)1≤j≤l′} , (x′

j , u
′
j) associated to (〈a′j ,M

′
j〉, p

′
j , k

′
j). We know that

∃i0, j0 such that:







pi0 ≤ p′j0 ∨ p′j0 ≤ pi0

ki0 = max{ki | 1 ≤ i ≤ l ∧ ai = ai0 ∧Mi = Mi0 ∧ pi = pi0}
k′

j0
= min{k′

j | 1 ≤ j ≤ l′ ∧ a′j = a′j0 ∧M ′
j = M ′

j0
∧ p′j = p′j0}

By induction, T1 . . . , Tm, Tm′ , . . . , Tn corresponds to a list of categories
X1, . . . ,Xm,Xm′ , . . . ,Xn for the parsing. G satisfies all the basic con-
straints of this case. Then ∀i 6= i0, 1 ≤ i ≤ l: σG(xi) < σG(xi0): in

Xm, the position of the rightest pi0 is on the right: Xm = Y p
σG(ui0

))

i0
for

some Y . Similarly, Xm′ = p′
σG(u′

j0
))

j0
Y ′ for some Y ′. Using exponent con-

straints, we also find that the conditions of application of parsing rule
E are verified and ends with the list of categories X1, . . . , Y, Y ′, . . . ,Xn

that corresponds to the list of sets of pairs
T1, . . . , {(xi, ui), 1 ≤ i ≤ l, i 6= i0}, {(x

′
j , u

′
j), 1 ≤ j ≤ l′, j 6= j0}, . . . , Tn.

- Rule I : quite similar to the previous case except that we must use the
initial position constraints (rule 0) that order the variables correspond-
ing to the same primitive type from left to right in the corresponding
category.

- Rule M : nothing very difficult here.

- Rule Z : the lists of sets of pairs of variables is reduced to a single set
{(x, u)}. (x, u) is associated to (〈a,M〉, p, k) and p ≤ s. We also have
σG(u) = 0.

Thus we have a parsing of e in G and e ∈ FT (G).

Let G,G′ be grammars in the class Gf , we show that if the feature-tagged
language of G is a subset of the feature-tagged language of G′, then data
constraints computed from their respective examples are included in one
another similarly :

Lemma 5.7 (Monotonicity). ∀G,G′ ∈ Gf : if FT (G) ⊆ FT (G′) then
SC∗(FT (G)) ⊆ SC∗(FT (G′))

Proof. Esay by construction because each feature-tagged example gener-
ates a data constraint added to the set of constraints in Algorithm 1.
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Let G,G′ be grammars in the class Gf , we conclude as stated in the next
theorem that G is compatible with the feature-tagged examples generated
by G′ iff G satisfies the data constraints computed from the feature tagged
examples of G′ :

Theorem 5.8 (Correctness). ∀G,G′ ∈ Gf : G satisfies SC∗(FT (G′)) iff
FT (G′) ⊆ FT (G)

Proof. If G satisfies the data constraints computed from FT (G′) then
FT (G′) ⊆ FT (G) from Lemma 5.6.

If FT (G′) ⊆ FT (G) then by Lemma 5.7 SC∗(FT (G′)) ⊆ SC∗(FT (G));
also by Lemma 5.5, G satisfies SC∗(FT (G)), then it also satisfies a subset
SC∗(FT (G′)) as desired.

Notice that two grammars may satisfy a common set of constraints while
the inclusion of their FT languages can still be strict (see Example 5.3).

Our algorithm specifies the set of every PG compatible with a set of
feature-tagged examples. But even if we are able to solve the constraints
it produces, it is not enough to make it a learning algorithm in the sense
of Gold. A remaining problem is to identify a unique PG in the limit. To
avoid over-generalisation, inclusion tests between feature-tagged languages
may be necessary for this purpose, and we do not even know if these tests
are computable. They can nevertheless be performed for feature-tagged ex-
amples of bounded length (this is Kanazawa’s strategy for learning k-valued
AB-Categorial Grammars from strings) but, of course, make the algorithm
intractable in practice.

5.3. Why pregroup grammars and constraints are efficient

The main weakness of known learning algorithms for Categorial Grammars
is their algorithmic complexity. The only favourable case is when rigid AB-
Grammars are to be learned from structural examples but this situation
is of limited interest. Our algorithm seems more tractable than previous
approaches. To see how, we provide in the following two relevant examples.

