provided by Illinois Digital Environment for Ad

OIL RETENTION AND PRESSURE DROP IN HORIZONTAL AND VERTICAL SUCTION LINES WITH R410A / POE ISO 32

BY

KURT F. ZOELLICK

THESIS

Submitted in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering in the Graduate College of the University of Illinois at Urbana-Champaign, 2010

Urbana, Illinois

Adviser:

Professor Predrag S. Hrnjak

ABSTRACT

In refrigeration systems a small amount of compressor lubricant is entrained in the refrigerant and circulated through the system, where some is retained in each component. The suction line to the compressor has the largest potential for oil retention. This paper presents results from an experimental apparatus that has been constructed to circulate POE (polyolester) oil and R410A at a controlled mass flux, OCR (oil in circulation ratio), and apparent superheat, and to directly measure the pressure drop and mass of oil retained in horizontal and vertical suction lines. The bulk vapor velocity and overall void fraction are determined from direct mass and temperature measurements. The oil retention, pressure drop, and flow regimes near the minimum ASHRAE recommended mass flux condition are explored. It was found that oil retention begins to increase sharply even above the minimum recommended flux, so conditions near the minimum should be avoided. Two relationships were developed to predict the oil retention in the vertical and horizontal suction lines. The average error from the predictions method was 10.9% for the vertical tube, and 7.9% for the horizontal tube.

To My Father and Mother

ACKNOWLEDGEMENT

I would like to thank Ankit Sethi for his help in completing experiments for this project, and editing this paper. I would like to thank Scott Wujek and Augusto Zimmerman for your advice, support, and editing of this paper. I would like to thank my advisor, Pega Hrnjak for his support throughout this project. I would also like to give a special thanks to the members of the Air Conditioning and Refrigeration Center at the University of Illinois for their support.

TABLE OF CONTENTS

1 INT	INTRODUCTION1				
2 EXI	PERIMENT SYSTEM	5			
3 TESTING PROCEDURE					
3.1 OCR and Local Oil Concentration Measurements:					
3.2	Oil Mass Retention Measurements:				
4 RES	SULTS AND DISCUSSION				
4.1	Test Conditions:				
4.2	Horizontal Tube Visualization:				
4.3	Vertical Tube Visualization:				
4.4	Oil Retention				
4.5	Effects of Apparent Superheat				
4.6	Pressure Drop				
4.7 Repeatability:					
5 CO	NCLUSIONS				
REFERENCES					
APPENDIX A					
APPENDIX B					
APPEND	APPENDIX C				

NOMENCLATURE

<u>Symbol</u>	<u>Meaning</u>	<u>Units</u>	
$A(w_{local})$	Empirical expression		
a ₀₋₄	Empirical coefficients		
$B(w_{local})$	Empirical expression		
b ₀₋₄	Empirical coefficients		
D	Pipe diameter	(m)	
δ	Average film thickness	(m)	
δ_{o}	Corrected film thickness	(m)	
f_i	Interfacial friction factor		
G	Mass Flux	(kg/m^2s)	
g	Gravitational acceleration	(m/s^2)	
jg	Normalized vapor velocity	(m/s)	
m _r	Refrigerant tank mass flow	(g/s)	
m _{o tank}	Oil tank mass flow	(g/s)	
v_1	Liquid kinematic viscosity	(Pa·s)	
ν_{v}	Vapor kinematic viscosity	(Pa·s)	
OCR	Oil in circulation ratio		
P _{sat}	Saturation pressure	(MPa)	
ρ_l	Liquid density	(kg/m^3)	
$\rho_{\rm v}$	Vapor density	(kg/m^3)	
ρ_{mix}	Mixture density	(kg/m^3)	
ρο	Oil density	(kg/m^3)	
ρ _r	Refrigerant density	(kg/m^3)	
q	Liquid volume flow rate / πD	(m^2/s)	
Re ₁	Liquid Reynolds number		
τ_i	Interfacial shear stress (l-v)	(N/m^2)	
T_{bub}	Bubble temperature	(C)	
T _{o tank}	Oil tank temperature	(C)	
$\Delta \bar{T_{sh}}$	Apparent superheat	(C)	
u_v	Superficial vapor velocity		
Wlocal	Mass fraction oil in liquid phase		
w_{o_tank} Mass fraction of oil in oil tank			

1 INTRODUCTION

The oil holdup in components of a refrigeration system has been the focus of many studies over the last 40 years. The suction line of a refrigeration system, especially for large commercial or building systems, can be a major location of oil holdup. The low temperature and high quality inside of a suction line means the small amount of liquid will be very oil rich and have a high viscosity. A high velocity of refrigerant vapor is required to pull the oil through long suction lines, especially in vertical, upwards flow conditions. The demand for energy efficient A/C systems has pushed many innovations, such as variable speed compressors, to reduce power usage during low load conditions. Oil retention can especially be a problem during low-load conditions due to lower vapor velocities in the suction line. These problems are alleviated by the use of parallel risers and u-traps, but both of these solutions increase piping expense, increase pressured drop, and still may not completely solve oil return problems. A better understanding of suction line flow regimes and oil retention during low velocity conditions is necessary for development of better suction risers.

Van Rossum (1959) conducted one of the first few studies into liquid films. He measured the thickness of films on a flat surface with a controlled flow rate of vapor above. He was able to correlate the thickness of the liquid film to the liquid Reynolds number, using a force balance on the film. His dimensionless parameters were used in the current study to relate film thickness.

In 1968, Marc Jacobs published the first, and still most influential, paper about oil return in suction risers. His experiment simulated the suction line of a refrigeration system by injecting

1

oil at the bottom of a vertical pipe with sight glasses to monitor flow regimes. He decreased the refrigerant flow rates until he saw "flooding" in the sight glass, a churn/slug flow regime, which develops at the bottom of the tube as oil accumulates. He used visualization data to develop equation 1.1, to predict the minimum mass flux for sufficient oil return. (Jacobs *et. al.* 1968)

$$G = \left(j_{g}^{*\frac{1}{2}}\right)^{2} \left[\rho_{v}gD(\rho_{l} - \rho_{v})\right]^{0.5}$$

$$j_{g}^{*\frac{1}{2}} = 0.85 \text{ (empirically determined for R12 and 150 SUS oil)}$$

$$\rho_{v} = vapor \text{ density}$$

$$\rho_{l} = liquid \text{ density}$$

$$D = Pipe \text{ Diameter}$$

$$g = Acceleration \text{ due to Gravity}$$

$$(1.1)$$

The dimensionless j* relates momentum flux of the vapor to the gravitational and buoyant forces. The value of 0.85 was empirically determined from the visualization experiments. This relationship is used in the ASHRAE refrigeration handbook as the basis for suction riser sizing. The equation provides a simple solution to sizing suction risers, but omits factors such viscosity effects. In a real system, oil will be returned at any flow condition as long as there is enough oil charge to satisfy the oil retention demands of the system components.

Some recent oil return studies have been completed at University of Maryland in Professor Reinhard Radermacher's group. Radermacher *et. al.* (2006) presented a method of calculating oil retention in suction lines based on a physical model of the liquid film and data from his students. There is some discrepancy with measured values, which may be due to the differing methods of oil injection used. Lee *et. al.* (2001) measured oil retention with the injection-separation method in the suction line of a freezer system that used both R134a / alkylbenzene oil mixture and R134a / mineral oil mixture. The flow regimes were annular and churn depending on the vapor flux, and their model predicted oil retention within 25% of the measured values.

Mehendale and Radermacher (2000) experimented with vertical upward flows of refrigerant and oil in a suction line. Using visualization techniques similar to Jacobs, they determined at which conditions the liquid annulus began to reverse the direction of the flow and start to move downwards. They referred to this point of flow reversal as the "critical velocity." Their experiments determined this critical velocity for some mixtures, and a physical model for determining the critical velocity was developed based on their findings and previous interfacial friction factor relationships from Wallis (1969).

Cremaschi *et. al.* (2005) continued the experiments using the same facilities as Mehendale. Measurements of oil retention were taken in the suction line as well as other system components. The injection-separation method was used, where oil was injected at the bottom of a pure refrigerant suction line and separated out at the top of the suction line. The time between the injection and separation was measured to determine the liquid velocity and retention rate. One downside to this method was that the injection of oil generates a non-equilibrium condition inside of the suction riser, because some refrigerant may be dissolving into the oil during the test. In addition, injection of oil into the vertical pipe does not simulate the entrance condition to a real system, where oil may be able to accumulate in the bottom. Cremaschi discussed trends for oil retention with changing OCR, mass flux, oil viscosity, and pipe diameter, and worked with Radermacher *et. al.* (2006) to develop the physical model for the oil annulus in a suction line.

3

Research involving refrigerant oil was also being conducted at the Air Conditioning and Refrigeration Center at the University of Illinois. Crompton *et. al.* (2004) studied oil retention in horizontal smooth and finned tubes with various refrigerant and oil mixtures. While the system is running at equilibrium, valves on both ends of the test section were closed simultaneously, and the test section was then removed and weighed. The refrigerant was then removed, and the test section was weighed again to determine the mass of oil retained. This method gave very accurate results via a direct measurement of oil retention. They developed a model for predicting oil retention in horizontal pipes for conditions with two-phase refrigerant.

Other researchers studied oil retention at the University of Illinois. Sheth and Newell (2005) studied oil migration in an air conditioning system. Jassim and Newell (2005) investigated the void fraction with oil and refrigerant flows in tubes with the use of a probabilistic flow regime map. Burr *et. al.* (2005) studied oil retention and two phase flow in microchannels. They clamped the ends of the microchannels during steady state flow conditions in order to measure the retention and void fraction.

2 EXPERIMENT SYSTEM

An experimental facility was constructed to circulate refrigerant and oil at controlled flow rates and thermodynamic states, to simulate the suction line of a typical R410A A/C system. A schematic of the system can be seen in Figure 2.1. The fluids used in the test are R410A and nominally 32 cSt POE oil. The setup had one vertical, with upward flow, and one horizontal test section made of clear PVC tubes, each of which was about 2 m long. There were valves on both sides of the test sections, which were closed simultaneously during steady state conditions to measure the mass of oil retained inside of the test sections. There were pressure taps at both ends of the test sections, which allowed for pressure drop measurements.

A helical liquid separator at the exit of the vertical test section separated the vapor and liquid. The liquid, which was a mixture of oil and dissolved refrigerant, flowed into the oil tank. The vapor flowed into a 12-plate condenser, where it was completely condensed into liquid. The condenser operated in a counter-flow orientation with the cooling fluid being chilled water at around 6 °C. The condensed refrigerant flowed into a receiver made from a 2" inner diameter copper tube and then into a subcooler. The refrigerant was then pumped through by a gear pump controlled with a variable frequency drive. The flow rate and density of the refrigerant liquid was measured with a MicroMotion CMF25 Coriolis flow meter. The accuracy and repeatability of the mass flow measurements are $\pm 0.1\%$ and $\pm 0.05\%$ of the flow rate, respectively. The accuracy of the CMF25 density measurement is ± 0.5 kg/m³ and the density was checked against known values in the Engineering Equation Solver to ensure that the refrigerant was pure.

The oil, with some dissolved refrigerant, was pumped from the oil tank and through a subcooler by another gear pump. The oil pump was driven by a fixed frequency AC motor, and the flow rate was controlled with a bypass valve. A MicroMotion CMF10 Coriolis flow meter measured the flow rate and density of the oil rich liquid before it was mixed with the pure refrigerant stream. The accuracy and repeatability of the mass flow measurements are $\pm 0.1\%$ and $\pm 0.05\%$ of the flow rate reading respectively. The accuracy of the density measurement is $\pm 0.5 \text{ kg/m}^3$. A T-type thermocouple ($\pm 0.5 \text{ °C}$) measured the temperature of the oil flow at the entrance to the flow meter. The concentration of refrigerant dissolved in the oil flow was calculated from the temperature and density of the oil mixture as described in the next section. The OCR at the inlet of the test section was controlled by adjusting the flow rate of the pure refrigerant stream and the oil stream. A typical OCR measurement with associated uncertainty would be 0.03 ± 0.0008 .

Figure 2-1 Schematic drawing of the facility

The refrigerant and oil streams were mixed and flowed into a 12 plate counter-flow evaporator. The flow rate and temperature of the hot water in the evaporator were controlled, so the refrigerant and oil mixture could be held at the desired apparent superheat. The temperature of the water was typically set at or slightly above the desired apparent superheat, and a high water flow rate was used. The temperature of the refrigerant at the evaporator outlet was measured in the center of the tube and on the outside of the tube wall underneath the insulation, in order to ensure that the two phases were in thermal equilibrium. In addition, a 50 diameter long development length was placed before the horizontal test section inlet, to ensure thermal and hydrodynamic flow development. The concentration of oil in the liquid phase was

dependent on the temperature and saturation pressure of the flow, both of which remained within $\pm 3\%$ or ± 1 °C of the set value during a test.

Mixing the refrigerant and oil in the liquid phase before the evaporator emulated a real system and ensured that the liquid and vapor were very near equilibrium at the inlet of the test section. We believe this method was more realistic than injection of oil alone into the vertical pipe with pure refrigerant vapor flowing upwards. When pure oil is directly injected into the suction pipe, the liquid phase may not be in equilibrium with the vapor, affecting the density, viscosity, and other important properties of the liquid film. When the oil is mixed with refrigerant before the evaporated, the liquid film remains in equilibrium with the vapor in the tube.

The inlet to the vertical test section was a standard 90° elbow fitting with the same inner diameter as the test sections. It is important to note that the use of a standard elbow might have some unknown effect on the flow regimes in the vertical test section. The effect of using a long radius elbow or a p-trap at the inlet to the vertical test section was not examined. There are no experimental results or correlations in the literature for the entrance condition to the vertical pipe. While many companies recommend the use of p-traps at the exit of the evaporator, real systems do not use p-traps at every horizontal to vertical elbow. Therefore the results from these experiments should be applied with caution when p-traps are used.

The saturation pressure was measured at the inlet to the horizontal test section by a Honeywell TJE absolute pressure transducer, with a range 0 to 3477 kPa and accuracy \pm 8.6 kPa. The pressure drop across the horizontal test section was measured with a Honeywell Z differential pressure transducer, having a range 0 \pm 69 kPa and accuracy \pm 0.1 kPa. The pressure

8

drop across the vertical test section was measured with a Honeywell Z differential pressure transducer, with a range 0 ± 103 kPa and accuracy ± 0.26 kPa.

Outputs from all thermocouples, pressure transducers, and Coriolis flow meters are read by a Yokogawa HR1300 data-logger. The data-logger interfaces with a computer running a LabView program to display and record all measured data. Important parameters, such as OCR from the flow rate, density, and temperature, are displayed in real time.

3 TESTING PROCEDURE

3.1 OCR and Local Oil Concentration Measurements:

A gear pump pumped the liquid from the pure refrigerant tank through a MicroMotion CMF25 coriolis mass flow meter. The mass flow meter measured the flow rate of the liquid refrigerant (m_r). The temperature at the inlet to the CMF25 was measured with a thermocouple (T_r).

A separate gear pump was used to pump the saturated refrigerant-oil mixture from the oil tank, through a MicroMotion CMF10 coriolis mass flow meter, and into the mixing section. The mass flow rate (m_{o_tank}) and density (ρ_{o_tank}) of the oil mixture in the oil tank were measured by the CMF10. A thermocouple at the inlet to the CMF10 measured the temperature of the oil mixture (T_{o_tank}), and the saturation pressure was measured in the test section. The concentration of oil in oil tank (w_{o_tank}) was determined from the density, pressure, and temperature measurements using equations 3.1 through 3.3 below.

$$w_{o_tank} = \left| \frac{\rho_o}{\rho_{o_tank} (\rho_r - \rho_{o_tank})} \right| / (\rho_r - \rho_o)$$
(3.1)

$$\rho_r = -0.02054 * T_{o\ tank}^2 - 4.08654 * T_{o\ tank} + 1176.67 \quad (T_{o\ tank}\ in\ ^\circ C) \tag{3.2}$$

$$\rho_o = -0.0004342 * T_{o\ tank}^2 - 0.58704 * T_{o\ tank} + 984.91 \quad (T_{o\ tank}\ in\ ^\circ C) \tag{3.3}$$

Equation (3.1) is the ideal mixing equation applied for the mixture of refrigerant and oil. Density and viscosity data for R410A and POE ISO 32 mixed acid oil were taken from Cavestri & Schafer (2000), whose figures are used in the ASHRAE Refrigeration Handbook (2002). Equations (3.2) and (3.3) are quadratic equations fit to the density and temperature of the pure oil (ρ_0) and pure refrigerant (ρ_r). Equation (3.2) was found using the embedded refrigerant property data from the Engineering Equation Solver program, and the curve fit function in Microsoft Excel. Equation (3.3) is also a curve fit from Microsoft Excel, for the density of the oil taken from Chapter 7 of the 2002 ASHRAE Handbook. The flow rate of pure oil is equal to the total flow rate out of the oil tank (m_0) multiplied by the concentration of oil in the oil tank (w_{o_tank}). The OCR is the ratio of the mass of pure oil to the total mass of oil and refrigerant. The measurement of mass flow rates of the two streams makes this calculation relatively simple, as shown in equation (3.4)

$$OCR = \frac{\left(m_{o_tank} * w_{o_tank}\right)}{\left(m_{o_tank} + m_{r}\right)}$$
(3.4)

The two liquid streams were mixed in a tee connection, and entered the evaporator. The evaporator was a plate heat exchanger which was oriented such that the refrigerant and oil flowed downwards through it. This was done to reduce the oil retention in the evaporator. The temperature and flow rate of water from a secondary system were adjusted such that the refrigerant mixture exited at an intended apparent superheat. The apparent superheat is defined here as the difference between the temperature of the mixture measured on the tube wall and the saturation temperature of pure refrigerant at the pressure measured at the inlet to the test section. The overall quality and local oil concentration in the liquid could be determined from the pressure and temperature measurement, using the method for R22 and AB oil presented by Takaishi & Oguchi (1987), and later expanded to other refrigerants and oils by Thome (1995).

The empirical equation for determining bubble point temperature (temperature of the liquid) for a given saturation pressure and local oil concentration in the liquid is shown in equation (3.5).

$$T_{bub} = \frac{A(w_{local})}{\ln(P_{sat}) - B(w_{local})}$$
(3.5)

In equation (3.5) T_{bub} is the bubble point temperature in K, P_{sat} is the saturation pressure of the mixture in MPa, and A and B are empirically determined expressions for certain oil and refrigerant mixtures.

$$A(w_{local}) = a_0 + a_1 w_{local} + a_2 w_{local}^3 + a_3 w_{local}^5 + a_4 w_{local}^7$$
(3.6)

$$B(w_{local}) = b_0 + b_1 w_{local} + b_2 w_{local}^3 + b_3 w_{local}^5 + b_4 w_{local}^7$$
(3.7)

The equations must first be adjusted to the refrigerant that is being used. This is done by setting w_{local} to zero, and calculating a_0 and b_0 using two sets of known saturation pressure and temperature values for the pure refrigerant. This was done for R410A in this experiment, and the values found are shown above. The vapor pressure of oil is extremely small compared to the refrigerant, and therefore the type of oil used has a small effect on the empirical constants a_1 through a_4 and b_1 through b_4 for oil concentrations up to 70% (Thome, 1995). The constants a_0 and b_0 should be reevaluated for any change in saturation pressure of the system.

Equation (3.5) has three unknowns: saturation pressure, bubble temperature, and local concentration. A program in Engineering Equation Solver was written to calculate the local

concentration of oil in the liquid at known saturation pressure and bubble temperature, both of which were measured at the inlet to the test section. The local quality can be determined from equation (3.8). Note that the maximum quality is (1-OCR) since the oil will always remain in the liquid phase.

$$w_{local} = OCR/(1-x) \tag{3.8}$$

This quality is the ratio of the mass flow rate of liquid to the total mass flow rate entering the test sections at steady state conditions. It is not equal to the mass ratio of liquid and vapor inside of the tube at any given time. This is because some extra liquid is retained inside of the suction line.

3.2 Oil Mass Retention Measurements:

The system was adjusted to the desired test conditions: flow rate, OCR, and apparent superheat. The flow rate and OCR were adjusted by controlling the refrigerant pump speed and oil bypass valve opening. When running, during the transient period, the pressure drops across the test sections were monitored. Once both pressure drop measurements maintained a steady value, the system was allowed to run for at least 5 additional minutes, to assure steady state operation. Data from all sensors was then recorded for the next 5 minutes. If any recorded conditions varied by more than 3% or 1 °C during this period, the test run was discarded and the condition was re-run. Once the data was collected, the valves on either side of the test section were shut simultaneously, and the test sections were removed for weighing.

The test sections were removed from the system and the exterior was cleaned to remove any particles or oil. The tubes were then weighed on an electronic balance and the weight was compared to that of the empty tubes. The accuracy of the balance was ± 0.03 g. This measurement represents the total amount of refrigerant and oil inside of the tube. The tube was then placed vertically and refrigerant vapor was slowly removed from the top of the tube until no bubbles could be seen coming out of the liquid oil under vacuum. The procedure for venting the tube followed ASHRAE standard 41.4. Once the refrigerant was removed from the test section, the test section was again weighed, to determine the mass of oil in the test section. The error of the oil measurement was ± 0.06 g, typically about 0.5% of the reading.

