
c© 2010 Nicholas C. Bray

mailto:nbray1@uiuc.edu?subject=Dissertation

PYSTREAM: PYTHON SHADERS RUNNING ON THE GPU

BY

NICHOLAS C. BRAY

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2010

Urbana, Illinois

Doctoral Committee:

Professor Wen-Mei W. Hwu, Chair
Research Associate Professor Ralph E. Johnson
Professor John C. Hart
Professor Benjamin W. Wah
Associate Professor Steven S. Lumetta

MAILTO:NBRAY1@UIUC.EDU?SUBJECT=DISSERTATION

Abstract

Graphics processing units (GPUs) have tremendous computing power, but are

hard to program. Most GPU programming languages are extremely low level;

no one has run a general-purpose high-level language on a GPU. This disserta-

tion shows how to run Python shaders on a GPU for real-time rendering. Shaders

written in Python run 30,000 - 300,000 times faster than on a CPU. This is partly

because GPUs are designed to run shaders and partly because of the design of

PyStream, a Python compiler for the GPU. PyStream advances the state-of-the-art

in pointer analysis for Python, eliminates abstraction overhead for Python, maps

a language with references onto an architecture that does not support references,

and uses a single code base to program both the CPU and GPU. PyStream points

the way for running high-level languages on specialized architectures.

ii

Contents

Chapter 1 Introduction . 1
1.1 Goal Statement and Research Questions 4
1.2 Contributions . 4
1.3 Organization . 5

Chapter 2 Engineering Real-Time Rendering Systems 7
2.1 Historical Emergence of Real-Time Rendering 8
2.2 Rendering Heuristics . 8
2.3 Real-Time Rendering System Life Cycle 9
2.4 GPU Architecture . 10
2.5 GPU Application Programming Interfaces (APIs) 11
2.6 Software-Defined Rendering Pipelines 12
2.7 Shader Languages . 13
2.8 Computation on the GPU . 16
2.9 Example Rendering System . 19

Chapter 3 Python . 20
3.1 An Introduction to Python . 20
3.2 Compiling Python . 28

Chapter 4 The PyStream Language . 31
4.1 Restrictions on Python in PyStream 31
4.2 Python Shader Programs in PyStream 36
4.3 GLSL Intrinsic Functions and Types in PyStream 38
4.4 Advantages of Using PyStream to Write Shaders 39

Chapter 5 PyStream’s Compiler Architecture 42
5.1 The PyStream Compiler Pipeline 43
5.2 Abstraction Syntax Trees (ASTs) 46
5.3 Special AST Nodes . 47
5.4 Annotations . 50
5.5 Intermediate Representation . 50
5.6 Type Dispatcher . 51

iii

Chapter 6 PyStream’s Compiler Front End 53
6.1 Code Preprocessing . 53
6.2 Decompilation . 54
6.3 Operation Lowering . 55
6.4 Static Single Assignment (SSA) Transformation 55
6.5 Foreign Functions . 56

Chapter 7 Pointer Analysis for Python 58
7.1 Topics in Pointer Analysis . 59
7.2 Architecture of PyStream’s Pointer Analysis 63
7.3 Pointer Analysis Issues in Python 66
7.4 Current Techniques Used to Analyze Python 70
7.5 Reducing Complexity of Pointer Analysis for Python 72
7.6 Low-Level Object Modeling in PyStream 74
7.7 Cascaded Call Constraints in PyStream 78
7.8 Extended Types in PyStream . 80
7.9 Control Sensitivity in PyStream 82
7.10 Quantifying the Results of PyStream’s Pointer Analysis 87
7.11 Chapter Summary . 91

Chapter 8 Eliminating Abstraction Overhead in Python 93
8.1 Direct References to Preexisting Objects in PyStream 93
8.2 Method Fusion in PyStream . 95
8.3 Initial Optimization Results . 98
8.4 Function Cloning in PyStream 98
8.5 Argument Normalization in PyStream 101
8.6 Exhaustive Function Inlining in PyStream 103
8.7 Chapter Summary . 106

Chapter 9 Eliminating Memory Operations in PyStream 108
9.1 Heap-Sensitive Reanalysis . 109
9.2 Load/Store Elimination . 110
9.3 Characterization of the Remaining Memory Operations 111
9.4 Tree Transform . 112
9.5 Output Flattening . 113
9.6 Field Transform and Object Analysis 115
9.7 Chapter Summary . 117

Chapter 10 Emulating Python Reference Semantics in GLSL 120
10.1 Reference Semantics . 121
10.2 Volatile Values . 122
10.3 Implementing References . 124
10.4 References to Volatile Values . 125
10.5 Implementing Ambiguous Memory Operations in GLSL 127
10.6 Algorithm Summary for Emulating References 127

iv

10.7 Boundaries to Emulating Python Reference Semantics 129
10.8 Chapter Summary . 134

Chapter 11 PyStream’s Implementation Outcomes 136
11.1 Example Python Shaders Used to Test PyStream 136
11.2 Performance of the Example Python Shaders 148
11.3 Compilation Speed in PyStream 154

Chapter 12 Future Work . 156
12.1 Integrating the CPU and GPU for Real-Time Rendering 156
12.2 Pointer Analysis for Python . 157
12.3 Emulating Reference Semantics 158

Chapter 13 Conclusions . 160
13.1 Analyzing Modern High-Level Dynamic Languages 161
13.2 Abstraction Overhead in High-Level Dynamic Languages 162
13.3 Domain-Specific Compilers . 162

Appendix A Research Tangents . 163

References . 165

v

Chapter 1

Introduction

This dissertation explores running a modern high-level dynamic language on a
restricted, specialized high-performance architecture. More specifically, we are
focused on the means to write Python shaders for real-time rendering systems and
to run these shaders on a graphics processing unit (GPU). This was accomplished
by using a subset of the Python language that was compiled onto the GPU, with
the implication that a rendering system could be entirely written in Python. The
platform created for this research is referred to as PyStream, which is both a com-
piler and a language.

While the investigated topic is real-time rendering shaders, the means used in
this investigation are themselves independent topics of research. The PyStream
platform shows how modern high-level dynamic languages such as Python can be
run directly on the GPU, which is a restricted architecture. This research demon-
strates potential means by which an existing high-level dynamic language can be
run on architectures for which the language was not originally designed. The
PyStream compiler also demonstrates how pointer analysis can be performed for
Python. This research demonstrates a potential means for analyzing the entire
Python language. The research further demonstrates how programs with refer-
ences can be translated onto architectures that do not support references, or more
specifically, means by which Python’s semantics for references can be emulated
on the GPU.

The PyStream compiler translates a subset of Python into the OpenGL Shading
Language (GLSL), effectively allowing Python to run on GPU architecture, some-
thing that was thought to be an intractable problem. Running Python shaders in
GLSL is actually harder than just running Python on a GPU because GPU archi-
tecture is more robust than exposed by GLSL. The PyStream platform contains
a number of features that allow Python to run on the GPU. One feature of the
PyStream platform is that it integrates Python’s interpreter functions into the pro-
gram allowing the interpreter to be compiled and optimized in tandem with the

1

program. The resulting program can be run without an interpreter. PyStream en-
codes the semantics of Python in libraries and then analyzes the libraries instead of
having Python’s semantics hard-coded in the analysis, making PyStream simpler.
Use of libraries in this manner means that PyStream can both compile Python’s
complicated semantics and offer hope of coping with the full Python language.

Present programming techniques generally use low-level languages to program
restricted high-performance architectures. Low-level languages allow greater con-
trol over how a program is implemented, but low-level languages also require

greater control over how a program is implemented. As programs become more
complex, this required control, inherent in low-level languages, becomes an in-
creasing programming burden. For large-scale systems this required control de-
mands that every programming decision be made correctly or program perfor-
mance will be diminished. A platform like PyStream shifts many implementation
issues onto the compiler. PyStream does this by using a high-level language to
program a restricted high-performance architecture and by performing domain-
specific optimizations.

