Metadata, citation and similar papers at core.ac.uk

Provided by HAL-Rennes 1

archives-ouvertes

Building Hierarchical Grid Storage Using the Gfarm
Global File System and the JuxMem Grid Data-Sharing

Service
Gabriel Antoniu, Loic Cudennec, Majd Ghareeb, Osamu Tatebe

» To cite this version:

Gabriel Antoniu, Loic Cudennec, Majd Ghareeb, Osamu Tatebe. Building Hierarchical Grid
Storage Using the Gfarm Global File System and the JuxMem Grid Data-Sharing Service.
Emilio Luque and Tomas Margalef and Domingo Benitez. 14th International Euro-Par Confer-
ence, Aug 2008, Las Palmas de Gran Canaria, Spain. Springer, LNCS 5168, pp.456-465, 2008,
Euro-Par 2008 Parallel Processing. <inria-00318590>

HAL Id: inria-00318590
https://hal.inria.fr /inria-00318590
Submitted on 4 Sep 2008

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche frangais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/48259421?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/inria-00318590

Building Hierarchical Grid Storage
Using the GFARM Global File System
and the JuxM EM Grid Data-Sharing Service*

Gabriel Antonid, Loic Cudennet Majd Ghareeb, and Osamu TateBe

L INRIA/IRISA, Rennes, France
2 University of Tsukuba, Japan

Abstract. As more and more large-scale applications need to genandtpra-
cess very large volumes of data, the need for adequate sttaaijties is grow-
ing. It becomes crucial to efficiently and reliably store aattieve large sets of
data that may be shared at the global scale. Based on presyistesns for global
data sharing (global file systems, grid data-sharing sesyj¢his paper proposes
a hierarchical approach for grid storage, which combinesatcess efficiency
of RAM storage with the scalability and persistence of thebgl file system
approach. Our proposal has been validated through a ppetahat couples the
GFARM file system with the UXMEM data-sharing service. Experiments on the
Grid’5000 testbed confirm the advantages of our approach.

1 Introduction

An increasing number of applications in various fields (sashgenetics, nuclear
physics, health, environment, cosmology, etc.) are nowaegploiting large-scale, dis-
tributed computing infrastructures for simulation or infation processing. This leads
to the generation of very large volumes of data. The needte stnanage and process
these data in a proper way leads to several important reqairts. First, darge storage
capacityis needed. Second, as these large volumes of data may becprbioly(or used
as an input for) long and costly computatiodata persistences essential. To address
these requirements, file-based secondary storage ha$yusesh favored in most grid
storage systems. On the other hand, data need eéffibentlyaccessed in distributed
way at a large scale. As the cost of disk read/write operatinay significantly limit
the performance of data accesses, the use of faster-acAdsst@rage appears as a
promising approach. The conceptgrfd-data sharing servic§l, 2] explores this idea
by providing the abstraction of a globally shared memorycspauilt by aggregating
the RAM storage made available by thousands of grid nodeseker, the overall stor-
age capacity is limited to the aggregated RAM storage aviaila

This paper proposes an architecture for large-scalejlmigtd grid storage whose
goal is to leveragat the same timéhe efficiency of RAM accesses and the larger-
capacity, persistent disk storage available on a grid. @init@cture implements a grid-
scale memory hierarchy by interconnecting a grid dataispaervice (acting as a grid-
scale RAM) and a grid file system.

* Corresponding author: Gabriel Antoniu, IRISA, Campus dawieu, F-35042 Rennes Cedex,
France. EmailGabriel.Antoniu@inria.fr.

The remaining of the paper is organized as follows. Sectialis2usses related
work. Section 3 briefly describes the two systems on whichele the UXMEM grid
data-sharing service and ther&Mm grid file system; then, it introduces our hybrid
architecture. Section 4 gives details on the interactiawéen the two systems. An
experimental evaluation of our approach is presented iti®e8. Section 6 concludes
the paper and discusses future research directions.