A program was developed to predict the oil retention in the suction line based on an overall mass measurement of the test section. The total mass of refrigerant and oil in each test section was obtained from the first mass measurement taken. The local concentration of oil in the liquid could be estimated from equation (3.7), and then the density of the liquid could be estimated. The density of the vapor was known from the temperature and pressure. The internal volume of the test section was calculated from length and diameter measurements of the tube. From this information the mass of oil could be calculated in the test section. Using this technique to avoid venting out the refrigerant can save a significant amount of time for each test. The refrigerant was vented and the actual mass of oil was measured in every test anyway, and the program was able to predict the mass of pure oil within 8% error consistently. Figure 3.1 shows the predicted oil mass versus the measured oil mass for the data points taken in this study.

Figure 3-1 Accuracy of Local Concentration Model

The data points shown in Figure 3.1 come from 7.1 mm and 18.5 mm tubes, OCRs of 1%, 3%, and 5%, and apparent superheats of 5 °C, 10 °C, and 15 °C. All but three data points were taken at a saturation pressure of about 1150 kPa (corresponding to a saturation temperature of 12 °C). The pressure drifted up slightly for the high mass flux tests in the 18.5 mm tube, but this has no significant effect on oil retention predictions or measurements. These results show that Takaishi & Oguchi's (1987) method of predicting the local concentration of oil in the liquid refrigerant is accurate within 8% even for 15 °C apparent superheat, where the local oil concentration in the liquid is 75%.

4 RESULTS AND DISCUSSION

4.1 Test Conditions:

Two different pipe diameters, 7.2 mm and 18.5 mm, were studied with three OCRs, 1%, 3%, and 5%, and three apparent superheats, 5 °C, 10 °C, and 15 °C. The range of mass fluxes tested in each pipe is shown in Table 4-1. The minimum recommended mass flux from the Jacobs correlation was 42.9 kg/m²s in the 7.2 mm pipe, and 59.8 kg/m²s in the 18.5 mm pipe. The tests run with the 7.2 mm pipe were all above the minimum mass flux recommended by the Jacobs correlation, due to the minimum flow rate restriction of the system. The larger, 18.5 mm, pipe was used for testing a range of mass fluxes above and below the Jacobs minimum recommended mass flux of 60 kg/m²s. High-speed videos of the flow regimes inside the clear pipes were recorded, and snapshots from these videos are presented in Figures 4-1 through 4-5.

Table 4-1 Mass hux test conditions for each pipe diameter							
	D=7.2 mm		D=18.5 mm				
	Vapor Velocity	Mass Flux	Vapor Velocity	Mass Flux			
	[m/s]	[kg/m²s]	[m/s]	[kg/m ² s]			
	2.8	100	1.6	60			
	4	150	1.8	70			
	5	200	2	80			
	6.5	250	2.8	100			

Table 4-1 Mass flux test conditions for each pipe diameter

4.2 Horizontal Tube Visualization:

Figure 4-1 and 4-2 present visualization data for the horizontal tube with two different OCRs, Figure 4-1 is for 5% OCR and Figure 4-2 for 1% OCR. The graphs are arranged with apparent superheat on the abscissa and mass flux on the ordinate to correspond with typical flow regime maps. The test section inlet apparent superheat values of 0, 5, 10, and 15 °C correspond to inlet qualities of 0.85, 0.915, 0.928, and 0.935 respectively, which were calculated using the

methods explained in Section 3. The difference between the low apparent superheat columns is more noticeable than the difference between the high apparent superheat columns because the quality does not change much once the apparent superheat is above 5 °C.

Figure 4-1 Visualization of horizontal tube with 5% OCR

The effect of mass flux can be seen by comparing all of the pictures in a single vertical column. The bottom picture shows a mass flux of 50 kg/m²s, and the liquid forms a smooth stratified layer on the bottom of the tube. As the mass flux is increases, waves appear on the surface of the liquid layer, and the vapor begins to push some of the liquid up onto the walls. This can be seen in the pictures at 100 and 150 kg/m²s. At the highest mass fluxes, the flow regime transitions to annular flow, and a liquid film can be seen covering the entire inner tube surface.

The effect of OCR on the flow regime can be seen by comparing corresponding frames between the Figures 4-1 and 4-2. At high mass flux and high apparent superheat, the film is rippled and completely annular, and OCR has little noticeable effect. As the mass flux decreases and the flow transitions to stratified wavy flow, the effect of OCR is more noticeable in the thickness of the liquid layer and the size of the waves. At low apparent superheat, the increase in the amount of oil causes more bubbles and droplets to form, which allows less light to pass through the test section. This gives the test section a darker and more opaque appearance.

Figure 4-2 Visualization of horizontal tube with 1% OCR

Refrigerant concentration in the liquid phase increases when the apparent superheat at the exit of the evaporator decreases. This causes the properties of the liquid mixture to change; more bubbles and droplets can be seen in the test section at low apparent superheat. As the apparent superheat is reduced to 5 °C, the increased amount of bubbles and droplets allows less light through. If the apparent superheat is allowed to drop to zero, the tube fills with bubbles and

droplets as shown in the upper left pictures of Figures 4-1 and 4-2. Since the vapor core is moving much faster than the liquid film, any droplets or bubbles in the core will be transported much more quickly than liquid on the walls.

The flow map from Hajal *et. al.* (2003) predicts that the transition line between annular and stratified flow becomes nearly horizontal at high qualities without heat transfer. The transition line was calculated and is shown on Figures 4-1 and 4-2, and generally agrees with the flow regimes shown. The Hajal flow map was generated for conditions with no oil, however it predicts conditions with oil relatively well when the correct densities and viscosities are used. At high apparent superheats and the mass flux range, the equation in Hajal *et. al.* (2003) seems to be accurate for determining the flow regime. However at low apparent superheats, as shown in Figures 4-1 and 4-2, an annular mist flow is present. This flow structure would not be present in conditions without oil, therefore it not predicted by the Hajal flow map.

4.3 Vertical Tube Visualization:

Figures 4-3 and 4-4 present the visualization data for the vertical transparent test section over the range of conditions tested. Figure 4-3 is for 5% OCR and Figure 4-4 is for 1% OCR. The charts are arranged in the same manner as the horizontal visualization figures, with apparent superheat on the abscissa and mass flux on the ordinate. The apparent superheat is once again analogous to the quality at the inlet to the test sections. It is important to note that the quality at the inlet to the test section is the ratio of the mass flow rate of vapor to the total mass flow rate. This is not the same as the ratio of vapor mass to total mass in the test section when the valves are shut.

19

Figure 4-3 Visualization of vertical tube with 5% OCR

The effect of mass flux can once again be studied by comparing all the pictures in a single vertical column. The flow regime at high mass fluxes and high apparent superheat is annular with small ripples. This gives good oil return, because the entire liquid film is moving upwards and the oil film is thin. As the mass flux decreases, the film thickness and oil retention increase. The small ripples become larger waves in the pictures at 150 and 100 kg/m²s, and some droplets are ripped off the tops of the waves and into the vapor core. At the Jacobs limit, the shear force from the vapor core reaches the limit of the liquid film it can support. Some of the liquid near the walls will actually flow downward, even thought the bulk flow is still upwards.

The Jacobs minimum recommend mass flux, which is described in the introduction, was calculated for the 18.5 mm tube with conditions at each apparent superheat value and is shown as a dotted line on Figures 4-3 and 4-4. When the mass flux decreases to below the Jacobs limit the

"flooding" phenomenon occurs. The vapor shear is no longer able to support a liquid film and much of the liquid flows downwards and collects in the bottom of the vertical tube. A churn region appears at the bottom of the vertical tube, which is seen in the pictures for mass fluxes of 50 kg/m²s in Figures 4-3 and 4-4. Above the churn region is a thin downward moving film on the walls and many droplets moving upwards in the core. The top of the churn region generates many droplets in the vapor core and these droplets are transported upwards along the tube. The turbulent flow causes some droplets to deposit onto the wall and form the downward moving liquid film, while the other droplets are transported up and out of the vertical section. The churn region looks similar for every OCR or mass flux; however the height of the region is dependent on these parameters. An increase in OCR or a decrease in mass flux will increase the height of the churn section.

The effect of the OCR can be seen by comparing Figures 4-3 and 4-4. Even at high mass fluxes, the OCR difference is more apparent in the vertical tube then in the horizontal tube. A noticeably thicker film is present at 5% OCR than at 1% OCR. The difference between the two OCRs remains consistent as mass flux decreases until the Jacobs limit. Once the flow transitions to the churn regime the effect of OCR becomes much more apparent in the vertical tube. The height of the churn region is dependent on OCR and mass flux, and an increase in OCR from 1% to 5%, or a decrease in the mass flux by 10 kg/m²s will raise the height of churn region by about 0.5 m. The pressure drop is directly proportional to the height of the churn region, and the OCR effect below the Jacobs limit can be seen in Figure 4-13.

As the apparent superheat is reduced the amount of refrigerant in the liquid increases, changing the properties of the liquid and leading to the formation of some bubbles and droplets in the flow which can be seen in Figures 4-3 and 4-4. Once again, this annular mist flow regime is similar for either pipe orientation and for either OCR.

Figure 4-4 Visualization of vertical tube with 1% OCR

The Jacobs limit is empirically linked to the flooding phenomenon and the first formation of the churn flow regime at the bottom of the tube, as described in the introduction. The Jacobs limit is able to accurately predict the transition from annular to churn flow according to tests. However, there is some hysteresis in the flooding phenomenon which is important to note. Once the flow transitions to the churn regime the mass flux must be increased 20-30% above the Jacobs limit before it will transition back to annular flow. This transition region can be seen on Figure 4-5. The Jacobs limit does not account for this hysteresis, and therefore does not protect from high oil retention in churn flow in all cases. It is important to stay well above the Jacobs limit to avoid oil return problems due to hysteresis in the flow regime change.

4.4 Oil Retention

Figure 4-5 shows the relationship between oil retention per inner surface area and total mass flux. The data for this figure was taken at a saturation temperature of 12 °C with 15 °C of apparent superheat. The data for mass fluxes above 100 kg/m²s were taken in the 7.2 mm pipe, and the data below 100 kg/m²s were taken in the 18.5 mm pipe. The units for the ordinate were chosen to be grams of oil per internal surface area of the pipe. For annular flows, this method of plotting the mass of oil retained is effectively comparing the thickness of the film in each case, but does not completely account for the diameter effect, as may be seen in Figure 4-5. However, this method makes more sense than plotting oil retention per length [g/m] because the larger diameter pipe will retain much more oil per meter then the small pipe. Total mass flux of refrigerant and oil was chosen for the abscissa, in order to allow the addition of the Jacobs minimum mass flux. The mass flux is roughly proportional to vapor velocity throughout the range of OCR values tested.

Pictures of the flow regimes in the horizontal and vertical pipe are shown in the lower portion of the figure. These pictures correspond to the mass flux in each column, and were taken at 5% OCR and 15 °C apparent superheat. All pictures are of the 7.2 mm pipe, except for the two pictures at 50 kg/m²s, which are of the 18.5 mm pipe.

The liquid forms a thin film on the walls of the pipe for conditions with high mass flux and high apparent superheat. The pictures on the right, the highest mass flux, are similar for the horizontal and vertical pipe. The similarity between the vertical and horizontal flow regimes is apparent in the graph; the oil retention for the vertical and horizontal flow is nearly identical at

The effect of pipe orientation becomes more apparent at mass fluxes below $150 \text{ kg/m}^2\text{s}$. The vertical pipe retains more oil as the shear force from the vapor core decreases. The gravity force on the liquid becomes more dominant, and a thicker film can be seen on the walls of the tube. The vertical tube retains more oil than the horizontal tube due to the different flow regimes. The horizontal pipe transitions to stratified flow at 100 kg/m²s but the vertical pipe remains in annular flow with some recirculation of the liquid film. The oil retention in the

vertical pipe has a steep negative slope at the Jacobs limit, while the horizontal pipe is more gradual. Gravity is working against the flow in the vertical pipe, unlike in the horizontal pipe.

Flooding occurs in the vertical pipe below 60 kg/m²s, and the flow regime transitions to churn flow as can be seen in Figure 4-5, while the horizontal pipe remains stratified. The amount of oil retained in the vertical pipe will increase dramatically with any decrease in mass flux, or any increase in OCR. These same changes in the horizontal pipe will merely increase the thickness of the stratified liquid layer, and will not have as drastic effect on oil retention. The onset of flooding is predicted by the Jacobs flux; however there is some hysteresis in the flow regime transition. The mass flux must increase to approximately 80 kg/m²s before the vertical pipe will return to annular flow. This transition region is not predicted by the Jacobs flux, and the increased oil retention due to the churn flow could be hazardous to the system.

Once the flow regime transitions to churn, much of the liquid falls to the bottom of the vertical tube, and forms a column. As described earlier, the height of this churn column is dependent on OCR and mass flux. It is difficult to generalize the oil retention in churn flow, because the churn column and the falling annular section above have different oil retention rates. Thus the oil retention in each section must be characterized, as well as the height of the churn column. No oil retention data was taken in the churn flow regime, as can be seen on Figure 4-5, but a method of characterizing this oil retention is currently in the works.

It can be seen in Figure 4-5 that there is a large diameter influence on the oil retention per surface area in the vertical tube. As mentioned previously, oil retention per surface area is the average film thickness in annular flows. The effect of diameter on dimensionless film thickness, shown by expression 4.1, can be correlated to the liquid film Reynolds number, given by

25

equation 4.2, using equation 4.3 (Van Rossum, 1959). These dimensionless parameters were derived from a force balance on a thin laminar liquid film in ideal flow conditions, as explained by Van Rossum (1959).

$$\frac{\delta_o}{\nu_l} \left(\frac{\tau_i}{\rho_l}\right)^{0.5} = Dimensionless \ film \ thickness \ parameter \tag{4.1}$$

$$Re_l = 4q/\nu_l \tag{4.2}$$

In these equations, τ_i is the interfacial shear stress between the liquid film and vapor core, v_l is the liquid kinematic viscosity, ρ_l is liquid density, and q is the volumetric flow rate of liquid divided by the circumference of the tube. Van Rossum (1959) used a correction factor of $\delta/0.6 = \delta_0$ because the shear stress of the liquid film at the wall was used, instead of at the liquid-vapor interface. In the current study, the shear stress was calculated using equation 4.3, with the interfacial friction factor coming from equation 4.4 (Wallis, 1969). Although the shear stress was calculated between the liquid and vapor, a correction factor of $\delta/1.2 = \delta_0$ was used to account for the smooth circular channel. This correction factor may need to be adjusted for other geometries, such as internally grooved pipes.

$$\tau_i = 0.5(f_i)(\rho_v)(u_v)^2 \tag{4.3}$$

$$f_i = .005(1 + 300\left(\frac{\delta}{D}\right))$$
 (4.4)

The dimensionless liquid film thickness parameter and liquid Reynolds number were calculated for all experimental data, and for horizontal and vertical tubes are plotted in Figures 4-

6 and 4-7, respectively. These data are accompanied by results taken from Cremaschi (2004) for R410A/POE in the vertical suction line, as well as R410A/POE and R410A/MO in the horizontal suction line. The data shown came from a range of experiments consisting of diameters from 7.2 to 19 mm, mass fluxes from 80 to 250 kg/m²s, apparent superheats from 5 to 20 °C, and liquid viscosities from 2 to 28 cSt.

Figure 4-6 Film thickness diameter correction, horizontal tube

Figure 4-7 Film thickness diameter correction, vertical tube

The data in Figures 4-6 and 4-7 was a least squared curve fit was applied to the nondimensional terms proposed by Van Rossum (1959), and the curve equations can be used to calculate film thickness if all other parameters are known. The equations which relate the film thickness parameter to the liquid film Reynolds number are shown below.

$$\frac{\delta_o}{v_l} \left(\frac{\tau_i}{\rho_l}\right)^{0.5} = 0.69 Re_l^{0.54}$$
(Horizontal Tube) (4.5)

$$\frac{\delta_o}{\nu_l} \left(\frac{\tau_i}{\rho_l}\right)^{0.5} = 0.88 Re_l^{0.53} \quad \text{(Vertical Tube)} \tag{4.6}$$

The correlation works well for the immiscible combination of R410A/MO, where the liquid viscosity was taken to be 28 cSt. The flow regime must be annular for the film thickness parameter to be calculated.

Solving these equations for the corrected film thickness, _o, gives relationships which can be used to predict the annular film thickness in the suction line, equations 4.7 and 4.8. These should only be applied when the flow is in the annular regime. Equation 4.9 can be used to calculate the amount of oil retention in a system from the calculated film thickness.

$$\delta_o = 0.69 v_l Re_l^{0.54} * \left(\frac{\rho_l}{\tau_i}\right)^{0.5}$$
(Horizontal Tube) (4.7)

$$\delta_o = 0.88\nu_l Re_l^{0.53} * \left(\frac{\rho_l}{\tau_i}\right)^{0.5} (\text{Vertical Tube})$$
(4.8)

$$m_{oil\,retention} = \delta * \pi D * L * \rho_l * w_{local}$$
(4.9)

The interfacial shear stress is dependent on the film thickness, as shown in equation 4.4. Therefore a guess value must be used for either $_o$ or τ_i , and an answer may be calculated using an iterative method. Once $_o$ is obtained, can be calculated using the correction factor of 1.2 and the mass of oil in the suction line can be estimated from using equation 4.9. Equations 4.7 and 4.8 were able to predict the experimental data from the current experiment, as well as from Cremaschi (2004), with an average error of 10.9% for the vertical tube, and 7.9% for the horizontal tube. Figures 4-8 and 4-9 show a comparison of calculated oil retention to actual measured oil retention in both the vertical and horizontal suction lines.

Figure 4-8 Predicted vs experimental oil retention in the horizontal suction line

Figure 4-9 Predicted vs experimental oil retention in the vertical suction line

Figure 4-10 shows the performance of the three most recent oil retention prediction methods, Radermacher (2006), Crompton (2004), and the method proposed in this paper. The prediction lines are drawn for 3% OCR in the 7.2 mm horizontal tube, as well as 3% and 5% OCR in the 18.5 mm vertical tube. The Radermacher (2006) and Crompton (2004) methods both are only able to predict oil retention in the horizontal suction line. They both under-predict the mass of oil retained by nearly 50%, as can be seen in the figure. The new oil prediction method
is able to predict oil retention for both pipe diameters as well as the vertical and horizontal suction lines to within 10%. No predictions are made for the horizontal 18.5 mm tube, since the flow is stratified for all data points taken, and the predictions are only valid for annular flow. The predictions do not stretch into the transition region, due to the possibility of churn flow, and the increased oil retention from recirculation of the liquid film.

Figure 4-10 A comparison of three oil retention prediction methods

4.5 Effects of Apparent Superheat

The effect of changing the apparent superheat is shown in Table 4-2 and Figures 4-11 and 4-12. There are two conflicting effects which influence the viscosity of the liquid phase. More refrigerant evaporates out of the liquid as apparent superheat is increased. This causes the liquid to become more oil-rich, and thus increases the viscosity. The mass fraction of oil in the liquid is shown in the 2^{nd} column of table 4-2 and the concentration of oil increases from 60% to 77%

with an apparent superheat increase from 5 °C to 15 °C. The conflicting effect is the viscosity of the oil as a function of temperature. The 4th column shows that the viscosity of pure oil decreases significantly as the temperature is increased. The dominant factor is the change in oil concentration in the liquid, which leads to an overall increase in viscosity as apparent superheat increases as shown in the 5th column.

Apparent Superheat ¹	Concentration of Oil in Liquid ²	Viscosity of Pure Refrigerant Liquid ³	Viscosity of Pure Oil ⁴	Viscosity of Liquid Mixture ⁴
[°C]		[cP]	[cP]	[cP] = 0.001 [Pa·s]
5	0.5983	0.13	73	2.2
10	0.7051	0.13	58	5.1
15	0.7684	0.12	46	6.9

 Table 4-2 Relationship between viscosity and apparent superheat¹

 1 Values calculated for a saturation temperature of 12°C 2 Calculated using the Takaishi & Oguchi (1987) T_{bub} method shown in section 3

³ Calculated using Engineering Equation Solver

⁴ Data from Cavestri & Schafer (2000), R410A / POE 32 ISO

Changing the apparent superheat at the inlet to the test section influences oil retention through the change in viscosity. Higher viscosity liquids form a thicker film on the tube walls, thus increasing oil retention. Increasing the apparent superheat from 5 °C to 15 °C increases the viscosity by 4.7 cP. The effect on oil retention is small but noticeable as Figures 4-11 and 4-12 illustrate. Figure 4-11 shows an increase in oil retention by 18 g/m^2 , or 15%, with an apparent superheat increase from 5 °C to 15 °C. This decrease is not as noticeable in Figure 4-12, because it is on the same order as the variability of the mass measurements.

Figure 4-12 The effect of apparent superheat on oil retention in the vertical tube

4.6 Pressure Drop

Figure 4-13 shows the pressure drop per unit length in the vertical and horizontal suction lines. The data for this figure was also taken at a saturation pressure corresponding to a temperature of 12 °C with 15 °C of apparent superheat. Pressure drop measurements taken for pure refrigerant at a quality of 0.95 in the 7.2 mm tube are also shown on the figure, along with the Friedel two phase pressure drop prediction. These tests verified the accuracy of the pressure drop measurements.

In the high max flux conditions shown in the diagram, which is the annular regime, interfacial friction dominates the pressure drop. In this region, increases in flow rate will increase the Reynolds number, and thus increase the overall pressure drop.

Figure 4-13 Pressure Drop

The pressure drop in the horizontal and vertical tubes is nearly identical for all mass fluxes above the Jacobs limit, because the flow regimes are very similar. The gravitational force on the liquid in the vertical tube causes the pressure drop to always be slightly higher than the horizontal tube. As the flow rates approach the Jacobs limit, the pressure drop in the vertical tube reaches a minimum at the transition to the churn regime. Below this mass flux, pressure drop becomes dominated by the hydrostatic force of the liquid column. The churn region increases in height with decreasing mass flux, therefore the hydrostatic force, and consequently the pressure drop, will also increase.

