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Abstract

All fields of neuroscience that employ brain imaging need to communicate
their results with reference to anatomical regions. In particular, comparative
morphometry and group analysis of functional and physiological data require
coregistration of brains to establish correspondences across brain structures. It is well
established that linear registration of one brain to another is inadequate for aligning
brain structures, so numerous algorithms have emerged to nonlinearly register
brains to one another. This study is the largest evaluation of nonlinear deformation
algorithms applied to brain image registration ever conducted. Fourteen algorithms
from laboratories around the world are evaluated using 8 different error measures.
More than 45,000 registrations between 80 manually labeled brains were performed
by algorithms including: AIR, ANIMAL, ART, Diffeomorphic Demons, FNIRT,
IRTK, JRD-fluid, ROMEO, SICLE, SyN, and four different SPM5 algorithms
(“SPM2-type” and regular Normalization, Unified Segmentation, and the DARTEL
Toolbox). All of these registrations were preceded by linear registration between
the same image pairs using FLIRT. One of the most significant findings of this
study is that the relative performances of the registration methods under comparison
appear to be little affected by the choice of subject population, labeling protocol,
and type of overlap measure. This is important because it suggests that the findings
are generalizable to new subject populations that are labeled or evaluated using
different labeling protocols. Furthermore, we ranked the 14 methods according to
three completely independent analyses (permutation tests, one-way ANOVA tests,
and indifference-zone ranking) and derived three almost identical top rankings of
the methods. ART, SyN, IRTK, and SPM’s DARTEL Toolbox gave the best results
according to overlap and distance measures, with ART and SyN delivering the most
consistently high accuracy across subjects and label sets. Updates will be published
on the http://www.mindboggle.info/papers/ website.

∗ Corresponding author
Email address: arno@binarybottle.com (Arno Klein).
URL: http://www.binarybottle.com (Arno Klein).
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1 Introduction

Brain mapping – mapping the structures, physiology, functions, and
connectivity of brains in individuals and in different populations – is possible
due to a diverse but often disconnected array of brain imaging technologies and
analysis methods. To make the best use of brain image data, researchers have
attempted for over 40 years to establish a common reference frame such as a
three-dimensional coordinate or labeling system to consistently and accurately
communicate the spatial relationships within the data (Talairach and Szikla,
1967; Talairach and Tournoux, 1988; Drury et al., 1996; Fischl et al., 1999;
Clouchoux et al., 2005). A common reference frame helps us to:
1. communicate and compare data

(across subjects, time, conditions, and image types),
2. classify data

(by meaningful spatial positions or extent), and
3. find patterns in data

(to infer structural or functional relationships).
These three benefits are contingent on one serious premise: positions and sizes
in one brain must correspond to positions and sizes in another brain to make
comparisons.

This premise almost universally does not hold when brain image data are
compared across individuals. The noise that this introduces is often accepted
by researchers who generally assume that if they have found corresponding
features across two brains, the intervening points between those features
correspond to one another as well. Brains are so variable in shape that there
simply may not exist a point-to-point correspondence across any two brains,
or even in the same brain over time.

Explicit manual labeling of brain regions is the preferred approach for
establishing anatomical correspondence, but it is too prohibitive in terms
of time and resources, particularly in cases where neuroanatomists are not
available, in intraoperative or other time-sensitive scenarios, and in high-
throughput environments that need to process dozens to thousands of brain
images. 1 .

1 To indicate the level of investment required to manually label brain anatomy, the
Center for Morphometric Analysis (CMA) at the Massachusetts General Hospital
(MGH) expects at least one month of training to train new technicians to the point
of acceptable inter-rater reliability using their Cardviews (Caviness et al., 1996)
labeling protocol and software; once trained, it takes hours to weeks to manually
label a single brain. For 12 of the brains used in this study, a trained assistant took
two weeks to label each brain. At this rate, performing a modest imaging study with
20 subjects and 20 controls would require 20 months devoted strictly to labeling.
Manual labeling also suffers from inconsistencies within and across human labelers
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Automatically determining anatomical correspondence is almost universally
done by registering brains to one another or to a template. There has
been a proliferation of different approaches to perform image registration
that demands a comparison to guide choices regarding algorithms, software
implementation, setup and parameters, and data preprocessing options. To
better enable individuals to make these choices, the Valmet software tool
(http://www.ia.unc.edu/public/valmet/) (Gerig et al., 2001) and the
Non-rigid Image Registration Evaluation Project (NIREP) (http://www.
nirep.org) were developed. The Windows-based Valmet was in 2001 the
first publicly available software tool for measuring (as well as visualizing)
the differences between corresponding image segmentations, but has received
only one minor update since 2001 (in 2004). It uses several algorithms to
compare segmentations: overlap ratio, Hausdorff distance, surface distance,
and probabilistic overlap. The NIREP project “has been started to develop,
establish, maintain, and endorse a standardized set of relevant benchmarks and
metrics for performance evaluation of nonrigid image registration algorithms.”
The initial phase of the project will include 16 manually labeled brain images
(32 labeled regions in 8 men and 8 women) and four evaluation metrics: 1.
relative overlap (equivalent to the “union overlap” defined in the Materials
and methods section), 2. variance of the registered intensity images for
an image population, 3. inverse consistency error between a forward and
reverse transformation between two images, and 4. transitivity (how well
all the pairwise registrations of the image population satisfy the transitivity
property).

In this study we set out to evaluate what we believe are the most important
nonlinear deformation algorithms that have been implemented in fully
automated software programs and applied to human brain image registration.
We measure accuracy at the scale of gross morphologi cal structures (gyri,
sulci, and subcortical regions) acquired by magnetic resonance imaging (MRI).
There have been two significant prior studies that compared more than three
nonlinear deformation algorithms for evaluating whole-brain registration.

The first was communicated in a series of publications by Hellier et al.
(Hellier et al., 2001a, 2002, 2003); they compared five different fully automated
nonlinear brain image registration software programs using the same set of
quantitative measures. These included global measures comparing 17 deformed
MRI source images and one target image: average brain volume, gray matter
overlap, white matter overlap, and correlation of a measure of curvature, and
local measures of distance and shape between corresponding principal sulci.
Our study includes a version of each of the five methods and is different
primarily because (1) all tests were conducted by a single individual (the first
author) who had not authored any of the software packages, but received

(Caviness et al., 1996; Fiez et al., 2000; Towle et al., 2003)
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guidance from the principal architects of the respective algorithms, (2) its
focus is on manually labeled anatomical regions, and (3) each and every brain
was used as a source and as a target for registration rather than selecting a
single target.

The second is a recent paper (Yassa and Stark, 2009) that compares nonlinear
registration methods applied to regions in the medial temporal lobe; six of the
methods are fully automated and two are semi-automated (requiring manual
identification of landmarks). They apply these methods either to manually
labeled brain regions, to weighted masks for these regions, or to the original
unlabeled brains, as in our study. The four methods that they applied to
unlabeled brains (and evaluated on regions in the medial temporal lobe) are
the Talairach piecewise linear approach and three SPM programs (included
in our study). Registering labeled regions obviously requires that the regions
be labeled; their ROI-AL approach ‘labels to register’ rather than ‘registers
to label’ or ‘registers without labels.’ They used two evaluation measures on
pairs of images (20 MRI volumes total): an overlap measure (equivalent to the
“target overlap” defined in the Materials and methods section) and a measure
of blur in a group average of coregistered images. What sets our study apart
from both of these prior studies is the unparalleled scale and thoroughness of
the endeavor:

What sets our study apart from both of these prior studies is the unparalleled
scale and thoroughness of the endeavor:

• over 14 nonlinear algorithms
• each algorithm applied at least 2,168 times (over 45,000 registrations total)
• 80 manually labeled brain images
• 4 different whole-brain labeling protocols (56 to 128 labeled regions)
• 8 different evaluation measures
• 3 independent analysis methods

This study evaluates 15 registration algorithms, one linear (FLIRT) and 14
nonlinear: AIR, ANIMAL, ART, Diffeomorphic Demons, FNIRT, IRTK, JRD-
fluid, ROMEO, SICLE, SyN, and four different SPM5 algorithms (“SPM2-
type” and regular Normalization, Unified Segmentation, and the DARTEL
Toolbox; DARTEL was also run in a pairwise manner and all four SPM
algorithms were run with and without removal of skulls from the images). The
linear algorithm was included as an initialization step to establish a baseline
prior to applying the nonlinear algorithms. Comparisons among the algorithms
and their requirements are presented in Table 1 and in the Appendix, software
commands are in Supplementary section 7, and brief descriptions are in
Supplementary section 8. Many of them are in common use for registering
structural MRIs to each other or to templates for neuromorphometric research
or as an intermediary to compare functional or physiological data (Gholipour
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et al., 2007), but some of them exist only as pre-release code made available
by their respective authors for this study. See the “Algorithms excluded from
the study” section in the Discussion for algorithms excluded from the study.
Additional materials and updated information will be made publicly available
via the website http://www.mindboggle.info/papers/.

2 Materials and methods

In this section, we first briefly describe the acquisition and preparation of
the brain image and label data. Then we outline the preprocessing (brain
extraction and formatting), linear registration, and nonlinear registration
stages applied to the data, our evaluation measures, and our analysis methods.
The first author performed these latter steps on an OSX system (Mac Pro
2-Quad-Core (8-processor) Intel Xeon, 3 GHz, 6 GB RAM) with a 10.4
operating system, except where noted (see Supplementary section 7).Custom
Python (http://www.python.org) and Matlab (http://www.mathworks.
com) software programs performed the preprocessing steps, called the different
programs to process thousands of pairs of images, computed the results for
evaluation, and produced the visualizations in the Results section.

2.1 Data preparation: images, labels, brain extraction, and formatting

6
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Algorithm Deformation ≃dof Similarity Regularization

FLIRT Linear, rigid-body 9, 6 norm. CR

AIR 5th-order polynomial warps 168 MSD (opt.
intensity
scaling)

Incremental increase of polynomial
order; MRes: sparse-to-fine voxel
sampling

ANIMAL Local translations 69K CC MRes, local Gaussian smoothing;
stiffness parameter weights mean
deformation vector at each node

ART Non-parametric,
homeomorphic

7M norm. CC MRes median and low-pass Gaussian
filtering

Diffeomorphic
Demons

Non-parametric,
diffeomorphic displacement
field

21M SSD MRes: Gaussian smoothing

FNIRT Cubic B-splines 30K SSD Membrane energy*

MRes: down- to up-sampling; number
of basis components

IRTK Cubic B-splines 1.4M norm. MI None used in the study; MRes: control
mesh and image

JRD-fluid Viscous fluid: variational
calculus (diffeomorphic)

2M Jensen-Rényi
divergence

Compressible viscous fluid governed by
the Navier-Stokes equation for
conservation of momentum; MRes

ROMEO Local affine (12 dof) 2M Displaced
frame
difference

First-order explicit regularization
method, brightness constancy
constraint

MRes: adaptive multigrid (octree
subdivision), Gaussian smoothing

SICLE 3-D Fourier series
(diffeomorphic)

8K SSD Small-deformation linear elasticity,
inverse consistency

MRes: number of basis components

SyN Bi-directional
diffeomorphism

28M CC MRes Gaussian smoothing of the
velocity field, transformation
symmetry

SPM5:

“SPM2-type”
Normalization

Discrete cosine transforms 1K MSD Bending energy, basis cutoff

Normalization Discrete cosine transforms 1K MSD Bending energy, basis cutoff

Unified
Segmentation

Discrete cosine transforms 1K Generative
segmentation
model

Bending energy, basis cutoff

DARTEL Toolbox Finite difference model of a
velocity field (constant over
time, diffeomorphic)

6.4M Multinomial
model
(“congealing”)

Linear-elasticity; MRes: full-multigrid
(recursive)

Table 1
Deformation model, approximate number of degrees of freedom (dof), similarity measure, and regularization
method for each of the algorithms evaluated in this study. The dof is estimated based on the parameters and
data used in the study; approximate equations, where available, are given in each algorithm’s description
in the Supplementary section 8. Software requirements, input, and run time for the algorithms are in
the Appendix. *Since this study was conducted, FNIRT uses bending energy as its default regularization
method. MRes=multiresolution; norm=normalized; MSD=mean squared difference; SSD=sum of squared
differences; CC=cross-correlation; CR=correlation ratio; MI=mutual information
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Fig. 1. Brain image data. The study used four different image datasets with a total
of 80 brains. The datasets contain different numbers of subjects (n) and different
numbers of labeled anatomical regions (r) derived from different labeling protocols:
LPBA40 (LONI Probabilistic Brain Atlas: n=40, r=56), IBSR18 (Internet Brain
Segmentation Repository: n=18, r=84), CUMC12 (Columbia University Medical
Center: n=12, r=128), and MGH10 (Massachusetts General Hospital: n=10, r=74).
A sample brain from each dataset is shown. For each brain, there are three columns
(left to right): original T1-weighted MRI, extracted brain registered to nonlinear
MNI152 space, and manual labels registered to nonlinear MNI152 space (used to
extract the brain). Within each column the three rows (top to bottom) correspond
to sagittal (front facing right), horizontal (front facing top, right on right side), and
coronal (right on right side) views. The LPBA40 brains had already been extracted
and registered to MNI (MNI305 vs. MNI152) space (Shattuck et al., 2008). The
scale, position, and contrast of the MR images have been altered for the figure. The
colors for the manual labels do not correspond across datasets.
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2.1.1 Image acquisition and manual labels

Brain image data (T1-weighted MRIs and corresponding manual labels) for
80 normal subjects were acquired from four different sources (see Fig. 1 and
Table 2, and Caveats section in the Discussion regarding label reliability):

LPBA40: 40 brain images and their labels used to construct the LONI
Probabilistic Brain Atlas (LPBA40) at the Laboratory of Neuro Imaging
(LONI) at UCLA (Shattuck et al., 2008) are available online (http://
www.loni.ucla.edu/Atlases/LPBA40). They were preprocessed according
to existing LONI protocols to produce skull-stripped brain volumes. These
volumes were aligned to the MNI305 atlas (Evans et al., 1993) using rigid-
body transformation to correct for head tilt and reduce bias in the manual
labeling process. This produced a transform from native space to labeling
space and an associated inverse transform. In each of the 40 subjects, 56
structures were manually labeled according to custom protocols (http://
www.loni.ucla.edu/Protocols/LPBA40) using BrainSuite software (http:
//brainsuite.usc.edu/). Brain masks were constructed from the manual
labels and projected back to the native (labeling) space to produce brain-only
MRI volumes. These volumes were then corrected for non-uniformity using
BrainSuite’s Bias Field Corrector. Sulci were used as boundaries; white matter
voxels that occurred between the boundaries of sulci and their surrounding
gray matter were included in the structure. This is the only dataset where
white matter is included with gray-matter regions.