2 Related Work

One of the major goals of grid infrastructures igrEnsparentlyprovide access to com-
putational and storage resources, by hiding the detailatakloich resources are used
and where they are located, as much as possible. Regardmgtdeage and manage-
ment, this goal is still far from being achieved, as mostentrigrid data management
systems requirexplicit data transfers before and after the computations. GridBT,P [
Chirp [4] are typical examples of two file transfer tools atgalto grid infrastructures,
providing for instance support for parallel streams, antication, checkpoint/restartin
case of failures, etc. Based on such tools, catalogue-ligadocalization and man-
agement services have been built, such as RLS [5], Reptd®fapr [6], LDR [7]. Such
catalogues allow the user to manually register and chaiaetdata copies, but do not
provide any support for transparent access, nor for auformantsistency maintenance.

In contrast, the concept afrid file systemprovides a familiar, file-oriented API
allowing to transparently access physically distributatadhrough globally unique,
logical file paths. The applications simply open and accash §iles as if they were
stored on a local file system. A very large distributed stersgace is thus made avail-
able to existing applications that usually use file storag#h no need for modifica-
tions. This approach has been taken by a few projects likerG [8], GridNFS [9],
LegionFS [10], etc.

The transparent data access model is equally defended bgpiizept ofgrid data-
sharing serviceillustrated by the UXMEMm platform (described in detail in the next
section). This service provides the grid applications wlith abstraction of a globally
shared memory in which data can be easily stored and acce#ssegh global iden-
tifiers. Compared to the grid file system approach, this apgramprovesccess effi-
ciencyby totally relying on RAM storage. Besides the fact that a RAstess is more
efficient than a disk access, the system can leverage lpagitimization schemes de-
veloped within the Distributed Shared Memory (DSM) coresisly protocols that serve
as a basis for the system’s design. However, the system&aga@apacity is limited by
the overall RAM available on the infrastructure.

3 Combining RAM and disk storage to achieve scalability,
persistence and efficiency

As previously shown, grid file systems provide a conveniesy ¥o persistently store
very large volumes of data into distributed files, whereasnory-based grid data-
sharing services provide a more efficient data access. Teessl@ll these issued

the same timewe propose a hierarchical storage system that combinetashkaring
service with a grid file system.

3.1 The JuxMEM data sharing service

Providing a transparent data access model in an efficientasyeen one of the major
motivations of research efforts on distributed shared mgr{idSM) systems [11].

However, the efficiency of traditional DSM consistency paitls has not proved
scalable. As the grids brought forward new hypotheses {getascale, a dynamic in-
frastructure with increased failure probability), a nevprgach to transparent memory-
based data sharing was needed. To address this challeegeoribept ofgrid data
sharing servicehas been proposed [1]. The idea is to rely on results fromrakae
eas: location-transparent access and consistency pletfddSM systems; algorithms
for fault-tolerant distributed systems; scalability ardtniques to support volatility in
peer-to-peer (P2P) systems.

From the user’s point of viewuk MEM provides an APl inspired by DSM systems
allowing to perform memory allocation, data access thragigbhal IDs (e.g. pointers),
and lock-based synchronization. Users can dynamicalbzale shared memory using
the juxmem_malloc primitive, which returns a global data ID. This ID can be ubgd
other nodes in order to access existing data, through thefudee juxmem_mmap
function. It is the responsibility of the implementatiortbé grid data-sharing service to
localize the data and perform the necessary data transfsesllon this ID. This is how
a grid data-sharing service providegansparentaccess to data. Bofhxmem_malloc
andjuxmem_mmap primitives provide a local pointer that can be used to diyetcess
the data. Note that, at the implementation level,jtikeaem_mmap primitive does not
rely on themmap call. It will provide the calling client with a full copy of th data,
whatever the grain of the subsequent accesses made byiémt cl