Immediately after the mass flux drops below the Jacobs limit and the flow regimes change to churn flow, the churn region is very short, and changes in OCR will not have much effect on the height of the region. This is why the effect of OCR is not very apparent at mass fluxes around the Jacobs limit. However, as mass flux decreases and the churn region increases in height, changes in OCR have a greater effect on the churn region height, and thus on the pressure drop in the vertical tube.

The horizontal tube maintains stratified flow for all low mass fluxes, thus pressure drop continues to decrease with decreasing mass flux. Increases in OCR have minimal effect on pressure drop in the horizontal tube, because they have such a small effect on the liquid layer.

4.7 Repeatability:

The mass measurement of a single test condition was repeated 5 times over the course of two weeks in order to test the repeatability of the measurement procedure and experimental setup. The important conditions and mass measurements of the tests are shown in Table 4-3.

35

Saturation Temperature	Mass Flux	OCR	Temperature Vapor Core	Temperature Tube Wall	Mass of Oil Horizontal Tube	Mass of Oil Vertical Tube
[°C]	[kg / m ² s]		[°C]	[°C]	[g / m]	[g / m]
12.1	101.8	0.048	22.10	21.60	6.22	6.16
12.2	101.2	0.050	22.10	21.80	6.35	6.54
12.1	101.3	0.049	22.10	21.80	6.35	6.08
12.4	100.7	0.050	21.80	21.50	6.89	7.37
12.2	102.5	0.051	22.10	21.70	6.54	6.61

 Table 4-3 Repeatability Test 7.1mm Tube

The saturation temperature was calculated from the saturation pressure measured at the inlet of the test section. The total mass flux of refrigerant and oil is shown, along with the OCR. The temperature at the exit of the evaporator was measured in two locations as described before, in the center of the tube, T_core, and on the outside of the tube wall, T_wall. The two temperatures are close together, indicating that the liquid and vapor phases are near equilibrium. The small difference in temperature has a minor effect on liquid properties equilibrium conditions are assumed. The apparent superheat is the difference between the saturation temperature and the measured wall temperature, and is approximately 10 °C for all cases.

The average oil retention for the horizontal tube is 6.47 g/m and for the vertical tube is 6.55 g/m. The standard deviation of each test is a good measure of the repeatability, 0.26 g/m for the horizontal tube, and 0.51 g/m for the vertical tube. The standard deviation of the vertical tube is 7.8% of the average mass measurement for that tube. This variability stems from many sources. The error in the instruments contributed to the overall variation of each data point. If the valves were not closed at nearly the same time, some excess oil may have entered or left the test section, which could have generated errors in the measurements. The slight differences in mass flux, OCR, and saturation temperature could cause variation in the mass retention. Finally the flow of the liquid film is unsteady at any condition, which would cause variation in mass

measurements even if all the inlet conditions were held perfectly steady. This unsteadiness can be seen by watching the liquid film in the pipes, or through high speed recordings of the flow. All of these factors combined affect the repeatability of each test condition.

5 CONCLUSIONS

- Oil retention increases substantially in the vertical tube when the liquid film begins to flow downwards. This mass flux where recirculation begins is above the Jacobs limit. As long as the compressor contains enough oil to make up for the retention in the suction line these flow regimes are acceptable.
- The Jacobs limit predicts the onset of flooding and the churn flow regime.
 However, there is some hysteresis in the regime change and the regime will not transition back to annular until mass fluxes 30% above the Jacobs limit. In special cases, this could become problematic for oil return in systems, and should be noted.
- The Jacobs limit should be used in conjunction with the oil retention correlations provided for sizing suction risers and charging oil in the compressor. The correlations were able to predict oil retention with 10.9% average error in the vertical tube and 7.9% average error in the horizontal tube.
- The OCR has a significant effect on the oil retention in the suction line.
 Increasing the OCR from 1% to 3% leads to a 20% to 50% increase in oil retention in all cases. An oil separator at the exit of the compressor may be a feasible method to reduce overall OCR if oil retention is problematic in a system.
- The vertical suction line tends to retain 10% more oil than the horizontal line when both pipes are in the annular flow regime. However, once the horizontal line transitions to stratified flow the difference becomes more apparent. Near the

38

Jacobs limit, the vertical suction line retains twice as much oil as the horizontal line.

• A 5 °C increase in apparent superheat causes a 15% increase in oil retention in the apparent superheat range studied. At higher apparent superheats more refrigerant is evaporated from the liquid, which increases the mass fraction of oil in the liquid, and thus the viscosity. Higher viscosity liquids will form a thicker film on the tube wall, and retain more oil.

REFERENCES

Burr, J., Newell, T., & Hrnjak, P. (2005). Experimental Investigation of Viscous Two-Phase Flow in Microchannels. *ACRC Technical Report 252*.

Cavestri, R., & Schafer, W. (2000). Measurement of Solubility, Viscosity, and Density of R410A Refrigerant/Lubricant Mixtures. *ASHRAE Transactions Vol 106*, 277-285.

Cremaschi, L. (2004). Experimental and theoretical investigation of oil retention in vapor compression systems. *PhD Thesis, University of Maryland*.

Cremaschi, L., Hwang, Y., & Radermacher, R. (2005). Experimental Investigation of Oil Retention in Air Conditioning Systems. *International Journal of Refrigeration* 28, 1018-1028.

Crompton, J., Newell, T., & Chato, J. (2004). Experimental Measurement and Modeling of Oil Holdup. *Masters Thesis, University of Illinois*.

Hajal, J., Thome, J., & Cavallini, A. (2003). Condensation in horizontal tubes, part 1: two-phase flow pattern map. *International Journal of Heat and Mass Transfer #46*, 3349-3363.

Jacobs, M., Scheideman, F., Kazem, S., & Macken, N. (1976). Oil Transport by Refrigerant Vapor. ASHRAE Transactions , 318-329.

Jassim, E., & Newell, T. (2005). Prediction of Two-Phase Pressure Drop and Void Fraction in Microchannels Using Probabilistic Flow Regime Mapping. *ACRC Technical Report 241*.

Lee, J.-P., Hwang, Y., Radermacher, R., & Mehendale, S. (2001). Experimental investigations on oil accumulation characteristics in a vertical suction line. *ASME Int. Mechanical Engineering Congress and Expo. AES-Vol 41*, 63-69.

Mehendale, S. (1998). Experimental and Theoretical Investigation of Annular Film Flow Reversal in a Vertical Pipe. *PhD Dissertation, University of Maryland*.

Mehendale, S., & Radermacher, R. (2000). Experimental and Theoretical Investigation of Annular Film Flow Reversal In a Vertical Pipe: Application To Oil Return In Refrigeration Systems. *HVAC&R Research, Vol. 6, No. 1*, 55-74.

Radermacher, R., Cremaschi, L., & Schwentker, R. A. (2006). Modeling of Oil Retention in the Suction Line and Evaporator of Air-Conditioning Systems. *HVAC&R Research, Vol 12, No. 1*, 35-56.

Ray, S. (1988). Applied Photographic Optics. London: Focal Press.

Sheth, V., & Newell, T. (2005). Refrigerant and Oil Migration and Retention in Air Conditioning and Refrigeration Systems. *ACRC Technical Report 240*.

Takaishi, Y., & Oguchi, K. (n.d.). Measurements of vapor pressures of R22/oil solution. *Proceedings of the 18th International Congress of Refrigeration*, 217-222.

Thome, J. R. (1995). Comprehensive Thermodynamic Approach to Modeling Refrigerant-Lubricating Oil Mixtures. *HVAC&R Research, Vol. 1, No. 2*, 110-125.

Van Rossum, J. J. (1959). Experimental Investigation of Horizontal Liquid Films. *Chemical Engineering Science Vol 2*, 35-52.

Wallis, G. (1969). One Dimensional Two-Phase Flow. New York, NY: McGraw-Hill Book Company.

APPENDIX A

Detailed Component List

Table A-1	Instrume	ntation
-----------	----------	---------

Measurement	Device Description	Range	Error +/-
Absoluto Prossuro Transducor	Honowwoll TIE 2040 16 01	0-500 psia	1.25 psi
Absolute Flessule Hallsuutei	Honeyweii 13E 2049-10-01	(0-3447 kPa)	(8.6 kPa)
Horizontal Differential Pressure	Hopeywell Mod 7-5556-03	0 +/- 10 psi	0.025 psi
Transducer	Honeyweir Mou. 2 -5550-05	(0 +/-68.98 kpa)	0.1 kPa
Vertical Differential Pressure	Hopeywell Mod 7-5556-05	0 +/- 15 psi	0.0375 psi
Transducer	Honeyweii Mod. 2-5550-05	(0 +/-103.4 kPa)	(0.26 kPa)
Refrigerant Mass Flow Rate		Max 605 g/s	0.15% of rate
Refigerant Mass Flow Rate	MicroMotion CMF 25 Coriolis Effect	Calibration 0-30 g/s	typ: 0.02 g/s
Refrigerant Density	Mass Flow Meter	na	0.5 kg/m^3
Oil Mass Flow Poto		Max 30 g/s	0.15% of rate
OII Mass Flow Rate	MicroMotion CMF10 Coriolis Effect Mass	Calibration 0-10 g/s	typ: 0.002 g/s
Oil Density	Flow Meter	na	0.5 kg/m^3
Water Mass Flow Rate	MicroMotion CMF 25 Coriolis Effect	605 g/s	0.15% of rate
Water Wass Flow Nate	Mass Flow Meter	005 8/3	typ: 0.2 g/s
Balance	AND Electronic Balance EP-6000	6100 g	0.03 g
Balance	AND LIEUTONIC Balance I F-0000	0100 g	(stdev of test)
Temperature	Omega Type-T Welded Thermocouple	-250 to 400 °C	0.5°C

Table A-2 Components

Component	Description	Specifications
Holical Liquid Conarator	Honny Toch S E19E	Internal volume 3.1 L
Helical Liquid Separator	Henry Tech 5-5165	Nominal Volume Flux 4 CFM
Refrigerant Condenser	AIA 26 Plate Heat Exchanger	0.071 m^2 per plate
Refrigerant Subcooler	Generic 10 Plate Heat Exchanger	0.03 m^2 per plate
Pofrigorant Dump	MicroPump S-1385 Gear Pump	Toshiba VFSX 2007P Variable Frequency
Reingerant Pump	Driven by Magnatec 3ph, 1hp AC motor	Inverter, 230VAC, 1-240 Hz
Oil Subcooler	Generic 10 Plate Heat Exchanger	0.03 m^2 per plate
Oil Rump	Micropump 82003	Fixed Frequency Motor with Pupace Value
Oli Pullip	Driven by Magnatec 1 ph, 0.25 hp AC motor	Fixed Frequency words with bypass valve
Evaporator	AIA 26 Plate Heat Exchanger	0.071 m^2 per plate

Data Acquisition System

All of the instruments used in the experimental setup were monitored with a data acquisition system. A Yokogawa HR1300 hybrid data logger was used to measure the output signals of the thermocouples, pressure transducers, and mass flow meters. It uses a Yokogawa original high breakdown voltage solid state relay, which scans at a rate of 10 points per second. The strip recorder was not used, since the data logger interfaces directly with a computer.

Figure A-1 Yokogawa HR 1300 Hybrid Data Logger

The resolution of the Yokogawa data loggers voltage measurement is lower than the associated error in all cases, and therefore the only the instrument error is presented in Tables A-1 and A-2.

The mass flow meters output a current signal between 4 and 20mA, for a programmable range of mass flux and density. The programmed ranges are shown in the table above. The current signal was read by the data logger as a voltage across a 250Ω resistor, resulting in a voltage reading between 1 and 5 V. The accuracy of the voltage measurement by the data logger in this range was 0.05% of the reading, with a resolution of 1mV. The three pressure transducers output a direct voltage signal between 0 and 20 mV over their respective pressure range. The

accuracy of the voltage measurement by the data logger for this voltage range is 0.05% of the reading, with a resolution of 1 μ V. All three pressure transducers were calibrated using no less than 15 points and their respective outputs on the data logger. The calibration equation is applied in the LabVIEW program. The thermocouples were directly read by the data logger with an accuracy of 0.5 °C.

Figure A-2 LabVIEW Interface

The Yokogawa data logger was connected to a PC via a serial interface. A National Instruments GPIB IEEE 488.2 PCI card read the signal from the data logger, and communicated directly with the LabVIEW program. The front panel of the LabVIEW program used is shown in Figure B-1. When activated, data was taken at two second intervals and recorded in an excel spreadsheet for analysis.

Test Section

The experimental setup had two separate test sections, one to simulate the horizontal suction line, and one to simulate the vertical suction line. The test sections were made out of clear PVC pipe to allow visualization of the entire flow regime inside of the pipe. The inner diameter of the tube was constant from the inlet of the 50 diameter development length to the inlet of the liquid separator. The segment above the vertical test section had a constant diameter all the way through the vertical u-bend and into a downward flowing section before the separator. This was to eliminate any flow disturbances which may have affected the pressure drop or oil retention measurements.

Test sections with two different diameters were built so a wide range of mass fluxes could be tested. The specifications of the PVC pipe used for the test sections are shown in Table A-3.

Inner Diameter (mm)	Nominal Size (in)	Schedule	Outer Diameter (mm)	Max Pressure (kPa)	
7.1	1/4	80	13.7	3930	
18.5	3/4	80	26.7	2344	

The test sections consisted of the clear PVC pipe section with a special coupling to convert from the PVC to a metal NPT connection and a valve on either side. Ball valves were

used for two reasons, they could be quickly closed for trapping the refrigerant and oil during experiments, and they provided a nearly constant inner diameter when completely open. Care was taken to minimize any gaps along the inner diameter of the test section. This eliminated any pressure drop or excess oil retention resulting from flow disturbances. Minor losses were calculated for any small gaps that may have occurred, and their pressure drop was an order of magnitude lower than the frictional pressured drop across the test section.

The entrance to the horizontal test section is shown above. The two valves in this section were sized appropriately, such that the inner diameter was nearly the same as the copper and PVC tubes. The valves used compression fittings, as shown in Figure A-4 which allowed easy removal and replacement of the test section for mass measurements. The valves were closed simultaneously when a mass measurement is taken. The valve shown on the left seals the system off from the atmosphere, and the valve on the right seals the test section off from the atmosphere. The charging port and pressure tap were both made from union compression fittings as shown in Figure A-5. A small hole, 1/32 inch with a 1/8 inch countersink, was drilled through the fitting, and then a piece of 1/8 inch copper pipe was brazed over the hole. This allows pressure measurements with virtually no flow disturbance. The pressure between the two valves was released through the charging port, and then the test section could be removed for weighing.

After the test section was reinstalled, the air was vacuumed through the charging port, and then the test section was pressurized with refrigerant. This way no air entered the system.

Figure A-4 Ball Valve

Figure A-5 Union Fitting

The test sections were removed from the experimental apparatus, and were then prepared for weighing. They were wiped down to remove any dirt or oil from the outside. The open end of the valve was cleaned out, and the valve was wiped off as well. The PVC pipe test section was not able to support the heavy valves at either end when sitting on a scale. Lightweight foam sheathes were constructed to hold the test sections on the scale and avoid placing excess stress on the tubes. Two sheathes were made for the small diameter test section, since the ¹/₄ inch PVC was not very stable. The ³/₄ inch test section was placed on top of one of the sheaths for extra support during weighing. The mass of each sheath alone was taken before every measurement, to ensure accuracy. A table with the dimensions of the test sections, as well as the typical sheath weights is shown below.

Inner Diameter (mm)	Orientation	Length (m)	Tare Weight (g)	Sheath Weight (g)	
7 1	Horizontal	2.02	1305	509.18	
7.1	Vertical	1.92	1210	479.41	
10 E	Horizontal	1.63	2943	509.18	
10.5	Vertical	1.81	3004	509.18	

Table A-4	Test Section	Dimensions
-----------	--------------	------------

Flow Visualizations

The test sections were built with clear PVC pipe so the flow regimes in the horizontal and vertical test sections could be studied. A method of capturing sharp images of the tubes was necessary for documenting the flow conditions. A standard digital camcorder or webcam was one potential for documenting the flow regimes. These types of cameras have typical frame rates of 30 to 60 frames per second. In most of the flow conditions studied, the vapor velocity is between 2 and 3 m/s. At these frame rates, a droplet moving at the vapor velocity could potentially travel 50mm between frames. It would be impossible to capture smooth movements of the flow structures at these frame rates. In addition, the shutter speed of standard cameras is not always adjustable and the images may appear blurry if the exposure time is too long. For these reasons, a high speed camera was chosen for the visualization of the flow regimes.

Figure A-6 Vision Research Phantom v4.2 high speed camera

The high speed camera used was a Vision Research, Phantom v4.2 shown in Figure A-6. It is capable of taking images at a maximum of 2100 frames per second with the full resolution of 512 x 512 pixels. The camera can take images at higher frame rates with lower resolution, because less information is stored for each frame. Experimental videos were shot with a resolution of 256 x 256, and a frame speed of 3000 fps, in order to capture the flow details. Table A-5 shows some examples of maximum frame rates for various resolution settings.

The monochromatic SR-CMOS sensor can store each pixel with an 8 bit depth, meaning there are 2^8 or 256 different shades of gray that the camera can record. Completely black pixels receive a value of 0, and shades between black and saturated white are converted linearly from 1 to 255. The exposure time of each frame can be varied from 2 µs to just less than the inverse of the frame rate. A shorter exposure time will let in less light, causing the average pixel brightness to drop. However, a shorter exposure time will also produce a sharper image, especially for fast moving objects. For example, an object moving at 3 m/s will move 1.5 mm during an exposure time of 500 µs. The object will appear elongated by 1.5 mm in that frame, which could lead to some confusion about the actual shape of the object. If the exposure time is shortened to 30 µs, the object will move only 0.09 mm in the frame, thus appearing very sharp. However, this faster exposure time requires 17 times the amount of light to resolve the image. It was therefore necessary to use large, bright lights when recording fast moving flow regimes.

Resolution (Pixels)	Max. Frame Rate (fps)
512 x 512	2,100
512 x 384	2,840
512 x 256	4,219
512 x 128	8,196
512 x 64	15,625
320 x 240	6,622
256 x 512	4,219
256 x 256	7,407
256 x 128	9,708
256 x 64	14,285
160 x 120	25,641
128 x 128	20,408
128 x 64	38,461
64 x 64	52,631
32 x 32	90,000

Table A-5 Maximum Frame Rates

The high speed camera is operated using proprietary software distributed by Vision Research called Phantom Camera Control. A screenshot of the software is shown in Figure A-7. The software allows for the adjustment of the frame rate, exposure time, and resolution, and is used to adjust the triggering process. Once the parameters are set, the video capture mode is initiated and the camera begins to record data. Frames are continuously stored on the 4 gigabyte DRAM internal buffer of the camera while in the capture mode. Once the camera is triggered a pre-set number of frames are saved before and after the trigger time, and the video is downloaded to the camera control software. The software also has a wide variety of image processing tools to adjust brightness, contrast, image orientation, and can determine distances and velocities between frames. The videos can be saved on the computer in a wide array of file formats, in sizes up to the entire buffer of the camera.

Figure A-7 Screenshot of high speed camera software

The high speed camera requires a standard lens to be attached for adjusting the aperture size and focusing the light onto the sensor array. The lens used for this experiment was a manual focus Nikon 55 mm f3.4 Nikkor lens. It is shown in Figure A-8. The lens used an f-mount and the camera required a c-mount, so an f-mount to c-mount adaptor was required between the lens and the camera. This particular lens had an adjustable aperture with an f# range from 3.4 to 32. A larger f# corresponds to a smaller aperture size and a larger depth of field. This means a longer exposure time is needed to capture enough light, but a deeper range of the subject will be in focus. Equations to calculate the depth of focus for different lens focal length, aperture diameter, and distance from subject can be found in a paper by Ray (1988). These calculations were used to ensure that the entire test section diameter was in focus during visualization.

