
Building Hierarchical Grid Storage Using the Gfarm

Global File System and the JuxMem Grid Data-Sharing

Service

Gabriel Antoniu, Löıc Cudennec, Majd Ghareeb, Osamu Tatebe

To cite this version:

Gabriel Antoniu, Löıc Cudennec, Majd Ghareeb, Osamu Tatebe. Building Hierarchical Grid
Storage Using the Gfarm Global File System and the JuxMem Grid Data-Sharing Service.
Emilio Luque and Tomàs Margalef and Domingo Beńıtez. 14th International Euro-Par Confer-
ence, Aug 2008, Las Palmas de Gran Canaria, Spain. Springer, LNCS 5168, pp.456-465, 2008,
Euro-Par 2008 Parallel Processing. <inria-00318590>

HAL Id: inria-00318590

https://hal.inria.fr/inria-00318590

Submitted on 4 Sep 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by HAL-Rennes 1

https://core.ac.uk/display/48259421?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/inria-00318590

Building Hierarchical Grid Storage
Using the GFARM Global File System

and the JUXM EM Grid Data-Sharing Service⋆

Gabriel Antoniu1, Loïc Cudennec1, Majd Ghareeb1, and Osamu Tatebe2

1 INRIA/IRISA, Rennes, France
2 University of Tsukuba, Japan

Abstract. As more and more large-scale applications need to generate and pro-
cess very large volumes of data, the need for adequate storage facilities is grow-
ing. It becomes crucial to efficiently and reliably store andretrieve large sets of
data that may be shared at the global scale. Based on previoussystems for global
data sharing (global file systems, grid data-sharing services), this paper proposes
a hierarchical approach for grid storage, which combines the access efficiency
of RAM storage with the scalability and persistence of the global file system
approach. Our proposal has been validated through a prototype that couples the
GFARM file system with the JUXMEM data-sharing service. Experiments on the
Grid’5000 testbed confirm the advantages of our approach.

1 Introduction

An increasing number of applications in various fields (suchas genetics, nuclear
physics, health, environment, cosmology, etc.) are nowadays exploiting large-scale, dis-
tributed computing infrastructures for simulation or information processing. This leads
to the generation of very large volumes of data. The need to store, manage and process
these data in a proper way leads to several important requirements. First, alarge storage
capacityis needed. Second, as these large volumes of data may be produced by (or used
as an input for) long and costly computations,data persistenceis essential. To address
these requirements, file-based secondary storage has usually been favored in most grid
storage systems. On the other hand, data need to beefficientlyaccessed in adistributed
way at a large scale. As the cost of disk read/write operations may significantly limit
the performance of data accesses, the use of faster-access RAM storage appears as a
promising approach. The concept ofgrid-data sharing service[1, 2] explores this idea
by providing the abstraction of a globally shared memory space, built by aggregating
the RAM storage made available by thousands of grid nodes. However, the overall stor-
age capacity is limited to the aggregated RAM storage available.

This paper proposes an architecture for large-scale, distributed grid storage whose
goal is to leverageat the same timethe efficiency of RAM accesses and the larger-
capacity, persistent disk storage available on a grid. Our architecture implements a grid-
scale memory hierarchy by interconnecting a grid data-sharing service (acting as a grid-
scale RAM) and a grid file system.
⋆ Corresponding author: Gabriel Antoniu, IRISA, Campus de Beaulieu, F-35042 Rennes Cedex,

France. Email:Gabriel.Antoniu@inria.fr.

The remaining of the paper is organized as follows. Section 2discusses related
work. Section 3 briefly describes the two systems on which we rely: the JUXMEM grid
data-sharing service and the GFARM grid file system; then, it introduces our hybrid
architecture. Section 4 gives details on the interaction between the two systems. An
experimental evaluation of our approach is presented in Section 5. Section 6 concludes
the paper and discusses future research directions.