JuxMEM'’s architecture mirrors a grid consisting of a federatiodisfributed clus-
ters and it is therefore expressed in term#iefrarchical groups of nodes. In order to
cope with possible failures that may threaten data persistelx MEM includes auto-
matic replication mechanisms. When allocating a memorglglthe client may spec-
ify: 1) on how many clusters the data should be replicatedii2how many providers
in each cluster the data should be replicated; 3) the cemsigtprotocol that should be
used to manage the access to this data. As a result of thatidlogrocedure, a set
of distributed replicas are created, callgata group This group has a fault-tolerant,
self-organizing behavior: failures of its members are m#ttically detected, and failed
nodes are transparently replaced, in order to maintainelkcation degrees specified
by the user. To do this transparently, while guaranteeiagtirrectness of the data ac-
cesses that may take place during the failures, we rely dirtfaerant algorithms for
group membership and atomic multicast. To favor scalgtalitd take into account the
latency hierarchy previously discussed, hierarchicaptateons of these algorithms are
implemented (see [2] for details).

From an implementation point of view, the fault-toleramg@ithms used are leader-
based.

The main consistency model provided hyxMEM is entry consistencyirst intro-
duced in [12]. In this model, which we consider as well-addpb grid data sharing,

processes that need to access data need to properly syizehbgnacquiring a lock
associated to that data. This is done by caljugnem_acquire_read (prior to a read
access) ojuxmem_acquire (prior to a write access). Note thatkmem_acquire_read
allows multiple readers to simultaneously access the satege @hejuxmem_release
primitive must be called after the access, to release the [Bleese synchronization
primitives allow the implementation to provide consistggoarantees according to the
consistency protocol specified by the user at the allocéitoe.

3.2 The GFARM distributed file system

GFARM FS is a distributed file system federating local file systefgpically, it fed-
erates local file systems on compute nodes in several cdugterode that provides a
local file system is called file system node

Physically, files can be replicated and stored on any fileesystode, but can be
accessed transparently by a client. File replicas can lmettdy a GARM replicate
command from a file system node to another file system nodesi§€ency among
file replicas is maintained by a close-to-open consisteikey AFS [13] when a file
is updated. Every other out-of-date file replicas except ptoudate replica will be
deleted when the updated file is closed.

GFARM FS is designed to achieve scalable file I/O performance irstiillited
environment byputting priority to a local file systepandfile-affinity schedulingWWhen
a client is also a file system node, the local file system is agiaa GFARM FS. The
data transfer from file system nodes to a client can be redogedploiting local file
access. When a new file is created, the file is created on thefiecsystem if there is
enough disk space. When one of file replicas is stored on &fiteaystem, the local
file replica is chosen to be accessed. A file-affinity scheduié a scheduling policy
of a process allocation such that a file system node that haesdified file replica has
priority to be scheduled. This increases a chance of a Ideadtess.

GFARM FS consists of a file system metadata server and multipleyStes nodes.
A file system daemon callegfsdruns on every file system node. Client nodes access
a GFARM FS by mounting it. It is developed in open sourcehigt://sourceforge.net/
projects/gfarm/.

3.3 Our proposal: a hybrid grid memory hierarchy

In order to take advantage of the more persistent, largeaaity storage provided by
the GFARM grid file system, while keeping data access efficient (i.d.impacted

by disk access delays), our approach consistssing GFARM as secondary storage
for the JuxMEM data sharing serviceThe main idea is to allow applications to use
JuxMEM’s more efficient memory-oriented API, while lettingXIM EM to persistently
store data on disk files by making calls toc&RM in the background. These calls are
internally issued by xMEM, so they are totally transparent to the user, as illustrated
on Figure 1. Besides, as explained in Section 4, their cadssgenerally transparent,
as the disk accesses are performed asynchronously in nsest @aorder to avoid them

to impact the efficiency of the application’s data accesses.