Figure A-8 High speed camera lens

APPENDIX B

The Engineering Equation Solver code for estimating the oil retained in each test section. \$UnitSystem SI, C, MPA

{1. input parameters}

Psat = 1.157 [MPa] {specify system saturation pressure in MPa}

w_inlet = 0.05 {speficy OCR}

T_evap_out = 27 {Specify evaporator outlet temperature in C}

m_tot_ho = 12.39/1000 {input total mass retained in kg} m_tot_vert = 12.30/1000 {input total mass retained in kg}

D= 0.0071	{Internal Diameter in m}
$L_{ho} = 2.015$	{Length in m of horizontal test section}
$L_{vert} = 1.918$	{length in m of vertical test section}

{2. determine local oil concentration in liquid}
{2.1 determine two saturation points just above and below Psat}
Pabove = Psat +.005
Pbelow = Psat -.005
Tabove=Temperature(R410A,P=Pabove,x=.1)
Tbelow=Temperature(R410A,P=Pbelow,x=.1)

 $\{2.2 \text{ Calculate } a_0 \text{ and } b_0 \text{ with } w_inlet = 0 \}$ Tabove+273 = $a_0 / (ln(Pabove) - b_0)$ Tbelow+273 = $a_0 / (ln(Pbelow) - b_0)$

{2.3 use new values of a_0 and b_0 in equations, keep original values of a_1 to b_4}

 $a_1 = 182.52$ $a_2 = -724.21$ $a_3 = 3868$ $a_4 = -5268.9$

 $b_1 = -.72212$ $b_2 = 2.3914$ $b_3 = -13.779$ $b_4 = 17.066$

{2.4 calculate w_local from T}

 $\begin{array}{l} A_w_local = a_0 + a_1*w_local + a_2*w_local^3 + a_3*w_local^5 + a_4*w_local^7 \\ B_w_local = b_0 + b_1*w_local + b_2*w_local^3 + b_3*w_local^5 + b_4*w_local^7 \\ T_evap_out+273 = A_w_local / (ln(Psat) - B_w_local) \end{array}$

{3.calculate quality at the inlet of the text section} $w_local = w_inlet / (1-x)$

{calculate density of the liquid and vapor portions}

rho_v=Density(R410A,T=T_evap_out,P=Psat)
rho_r=Density(R410A,T=T_evap_out,x=0)
rho_o = -1.0127*T_evap_out + 1046.6 {from ASHRAE handbook}
rho_l=rho_o/(1+(1-w_local)*((rho_o/rho_r)-1)) {ideal mixing law}

{Calculate mass of refrigerant vapor, refrigerant liquid, and oil} V_ho = L_ho*(pi*D^2)/4 V_vert = L_vert*(pi*D^2)/4

m_v_ho+m_l_ho=m_tot_ho m_v_vert+m_l_vert=m_tot_vert

V_v_ho+V_l_ho=V_ho V_v_vert+V_l_vert=V_vert

V_v_ho * rho_v = m_v_ho V_v_vert * rho_v = m_v_vert

 $V_l_ho * rho_l = m_l_ho$ $V_l_vert * rho_l = m_l_vert$

Alpha_ho = V_v_ho / V_ho Alpha_vert = V_v_vert / V_vert

m_ref_ho = m_v_ho + (m_l_ho * (1-w_local)) m_ref_vert = m_v_vert + (m_l_vert * (1-w_local))

m_o_ho = m_l_ho * w_local m_o_vert = m_l_vert * w_local

APPENDIX C

The raw data from the experiments is presented in this appendix. All experiments were taken at a saturation temperature of 12 $^{\circ}$ C. The experiments are numbered for presentation only, the numbers do not reflect the order in which they were taken. The nominal parameters for each test are shown at the top of each page. Order:

1. 7.2 mm tube

- a. 5% OCR
 - i. 5 °C Apparent Superheat
 - ii. 10 °C Apparent Superheat
 - iii. 15 °C Apparent Superheat
- b. 3% OCR
 - i. 10 °C Apparent Superheat
 - ii. 15 °C Apparent Superheat
- c. 1% OCR
 - i. 10 °C Apparent Superheat
 - ii. 15 °C Apparent Superheat
- 2. 18.5 mm tube
 - a. 5% OCR
 - i. 15 °C Apparent Superheat
 - b. 3% OCR
 - i. 15 °C Apparent Superheat

Units

P_sat	OCR	T_ref_evap_out	T_ref_evap_wall	T_ts_out
kPa	unitless	°C	°C	°C
T_sat	T_ref_evap_in	T_w_e_in	T_w_e_out	
°C	°C	°C	°C	
T_ref_cond_out	T_ref_subcooler_out	T_oil		
°C	°C	°C		
m_ref	m_oil	m_ref_oil	m_water	
g/s	g/s	g/s	g/s	
rho_ref	rho_oil	OMF oil tank		
kg/m ³	kg/m ³	unitless		
dP_refoil_h	dP_refoil_v	dp_refoil_evap		
kPa	kPa	kPa		
dH_refoil	G_mass_flux			
W	kg/m ² s			

Test 1 Pipe: 7.2 mm OCR: 5% Apparent Superheat: 5°C Mass Flux: 100 kg/m²s

P_s	at		00	R	T_ref_e	evap	_out	T_ref_ev	ap_wall	T_ts_out
116	50		0.05	509	1	7.8		17	.8	18.4
T_s	at		T_ref_e	vap_in	T_w	_e_i	in	T_w_e	e_out	
12	.3		11	.4	1	8.6		17	.9	
T_ref_co	nd_out	Т_	_ref_subc	ooler_out	t T_	oil				
10	.2		10	.6	6	5.4				
mi	m_ref m		m_	oil	m_r	ef_o	oil	m_w	ater	
3.6	66		0.4	10	4	.06		26	5	
rho	ref		rho_	oil	OMF	oil ta	ank			
112	3.4		103	3.9	0.	518				
dP_ref	oil_h		dP_ret	foil_v	dp_ref	oil_e	evap			
1.9	95		4.7	76	0	.23				
dH_re	efoil		G_mas	s_flux						
174	174.9 100.).7							
Weight M	Weight Measurement Sheet							Tube we	eights (g)	
Date	1/20/20	10							horizonta	1305
Tester	kurt and	an	kit						vertical	1248.95
Filename	omf5 v5	m	/ ian2010	17/13						
i nename.	01113_x3			_1/43						
	Sheath W	/ei	ghts full (g	g)	Final	Shea	ath we	eights vent	ed	final
Horizonta	509.4	41	509.42	509.41	509.4133	ш,	509.49	509.48	509.49	509.4867
Vertical	479.	59	479.6	479.61	479.6	4	179.63	479.64	479.65	479.64
	Sheath +	Fu	II Tube We	eight (g)						
Horizonta	1826.0)7 72	1826.07	1826.07					1826.07	
vertical	1/41.	/2	1/41./4	1/41./					1/41./2	
	Sheath +	Ve	onted Tube	Weight (g	r)					
Horizonta	1820 (72 72	1820.03	1820.02	5/				1820 023	
Vertical	1735.3	35	1735.35	1735.35					1735.35	
		ſ	Measured				Calcu	lated		
	oil		R410a	sum		oil		R410a		error
Horizonta	5.536666	67	6.12	11.65667			5.21	6.446667		0.059001
Vertical	6.	76	6.41	13.17		1	6.28	6.89		0.071006

Test 2 Pipe: 7.2 mm OCR: 5% Apparent Superheat: 5°C Mass Flux: 150 kg/m²s

P_s	at		00	R	T_ref_e	evap_out	T_ref_ev	ap_wall	T_ts_out
115	55		0.04	197	1	7.7	17	.7	17.8
T_s	at		T_ref_e	vap_in	T_w	_e_in	T_w_e	e_out	
12	.2		10	.6	1	9.3	18	.3	
T_ref_co	nd_out	Т	ref_subc	ooler_ou	t T	T_oil			
10	.0		9.9	9	6	<u> </u>			
mı	ef		m	oil	mr	ef oil	m w	ater	
5.3	9		0.5	6	5	.95	27	'2	
	-			-					
rho	ref		rho	oil	OMF	oil tank			
112	7.3		103	2.0	0.	525			
dP ref	oil h		dP ref	oil v	dp ref	oil evap			
5.9)1		7.3	8	0	.32			
dH re	ofoil		G mas	s flux					
182	182.2 147		147	.6					
Weight Measurement Sheet						Tube we	ights (g)		
Date	1/19/202	10						horizonta	1305
Tester	Kurt and	An	kit					vertical	1248.95
Filename:	OMF5_x5	5_m	16_Jan191	0_1401					
	<u> </u>			\	1	<u>.</u>		•	<u> </u>
Llaviaanta	Sheath W	/ei	ghts full (g	g)	Final	Sheath we	Foo 49	ed 500.47	final
Horizonta	509.4	49 51	509.48	509.49	509.4867	509.49 470 FF	509.48	509.47	470 5667
vertical	479.0	51	479.0	479.0	479.0055	479.55	479.50	479.59	479.5007
	Sheath +	Fu	ll Tube We	eight (g)					
Horizonta	1825.4	15	1825.44	1825.44				1825.443	
Vertical	1740.0)4	1740.05	1740.04				1740.043	
	Sheath +	Ve	nted Tube	e Weight (g	;)				
Horizonta	1819.6	56	1819.65	1819.65				1819.653	
Vertical	1734.2	27	1734.26	1734.29				1734.273	
		N	Neasured			Calcu	lated		
l levie ev to	01		K410a	sum		011	K410a		error
Nortical	5.1/333	53 57	5./83333	11 40		4.791	6.16566/		0.073905
vertical	3.73000	51	5.155555	11.49		5.234	0.230		0.090793

Test 3 Pipe: 7.2 mm OCR: 5% Apparent Superheat: 5°C Mass Flux: 200 kg/m²s

P_s	at		00	R	T_ref_e	eva	ap_out	T_ref_ev	ap_wall	T_ts_out
116	52		0.05	512	1	.7.8	3	17	.6	17.0
T_s	at		T_ref_e	vap_in	T_w	_e	_in	T_w_e	e_out	
12.	.4		9.4	4	2	0.6	5	19	.3	
T_ref_co	nd_out	Τ_	ref_subc	ooler_out	t T_	_oi	I			
9.4	4		8.8	8	6	5.1				
r	ref			oil	m_r	ef_	oil	m_w	ater	
7.1	.0		0.7	'9	7	.89)	26	4	
rho_	ref		rho_	oil	OMF	oil	tank			
113	1.9		103	5.7	0.	51	1			
dP_ref	oil_h		dP_ref	^f oil_v	dp_ref	oil	_evap			
11.0	01		12.4	49	0	.26	5			
dH_re	efoil		G_mass	s_flux						
191	.0		195	.7						
Weight M	Weight Measurement Sheet							Tube we	eights (g)	
Date	1/21/20	10							horizonta	1305
Tester	kurt	_				_			vertical	1248.95
Filename	omf5 v5	m	8 ian2110	1209		-				
r nename.	01113_X3		0_0112110	_1205						
	Sheath V	Vei	ghts full (g	g)	Final	Sh	eath we	eights vent	ed	final
Horizonta	509.	74	509.73	509.74	509.7367		509.78	509.77	509.78	509.7767
Vertical	479.	87	479.88	479.89	479.88		479.94	479.95	479.93	479.94
						_				
	Sheath +	Fu	II Tube We	eight (g)					4005 407	
Horizonta	1825.	42	1825.45	1825.44					1825.437	
vertical	1740.	47	1740.42	1740.44					1740.443	
	Sheath +	Ve	ented Tube	• Weight (g	·)	-				
Horizonta	1819	9.5	1819.49	1819.5	1				1819.497	
Vertical	1734.	66	1734.65	1734.66					1734.657	
		٢	Measured				Calcu	lated		
	oil		R410a	sum		oi	I	R410a		error
Horizonta	4.	72	5.98	10.7		L	4.53	6.17		0.040254
Vertical	5.76666	67	5.846667	11.61333		í I	5.21	6.403333		0.096532

Test 4 Pipe: 7.2 mm OCR: 5% Apparent Superheat: 10°C Mass Flux: 100 kg/m²s

P_sat	OCR	T_ref_evap_out	T_ref_evap_wall	T_ts_out
1157	0.0499	22.1	21.8	21.2
T_sat	T_ref_evap_in	T_w_e_in	T_w_e_out	
12.2	11.8	22.2	21.6	
T_ref_cond_out	T_ref_subcooler_out	T_oil		
10.1	10.5	6.1		
m_ref	m_oil	m_ref_oil	m_water	
3.63	0.45	4.08	282	
rho_ref	rho_oil	OMF oil tank		
1124.2	1047.2	0.455		
dP_refoil_h	dP_refoil_v	dp_refoil_evap		
2.67	5.05	0.21		
dH_refoil	G_mass_flux			
181.2	101.2			

Weight M	easurement	t Sheet					Tube we	eights (g)
Date	2/2/2010						horizonta	1305
Tester	kurt and an	kit					vertical	1248.95
Filename:	omf5_x10_	m4_feb021	1413					
	Sheath We	ights full (g	g)	Final	Sheath we	eights vent	ed	final
Horizonta	509.09	509.08	509.09	509.0867	509.16	509.17	509.15	509.16
Vertical	479.3	479.31	479.3	479.3033	479.3	479.34	479.32	479.32
	Sheath + Fu	Ill Tube We	eight (g)					
Horizonta	1825.94	1825.96	1825.97				1825.957	
Vertical	1740.26	1740.3	1740.27				1740.277	
	Sheath + Ve	ented Tube	e Weight (g	g)				
Horizonta	1820.5	1820.5	1820.52				1820.507	
Vertical	1734.8	1734.81	1734.83				1734.813	
		Measured			Calcu	lated		
	oil	R410a	sum		oil	R410a		error
Horizonta	6.3466667	5.523333	11.87		6.19	5.68		0.024685
Vertical	6.5433333	5.48	12.02333		6.42	5.603333		0.018849

Test 5 Pipe: 7.2 mm OCR: 5% Apparent Superheat: 10°C Mass Flux: 100 kg/m²s

P_9	sat	0	CR	T_ref_	_evap_out	T_ref_e	evap_wall	T_ts_out
11!	54	0.0	493		22.1	2	1.8	21.1
T_s	at	T_ref_e	evap_in	T_\	v_e_in	T_w	_e_out	
12	.1	11	L.8		22.2	2	1.6	1
T ref co	nd out 1	ref sub	cooler ou	it 1	ī oil			
10	.7).5		6.1			
m	ref	m	oil	m	ref oil	m	water	
3.6	52	0.	<u>-</u> 46		4.08		276	
rho	ref	rho	oil	OMF	oil tank			
112	4.8	105	50.8	0	.438			
dP ref	foil h	dP re	foil v	dp re	foil evap			
2.7	71	<u> </u>	28	<u></u>	0.26			
	-	0.			0.20			
dH re	efoil	G may	s flux					
183	3 1	 10	1 3					
Weight M	easuremen	t Sheet	1.0	I			Tube we	ights (g)
Date	2/3/2009	0					horizontal	1305
Tester	kurt and a	nkit					vertical	1248.95
Filename:	omf5_x10	_m4_feb031	1202					
	Shooth W/	ights full (,)	Final	Shooth wa	ights yout	ad	final
Horizonta	508.68		508.7	508.69	508 64	508 65	508 66	508 65
Vertical	478.91	478.89	478.88	478,8933	479.89	478.9	478.88	479,2233
	Sheath + F	ull Tube We	eight (g)					
Horizonta	1825.6	1825.63	1825.6				1825.61	
Vertical	1739.9	1739.91	1739.89				1739.9	
	Sheath + V	ented Tube	e Weight (g	;)				
Horizonta	1820	1819.99	1820.02				1820.003	
Vertical	1734.25	1734.24	1734.26				1734.25	
		Measured			Calcu	lated		
	oil	R410a	sum		oil	R410a		error
Horizonta	6.3533333	5.566667	11.92		6.25	5.67		0.016264
Vertical	6.0766667	5.98	12.05667		6.47	5.586667		0.064728

Test 6 Pipe: 7.2 mm OCR: 5% Apparent Superheat: 10°C Mass Flux: 100 kg/m²s

P_9	sat	0	CR	T_ref_	_evap_out	T_ref_e	vap_wall	T_ts_out
110	63	0.0	498		21.8	2	1.5	21.2
T_s	at	T_ref_e	evap_in	T_\	w_e_in	T_w	_e_out]
12	.4	12	2.0		22.1	2	1.1	1
T_ref_co	ond_out 1	_ref_sub	cooler_ou	it 7	ſ_oil			
10	.7	11	 L.7		7.6			
m	ref	m	oil	m	ref oil	m	water	
3.6	52	0.	 44		4.06		.75	1
								_
rho	ref	rho	oil	OMF	oil tank			
111	9.7	104	 13.8	0).456			
dP ref	foil h	dP re	foil v	dp re	foil evap			
2.4	41	4.	78		0.27			
			-		-			
dH re	efoil	G may	s flux					
180).7	10	0.7					
Weight M	Weight Measurement Sheet						Tube we	ights (g)
Date	2/4/2010)					horizontal	1305
Tester	Kurt and A	nkit					vertical	1248.95
Filename:	omf5_x10	_m4_feb041	10_1107					
	Shoath Wa	vights full (T)	Final	Shooth wa	ights yout	ad	final
Horizonta	508.86	508.85	508.86	508 8567	508 92	508.96	508.98	508 9533
Vertical	479.05	479.04	479.04	479.0433	479.19	479.15	479.22	479.1867
	Sheath + F	ull Tube We	eight (g)					
Horizonta	1826.63	1826.63	1826.61				1826.623	
Vertical	1741.33	3 1741.33	1741.32				1741.327	
	Sheath + V	ented Tube	e Weight (g	:)				
Horizonta	1820.85		1820.86				1820.847	
vertical	1/35.49	1/35.54	1/35.5				1735.51	
		Measured			Calcu	lated		
	oil	R410a	sum		oil	R410a		error
Horizonta	6.8933333	5.873333	12.76667		6.745	6.021667		0.021518
Vertical	7.3733333	5.96	13.33333		7.264	6.069333		0.014828

Test 7 Pipe: 7.2 mm OCR: 5% Apparent Superheat: 10°C Mass Flux: 100 kg/m²s

P_9	sat	0	CR	T_ref_	_evap_out	T_ref_e	vap_wall	T_ts_out
11!	57	0.0	507		22.1	2	1.7	20.6
T_s	at	T_ref_e	evap_in	T_\	v_e_in	T_w	_e_out	
12	.2	11	l.7		22.2	2	1.3	
T_ref_co	ond_out 1	_ref_sub	cooler_ou	t 1	_oil			
10	.6).2		5.8			
m	ref	m	oil	m	ref oil	m	water	
3.7	70	0.	43		4.13		194	
								_
rho	ref	rho	oil	OMF	oil tank			
112	5.2	104	 11.8	C).484			
dP ref	foil h	dP re	foil v	dp re	foil evap			
2.5	56	5.	01		0.27			
					-			
dH re	efoil	G may	s flux					
178	3.8	10	2.5					
Weight M	Weight Measurement Sheet		_				Tube we	ights (g)
Date	2/5/2010)					horizontal	1305
Tester	Kurt and A	nkit					vertical	1248.95
Filename:	OMF5_x10	_m4_Feb05	510_1042					
	Sheath We	ights full (,	Final	Sheath we	ights vent	ed	final
Horizonta	509.76	509.76	509.76	509.76	509.69	509.69	509.69	509.69
Vertical	479.85	479.86	479.86	479.8567	479.79	479.79	479.8	479.7933
	Sheath + F	ull Tube We	eight (g)					
Horizonta	1827.14	1827.15	1827.15				1827.147	
Vertical	1741.1	1741.12	1741.11				1741.11	
	Sheath + V	ented Tube	e Weight (g)			4004 007	
Horizonta	1821.22	1821.23	1821.23				1821.227	
vertical	1/35.35	1/35.35	1/35.35				1/35.35	
		Measured			Calcu	lated		
	oil	R410a	sum		oil	R410a		error
Horizonta	6.5366667	7 5.85	12.38667		6.552	5.834667		0.002346
Vertical	6.6066667	5.696667	12.30333		6.604	5.699333		0.000404

Test 8 Pipe: 7.2 mm OCR: 5% Apparent Superheat: 10°C Mass Flux: 100 kg/m²s

P_9	sat	0	CR	T_ref_	_evap_out	T_ref_e	evap_wall	T_ts_out
11	55	0.0	489		22.0	2	21.6	20.5
T_s	at	T_ref_e	evap_in	T_\	v_e_in	T_w	_e_out	
12	.1	11	L.5		22.2	2	21.2	1
T_ref_co	ond_out	_ref_sub	cooler_ou	it 1	_oil			
10	.5	1().6		6.7			
m	ref	m	oil	m	ref oil	m	water	
3.6	52	0.	43		4.05		187	
rho	ref	rho	oil	OMF	oil tank			
112	4.4	104	 15.1	C	.460			
dP ret	foil h	dP re	foil v	dp re	foil evap			
2.5	51	5.	05		0.04			
				_				
dH r	efoil	G may	s flux					
194	1.3		0.5					
Weight M	easuremer	t Sheet					Tube we	ights (g)
Date	1/8/2010)					horizontal	1305
Tester	Kurt & Ank	it					vertical	1210
Filename	OMF5_x10	_m4_Jan08	10_1212					
	Shoath W/	vights full (Final	Shooth wo	ights yout	od	final
Horizonta	508 12	508 14	508.14	508 1367	508 15	508 16	508 14	508 15
Vertical	478.58	478.6	478.6	478,5933	478.61	478.61	478.61	478.61
	Sheath + F	ull Tube We	eight (g)					
Horizonta	1825.56	5 1825.57	1825.57				1825.567	
Vertical	1702.57	7 1702.58	1702.57				1702.573	
	Sheath + V	ented Tube	e Weight (g	;)				
Horizonta	1819.93	8 1819.93	1819.92				1819.927	
Vertical	1696.61	1696.64	1696.61				1696.62	
		Measured			Calcu	lated		
	oil	R410a	sum		oil	R410a		error
Horizonta	6.7766667	5.653333	12.43		6.58	5.85		0.029021
Vertical	8.01	L 5.97	13.98		7.82	6.16		0.02372