Using current techniques, programming real-time rendering systems is diffi-
cult. A significant part of this difficulty stems from the use of GPUs to accelerate
the rendering. GPUs are data-parallel coprocessors and can provide outstanding
performance on tasks that fit their architecture. However, GPUs are burdened by
common factors associated with using coprocessors. In most applications, using
coprocessors requires two separate code bases, one for the processor and one for
the coprocessor. Significant glue code — code that moves and reformats data
from a source to a destination — is often required to transfer data between a pro-
cessor and a coprocessor. In addition, GPUs must be explicitly managed by their
host application, commonly through APIs such as DirectX, OpenGL, OpenCL,
or CUDA. This explicit management increases programming time and code com-
plexity. The increased system complexity resulting from these factors is the cost
paid for achieving improved performance.

While the usual reason to adopt parallel architectures is to achieve greater per-
formance, high-level dynamic languages such as Python are not designed for effi-
cient execution. Some high-performance parallel architectures, such as GPUs, do
not have or do not make available many of the features commonly used to imple-
ment dynamic languages. Algorithms developed for this research allow Python, a
dynamic language, to be run on the GPU architecture without needing these fea-
tures. The PyStream platform makes Python run fast and efficiently on a GPU.

2

An example real-time rendering system, written entirely in Python, runs at least
146,000 times faster when its shaders are compiled onto the GPU. Using a GPU
instead of a CPU can improve performance for numeric applications by one to
two orders of magnitude. Real-time rendering is a numeric application that GPUs
were designed to accelerate. Further, eliminating Python’s overhead can improve
performance by additional orders of magnitude.

There are two implications from this research into running Python shaders on
the GPU. First, the research identifies a new generation of tools to reduce the com-
plexity of rendering systems and make writing them faster and simpler. Running
Python on a GPU allows rendering systems to be written in a single language with
a single code base. Having a single code base gives multiple engineering advan-
tages, including eliminating the need to write glue code between a processor and
a coprocessor. Instead, the glue code can be automatically generated, enabling the
use of future improvements in an API without requiring changes to the code base.
The second implication is that this research demonstrates the feasibility of run-
ning a high-level language on a restricted, specialized architecture and opens up
new areas of research in language translation and high-performance computing.

The PyStream platform translates a subset of Python into GLSL. Translating
Python into GLSL requires the development of new compiler algorithms and the
extension of existing compiler algorithms. The compiler algorithms discussed in
this dissertation can be divided into two categories: those compiling Python and
those translating Python’s semantics into GLSL.

Algorithms that compile Python are necessary to run Python on GPU archi-
tecture. Python was designed to be interpreted, not compiled, and GPUs were
not designed to run interpreters. At present, there has been little work done on
compiling Python and little discussion in the literature of compilation techniques
for Python. This dissertation identifies impediments encountered when compiling
Python and provides techniques for overcoming them.

The second category of compiler algorithms addresses translating code that,
like Python, has references to objects into code that, like GLSL, holds objects by
value. This difference creates a significant semantic gap that interferes with code
translation. Python may have lexical similarities to GLSL, but the underlying
meaning of these languages is fundamentally different. This dissertation details
transformations for bridging this gap.

3

1.1 Goal Statement and Research Questions

Our goal is to reduce the burden of writing a GPU-accelerated real-time render-

ing system. Specifically, we want to run an existing general-purpose high-level
language on the GPU. We hypothesize that a useful subset of Python can be run
directly on the GPU, allowing an entire rendering system to be written in Python.
Our thesis is that it is possible to program a GPU in a high-level language like

Python. There are a number of questions that must be answered.
How can Python be analyzed in an effective manner? Previous attempts to

analyze Python have been hampered by the complexity of the Python language.
Translating a general-purpose high-level dynamic language onto a specialized ar-
chitecture requires a clear, precise understanding of a program’s semantics. Ef-
fective analysis of Python shader programs is necessary to enable their transfor-
mation.

Can Python’s abstraction overhead be eliminated with static compilation? It is
not enough to simply run Python on a GPU; it must run fast. Running Python on a
GPU would be a technical feat in of itself, but performance is the motivating fac-
tor. Python was not designed for efficient execution, and its abstraction overhead
must be eliminated if it is to be directly used in a high-performance application.
Eliminating abstraction overhead also simplifies a program, which should make it
easier to translate the program to a specialized architecture.

Can Python, a modern high-level dynamic language designed to run on a CPU,
be translated onto a specialized high-performance architecture on which it was
not designed to run? Due to technical limitations of current GPU APIs, an even
harder question must also be answered: Can Python run on an architecture that
does not support hold-by-reference semantics? Translating Python shaders into
GLSL shaders appears to be the best way to run Python shaders on the GPU, but
GLSL does not support references or memory allocation. Techniques for bridging
this semantic gap have not been previously explored.

1.2 Contributions

This dissertation is an exploration of how a modern, high-level dynamic language
can be run on a specialized high-performance architecture, and how it can be run
fast. This exploration breaks new ground, and improves the state-of-the-art in a

4

number of areas:

• Python shaders running on the GPU. This dissertation shows how Python
shaders can be run on the GPU, allowing an entire rendering system to be
written in Python, Python’s abstractions to be used on the GPU, and code
to be seamlessly shared between CPU and GPU. Existing shader languages
require that a rendering system be split into two code bases, do not allow
sharing between the code bases, and offer few abstractions for shader pro-
gramming.

• Low-level analysis for Python. This dissertation shows how the problem of
analyzing Python, a high-level language, can be simplified by analyzing it at
a slightly lower level. Prior attempts to analyze Python have been frustrated
by the complexity of Python’s semantics.

• Pointer analysis for Python. This dissertation shows how pointer analysis
can be performed for Python, an area that has not been previously explored.
Issues that can impede pointer analysis of Python programs are identified,
and solutions are formulated. Low-level analysis also allows pointer analy-
sis for Python to be linked to the larger body of work on Pointer analysis.

• Translating Python into GLSL. This dissertation shows how a useful subset
of Python can be translated into GLSL, and by implication onto GPU ar-
chitecture. This translation bridges a significant semantic gap, and allows
Python to be run on an architecture it was not designed to run on.

• Domain-specific optimization. This dissertation shows that a domain-aware
compiler can improve the performance of real-time rendering systems.

1.3 Organization

The chapters of this dissertation are structured in sequence to provide the reader
with information about a number of topics to help understand the background and
importance of this research into the PyStream compiler. Chapters 7, 10, and 11
discuss the contributions of the PyStream compiler related to pointer analysis for
Python, translating Python into GLSL, and the results of writing and running an
entire rendering system in Python. Chapter 5 discusses the overall structure of

5

the compiler. Chapters 8 and 9 discuss the features of the PyStream compiler that
eliminate Python’s abstraction overhead and eliminate memory operations from
Python shaders.

6

Chapter 2

Engineering Real-Time Rendering Systems

“Interestingly enough, we’ve come to the point where the body of
shader code alone has grown larger than the entire codebase for games
from the early stages of the games industry.” - StarCraft II: Effects
and Techniques

Real-time rendering systems have a number of software engineering problems that
are not adequately addressed by current techniques. The PyStream platform is
designed to address these software engineering problems. This chapter discusses
the general nature of these software engineering problems and how the PyStream
platform addresses them.