With respect to persistence, as seen In memory ! ondisk
in the previous sectionuXMEM already USER '
enhances data availability in the pres-
ence of failures by using data replication
strategies. However, every piece of data is
stored in physical memory, making thi
system prone to hard failures of nodes. JUXMEM
JuxMEM'’s consensus algorithm used to
implement atomic multicast and group
membership operations, supports multi-
ple simultaneous failures within each any
group of replicas, as long as a majority of Fig. 1. The xMEM- GFARM architecture.
nodes remain correct in the group. How-
ever, in a grid, failures of whole clusters
may happen (e.g. due to air conditioning problems). Thiddda the loss of all data
stored exclusively in RAM, if all replicas are stored withive failing cluster. In the con-
text of heavy, long-duration scientific applications, ityree costly (if ever possible) to
regenerate the data, e.g. by restarting the computatioptbduced it. A more efficient
approach to ensure data persistence is to use second&rpadied storage. Another
scenario where disk storage is more appropriate than RAM@ccorresponds to situ-
ation where data is read and processed a long time after idesproduced (e.g. after
several weeks).

Finally, thanks to the use of €ARM, the storage space made available to applica-
tions that use UXMEM’s memory-oriented API is significantly increasedixXMEM
can act as a shared cache for actively accessed data, wkieMGensures a large ca-
pacity for long term storage.

provider

provider

provider

4 Implementing the JUXM EM-GFARM interaction

In the approach presented here, we have chosen to exhibitéh®ory-oriented API
provided by the UXMEM data-sharing to the grid applications: the user can dynami-
cally allocate memory in the grid storage space, map it tovta address space and
access it through local pointers. On the other side, wenatbruse G-ArRM’s global

IDs (i.e. globally shared file names) to persistently stav@ MEM’s shared data on
physical files, but these IDs, as well as the usage of thiofilented API are hidden
from the user.

We therefore need to define whicbxXdMEM entities should interact with B\RM,
when UxXMEM should flush data to &RM and when this data should be restored to
JuxMEM. In the first version of our hybrid architecture, we decidattfior each data,

a single IXMEM provider should interact with &\RM, as a client: the data group
leader. Note thatux MEM and GFARM storage systems may share (or not!) the same
physical nodes for data storage. Setting up physicallyndistopologies may however
be justified by the different requirements afXMEMm (size of physical memory) and
GFARM (available disk space), but also by the need to enhancet@deitince.

4.1 Flushing data from JuXMEM to GFARM

For the sake of simplicity, we have
chosen to flush data to FARM

whenever a client updates the
corresponding UXMEM memory i i i
providers at the end of a critical

. . . . JuxMem client JuxMem data group GFarm storage
section during which the data is ! !
modified. According to theentry H acquire |
consistencyrotocol currently im- l 1]

happens each time a client releas ‘
the lock associated to the data. | (ﬁ;‘ﬁ
Using this particular moment en- l

forces the atomicity of the write ack write

operation in GARM: N0 UXMEM

client can access the data un- :
I
I

I

I

I

I

|

. . . !
plemented within UXMEM, this — ack !
Write in local memory 1

Ae release | |

1

I

I

I

I

I

[}

til both shared memory and file
system versions are synchronized.
(Thls basic set.tlng can further bq:ig. 2. Sequence diagram of basicXIMEM-GFARM
refined by tuning the flush fre-j o actions.

guency as a more complex func-

tion of the data modification fre-

quency.)

Figure 2 describes the interactions needed between theantiies involved in a
flush operation, for a basic scenario where the user perfamasquire-write-release
sequence. Once the user acquires the lock, it gets the datatie corresponding data
group; it can then modify the data in its local memory, as@sigk access is guaranteed.
When the client releases the lock, the modified data is sehetdata group. All mem-
bers of the data group update their copy and an acknowledgasent to the client to
let it continue his computation, while the data group ledllshes the data into a logical
GFARM file uniquely identified by a file name identical to the cor@sging JuxMem
data id. To further improve fault tolerance, this file contag raw data may subse-
quently be replicated on severaF&RM file storage nodes using the dedicateech@&m
replicatecommand. This GARM replication degree can be specified when allocating
the memory in UxMEM for that data.