Test 9 Pipe: 7.2 mm OCR: 5% Apparent Superheat: 10°C Mass Flux: 100 kg/m²s

P_9	sat	0	CR	T_ref	_evap_out	T_ref_e	vap_wall	T_ts_out
11!	53	0.0	484		22.1	2	1.6	19.9
T_s	at	T_ref_e	evap_in	T_\	v_e_in	T_w	_e_out	
12	.1	1().8		22.2	2	1.5	
T_ref_cc	ond_out	T_ref_sub	cooler_ou	it 7	_oil			
10	.0	9	.8		6.3			
m	ref	m	oil	m_	ref_oil		water	
3.6	56	0.	44		4.10	2	276	1
rho	ref	rho	oil	OMF	oil tank			
112	7.0	104	 18.6	().447			
dP ref	foil h	dP re	foil v	dp re	foil evap			
2.7	78	5.	04		0.02			
	-			_				
dH re	efoil	G may	s flux					
191	1.1		1.8					
Weight M	Weight Measurement Sheet						Tube we	ights (g)
Date	1/29/201	0					horizontal	1305
Tester	kurt and a	nkit					vertical	1248.95
Filename:	omf5_x10	_m4_jan291	.0_1654					
	Shooth W/	aighte full (-1	Final	Shooth wa	ights yout	od	final
Horizonta	508.2		508.31	508 2067	508 3	508 32	.eu 508.31	508 31
Vertical	478.4	5 478.46	478 44	478 45	478.45	478.49	478.49	478 4767
Vertical	170.1	1/0.10	170.11	170.15	170.15	170.15	170.15	170.1707
	Sheath + F	ull Tube W	eight (g)					
Horizonta	1825.3	5 1825.37	1825.36				1825.363	
Vertical	1739.	4 1739.39	1739.39				1739.393	
	Sheath + \	ented Tube	e Weight (g	:)				
Horizonta	1819.5	4 1819.54	1819.51				1819.53	
Vertical	1733.5	1733.6	1733.57				1733.583	
		Measured			Calcu	lated		
	oil	R410a	sum		oil	R410a		error
Horizonta	6.2	2 5.846667	12.06667		6.33	5.736667		0.017685
Vertical	6.156666	7 5.836667	11.99333		6.39	5.603333		0.037899

Test 10 Pipe: 7.2 mm OCR: 5% Apparent Superheat: 10°C Mass Flux: 150 kg/m²s

P_9	sat	0	CR	T_ref	_evap_out	T_ref_e	vap_wall	T_ts_out
11!	53	0.0	500		22.2	2	1.8	20.3
T_s	at	T_ref_e	evap_in	T_\	v_e_in	T_w	_e_out	
12	.1	9	.9		22.5	2	1.1	1
T_ref_cc	ond_out	ref_sub	cooler_ou	t 1	_oil			
9.	6	9	.2		6.2			
	Î							
m	ref	m	oil	m	ref oil	m	water	
5.4	40	0.	- 69		6.08		198	
rho	ref	rho	oil	OMF	oil tank			
113	0.2	104	 19.4	0).444			
	-	_	-	_				
dP ref	foil h	dP re	foil v	dp re	foil evap			
7.3	34	8.	86		0.07			
		0.			0.07	_		
dH re	efoil	G may	s flux					
190	30	<u> </u>	10					
Weight M	Weight Measurement Sheet						Tube we	ights (g)
Date	1/11/2010)					horizontal	1305
Tester	KURT & AN	ікіт					vertical	1210
Filename:	OMF5_x10	_m6_Jan11	10_1039					
			-)	Final	Ch a a th	:		final
Horizonta	Sheath We		3)		Sheath we	Engrits vent	.ea	
Vertical	/78.3	1 /78 31	/178 31	/78 31	/78 33	/78 33	/78 33	/78 33
Vertical	470.5	470.31	470.31	470.51	470.35	470.35	470.55	470.35
	Sheath + F	ull Tube We	eight (g)					
Horizonta	1823.7	7 1823.7	1823.69				1823.697	
Vertical	1699.58	3 1699.58	1699.58				1699.58	
	Sheath + V	ented Tube	e Weight (g)				
Horizonta	1818.5	5 1818.5	1818.5				1818.5	
Vertical	1694.33	3 1694.34	1694.33				1694.333	
		Maggured			Calair	lated		
	oil	R410a	sum		oil	R410a		error
Horizonta	5.6	5 5.166667	10.76667		5.4	5.366667		0.035714
Vertical	6.0033333	3 5.266667	11.27		5.89	5.38		0.018878

Test 11 Pipe: 7.2 mm OCR: 5% Apparent Superheat: 10°C Mass Flux: 200 kg/m²s

P_9	sat	0	CR	T_ref	_evap_out	T_ref_e	vap_wall	T_ts_out
115	59	0.0	484		22.0	2	1.7	20.4
T_s	at	T_ref_e	evap_in	T_\	w_e_in	T_w	_e_out	
12	.3	9	.9		22.6	2	0.8	1
								_
T_ref_cc	ond_out 1	_ref_sub	cooler_ou	it 1	ſ_oil			
9.	6	9	.5		6.9			
m_	ref	m	oil	m_	ref_oil		water	1
7.2	19	0.	84		8.03	2	213	1
								_
rho	ref	rho	oil	OMF	oil tank			
112	9.3	104	 14.5	().460			
dP ref	foil h	dP re	foil v	dp re	foil evap			
11.	91	13	.11		0.22			
	-	_			-			
dH re	efoil	G may	s flux					
195	5.0		9.3					
Weight M	Weight Measurement Sheet						Tube we	ights (g)
Date	1/11/2010)					horizontal	1305
Tester	kurt						vertical	1210
Filename:	omf5_x10_	_m8_jan111	.0_1642					
	Shooth W/	ights full (-1	Final	Shoothwa	ights yout	ad	final
Horizonta	507.87	507.88	507.87	507 8733	507.87	507 87	507 88	507 8733
Vertical	478 4	478 39	478.4	478 3967	478 32	478 36	478 35	478 3433
Vertical	170.	1/0.55	170.1	170.0007	170.52	170.50	170.55	170.5155
	Sheath + F	ull Tube We	eight (g)					
Horizonta	1823.4	1823.4	1823.4				1823.4	
Vertical	1698.68	1698.7	1698.69				1698.69	
	Sheath + V	ented Tube	e Weight (g	:)				
Horizonta	1818.43	1818.43	1818.41				1818.423	
Vertical	1693.96	1693.99	1693.98				1693.977	
		Measured			Calcu	lated		
	oil	R410a	sum		oil	R410a		error
Horizonta	5.55	4.976667	10.52667		5.21	5.316667		0.061261
Vertical	5.6333333	4.66	10.29333		5.15	5.143333		0.085799
Test 12 Pipe: 7.2 mm OCR: 5% Apparent Superheat: 10°C Mass Flux: 250 kg/m²s

P_9	sat	0	CR	T_ref	_evap_out	T_ref_e	vap_wall	T_ts_out
11!	57	0.0	498		22.1	2	1.7	20.0
T_s	at	T_ref_e	evap_in	T_\	w_e_in	T_w	_e_out	
12	.2	9	.3		22.5	2	0.8	7
								_
T_ref_cc	ond_out	T_ref_sub	cooler_ou	it T	Г_oil			
9.	0	9	.0		6.7			
m	m ref m		oil	m	ref oil	m	1	
9.0)2	1.	- 11	1	0.13		265	1
								_
rho	ref	rho	oil	OMF	oil tank			
113	1.6	1045.6		().456			
	-							
dP ref	foil h	dP re	foil v	dp re	foil evap			
17.	63	18	.69		0.53			
		10			0.00			
dH re	efoil	G may	s flux					
19/			1 3					
Weight M	easuremei	nt Sheet	1.5				Tube we	pights (g)
Date	1/12/201)					horizontal	1305
Tester	Kurt & An	kit	<u>.</u>				vertical	1210
Filename:	OMF5_x10	_m10_Jan1	210_1114					
	<u>.</u>		`					<u> </u>
	Sheath W	eights full (g)	Final	Sheath we	eights vent	ed	final
Horizonta	508.0	1 508.01	508	508.0067	508.07	508.07	508.07	508.07
vertical	478.4	9 4/8.4/	478.47	478.4707	478.53	478.52	478.51	478.52
	Sheath + F	ull Tube Wo	eight (g)					
Horizonta	1822.8	9 1822.89	1822.87				1822.883	
Vertical	1698.7	5 1698.77	1698.77				1698.763	
	Sheath + \	ented Tube	e Weight (g	:)				
Horizonta	1817.7	5 1817.74	1817.75				1817.75	
Vertical	1694.0	1 1693.99	1693.98				1693.993	
) — — — — — — — — — — — — — — — — — — —	
	منا	IVIeasured			Calcu	lated		0.000
Horizonta		R410a	9 876667			5 156667		0.0085/17
Vertical	5.473333	3 4.813333	10.28667		5.14	5.146667		0.060901

Test 13 Pipe: 7.2 mm OCR: 5% Apparent Superheat: 15°C Mass Flux: 100 kg/m²s

P_9	sat	OCR T_ref_evap_out T_ref_evap			vap_wall	T_ts_out		
11	63	0.0	492		28.2	2	7.2	24.4
T_s	at	T_ref_e	evap_in	T_\	w_e_in	T_w	_e_out]
12	.4	12	2.0		28.2	2	6.7	1
T_ref_co	ond_out	T_ref_sub	cooler_out	-	Г_oil			
12	.1	11	L.O		7.1			
	m_ref		oil	m	ref_oil			
3.7	3.76 (43		4.19	1	L42	
rho	ref	rho	oil	OMF	oil tank			
112	5.0	104	- 10.1	0).479			
dP ret	foil h	dP re	foil v	dp re	foil evap			
3.4	45	4.	14		0.09			
dH r	efoil	G ma	s flux					
207	7.6	10	4.0					
Weight M	easuremer	nt Sheet	-				Tube we	eights (g)
Date	12/1/200	Э					horizonta	1305
Tester	Kurt and A	nkit					vertical	1210
Filename	omf5_x15	_m4_dec01	09_1142.lvm					
	Shooth W/	pights (g)					Final	
Horizonta	510 1	1 510 13	510 13				510 13	
Vertical	480.3	480.19	480.16				480.19	
	Sheath + F	ull Tube W	eight (g)					
Horizonta	1828.04	4 1827.97	1827.97				1828	
Vertical	1703.1	3 1703.13					1703.13	
	Sheath + \	ented Tube	e Weight (g)					
Horizonta	1822.0	1822.06					1822.06	
vertical	1097.2	1097.29					1097.29	
		Measured			Calcu	ated		
	oil	R410a	sum		oil	R410a		error
Horizonta	6.9	3 5.94	12.87		7.67	5.49		0.106782
Vertical	7.	1 5.84	12.94		7.85	5.36		0.105634

Test 14 Pipe: 7.2 mm OCR: 5% Apparent Superheat: 15°C Mass Flux: 150 kg/m²s

P_9	sat	0	CR	T_ref_	_evap_out	T_ref_e	vap_wall	T_ts_out
118	80	0.0	493		28.1	2	7.2	24.3
T_s	at	T_ref_e	evap_in	T_\	w_e_in	T_w	_e_out]
12	.9	1().8		28.3	2	6.3	1
								_
T ref co	ond out	ref sub	cooler ou	t 1	Г oil			
11	.3	9	.8		6.7			
m	m_ref m		oil	m	ref oil	m	1	
5.4	44 0		 69		6.13	1	39	1
								_
rho	ref	ef rho oil		OMF	oil tank			
112	9.4	1049.1		0).440			
dP ref	foil h	dP re	foil v	dp re	foil evap			
7.8	35	9.	25		0.09			
				_				
dH re	efoil	G ma	s flux					
187	7.3	15	2.0					
Weight M	easuremer	nt Sheet	_				Tube we	ights (g)
Date	12/4/200	Э					horizontal	1305
Tester	ankit and	kurt					vertical	1210
Filename:	omf5_x15	_m6_dec04	09_1226					
	Sheath W	pights (g)		Final				
Horizonta	509.0	509.04	509.04	509.0433	509.05	509.04	509.03	509.04
Vertical	479.1	5 479.18	479.19	479.1767	479.17	479.18	479.16	479.17
	Sheath + F	ull Tube W	eight (g)					
Horizonta	1824.8	7 1824.86	1824.87				1824.867	
Vertical	1700.8	5 1700.86	1700.85				1700.857	
	Sheath + \	ented Tube	e Weight (g)			1020.00	
Horizonta	1820.0	1820.07	1820.05				1820.06	
vertical	1092.9	095.96 TO	7092.98				19675691	
		Measured			Calcu	lated		
	oil	R410a	sum		oil	R410a		error
Horizonta	6.0	2 4.803333	10.82333		5.95	4.873333		0.011628
Vertical	6.796666	7 4.883333	11.68		6.75	4.93		0.006866

Test 15 Pipe: 7.2 mm OCR: 5% Apparent Superheat: 15°C Mass Flux: 150 kg/m²s

P_9	sat		OC	R	T_ref_e	vap_out	T_ref_ev	/ap_wall	T_ts_out
110	60		0.04	98	2	7.0	26	.1	23.8
T_s	at		T_ref_ev	/ap_in	T_w	_e_in	T_w_0	e_out	
12	.3		10.	9	2	7.2	25	.0	
T_ref_co	ond_out	T_1	ref_subco	f_subcooler_out		oil			
10	.8		10.	2	7	<i>'</i> .0			
m_	m_ref m		m_c	oil	m_re	ef_oil	m_w	ater	
5.3	38		0.6	2	6	.00	13	34	
rho	rho ref rho		rho	oil	OMF	oil tank			
112	1128.0 103		1039	9.3	0.4	484			
dP ref	foil h	I_h dP_re		oil v	dp ref	oil evap			
7.6	50	9.3		2	0	.03			
dH re	dH refoil G ma		G mass	flux					
202	202.0 14		148	.8					
Weight M	easureme	ent S	Sheet	_				Tube we	eights (g)
Date	12/20/2	009						horizonta	1305
Tester	kurt and	anki	it					vertical	1210
Filename:	omf5_x1	5_m	6_dec2009	9_1303					
	Shooth M	loig	btc full (g)		Final	Shooth w	nights vont	ad	final
Horizonta	509		509.06	509.08	509 0733	509 16	509.16	509.16	509 16
Vertical	479	.53	479.53	479.52	479.5267	479.57	479.57	479.55	479.5633
	Sheath +	Full	Tube Wei	ght (g)					
Horizonta	1825	5.54	1825.53	1825.54	1825.55			1825.54	
Vertical	1700	.87	1700.86	1700.86	1700.86			1700.863	
	Sheath +	Ver	ited Tube	Weight (g)					
Horizonta	1820	0.76	1820.76	1820.76				1820.76	
vertical	1696	0.15	1696.15	1696.15				1696.15	
		N	leasured			Calcu	lated		
	oil	1	R410a	sum		oil	R410a		error
Horizonta	6	6.60	4.87	11.47		6.45	5.02		0.022727
Vertical	6	5.59	4.75	11.34		6.47	4.87		0.017713

Test 16 Pipe: 7.2 mm OCR: 5% Apparent Superheat: 15°C Mass Flux: 175 kg/m²s

P_9	sat		OC	R	T_ref_evap_out T_ref_evap_wa			/ap_wall	T_ts_out
11	70		0.04	92	2	6.1	25	.4	24.1
T_s	sat		T_ref_ev	/ap_in	T_w	_e_in	T_w_0	e_out	
12	.6		11.	0	2	6.4	24	.4	
T_ref_co	ond_out	T_1	ref_subco	oler_out	T_	oil			
11	.1		10.	3	7	- 7.4			
m	ref		mc	bil	mr	ef oil	m w	ater	
6.2	26		0.7	3	6	.99	14	13	
rho	ref		rho	oil	OMF	oil tank			
112	7.1		1040).9	0.472				
		·							
dP ret	foil h		dP ref	oil v	dp ref	oil evap			
9.8	83			 1	0	.12			
dH r	efoil		G mass	flux					
176	5.1		173	.5					
Weight M	easureme	ent S	Sheet		4			Tube we	eights (g)
Date	9/23/2	009						horizonta	1305
Tester	Kurt							vertical	1210
Filename	omf5_x1	5_m	7_nov2309	9_1401.lvm					
	Sheath W	/eig	hts (g)					Final	
Horizonta	l		(8)					511.16	
Vertical								480.99	
	Sheath +	Full	Tube Wei	ght (g)					
Horizonta								1827.07	
Vertical								1701.62	
	Sheath +	Ver	ited Tube	Weight (g)				4004.05	
Horizonta								1821.95	
vertical								1097.2	
		N	leasured			Calcu	lated		
	oil		R410a	sum		oil	R410a		error
Horizonta	5	5.79	5.12	10.91		5.88	5.03		0.015544
Vertical	6	5.21	4.42	10.63		5.78	4.85		0.069243

Test 17 Pipe: 7.2 mm OCR: 5% Apparent Superheat: 15°C Mass Flux: 200 kg/m²s

P_9	sat	00		R	T_ref_e	vap_out	T_ref_ev	/ap_wall	T_ts_out
110	62		0.04	97	2	7.0	26	.1	23.9
T_s	at		T_ref_ev	/ap_in	T_w	_e_in	T_w_0	e_out	
12	.4		10.	5	2	7.3	24	.9	
T_ref_cc	ond_out	T_1	ref_subco	oler_out	Τ_	oil			
10	.4		10.	1	7	'.3			
m_	m_ref		m_c	oil	m_re	ef_oil	m_w		
6.9	6.96 1		1.0	1	7	.96	14	10	
rho	rho_ref rho		rho	oil	OMF	oil tank			
112	1128.5 105		1057	7.0	0.	394			
dP ref	foil h		dP ref	oil v	dp ref	oil evap			
	92			<u> </u>	0	.23			
dH re	dH refoil G ma		G mass	flux					
177	177.0 19		197	.6					
Weight M	easureme	nt S	Sheet	-				Tube we	eights (g)
Date	12/21/20	009						horizonta	1305
Tester	ankit							vertical	1210
Filename:	OMF5_x1	5_n	18_Dec210	9_1218					
	Shoath M	loig	hts full (g)		Final	Shooth w	nights vont	ad	final
Horizonta	509	05	509.05	509.05	509.05	509.06	509.05	509.05	509 0533
Vertical	479	.49	479.49	479.48	479.4867	479.49	479.49	479.48	479.4867
	Sheath +	Full	Tube Wei	ght (g)					
Horizonta	1824	.52	1824.53	1824.52				1824.523	
Vertical	1699	.92	1699.94	1699.93				1699.93	
	Sheath +	Ver	ited Tube	Weight (g)					
Horizonta	1819	.92	1819.93	1819.93				1819.927	
vertical	1695	.43	1695.42	1695.42				1695.423	
		N	leasured			Calci	lated		
	oil	.,,	R410a	sum		oil	R410a		error
Horizonta	5.873333	333	4.6	10.47333		5.65	4.823333		0.038025
Vertical	5.936666	667	4.506667	10.44333		5.73	4.713333		0.034812

Test 18 Pipe: 7.2 mm OCR: 5% Apparent Superheat: 15°C Mass Flux: 250 kg/m²s

P_9	sat		OCI	R	T_ref_evap_out T_ref			/ap_wall	T_ts_out
110	67		0.05	03	2	9.0	27	.9	25.1
T_s	at		T_ref_ev	/ap_in	T_w	_e_in	T_w_0	e_out	
12	.5		9.8	3	2	9.2	26	.5	
T_ref_cc	ond_out	T_r	ref_subco	oler_out	Τ_	oil			
10	.2		9.2	2	7	<i>'</i> .0			
m_	m_ref			oil	m_re	ef_oil	m_w		
8.9	8.95		1.0	8	10	0.03	18	36	
rho	rho ref rho		rho_	oil	OMF	oil tank			
113	1132.1 104		1042	2.4	0.4	469			
dP ref	foil h		dP ref	oil v	dp ref	oil evap			
19.	07		19.3		0	.48			
dH re	dH refoil G mas		G mass	flux					
209	9.5			9					
Weight M	easureme	ent S	heet		_			Tube we	eights (g)
Date	12/2/20	009						horizonta	1305
Tester	kurt/anki	it						vertical	1210
Filename:	omf5_x1	5_m	10_dec020	9_1637					
	Sheath W	/eig	hts (g)		for full tul	be		Final	
Horizonta	51	.0.5	510.5	510.5				510.5	
Vertical	480	.69	480.67	480.69				480.6833	
	Sheath +	Full	Tube Wei	ght (g)					
Horizonta	182	6.7	1826.72	1826.72				1826.713	
Vertical	1699	.34	1699.35	1699.41	1699.41	1699.41	1699.38	1699.383	
	Chasth i		to al Tula a 1	A(a:abt(a)					
Uprizonto	Sneath +	ven		veight (g)				1920 77	
Vertical	160/	. 75	160/ 7/	160/ 72	160/ 72			169/ 729	
vertical	1094	.,,,	1034.74	1034.75	1034.73	l	l	1024.730	
		N	leasured			Calcu	lated		
	oil		R410a	sum		oil	R410a		error
Horizonta	515.77	7	-504.56	11.21		6.4	4.813333		0.987591
Vertical	484.74	L I	-476.04	8.70		4.51	4.19		0.990696

Test 19 Pipe: 7.2 mm OCR: 3% Apparent Superheat: 10°C Mass Flux: 100 kg/m²s

P_9	at	OCR		R	T_ref_e	vap_out	T_ref_ev	/ap_wall	T_ts_out
11!	56		0.03	00	2	1.9	21	7	20.9
T_s	at		T_ref_ev	/ap_in	T_w	_e_in		e_out	
12	.2		11.	3	2	2.2	21	.3	
T_ref_co	ond_out	T_I	ref_subco	oler_out		oil			
10	.3		10.	3	6	5.8			
m_	ref		m_c	bil	m_re	ef_oil	m_w		
3.9	3.99 0.			7	4.	.25	22	21	
rho_	rho_ref rho_		oil	OMF	oil tank				
112	5.6		1041	3	0.4	476			
dP_ref	foil_h		dP_ref	oil_v	dp_ref	oil_evap			
2.4	18		3.8	7	0.	.17			
dH_re	dH_refoil G_ma			flux					
192	192.9 10			.6					
Weight M	easureme	nt S	sheet					Tube we	eights (g)
Date	1/12/20	010						horizonta	1305
Tester	kurt and a	anki	t					vertical	1210
F ¹ 1	01452 4	0		0.4540					
Filename:		0_n	14_Jan1210	J_1542					
		_							
	Sheath W	eig	hts full (g)		Final	Sheath w	eights vent	ed	final
Horizonta	508.	.14	508.15	508.14	508.1433	508.19	508.2	508.19	508.1933
Vertical	478.	.56	478.56	478.56	478.56	478.61	478.62	478.63	478.62
	Sheath + I	Full	Tube Wei	ght (g)					
Horizonta	1823	3.9	1823.93	1823.93				1823.92	
Vertical	1700.	.04	1700.04	1700.04				1700.04	
	Chaoth I V	400	tod Tuba	$\Lambda(a;ab+(a))$					
Horizonto	1010	70		1010 70				1010 702	
Vertical	1605	.79	1695.05	1695 04				1605 047	
vertical	1095.	.05	1055.05	1055.04				1055.047	
		N	leasured			Calcu	lated		
	oil		R410a	sum		oil	R410a		error
Horizonta		5.6	5.176667	10.77667		5.39	5.386667		0.0375
Vertical	6.426666	67	5.053333	11.48		6.02	5.46		0.063278