2 Related Work

One of the major goals of grid infrastructures is totransparentlyprovide access to com-
putational and storage resources, by hiding the details about which resources are used
and where they are located, as much as possible. Regarding data storage and manage-
ment, this goal is still far from being achieved, as most current grid data management
systems requireexplicit data transfers before and after the computations. GridFTP [3],
Chirp [4] are typical examples of two file transfer tools adapted to grid infrastructures,
providing for instance support for parallel streams, authentication, checkpoint/restart in
case of failures, etc. Based on such tools, catalogue-baseddata localization and man-
agement services have been built, such as RLS [5], Reptor [6], Optor [6], LDR [7]. Such
catalogues allow the user to manually register and characterize data copies, but do not
provide any support for transparent access, nor for automatic consistency maintenance.

In contrast, the concept ofgrid file systemprovides a familiar, file-oriented API
allowing to transparently access physically distributed data through globally unique,
logical file paths. The applications simply open and access such files as if they were
stored on a local file system. A very large distributed storage space is thus made avail-
able to existing applications that usually use file storage,with no need for modifica-
tions. This approach has been taken by a few projects like GFARM [8], GridNFS [9],
LegionFS [10], etc.

The transparent data access model is equally defended by theconcept ofgrid data-
sharing service, illustrated by the JUXMEM platform (described in detail in the next
section). This service provides the grid applications withthe abstraction of a globally
shared memory in which data can be easily stored and accessedthrough global iden-
tifiers. Compared to the grid file system approach, this approach improvesaccess effi-
ciencyby totally relying on RAM storage. Besides the fact that a RAMaccess is more
efficient than a disk access, the system can leverage locality-optimization schemes de-
veloped within the Distributed Shared Memory (DSM) consistency protocols that serve
as a basis for the system’s design. However, the system’s storage capacity is limited by
the overall RAM available on the infrastructure.

3 Combining RAM and disk storage to achieve scalability,
persistence and efficiency

As previously shown, grid file systems provide a convenient way to persistently store
very large volumes of data into distributed files, whereas memory-based grid data-
sharing services provide a more efficient data access. To address all these issuesat

the same time, we propose a hierarchical storage system that combines a data sharing
service with a grid file system.

3.1 The JUXM EM data sharing service

Providing a transparent data access model in an efficient wayhas been one of the major
motivations of research efforts on distributed shared memory (DSM) systems [11].

However, the efficiency of traditional DSM consistency protocols has not proved
scalable. As the grids brought forward new hypotheses (a larger scale, a dynamic in-
frastructure with increased failure probability), a new approach to transparent memory-
based data sharing was needed. To address this challenge, the concept ofgrid data
sharing servicehas been proposed [1]. The idea is to rely on results from several ar-
eas: location-transparent access and consistency protocols of DSM systems; algorithms
for fault-tolerant distributed systems; scalability and techniques to support volatility in
peer-to-peer (P2P) systems.

From the user’s point of view, JUXMEM provides an API inspired by DSM systems
allowing to perform memory allocation, data access throughglobal IDs (e.g. pointers),
and lock-based synchronization. Users can dynamically allocate shared memory using
the juxmem_malloc primitive, which returns a global data ID. This ID can be usedby
other nodes in order to access existing data, through the useof the juxmem_mmap
function. It is the responsibility of the implementation ofthe grid data-sharing service to
localize the data and perform the necessary data transfers based on this ID. This is how
a grid data-sharing service provides atransparentaccess to data. Bothjuxmem_malloc
andjuxmem_mmap primitives provide a local pointer that can be used to directly access
the data. Note that, at the implementation level, thejuxmem_mmap primitive does not
rely on themmap call. It will provide the calling client with a full copy of the data,
whatever the grain of the subsequent accesses made by that client.