After all of the registrations were conducted, we found errors in two of the
LPBA40 subjects, particularly with the right putamen. We brought this to
LONI’s notice and it is being corrected for future downloads. The impact of
these errors on the present study appears to be negligible, as may be seen in
Figs. 7 and 13, where there appears to be little difference between the average
values for the left and right putamen.

IBSR18: 18 brain images acquired at different laboratories are available
through the Internet Brain Segmentation Repository (http://www.cma.mgh.
harvard.edu/ibsr/) as IBSR v2.0. The T1-weighted images have been
rotated to be in Talairach alignment (Talairach and Tournoux, 1988) and
have been processed by the CMA (Center for Morphometric Analysis,
Massachusetts General Hospital (MGH) in Boston) ‘autoseg’ bias field
correction routines. They were manually labeled with NVM software (http:
//neuromorphometrics.org:8080/nvm/), resulting in 84 labeled regions.

CUMC12: 12 subjects were scanned at the Columbia University Medical
Center on a 1.5 T GE scanner. Images were resliced coronally to a slice
thickness of 3 mm, rotated into cardinal orientation, then segmented and
manually labeled by one technician trained according to the Cardviews
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Dataset Subjects Ages
µ=mean

Volume (mm) Voxel (mm) TR
(ms)

TE
(ms)

flip
∠

LPBA40 40 (20 ♂, 20 ♀) 19–40
µ=29.20

256×256×124 38=0.86×0.86×1.5
2=0.78×0.78×1.5

10-
12.5

4.2-
4.5

20◦

IBSR18 18 (14 ♂, 4 ♀) 7–71
µ=38.4
+4 “juve-
niles”

256×256×128 8=0.94×0.94×1.5
6=0.84×0.84×1.5
4=1×1×1.5

CUMC12 12 (6 ♂, 6 ♀)
right-handed

26–41
µ=32.7

256×256×124 0.86×0.86×1.5 34 5 45◦

MGH10 10 (4 ♂, 6 ♀) 22–29
µ=25.3

256×256×128 1×1×1.33 6.6 2.9 8◦

Table 2
MRI acquisition parameters. Dataset, number and ages of subjects, volume and voxel dimensions in native
space, TR, TE, and flip angle. The images were registered to either the nonlinear MNI152 or MNI305 atlas
(see text) in a 181×217×181 volume of 1mm3 voxels.

labeling scheme (Caviness et al., 1996) created at the CMA, and
implemented in Cardviews software (http://www.cma.mgh.harvard.edu/
manuals/parcellation/). The images have 128 labeled regions.

MGH10: 10 subjects were scanned at the MGH/MIT/HMS Athinoula A.
Martinos Center for Biomedical Imaging using a 3 T Siemens scanner and
standard head coil. The data were inhomogeneity-corrected, affine-registered
to the MNI152 template (Evans et al., 1992), and segmented using SPM2
software (Friston et al., 1995). The images were manually labeled by Tourville
of Boston University using Ghosh’s ASAP software (Nieto-Castanon et al.,
2003); the labeling protocol (Tourville and Guenther, 2003) is similar to
Cardviews, and in the version used for this study produces 74 labeled regions.

2.1.2 Brain extraction

To register the brains with each other, we extracted each brain from its whole-
head image by constructing a mask from the corresponding manually labeled
image (see Fig. 1). However, since white matter and cerebrospinal fluid were
not fully labeled in all of the images, they had to be filled to create solid
masks. For this, the non-background image in each sagittal slice was dilated
by one pixel, any holes were filled, and then the image was eroded by one
pixel. This procedure was repeated sequentially on the resulting volume for the
coronal, horizontal, and again for the sagittal slices, and resulted in a volume
containing the filled brain mask. This manual label-based skull-stripping
procedure was performed on each MRI volume in the IBSR18, CUMC12, and
MGH10 sets, but not for those in the LPBA40 set; the LPBA40 images had
already been similarly prepared, but dilated and eroded with a larger and
spherical structural element (neighborhood) (Shattuck et al., 2008). All four
SPM algorithms were also run on whole-head images.
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2.1.3 File preparation

All image and label volumes were in right-handed orientation and were
converted to Analyze 7.5 (.img, .hdr) format (except for MINC format used
by ANIMAL) because it was the most common image format accepted by
the different software programs, and the only format presently compatible
with AIR, ART, JRD-fluid, and SICLE (see Appendix B). This itself was a
cause of difficulties, because the different software packages deal with Analyze
header information differently, in particular with respect to leftÐright flipping
and origin location. Because of this and because of discrepancies between
brain and atlas origins for some of the data sets, origin and orientation
information was removed from each of the image and label volumes using FSL’s
“fslorient -deleteorient” and “fslchfiletype” commands. The NiFTI data format,
accepted by most of the f/MRI software packages, obviates these concerns
and is recommended over the Analyze format (http://nifti.nimh.nih.
gov/). Exceptions to the above steps were made for SPM5’s template-based
algorithms (Normalization, Unified Segmentation, and DARTEL Toolbox, but
not “SPM2-type” Normalization): Analyze images were flipped right-to-left to
left-handed orientation, and header orientation discrepancies were corrected
using spm_get_space.m (other algorithms were unaffected after the fslorient
command above).

Some extra preparation had to be done to accommodate the recommendations
for running the individual software packages (see Appendix B), which
included writing parameter files, intensity correction, padding, smoothing,
and reorientation (in the case of SPM). For example, parameter files were
required for ROMEO, IRTK, and for each registration pair when using SICLE,
and command-line parameters had to be reset to make some of the programs
run in less than an hour or so per registration. SICLE required considerable
preparation: we wrote a Python script to generate the input parameter files
and create output directories, normalized intensities in Matlab, and padded
versions of all of the image volumes so that their dimensions were divisible by
16 (e.g., 181×217×181 files were padded to 224×224×192).

2.2 Linear registration as initialization

We linearly registered 40 of the brain images to a template using FMRIB
Software Library’s (FSL) FLIRT (with the following settings: 9-parameter,
correlation ratio, trilinear interpolation; see Fig. 1). The template was the
“nonlinear MNI152,” the nonlinear average template in MNI space used by
FSL (MNI152_T1_1mm_brain: 181×217×181 voxels, 1×1×1 mm/voxel).
The remaining 40 images were from the LPBA40 set and had already been
registered to the MNI305 atlas.
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We then rigidly registered each of the 80 brains in MNI space, Is, to each of
the other brains in its group, It, again using FLIRT (6-parameter, correlation
ratio, trilinear interpolation). This resulted in 2,168 linear transforms Xs→t

and transformed images in MNI space Is→t (a straight arrow denotes linear
registration), with 2,088 of them representing non-identical source-target pairs
(402+182+122+102−80). These linearly transformed source images, or “linear
source images,” serve as the input to each of the algorithms under comparison.

We applied the above linear and rigid-body transforms (with nearest-neighbor
interpolation) to the corresponding manually labeled volumes Ls, resulting in
the “linear source labels” Ls→t below (and in Figs. 2 and 3).

2.3 Nonlinear registration

Each of the nonlinear registration algorithms in the study then registered
each of the 2,168 linear source images Is→t to its corresponding target
image It. We applied the resulting nonlinear transformation X[s→t];t (with
nearest-neighbor interpolation) to the corresponding linear source labels Ls→t,
producing warped source labels L[s→t];t (a curved arrow denotes nonlinear
registration). These labels are compared against the manual labels of the
target, Lt, for evaluating registration performance. See Figs. 2 and 3 for the
context and Supplementary section 7 for the software commands used for each
algorithm. Note that some structures were removed during preprocessing prior
to computing the transforms, such as the cerebellum in the LPBA40 set, but
were included when applying the transforms to the source labels.

2.4 Evaluation measures

We used volume and surface overlap, volume similarity, and distance measures
to evaluate how well individual anatomical regions as well as total brain
volumes register to one another. For this section and for Fig. 4, source S refers
to a registered image to be compared with its registration target T (in our case,
the warped source labels L[s→t];t and the target labels Lt). These evaluation
measures assume the manual label sets are correct, or “silver standards.”

2.4.1 Volume overlap

We used three overlap agreement measures and two overlap error measures,
each quantifying some fraction of source S and target T volumes where their
labels agree or disagree. For information on overlap measures, including cases
for multiple and fractional labels, see (Crum et al., 2005). The first overlap
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Fig. 2. Registration equations. The three stages of the study were to compute,
apply, and evaluate registration transforms. To compute the transforms, we linearly
registered each source image Is to a target image It (both already in MNI space),
resulting in a “linear source image” Is→t as well as a linear transform Xs→t (a straight
arrow denotes linear registration). Each nonlinear algorithm Ai then registered
(warped) the linear source image to the same target image, generating a second,
nonlinear transform X[s→t];t (a curved arrow denotes nonlinear registration). We
applied the linear transform to the source labels Ls to give the corresponding “linear
source labels” Ls→t, and applied the nonlinear transform to Ls→t to produce the
final warped source labels L[s→t];t. Finally, we compared these labels to the manual
labels for the target, Lt, using a set of evaluation measures Eq.

agreement measure is the “target overlap,” TO, the intersection between two
similarly labeled regions r in S and T divided by the volume of the region in
T , where || indicates volume computed as the number of voxels:

TOr =
|Sr ∩ Tr|

|Tr|
(1)

Target overlap is a measure of sensitivity. When summed over a set of multiple
labeled regions, we have the total overlap agreement measure for a given
registration:

TO =

∑
r |Sr ∩ Tr|∑

r |Tr|
(2)

Our second overlap agreement measure is the “mean overlap,” MO, a special
case of the Kappa coefficient (Zijdenbos et al., 1994) sometimes called the
Dice coefficient; it is the intersection divided by the mean volume of the two
regions, which may again be summed over multiple regions:

MO = 2

∑
r |Sr ∩ Tr|∑

r (|Sr|+ |Tr|)
(3)
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Fig. 3. Overview. This diagram provides an overview of the study for a single
nonlinear registration algorithm, placing example preprocessed data from Figure 1
into the equations of Figure 2. The three stages include linear registration, nonlinear
registration, and evaluation (left to right). The four different datasets (LBPA40,
IBSR18, CUMC12, and MGH10) are aligned along the left in four different versions:
images, surfaces derived from the images, labels, and borders derived from the labels.
A source and target are drawn from each version (image volumes are shown as
coronal slices for clarity). A source image Is is linearly then nonlinearly registered
to a target image It. The linear and nonlinear transforms (Xs→t and X[s→t];t) are
applied to the corresponding source labels Ls. The resulting nonlinearly transformed
labels L[s→t];t are compared against the target labels Lt. This comparison is used to
calculate volume overlap and volume similarity per region. The target surface St is
intersected with the target labels Lt and warped source labels L[s→t];t to calculate
surface overlap. Borders between each labeled region and all adjacent labeled regions
are constructed from Lt and L[s→t];t, and average distances between the resulting
borders Bt and B[s→t];t are calculated per region.
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Fig. 4. Overlap. This study uses volume and surface overlap, volume similarity,
and distance measures to evaluate the accuracy of registrations. The equations for
the three overlap measures: target overlap, mean overlap, and union overlap use the
terms in this schematic Venn diagram of two partially overlapping objects, a source
S and a target T . Their intersection is denoted by S ∩ T and their union by S ∪ T .
S\T indicates the set (theoretic complement) of elements in S but not in T .