Test 20 Pipe: 7.2 mm OCR: 3% Apparent Superheat: 10°C Mass Flux: 150 kg/m²s

P_9	at		OC	R	T_ref_e	vap_out	T_ref_ev	/ap_wall	T_ts_out
11	54		0.03	09	2	2.1	21	.8	20.6
Ts	at		T_ref_e	/ap_in	T_w	_e_in		e_out	
12	.1		10.	3	2	2.5	21	.2	
T_ref_cc	ond_out	I_T	ref_subco	ef_subcooler_out		oil			
9.	6		9.7	7	6	5.7			
m_	m_ref m_		m_c	oil	m_re	ef_oil	m_w	ater	
5.6	5.67 0.4		0.4	1	6	.08	22	22	
rho_	o_ref rho_		oil	OMF	oil tank				
112	8.8		1044	1.3	0.4	463			
dP ref	foil h		dP ref	oil v	dp ref	oil evap			
	- 31		8.1	7	0	.16			
dH re	dH_refoil G_ma		G mass	flux					
206	206.9 15			8					
Weight M	easureme	nt S	heet		_			Tube we	eights (g)
Date	1/13/20	010						horizonta	1305
Tester	Kurt and	Ank	it					vertical	1210
Filename:	OMF3_x1	<u>0_n</u>	16_Jan1310	0_1116					
	Sheath W	/eig	hts full (ø)		Final	Sheath w	eights vent	ed	final
Horizonta	508	.26	508.26	508.26	508.26	508.3	508.3	508.3	508.3
Vertical	478	.68	478.71	478.69	478.6933	478.73	478.72	478.74	478.73
	Sheath +	Full	Tube Wei	ght (g)					
Horizonta	1823	.32	1823.33	1823.32				1823.323	
Vertical	1698	.95	1698.95	1698.96				1698.953	
	Characha a s			A / - ¹ - 1- 1 / -)					
Uprizonto	Sheath +	ven		veight (g)				1010 252	
Vortical	1618	.20	1616.25	1616.25				1618.255	
vertical	109	ч .э	1094.3	1034.28				1054.293	
		N	leasured			Calcu	lated		
	oil		R410a	sum		oil	R410a		error
Horizonta	4.953333	333	5.11	10.06333		4.88	5.183333		0.014805
Vertical	5.563333	333	4.696667	10.26		5.15	5.11		0.074296

Test 21 Pipe: 7.2 mm OCR: 3% Apparent Superheat: 10°C Mass Flux: 200 kg/m²s

P_9	sat	00		R	T_ref_e	vap_out	T_ref_ev	vap_wall	T_ts_out
11!	58		0.02	98	2	2.2	21	.9	20.5
T_s	at		T_ref_ev	/ap_in	T_w	_e_in	T_w_0	e_out	
12	.2		9.7	7	2	3.0	21	.2	
T_ref_cc	ond_out	T_I	ref_subco	oler_out	T_	oil			
9.	6		9.2	2	6	5.5			
	ref		mc	oil	m_re	ef_oil	m_w		
7.4	7.44 0.		0.5	6	8	.00	22	27	
rho	rho_ref rho		rho	oil	OMF	oil tank			
113	0.7		1052	2.6	0.4	425			
dP ref	foil h		dP ref	oil v	dp ref	oil evap			
	01			 LO	0	.29			
dH re	dH refoil G ma		G mass	flux					
213	213.9 19			.5					
Weight M	easureme	nt S	Sheet	_				Tube we	eights (g)
Date	1/14/20	010						horizonta	1305
Tester	kurt and a	anki	it					vertical	1210
Filename:	OMF3_x1	0_n	n8_Jan1410	0_1127					
	Sheath W	/eig	hts full (g)		Final	Sheath w	eights vent	ed	final
Horizonta	508	.76	508.76	508.76	508.76	508.82	508.82	508.8	508,8133
Vertical	479	.21	479.2	479.21	479.2067	479.26	479.26	479.26	479.26
	Sheath +	Full	Tube Wei	ght (g)					
Horizonta	1822	.62	1822.62	1822.61				1822.617	
Vertical	1698	.24	1698.24	1698.25				1698.243	
	Sheath +	Ver	ited Tube	Weight (g)				4047.000	
Horizonta	1817	.99	1817.98	1602.92				1602.917	
vertical	1093	10.	1093.82	1093.82				1033.617	
		N	/leasured			Calcu	lated		
	oil		R410a	sum		oil	R410a		error
Horizonta	4	.17	4.686667	8.856667		4.02	4.836667		0.035971
Vertical	4.556666	567	4.48	9.036667		4.27	4.766667		0.062911

Test 22 Pipe: 7.2 mm OCR: 3% Apparent Superheat: 10°C Mass Flux: 250 kg/m²s

P_9	sat	00		R	T_ref_e	vap_out	T_ref_ev	vap_wall	T_ts_out
11!	57		0.02	95	2	2.3	21	.9	20.2
T_s	at		T_ref_ev	/ap_in	T_w	_e_in	T_w_e	e_out	
12	.2		9.4	1	2	2.7	21	.0	
T_ref_cc	ond_out	T_I	ref_subco	oler_out		oil			
8.	8		9.0)	6	5.7			
m_	m_ref m_		m_c	oil	m_re	ef_oil	m_w		
9.4	9.44 0.6		6	10	0.10	28	31		
rho	rho_ref rho_		oil	OMF	oil tank				
113	.31.6 104		5.3	0.4	453				
dP_ref	foil_h		dP_ref	oil_v	dp_refo	oil_evap			
16.	95		17.7	74	0.	.71			
dH re	dH_refoil G_ma		G mass	flux					
205.9 25			250	.6					
Weight M	easureme	nt S	Sheet		_			Tube we	eights (g)
Date	1/14/20	009						horizonta	1305
Tester	kurt and	anki	it					vertical	1210
		_							
Filename:	OMF3_x1	0_n	n10_Jan14:	10_1614					
	Sheath W	/eig	hts full (g)		Final	Sheath we	eights vent	ed	final
Horizonta	508	.99	508.98	508.99	508.9867	509.05	509.04	509.07	509.0533
Vertical	479	.42	479.42	479.42	479.42	479.19	479.2	479.21	479.2
	Sheath +	Full	Tube Wei	ght (g)					
Horizonta	1822	.02	1822	1822.04				1822.02	
Vertical	1697	.56	1697.54	1697.52				1697.54	
	Chaoth I	Var	tod Tubo	M_{α}					
Horizonta	1917	ver	1917 95	1917 92				1017 0/2	
Vertical	1693	.85	1693.26	1693.28				1693 27	
. cr titui	1055	/	1055.20	1055.20				1055.27	,
		N	/leasured			Calcu	lated		
	oil		R410a	sum		oil	R410a		error
Horizonta	3	.79	4.243333	8.033333		3.42	4.613333		0.097625
Vertical	4	.07	4.05	8.12		3.6	4.52		0.115479

Test 23 Pipe: 7.2 mm OCR: 3% Apparent Superheat: 15°C Mass Flux: 100 kg/m²s

P_s	sat	OCR			T_ref_e	vap_out	T_ref_ev	/ap_wall	T_ts_out
11!	50		0.02	89	2	7.1	26	.0	22.9
T_s	at		T_ref_ev	/ap_in	T_w	_e_in	T_w_e	e_out	
12	.0		11.0	0	2	7.1	25	.7	
T_ref_co	ond_out	1_T	ef_subco	oler_out	T_	oil			
10	.5		10.	0	6	i.2			
	ref		m_c	bil	m_re	ef_oil	m_w		
3.8	3.87 0.		0.2	7	4.	.14	16	66	
rho	rho_ref rho_		rho_	oil	OMF o	oil tank			
112	1127.5 104		1049	9.3	0.4	445			
dP ref	efoil_h dP_ref		oil v	dp refo	oil evap				
2.7	78 3.9		9	0.	.04				
dH re	dH refoil G mas		G mass	flux					
224	224.4 102			.7					
Weight M	easureme	nt S	heet		_1			Tube we	eights (g)
Date	1/2/20	010						horizonta	1305
Tester	KURT & A	ΝΚΙ	Т					vertical	1210
Filename:	OMF3_x1	5_n	14_Jan0210	0_1446					
	Sheath W	eig	hts full (g)		Final	Sheath we	eights vent	ed	final
Horizonta	507	.83	507.83	507.83	507.83	507.82	507.82	507.82	507.82
Vertical	478	.21	478.21	478.2	478.2067	478.2	478.19	478.2	478.1967
	Sheath +	Full	Tube Wei	ght (g)					
Horizonta	1822	71	1822.73	1822.71				1822.717	
Vertical	1698	.77	1698.77	1698.75				1698.763	
	Charadh a b			A (- 1 - 1 - 1 - (-)					
llorizonto	Sheath +	ven		veight (g)				1919 002	
Vortical	1604	03	1604.05	1604 02				1604 027	
vertical	1094	.03	1094.05	1094.05			l	1054.057	
		N	leasured			Calcu	lated		
	oil		R410a	sum		oil	R410a		error
Horizonta	5.183333	333	4.703333	9.886667		5.25	4.636667		0.012862
Vertical	5	.84	4.716667	10.55667		5.9	4.656667		0.010274

Test 24 Pipe: 7.2 mm OCR: 3% Apparent Superheat: 15°C Mass Flux: 150 kg/m²s

P_9	sat		OC	R	T_ref_e	vap_out	T_ref_ev	vap_wall	T_ts_out
11!	52		0.02	92	2	6.8	26	.0	23.6
T_s	at		T_ref_ev	/ap_in	T_w	_e_in	T_w_0	e_out	
12	.1		9.9)	2	6.9	25	.0	
T_ref_co	ond_out	T_I	ref_subco	oler_out		oil			
10	.1		9.2	2	6	5.1			
m_	ref		m_c	bil	m_re	ef_oil	m_w	ater	
5.7	72		0.4	0	6	.12	17	' 0	
rho_	ref		rho_	oil	OMF	oil tank			
113	0.9		1048	3.1	0.4	451			
dP_ref	foil_h		dP_ref	oil_v	dp_ref	oil_evap			
7.5	55		8.7	7	-0	.03			
dH re	efoil	foil G_mas		flux					
219	219.3 15			.9					
Weight M	easureme	ent S	Sheet					Tube we	eights (g)
Date	31/12/09							horizonta	1305
Tester	Kurt and	Ank	it					vertical	1210
F ¹ 1	01452 4	-	. C. D 240	0.4042					
Filename:		.5_n	16_Dec310	9_1043					
	Sheath W	/eig	hts full (g)		Final	Sheath we	eights vent	ed	final
Horizonta	509	.48	509.48	509.47	509.4767	509.43	509.43	509.43	509.43
Vertical	479	.87	479.85	479.86	479.86	479.78	479.77	479.77	479.7733
	Sheath +	Full	Tube Wei	ght (g)					
Horizonta	182	3.8	1823.8	1823.79				1823.797	
Vertical	1699	.14	1699.14	1699.12				1699.133	
	Sheath +	Vor	ted Tube	Woight (g)					
Horizonta	1819	06	1819.07	1819.05				1819.06	
Vertical	1694	.62	1694.62	1694.61				1694.617	
	2001								
		N	/leasured			Calcu	lated		
	oil		R410a	sum		oil	R410a		error
Horizonta	4	.63	4.69	9.32		4.79	4.53		0.034557
Vertical	4.84333	333	4.43	9.273333		4.88	4.393333		0.007571

Test 25 Pipe: 7.2 mm OCR: 3% Apparent Superheat: 15°C Mass Flux: 200 kg/m²s

P_9	sat		OC	R	T_ref_e	vap_out	T_ref_ev	/ap_wall	T_ts_out
11!	52		0.03	01	2	7.0	26	.2	23.9
T_s	at		T_ref_ev	/ap_in	T_w	_e_in	T_w_e	e_out	
12	.1		10.	4	2	7.4	24	.6	
T_ref_co	ond_out	T_1	ref_subco	oler_out	T_	oil			
10	.2		10.	0	7	'.6			
m	ref		m_c	bil	m_re	ef_oil	m_w	ater	
7.4	47		0.5	3	8	.00	14	19	
rho	ref	rho		oil	OMF	oil tank			
112	8.8	1044		4.1	0.4	454			
dP ref	foil h		dP ref	oil v	dp ref	oil evap			
12.	44		12.8	<u> </u>	0.	.32			
		12.8		-		-			
dH re	efoil	G mas		flux					
216	5.7		198	.5					
Weight M	easureme	nt S	Sheet	-	_			Tube we	ights (g)
Date	12/22/20	009						horizonta	1305
Tester	Kurt and	Ank	it					vertical	1210
Filename:	omf3_x1	5_m	8_dec2209	9_1304.lvm					
	Shooth M	loia	htc full (g)		Final	Shoothwy	aighte vont	ad	final
Horizonta	509	21	500 3	509 31	509 3067	500 31	500.3	509 28	509 2967
Vertical	479	.68	479.71	479.7	479,6967	479.68	479.68	479.68	479.68
. er tredi									
	Sheath +	Full	Tube Wei	ght (g)					
Horizonta	182	3.2	1823.2	1823.2				1823.2	
Vertical	1698	.48	1698.48	1698.49				1698.483	
	Sheath +	Ver	nted Tube	Weight (g)					
Horizonta	1818	.68	1818.68	1818.68				1818.68	
Vertical	1694	.38	1694.38	1694.38				1694.38	
		N	leasured			Calcu	lated		
	oil	14	R410a	sum		oil	R410a		error
Horizonta	4.383333	333	4.51	8.893333		4.47	4.423333		0.019772
Vertical		4.7	4.086667	8.786667		4.51	4.276667		0.040426

Test 26 Pipe: 7.2 mm OCR: 3% Apparent Superheat: 15°C Mass Flux: 250 kg/m²s

P_9	sat		OC	CR T_ref_evap_out			T_ref_ev	/ap_wall	T_ts_out
11	58		0.03	11	2	7.0	26	.1	23.4
T_s	at		T_ref_ev	/ap_in	T_w	_e_in		e_out	
12	.3		9.2	2	2	7.3	24	.3	
T_ref_cc	ond_out	T_I	ref_subco	oler_out	T_	oil			
9.	2		8.9)	6	5.5			
m_	ref		m_c	oil	m_re	ef_oil	m_w	'ater	
9.2	21		0.9	3	10).14	17	70	
rho	ref	rho		oil	OMF	oil tank			
113	2.4	1070).2	0.	342			
dP ref	foil h		dP ref	oil v	dp ref	oil evap			
	26			53	0	.47			
		18.3							
dH re	efoil	ofoil G ma		flux					
217	<u>217.4</u> 2								
Weight M	easureme	nt S	heet	-				Tube we	eights (g)
Date	1/1/20)10						horizonta	1305
Tester	Kurt and A	٩nk	it					vertical	1210
									4
Filename:	OMF3_x1	5_n	n10_Jan01:	10_1254					
	Shooth W	oig	htc full (g)		Final	Shooth w	aightsvant	ad	final
Horizonta	508	21 21	508 3/	508 34	508.34	508.29	508.28	508.28	508.28
Vertical	478	69	478.69	478.68	478.6867	478.68	478.68	478.68	478.68
. er tredi		0.0						., 6166	
	Sheath + I	Full	Tube Wei	ght (g)					
Horizonta	1821.	99	1822	1821.98				1821.99	
Vertical	1696.	51	1696.51	1696.48				1696.5	
	Sheath +	Ver	ited Tube	Weight (g)					
Horizonta	1817.	.41	1817.43	1817.41				1817.417	
Vertical	1692.	56	1692.56	1692.56				1692.56	J
		N	leasured			Calco	ilated		
	oil	1	R410a	sum		oil	R410a		error
Horizonta	4.136666	67	4.513333	8.65		4.24	4.41		0.02498
Vertical	3.	88	3.933333	7.813333		3.71	4.103333		0.043814

Test 27 Pipe: 7.2 mm OCR: 1% Apparent Superheat: 10°C Mass Flux: 100 kg/m²s

P_9	sat	OCR			T_ref_e	vap_out	T_ref_ev	/ap_wall	T_ts_	out
11	55		0.01	05	2	2.2	22	.0	21.	0
T_s	at		T_ref_ev	/ap_in	T_w	_e_in	T_w_0	e_out		
12	.1		11.	1	2	2.3	21	.6		
T_ref_co	ond_out	T_1	ref_subco	oler_out	T_	oil				
10	.2		10.	5	9	9.0				
m_	ref			oil	m_re	ef_oil	m_w	ater		
4.(00		0.1	0	4.	.10	29	91		
rho	ref	ef rho		oil	OMF	oil tank				
112	4.5	1043		5	0.4	450				
dP ref	foil h		dP ref	oil v	dp refo	oil evap				
1.5	57		2.5	4	0.	.19				
		2.5								
dH re	I refoil G ma		G mass	flux						
205	5.8			7						
Weight M	easureme	nt S	heet					Tube we	eights ((g)
Date	1/15/20	10						horizonta	1	L305
Tester	Kurt and A	۱nk	it					vertical	1	L210
Filename:	OMF1_x10)_n	14_Jan151(0_1052						
		_								
	Sheath W	eig	hts full (g)		Final	Sheath we	eights vent	ed	final	
Horizonta	509.	18	509.19	509.19	509.1867	509.19	509.2	509.19	509.1	1933
Vertical	479.	41	479.4	479.41	479.4067	479.32	479.33	479.32	479.3	3233
	Sheath + F	ull	Tube Wei	ght (g)						
Horizonta	1822	2.4	1822.39	1822.39				1822.393		
Vertical	1699.	98	1700	1699.98				1699.987	ļ	
		/		A(a: ab t (a)						
Uprizonto	Sheath + V	/en		weight (g)				1917 602	1	
Vortical	1617.	00 02	160/ 92	160/ 82				160/ 827		
vertical	1094.	55	1094.03	1034.02				1054.027		
		N	leasured			Calcu	lated			
	oil		R410a	sum		oil	R410a		error	
Horizonta		3.5	4.706667	8.206667		3.56	4.646667		0.017	7143
Vertical	5.503333	33	5.076667	10.58		5.4	5.18		0.018	3776

Test 28 Pipe: 7.2 mm OCR: 1% Apparent Superheat: 10°C Mass Flux: 100 kg/m²s

P_9	at		OCI	R	T_ref_e	vap_out	T_ref_ev	/ap_wall	T_ts_out
110	50		0.01	13	2	2.1	21	9	21.1
T_s	at		T_ref_ev	/ap_in	T_w	_e_in	T_w_0	e_out	
12	.3		10.9	9	2	2.3	21	5	
T_ref_co	ond_out	T_1	ref_subcc	oler_out	T_	oil			
10	.7		9.9)	8	8.3			
m_	ref		m_c	oil	m_re	ef_oil	m_w	'ater	
4.()5		0.1	1	4.	.15	27	79	
rho	ref	f rho		oil	OMF	oil tank			
112	7.7	1045		5.4	0.4	439			
dP ref	foil h		dP ref	oil v	dp ref	oil evap			
1.6	50		3.1	<u> </u>	0.	.18			
		5.10		_		-			
dH re	efoil G ma			flux					
202	202.0 103.1								
Weight M	easureme	nt S	heet	_				Tube we	eights (g)
Date	1/18/20	10						horizonta	1305
Tester	Kurt and A	۱nk	it					vertical	1248.95
Filename:	OMF1_x10)_n	14_Jan1810)_1224					
		_							
	Shooth W	oia	htc full (g)		Final	Shoothw	nights vont	ad	final
Horizonta	509	сів 54	509 54	509 53	509 5367	509 58	509 58	509 56	509 5733
Vertical	479).6	479.61	479.62	479.61	479.68	479.68	479.68	479.68
	Sheath + F	ull	Tube Wei	ght (g)					
Horizonta	1822.	57	1822.58	1822.56				1822.57	
Vertical	1737	7.6	1737.6	1737.59				1737.597	
	Sheath + \	/en	ited Tube \	Weight (g)					
Horizonta	1818.	12	1818.11	1818.11				1818.113	
vertical	1732.	14	1732.92	1732.93				1732.663	
		N-	leasured			Calcu	lated		
	oil		R410a	sum		oil	R410a		error
Horizonta	3.	54	4.493333	8.033333		3.39	4.643333		0.042373
Vertical	4.033333	33	5.003333	9.036667		4.24	4.796667		0.05124