Note that the acknowledgement to the client is sent befarectimpletion of the
flush to GFARM. This asynchronous strategy improves performance on ibetdide,
as it does not need to wait the data to be written Frn@v before proceeding to the
next computation. However, in order to maintain data cdesisy, the associated lock
can not be re-assigned until the data has been written indystems. Any node which
subsequently tries to acquire the associated lock in eixelnsode will be blocked until
the data flush to GARM is complete. However, read operations can proceed in parall
with the flush operation. The benefits of our asynchronousraehare therefore real
for write-once data, or if the frequency of writes to the satata does not fall under a

T
|
I
.

1 ack
I
I

threshold where clients have to wait fasXIMEmM and GFARM updates. This threshold
depends on the data size and on network communication peafare.

Data flushing from UXMEM to GFARM introduces an overhead discussed in sec-
tion 5. If during a computation step the write frequency tasadata is too high, the
time needed to flush into @RM may degrade the user application performances. In
that case, it may be assumed that this computation steprisestaugh to decide a lower
frequency for data flushes toF&RM (e.g. one flush every ten modifications instead of
one flush afteeachmodification). Flush frequency tokaRM should thus be seen as a
finely tuned parameter that makes a trade-off between ritjadind performance.

4.2 Restoring data from GFARM to JUXMEM

Restoring data consists in reading a data from the file systewder to store it in the
data sharing service. This operation occurs in two casesJiXMEM client accesses
a data that is no longer in the service, because of failurégcause it was produced a
long time before; and 2) the user would like to restore a gixasion of the data within
a rollback procedure. As for flushing, one of the simplest vagchieve the restoring
operation is to use the data group leader for reading thefidatathe file system.

When a client requires access to some data,txd/lIEm service is queried to check
if the corresponding data group is still present in memdnyot, the corresponding file
(if any) is searched for in the ARM file system, using thdata ID specified by the
client. If the data is found in &ARM, a correspondinguX MEM data group is created,
then the data is sent to the client.

5 Feasibility study: evaluation

We have designed and implemented a prototype in which theMEM data-sharing
service uses GARM according to the interaction scheme explained in Sectioivet.
use our prototype to run a synthetic application simulapmgducer-consumer access
patterns. Each piece of data is writtenceand can be accessed independently. This
scenario is inspired by real applications, such as climatg pcean-atmosphere) mod-
eling applications based on code-coupling [14]. We meath&@verage time to write
(respectively read) a piece of data by performing 20 suaszascessed.he goal of this
preliminary evaluation is to show that thanks to our combdiapproach, theJuxMem
service is enhanced with persistence guarantees provig€gFarM, whereas the ac-
cess cost remains the same (i.e. not impacted by disk acelessyin most cases.
Evaluations are performed using the Grid’5000 [15] testiWge use 7 nodes of a
Grid’5000 cluster made of Intel Xeon 5148 LV CPUs running.8@Hz, outfitted with
4 GB of RAM each, SATA hard drives (57 MB/s peak throughput) anterconnected
by a Gigabit Ethernet network. The theoretical maximum oekwandwidth is thus
125 MB/s; however, if we consider the IP and TCP header oaeththis maximum
becomes slightly lower: 117.5 MB/s when MTU = 1500 BFARM runs on 3 nodes
(a metadata server, a cache metadata server, a file systesh avudl UXMEM uses
4 nodes (a producer, a consumer, a manager and a memoryqralsd acting as a
GFARM client).

In order to have a reference for our evaluation, we first r@nstenario described
above using GARM only, without UxMEM. Read and write access times foFARM
for different data sizes, are provided on Figures 3(a) abyl 3be average read through-
put is 69 MB/s and the average write throughput is 42 MB/s.eNbat G-ARM'’s read
throughput is higher than the peak hard drive throughputB7s), which indicates
that GFARM benefits here from some cache effects. These results areaguweference
values for comparison with the access times provided by @ratchical grid storage
system. To evaluate the cost of writing data using our hidiaal grid storage, we
consider two scenarios: a common-case scenario and a gagstscenario.