5.3.1. First exponential gain: inner associativity

The first gain comes from the “inner associativity” of categories in PGs. Let
a symbol “b” be associated with a category requiring 2n combinations with
a category associated with a symbol “a”, n of which are on its right and the
other n on its left. The corresponding feature-tagged example is:
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a ... a b a ... a
e ... e
︸ ︷︷ ︸

n times

{s, e, ..., e
︸ ︷︷ ︸

2n times

} e ... e
︸ ︷︷ ︸

n times

This case is equivalent with the problem of learning AB or Lambek Catego-
rial Grammars from the following typed example [12, 11]:

a ... a b a ... a
e ... e
︸ ︷︷ ︸

n times

〈e, 〈e, ...〈e
︸ ︷︷ ︸

2n times

, t〉〉...〉 e ... e
︸ ︷︷ ︸

n times

There are
(
2n
n

)
different AB-Categorial Grammars (and the same number of

Lambek Grammars) compatible with this input. This situation occurs with
transitive verbs, whose category is T\(S/T ) or (T\S)/T (both corresponding
to the same type 〈e, 〈e, t〉〉, i.e. the example with n = 1). In the Lambek cal-
culus, the distinct categories assigned to “b” by each solution are deductible
from one another, so the language recognized by each grammar is in fact
the same. Lambek Grammars are associative, but at the rule level. PGs are
also associative, but at the category level. The result is that there is only
one PG (up to shifts) compatible with the previous feature-tagged example:
the one assigning er...er

︸ ︷︷ ︸

n times

s el...el
︸ ︷︷ ︸

n times

to b. In PGs, the category corresponding

both to T\(S/T ) and (T\S)/T is unique : it is T rST l.

5.3.2. Second exponential gain: efficiency of constraints

Another exponential gain can be earned from the reduction of the learning
problem to a constraints resolution problem. In the following example, po-
sition variables are shown under the primitive category they are asoociated
with, for readability:

a b c d
{s,m, , n} {m,n, o, p, } {o, p, q, r} {q, r}
{x1, x2, x3} {x4, x5, x6, x7} {x8, x9, x10, x11} {x12, x13}

There are several PGs compatible with this feature-tagged example, all of
which sharing the same values for exponents (up to shifts), but differing in
the way they embed the two combinations to be applied on every couple of
consecutive multisets. In the following figure, one solution -up to shifts- is
shown above, the other one is shown under. As each choice is independent,
there are 23 = 8 different PGs compatible with this example but defined by
a conjunction of 3 constraints (the position part of the first one is displayed
on the right).
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smln nrmolp proqlr rrq ((x2 < x3) ∧ (x5 < x4))
a b c d ∨((x3 < x2) ∧ (x4 < x5))...

snml mnrpol oprrql qrr

This example illustrates that there can exist an exponentiel gap between
the size of the set of constraints and the size of the set of PGs it specifies.
By working with constraints, we delay the combinatorial explosion to the
constraint resolution mechanism. The solution grammars are only implicitly
defined by the set of constraints but this implicit definition may be enough
for some applications.

6. Conclusion

Pregroup Grammars appear to be an interesting compromise between sim-
plicity and expressivity. Their link with semantics is a difficult question that
has not yet been completely solved. As far as learnability is concerned, very
few was known till now. This paper provides theoretical as well as practical
approaches to the problem. Theoretical results prove that learning PGs is
difficult unless limitations are known. The practical approach shows that the
limitations can be weakened when rich input data are provided. These data
take the form of feature-tagged sentences which, although very informative,
are arguably language-independent.

Many current learning algorithms are unification-based [17, 21]. These
techniques implement a generalization strategy. By providing richer input
data, we allow on the contrary to implement a specialization strategy, where
the current hypotheses are only implicitly specified by a set of constraints.
The interest of working with constraints is that the combinatorial explo-
sion of solution grammars is sometimes delayed to the constraint resolution
mechanism, as displayed in the examples.

What remains to be done is to study further the properties of our algo-
rithm from the point of view of tractability and to exploit further the good
properties of bounded width grammars.

References

[1] Daniela Bargelli and Joachim Lambek. An algebraic approach to French
sentence structure. In de Groote et al. [10].
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