Our third overlap agreement measure is the “union overlap,” UO, or Jaccard
coefficient (Gee et al., 1993; Jaccard, 1912), the intersection over the union:

UO =

∑
r |Sr ∩ Tr|∑
r |Sr ∪ Tr|

(4)

UO can be converted to MO by the following (Heckemann et al., 2006):

MO =
2× UO

1 + UO
(5)

To complement the above agreement measures, we also computed false
negative (FN) and false positive (FP ) errors. For these errors we characterize
the source as a tentative set of labels for the target, and again assume that
the target’s manual labels are correct. These error measures can range from
zero to one; a value of zero is achieved for perfect overlap.

A false negative error for a given region is the measure of how much of that
region is incorrectly labeled. It is computed as the volume of a target region
outside the corresponding source region divided by the volume of the target
region. As before, it is computed in voxels and summed over a set of multiple
labeled regions each with index r:

FN =

∑
r |Tr\Sr|∑

r |Tr|
(6)

where Tr\Sr indicates the set (theoretic complement) of elements in Tr but
not in Sr.

A false positive error for a given region is the measure of how much of the
volume outside that region is incorrectly assigned that region’s label. It is

15



computed as the volume of a source region outside the corresponding target
region divided by the volume of the source region:

FP =

∑
r |Sr\Tr|∑

r |Sr|
(7)

2.4.2 Surface overlap

We anticipated that imaging artifacts affecting cortical thickness could bias
our overlap measures, because (for the same cortical area) thicker regions will
have relatively higher volume overlap agreements than thinner regions due to
lower surface-to-volume ratios. We tried to reduce this bias by computing
overlap agreement only on the target surfaces of the brain images, not
throughout the entire target volumes. Computing overlap agreement on the
surfaces should also decrease the impact of segmentation biases, when manual
labels extend into white matter, especially for the LPBA40 set, where white
matter between sulcal structures were also assigned the structures’ labels.

We used Freesurfer software (http://surfer.nmr.mgh.harvard.edu/, ver-
sion 1.41) to construct cerebral cortical surfaces (Dale et al., 1999) for each
of the original 80 full-head images, and converted the Freesurfer-generated
surfaces to each brain’s native space with Freesurfer’s “mri_surf2vol”
command. We then linearly registered each surface to MNI space using the
initial affine transform from the original brain image to the MNI template
(“Linear registration as initialization” section). Each resulting target surface
was intersected with its corresponding target label volume Lt and warped
source label volume L[s→t];t. We compared these target surface labels with
the warped source surface labels using the same overlap agreement and error
measures used for the volumes.

2.4.3 Volume similarity

The volume similarity coefficient, V S, is a measure of the similarity between
source and target volumes. Although this measure does not reflect registration
accuracy (source and target regions can be disjoint and still have equal
volumes), it is a conventional measure included for retrospective evaluation
of prior studies. It is equal to the differences between two volumes divided by
their mean volume, here again summed over multiple regions:

V S = 2

∑
r(|Sr| − |Tr|)∑
r (|Sr|+ |Tr|)

(8)
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2.4.4 Distance error

The above overlap and volume similarity measures do not explicitly account for
boundary discrepancies between corresponding source and target regions. So
we chose our final evaluation measure, DE is equal to the minimum distance,
mindist, from each source region boundary point, SrBp, to the entire set of
points making up the target region boundary, TrB, averaged across P points:

DEr =
1

P

P∑
p=1

mindist(SrBp, TrB) (9)

We extracted an approximation of the boundary points for each region of
each of the 40 LPBA40 brains by applying a cityblock distance transform 2

in Matlab and retaining only those voxels of neighboring regions that were
within two voxels from the region. This resulted not in a complete shell about
a region, but only the portion of the shell abutting other labeled regions. We
repeated this procedure for each region of each of the warped LPBA40 source
labels generated by each registration algorithm. We chose to construct borders
from the warped labels rather than warp borders constructed from the original
labels because we were concerned about interpolation artifacts.

We applied the same distance function used to construct the borders to also
compute DE between source and target borders. We computed DE for each
region as well as for the entire set of label boundaries as a whole.

2.5 Analysis

Testing for significant differences in the performance of the registration
methods is not trivial because of non-independency of samples. For example,
for the LPBA40 dataset, each of the 40 brain images was registered to the
39 others, resulting in 1,560 pairwise registrations. Each of the brains is
represented 39 times as the registration source and 39 times as the target.
Because each brain is reused multiple times, independence of observations
cannot be assumed. We determined that for most of the registration methods,
there is a high correlation between overlap results obtained for pairs that share
one or more brains (see Supplementary section 6).

To get around this issue of non-independency of samples, we conducted two
separate statistical tests, a permutation test and a one-way ANOVA test, on a
small independent sample, and repeated these tests on multiple such samples.
We also conducted an indifference-zone ranking on the entire set of results,

2 bwdist.m in the Image Processing toolbox uses the two-pass, sequential scanning
algorithm (Rosenfeld and Pfaltz, 1966; Paglieroni, 1992)
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testing for practical rather than statistical significance (see below). For each
test, the underlying measure is target overlap averaged across all regions.

2.5.1 Permutation tests

We performed permutation tests to determine if the means of a small set of
independent overlap values obtained by each of the registration methods are
the same, after (Menke and Martinez, 2004) and according to the following
permutation algorithm:

1. Select a subset of P independent brain pairs
2. Select a pair of methods (two vectors of P total overlap values)
3. Subtract the two vectors and compute the mean difference D

4. Select a subset of the elements from one of the vectors
5. Swap this subset across the two vectors
6. Subtract the resulting vectors; compute the mean difference Dp

7. Repeat steps #4-6 N times
8. Count the number of times n where 3 abs(Dp)≥abs(D)
9. Compute the exact p-value: p= n

N

10. Repeat steps #1-9; compute the fraction of times where p≤0.05

The subset of brain pairs was selected so that each brain was used only once,
corresponding to the “no dependence” condition in Supplementary section
6. There were 20, 9, 6, and 5 independent brain pairs for the LPBA40,
IBSR18, CUMC12, and MGH10 datasets, respectively, as well as 20, 9, 6,
and 5 corresponding average target overlap values obtained by each method.

The number of permutations N for each subset of brain pairs was either
the exhaustive set of all possible permutations (212=4,096 for CUMC12 and
210=1,024 for MGH10) or 1,000 permutations (LPBA40 and IBSR18) to keep
the duration of the tests under 24 hours. The number of p-values calculated
was either 100,000 (CUMC12 and MGH10) or 10,000 (LPBA40 and IBSR18).

2.5.2 One-way ANOVA

We also performed a standard one-way ANOVA to test if the means of similar
subsets of independent average target overlap values obtained by each of
the registration methods are the same. We then subjected these results to a
multiple comparison test using Bonferroni correction to determine which pairs
of means are significantly different (disjoint 95% confidence intervals about
the means, based on critical values from the t distribution). We repeated these

3 abs()=absolute value
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ANOVA and multiple comparison tests 20 times, each time randomly selecting
independent samples from each of the datasets. These tests are not expected
to be as accurate as the permutation tests because some of the overlap values
have skew distributions and because the p-values are not exact.

2.5.3 Indifference-zone ranking

Our third evaluation between methods tested practical significance rather
than statistical significance. For example, if a region is registered to another
region of equal volume and results in an offset of a single voxel, this is
not considered a significant misregistration, but offsets greater than this are
considered significant. An evaluation measure of registration accuracy for a
given region within a given brain pair is calculated for two different registration
methods. If these two values are within delta of one another (referred to as
an “indifference zone” when ranking (Bechhofer, 1954)), they are considered
equal. The delta must correspond to a practical difference in registration. If
we model a region as a cube, then a single-voxel offset along the normal to one
of its faces would mean the voxels on that face of the cube reside outside of
its target Ñ this is equal to one-sixth of its surface. We therefore set delta to
one-sixth of a target region’s surface. For the IBSR18, CUMC12, and MGH10
datasets, we assumed the surface to be that of a cube (6×edge2−12×edge,
where edge = the edge length of a cube with the volume of the target region,
in voxels). For the LPBA40 dataset, we set the surface to the number of voxels
bordering adjacent regions, extracted as in the “Distance error” section.

Our implementation of indifference-zone ranking compared the 15 different
registration methods to each other in the following manner. For each region
in a given label set and for each pair of registered brains we constructed a
15×15 matrix, where each row and each column corresponded to a registration
method. Each element of the matrix was assigned the value −1, 0, or 1, for the
cases when the evaluation measure for the method corresponding to its row
was at least delta less than, within delta of, or at least delta greater than that
of the method corresponding to its column. Then we calculated the mean of
these {−1, 0, 1} values across all registration pairs for each region to construct
Figs. 7, 8, 9, and 10 (the latter three in Supplementary section 3).

3 Results

Results for the initial run are in Supplementary section 1, for the trivial case,
where each brain was registered to itself, are in Supplementary section 2,
volume similarity results are in Supplementary section 4, and distance error
results are in Supplementary section 5.
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3.1 Overlap results

3.1.1 Whole-brain averages

After the initial run and changes described in Supplementary section 1, out of
2,168 registrations per algorithm, the only cases where target overlap values
were less than 25% were SPM’s DARTEL (79 cases; the majority were from
one brain) Normalize (15 cases), ANIMAL (2 cases), and ROMEO (1 case)
for the LPBA40 set and Diffeomorphic Demons (1 case) for the IBSR18 set.

The target, union, and mean overlap values for volumes as well as surfaces (and
the inverse of their false positive and false negative values), averaged over all
regions, gave almost identical results when corrected for baseline discrepancies.
Distributions of target overlap values are shown in Fig. 5. What is remarkable
is that the relative performances of these methods appear to be robust not
just to type of overlap measure, but also to subject population and labeling
protocol, as evidenced by the similar pattern of performances of the methods
across the label sets. This is particularly the case across IBSR18, CUMC12,
and MGH10 sets. The pattern is more subtle in LPBA40 because that label
set has fewer labeled regions that are larger and extend into white matter,
and therefore results in higher and more similar absolute overlap values.

We ran all 2,168 registrations again on whole-head images (before skull-
stripping) using SPM’s Normalize, Unified Segmentation, and DARTEL, and
the results were comparable or better with the skull-stripped images. The
relative overlap performance of the SPM programs agrees with Yassa and Stark
(Yassa and Stark, 2009): DARTEL performs better than Unified Segmentation
which performs better than Normalize. Because the SPM DARTEL results
were very similar for its original and pairwise implementations, we have
included only the pairwise results; this is a fair comparison because the other
methods do not include optimal average template construction.

3.1.2 Region-based results

The pattern of region-based overlap values is almost indistinguishable across
the methods, discounting baseline differences (data not shown). In Fig. 6 we
present volume and surface target overlap data for individual regions in their
anatomical context (LPBA40 set). For the most part this figure suggests
that the overlap values are approximately the same for volume and surface
measures, corroborating whole-brain averages, but also exposes discrepancies
at the level of regions (FLIRT and SICLE) 4 .

4 The worse surface overlaps of the cerebellum (for all the methods except ROMEO)
are probably due to the fact that the cerebellum was removed from the LPBA40 set
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Fig. 5. Overlap by registration method. These box and whisker plots show the target
overlap measures between deformed source and target label volumes averaged first
across all of the regions in each label set (LPBA40, IBSR18, CUMC12, and MGH10)
then across brain pairs. Each box represents values obtained by a registration
method and has lines at the lower quartile, median, and upper quartile values;
whiskers extend from each end of the box to the most extreme values within 1.5
times the interquartile range from the box. Outliers (+) have values beyond the
ends of the whiskers. Target, union and mean overlap measures for volumes and
surfaces (and the inverse of their false positive and false negative values) all produced
results that are almost identical if corrected for baseline discrepancies. Similarities
between relative performances of the different registration methods can even be seen
here across the label sets. (SPM_N*=“SPM2-type” normalization, SPM_N=SPM’s
Normalize, SPM_US=Unified Segmentation, SPM_D=DARTEL pairwise)

Most of the regions in the brain volume plots are hidden from view, so for a
complete picture at the scale of individual regions, Figs. 7, 8, 9, and 10 present
relative performances of the different methods for each region as color-coded
tables for each of the four label sets (their construction is described in the
“Indifference-zone ranking” section under “Materials and methods”; Figs. 8, 9,
and 10 are in Supplementary section 3). If all of the methods had performed

prior to computing the registration transforms, but the transforms were applied to
the full label set (including the cerebellum).