JUXMEM’s architecture mirrors a grid consisting of a federation ofdistributed clus-
ters and it is therefore expressed in terms ofhierarchicalgroups of nodes. In order to
cope with possible failures that may threaten data persistence, JUXMEM includes auto-
matic replication mechanisms. When allocating a memory block, the client may spec-
ify: 1) on how many clusters the data should be replicated; 2)on how many providers
in each cluster the data should be replicated; 3) the consistency protocol that should be
used to manage the access to this data. As a result of the allocation procedure, a set
of distributed replicas are created, calleddata group. This group has a fault-tolerant,
self-organizing behavior: failures of its members are automatically detected, and failed
nodes are transparently replaced, in order to maintain the replication degrees specified
by the user. To do this transparently, while guaranteeing the correctness of the data ac-
cesses that may take place during the failures, we rely on fault-tolerant algorithms for
group membership and atomic multicast. To favor scalability and take into account the
latency hierarchy previously discussed, hierarchical adaptations of these algorithms are
implemented (see [2] for details).

From an implementation point of view, the fault-tolerant algorithms used are leader-
based.

The main consistency model provided by JUXMEM is entry consistency, first intro-
duced in [12]. In this model, which we consider as well-adapted to grid data sharing,

processes that need to access data need to properly synchronize by acquiring a lock
associated to that data. This is done by callingjuxmem_acquire_read (prior to a read
access) orjuxmem_acquire (prior to a write access). Note thatjuxmem_acquire_read
allows multiple readers to simultaneously access the same data. Thejuxmem_release
primitive must be called after the access, to release the lock. These synchronization
primitives allow the implementation to provide consistency guarantees according to the
consistency protocol specified by the user at the allocationtime.

3.2 The GFARM distributed file system

GFARM FS is a distributed file system federating local file systems.Typically, it fed-
erates local file systems on compute nodes in several clusters. A node that provides a
local file system is called afile system node.

Physically, files can be replicated and stored on any file system node, but can be
accessed transparently by a client. File replicas can be created by a GFARM replicate
command from a file system node to another file system node. Consistency among
file replicas is maintained by a close-to-open consistency like AFS [13] when a file
is updated. Every other out-of-date file replicas except an up-to-date replica will be
deleted when the updated file is closed.

GFARM FS is designed to achieve scalable file I/O performance in a distributed
environment byputting priority to a local file system, andfile-affinity scheduling. When
a client is also a file system node, the local file system is a part of a GFARM FS. The
data transfer from file system nodes to a client can be reducedby exploiting local file
access. When a new file is created, the file is created on the local file system if there is
enough disk space. When one of file replicas is stored on a local file system, the local
file replica is chosen to be accessed. A file-affinity scheduling is a scheduling policy
of a process allocation such that a file system node that has a specified file replica has
priority to be scheduled. This increases a chance of a local file access.

GFARM FS consists of a file system metadata server and multiple file system nodes.
A file system daemon calledgfsd runs on every file system node. Client nodes access
a GFARM FS by mounting it. It is developed in open source athttp://sourceforge.net/
projects/gfarm/.

3.3 Our proposal: a hybrid grid memory hierarchy

In order to take advantage of the more persistent, larger-capacity storage provided by
the GFARM grid file system, while keeping data access efficient (i.e. not impacted
by disk access delays), our approach consists inusing GFARM as secondary storage
for the JUXMEM data sharing service. The main idea is to allow applications to use
JUXMEM’s more efficient memory-oriented API, while letting JUXMEM to persistently
store data on disk files by making calls to GFARM in the background. These calls are
internally issued by JUXMEM, so they are totally transparent to the user, as illustrated
on Figure 1. Besides, as explained in Section 4, their cost isalso generally transparent,
as the disk accesses are performed asynchronously in most cases, in order to avoid them
to impact the efficiency of the application’s data accesses.

JUXMEM
GFARM

USER

provider

In memory On disk

file system
node

file system
node

provider

provider

Fig. 1.The JUXMEM- GFARM architecture.

With respect to persistence, as seen
in the previous section, JUXMEM already
enhances data availability in the pres-
ence of failures by using data replication
strategies. However, every piece of data is
stored in physical memory, making this
system prone to hard failures of nodes.
JUXMEM’s consensus algorithm used to
implement atomic multicast and group
membership operations, supports multi-
ple simultaneous failures within each any
group of replicas, as long as a majority of
nodes remain correct in the group. How-
ever, in a grid, failures of whole clusters
may happen (e.g. due to air conditioning problems). This leads to the loss of all data
stored exclusively in RAM, if all replicas are stored withinthe failing cluster. In the con-
text of heavy, long-duration scientific applications, it may be costly (if ever possible) to
regenerate the data, e.g. by restarting the computation that produced it. A more efficient
approach to ensure data persistence is to use secondary, disk-based storage. Another
scenario where disk storage is more appropriate than RAM storage corresponds to situ-
ation where data is read and processed a long time after it hasbeen produced (e.g. after
several weeks).