Real-time rendering is a computation process where a computer synthesizes
images fast enough that a user can interact with them. This pushes a processor to
its limits because of the large amount of computation required. As more computa-
tional power has become available over time, image fidelity in real-time rendering
has been improved by increasing the amount of computation per image. The goal
of real-time rendering is a moving target. Real-time rendering systems require all
the performance that can be achieved from a processor, making efficiency an im-
portant aspect of programming these systems. Real-time rendering systems thus
have favored the GPU because of the computational power that it provides, allow-
ing images to be synthesized faster and with higher fidelity than on a CPU. As
image fidelity has improved, the complexity of real-time rendering systems has
correspondingly increased. Managing increasingly complex rendering systems
presents a number of software engineering challenges.

This chapter provides background information on real-time rendering and dis-
cusses why it was the focus of this research. This chapter also details how GPUs
are used as coprocessors for real-time rendering and discusses why reducing the
barriers between the CPU and the GPU can reduce the overall complexity of a
real-time rendering system.

7

2.1 Historical Emergence of Real-Time Rendering

Real-time rendering has changed at an astonishing rate. The first consumer-level
3d accelerator, an early form of the GPU, was released roughly 10 years ago.
Since then GPUs have become faster and more flexible every year. The earliest
GPUs had fixed, hardware-defined functionality. Since then, GPU programma-
bility has increased along with GPU performance. Intel has a GPU under devel-
opment [1] that is architecturally similar to a multicore x86 CPU. The program-
ming interfaces for GPUs have gone through a corresponding evolution, starting
with fixed functionality, moving to programmable graphics pipelines, and now to
general-purpose GPU computation [2, 3, 4]. There has recently been a push to use
general-purpose GPU computation for real-time rendering [5].

2.2 Rendering Heuristics

A real-time rendering system is a set of heuristic algorithms that are developed
through trial and error to provide a convincing approximation of how light inter-
acts with objects. Even in photo-realistic rendering systems, heuristics are used
to approximate the generally intractable light transport equation. One commonly
used heuristic, for example, is the Lambert model for diffuse reflectance. Dif-
fuse reflectance describes how light is scattered when it reflects off a surface. The
Lambert model defines diffuse reflectance to be proportional to max(dot(n, l),

0), where n is the surface normal (the direction perpendicular to the surface) and
l is the direction to the light source. Although this model is not physically or
perceptually realistic, it is very easy for real-time rendering systems to compute.

Another commonly used heuristic is to ignore the interreflection of light be-
tween surfaces and compute only the effect of light directly striking a given sur-
face. This significantly improves the tractability of the light transport equation at
the cost of eliminating many subtle visual cues.

The choice of heuristics has aesthetic implications because changes to the heuris-
tics can affect the appearance of the image. For example, rendering everything
in the image using a Phong reflectance model can cause everything to look like
plastic due to how it models shiny surfaces. Another example is that the lack of
interreflection can cause a rendered image to look harsh, or stark. Choosing a spe-
cific set of heuristic algorithms can give a real-time rendering system a specific

8

set of qualities to varying degrees, including performance, style, image fidelity,
and scope, among others.

Different heuristics can be chosen to trade one quality for another. The usual
trade-off is image fidelity for performance. For example, lighting calculations
can be performed at each vertex of a triangle and interpolated across the trian-
gle rather than performing the calculations at each pixel of the rendered triangle.
Per-vertex lighting will be faster than per-pixel lighting, but it will also produce
lower quality results. Similarly, reflectance functions that are easy to compute
can be substituted for reflectance functions that are better looking. Controlling
these trade-offs is critical to creating a rendering system that meets the require-
ments of a given application. The PyStream platform makes it easier to control
these trade-offs because it simplifies the creation and modification of real-time
rendering systems.

2.3 Real-Time Rendering System Life Cycle

Modifiability is an important quality of rendering systems. Initially, rendering
systems rapidly evolve in a prototyping phase. Later in their life cycle, they need
to be modified in response to changing requirements or to fix bugs. For graph-
ically demanding applications, such as video games, it is typical for an existing
rendering system to be used and extensively modified to meet the specific needs
of the game.

Despite the importance of modifiability, real-time rendering systems are of-
ten difficult to modify. Generally, the need for efficiency results in higher-level
rendering algorithms being coupled with lower-level implementation decisions.
More specifically, using a GPU as a coprocessor requires that rendering algo-
rithms be written to accommodate the programming interface of the GPU. GPU
programming interfaces expose low-level functionality for maximum flexibility
and performance. Using these programming interfaces is analogous to writing a
program in assembly language for an extremely complex instruction set computer
(CISC) architecture. As with assembly language, there are often multiple ways
to achieve the same functionality with a GPU API, each way having different
performance characteristics. For example, it may be possible to render an image
in several small steps, or in a single large step. Rendering the image in several
smaller steps will consume more memory bandwidth because of the need to read

9

and write intermediate values. At the same time, several small steps may run faster
if computation can be reused and the individual steps have simpler control flow.
Although both of these approaches can produce identical results, they will have
distinctly different implementations and different performance characteristics.

Many rendering systems query the GPU on what features it supports, and then
select different code paths depending on the features provided by the GPU. Many
of these paths are functionally equivalent, but have different performance charac-
teristics. This coupling of low-level implementation issues with high-level render-
ing algorithms obscures the rendering algorithm. Modifying the rendering algo-
rithm therefore requires simultaneously modifying the implementation. Ideally, a
real-time rendering system would be a high-level expression of the heuristic ren-
dering algorithms, and implementation issues would be delegated to the compiler.
The PyStream platform is a step toward this ideal.

Real-time rendering systems can have short lifetimes when compared to other
types of software. Higher performance GPUs and CPUs can make new rendering
techniques viable. New GPU features can create new ways to implement old tech-
niques. These trends, combined with the inevitable coupling of implementation
and algorithm in real-time rendering systems, can result in significant architec-
tural shifts between generations of rendering systems. For example, introduction
of a GPU that could be programed with shaders fundamentally changed real-time
rendering system software architecture. Supporting legacy code is therefore not
a critical issue for most real-time rendering systems. Moving implementation
issues into a compiler, as the PyStream platform does, can potentially increase
the longevity of a rendering system by allowing the system to evolve along with
changes in the hardware without having to be rewritten.

2.4 GPU Architecture

Graphics processing units (GPUs) are specialized coprocessors designed to ac-
celerate real-time rendering. GPUs are massively parallel and have high memory
bandwidth. To realize all performance offered by GPUs, it is necessary to pro-
gram them in ways that reduce the impact of memory latency and maximize the
use of memory bandwidth. Memory will otherwise be a bottleneck to keeping
a GPU’s functional units fed. A widely used model for programming GPUs is
stream programming (Section 2.8.3). Stream programming uses “kernel” func-

10

tions that operate on streams of similar elements. Kernel functions are restricted
so that they have no side effects. Kernels can be executed in parallel on multiple
elements in the stream. Kernel functions also do not define how the stream is it-
erated over: rather, they only define how an individual element is processed. As a
result, a compiler has latitude to optimize memory usage patterns. Shaders are a
restricted form of kernel function with additional rendering-specific functionality.

Modern GPUs are programmable, but they impose a fairly rigid structure on
the overall rendering pipeline. GPUs structure the rendering pipeline as a series
of three user-specified shader kernels with fixed functionality before and after each
shader. The first shader in the pipeline is called the vertex shader. It processes
the individual vertices of a rendered object. Fixed functionality then assembles
the vertices into small groups that represent geometric shapes, such as lines and
triangles. These shapes are then processed by the second shader, called the geom-

etry shader. The geometry shader can modify the vertices in a shape, create new
shapes, or even discard the shape it is given. Fixed functionality then rasterizes
the geometric shapes into pixels. More precisely, the rasterizer creates multiple
fragments that are later blended together to create a single pixel. The fragments
are processed by a third shader, called the fragment shader. The fragment shader
computes the color of each fragment. Fixed functionality then blends these frag-
ments into a two-dimensional array called a frame buffer. The rasterizer deter-
mines where each fragment will be stored in the frame buffer. Together, shaders
used in the rendering pipeline are called a shader program. To fully utilize a GPU
as a coprocessor for real-time rendering, rendering algorithms must fit within the
model provided by the GPU.