In the first scenario, we consider that write accesses to a g&une of data are in-
frequent. In such a case, thanks to our asynchronous schieendata flush to GRm
after a write session is complete before the next write tbdaga into UXMEM. This
is the case of all write accesses for our producer-consucesasio, because all data
are written only once. Figure 3(b) indicates a write thrqugttof 89 MB/s for our hi-
erarchical storage systemgual to the puredJuxMEM throughput This represents an
improvement by 112% compared to the purea@w throughput (42 MB/s), essentially
due to the relative costs of memory accesses compared tackiglsses. Although the
data is written to GARM in both schemes, the improvement is possible thanks to the
fact that, once the data is written intoXIMEM, the producer can continue its compu-
tation while the data is flushed intoF&RM. Note that the UXMEM write cost includes
the cost of synchronization (acquire/release).

In a second scenario, we consider that write accesses to e @aoe of data are
frequent. In this case, each write (but the first one) has fbfaathe previous one to
be flushed into GARM. Basically, the access time is therefore the time to write in
JuxMEM plus the time to write into GARM. This leads to a 26 MB/s write throughput,
which is slightly (7%) lower than the theoretical through28.5 MB) that can be
estimated based on the separate write throughputsMEM and GFARM. In this
case, as explained at the end of Section 4.1, it may be realsoimareduce the flush
frequency, i.e. to allow several write sessions txMEM to proceed before flushing
data to G-ARM.

We equally analyze the cost of reading accesses for ourbiécal grid storage us-
ing two scenarios. We first consider that the data is preselibti MEM (i.e. in physical
memory). Figure 3(a) shows the time to read a data in such figcoation. The read
throughput for our hierarchical prototype is agaiqual toJuxMEM'’s read through-
put and reaches 100 MB/s in this case, i.e. an improvement by 45%pared to an
optimized G-ARM throughput of 69 MB/s (which already benefits from some cache
effects, as explained above). For reference, we remindcetider that, theoretically, the
maximum network throughputis 117 MB/s. In this configuratiwe can claim that our
hierarchical grid storage provides&RrM'’s persistence guarantees, while the user only
“pays” the cost of UXMEM accesses (which includes, as previously, the synchroniza-
tion cost, and does not benefit of any specific optimization).

We also consider a reading scenario where the data is nadbgtany IXMEM
provider in physical memory, but remains available in th\@&u file system. The time
to read includes the time to retrieve the data frorn&M, to store the data inuUkKMEM
and to send it to the client. In this configuration, the thitmugt reaches 39 MB/s. This

is a worst-case scenario that only occurs when the data esént in UXxMEM. Note
that this cost is incurred only once, as subsequent readses¢o the same piece of
data benefit fromUdxMEM’s access cost (100 MB/s).

read time for all systems (s)

write time for all systems (5)

Fig. 3. Cost of read (a) and write (b) operations inxMEM and GFARM.

6 Conclusion and future work

While grid file systems provide an elegant solution fersistentstorage ofarge vol-
umes of dataon physically distributed files, the concept of grid datarsig service
offersefficientaccess to globally shared data by relying on RAM storage. pgse

a hierarchical grid storage system that simultaneouslyesdés these issues, based on
the UXMEM grid-data sharing servicand on the GARM grid file systemThe main
idea is to allow applications to us&dMEeM’s efficient memory-oriented API, while
letting UXMEM persistently and transparently store data e@v disk files.

Our experiments performed on the Grid’5000 testbed confierativantages of our
approach: in most cases the data access cost is not impgdteeldost of disk accesses
(100 MB/s read throughput, 89 MB/s write throughput). At 8game time, thanks to
GFARM, the storage space made available to applications thatudd dm’s memory-
oriented APl is significantly increasedsdMEM can act as a shared cache for actively
accessed data, whileF&RM ensures a large capacity for long term, persistent storage.