Finally, thanks to the use of GFARM, the storage space made available to applica-
tions that use JUXMEM’s memory-oriented API is significantly increased: JUXMEM

can act as a shared cache for actively accessed data, while GFARM ensures a large ca-
pacity for long term storage.

4 Implementing the JUXM EM -GFARM interaction

In the approach presented here, we have chosen to exhibit thememory-oriented API
provided by the JUXMEM data-sharing to the grid applications: the user can dynami-
cally allocate memory in the grid storage space, map it to itsown address space and
access it through local pointers. On the other side, we internally use GFARM’s global
IDs (i.e. globally shared file names) to persistently store JUXMEM’s shared data on
physical files, but these IDs, as well as the usage of this file-oriented API are hidden
from the user.

We therefore need to define which JUXMEM entities should interact with GFARM,
when JUXMEM should flush data to GFARM and when this data should be restored to
JUXMEM. In the first version of our hybrid architecture, we decide that, for each data,
a single JUXMEM provider should interact with GFARM, as a client: the data group
leader. Note that JUXMEM and GFARM storage systems may share (or not!) the same
physical nodes for data storage. Setting up physically distinct topologies may however
be justified by the different requirements of JUXMEM (size of physical memory) and
GFARM (available disk space), but also by the need to enhance faulttolerance.

4.1 Flushing data from JUXM EM to GFARM

JuxMem client JuxMem data group GFarm storage

Write in local memory

Update providers

Write on disk

acquire

ack

release

write
ack

ack

Fig. 2. Sequence diagram of basic JUXMEM-GFARM

interactions.

For the sake of simplicity, we have
chosen to flush data to GFARM

whenever a client updates the
corresponding JUXMEM memory
providers at the end of a critical
section during which the data is
modified. According to theentry
consistencyprotocol currently im-
plemented within JUXMEM, this
happens each time a client releases
the lock associated to the data.
Using this particular moment en-
forces the atomicity of the write
operation in GFARM: no JUXMEM

client can access the data un-
til both shared memory and file
system versions are synchronized.
(This basic setting can further be
refined by tuning the flush fre-
quency as a more complex func-
tion of the data modification fre-
quency.)

Figure 2 describes the interactions needed between the mainentities involved in a
flush operation, for a basic scenario where the user performsanacquire-write-release
sequence. Once the user acquires the lock, it gets the data from the corresponding data
group; it can then modify the data in its local memory, as exclusive access is guaranteed.
When the client releases the lock, the modified data is sent tothe data group. All mem-
bers of the data group update their copy and an acknowledgment is sent to the client to
let it continue his computation, while the data group leaderflushes the data into a logical
GFARM file uniquely identified by a file name identical to the corresponding JuxMem
data id. To further improve fault tolerance, this file containing raw data may subse-
quently be replicated on several GFARM file storage nodes using the dedicated GFARM

replicatecommand. This GFARM replication degree can be specified when allocating
the memory in JUXMEM for that data.

Note that the acknowledgement to the client is sent before the completion of the
flush to GFARM. This asynchronous strategy improves performance on the client side,
as it does not need to wait the data to be written in GFARM before proceeding to the
next computation. However, in order to maintain data consistency, the associated lock
can not be re-assigned until the data has been written in bothsystems. Any node which
subsequently tries to acquire the associated lock in exclusive mode will be blocked until
the data flush to GFARM is complete. However, read operations can proceed in parallel
with the flush operation. The benefits of our asynchronous scheme are therefore real
for write-once data, or if the frequency of writes to the samedata does not fall under a

threshold where clients have to wait for JUXMEM and GFARM updates. This threshold
depends on the data size and on network communication performance.