2.5 GPU Application Programming Interfaces (APIs)

GPUs are coprocessors, and an application programming interface (API) is used
to control their execution. Real-time rendering systems often contain many calls
to the API to control the GPU. GPU APIs are rapidly evolving.

One way GPU APIs evolve is by adding new features. For example, the types of
shaders supported by the rendering pipeline have increased as APIs have evolved.
Currently vertex shaders, fragment shaders and geometry shaders are supported,
and three kinds of tessellation shader will soon be supported.

A second type of evolution adds alternative API calls that provide better per-

11

formance than existing API calls. Typically, this type of evolution consolidates
into a single call operations that previously required multiple calls. For example,
OpenGL originally required that each component of each vertex be specified with
an API call. Subsequent versions of the OpenGL API allow arrays of attributes
to be specified with a single call. The current version of the OpenGL API now
allows multiple arrays to be specified with a single call. Reducing the number of
API calls can provide significant performance benefits on systems with protected
memory, as API calls require switching protection modes. It is not uncommon for
rendering algorithms to be bound by API call overhead.

A third type of evolution reduces the need to synchronize the CPU and GPU.
GPUs are deeply pipelined, and operations that transfer data back to the CPU can
stall until the data is ready. If the CPU is stalls, it stops feeding data to the GPU
and as a consequence the GPU pipeline can be flushed. Synchronization has a per-
formance overhead for both the CPU and GPU. API improvements have allowed
asynchronous data transfer between the GPU and CPU. For example, an addition
to the OpenGL API allows pixel data to be read back to the CPU asynchronously.
API improvements have also allowed some dependent rendering operations to be
executed entirely on the GPU, eliminating the need for data transfer. For example,
an addition to the OpenGL API allows API calls to be conditionally executed if
a previous call resulted in pixels being drawn. This allows API calls to be issued
before the result of the previous call is known.

The latter two types of API evolution improve efficient management of execu-
tion on a GPU. These types of evolution in the API do not change the rendering
pipeline even though they may require radically different API calls. The PyS-
tream compiler can target new versions of an API without requiring change in the
rendering system.

2.6 Software-Defined Rendering Pipelines

A software-defined rendering pipeline can be compared in function to a GPU
hardware-defined rendering pipeline. A software-defined rendering pipeline al-
lows functionality to be specified in software which is currently defined in hard-
ware. Rendering algorithms are beginning to break away from the hardware-
defined rendering pipeline. GPUs that provide a software-defined rendering pipeline
seem to be the likely future. The flexibility of a software-defined rendering pipeline

12

would allow a much richer set of algorithms to be used for real-time rendering,
but it also has the potential to exacerbate software engineering challenges. A
software-defined rendering pipeline would give greater control when writing pro-
grams. The research design was mindful of the likelihood that software-defined
rendering pipelines may become the standard within the decade. At the same time,
the research design was mindful that the PyStream platform must run on today’s
hardware.

2.7 Shader Languages

A single rendering system cannot support every possible rendering algorithm.
Rendering systems are typically designed to be extended, allowing a program to
specify shaders that are executed at well-defined points in the rendering pipeline.
GPUs commonly in use support three categories of shaders: vertex shaders, geom-
etry shaders, and fragment shaders. Each of these shaders is designed to process
a different kind of data. Future real-time rendering systems will support more
categories of shaders.

Most shaders are performance sensitive. This is because a single shader can
be executed millions of times while rendering an image. Specialized languages
are often used for programming shaders to address performance issues. These
languages have restricted sets of semantics to ensure good performance. Two of
the most widely used real-time shading languages are GLSL and DirectX’s High-
Level Shading Language (HLSL). These languages are similar. Their syntax is
based on the C language. Semantically neither language supports references to
objects or memory allocation.

Previous work has demonstrated the use of interpreted Python shaders for non-
real-time, CPU-based ray tracing [6, 7]. A simple Python shader interpreted on
a CPU was observed to run at approximately one thirtieth the speed of a native
equivalent written in C and run on the CPU. Time spent ray tracing dominated the
time spent in all of the shaders, so the overall system was half as fast when Python
shaders were used. In contrast, the PyStream platform compiles Python shaders
onto the GPU, resulting in less overhead and better performance than interpreting
them on the CPU.

13

2.7.1 Lack of Abstraction in Shader Languages

Historically, GPU shaders were written in assembly language while currently,
“high-level” shading languages like GLSL, HLSL, and Cg are commonly used.
These languages are easier to use than the prior GPU shader assembly languages,
but they still lack a level of abstraction found in most general-purpose languages.
Real-time rendering systems are commonly structured to compensate for this lack
of abstraction in shading languages. For example, currently available shader lan-
guages do not easily support polymorphism. To work around this absent feature,
it is common practice to use a shader preprocessor and create a suite of variant
shaders by recompiling a single shader multiple times with different preproces-
sor definitions [8]. A quasi-static control flow statement can be used to achieve
the same effect, but it requires more sophistication from the compiler. The Cg
shading language allows the specification of polymorphic interfaces, but using
these interfaces is cumbersome because each shader program must be manually
specialized for every combination of concrete objects that will occur at run time.
Similar interfaces will be included in DirectX 11. The PyStream platform allows
shader programs to be written in an object-oriented language that cleanly supports
expressions of polymorphism.

2.7.2 Barriers Between the CPU and GPU

In real-time rendering systems that use a GPU as a coprocessors, refactoring
code across the renderer/shader interface can be complicated and time-consuming.
Refactoring reorganizes code but maintains its behavior. Unless there is an ex-
tremely strong reason to refactor, the division of functionality between the ren-
derer and the shaders tends to stay fixed in a rendering system.

Unlike the PyStream platform, most rendering systems must separate applica-
tion code from shader code. Arbitrary functions in the shader code cannot be
called by the application code, nor can the shader code call functions in the ap-
plication code. While this may appear to be a consequence of shaders and the
application being written in different languages, inter-language calling conven-
tions are available in other situations, but not for shaders.

Shader code and application code are not integrated because of a design as-
sumption that shader code will only be executed on the GPU in the rendering
pipeline. With the exception of the top-level function of each shader, there is little

14

reason the shader code could not be reused in other contexts. The way to currently
execute arbitrary shader functions on the CPU is to rewrite them in the applica-
tion’s language. This results in at least two definitions of the same function, which
in turn complicates maintenance of a rendering system. The PyStream platform
allows all shader code to be directly called by the application code.

In addition to not sharing code, existing host applications and GPUs do not
share data structures. To move data between the processor and the coprocessor,
glue code must be written which pulls primitive data types out of the application’s
data structures and writes them into the shader’s data structures. This functional-
ity is similar to serialization. Three things in a rendering system must be manually
synchronized: the application’s data structures, the shader’s data structures, and
the glue code. Not sharing data structures between the CPU and the GPU compli-
cates modifying a rendering system, particularly at the renderer/shader interface.
The PyStream platform shares data structures between the application and the
shaders, automatically generating glue code when needed. This feature of the
PyStream platform increases the modifiability of a rendering system.

Many of these shader language issues are actually a consequence of a deliberate
design decision to keep the shader language independent from the host application
language, making it simpler to implement a shading language. It also simplifies
binding a GPU API to a variety of host languages. Keeping a shader language in-
dependent from a host application language makes it difficult to program a GPU.
PyStream forgoes the benefits of keeping a shading language and a host applica-
tion language separate from each other in order to facilitate simple programming
of the GPU.