21



equally well, the color tables would be a uniform color. However, some of the
methods performed better than average, particularly against simple linear
registration (FLIRT). By visual inspection, we can see that ART, IRTK,
SyN, and SPM’s DARTEL have consistently high accuracy for the IBSR18,
CUMC12, and MGH10 label sets relative to the other methods, and that in
addition to ART, IRTK, and SyN, FNIRT and JRD-fluid also appear to have
high relative accuracy for the LPBA40 set. As expected, we observed for all of
the methods higher overlap values for larger sized regions, because of smaller
surface-to-volume ratios (not shown).

3.2 Rankings

We ranked the registration methods in three independent ways: permutation
tests, confidence intervals obtained from one-way ANOVA tests with
Bonferroni correction, and indifference-zone ranking.

3.2.1 Permutation, ANOVA, and indifference-zone rankings

Table 3 presents the top three ranks of registration methods according to the
percentage of permutation tests whose p-values were less than or equal to
0.05, and Table 4 according to relative target overlap scores. For both tables,
members within ranks 1, 2, and 3 have means lying within one, two, and three
standard deviations of the highest mean, respectively. Only ART and SyN are
in the top rank for all four label sets and for all tests.

For the one-way ANOVA tests, rank 1 methods have means lying within
the 95% confidence interval of the best method and rank 2 methods have
confidence intervals that overlap the confidence interval of the best method.
These rankings were in almost complete agreement among the target, union,
and mean overlap values (and distance errors for the LPBA40 set). Because
these results were very similar to the permutation test ranks, and because
these tests are expected to be less accurate than the permutation tests, they
are not included.
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Fig. 6. Volume and surface overlap by registration method: LPBA40 regions.
These brain images show the mean target overlap calculated across all 1,560
brain pairs for the (A) volume and (B) surface of each LPBA40 region, and
depicts that mean as a color (blue indicates higher accuracy). The values
for each registration method are projected on one of the LPBA40 brains,
seen from the left, looking down from 30◦, with the frontal pole facing
left. (SPM_N*=“SPM2-type” Normalize, SPM_N=Normalize, SPM_US=Unified
Segmentation, SPM_D=DARTEL pairwise)
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Fig. 7. Indifference-zone ranking of the registration methods: LPBA40 overlaps.
This matrix uses a color scale that reflects the relative performance of the
registration methods (with blue indicating higher accuracy). Each colored rectangle
represents the average score for a given method for a given region, averaged
over 1,560 LPBA40 registrations. The scores are {−1, 0, 1} values indicating
the pairwise performance of the method relative to each of the other methods
(see text), according to target volume overlap (union and mean overlap results
are almost identical). The colors (and color range) are not comparable to
those of the other label sets (Figures 8, 9, and 10 in Supplementary section
3). (SPM_N*=“SPM2-type” Normalize, SPM_N=Normalize, SPM_US=Unified
Segmentation, SPM_D=DARTEL pairwise)
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LPBA40 µ (SD) IBSR18 µ (SD) CUMC12 µ (SD) MGH10 µ (SD)

ra
n
k

1
ART .82 (.35) SPM_D .83 (.27) SPM_D .76 (.24) SyN .77 (.37)

SyN .60 (.38) SyN .72 (.51) SyN .74 (.51) ART .72 (.45)

FNIRT .49 (.66) IRTK .67 (.53) IRTK .74 (.50) IRTK .61 (.51)

JRD-fluid .49 (.66) ART .60 (.70) ART .60 (.70)

2

IRTK .43 (.63) JRD-fluid .30 (.82) SPM_D .27 (.23)

D.Demons .13 (.82) D.Demons .27 (.69)

SPM_US .11 (.83) JRD-fluid .24 (.66)

ROMEO .06 (.63)

3

ROMEO .08 (.73) FNIRT .16 (.82) D.Demons .20 (.84)

SPM_D .07 (.29) D.Demons .05 (.84) FNIRT .18 (.81)

JRD-fluid .17 (.81)

Table 3
Permutation test ranking of the registration methods by label set. This table lists the methods that attained
the top three ranks after conducting permutation tests between mean target overlaps (averaged across
regions) for each pair of methods, then calculating the percentage of p-values less than or equal to 0.05 (of
100,000 tests for CUMC12 and MGH10 or of 10,000 tests for LPBA40 and IBSR18; µ=mean, SD=standard
deviation). Methods within ranks 1, 2, and 3 have positive mean percentages lying within one, two, and
three standard deviations of the highest mean, respectively. Values are not comparable across label sets
(columns). (SPM_D=DARTEL pairwise)

LPBA40 µ (SD) IBSR18 µ (SD) CUMC12 µ (SD) MGH10 µ (SD)

ra
n
k

1

ART .35 (.07) SPM_D .50 (.19) SPM_D .47 (.17) SyN .39 (.06)

SyN .34 (.24) SyN .40 (.12) IRTK .42 (.07) ART .36 (.07)

IRTK .35 (.15) SyN .41 (.06)

ART .33 (.08) ART .35 (.05)

2 JRD-fluid .18 (.13)

3

JRD-fluid .20 (.08) FNIRT .06 (.11) JRD-fluid .07 (.07) IRTK .26 (.07)

IRTK .18 (.15) D.Demons .01 (.08) FNIRT .07 (.09) SPM_D .25 (.28)

FNIRT .17 (.08) ROMEO .01 (.28) D.Demons .05 (.05)

SPM_D .14 (.31)

Table 4
Indifference-zone ranking of the registration methods by label set. This table lists the methods that attained
the top three ranks after averaging scores across all brain regions then across all registration pairs (µ=mean,
SD=standard deviation). The scores reflect a pairwise comparison between methods, according to target
overlap (see text). Methods within ranks 1, 2, and 3 have positive means lying within one, two, and three
standard deviations of the highest mean, respectively. Values are not comparable across label sets (columns).
(SPM_D=DARTEL pairwise)
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4 Discussion

This study evaluates 15 registration algorithms (one linear, 14 nonlinear)
based primarily on overlap measures of manually labeled anatomical regions.
The scale and thoroughness are unprecedented (over 45,000 registrations, 80
manually labeled brain images representing 4 different labeling protocols,
8 different evaluation measures, and 3 independent analysis methods). We
hope that the method of evaluation as well as the results will be useful to
the neuroscience community. As they become available, additional materials
and updated information will be made publicly available via the website
http://www.mindboggle.info/papers/.

One of the most significant findings of this study is that the relative
performances of the registration methods under comparison appear to be
little affected by the choice of subject population, labeling protocol, and
type of overlap measure. This is important because it suggests that the
findings are generalizable to new healthy subject populations that are labeled
or evaluated using different labeling protocols. Furthermore, we ranked the
methods according to three completely independent analyses and derived three
almost identical top rankings. However, in order to make recommendations, it
is important to place these results in the context of the wider range of software
packages available and the caveats inherent in registration in general and with
respect to this study in particular, as we do below.

Although we were not able to see a pattern in the results that would allow us
to rank algorithms by deformation model, similarity measure, or regularization
method, there is a modest correlation between the number of degrees of
freedom of the deformation and registration accuracy (0.29, or 0.45 if one
excludes Diffeomorphic Demons), and between the number of degrees of
freedom and year (0.55) (see Table 5). This finding corroborates Hellier’s
evaluation: “The global measures used show that the quality of the registration
is directly related to the transformation’s degrees of freedom” (Hellier et al.,
2003). The four algorithms whose mean rank is less than two (SyN, ART,
IRTK, and SPM’s DARTEL Toolbox) all have millions of degrees of freedom
and all took at least 15 min per registration, and all but one (IRTK) were
created in the last three years. Of the remaining 10 algorithms, seven have
fewer than a million degrees of freedom, seven took less than 15 min, and six
were created over three years ago.
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Algorithm mean rank dof run time: minutes year

SyN 1.00 28M 77 (15.1) 2008

ART 1.00 7M 20.1 (1.6) [Linux] 2005

IRTK 1.63 1.4M 120.8 (29.3) 1999

SPM5 DARTEL Toolbox 1.88 6.4M 71.8 (6.3) 2007

JRD-fluid 2.50 2M 17.1 (1.0) [Solaris] 2007

Diffeomorphic Demons 3.00 21M 8.7 (1.2) 2007

FNIRT 3.00 30K 29.1 (6.0) 2008

ROMEO 3.50 2M 7.5 (0.5) 2001

ANIMAL 69K 11.2 (0.4) 1994

SICLE 8K 33.5 (6.6) 1999

SPM5 Unified Segmentation 1K ≃1 2005

“SPM2-type” Normalize 1K ≃1 1999

SPM5 Normalize 1K ≃1 1999

AIR 168 6.7 (1.5) 1998

Table 5
Mean rank, degrees of freedom (dof), average run time, and year of publication for each algorithm. The 14
nonlinear deformation algorithms are ordered by mean rank (best at top), which was computed for each
algorithm by averaging the target overlap ranks in Tables 3 and 4 (assigned by the permutation tests and
indifference-zone rankings). The six algorithms at the bottom are of equal rank (4) since they were not
in the top three ranks. For details on architecture and run time, see Appendix. Except for FNIRT and
Diffeomorphic Demons, the dof and mean rank sequences roughly match.

4.1 Algorithms excluded from the study

We excluded semi-automated approaches that require even minimal manual
intervention to reduce bias. A significant example is the forerunner of modern
nonlinear registration methods, the original Talairach coordinate referencing
system (Talairach and Szikla, 1967; Talairach and Tournoux, 1988), a piece-
wise linear registration method that requires the identification of landmarks
in a brain image. Although the Talairach system is well suited to labeling
regions proximal to these landmarks (Grachev et al., 1998), it does not deal
adequately with nonlinear morphological differences, especially when applied
to the highly variable cortex (Grachev et al., 1999; Mandl et al., 2000; Roland
et al., 1997; Xiong et al., 2000). Other examples that require landmarks include
modern nonlinear algorithms such as Large Deformation Diffeomorphic Metric
Mapping (personal communication with Michael Miller)(Beg et al., 2005) and
Caret (http://brainmap.wustl.edu/, personal communication with David
Van Essen and Donna Dierker)(Essen et al., 2001).

We also excluded some of the primary software programs for auto-
matically labeling cortical anatomy: Freesurfer (http://surfer.nmr.mgh.
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harvard.edu/)(Fischl et al., 2002, 2004), BrainVisa (http://brainvisa.
info)(Cointepas et al., 2001), HAMMER (https://www.rad.upenn.edu/
sbia/software/index.html)(Shen and Davatzikos, 2002), and Mindboggle
(http://www.mindboggle.info)(Klein and Hirsch, 2005; Klein et al., 2005),
because their cortical labeling algorithms are tied to their own labeled brain
atlas(es). We considered this problematic for three reasons: (1) we wanted
to evaluate brain registration algorithms, not brain labeling algorithms or
particular atlas-based approaches, (2) their atlas labels are inconsistent with
the protocols used to label the brains in this study which would make
evaluation difficult, and (3) creating new atlases for each of these requires
considerable knowledge of the software. Freesurfer and BrainVisa differ from
all of the other methods mentioned in this paper because they register surfaces
rather than image volumes. Mindboggle differs from the others because it
is based on combinatoric feature-matching and uses multiple independent
atlases. And of the four, HAMMER is the only one that can transform an
arbitrary set of labels when registering a source brain to a target brain.
However, because we were not able to obtain reasonable results, we did not
include it in the study. We also tested the PASHA algorithm (Cachier et al.,
2003) with and without intensity normalization but because we obtained very
inconsistent results across the datasets we decided not to include it in the
study either. We also excluded other programs that do not allow one to apply
transforms to separate image volumes.

4.2 Caveats

4.2.1 General caveats

There are numerous caveats that must be taken into account when evaluating
registration data. The very question of correspondence between brains
that we raised at the beginning of this paper is revisited at every stage:
at the level of anatomy, image acquisition, image processing, registration
(including similarity measure, transformation model, regularization method,
etc.), evaluation measures, and analysis based on these measures. We will focus
here on the most fundamental level of correspondence, at the primary level of
anatomy, and on the effects of registration on anatomical correspondence.

If we consider the scale of gross anatomy or patterns of functional activity
or physiological data, then we may seek correspondences at the level of
topographical, functional, or physiological boundaries without assuming one-
to-one mapping of the points of the boundaries or the points within
these regions of interest. In other words, another way of approaching this
“correspondence problem,” and by extension the elusive common reference
frame, is as a partial mapping between brains, independent of naming or
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spatial conventions. The common reference frame is used simply as a reference
of comparison or evaluation, not as a rigid framework for comprehensively
annotating brain image data, as is often done.