Data flushing from JUXMEM to GFARM introduces an overhead discussed in sec-
tion 5. If during a computation step the write frequency to some data is too high, the
time needed to flush into GFARM may degrade the user application performances. In
that case, it may be assumed that this computation step is short enough to decide a lower
frequency for data flushes to GFARM (e.g. one flush every ten modifications instead of
one flush aftereachmodification). Flush frequency to GFARM should thus be seen as a
finely tuned parameter that makes a trade-off between reliability and performance.

4.2 Restoring data from GFARM to JUXM EM

Restoring data consists in reading a data from the file systemin order to store it in the
data sharing service. This operation occurs in two cases: 1)a JUXMEM client accesses
a data that is no longer in the service, because of failures orbecause it was produced a
long time before; and 2) the user would like to restore a givenversion of the data within
a rollback procedure. As for flushing, one of the simplest wayto achieve the restoring
operation is to use the data group leader for reading the datafrom the file system.

When a client requires access to some data, the JUXMEM service is queried to check
if the corresponding data group is still present in memory. If not, the corresponding file
(if any) is searched for in the GFARM file system, using thedata ID specified by the
client. If the data is found in GFARM, a corresponding JUXMEM data group is created,
then the data is sent to the client.

5 Feasibility study: evaluation

We have designed and implemented a prototype in which the JUXMEM data-sharing
service uses GFARM according to the interaction scheme explained in Section 4.We
use our prototype to run a synthetic application simulatingproducer-consumer access
patterns. Each piece of data is writtenonceand can be accessed independently. This
scenario is inspired by real applications, such as climate (e.g. ocean-atmosphere) mod-
eling applications based on code-coupling [14]. We measurethe average time to write
(respectively read) a piece of data by performing 20 successive accesses.The goal of this
preliminary evaluation is to show that thanks to our combined approach, theJUXMEM

service is enhanced with persistence guarantees provided by GFARM, whereas the ac-
cess cost remains the same (i.e. not impacted by disk access delays) in most cases.

Evaluations are performed using the Grid’5000 [15] testbed. We use 7 nodes of a
Grid’5000 cluster made of Intel Xeon 5148 LV CPUs running at 2.3 GHz, outfitted with
4 GB of RAM each, SATA hard drives (57 MB/s peak throughput) and interconnected
by a Gigabit Ethernet network. The theoretical maximum network bandwidth is thus
125 MB/s; however, if we consider the IP and TCP header overhead, this maximum
becomes slightly lower: 117.5 MB/s when MTU = 1500 B. GFARM runs on 3 nodes
(a metadata server, a cache metadata server, a file system node) and JUXMEM uses
4 nodes (a producer, a consumer, a manager and a memory provider also acting as a
GFARM client).

In order to have a reference for our evaluation, we first ran the scenario described
above using GFARM only, without JUXMEM. Read and write access times for GFARM

for different data sizes, are provided on Figures 3(a) and 3(b). The average read through-
put is 69 MB/s and the average write throughput is 42 MB/s. Note that GFARM’s read
throughput is higher than the peak hard drive throughput (57MB/s), which indicates
that GFARM benefits here from some cache effects. These results are given as reference
values for comparison with the access times provided by our hierarchical grid storage
system. To evaluate the cost of writing data using our hierarchical grid storage, we
consider two scenarios: a common-case scenario and a worst-case scenario.

In the first scenario, we consider that write accesses to a same piece of data are in-
frequent. In such a case, thanks to our asynchronous scheme,the data flush to GFARM

after a write session is complete before the next write to that data into JUXMEM. This
is the case of all write accesses for our producer-consumer scenario, because all data
are written only once. Figure 3(b) indicates a write throughput of 89 MB/s for our hi-
erarchical storage system,equal to the pureJUXMEM throughput. This represents an
improvement by 112% compared to the pure GFARM throughput (42 MB/s), essentially
due to the relative costs of memory accesses compared to diskaccesses. Although the
data is written to GFARM in both schemes, the improvement is possible thanks to the
fact that, once the data is written into JUXMEM, the producer can continue its compu-
tation while the data is flushed into GFARM. Note that the JUXMEM write cost includes
the cost of synchronization (acquire/release).