2.7.3 Prior Work to Simplify Shader Programming

The PyStream platform is not first to recognize that shader programming must be
simplified. Various means have been used to simplify the writing of shaders, in-
cluding shader authoring tools, collaborative shader systems, and shader metapro-
gramming, among others.

Shader authoring tools are programs that can be used to author individual shader
programs and create shader effects composed of several sequentially executed
shader programs [9, 10]. Authoring tools are useful for prototyping rendering
algorithms, but rendering algorithms must ultimately be written for their usage

15

context.
Collaborative shader systems [11, 12, 13] are another approach used to sim-

plify the creation of shaders. This is done by allowing graphical editing of a
portion of the shader and then injecting the resulting code into a template. For
example, the collaborative shader system in Unreal Engine 3 allows the editing of
surface properties and light properties, but does not allow the modification of how
surfaces and lights interact. This type of restriction is typically imposed by the
underlying rendering algorithms, and the collaborative shader system is created to
obey these restrictions. In effect, a collaborative shader system is a render-aware
shader authoring tool with a visual data-flow programming language. Data flow
programming is quite effective for describing many shading algorithms [14], but
has difficulty when complex control flow is required. For example, the paral-
lax occlusion mapping algorithm [15] is difficult to express in a strict data flow
language due to its use of loops. Some collaborative shader systems provide a
hybrid approach where the user can create custom nodes in the dataflow graph
that contain procedural code. A collaborative shader system could be built on the
PyStream platform.

Sh [16, 17] is shader metaprogramming library for the C++ language. Sh dy-
namically constructs shaders when the library is used in a C++ program. The
shaders that are constructed are semantically equivalent to GLSL or HLSL. Sh
does not offer new semantics for shader programs but it does offer two software
engineering benefits. Sh can use the abstraction mechanisms of the C++ language
when generating shaders, making it easier to generate specialized, polymorphic
variants of a shader. These variants must be manually generated. Sh can also
generate glue code in tandem with generating the shader. Sh does not entirely
eliminate the need for glue code, as data must still be passed from the C++ lan-
guage to Sh.

2.8 Computation on the GPU

This section is about general-purpose computing on the GPU as it relates to real-
time rendering. Real-time rendering systems are beginning to use general-purpose
computation techniques to implement rendering algorithms.

The joining of Python with a GPU has been recognized as a potentially fruitful
combination. Python is designed for rapid application development and GPUs are

16

designed for high-performance data-parallel computation. Combining the best
aspects of both potentially allows rapid development of high-performance data-
parallel applications. Previous efforts to join Python and the GPU have focused on
using Python as a tool to generate other code that runs on the GPU. The PyStream
platform focuses on actually running Python on the GPU.

2.8.1 PyGPU

PyGPU [18] is a GPU-accelerated domain-specific language for image processing
that superficially resembles PyStream since it uses Python syntax and runs on the
GPU. However, PyGPU is closer in nature to Sh because Python syntax is only
used to generate GPU programs in another language. PyGPU does not support
Python semantics on the GPU.

2.8.2 Data Parallel Array Libraries

Data-parallel array libraries [19] allow a program running on a CPU to use a
GPU as a data-parallel co-processor for numeric applications. Data-parallel array
libraries consist of array types that can contain uniform numerical data and func-
tions that can operate on the arrays in parallel. This type of library allows a given
language to use a GPU as a data-parallel coprocessor, but only for a specific set of
numerical operations. (At the time this dissertation was written, we are aware of at
least one unreported GPU-accelerated data-parallel array library in development
for Python.)

Data-parallel expression libraries significantly improve the programmability of
GPUs, but these libraries only allow for a restricted set of semantics and data
types. The host language can perform data-parallel computations on the GPU, but
the host language cannot actually run on the GPU.

2.8.3 Stream Programming Languages

Stream programming is another method that can perform computation on the
GPU. Shading languages are a form of Stream language. Stream languages have
issues similar to those previously discussed in the context of shading languages
(Section 2.7). Many stream programming languages are syntactically similar to

17

the C language [2] or the Java language [20]. Stream languages restrict kernel
side-effects like shader languages. Most dynamism at the language level is elimi-
nated in Stream languages to ensure performance. Stream languages are designed
to operate on large sets of similar data, and they are not well suited for computa-
tional tasks such as loading data from disk or routing data between kernels, tasks
for which they require a host application. This requirement of stream languages
creates two code bases and requires manually developed glue code.

The PyStream platform can potentially support high-performance stream pro-
gramming in Python. The PyStream platform has the potential to benefit stream
programming as it does shader programming, including providing a single code
base, eliminating glue code, and minimizing explicit management. Combining
abstractions from the Python language with stream programming using the PyS-
tream platform offers the potential to improve programmability while maintaining
performance.

2.8.4 Compute Unified Device Architecture (CUDA)

CUDA [3] is a low-level language for data-parallel programming on the GPU.
CUDA is lexically similar to the C language. Despite similarities with stream lan-
guages, CUDA is not a stream language. CUDA does not abstract memory access.
In fact, CUDA explicitly exposes the memory hierarchy of the GPU to allow a user
to control where data is stored in the GPU’s memory. This design allows high per-
formance parallel programs to be written at the cost of portability and understand-
ability, and with reduced latitude available to an optimizing compiler. CUDA
allows references to data, global writes, and arbitrary gather/scatter operations.
CUDA’s features indicate that a GPU has a more liberal execution model than is
usually exposed through GPU APIs designed for real-time rendering. Real-time
rendering APIs are currently the only way to access rendering-specific hardware
on the GPU, however, so CUDA could not be used for this research.

There is a library for Python that allows CUDA kernels to be called from a
Python program. Confusingly, this library is also named PyStream. This library is
a wrapper for calling foreign functions, and is nothing like the platform described
in this dissertation.

18

2.9 Example Rendering System

Chapter 11 details the example rendering system used in this dissertation to evalu-
ate Python shaders running on the GPU. The results presented in this dissertation
have been obtained from compiling the Python shaders of the real-time rendering
system described in Chapter 11.

19

Chapter 3

Python

Python is a widely used, interpreted, modern high-level dynamic language, de-
signed for rapid application development. The PyStream platform created for this
research was developed to integrate with Python. The PyStream platform includes
a language, called the PyStream language, which is a subset of the Python lan-
guage. The PyStream language can be compiled by the PyStream compiler onto
the GPU. The PyStream language is discussed in Chapter 4. This chapter dis-
cusses the characteristics of Python that make it both a powerful tool and difficult
to compile.

3.1 An Introduction to Python

Python is an object-oriented language and shares common concepts with other
object-oriented languages but also has many differences, both subtle and obvious.
Figure 3.1 shows a Python function that interpolates between two inputs based
on a third input. A lexical feature of Python is that it defines blocks of code
using indentation, in contrast to most other languages that denote blocks of code
using special characters ({ and } in the case of the C language). In Python, the
indentation level of each statement determines what block of code the statement

def linearStep(x, y, amt):
if amt < 0.0:

return x
elif amt > 1.0:

return y
else:

a = x*(1.0- amt)
b = y*amt
return a+b

Figure 3.1: Python Function for Blending Values

20

belongs to.

3.1.1 Dynamic Types

A feature of Python illustrated by Figure 3.1 is that there are no annotations in-
dicating the type of a variable. Python is a dynamically typed language, which
means that type annotations are not used, and the correctness of the program is
determined at run time. A function may be called with any type of argument,
as long as the arguments support the operations performed inside the function.
In the Figure 3.1, for example, the function linearStep could be called with
floating-point values for all of its arguments and it would return a floating point
value. Alternatively, three-dimensional vectors of floating point numbers could
be passed to x and to y, and the function would then return a three-dimensional
vector of floating point numbers. If strings of text were passed to x and to y, then
a run time error would occur during the execution of the function because a string
does not support multiplication with a floating-point number. Although Python
does not have type annotations, it still has the notion of type errors. Type errors
occur at run time when an invalid operation is executed.