Test 29 Pipe: 7.2 mm OCR: 1% Apparent Superheat: 10°C Mass Flux: 150 kg/m²s

P_9	sat		OC	R	T_ref_e	vap_out	T_ref_ev	vap_wall	T_ts_out
110	69		0.00	92	2	2.2	22	.1	20.8
T_s	at		T_ref_ev	/ap_in	T_w	_e_in	T_w_e	e_out	
12	.6		10.	0	24	4.2	22	.7	
T_ref_co	ond_out	T_1	ref_subco	oler_out	T_	oil			
10	.2		9.3	3	8	.0			
m_	ref		mc	oil	m_re	ef_oil	m_w	ater	
6.0	00		0.1	3	6	.12	21	4	
rho	ref	rho_		oil	OMF	oil tank			
112	9.3		1046	5.0	0.4	440			
dP ref	foil h		dP ref	oil v	dp ref	oil evap			
4.5	50			2	0.	.19			
dH re	efoil		G mass	flux					
217	217.1 15		152	.0					
Weight M	easureme	nt S	Sheet		_			Tube we	eights (g)
Date	1/16/20	010						horizonta	1305
Tester	kurt							vertical	1210
Filename:	OMF1_x1	<u>n_0.</u>	16_Jan1610	0_1434					
	Sheath W	/eig	hts full (g)		Final	Sheath we	eights vent	ed	final
Horizonta	509	.33	509.29	509.29	509.3033	509.35	509.35	509.37	509.3567
Vertical	479	.48	479.48	479.46	479.4733	479.46	479.47	479.48	479.47
	Sheath +	Full	Tube Wei	ght (g)					
Horizonta	1822	.39	1822.4	1822.4				1822.397	
Vertical	1697	.01	1696.97	1696.98	1696.97			1696.983	
	Sheath +	Ven	ited Tube	Weight (g)				4047 707	
Horizonta	181	1.1	1817.81	1817.7				1817.737	
vertical	1692	.69	1692.7	1092.09				1092.093	
		N	leasured			Calcu	lated		
	oil		R410a	sum		oil	R410a		error
Horizonta	3	.38	4.713333	8.093333		3.41	4.683333		0.008876
Vertical	3.223333	333	4.285833	7.509167		3.11	4.399167		0.03516

Test 30 Pipe: 7.2 mm OCR: 1% Apparent Superheat: 10°C Mass Flux: 150 kg/m²s

P_9	sat		OC	R	T_ref_e	vap_out	T_ref_ev	/ap_wall	T_ts_out
110	61		0.01	14	2	2.2	22	.0	21.1
T_s	at		T_ref_e	/ap_in	T_w	_e_in	T_w_0	e_out	
12	.3		9.9)	2	2.4	21	3	
T_ref_co	ond_out	T_1	ref_subco	oler_out	Τ_	oil			
9.	6		9.2	2	7	.5			
m_	ref		m_c	bil	m_re	ef_oil	m_w	ater	
6.1	15		0.1	6	6	.30	28	35	
rho_	ref		rho_	oil	OMF	oil tank			
113	0.2		1043	8.1	0.4	459			
dP_ref	foil_h	_h dP_re		oil_v	dp_ref	oil_evap			
5.2	17	6.1		4	0.	.23			
dH_re	dH refoil G ma		G_mass	_flux					
209	209.3 1			.4					
Weight M	easureme	nt S	Sheet					Tube we	eights (g)
Date	1/17/20	010						horizonta	1305
Tester	kurt and a	anki	it					vertical	1210
Filonomo	ON451 v1	0	a (lan 171)	2 1520					3
Filename		<u>0_n</u>	10_14111/10	J_1530					
	Sheath W	/eig	hts full (g)		Final	Sheath we	eights vent	ed	final
Horizonta	509	.31	509.31	509.3	509.3067	509.34	509.31	509.31	509.32
Vertical	479	.42	479.42	479.4	479.4133	479.42	479.41	479.43	479.42
	Sheath +	Full	Tube Wei	ght (g)					
Horizonta	182	2.5	1822.5	1822.48				1822.493	
Vertical	169	7.3	1697.32	1697.29				1697.303	
	Sheath +	Ver	ted Tube '	Weight (g)					
Horizonta	1818	.05	1818.05	1818.04				1818.047	
Vertical	1693	.08	1693.07	1693.07				1693.073	
		N	leasured			Calcu	lated		
	oil		R410a	sum		oil	R410a		error
Horizonta	3	.73	4.46	8.186667		3.52	4.666667		0.055456
Vertical	3	.65	4.236667	7.89		3.42	4.47		0.063869

Test 31 Pipe: 7.2 mm OCR: 1% Apparent Superheat: 10°C Mass Flux: 200 kg/m²s

P_9	sat		OC	R	T_ref_evap_out			T_ref_ev	/ap_wall	T_ts_out
11!	57		0.01	10	2	2.4		22	.2	21.1
T_s	at		T_ref_ev	/ap_in	T_w	_e_in		T_w_0	e_out	
12	.2		9.4	ļ	2	2.8		21	4	
T_ref_co	ond_out	Γ_ι	ref_subco	oler_out	T_oil					
9.	4		9.0)	7	'.1				
m	ref		m	oil	m_re	ef_oil		m_w	'ater	
7.9	97		0.1	9	8	.16		29	92	
rho	ref	rho		oil	OMF	oil tank				
113	0.8		1043	3.7	0.4	461				
dP ref	foil h		dP ref	oil v	dp ref	oil eva	р			
9.0			9.9	3	0.	.47	<u>.</u>			
		5.55								
dH re	refoil G ma		G mass	flux						
209	209.5 20			.6						
Weight M	easuremer	nt S	Sheet		_				Tube we	eights (g)
Date	1/16/20	10							horizonta	1305
Tester	Kurt and A	nk	it						vertical	1210
Filename:	OMF1_x10)_n	n8_Jan1610	0_1822						
	Sheath We	-iø	hts full (g)		Final	Sheath	we	eights vent	ed	final
Horizonta	509.4	42	509.41	509.38	509.4033	509.	37	509.4	509.37	509.38
Vertical	479.	51	479.52	479.51	479.5133	479.	48	479.51	479.51	479.5
	Sheath + F	ull	Tube Wei	ght (g)						
Horizonta	1821.	63	1821.62	1821.6					1821.617	
Vertical	1696.	82	1696.82	1696.79					1696.81	
	<u>.</u>									
	Sheath + V	er	ited lube	Weight (g)					1017 222	
Horizonta	1817.	34 52	1817.33	1817.33					1817.333	
vertical	1092.	03	1092.00	1092.00					1092.05	
		N	/leasured			Ca	lcu	lated		
	oil	Ī	R410a	sum		oil		R410a		error
Horizonta	2.953333	33	4.26	7.213333		2.	84	4.373333		0.038375
Vertical	3.	15	4.146667	7.296667		3.	02	4.276667		0.04127

Test 32 Pipe: 7.2 mm OCR: 1% Apparent Superheat: 10°C Mass Flux: 250 kg/m²s

P_9	sat		OC	R	T_ref_evap_out			T_ref_ev	ap_wall	T_ts_out
110	61		0.01	07	2	2.4		22	.2	20.6
T_s	at		T_ref_ev	/ap_in	T_w	_e_	in		e_out	
12	.3		8.8	3	2	3.5		21	.6	
T_ref_cc	ond_out	T_1	ref_subco	oler_out	T_oil					
9.	2		8.5	5	6	5.8				
	Î									
m	ref		mo	bil	mre	ef o	oil	m w	ater	
9.8	31		0.2	3	10	.04			34	
rho	ref	rho		oil	OMF	oil ta	ank			
113	3.4	1044		1.1	0.4	462				
dP ref	foil h		dP ref	oil v	dp ref	oil (evap			
13.	53			9	0	70	erap			
		14.1								
dH re	efoil			flux						
216	dH_refoil G_ma		249	2						
Weight M	easureme	nt 🤇	Sheet						Tube we	ights (g)
Date	1/17/20	10	Jileet						horizonta	1305
Tester	kurt and a	nki	it						vertical	1210
Filename:	OMF1_x1)_n	n10_Jan17	10_1101						
	<u>.</u>					<u>c</u> 1				C i 1
	Sheath W	eig	hts full (g)	500.00	Final	She	ath we	roo or	ed	final
Horizonta	509.	41 \ [509.4 470 F	509.39	470 509.4		509.34	509.35	509.34	509.3433
vertical	473	1.5	479.5	479.51	479.3035		479.45	479.45	479.45	479.45
	Sheath + I	ull	Tube Wei	ght (g)						
Horizonta	1821.	18	1821.18	1821.18					1821.18	
Vertical	1697.	15	1697.14	1697.11					1697.133	
	Sheath + \	/er	nted Tube	Weight (g)						
Horizonta	1817.	03	1817.05	1817.04					1817.04	
Vertical	1692.	91	1692.92	1692.9					1692.91	
							<u></u>	1 - 1 - 1		
	oil	١٧	P4102	cum		0;1	Calcu	lated		orror
			N410d	sum		011		N410d		61101
Horizonta	2,696666	67	4.083333	6.78			2.51	4.27		0.069221

Test 33 Pipe: 7.2 mm OCR: 1% Apparent Superheat: 15°C Mass Flux: 100 kg/m²s

P_9	sat		OCI	R	T_ref_e	vap_out	T_ref_ev	/ap_wall	T_ts_out
11	58		0.00	98	2	7.1	26	.2	23.0
T_s	at		T_ref_ev	/ap_in	T_w	_e_in	T_w_	e_out	
12	.2		11.	5	2	7.1	25	.8	
T_ref_co	ond_out	1_T	ref_subco	oler_out		oil			
10	.8		10.	7	9).3			
	ref		m_c	oil	m_re	ef_oil	m_w	ater	
4.1	11		0.1	0	4.	.21	15	59	
rho_	ref	<u>ref</u> rh 4.4 10			OMF	oil tank			
112	4.4		1050).2	0.4	403			
		dD ro							
dP_ref	foil_h		dP_ref	oil_v	dp_ref	oil_evap			
1.7	73		2.6	5	0.	.15			
	Î						_		
dH_re	dH_refoil G_m			flux					
216	5.4		104.	.4					
Weight M	easureme	nt S	Sheet		_			Tube we	eights (g)
Date	1/7/20	10						horizonta	1305
Tester	Kurt and A	۱nk	it					vertical	1210
Fileses	ON 4511	-	· 4 . I 071(0 1001					
Filename:		<u></u>	14_Jan0/10	J_1031			-		
		_							
	Sheath W	eig	hts full (g)		Final	Sheath w	eights vent	ed	final
Horizonta	508.	15	508.15	508.15	508.15	508.14	508.14	508.14	508.14
Vertical	478.	61	478.6	478.6	478.6033	478.58	478.58	478.58	478.58
	Sheath + I	ull	Tube Wei	ght (g)					
Horizonta	1820.	58	1820.59	1820.59				1820.587	
Vertical	1697.	61	1697.61	1697.59				1697.603	
	Shoath + V	/on	ted Tube \	Woight (g)					
Horizonta	1816	54	1816.4	1816.4				1816.4	<u> </u>
Vertical	1693.	11	1693.12	1693.12				1693.117	
		N	1easured			Calc	ulated		
	oil		R410a	sum		oil	R410a		error
Horizonta	3.	26	4.176667	7.436667		3.28	4.156667		0.006135
Vertical	4.536666	67	4.463333	9		4.64	4.36 I		0.022777

Test 34 Pipe: 7.2 mm OCR: 1% Apparent Superheat: 15°C Mass Flux: 150 kg/m²s

P_9	sat		OC	R	T_ref_e	vap_out	T_ref_ev	/ap_wall	T_ts_out
11	55		0.01	01	2	7.2	26	.3	23.3
T_s	at		T_ref_ev	/ap_in	T_w	_e_in		e_out	
12	.2		10.	6	2	7.4	25	.3	
T_ref_co	ond_out	T_I	ref_subco	oler_out		oil			
10	.2		10.	1	8	8.5			
m	ref		mc	bil	m_re	ef_oil	m_w	ater	
5.8	33		0.1	5	5	.98	15	58	
rho	ref	rho		oil	OMF	oil tank			
112	7.0		1054	1.0	0.	394			
dP_ref	foil_h		dP_ref	oil_v	dp_ref	oil_evap			
4.8	36		5.4	3	0	.08			
dH_re	efoil	oil G_ma		_flux					
229	229.3 1			.4					
Weight M	easureme	ent S	Sheet					Tube we	eights (g)
Date	1/4/20	010						horizonta	1305
Tester	KURT and	AN	IKIT					vertical	1210
F ¹ 1		-	6 1	1110					
Filename:	omf1_x1	5_m	.6_Jan0210	_1440					
	Sheath W	/eig	hts full (g)		Final	Sheath w	eights vent	ed	final
Horizonta	50)7.6	507.57	507.57	507.58	507.59	507.59	507.57	507.5833
Vertical	478	8.05	478.05	478.02	478.04	478.03	478.01	478.02	478.02
	Sheath +	Full	Tube Wei	ght (g)					
Horizonta	1821	.15	1821.17	1821.14				1821.153	
Vertical	1695	6.48	1695.46	1695.46				1695.467	
	Shooth +	Vor	atod Tubo '	Moight (g)					
Horizonta	1816	62	1816.62	1816 62				1816.62	
Vertical	1691	.02 44	1691 44	1691.02				1691 437	
	1001		1001.14	1001.10				1001.107	
		N	/leasured	·		Calcu	ulated		
	oil		R410a	sum		oil	R410a		error
Horizonta	4.03666	667	4.536667	8.573333		4.21	4.363333		0.04294
Vertical	3.41666	667	4.01	7.426667		3.44	3.986667		0.006829

Test 35 Pipe: 7.2 mm OCR: 1% Apparent Superheat: 15°C Mass Flux: 150 kg/m²s

P_9	sat		OC	R	T_ref_e	vap_out	T_ref_ev	vap_wall	T_ts_out
11!	57		0.01	05	2	7.1	26	.2	23.3
T_s	at		T_ref_ev	/ap_in	T_w	_e_in	T_w_0	e_out	
12	.2		10.	5	2	7.2	25	.2	
T_ref_co	ond_out	T_I	ref_subco	oler_out	T_oil				
10	.1		9.9)	8	3.3			
	ref			oil	m_re	ef_oil	m_w	ater	
6.0	00		0.1	6	6	.17	16	58	
rho	ref		rho	oil	OMF	oil tank			
112	7.2		1054	1.5	0.	394			
dP ref	foil h		dP ref	oil v	dp ref	oil evap			
5.3	38			2	0	.17			
		0.2							
dH re	efoil		G mass	flux					
231	231.0 1			.0					
Weight M	easureme	ent S	Sheet	_				Tube we	eights (g)
Date	1/7/20	010						horizonta	1305
Tester	KURT & A	NKI	Т					vertical	1210
Filename:	OMF1_x1	.5_n	n6_Jan071	0_1516					
	Sheath W	/eig	hts full (g)		Final	Sheath w	eights vent	ed	final
Horizonta	508	.17	508.17	508.17	508.17	508.14	508.15	508.14	508,1433
Vertical	478	.61	478.61	478.61	478.61	478.56	478.58	478.57	478.57
	Sheath +	Full	Tube Wei	ght (g)					
Horizonta	1820	.79	1820.79	1820.79				1820.79	
Vertical	1696	.72	1696.73	1696.7				1696.717	
	Sheath +	Ver	ited Tube	Weight (g)			-	4046.662	
Horizonta	1816	0.66	1816.67	1816.66				1816.663	
vertical	109	2.0	1092.59	1092.01				1092.0	
		N	/leasured			Calcu	lated		
	oil		R410a	sum		oil	R410a		error
Horizonta	3	.52	4.1	7.62		3.43	4.19		0.025568
Vertical	4	.03	4.076667	8.106667		3.93	4.176667		0.024814

Test 36 Pipe: 7.2 mm OCR: 1% Apparent Superheat: 15°C Mass Flux: 200 kg/m²s

P_9	sat	00		R	T_ref_e	evap_out	out T_ref_evap_wall			out
11!	58		0.00	98	2	7.1	26	.3	23.6	5
T_s	at		T_ref_ev	/ap_in	T_w	_e_in	T_w_0	e_out		
12	.2		9.7	7	2	7.5	24.8			
T_ref_co	ond_out	T_I	ref_subco	oler_out		oil				
9.	9		9.4	1	8	3.0				
m_	ref		m_c	bil	m_re	ef_oil	m_w	ater		
8.0	03		0.1	9	8	.22	16	57		
rho_	ref		rho_	oil	OMF	oil tank				
113	0.0		1049	9.3	0.4	424				
dP_ref	foil_h		dP_ref	oil_v	dp_ref	oil_evap				
9.5	55		9.7	5	0	.27				
dH re	efoil		G mass	flux						
230).5		204	.0						
Weight M	easureme	nt S	Sheet					Tube we	ights (g	g)
Date	1/5/20	010						horizonta	13	305
Tester	Kurt and	Ank	it					vertical	12	210
F ¹ 1	01454 4	-	0.1.054	0 4254						
Filename:	ONF1_X1	.5_n	18_Jan0510	0_1254						
		_								
	Sheath W	/eig	hts full (g)		Final	Sheath w	eights vent	ed	final	
Horizonta	507	.58	507.56	507.55	507.5633	507.56	507.55	507.55	507.5	533
Vertical	477	.97	477.96	477.96	477.9633	477.99	477.98	477.98	477.98	833
	Sheath +	Full	Tube Wei	ght (g)						
Horizonta	1819	.63	1819.65	1819.64				1819.64		
Vertical	1695	.14	1695.15	1695.15				1695.147		
	Shoath +	Vor	tod Tubo	Woight (g)						
Horizonta	1815	78 18	1815 /8	1815 /6				1815 //73		
Vertical	1691	.29	1691.29	1691.29				1691.29	l	
	1001		1031.25	103 1.23				1001.20		
		N	leasured	·		Calcu	lated			
	oil		R410a	sum		oil	R410a		error	
Horizonta	2	.92	4.156667	7.076667		3.02	4.056667		0.0342	247
Vertical	3.306666	567	3.876667	7.183333		3.23	3.953333		0.023	185

Test 37 Pipe: 7.2 mm OCR: 1% Apparent Superheat: 15°C Mass Flux: 250 kg/m²s

P_9	at		OC	R	T_ref_evap_out			T_ref_ev	T_ts_out	
110	50		0.01	09	2	7.0		26	.2	23.5
T_s	at		T_ref_ev	/ap_in	T_w	_e_in		T_w_e	e_out	
12	.3		9.4	1	27.7		24			
T_ref_co	ond_out	I_T	ef_subco	oler_out	T_	oil				
9.	6		9.2	2	7	.4				
m_	ref		m_c	bil	m_re	ef_oil		m_w		
9.6	58		0.2	9	9	.97		17	'1	
rho	ref		rho	oil	OMF	oil tank	(
113	0.4		1061	L.9	0.	370				
dP ref	foil h		dP ref	oil v	dp ref	oil eva	a			
14.	49		14.4	16	0	.57	1			
dH re	efoil		G mass	flux						
228	3.4			<u>-nax</u> 5						
Weight M	easuremei	nt S	heet				_		Tube we	eights (g)
Date	1/6/20	10							horizonta	1305
Tester	Kurt and A	nk	it						vertical	1210
										2.77
Filename:	OMF1_x15	5_m	n10_Jan06	10_1152						
		_								
	Charadh M4		L. L. C. L. (.)		e t I	Ch a shi			1	() I
	Sheath W	eig		507 52	Final	Sneath	We	For rec	ea 507.57	tinai
Vortical	507.	04 00	507.53	507.53	507.5333	507	.57	307.30	307.57	307.3007
vertical	477.	90	477.90	477.97	477.9707	470	.02	476.01	476.02	478.0107
	Sheath + F	ull	Tube Wei	ght (g)						
Horizonta	1819	9.3	1819.32	1819.3					1819.307	
Vertical	1694.	16	1694.16	1694.15					1694.157	
	Sheath + \	/en	ited Tube	Weight (g)						
Horizonta	1815.	22	1815.21	1815.21					1815.213	
Vertical	1690.	57	1690.57	1690.57					1690.57	
	oil	IV	PA102	cum		Ca	iicu	P4102		orror
Horizonta	2 646666	67	4 126667	6 773332		2011	77	4 003333		0.046599
	2 552222	3, 33	3 626667	6.18		2	.42	3.76		0.052219

Test 38 Pipe: 18.5 mm OCR: 5% Apparent Superheat: 15°C Mass Flux: 60 kg/m²s

	+	000			T				
P_9	at		00	K ac	I_ref_e	evap_out	I_ref_ev	/ap_waii	
120	78		0.05	06	2	/.1	26	.4	
T_s	at		T_ref_ev	/ap_in	T_w	_e_in		e_out	
13	.7		9.0)	2	7.2	24	.9	
T_ref_co	ond_out	T_1	ref_subco	oler_out		oil			
11	.0		8.8	3	7	' .6			
m	ref		mc	bil	mre	ef oil	m w	ater	
14.	02		1.8	0	15	5.83		.3	
rho	ref		rho	oil	OME	oil tank			
113	<u></u> 5 3		1046	50	0	ΔΔΔ			
113	5.5				0.				
dP rof	foil h		dD rof	oil v	dn rof	ail avan			
			ur_iei	011_v	up_ien	14			
						. 14			
	C .1			<u>(</u>)					
dH_re			G_mass	_flux -					
18/	.8		59.	5	<u></u>				
Weight M	easureme	ent S	sheet					Tube we	eights (g)
Date	3/25/2	010						horizonta	2943.16
Tester	ankit							vertical	3004.12
Filename	OME5 x1	15 n	n16 Mar25	10 1226					
rifefianc.		<u></u>	110_1010123	10_1220					
	Sheath V	Veig	hts full (g)		Final	Sheath we	eights vent	ed	final
Horizonta	511	.63	511.62	511.61	511.62	511.59	511.6	511.6	511.5967
Vertical	511	.63	511.62	511.61	511.62	511.59	511.6	511.6	511.5967
	Sheath +	Full	Tube Wei	ght (g)					
Horizonta	3508	3.72	3508.67	3508.73				3508.707	
Vertical	3615	5.61	3615.62	3615.55				3615.593	
	<u>.</u>								
	Sheath +	Ver	ited lube	Weight (g)				2402 507	
Horizonta	3483	3.51	3483.49	3483.52				3483.507	
vertical	3578	5.11	3578.14	3578.1				35/8.11/	
		N	leasured			Calcu	lated		
	oil		R410a	sum		oil	R410a		error
Horizonta	28	3.75	25.17667	53.92667		27.51	26.41667		0.04313
Vertical	E	52.4	37.45333	99.85333		61.74	38.11333		0.010577