If we cannot expect every brain to have a one-to-one mapping with every
other brain, then if possible we need to compare similar brains. This can
easily lead to the confound where image correspondence is mistaken for
anatomic correspondence (Crum et al., 2003; Rogelj et al., 2002). Choosing a
representative brain with which to establish correspondences with a given
brain results in a Catch-22 where determining similarities itself entails
determining correspondences between the brains. A few approaches around
this dilemma include the use of an established average template or probabilistic
atlas as an intermediary registration target (as is standardly done with SPM),
construction of such a template from the subject group that includes the brain
in question, and decision fusion strategies for combining multiple, tentative
brain registrations or labels for a given target brain (Kittler et al., 1998;
Rohlfing et al., 2004; Warfield et al., 2004; Klein et al., 2005). With all of
these approaches, however, there still remains the distinct possibility that a
given brain is not adequately represented by the majority of the set of brains
to which it is being compared. Indeed, it is possible that substructures within
a brain are most similar to a minority (or even a single, or no instance) of the
set of brains, and would be overridden by the majority.

The evaluation measures and analysis methods used in this paper are
predicated on the assumption that, at the macroscopic scale of topographic
anatomical regions, there are correspondences across a majority of brains
that can effectively guide registrations. It is very important to stress that
we cannot make inferences about the accuracy of registrations within these
macroscopic regions. Therefore our overlap evaluation measures not only
ignore misregistration within a labeled region but are insensitive to folding
in the deformations, which would impact studies such as deformation-based
morphometry. More generally, our evaluation measures rely on information
which is not directly included in the images, which is good for evaluating the
registrations, but they do not inform us about the intrinsic properties of the
spatial transformations. Example measures of the intrinsic properties of spatial
transformations include inverse consistency error, transitivity error, and “mean
harmonic energy” (where the Jacobian determinant of the transformation is
averaged over the volume).

Another general caveat comes from recent evidence that nonlinear registration
to average templates affects different brain regions in different ways that lead
to relative distortions in volume that are difficult to predict (Allen et al.,
2008). The evidence was based on varying the target template and registration
method (AIR and piecewise linear). Although our study was not concerned
with absolute volumetry, and nonlinear registrations were conducted from one
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brain to another without the use of a template, we share the caution raised
by their study.

4.2.2 Specific caveats

Caveats that are specfic to our study mirror the general caveats raised
above: anatomical and labeling variability of the subject brains, quality of
their images, the preprocessing steps the images were subjected to, the
implementation of the registration algorithms, and our evaluation and analysis
methods. With regard to the first three caveats, we made the assumption that
each label set consists of a subject group of normal individuals whose brain
images were acquired, preprocessed, and labeled in a consistent manner. Some
of the co-authors have commented that the quality of the images in this study
is worse than the quality of the images that they are used to applying their
algorithms to. Some of the reasons for this are that the images for these label
sets were acquired years ago, are incomplete (for example, only the CUMC12
set includes the cerebellum in registered images and labels), many are of low
contrast, and all of them were linearly transformed to a template space that
involved two trilinear interpolation steps (see below). All of the algorithms
performed worst on the IBSR18 set, whose images were acquired from various
sources and are of varying quality, flouting our assumption above regarding
consistency.

Each brain image was labeled only once. Because there are no intra- or inter-
labeler data for these images, we cannot know how accurately and consistently
they were labeled, let alone have an idea of the degree of confidence for any
of the label boundaries. We can only estimate based on labeling tests for two
of the labeling protocols (Caviness et al., 1996; Shattuck et al., 2008). We
therefore had to treat these label sets as “silver standards” whose hard label
boundaries are considered correct.

Regarding pre-processing, the brain images of each label set were consistently
preprocessed, and each registration method that performed preprocessing
steps did so in a consistent manner across all images. However, these
preprocessing steps may be suboptimal for particular registration methods.
For example, aside from SPM’s algorithms, we did not test registration
accuracy for whole-head images. Although most of the co-authors indicated
that they believe their registration methods would perform better on properly
skull-stripped images than on whole-head images 5 , we are not aware of any
published study that has made this comparison. Likewise, we are aware

5 FNIRT is an exception: In the beta version used in this study, zero values are
interpreted as missing data; FNIRT will not use the information for the edge of the
cortex in the registration with this setting, which may result in misregistration of
the surface of the brain.
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of no comparisons between the registration of interpolated versus non-
interpolated (bias-field corrected and uncorrected, intensity normalized and
non-normalized, etc.) images. All of the images in this study were linearly
interpolated twice, once to linearly register each brain to a template, and a
second time to linearly register each source brain to a target brain in the
template space, prior to nonlinear registration. We did this to be consistent,
because all of the registration methods we compared do not accept an
affine transform to initialize registration. The first author has observed much
more accurate nonlinear registrations with ART (on a separate set of brain
images) when using nearest-neighbor (or no) interpolation on a preliminary
linear registration step, most noticeably in occipital-parietal boundaries. This
suggests that, at the very least, ART would perform much better than this
study suggests. More work will need to be conducted to see how consistent the
improvements are and which algorithms are affected most by interpolation.

Regarding the registration methods themselves, each one has a similarity
measure, transformation model, regularization method, and optimization
strategy. Unfortunately, we could only evaluate each algorithm in its entirety.
A superior transformation model coupled with an unsuitable similarity
measure, for example, would most likely lead to suboptimal results. By
extension, a poor selection of parameter settings will lead to poor registrations.
We could only evaluate each algorithm using the software parameters that
were recommended by their authors. Perhaps the most crucial assumption of
our study is that these parameter settings for each method were appropriate
for all of our brain images. We fully expect that each registration algorithm
could perform better given the opportunity to experiment with these settings.
This is one aspect of our study that sets it apart from comparison studies
such as Hellier’s (Hellier et al., 2001a, 2002, 2003), where the authors of the
software packages were allowed to tweak and run their own programs on the
full test set of brain images. The commands that were run for this study
were recommended by the authors of their respective software programs after
having seen only one or two of the 80 images from one of the four datasets
(FNIRT, IRTK, SICLE, SyN, and SPM’s DARTEL Toolbox 6 ), or no images
at all.

When reslicing the source label volumes, we used nearest-neighbor
interpolation to preserve label values. An alternative approach is recommended
where the source label volume is first split into N binary volumes, with one
label per volume (Collins, personal communication). Each volume is then

6 Updated versions of these software packages were used after the authors of the
packages saw an image or two, or their recommended commands or parameter files
were altered to set the number of iterations or control point spacing to reduce
computation time, or the authors needed to determine if intensity correction was
warranted (see Supplementary section 1).
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resampled using the nonlinear transformation with a tricubic or truncated sync
kernel instead of nearest-neighbor interpolation. The resulting N temporary
volumes are finally combined into a single volume, where each voxel label is
set to the label of the structure that has the highest value. This presumably
gives more consistent behavior at structure edges, especially in areas where
the deformation changes local volumes or where more than three structures
meet. Others have implemented variants of this approach (Crum et al., 2004;
Shattuck et al., 2008). We were unable to follow this recommendation due
to computational and storage constraints, and were advised that the results
would be only marginally different.

4.3 Recommendations

Bearing in mind the caveats mentioned above, particularly those regarding
parameter settings, the first author makes the following recommendations
based on the results of this study. All of the software packages under
comparison are freely available via the Internet or from the authors themselves
(except for JRD-fluid, run on LONI’s servers) and all but one (SICLE) are
easy to install. They vary in the extent of their documentation, primarily
because the pre-release software packages are new and very much under active
development.

The highest-ranking registration methods were SyN, ART, IRTK, and SPM’s
DARTEL Toolbox (see Tables 3, 4, and 5). SyN and ART gave consistently
high-ranking results and were the only methods that attained top rank for all
tests and for all label sets. IRTK and SPM’s DARTEL were competitive with
these two methods.

All four of these methods are available on Unix-type systems, and all but ART
are available for the Windows operating system. Of the four, only SPM requires
a commercial software package (Matlab) and has a graphical user interface
(which was not used in the study). If flexibility is desired, SyN provides the
most options and the closest documentation to a manual for command-line
parameters. If resources are an issue, note that SyN requires at least 1 GB
RAM and 87 MB storage per x, y, z set of transform files (followed by ART
at 67 MB for our data). If time is a constraint, ART is the fastest of the four.
If consistency is the top priority, ART had the fewest outliers and among the
tightest distributions of the four methods. If interested in particular regions,
please refer to Figs. 7, 8, 9, and 10 (the latter three are in Supplementary
section 3) to determine which of the 15 methods had the highest relative
accuracy for those regions across the label sets.

For time-sensitive scenarios, such as intraoperative imaging, and in high-

32



throughput environments that need to process dozens to thousands of brain
images, Diffeomorphic Demons and ROMEO are reasonable candidates.

With regard to the evaluation protocol, based on the experience of conducting
this study the first author recommends caution when choosing an image
format and preprocessing steps, particularly when comparing across methods,
recommends avoiding interpolation prior to running nonlinear registration,
and recommends the model of Pierre Jannin et al. for defining and reporting
reference-based validation protocols (Jannin et al., 2006).

With regard to designing and distributing registration algorithms, the
first author recommends where possible creating separable components for
the similarity measure, transformation model, regularization method, and
optimization strategy. This would aid users and evaluators who would want
to alter or improve upon these individual components.

5 Acknowledgments

The first author would like to extend his sincere gratitude to the participants
in this study for their guidance and support in the use of their software,
which in some cases took the form of new pre-release software and reslicing
algorithms. He is grateful to his colleagues in the Division of Molecular
Imaging and Neuropathology, and thanks Steve Ellis, Todd Ogden, Satrajit
Ghosh, and Jack Grinband for their helpful discussions. And of course he
thanks his two closest colleagues Deepanjana and Ellora. This work was
partially funded by the National Institutes of Health through NIH grant P50-
MH062185. The LPBA40 MR and label data were provided by the Laboratory
of Neuro Imaging at UCLA and are available at http://www.loni.ucla.

edu/Atlases/LPBA40. The IBSR18 MR and label data were provided by the
Center for Morphometric Analysis at Massachusetts General Hospital and are
available at http://www.cma.mgh.harvard.edu/ibsr/. The CUMC12 data
were provided by Brett Mensh, and the MGH10 data were provided by Satrajit
Ghosh and Jason Tourville. The contributions to this paper by Babak A.
Ardekani were supported by Grant Number R03EB008201 from the National
Institute of Biomedical Imaging And Bioengineering (NIBIB) and the National
Institute of Neurological Disorders and Stroke (NINDS). The contributions to
this paper by Gary E. Christensen and Joo Hyun Song were supported by NIH
grant EB004126. Mark Jenkinson would like to thank the UK BBSRC (David
Phillips Fellowship). John Ashburner is funded by the Wellcome Trust.

33

http://www.loni.ucla.edu/Atlases/LPBA40
http://www.loni.ucla.edu/Atlases/LPBA40
http://www.cma.mgh.harvard.edu/ibsr/


A Supplementary data

Supplementary data associated with this article can be found below, in the
online version, at doi:10.1016/j.neuroimage.2008.12.037, and on http:

//www.mindboggle.info/papers/.

B Algorithm requirements
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Algorithm Code Computer Input Setup Run time: minutes

FLIRT (FSL 4.0) C++ OSX, Linux, Win,... Analyze, NiFTI

AIR 5.25 C OSX, Unix, Win,...
ANSI C compiler

Analyze 8-/16-bit Remove nonbrain
structures

6.7 (1.5)

ANIMAL
(AutoReg 0.98k)

C, Perl OSX, Linux, Unix MINC Intensity correction
(option)

11.2 (0.4)

ART C++ OSX, Linux Analyze 20.1 (1.6) [Linux]

Diffeomorphic
Demons

C++ Most (ITK
compilable)

Analyze, NifTI,
DICOM,... (ITK)

8.7 (1.2)

FNIRT beta C++ OSX, Linux, Unix Analyze, NiFTI
(writes to Analyze)

29.1 (6.0)

IRTK C++ OSX, Linux, Win Analyze, NiFTI,
VTK, GIPL

Parameter file 120.8 (29.3)

JRD-fluid C++ Sun Analyze 17.1 (1.0) [Solaris]

ROMEO C++ OSX, Linux, Win Analyze, NiFTI,
DICOM,... (ITK)

Parameter file 7.5 (0.5)

900+MB RAM Intensity correction
(Hellier, 2003)

SICLE C++ OSX, Linux, Solaris,
Alpha, Win

Analyze (7.5) 8-bit Dimensions divisible
by 16

33.5 (6.6)

g77/gfortran Intensity correction

lapack, f2c Isotropic

1+GB RAM Individual parameter
files

SyN beta C++ Most (ITK
compilable)

Analyze, NiFTI,
DICOM,... (ITK)

77 (15.1)

1+GB RAM

SPM5: Matlab Most (Matlab)

“SPM2-type”
Normalization

Matlab 6.5 onwards Analyze, NiFTI Smooth targets
(Gaussian 8mm
FWHM)

<1

Normalization Matlab 6.5 onwards Analyze, NiFTI Left-handed
orientation

<1

Unified
Segmentation

Matlab 6.5 onwards Analyze, NiFTI Left-handed
orientation

≃1

DARTEL
Toolbox (pairs)

Matlab 7.0 onwards Analyze, NiFTI Left-handed
orientation

71.8 (6.3)*

Origin near anterior
commissure

Table B.1
Algorithm requirements, input, and run time. The run time average (and standard deviation) is estimated
from a sample of registrations and includes the time to compute the source-to-target transform but not to
apply it to resample the source labels. *SPM’s DARTEL Toolbox requires time to construct a template per
subject group. The time listed is for the pairwise implementation; for the normal toolbox implementation,
it took 17 minutes per brain, or 17.5 hours to run all 80 brains (LPBA40: 480 min., IBSR18: 220 min.,
CUMC12: 195 min., MGH10: 158 min.). All programs were run on an OSX system (Mac Pro Quad-Core
Intel Xeon, 3GHz, 6GB RAM) with a 10.4 operating system, except for ROMEO (10.5 operating system),
ART (the OSX version was made available after the study; Dell PowerEdge 6600 Enterprise server with
four 2.8GHz Intel Xeon processors and 28GB of RAM running Redhat linux, approximately 1.25-1.5 times
slower than the OSX machine), and JRD-fluid (run on LONI’s servers: SUN Microsystem workstations with
a dual 64-bit AMD Opteron 2.4 GHz processor running Solaris).
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Supplementary section 1: Initial run

A few algorithms resulted in consistently low accuracies or occasional failures
in their registrations. We did our best to rectify these problems. For example,
ROMEO’s initial run produced inconsistent results, so Hellier provided
intensity correction code which we applied to all of the data prior to registering
with ROMEO. Of the 2,168 registrations, there were 19 failures for AIR,
accompanied by the message: “Registration terminated due to a Hessian matrix
that was not positive definite” (even with the “-q” option). We were able
to correct all of these cases by skipping the “alignlinear” step (and relying
on the preliminary linear alignment with FLIRT). SyN had seven failures,
which we corrected by first running Avant’s TranslateRegistration program
(this program had no effect on other registrations).