3.1.2 Everything is an Object

Python is an object-oriented (OO) language. In addition, everything in a Python
program is an object. For example, when adding two numbers (1+2), each of the
numbers is an object, as is the result of the addition. How addition is performed
in general is defined by Python’s semantics, and how addition is specifically per-
formed is defined by specially named methods attached to the objects (in this case
the methods are named __add__ and __radd__). Numbers, Boolean values, and
strings are all objects, and they are also immutable value objects. Once a value
object is allocated, its value does not change. Consequently, arithmetic opera-
tions on numbers produce new objects. If an arithmetic operation on two integers
overflows, a long integer is produced. Long integers contain more bits than are
natively supported on most architectures and are effectively immune to overflow
at the cost of additional computation. Floating point numbers are always 64 bits
long in Python.

21

3.1.3 Function Objects

In Python, functions are objects. Declaring a function creates a new function ob-
ject and attaches byte code to it. A function declaration also stores the function
object into a global dictionary, based on the declared name of the function. In Fig-
ure 3.1, the declared function is stored in the global variable linearStep. This
function can be retrieved by reading the global variable. Global variables are mu-
table, however, so a function declaration can be overwritten by another function
declaration, or by any sort of expression that sets a global variable. Unlike lan-
guages such as C, declarations in Python do not permanently bind the declaration
to a given name.

Function calls are resolved dynamically. A lexical function call, such as f(),
is resolved in two steps. First, the global variable f is read. Second, the result
of the lookup is called. The fact that an object is called does not mean that it
must be a function. If an object has a method named __call__, the object can be
called as if it were a function, and the call will be delegated to the method. What
appears to be a lexical function call may have arbitrary semantics. The precise
semantics of a call cannot be resolved without additional information about the
object being called. Which object is called depends on the contents of a mutable
global dictionary. In general, no assumptions can be made about any call site
when analyzing a Python program. This means that the call graph of a Python
program must be dynamically discovered.

Function objects contain dictionary objects that hold the global variables that a
function can access. Function objects also contain an object that holds the default
arguments of a function. Unlike other languages, default arguments in Python are
not inherent properties of the underlying executable code, nor is the global name
space. These features of a function are part of the object structure. When used in
this dissertation, the term function refers to the underlying executable code, and
not to the function object.

3.1.4 Class Objects

Figure 3.2 shows a class declaration in Python. Class declarations create class
objects and store them into a global dictionary, similar to function objects. Calling
a class object creates a new instance of the class. There are no special operators
for allocating objects. In Python, each object has a pointer to its class object. This

22

class Example(object):
def say(self , message):

print message

Instantiate the class
e = Example ()

Call a method
e.say("Hello , world ")

Figure 3.2: Example Python Class

is similar to a vtable in the C++ language, except for the fact that a Python type
pointer points to a full-fledged object, and not an opaque data structure. There
is no concept of “casting” the type of a Python object; an object’s type is solely
determined by its type pointer. Type pointers are mutable, which allows the type
of an object to change, but this is rarely done in practice. For all intents and
purposes, the type of a Python object is fixed when it is allocated.

A method is a function that is declared inside of a class. When a method is
invoked on an object, the method name is looked up on the object’s class object.
If the result is a function, it is treated as if it were a method. In most other OO
languages (C++, Java, Smalltalk, and others) the parameter containing the object
on which the method is invoked is an implicit parameter of the method, typically
named this or self. In Python, since methods are functions, this parameter is
explicitly declared as the first parameter of the function. By convention, most
Python programs name this parameter self.

Methods invocations are resolved in two steps. First, the method name is re-
solved as if it were one of an object’s attributes. This process returns a bound

method object that contains a reference to the original object and to the function
implementing the method. Calling a bound method object in turn results in calling
the function, but with the original object inserted as the first parameter.

3.1.5 Built-in Container Types

Python has three main types of built-in container objects: tuple, list, and dict.
Tuple. Tuple objects are immutable arrays of objects. Tuples are immutable

both in their contents and in their length. Tuples are commonly used in Python
programs to temporarily group objects together and to return multiple objects from

23

def interpreter_add(a, b):
result = a.__add__(b)

if result is not NotImplemented:
The call succeeded.
return result

adding a and b did not work , fallback
to the reverse addition method
result = b.__radd__(a)

if result is not NotImplemented:
return result

cannot add the objects , raise an exception
raise NotImplementedError , ...

Figure 3.3: Simplified Semantics for Adding Two Objects

a function.
List. List objects are arrays which are mutable, both in terms of their contents

and length. Lists are commonly used wherever arrays of data are needed.
Dict. Dictionary objects are associative dictionaries that map keys to values.

Dictionaries are used extensively in the Python run time. For example, global
variables are held in dictionaries that associate the global variable name with the
value of the global variable. Dictionaries are also used to store the attributes spec-
ified in a class definition. These dictionaries are referred to as class dictionaries.

3.1.6 Python Semantics are Complex

The semantics of Python are not simple. Figure 3.3 shows pseudocode for the
logic that a Python interpreter uses to add two objects together. The interpreter at-
tempts to call a method on the first object. If that fails, then the interpreter attempts
to call a method on the second object. If that fails, then the interpreter raises an
exception. Other operations, such as getting an attribute from an object, have
even more complicated semantics. When adding objects, the interpreter attempts
to delegate the operation to methods on the objects being operated on. In gen-
eral, operations in Python delegate functionality to a method, although the logic
of determining which method is delegated to is unusually complicated. Ignoring
the complexities of how the method is selected, the fact that Python operations

24

are delegated allows an object to override how an operation is implemented by
overriding a method. For example, an object could print itself when the addition
operation is invoked on it, despite the fact that this is completely inconsistent with
what would be expected when adding two objects. It is difficult to predict what
an operation in Python will actually do without additional information about the
argument types.

Modern high-level languages generally eschew an elegant implementation in
favor of adding features to the language. Modern high-level languages are some-
times called “kitchen sink” languages, since almost everything short of the prover-
bial kitchen sink is thrown into their design. Although adding features to a lan-
guage may make it simpler to use, each feature has the potential to make the
language harder to analyze. Adding features adds special cases to the semantics
of the language. Special cases do not impact writing a program as strongly as they
impact compiling a program. A programmer can use trial-and-error to reason out
the approximate behavior of a program, deemphasizing the special cases. This
approximate reasoning process does not work for a compiler because it will likely
result in the compiler making unsound transformations, changing the fundamental
meaning of the program.

3.1.7 Calling Conventions

Python offers richer calling conventions than are available in the C language. A
basic form of Python’s calling conventions can resemble those in the C language.
Call sites can specify arguments in a particular order, and the arguments are bound
to function parameters in the same order. These are known as positional argu-
ments and positional parameters. In Figure 3.4a, a0 is a positional argument. In
Figure 3.4b, p0 and p1 are positional parameters. If the number of positional ar-
guments exceeds the number of positional parameters, then the excess arguments
are written into a variable length parameter if it exists. Variable length parameter

(vparam) refers to a function parameter that contains a tuple of excess positional
arguments. In Figure 3.4b, p2 is a vparam. Positional arguments can also be read
from a special argument, the varg, containing an object that is iterated over. In
Figure 3.4a, a2 is a varg. If a call site does not provide enough arguments for the
target function, then a default argument is bound in place of a missing argument,
if the function specifies a default for that particular parameter. In Figure 3.4b, p1

25

call(a0, foo=a1 , *a2, **a3)

(a)

def func(p0, p1=None , *p2, **p3):
...