Test 39 Pipe: 18.5 mm OCR: 5% Apparent Superheat: 15°C Mass Flux: 70 kg/m²s

Do	at	OCR		R	T rof c	wan out	T rof a		
12	21		0.05	<u>n</u> o	<u></u>	7 E	26		
122	21		0.05	25	2	7.5	20	0.0	
Тс	at		T rof o	in in	<u>т.</u> ,	o in	Туу	o out	
1_3	al 1			/ap_iii		_e_m	1_w_e_0ut		
14	.1		8.4	+	2	7.8	25	0.1	
T f		-				- 11			
I_ref_co	ona_out	<u>ا_</u>	ret_subco	oler_out		_011			
10	.9		8.4	ŀ	/	.5			
m	ref		mo	nil	mr	ef oil	mw		
16.	42		2.1	0	18	3.53	32	20	
20.				•					
rho_	ref		rho_	oil	OMF	oil tank			
113	7.3	1043.		8.0	0.	461			
		h dD rofo							
dP_ref	oil_h	h dP_refoi		oil_v	dp_ref	oil_evap			
					2	.92			
du r	ofoil	G mass		flux	1				
100		G_mass		 7	-				
Woight M	assurame	nt 9	Sheet	,	_			Tubewe	aights (g)
Date	3/23/2	010	JIEEL					horizonta	2943 16
Tester	kurt and	ank	it					vertical	3004.12
		-							
Filename:	OMF5_x1	.5_n	n18_Mar24	10_1148					
					•				a
	Sheath V	/eig	hts full (g)		Final	Sheath we	eights vent	ed	tinal
Horizonta	510	.68	510.67	510.68	510.6767	510.86	510.88	510.84	510.86
Vertical	510	.68	510.67	510.68	510.6767	510.86	510.88	510.84	510.86
	Shoath +	Full	l Tubo Wai	aht (a)					
Horizonta	350	5 2	3505 16	3505 15				3505 17	
Vertical	3611	64	3611 65	3611 65				3611 647	
. er trour			0011.00	5011.05				50111017	
	Sheath +	Ver	nted Tube V	Weight (g)					
Horizonta	3480	.54	3480.59	3480.5				3480.543	
Vertical	3575	.12	3575.15	3575.08				3575.117	
		Ν	/leasured			Calcu	lated		
	oil		R410a	sum		oil	R410a		error
Horizonta	26.5233	333	24.81	51.33333		24.97	26.36333		0.058565
Vertical	60.1366	667	36.71333	96.85		58.49	38.36		0.027382

Test 40 Pipe: 18.5 mm OCR: 5% Apparent Superheat: 15°C Mass Flux: 70 kg/m²s

P_s	at		OCI	R	T_ref_e	vap_out	T_ref_ev		
12:	10		0.05	05	2	6.7	26	i.2	
T_s	at		T_ref_ev	/ap_in	T_w	_e_in	T_w_	e_out	
13	.8		9.5	5	2	7.1	24	.2	
T_ref_co	ond_out	T_1	ref_subco	oler_out	T_	oil			
10	.9		9.6	5	8	8.7			
m_I	ref		m_c	bil	m_re	ef_oil	m_w	ater	
16.	57		2.1	6	18	3.73	29	90	
rho	ref		rho_e	oil	OMF o	oil tank			
113	3.1		1044	.4	0.4	439			
dP ref	oil h		dP ref	oil v	dp ref	oil evap			
	_				3.	.15			
dH re	efoil		G mass	flux					
188	3.7			4					
Weight M	easureme	ent S	Sheet		_			Tube we	eights (g)
Date	4/13/2	010						horizonta	2943.16
Tester	kurt							vertical	3004.12
		_							
Filename:	OMF5_x1	.5_n	119_Apr13	10_1114					
	Sheath W	/eig	hts full (g)		Final	Sheath we	eights vent	ed	final
Horizonta	513	.08	513.08		513.08	513.05	513.06	513.05	513.0533
Vertical	513	.08	513.08		513.08	513.05	513.06	513.05	513.0533
	Sheath +	Full	Tube Wei	ght (g)					
Horizonta	3507	.57	3507.54	3507.53				3507.547	
Vertical	3616	.56	3616.59	3616.58				3616.577	
	Charachara			A (- ¹ - 1-1 / -)					
Horizonto	Sheath +	ver		weight (g)				2491 65	
Vortical	2590	.05	2580.05	2580.04				2590.052	
vertical	5500	.07	5560.05	5560.04				3300.033	
		N	leasured			Calcu	lated		
	oil		R410a	sum		oil	R410a		error
Horizonta	25.4366	667	25.87	51.30667		25.1	26.20667		0.013235
Vertical	62	.88	36.49667	99.37667		60.6	38.77667		0.03626

Test 41 Pipe: 18.5 mm OCR: 5% Apparent Superheat: 15°C Mass Flux: 70 kg/m²s

Da	a ±				т	rof over	+	т.,	of over i		
P_S					'-	_rei_evap	_out	1_n	er_evap_v	vali	
129	4		0.0500			51.1			50.1		
Тс	at .	т	rof over	a in		Тжо	in	-		+	
1_50	สเ 1		10.2	J_111		<u> 1_w_e</u> _ 21.2			_w_e_ou	L	
10.	1		10.2			51.5			20.0		
T rof co	nd out	Tro	f cubcoo	lor out		Toil					
12	ru_out	<u></u>	10.1	lei_out		<u>1_011</u>					
15.	5		10.1			9.5					
mr	of		m oil			m ref c	hil		m water		
16 5	20		2 02			19 61			202		
10.5	00		2.03			10.01			308		
rho_	ref		rho_oil		(OMF oil ta	ank				
1131	.4		1038.7			0.458		1			
dP_ref	oil_h		dP_refoil	_v	d	p_refoil_	evap				
						2.83					
dH_re	foil		G_mass_f	lux							
190	.5		70.0								
Weight M	easurem	ent S	Sheet							Tube we	eights (g)
Date	4/14/2	2010								horizonta	2943.16
Tester	kurt and	l anki	t		_					vertical	3004.12
Filename	OME5 x	15 n	19 Δnr14	10 0954	_						
i nename.		.13_11	115 <u>-</u> Api 14	10_0554							
	Sheath	Weig	hts full (g)		F	Final	Sheat	th we	eights vent	ed	final
Horizonta	51	.3.45	513.44	513.4	14	513.4433	51	.3.43	513.45	513.4	513.4267
Vertical	51	.3.45	513.44	513.4	14	513.4433	51	3.43	513.45	513.4	513.4267
	<u>.</u>			1	_						
llorizonto	Sneath -	+ Full	Tube Wei	gnt (g)	10					2510 472	
Vortical	267	0.47	2621 66	2621.6	+9 56					2621 657	
vertical	502	1.05	5021.00	5021.0	00					5021.057	
	Sheath -	+ Ver	ted Tube	Weight (g)						
Horizonta	34	84.6	3484.6	3484.	.6					3484.6	
Vertical	35	83.4	3583.39	3583.3	39					3583.393	
		N	leasured				0	Calcu	lated		
	oil		R410a	sum			oil		R410a		error
Horizonta	28.013	3333	25.85667	53.8	37		2	6.68	27.19		0.047596
Vertical	65.846	6667	38.24667	104.093	33		6	4.45	39.64333		0.021211

Test 42 Pipe: 18.5 mm OCR: 5% Apparent Superheat: 15°C Mass Flux: 80 kg/m²s

P_s	at		OCR		T_ref_eva	p_out	T_r	ef_evap_v	vall	
127	8		0.0511		27.9)		27.1		
T_sa	ət	T	「_ref_evap	o_in	T_w_e	_in		Γ_w_e_ou	t	
15.	7		8.6		28.6	i		25.6		
T_ref_co	nd_out	T_re	ef_subcool	er_out	T_oi					
12.	4		8.6		7.8					
r	ef		m_oil		m_ref_	oil		m_water		
18.6	55		2.47		21.12	2		324		
rho	ref		rho_oil		OMF oil	tank				
1136	5.7		1047.0		0.43	7				
dP_ref	oil_h		dP_refoil	_v	dp_refoil	_evap				
					3.66	,				
dH_re	foil		G_mass_f	lux						
189	.2		79.4							
Weight M	easurem	ient S	Sheet						Tube we	eights (g)
Date	3/23/	2010 1 anki	:+						horizonta	2943.16
Tester	KUILAII		11						vertical	5004.12
Filename:	OMF5_>	(15_n	n21_Mar23	10_1220						
	Sheath	Weig	hts full (g)	F10.1	Final	Shea	th we	eights vent	ed 510.10	final
Vertical	51	0.15	510.14	510.1	5 510.146	/ 51 7 51	0.18	510.19	510.18	510.1833
Vertical		.0.15	510.11	510.1	5 510.110	, 31	.0.10	510.15	510.10	510.1055
	Sheath	+ Full	Tube Wei	ght (g)						
Horizonta	35	603.2	3503.17	3503.1	9				3503.187	
Vertical	35	598.8	3598.75	3598.	8				3598.783	
	Shoath	+ Vor	tod Tubo V	Noight (T)					
Horizonta	347	7.52	3477.51	3477.5	5				3477.527	
Vertical	356	53.42	3563.4	3563.4	3				3563.417	
		N	/leasured			(Calcu	lated		
	oil	2222	R410a	sum	-	oil	a i c	R410a		error
Horizonta	24.183	3333	25.69667	49.8	8 7		2.46	27.42		0.0/1261
vertical	49.113	5222	33.40333	04.3100	/	4	HU. OÖ	37.05007]	0.045473

Test 43 Note: The saturation temperature drifted up to 15.7°C at this high mass flux due to system limitations. Pipe: 18.5 mm OCR: 5% Apparent Superheat: 15°C Mass Flux: 100 kg/m²s

P_s	at		OCR		Т		_out	T_r	ef_evap_v	wall		
127	9		0.0500			29.7			28.9			
T_sa	ət	٦	_ref_eva	o_in		T_w_e	in	1	ſ_w_e_ou	t		
15.	7		8.7			30.5	-		26.8			
T_ref_co	nd_out	T_re	f_subcoo	ler_out		T_oil		1				
11.	8		8.8			8.4						
m_r	ef		m_oil			m_ref_c	oil		m_water			
23.5	52		3.00			26.52			326			
rho_	ref		rho_oi			OMF oil t	ank					
1136	5.7		1044.4			0.443						
dP_ref	oil_h		dP_refoi	_v	С	p_refoil_	evap					
						6.79						
dH_re	foil		G_mass_f	lux								
189	.1		99.7									
Weight M	easuren	nent S	Sheet							Tub	e we	eights (g)
Date	4/2/	2010								horiz	onta	2943.16
lester	kurt and	d ank	It							verti	cal	3004.12
Filename	OME5	(15 n	n26 Apr02	10 1612								
	<u></u>		<u> </u>									
	Sheath	Weig	hts full (g)			Final	Sheat	th we	eights vent	ed		final
Horizonta	51	12.57	512.57	512.5	57	512.57						#DIV/0!
Vertical	52	12.57	512.57	512.5	57	512.57						#DIV/0!
	Sheath	+ Full	Tube Wei	ght (g)								
Horizonta	350)1.17	3501.18	3501.1	19					350)1.18	
Vertical	359	93.21	3593.21	3593.2	21					359	93.21	
	Sheath	+Ver	nted Tube	Weight (g)							1
Horizonta										#DI\	//0!	
Vertical										#DI\	//0!	
		N	leasured				(Calcu	lated			
	oil		R410a	sum			oil		R410a			error
Horizonta				45.4	1 5		1	9.91	25.54			
Vertical				76.5	52		4	2.35	34.17			

Test 44 Note: The saturation temperature drifted up to 16.1°C at this high mass flux due to system limitations. Pipe: 18.5 mm OCR: 5% Apparent Superheat: 15°C Mass Flux: 100 kg/m²s

P_sat OCR T_ref_evap_out T_ref_evap_wall 1293 0.0511 31.1 30.2	
1293 0.0511 31.1 30.2 T sat T ref evan in T w e in T w e out	
T sat T ref evan in T w e in T w e out	
T sat T ref evan in T we in T we out	
16.1 9.0 31.6 28.0	
T_ref_cond_out T_ref_subcooler_out T_oil	
12.2 9.1 9.0	
m_ref m_oil m_ref_oil m_water	
23.40 2.94 26.35 340	
rho_ref rho_oil OMF oil tank	
1135.9 1040.0 0.458	
dP_refoil_h dP_refoil_v dp_refoil_evap	
6.39	
dH_refoil G_mass_flux	
190.6 99.1	
Weight Measurement Sheet Tube weight	:s (g)
Date 4/12/2010 horizontal 2	943.16
Tester Kurt andf Ankit vertical 3	004.12
Eilonomo: OMEE x1E m26 Apr1210 1110	
Sheath Weights full (g) Final Sheath weights vented fina	ıl
Horizonta 512.7 512.7 512.7 512.7 512.9 512.89 512.9 51	2.8967
Vertical 512.7 512.7 512.7 512.7 512.9 512.89 512.9 51	2.8967
Chaoth I Full Tube Weight (g)	
Horizonta 3505 17 3505 16 3505 16 3505 16 3505 16	
Vertical 3600.93 3600.98 3600.95 3600.95	
Sheath + Vented Tube Weight (g)	
Horizonta 3479.13 3479.14 3479.135	
Vertical 3565.87 3565.87 3565.87	
Measured Calculated	
Measured Calculated oil R410a sum oil R410a error Horizonta 23.0783333 26.225 49.30333 23.16 26.14333 0.0)r 103530

Test 45 Pipe: 18.5 mm OCR: 3% Apparent Superheat: 15°C Mass Flux: 70 kg/m²s

P_s	at		OCR		Т	_ref_evap	o_out	T_r	ef_evap_v	vall	
117	'8		0.0297			27.2			26.7		
T_s	at	Т	ref_eva	o_in		T_w_e_	in	1	ſ_w_e_ou	t	
12.	8		8.4			27.5			24.7		
T_ref_co	nd_out	T_re	f_subcoo	ler_out		T_oil					
9.6	5		8.4			7.0					
m_r	ef		m_oil			m_ref_c	oil		m_water		
17.1	19		1.46		18.65				309		
rho_	ref		rho_oil			OMF oil t	ank				
1137	7.3		1061.0			0.379					
dP_ref	oil_h		dP_refoil	_v	С	lp_refoil_	evap				
						3.38					
dH_re	foil		G_mass_f	lux							
198	.9		70.1								
Weight M	easurem	nent S	Sheet							Tube w	eights (g)
Date	3/30/	2010								horizonta	2943.16
lester	kurt and	d anki	it							vertical	3004.12
Filename	OMF3 >	(15 n	n19 Mar30	10 1150							
		_									
	Sheath	Weig	hts full (g)		_	Final	Sheat	th we	eights vent	ed	final
Horizonta		511.2	511.2	511.	.2 2	511.2	51	1.21	511.24	511.22	511.2233
vertical)11.Z	511.2	511.	. 2	511.2	51	.1.21	511.24	511.22	. 511.2255
	Sheath	+ Full	Tube Wei	ght (g)							
Horizonta	349	95.55	3495.55	3495.5	57					3495.557	r
Vertical		3600	3600.03	3600.0)9					3600.04	ŀ
	<u>.</u>	.,			,						
Horizonto	Sheath	+ ver		weight (g) ว					2472 20-	,
Vertical	356	+72.3 57 52	3567.47	3567.4	.5 19					3567 493	
. crtical			5567.47	3307.4						5567.455	<u> </u>
		N	leasured					Calcu	lated		
	oil		R410a	sum			oil		R410a		error
Horizonta	17.923	3333	23.27333	41.1966	57		1	8.25	22.94667		0.018226
Vertical		52.15	32.57	84.7	2		5	51.21	33.51		0.018025

Test 46 Pipe: 18.5 mm OCR: 3% Apparent Superheat: 15°C Mass Flux: 80 kg/m²s

P_s	at		OCR		Т	_ref_evap	o_out	T_r	ef_evap_v	vall		
127	'9		0.0301			27.4			26.8			
T_s	at	٢	ref_eva	o_in		T_w_e_	in	1	ſ_w_e_ou	t		
15.	7		7.9			28.7			25.4			
T_ref_co	nd_out	T_re	f_subcoo	ler_out		T_oil						
12.	4		8.1			7.1						
m_r	ef		m_oil			m_ref_c	oil		m_water			
20.0)2		1.50			21.51			312			
rho_	ref		rho_oil			OMF oil t	ank					
1139	9.7		1049.5			0.433						
dP_ref	oil_h		dP_refoil	_v	С	lp_refoil_	evap					
						4.05						
dH_re	foil		G_mass_f	lux								
199	.3		80.9									
Weight M	easurem	nent S	Sheet							Tub	be we	eights (g)
Date	3/29/	2010								horiz	onta	2943.16
Tester	kurt and	d ank	it							verti	cal	3004.12
Filename	OME3 >	(15 n	n21 Mar29	10 1004								
. nendine				10_100 .								
	Sheath	Weig	hts full (g)			Final	Shea	th we	eights vent	ed		final
Horizonta	5	510.8	510.8	510.	8	510.8	51	0.88	510.87	5	10.87	510.8733
Vertical	5	510.8	510.8	510.	8	510.8	51	.0.88	510.87	5	10.87	510.8733
	Sheath	+ Full	Tube Wei	ght (g)								
Horizonta	349	94.18	3494.23	3494.2	7					3494	4.227	
Vertical	358	33.17	3583.13	3583.1	.6					358	3.153	
	Sheath	+ Ver	nted Tube	Weight (g)							
Horizonta	347	0.66	34/0./3	3470.6	06					3470	0.683	
vertical	355	51.75	3551.75	3551.7	9					333.	1.703	
		Ν	leasured				(Calcu	lated			
	oil		R410a	sum			oil		R410a			error
Horizonta	1	16.65	23.61667	40.2666	7		1	5.32	24.94667			0.07988
Vertical	3	36.77	31.46333	68.2333	3		3	84.81	33.42333			0.053304

Test 47 Pipe: 18.5 mm OCR: 3% Apparent Superheat: 15°C Mass Flux: 100 kg/m²s

· · · · · · · · · · · · · · · · · · ·					-		r		
P_9	at		OC	R	T_ref_e	evap_out	T_ref_ev		
130)5		0.02	98	2	9.3	28	8.7	
T_s	at		T_ref_ev	/ap_in	T_w	_e_in		e_out	
16	.4		9.1	L	30.3		26		
T_ref_cc	ond_out	T_1	ref_subco	oler_out		oil			
12	.5		9.3	}	8	3.8			
m_	ref		m_c	oil	m_re	ef_oil	m_w	/ater	
24.	75		1.6	4	26	5.39	31	19	
rho	ref		rho	oil	OMF	oil tank			
113	4.8	1036.		5.6	0.4	478			
dP ref	foil h		dP ref	oil v	dp ref	oil evap			
	_				6	.54			
dH re	efoil		G mass	flux					
198	3.5		99.	3	1				
Weight M	easureme	ent S	Sheet	-	1			Tube we	ights (g)
Date	4/2/2	010						horizonta	2943.16
Tester	kurt and	anki	it					vertical	3004.12
Filename:	OMF3_x1	.5_n	n26_Apr02	10_1138					
	Shoath M	loig	hts full (g)		Final	Shooth w	nights vont	ad	final
Horizonta	512	58	512 59	512.6	512 59	512 69	512 65	.eu 512.6	512 6467
Vertical	512	.58	512.59	512.6	512.59	512.69	512.65	512.6	512.6467
	Sheath +	Full	Tube Wei	ght (g)					
Horizonta	3498	.39	3498.4	3498.37				3498.387	
Vertical	3584	.24	3584.23	3584.22				3584.23	
	Sheath +	Ver	nted Tube	Weight (g)					
Horizonta	347	2.5	3472.5	3472.48				3472.493	
Vertical	3550	.69	3550.68	3550.68				3550.683	
		N	leasured			Calci	lated		
	oil	Ĩ	R410a	sum		oil	R410a		error
Horizonta	16.6866	667	25.95	42.63667		17.03	25.60667		0.020575
Vertical	33.9166	667	33.60333	67.52		34.34	33.18		0.012482
There was some difficulty with the oil entering the taps for the differential pressure transducers. It was observed that the oil only entered through the pressure taps during closing or opening of valves while the system was running. In order to eliminate errors in pressure drop measurements, the pressure drop measurements for the 18.5 mm pipe were taken all at once, without closing the valves at all in between test conditions. This provided pressure drop measurements with accurate values, which are shown below.

G	OCR	∆p_h	∆p_v
kg/m²s		kPa	kPa
79.6	0.0321	0.36	1.88
70.9	0.0303	0.3	1.65
59.8	0.0315	0.23	1.52
50.7	0.0312	0.2	1.6
39.6	0.0306	0.12	2.6
29.9	0.0307	0.06	3.67
100.6	0.052	0.53	2.65
79	0.0529	0.36	2.53
69.8	0.0524	0.33	2.37
59.5	0.0501	0.23	2.01
50.2	0.049	0.19	2.05
40.5	0.0502	0.12	2.99
29.9	0.0512	0.09	4.75