In a second scenario, we consider that write accesses to a same piece of data are
frequent. In this case, each write (but the first one) has to wait for the previous one to
be flushed into GFARM. Basically, the access time is therefore the time to write into
JUXMEM plus the time to write into GFARM. This leads to a 26 MB/s write throughput,
which is slightly (7%) lower than the theoretical throughput (28.5 MB) that can be
estimated based on the separate write throughputs of JUXMEM and GFARM. In this
case, as explained at the end of Section 4.1, it may be reasonable to reduce the flush
frequency, i.e. to allow several write sessions to JUXMEM to proceed before flushing
data to GFARM.

We equally analyze the cost of reading accesses for our hierarchical grid storage us-
ing two scenarios. We first consider that the data is present in JUXMEM (i.e. in physical
memory). Figure 3(a) shows the time to read a data in such a configuration. The read
throughput for our hierarchical prototype is againequal toJUXMEM’s read through-
put and reaches 100 MB/s in this case, i.e. an improvement by 45% compared to an
optimized GFARM throughput of 69 MB/s (which already benefits from some cache
effects, as explained above). For reference, we remind the reader that, theoretically, the
maximum network throughput is 117 MB/s. In this configuration, we can claim that our
hierarchical grid storage provides GFARM’s persistence guarantees, while the user only
“pays” the cost of JUXMEM accesses (which includes, as previously, the synchroniza-
tion cost, and does not benefit of any specific optimization).

We also consider a reading scenario where the data is not hosted by any JUXMEM

provider in physical memory, but remains available in the GFARM file system. The time
to read includes the time to retrieve the data from GFARM, to store the data in JUXMEM

and to send it to the client. In this configuration, the throughput reaches 39 MB/s. This

is a worst-case scenario that only occurs when the data is notpresent in JUXMEM. Note
that this cost is incurred only once, as subsequent read accesses to the same piece of
data benefit from JUXMEM’s access cost (100 MB/s).

 0

 2

 4

 6

 8

 10

 12

 14

 50 100 150 200 250 300 350 400 450 500

re
ad

 ti
m

e
fo

r
al

l s
ys

te
m

s
(s

)

data size (MB)

juxmem+gfarm (data in juxmem)
juxmem+gfarm (data not in juxmem)

gfarm

 0

 5

 10

 15

 20

 25

 50 100 150 200 250 300 350 400 450 500

w
rit

e
tim

e
fo

r
al

l s
ys

te
m

s
(s

)

data size (MB)

juxmem+gfarm (write once and unfrequent writes)
juxmem+gfarm (write once and frequent writes)

gfarm

Fig. 3.Cost of read (a) and write (b) operations in JUXMEM and GFARM.

6 Conclusion and future work

While grid file systems provide an elegant solution forpersistentstorage oflarge vol-
umes of dataon physically distributed files, the concept of grid data-sharing service
offersefficientaccess to globally shared data by relying on RAM storage. We propose
a hierarchical grid storage system that simultaneously addresses these issues, based on
the JUXMEM grid-data sharing serviceand on the GFARM grid file system. The main
idea is to allow applications to use JUXMEM’s efficient memory-oriented API, while
letting JUXMEM persistently and transparently store data on GFARM disk files.

Our experiments performed on the Grid’5000 testbed confirm the advantages of our
approach: in most cases the data access cost is not impacted by the cost of disk accesses
(100 MB/s read throughput, 89 MB/s write throughput). At thesame time, thanks to
GFARM, the storage space made available to applications that use JUXMEM’s memory-
oriented API is significantly increased: JUXMEM can act as a shared cache for actively
accessed data, while GFARM ensures a large capacity for long term, persistent storage.