As a future work, we plan to extend our experiments to morepterconfigura-
tions where replication is used to improve fault tolerantfe. plan to evaluate the in-
duced overhead, and to address this issue using parabeddegsses betweenxIM EM
providers and GARM storage nodes. We equally intend to develop and compare mul-
tiple cache strategies allowingdMEM to efficiently act as a cache for actively used
data, while GArRM would serve for long-term storage.

Acknowledgment This work has been supported by the Sakura programme fdr bila
eral Japan-France collaborations, by the AIST (Tsukulpadaby the French National

Agency for Research project LEGO (ANR-05-CIGC-11) and by NEGST France-
Japan research collaboration programme. It has been giporad by a grant of Sun
Microsystems and a grant from the Regional Council of Buigfd-rance.

The experiments presented in this paper were carried ong tiseé Grid’5000 ex-

perimental testbed, an initiative from the French Minisif\Research through the ACI
GRID incentive action, INRIA, CNRS and RENATER and other titiuting partners
(seehttp://www.grid5000.fr/).

References

~

10.

11.

12.

13.

14.

15.

. Antoniu, G., Bougé, L., Jan, M.: JuxMem: An adaptive sufipe platform for data sharing

on the grid. Scalable Computing: Practice and Experi&i@ge(November 2005) 45-55

. Antoniu, G., Deverge, J.F., Monnet, S.: How to bring tbgeffault tolerance and data con-

sistency to enable grid data sharing. Concurrency and Ctatipior: Practice and Experience
18(13) (November 2006) 1705-1723

. Allcock, B., Bester, J., Bresnahan, J., Chervenak, Abster, |., Kesselman, C., Meder, S.,

Nefedova, V., Quesnel, D., Tuecke, S.: Data managementransifér in high-performance
computational grid environments. Parallel Com@&(5) (2002) 749-771

. Chirp protocol specification. Available lattp://www.cs.wisc.edu/condor/chirp/
. Dunno, F., Gaido, L., Gishelli, A., Prelz, F., Sgaravatbb: DataGrid prototype 1. EU-

DataGrid collaboration. In: Proc. of the TERENA Networki@pnf., Limerick, Ireland
(June 2002)

. Kunszt, P.Z., Laure, E., Stockinger, H., Stockinger, Kcile-based replica management.

Future Generation Computing Systefi§1) (2005) 115-123

. Lightweight data replicator. Available http://www.Isc-group.phys.uwm.edu/LDR/
. Tatebe, O., Morita, Y., Matsuoka, S., Soda, N., Sekigushi Grid datafarm architecture

for petascale data intensive computing. In: Proc. 2nd IREB Intl. Symp. on Cluster
Computing and the Grid (Cluster 2002), Washington DC, USZEE Computer Society
(2002) 102

. Honeyman, P., Adamson, W.A., McKee, S.: GridNFS: globalagye for global collabora-

tions. In: Proc. IEEE Intl. Symp. Global Data Interoperapi Challenges and Technologies,
Sardinia, Italy, IEEE Computer Society (June 2005) 111-115

White, B.S., Walker, M., Humphrey, M., Grimshaw, A.S..edionFS: a secure and scal-
able file system supporting cross-domain high-performapications. In: Proc. 2001
ACM/IEEE Conf. on Supercomputing (SC '01), New York, NY, USACM Press (2001)
59-59

Protic, J., Tomasevic, M., Milutinovic, V.: Distribitshared memory: concepts and systems.
IEEE Paralel and Distributed Technolog{?) (1996) 63—71

Bershad, B.N., Zekauskas, M.J., Sawdon, W.A.: The Myddiatributed shared memory
system. In: Proc. 38th IEEE Intl. Computer Conf. (COMPCONi&p’'93), Los Alamitos,
CA (February 1993) 528-537

Kazar, M.L.: Synchronization and caching issues in thdrew file system. In: USENIX
Winter. (1988) 27-36

Valcke, S., Caubel, A., Vogelsang, R., Declat, D.: OASI&er’s guide. Technical Report
TR/CMGC/04/68, CERFACS, Toulouse, France (2004)

The Grid’5000 project. Available attp://www.grid5000.org/