SPM’s DARTEL Toolbox resulted in highly variable results for the LPBA40
set (and low results obtained with one of the MGH10 images), most likely
because of the inconsistent way that an older version of the code dealt
with zeros in the images. DARTEL estimates its spatial transformation by
registering gray and white matter maps produced by the segmentation step.
Regions in these images, which had been set to zero in the skull-stripped data,
sometimes contained information from the tissue probability maps used by the
segmentation. We downloaded an updated version of DARTEL that corrects
for this and ran it again (in both a pairwise as well as average template
manner).

In addition to addressing variable results, we had to set reasonable time
constraints. SyN’s default parameters were found to be too computationally
intensive, so Avants recommended a different number of iterations to keep
computation under an hour per registration. Likewise, Rueckert provided
a parameter file with reduced control point spacing to reduce IRTK’s
computation time. IRTK, SICLE, and SPM’s Unified Segmentation and
DARTEL Toolbox were run by their authors on one registration pair to ensure
that the first author’s implementation and execution of their software was
correct. 7

7 Likewise for PASHA and HAMMER, but these were excluded from the study (see
Discussion).
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Supplementary section 2: The trivial case: self-registration results

For the trivial case, where each brain was registered to itself, all of the
methods performed nearly perfectly as measured by volume similarity,
with the exception of SPM’s DARTEL Toolbox for the LPBA40 set.
According to target volume overlap, the methods that gave less than perfect
results were: ANIMAL and ROMEO (for all four label sets), “SPM2-type”
Normalization (IBSR18, CUMC12, and MGH10), and ROMEO, SICLE, and
SPM’s DARTEL (LPBA40). The few cases of low values were obtained with
SPM’s DARTEL, and only for the LPBA40 set according to overlap and
distance measures.

The results were almost identical for the target, union, and mean volume
and surface overlap measures. Not surprisingly, the deviations from perfect
registration in the trivial case are revisited in the non-trivial, inter-brain
registrations results.
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Supplementary section 3: More indifference-zone rankings

See Figures 8, 9, and 10 for indifference-zone ranking of the registration
methods for the IBSR18, CUMC12, and MGH10 data, respectively. These
rankings are based on target overlap results, and correspond to the
indifference-zone ranking for the LPBA40 data in Figure 7.

Fig.8 Indifference-zone ranking of the registration methods: IBSR18 overlaps.
This matrix was constructed as in Figure 7 for target overlap rankings averaged
across 306 registration pairs using the 84 regions of the IBSR18 dataset
(union and mean overlap results are almost identical). Blue indicates higher
accuracy; the colors (and color range) are not comparable to those of the
other label sets (Figures 7, 9, and 10). (SPM_N*=“SPM2-type” Normalize,
SPM_N=Normalize, SPM_US=Unified Segmentation, SPM_D=DARTEL
pairwise)

Fig.9 Indifference-zone ranking of the registration methods: CUMC12
overlaps. This matrix was constructed as in Figure 7 for target overlap rankings
averaged across 132 registration pairs using the 128 regions of the CUMC12
dataset (union and mean overlap results are almost identical). Blue indicates
higher accuracy; the colors (and color range) are not comparable to those of the
other label sets (Figures 7, 8, and 10). (SPM_N*=“SPM2-type” Normalize,
SPM_N=Normalize, SPM_US=Unified Segmentation, SPM_D=DARTEL
pairwise)

Fig.10 Indifference-zone ranking of the registration methods: MGH10
overlaps. This matrix was constructed as in Figure 7 for target overlap rankings
averaged across 90 registration pairs using the 74 regions of the MGH10
dataset (union and mean overlap results are almost identical). Blue indicates
higher accuracy; the colors (and color range) are not comparable to those of
the other label sets (Figures 7, 8, and 9). (SPM_N*=“SPM2-type” Normalize,
SPM_N=Normalize, SPM_US=Unified Segmentation, SPM_D=DARTEL
pairwise)
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Supplementary section 4: Volume similarity results

The volume similarity measures, averaged across all of the regions in each label
set, are shown in Figure 11. Volume similarity is only an indirect measure of
registration accuracy, however it can be used to expose gross discrepancies in
volume, if not shape. For each label set, all of the methods resulted in very
similar median values. The LPBA40 set and SPM DARTEL exhibited the
largest number of outliers.

Fig.11 Volume similarity by registration method. These box and whisker plots
(constructed as in Figure 5) show the volume similarity measures between
deformed source and target labels, averaged first across all of the regions in
each label set (LPBA40, IBSR18, CUMC12, and MGH10) then across brain
pairs, with highest similarity at the top. (SPM_N*=“SPM2-type” Normalize,
SPM_N=Normalize, SPM_US=Unified Segmentation, SPM_D=DARTEL
pairwise)
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Supplementary section 5: Distance results

The box and whisker plot in Figure 12 shows the distance errors for the
LPBA40 label set. They exhibit a roughly similar pattern across the methods
as the overlap values in Figure 5, although regional differences may be seen
across Figures 13 and 7.

Fig.12 Distance error by registration method. The box and whisker plot
was constructed as in Figure 5 except that the measure is distance error
between deformed source and target label boundaries, averaged first across
all of the regions in the LPBA40 label set then across brain pairs, with
lowest errors toward the top. The brain images (constructed as in Figure
6) show the mean distance error per region as a color (blue indicates
higher accuracy). (SPM_N*=“SPM2-type” normalization, SPM_N=SPM’s
Normalize, SPM_US=Unified Segmentation, SPM_D=DARTEL pairwise)

Fig.13 Indifference-zone ranking of the registration methods: LPBA40
distance errors. This matrix was constructed as in Figure 7, except for distance
error rankings rather than overlap rankings. Blue indicates lower error and
higher accuracy. (SPM_N*=“SPM2-type” normalization, SPM_N=SPM’s
Normalize, SPM_US=Unified Segmentation, SPM_D=DARTEL pairwise)
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Supplementary section 6: Dependence test

To determine the degree of correlation across source-target registration pairs,
we selected and organized pairs from the LPBA40 brains (e.g., a→b) into two
columns (a→b, c→d), where rows were independent of one another (no brain
appeared in multiple rows), but the two columns had one of four dependency
relationships to one another, as follows:

(1) No dependence; each brain was used only once (10 rows):
a→b, c→d

(2) source and target dependence; both brains were used twice (20 rows):
a→b, b→a

(3) source dependence; the source is used twice (13 rows):
a→b, a→c

(4) target dependence; the target is used twice (13 rows):
a→b, c→b

We then replaced each registration pair with the target overlap calculated for
that pair for each registration method, and computed the correlation between
the left and right columns for each dependency condition. We repeated this
procedure 1,000 times, using a new set of pairs satisfying each condition, and
averaged the results. The values for the no dependence condition are close to
zero as we would expect for independent pairs. All of the other conditions,
however, result in high correlations for most of the methods. One interesting
detail is that there is an asymmetry between conditions 3 and 4. For example,
for some methods, even when pairs that share a source brain are correlated,
pairs that share a target brain are not necessarily correlated.
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Supplementary section 7: Software setup and commands

Most of the programs offer a range of flexible options for their similarity
metric, regularization method, etc. Therefore the following commands each
represent but a single implementation of its underlying algorithm. The
nonlinear deformation programs are listed in alphabetical order after the linear
registration program FLIRT.

Python and Matlab programs were used to call all of the commands below, and
were run on an OSX system (Mac Pro 2-Quad-Core (8-processor) Intel Xeon,
3GHz, 6GB RAM) with a 10.4 operating system, except for ROMEO (10.5
operating system, same hardware), ART (Dell PowerEdge 6600 Enterprise
server with four 2.8GHz Intel Xeon processors and 28GB of RAM running
Redhat linux), and JRD-fluid (run on LONI’s servers: SUN Microsystem
workstations with a dual 64-bit AMD Opteron 2.4 GHz processor running
Solaris). IRTK was run on some of the LPBA40 brains on servers at Imperial
College, and the results were confirmed to be identical to those obtained by
the first author.

FLIRT linear and rigid alignment commands were run before any of the other
commands, and the resulting linearly transformed brain images were resliced
using trilinear interpolation. For all algorithms, manual labels were resliced
using nearest-neighbor interpolation.

FLIRT (FSL v4.0)
Linearly align to MNI space (9-parameter):
flirt -in 〈source〉 -ref 〈MNI152〉 -omat 〈output transform〉.mat -out 〈output
brain〉 -bins 256 -cost corratio -searchrx -90 90 -searchry -90 90 -searchrz -90
90 -dof 9 -interp trilinear
where 〈MNI152〉 is the nonlinear MNI152 template used by FSL:
MNI152_T1_1mm_brain

Rigidly align in MNI space (6-parameter):
flirt -in 〈above output brain〉 -ref 〈target〉 -omat 〈output transform〉.mat -out
〈starting point for all other algorithms〉 -bins 256 -cost corratio -searchrx -30
30 -searchry -30 30 -searchrz -30 30 -dof 6 -interp trilinear

Reslice using 6-parameter output transform:
flirt -in 〈labeled source〉 -ref 〈labeled target〉 -applyxfm -init 〈transform〉.mat
-out 〈output labels〉 -paddingsize 0.0 -interp nearestneighbour

AIR v5.25
Align (12-parameter affine):
alignlinear 〈target〉.img 〈source〉.img 〈output affine transform〉.air -m 12 -t1 1
-t2 1 -q
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Warp (2nd-order, 3rd-order, 4th-order and then 5th-order 168-parameter):
align_warp 〈target〉.img 〈source〉.img 〈output transform〉.warp -m 2 5 -f
〈above affine transform〉 -t1 1 -t2 1 -q

Reslice:
reslice_warp 〈align_warp transform〉.warp 〈output labels〉.img -a 〈labeled
source〉.img -n 0 -o

ANIMAL (MNI AutoReg v0.98k)
A Perl script performs non-linear fitting. The original ANIMAL parameters
were optimized Robbins (Robbins et al., 2004). The resulting Perl script was
modified again by Janke and Lepage. The script calls minctracc and the
parameters and hierarchical steps are as follows:

‘-nonlinear’, ‘corrcoeff’, ‘-weight’,1, ‘-stiffness’,1, ‘-similarity’,0.3,
‘-sub_lattice’,6

’step’: 32 16 12 8 6 4

’blur_fwhm’: 16 8 6 4 3 2

’iterations’: 20 20 20 20 20 10

Warp: 〈Perl script〉.pl -clobber -normalize 〈source〉.mnc 〈target〉.mnc 〈output
transform〉.xfm

Reslice: mincresample -transform 〈transform〉.xfm -like 〈labeled target〉.mnc
〈source〉.mnc 〈output labels〉.mnc -nearest_neighbour -keep_real_range -
short

Convert to Analyze format: mnc2nii -short 〈above output labels〉.mnc 〈output
labels〉.nii

ART

Warp: 3dwarper -R -trg 〈target〉.img -obj 〈source〉 -u 〈output transform〉.wrp
-o 〈output brain〉.img -A -sd 8.0

Reslice: applywarp3d -nn -w 〈transform〉.wrp 〈labeled source〉

Diffeomorphic Demons:

Warp: DemonsRegistration -f 〈target〉.hdr -m 〈source〉.hdr -0 〈output
transform〉.hdr -e -s2 -i30x20x10

Reslice: ResampleImage -i 〈labeled source〉.hdr -f 〈transform〉.hdr -o 〈output
labels〉.img
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FNIRT

Warp: fnirt - -config=schedule_01.cnf - -ref=〈target〉 - -in=〈source〉 - -cout
〈output transform〉

Reslice: applywarp -i 〈labeled source〉 -r 〈target〉 -w 〈transform〉 -o 〈output
labels〉 - -interp=nn

IRTK

In the current study no regularization was used.
The parameter file called for a 2.5 mm minimum control point spacing, and
the non-rigid registration parameters were:
Lambda1, 2, and 3 = 0
Control point spacing in X, Y, and Z = 20

Rigidly align: rreg 〈target〉.hdr 〈source〉.hdr -dofout 〈output
transform〉_rreg.dof

Affinely align: areg 〈target〉.hdr 〈source〉.hdr -dofin 〈rreg transform〉_rreg.dof
-dofout 〈output transform〉_areg.dof

Warp: nreg 〈target〉.hdr 〈source〉.hdr -dofin 〈areg transform〉_areg.dof -dofout
〈output transform〉_nreg.dof -parin ITK_parameters_2.5mm.txt

Reslice: transformation 〈labeled source〉.hdr 〈output labels〉.hdr -dofin 〈nreg
transform〉_nreg.dof -target 〈target〉.hdr

JRD-Fluid:
Warp: mix_fluidmap_nohassle_column.out 〈source〉.img
〈dimensions〉 〈target〉.img 〈dimensions〉 〈output directory〉 source_le 0.95 0
〈parameter〉,

where parameter is set to 4 for LONI LPBA40 images (181x217x181 voxels)
and set to 20 for all other images registered to the nonlinear MNI152 template.