As a future work, we plan to extend our experiments to more complex configura-
tions where replication is used to improve fault tolerance.We plan to evaluate the in-
duced overhead, and to address this issue using parallel data accesses between JUXMEM

providers and GFARM storage nodes. We equally intend to develop and compare mul-
tiple cache strategies allowing JUXMEM to efficiently act as a cache for actively used
data, while GFARM would serve for long-term storage.

Acknowledgment This work has been supported by the Sakura programme for bilat-
eral Japan-France collaborations, by the AIST (Tsukuba, Japan), by the French National

Agency for Research project LEGO (ANR-05-CIGC-11) and by the NEGST France-
Japan research collaboration programme. It has been also supported by a grant of Sun
Microsystems and a grant from the Regional Council of Brittany, France.

The experiments presented in this paper were carried out using the Grid’5000 ex-
perimental testbed, an initiative from the French Ministryof Research through the ACI
GRID incentive action, INRIA, CNRS and RENATER and other contributing partners
(seehttp://www.grid5000.fr/).

References

1. Antoniu, G., Bougé, L., Jan, M.: JuxMem: An adaptive supportive platform for data sharing
on the grid. Scalable Computing: Practice and Experience6(3) (November 2005) 45–55

2. Antoniu, G., Deverge, J.F., Monnet, S.: How to bring together fault tolerance and data con-
sistency to enable grid data sharing. Concurrency and Computation: Practice and Experience
18(13) (November 2006) 1705–1723

3. Allcock, B., Bester, J., Bresnahan, J., Chervenak, A.L.,Foster, I., Kesselman, C., Meder, S.,
Nefedova, V., Quesnel, D., Tuecke, S.: Data management and transfer in high-performance
computational grid environments. Parallel Comput.28(5) (2002) 749–771

4. Chirp protocol specification. Available athttp://www.cs.wisc.edu/condor/chirp/
5. Dunno, F., Gaido, L., Gishelli, A., Prelz, F., Sgaravatoo, M.: DataGrid prototype 1. EU-

DataGrid collaboration. In: Proc. of the TERENA NetworkingConf., Limerick, Ireland
(June 2002)

6. Kunszt, P.Z., Laure, E., Stockinger, H., Stockinger, K.:File-based replica management.
Future Generation Computing Systems21(1) (2005) 115–123

7. Lightweight data replicator. Available athttp://www.lsc-group.phys.uwm.edu/LDR/
8. Tatebe, O., Morita, Y., Matsuoka, S., Soda, N., Sekiguchi, S.: Grid datafarm architecture

for petascale data intensive computing. In: Proc. 2nd IEEE/ACM Intl. Symp. on Cluster
Computing and the Grid (Cluster 2002), Washington DC, USA, IEEE Computer Society
(2002) 102

9. Honeyman, P., Adamson, W.A., McKee, S.: GridNFS: global storage for global collabora-
tions. In: Proc. IEEE Intl. Symp. Global Data Interoperability - Challenges and Technologies,
Sardinia, Italy, IEEE Computer Society (June 2005) 111–115

10. White, B.S., Walker, M., Humphrey, M., Grimshaw, A.S.: LegionFS: a secure and scal-
able file system supporting cross-domain high-performanceapplications. In: Proc. 2001
ACM/IEEE Conf. on Supercomputing (SC ’01), New York, NY, USA, ACM Press (2001)
59–59

11. Protic, J., Tomasevic, M., Milutinovic, V.: Distributed shared memory: concepts and systems.
IEEE Paralel and Distributed Technology4(2) (1996) 63–71

12. Bershad, B.N., Zekauskas, M.J., Sawdon, W.A.: The Midway distributed shared memory
system. In: Proc. 38th IEEE Intl. Computer Conf. (COMPCON Spring ’93), Los Alamitos,
CA (February 1993) 528–537

13. Kazar, M.L.: Synchronization and caching issues in the andrew file system. In: USENIX
Winter. (1988) 27–36

14. Valcke, S., Caubel, A., Vogelsang, R., Declat, D.: OASIS3 user’s guide. Technical Report
TR/CMGC/04/68, CERFACS, Toulouse, France (2004)

15. The Grid’5000 project. Available athttp://www.grid5000.org/