(b)

Figure 3.4: Calling Convention Examples

def method_call(self , *v, **k):
func = self.im_func
inst = self.im_self
return func(inst , *v, **k)

Figure 3.5: Method Call Pseudocode

will default to None if no argument otherwise binds to it.
In Python, arguments are not always bound to parameters by position; they

may be bound by name, in which case they are referred to as keyword arguments.
In Figure 3.4a, a1 is a keyword argument that binds to a parameter named foo.
Similar to the vparam, excess keyword arguments can be written into a dictionary
held by a kparam. In Figure 3.4b, p3 is a kparam. Similar to the varg, addi-
tional keyword arguments can be specified by passing a dictionary to the karg. In
Figure 3.4a, a3 is a karg.

These calling conventions are widely used in the Python run time. Using these
calling conventions makes it easy to create generic functions. For example, Fig-
ure 3.5 shows a pseudocode version of the function that is executed when a method
object is called. The use of Python’s calling conventions allows a method object to
wrap a function with arbitrary parameters. Using these calling conventions makes
it harder to analyze function calls, because the data transfer between caller and
callee is complicated and tends to obfuscate how an argument gets bound to a
parameter.

3.1.8 Metaprogramming

The fact that everything is an object adds uniformity to a Python program. A
reference to an instance object is the same as a reference to a class object is the
same as a reference to a function object. There are two disadvantages to every-

26

thing being an object. First, there is no static declaration of a program. Class and
function declarations are stored in mutable global variables, and the definition of
a Python program can change as it runs. Function objects and class objects are
themselves mutable. Second, critical information for resolving the behavior of a
Python program is stored in heap memory. Analysis algorithms are notoriously
bad at precisely analyzing heap memory, in turn making it difficult to precisely
analyze a Python program.

Everything being an object has a significant upside: it makes metaprogram-
ming simple. Metaprogramming is a technique where code modifies other code
in a program. For example, metaprogramming can create new classes and func-
tions and can modify existing classes and functions. In languages such as C, a
preprocessor is used in place of metaprogramming. Python contains a rich set
of metaprogramming features and can use the full power of the Python language
to modify a program. In some cases, metaprogramming can greatly simplify the
specification of a program. For example, if a program requires many variations
of a single function, metaprogramming can be used to generate those variations.
Explicitly specifying the variations would otherwise be tedious, and if modifica-
tions were later required, then every variation would need to be modified. On the
other hand, metaprogramming can make it difficult for a compiler to reason out
the structure of a program because the structure of the program is less explicit.

As part of its metaprogramming tool set, Python contains an eval statement
that interprets arbitrary strings as Python code. This statement allows any Python
program to generate and interpret Python code and it is the primary method for
dynamically creating functions.

3.1.9 Integrating Python With Other Languages

When Python code alone does not provide the desired performance, then critical
sections of the code can be rewritten in another language, such as C. The capacity
to integrate with other languages allows Python to be used for rapid application
development in domains where performance is important, such as for scientific
computing [21]. While Python has been used in many high performance applica-
tions, it is largely used to connect the parts of an application and provide config-
urability in nonperformance-critical sections. Python’s performance is generally
insufficient for it to be used in performance-critical sections of high performance

27

applications. Mixing Python with other languages improves performance. Most
Python interpreters optimize performance-critical sections of the Python run time
by writing them in another language. For example, the CPython interpreter uses
C to implement the default method for getting an object attribute. This compli-
cates compiling Python, as a compiler must find a way to deal with these foreign
functions.

3.2 Compiling Python

Python is designed to be interpreted, and not compiled. Many interpreters have
been created for the Python language. The specific interpreter used determines the
run time performance of a Python program. Regardless of the interpreter used, an
interpreted Python program often runs many times slower than a program imple-
menting the same algorithms but written in C.

Instead of being interpreted as designed, Python can actually be compiled, but
only with great difficulty. Features of Python that make the language difficult
to compile are the following: Python lacks a static program declaration, Python
stores most information critical to resolving the behavior of a program in heap
memory, and Python has complex semantics. Python’s lack of a static program
declaration makes it nearly impossible to say anything about any program without
first running it or doing extensive analysis. Heap memory is notoriously difficult
for a compiler to analyze, so Python’s design, which stores critical information in
the heap, makes Python difficult to analyze. A compiler is only capable of compil-
ing Python if the compiler can support Python’s complex semantics. Supporting
Python’s complex semantics causes the compiler and its associated algorithms to
become complex. A search of the literature did not reveal any reports of success-
ful static compilation of the entire Python language, although there are several
compilers that can handle subsets of the language.

Psyco [22] is a just-in-time (JIT) compiler that hooks into the Python inter-
preter and compiles Python code at run time. JIT compilation used by the Psyco
compiler works well with Python because it requires no prior knowledge about
a program before program execution. Psyco uses information discovered as the
program runs to optimize the program. The performance improvement offered
by Psyco varies widely depending on the application. In some cases it offers no
improvement, and in a synthetic integer benchmark it offers a 109x speedup. In

28

our experience, Psyco offers a ~2x speedup in most applications.
Pyrex [23] is a static compiler that translates specially annotated Python code

into C. The translated code runs faster than if it were interpreted. The C code
generated by Pyrex largely consists of bytecode-equivalent API calls to the inter-
preter. Although this removes the overhead of decoding byte codes, it does not
remove the abstraction overhead in Python’s object model. This offers 1.1x–2.1x
speedup, depending on the application. Some of the object model’s abstraction
overhead can be removed by Pyrex by unboxing value objects such as integers.
Unboxing can improve performance for arithmetic operations, because the gener-
ated C code can perform the arithmetic operations without using Python’s object
model. Unboxing allows a 288x speedup on a synthetic integer benchmark. Pyrex
does not perform significant analysis on the Python code that it compiles but relies
on programmer-supplied annotations to obtain an understanding of the program
during compilation.

PyPy [24] is a Python interpreter written in Python. Python cannot be directly
executed on a CPU and must be interpreted. There is a circular dependency be-
tween PyPy’s interpreter and the Python language. PyPy breaks this dependency
by compiling and translating its interpreter into a language other than Python.
PyPy’s interpreter is written in a restricted subset of Python called RPython [25]
which is restricted to simplify translation. PyPy’s static compiler can only han-
dle this subset of Python. PyPy’s compiler is designed to translate the interpreter,
rather than compile a general Python program. PyPy’s compiler analyzes what
code it compiles. PyPy performs type inference to determine the type of every
variable in a program, formulating the inference as dataflow analysis, which al-
lows the compiler to infer type information that is not present in Python’s type
system, such as if an integer is strictly positive.

Starkiller [26] is a Python-to-C++ translator that was designed to optimize
Python programs and run them directly on the CPU. Starkiller offers a 62x speedup
on a synthetic integer benchmark, roughly 2.5x better than Psyco on the same
benchmark. Starkiller’s analysis is an improved version of the Cartesian product
type inference algorithm [27] that has been extended for Python. Starkiller can
only analyze a subset of Python; for instance, it cannot analyze exceptions, iter-
ators, dynamic code generation, or tuple unpacking. Starkiller translates an even
smaller subset of Python, restricted to functions, control flow, and arithmetic.

Shed Skin [28] is a Python-to-C++ translator, similar to Starkiller. Very little
has been published about Shed Skin.

29

The PyStream platform, which was built for this research, translates and opti-
mizes a subset of the Python language so it can run GPU. None of the previously
discussed compilers target the GPU. The PyStream platform contains a static com-
piler that analyzes the code it compiles. The PyStream compiler formulates its
analysis as pointer analysis, unlike PyPy, Starkiller, and Shed Skin, which for-
mulate their analysis as type inference. PyStream’s pointer analysis for Python is
discussed in Chapter 7.