Reslice: resample_8bit_image_NN.out 〈labeled source〉.img 〈above output
directory〉/trn_DXP_ftle 〈above output directory〉/trn_DYP_ftle 〈above
output directory〉/trn_DZP_ftle 〈dimensions〉 〈output labels〉

ROMEO

Warp and reslice: Romeo.py -t 〈target〉 -s 〈source〉 -l 〈labeled source〉 -o
〈output brain〉 -d 〈output labels〉

SICLE

Preparation: lereg2.exe -gf global.param -p input_files/〈source-target pair
parameter file〉.in | tee 〈source-target pair output file〉.out

Warp: rpp2.exe 〈source-target pair parameter file〉.in -def -jac -gf global.param
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Reslice: deform3d.exe -coeff 〈source-
target pair output stem〉_res10000_iter00020.coeffs -t 〈labeled source〉.hdr
-o 〈output labels〉.hdr -interp N

SPM5’s “SPM2-type” Normalization

Warp (in Matlab): spm_normalise(“〈target〉.img”, “〈source〉.img”, “〈output
transform〉.mat”);

Reslice (in Matlab): spm_write_sn(“〈labeled source〉.img”, “〈output
labels〉.mat”, struct(“interp”,0));

SPM5’s Normalize, Unified Segmentation, and DARTEL Toolbox

Matlab scripts were used to compose the transforms for these methods, and
may be obtained from http://www.mindboggle.info/papers/.

SyN

Linearly align (optional): TranslationRegistration 〈target〉.hdr 〈source〉.hdr
〈output linear transform〉

Warp: perl arnoMVSN.pl 〈target〉.hdr 〈source〉.hdr 〈above linear transform〉 “
-c 5 -n3 -i30x99x11 -l 0.5 -s 2 -a 0.05 ” 〈SyN directory〉 0 0 0 〈user name〉 1

Reslice: WarpImageBackward 〈labeled source〉.hdr 〈transform filestem〉warp
〈output labels〉.hdr donearestneighbor

We corroborated results obtained with the above commands for the newer,
publicly released ANTS software (http://www.picsl.upenn.edu/ANTS/)
using the following commands:

Warp: ANTS 3 -m PR[〈target〉.nii, 〈source〉.nii, 1, 2] -o 〈output transform〉.nii
-r Gauss[2,0] -t SyN[0.5] -i 30x99x11 –use-Histogram-Matching

Reslice: WarpImageMultiTransform 3 〈labeled source〉.nii 〈output labels〉.nii
-R 〈target〉.nii 〈transform〉Warp.nii 〈transform〉Affine.txt –use-NN
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Supplementary section 8: Algorithm descriptions

8.1 FLIRT: FMRIB’s Linear Image Registration Tool

FLIRT was developed by Jenkinson (Jenkinson and Smith, 2001) at the
FMRIB Centre at the University of Oxford, UK. FLIRT can be downloaded
with the FMRIB Software Library (FSL) at http://www.fmrib.ox.ac.uk/

fsl/.

FLIRT is an automated linear (affine) registration tool based around a multi-
start, multi-resolution global optimisation method. It can be used for inter-
and intra-modal registration with 2-D or 3-D images. In addition, it can be run
with a number of different transformation models (degrees of freedom) and it
implements a general cost function weighting scheme for all cost functions.

8.2 AIR: Automated Image Registration

AIR was developed by Woods (Woods et al., 1998) at the David Geffen School
of Medicine at UCLA, CA. The C source code may be downloaded at http:

//air.bmap.ucla.edu.

AIR aligns a pair of images by minimizing the mean squared difference between
the image designated for resampling and the image to which it is being
registered. First and second derivatives of the cost function are computed and
used to iteratively adjust the model parameters. In addition to an optional
intensity scaling parameter, the algorithm adjusts the elements of polynomials
of the desired order. Registration begins with a first order polynomial (i.e.,
an affine transformation) and the order is incremented sequentially until the
order specified by the user is reached. Polynomial orders up to twelfth order are
implemented. At each order, registration begins with sparse sampling of the
data and proceeds to denser sampling, per user specifications, with subsequent
iterations. Criteria for advancing to denser sampling or to higher order
polynomials include the magnitude of the predicted improvement in the cost
function, the number of iterations without improvement in the cost function,
and the total number of iterations. In some instances, full Newton-based
minimization cannot proceed because the Hessian matrix of second derivatives
is not positive definite. The likelihood of a non-positive definite Hessian
matrix can optionally be reduced by omitting certain contributions to the
second derivatives using a strategy similar to that employed by the Levenberg-
Marquardt algorithm. The optimized polynomial transformation is stored, and
separate programs allow either of the two original images to be resampled into
the space defined by the other image using a variety of interpolation algorithms
(nearest neighbor interpolation, trilinear interpolation, sinc interpolation, and
hybrids of these methods). Diagnostics are available to verify that no regions
with non-positive Jacobians are present. Polynomial transformations can be
mathematically combined with any number of affine linear transformations,
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allowing data to be resampled directly from or to any space that has an affine
relationship to the original images.

(degrees of freedom (dof) = 168)

8.3 ANIMAL: Automatic Nonlinear Image Matching and Anatomical Labeling

ANIMAL was developed by Collins et al. (Collins et al., 1994, 1995; Collins
and Evans, 1997; Robbins et al., 2004) of the Montreal Neurological Institute,
Canada. The original ANIMAL is available for download at http://www.bic.
mni.mcgill.ca/users/louis/MNI_ANIMAL_home/readme/. Lepage provided
a Perl script (see below) for implementing the multi-resolution strategy.

ANIMAL is based on multi-scale, 3-D cross-correlation. Spatial registration
is completed automatically as a two step process. The first accounts for
the linear part of the transformation by using correlation between Gaussian-
blurred features extracted from both volumes. In the second step, ANIMAL
estimates the 3-D deformation field required to account for this variability. The
deformation field is built by sequentially stepping through the target volume
in a 3-D grid pattern. At each grid-node i, the deformation vector required to
achieve local registration between the two volumes is found by optimization
of three translational parameters (txi, tyi, tzi) that maximize the objective
function evaluated only in the neighborhood region surrounding the node.
The algorithm is applied iteratively in a multi-scale hierarchy, so that image
blurring and grid size are reduced after each iteration, thus refining the fit.
The multi-scale approach also makes the procedure very robust and ensures
that the algorithm converges to the global minimum.

A Perl script (nlfit) implements the multi-resolution fitting strategy to map
brains into stereotaxic space at the Montreal Neurological Institute. At the
heart of this procedure is minctracc, the program that automatically finds
the best non-linear transformation to map one volumetric data set (stored
in MINC format) to another. The program uses optimization over a user
selectable number of parameters to identify the best transformation mapping
voxel values of the first data set into the second.

(dof≤ 3× ≃23,000 nodes (1.5M brain voxels / 4mm each direction) = 69,000)

8.4 ART: Automated Registration Tool

ART was developed by Ardekani et al. (Ardekani et al., 2005) at the Nathan
Kline Institute, NY. The executables may can be downloaded at http://

www.nitrc.org/projects/art/. Ardekani revised the registration program
to allow one to specify an output file and revised the resampling code to
enable nearest-neighbor interpolation.
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ART uses local normalized cross-correlation between the source and target
images as its similarity measure. It determines a displacement vector field
defined for each grid point on the target image using a non-parametric free-
form multi-resolution approach. The displacement vector field obtained at each
resolution level is regularized by median and low-pass filtering.

Prior to non-linear registration, there are options for the program to determine
a linear rigid-body (6-parameter) registration between the target and subject
images followed by a linear affine (12-parameter) registration (Ardekani et al.,
1995).

(dof ≃ 3 ×#brain voxels ≃ 7million)

8.5 Demons: Diffeomorphic Demons

Diffeomorphic Demons was developed by Vercauteren et al. (Vercauteren et al.,
2007) at Mauna Kea Technologies and at INRIA Sophia Antipolis, France; it is
implemented as part of the finite difference solver framework within the Insight
Toolkit (ITK) and can be downloaded at http://hdl.handle.net/1926/510.
A graphical user interface is provided as part of MedINRIA (Toussaint et al.,
2007). Vercauteren provided a version of the resampling code with an option
for nearest-neighbor interpolation that doesn’t require origin information.

This non-parametric algorithm generalizes Thirion’s Demons algorithm
(Thirion, 1998) to produce a diffeomorphic spatial transformation (Ver-
cauteren et al., 2007). This method alternates between the computation of
warping forces inspired from optical flow theory and the regularization of
these forces by a simple Gaussian smoothing.

The Demons algorithm may be characterized as the optimization of a global
energy function (Cachier et al., 2003) where correspondences act as a hidden
variable in the registration process. The regularization criterion is then
considered as a prior on the smoothness of the spatial transformation s, and
point correspondences between image pixels (a vector field c) are allowed to
have some error.

Given a fixed image F (.) and a moving image M(.), the following global energy
is optimized:

E(c, s) =
1

σ2
i

Sim (F, M ◦ c) +
1

σ2
x

dist (s, c)2 +
1

σ2
T

Reg (s) , (B.1)

where σi accounts for the noise on the image intensity, σx accounts for
spatial uncertainty on the correspondences and σT controls the amount of
regularization. Classically, Sim (F, M ◦ s) = 1

2
‖F −M ◦ s‖2, dist (s, c) =

‖c− s‖ and Reg (s) = ‖∇s‖2 but the regularization can also be modified
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to handle fluid-like constraints.

Within this framework, the Demons registration can be explained as an
alternate optimization over s and c. The optimization is performed within
the complete space of dense non-rigid transformations by taking a series of
additive steps, s ← s + u. In constrast, the diffeomorphic demons algorithm
optimizes E(c, s) over a space of diffeomorphisms. This is done in (Vercauteren
et al., 2007) by using an intrinsic update step, s ← s ◦ exp(u), on the group
of diffeomorphisms.

(dof ≃ 3 ×#voxels = 21million)

8.6 FNIRT: FMRIB’s Nonlinear Image Registration Tool

FNIRT was developed by Andersson et al. (Andersson et al., 2008) of the
FMRIB Centre at the University of Oxford, UK. Andersson provided pre-
release software for use in this study.

FNIRT is the FMRIB tool for small-displacement non-linear registration. The
displacement fields are modelled as linear combinations of a basis set of splines
of order two or higher, with a default of three (cubic splines). Regularisation
of the field is based on bending energy (default) or membrane energy (the
prior default used in this study), with optimization by multi-scale Levenberg-
Marquardt minimization. The registration is initialized and run to convergence
with sub-sampled images, a field of low resolution and a high regularization
weight. The images and the fields from the first step are then up-sampled, the
regularization modified and it is again run to convergence. This is repeated
until the required warp resolution and level of regularization is achieved. After
each resolution step the field is projected back onto the space of fields with
Jacobians within a predefined range (Karacali and Davatzikos, 2004).

The important and unique aspects of FNIRT are with respect to its
cost function. Normally when using a sum-of-squares (SOS) cost function
one minimizes the difference between a warped source image and some
target. FNIRT minimizes the SOS between a warped source image and the
expectation of an image in target space. This expectation is based on an actual
image in target space and an intensity model. The intensity model will have
some set of parameters that is determined along with the warp parameters
as part of the optimization. This model can be very simple, for example just
a linear scaling of the target image, in which case the parameters will be
a single scale factor. The model can also be quite complex, if for example
one wants to model a spatially varying flip-angle (which is a real problem
with high-field scanners) it will consist of some set (e.g. 5) fields. Each of
these fields is modeled as a linear combination of some basis set (also splines)
and will consist of a few thousand parameters. For each voxel the expected
intensity would then be a 5th-order polynomial of the intensity in the target
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image, where the coefficients are given by the values of the five fields at that
voxel. This way it is possible to accurately model an image where (due to
inhomogeneities) one area is strongly T1-weighted and another area has a
strong T2-component. There is a set of different intensity models in FNIRT
and the decision of which to use is made based on the properties of the two
images one attempts to match.

(dof ≃ 30,000)

8.7 IRTK: Image Registration Toolkit

IRTK was developed by Rueckert et al. (Rueckert et al., 1999; Studholme
et al., 1999; Rueckert et al., 2006) of Imperial College, UK. The executables
are available for download at http://www.doc.ic.ac.uk/~dr/software/.

IRTK uses a combined transformation T which consists of a global
transformation and a local transformation:

T(x) = Tglobal(x) + Tlocal(x) (B.2)

The global transformation describes the overall differences between the
two subjects and is represented by an affine transformation. The local
transformation describes any local deformation required to match the
anatomies of the subjects. IRTK uses a free-form deformation (FFD) model
based on B-splines. The basic idea of FFDs is to deform an object by
manipulating an underlying mesh of control points. The resulting deformation
controls the shape of the 3-D object and can be written as the 3-D tensor
product of the familiar 1-D cubic B-splines,

Tlocal(x) =
3∑

l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w)ci+l,j+m,k+n (B.3)

where c denotes a mx ×my ×mz lattice of control points which parameterise
the free-form deformation, i, j, k denote the indices of the control points and
u, v, w correspond to the relative positions of x in lattice coordinates. The
lattice of control points is defined as a grid with uniform spacing which
is placed on the underlying reference image. The optimal transformation is
found using a gradient descent minimisation of a cost function associated
with the global transformation parameters as well as the local transformation
parameters. The cost function comprises two competing goals: The first term
represents the cost associated with the voxel-based similarity measure, in this
case normalised mutual information (Studholme et al., 1999), while the second
term corresponds to a regularization term which constrains the transformation
to be smooth.
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In the current study no regularization was used. This will most likely not affect
results evaluated with overlap measures, but may affect studies interested
in folding in the deformation fields. A penalty term for folding in the
transformation is described in (Rueckert et al., 2006).

(dof ≃ 3 ×#control points = 1,422,843)

8.8 JRD-fluid: Jensen-Rényi Divergence fluid

JRD-fluid was developed by Chiang et al. (Chiang et al., 2007) at LONI,
UCLA, CA. Chiang provided the command options for the executables
and revised the resampling code to include an option for nearest-neighbor
interpolation. All registrations were run on LONI’s servers.

JRD-fluid is based on an information-theoretic measure, the Jensen-Rényi
divergence. JRD is derived from the joint histogram of two images. Using
variational calculus methods, the driving forces are defined throughout the
deforming image to maximize the JRD between it and the target image. A
viscous fluid regularizer was applied to guarantee diffeomorphic (i.e., smooth,
one-to-one) deformation mappings. The resulting partial differential equation
was solved iteratively by convolving the applied force field with the Green’s
function of the linear differential operator.

(dof ≃ 1283 = 2,097,152)

8.9 ROMEO: Robust multigrid elastic registration based on optical flow

ROMEO was developed by Hellier et al. (Hellier et al., 2001b) at INRIA
Rennes, France. Hellier provided the executables for this study.

The ROMEO registration method expresses the registration process as the
minimization of a cost function depending on two terms: an optical flow-based
similarity measure and a regularization term. The optical flow hypothesis,
introduced by Horn and Schunck (Horn and Schunck, 1981), assumes that the
luminance of a physical point does not change when the point moves with the
flow:

f(s + ws, t1)− f(s, t2) = 0 (B.4)

where s is a voxel of the volume, t1 and t2 are the indexes of the volumes
(temporal indexes for a dynamic acquisition, indexes in a database for multi-
subject registration), f is the luminance function and w the expected 3-D
displacement field.

Generally, a linear expansion of this equation is preferred: ∇f(s, t) · ws +
ft(s, t) = 0, where ∇f(s, t) stands for the spatial gradient of luminance and
ft(s, t) is the voxelwise difference between the two volumes. The resulting set
of undetermined equations has to be complemented with some prior on the
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deformation field. This prior is defined according to the quadratic difference
of the deformation field computed between neighbours. Using an energy-based
framework the regularization problem may be formulated as the minimization
of the following cost function:

U(w; f) =
∑
s∈S

[∇f(s, t) ·ws + ft(s, t)]
2 + α

∑
<s,r>∈C

||ws −wr||
2 (B.5)

where S is the voxel lattice, C is the set of neighboring pairs w.r.t. a given
neighborhood system V on S (< s, r >∈ C ⇔ s ∈ V(r)), and α controls the
balance between the two energy terms. The first term is the linear expansion
of the luminance conservation equation and represents the interaction between
the field and the data. The second term is the smoothness constraint. In order
to cope with large displacements, an incremental multi-resolution procedure
is used to construct a pyramid of volumes by successive Gaussian blurring and
subsampling.

(dof ≃ 2 million for 300,000 rigid and 50,000 affine estimates)

8.10 SICLE: Small-deformation, Inverse-Consistent, Linear-Elastic image
registration

SICLE was developed by Christensen et al. (Christensen, 1999; Christensen
and Johnson, 2001; Johnson and Christensen, 2002) at the University of Iowa.
Song provided the executables and helped to install the software.

SICLE is based on the principle of jointly estimating the forward h and
reverse g transformations between two images while minimizing the inverse
consistency error ||h(x) − g−1(x)|| + ||g(x) − h−1(x)||. Ideally, the forward
transformation h from image T to S and the reverse transformation g from
S to T should be uniquely determined and should be inverses of one another.
However, estimating h and g independently as with most uni-directional
image registration algorithms rarely results in an inverse consistent set of
transformations due to a large number of local minima. Jointly estimating
the forward and reverse transformations provides additional correspondence
information helping to minimize correspondence errors.

The SICLE image registration algorithm iteratively minimizes the following
cost function

C =σ

∫
Ω
|Ti(hi,j(x))− Tj(x)|2 + |Tj(hj,i(x))− Ti(x)|2dx

] + ρ

∫
Ω
||Lui,j(x)||2 + ||Luj,i(x)||2dx

+ χ

∫
Ω
||ui,j(x)− ũj,i(x)||2 + ||uj,i(x)− ũi,j(x)||dx. (B.6)
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where the parameters σ, ρ, and χ are weighting constants used to vary the
influence of each term of the cost function and Ω is the image domain.
The intensity of the images are normalized between 0 and 1. The first
integral of the cost function defines the correspondence (squared intensity
difference) between the deformed template and target images and between
the deformed target and template images, respectively. The second integral
is used to regularize the forward and reverse displacement fields ui,j and uj,i

respectively, and is minimized when the forward and reverse displacement
fields satisfy the properties of the linear elastic model. In the linear elastic
model, the linear differential operator Lu(x) = α∇2u(x)+β∇(∇·u(x))+γu(x)
penalizes large second and cross derivatives in the x, y, and z directions in the
displacement fields. The constant weighting parameters α, β, and γ are used
to vary the influence of the terms of Lu(x). The third integral is called the
inverse consistency constraint and is minimized when the forward and reverse
transformations hi,j and hj,i, respectively, are inverses of each other.

The cost function in Equation B.6 is minimized using the gradient descent
method described in (Christensen and Johnson, 2001) where each component
of the displacement field is parameterized in terms of a 3-D Fourier series. A
multi-resolution approach in the frequency and spatial domains is taken to
estimate the Fourier Series coefficients by first estimating the low frequency
components then increasing the number of harmonics as the estimation
progresses.

(dof = 7,986 for 10 harmonics)

8.11 SPM5: Statistical Parametric Mapping

SPM5 registration algorithms were developed by Ashburner et al.(Ashburner
and Friston, 1999, 2005; Ashburner, 2007) at the Functional Imaging
Laboratory, UK. Normalize, Unified Segmentation, and the DARTEL Toolbox
are part of the SPM5 package and may be downloaded from http://

www.fil.ion.ucl.ac.uk/spm/software/spm5/. Ashburner provided Matlab
scripts for composing the Normalization, Unified Segmentation and DARTEL
Toolbox transforms.

Five methods were evaluated from the SPM5 package: regular and “SPM2-
type” Normalization, Unified Segmentation, and regular and pairwise
implementations of the DARTEL Toolbox. It is expected that the SPM user
will register original brain images (non-skull-stripped and in their native space)
to idealized templates. The template images supplied with SPM5 conform to
the space defined by the ICBM, NIH P-20 project, and approximate that
of the space described in the atlas of Talairach and Tournoux (Talairach
and Tournoux, 1988). In this study, the “SPM2-type” Normalization and the
pairwise DARTEL were the only SPM methods that were applied in the same
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manner as all of the other non-SPM algorithms, that is, by directly registering
one skull-stripped brain image in MNI space to another (rather than to one
another via a coregistration template).

SPM5 regular and “SPM2-type” Normalization (Ashburner and Friston, 1999)

The algorithms work by minimizing the sum of squares difference between
the image which is to be normalized and a linear combination of one or more
template images (in the case of “SPM2-type” Normalization, a single target
image). The first step of the normalization is to determine the optimum 12-
parameter affine transformation. A Bayesian framework is used, such that
the registration searches for the solution that maximizes the a posteriori
probability of it being correct. That is, it maximizes the product of the
likelihood function (derived from the residual squared difference) and the
prior function (which is based on the probability of obtaining a particular
set of zooms and shears).

The affine registration is followed by estimating nonlinear deformations,
whereby the deformations are defined by a linear combination of 3-D discrete
cosine transform (DCT) basis functions. The parameters represent coefficients
of the deformations in three orthogonal directions. The matching involves
simultaneously minimizing the bending energies of the deformation fields and
the residual squared difference.

(dof ≃ 1,000)

SPM5 Unified Segmentation (Ashburner and Friston, 2005)

This approach uses a probabilistic generative model that combines image
registration, tissue classification, and bias correction. The log-likelihood
objective function is based on a mixture of Gaussians, and is extended to
incorporate a smooth intensity variation and nonlinear registration with tissue
probability maps. A small-deformation registration model is used, which is
parameterised by a linear combination of around 1,000 cosine transform basis
functions.

In addition to simple inter-subject registration, the Unified Segmentation
approach also performs classification of brain tissues into gray and white
matter, as well as bias correction and rudimentary skull-stripping.

(dof ≃ 1,000)

SPM5 DARTEL Toolbox: Diffeomorphic Anatomical Registration using
Exponentiated Lie algebra (Ashburner, 2007)
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This approach is an extension of the approach described by Ashburner
(Ashburner, 2007), and is intended to register tissue class images from multiple
subjects with a common template. The tissue class images are typically
gray and white matter, which have been extracted using the SPM5 Unified
Segmentation approach. The generative model assumes that the template
encodes the mean of a multinomial distribution. Pre-computed templates can
be used, but the toolbox also allows them to be iteratively generated from a
population of subjects using a “congealing” approach. Nonlinear registration is
considered as a local optimization problem, which is done using a Levenberg-
Marquardt strategy. The necessary matrix solutions are obtained in reasonable
time using a multi-grid method. A constant Eulerian velocity framework is
used, which allows a rapid scaling and squaring method to be used in the
computations.

(dof = 121×145×121×3 = 6,368,835)

8.12 SyN: Symmetric Normalization

SyN was developed by Brian Avants et al. (Avants et al., 2008) at the
University of Pennsylvania. Brian Avants provided the executables for a beta
version for this study. Several implementation improvements have been made
since the algorithm was evaluated in this work. SyN is available in the ANTS
toolkit; a new release with tutorial is available at http://www.picsl.upenn.
edu/ANTS/.

The symmetric normalization (SyN) methodology uses a symmetric
parameterization of the shortest path of diffeomorphisms connecting two
neuroanatomical configurations. The SyN formulation uses a bidirectional
gradient descent optimization which gives results that are unbiased with
respect to the input images. SyN also provides forward and inverse continuum
mappings that are consistent within the discrete domain and enables
both large and subtle deformations to be captured. Specific performance
characteristics depend upon the range of similarity metrics chosen for the
study and the velocity field regularization. The current study uses Gaussian
smoothing of the velocity field and a gradient-based optimization of an
approximate cross-correlation (CC) similarity metric with CC evaluated in
a window of size 5x5x5 voxels. A variety of other similarity measures are
available, including robust optical flow, mutual information and additional
correlation measures.

(dof ≃ 4 ×#voxels = 28million)
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