PyStream is similar to Pyrex in that it is designed to compile performance-
critical sections of a larger program. PyPy, Starkiller, and Shed Skin are all de-
signed to compile an entire program. PyStream is similar to Starkiller and Shed
Skin in that each is designed to analyze a Python program and compile the pro-
gram so that it can be run without an interpreter. PyPy compiles code in a similar
manner to these other three compilers, but PyPy compiles code with the objective
of creating an interpreter. PyStream is the only Python compiler that compiles
both the interpreter and the program in tandem to eliminate the interpreter.

30

Chapter 4

The PyStream Language

The PyStream language is a subset of Python created for writing real-time render-
ing shaders, a performance-sensitive application. PyStream meets these perfor-
mance needs because it is designed to be run directly on GPU hardware. Instead
of being interpreted, the PyStream compiler translates the PyStream language into
GLSL and runs it directly on the GPU. This makes the PyStream language a
practical high-performance language for real-time rendering, unlike interpreted
Python. The PyStream language is both lexically and semantically compatible
with Python.

4.1 Restrictions on Python in PyStream

A computer language cannot do everything. Computer language designs are usu-
ally explained in terms of their features, but a language’s restrictions are just as
important. The design of the PyStream language starts with Python and adds re-
strictions to make it compilable onto the GPU by removing features from Python.
This section discusses PyStream’s restrictions on Python.

PyStream’s restrictions on Python make it easier to compile. These restric-
tions can be divided into three groups. The first group improves the precision and
speed of subsequent analysis algorithms. The second group allows PyStream to
be mapped onto GLSL. The third group resulted from engineering decisions to
simplify the construction of the compiler. This third group of restrictions may be
lifted later to improve compatibility with Python.

4.1.1 Compilation Restrictions

The first group of restrictions improve analysis speed and precision in the PyS-
tream compiler. There are three of these restrictions:

31

Immutable Type Pointers. In Python it is possible to change the type pointer
of an object and thereby change its type at run time. Immutable type pointers
allow an analysis to permanently label an object with its type and to assume that
the object label always matches the type of the object. Changing the type of an
object exposes interpreter-specific issues of how the fields of one type are mapped
to the fields of another type. Immutable type pointers do not pose a significant
restriction on Python because programs rarely mutate type pointers.

Long Integers. Long integers are not allowed in the PyStream language, a re-
striction that ensures performance of integer arithmetic in shaders. In Python,
arithmetic operations on integers can produce long integers if the number that is
calculated is outside the range that can be represented with a standard integer. Be-
cause analysis algorithms generally do not track the value of integers, they must
assume that every arithmetic operation on integers can produce either a standard
integer or a long integer. This feature is known to cause performance problems
when statically compiling dynamic languages that contain it [29]. This restriction
is not significant for Python shaders since arithmetic overflows are rare in shaders.

Dynamic Code Creation. PyStream does not permit new code to be created
at run time. There are two features in Python which PyStream disallows by this
restriction: an eval statement that can interpret any string as if it were Python
code, and the capability to dynamically import modules, which effectively creates
new code at run time. However, most Python programs do not use these features
and PyStream does not need these features for shader programming, so this is not
a substantial restriction.

No Stack Frames. PyStream does not allow a program to access interpreter
stack frames. Stack frames are a data structure that the interpreter uses to track
the execution of a program, similar to the stack in C. Python interpreters typically
allow accesses to this data structure from within the program being executed, but
it does not make sense in PyStream because PyStream’s compilation process elim-
inates the interpreter. Emulating stack frames would add run time overhead and
complicate the transformations applied by the compiler without providing signif-
icant benefits.

32

4.1.2 GLSL Restrictions

The second group of restrictions simplify the mapping of PyStream onto GLSL.
There are four of these restrictions:

Recursive Function Calls. Any GLSL code generated by PyStream must not
contain recursive function calls because recursive calls are not supported in GLSL.
PyStream disallows recursive function calls after compilation, but they are al-
lowed in the Python shader as long as they can be eliminated by the compiler.
Because of Python’s heavy use of parametric polymorphism, Python programs
typically contain recursive calls to generic functions, particularly in the language
run time. In PyStream, what may first appear to be a recursive call may be later
eliminated by the compiler with function specialization (function cloning). Re-
cursion can be eliminated in cases where a generic function is being used in dis-
tinctly different manners every time it is called. To allow for this, PyStream re-
stricts recursive functions calls after compilation. Applying the restriction before
compilation would make most Python programs invalid PyStream programs. Tail
recursion elimination could also be used to eliminate recursive calls, but it is not
implemented in PyStream.

Recursive Data Structures. GLSL disallows recursive data structures. All data
structures in GLSL must have a known, finite size. Any GLSL code that the
PyStream compiler generates must therefore have no recursive data structures.
PyStream makes an exception to this restriction when all objects in a data struc-
ture are unique as identified during compilation and when the number of unique
objects is finite. Another way of stating this restriction is that PyStream does not
allow data structures such as linked lists. This restriction is minor because most
recursive data structures are manipulated using recursive functions, which are also
disallowed in PyStream.

Standard Libraries. Python has a “batteries included” philosophy and contains
a large number of standard libraries so that Python can be used for most tasks
without needing to install any additional libraries. Some of Python’s standard li-
braries are not supported by PyStream. This restriction arises from some Python
standard libraries calling native code that cannot be emulated in GLSL. For in-
stance, GLSL blocks use of some Python standard libraries on the GPU because
GLSL does not support file input/output (IO). PyStream’s non-support of libraries
containing file IO is not a serious restriction because shaders could not use li-
braries with file IO effectively. Python standard libraries can be used in PyStream

33

if the library is either a pure Python library contained in the language subset used
by PyStream or the library is not a pure Python library but contains functionality
that can be emulated on the GPU, such as Python’s math library.

Floating-point Numbers. Floating-point numbers are assumed to be 32 bits
long instead of the 64 bits used in Python. This is because GLSL does not support
64 bit floating point numbers, although this feature of GLSL may change.

4.1.3 Engineering Restrictions

The third group of restrictions simplify the PyStream compiler. There are five of
these restrictions:

Exceptions. In Python, exceptions cause non-local control flow. The PyStream
language assumes that exceptions do not occur, which allows simpler algorithms
to be used in the PyStream compiler. For instance, accessing an attribute of an
object in Python can cause an exception if the attribute is not defined. Proving
that an attribute is defined would require the flow-sensitive analysis of heap ob-
jects by the PyStream compiler. PyStream assumes that exceptions will not occur,
reducing the complexity of the compiler.

Keyword Arguments. Another feature of Python not included in the PyStream
language are some Python calling conventions, including keyword arguments,
karg arguments, and kparam parameters. These calling conventions all relate
to passing arguments by keyword. Supporting keyword calling conventions in
PyStream increases compiler complexity without providing significant benefits to
shader program development. The use of keyword arguments is largely a matter of
coding style and many Python programs do not use it. Some Python programs do
use keyword arguments extensively. PyStream’s exclusion of keyword argument
support in the PyStream language did not cause an issue in the research because a
common and simpler coding style was used in the example shaders.

Arguments to Numerical Function Have a Single Type. In the PyStream lan-
guage, calls to numerical functions must have unambiguously typed arguments.
Unlike Python, GLSL is a statically typed language and calls to GLSL built-in nu-
meric functions must have arguments of a known single type. PyStream would not
need to impose this restriction if the PyStream compiler inserted switches to se-
lect between different built-in functions in the generated code. This change would
make the compiler more complex. Using the GLSL restriction made the com-

34

piler simpler. In practice, this means that arguments to numeric functions must be
well-typed in PyStream. This is not a major restriction since most programs are
well-typed, even in a dynamically typed language such as Python.

Class Dictionaries are Immutable. PyStream requires that class dictionaries be
immutable. Immutability allows class dictionaries to be flattened down the class
hierarchy in a preprocessing step that simplifies the analysis algorithms used in
the PyStream compiler, as discussed in Section 7.5.1. This restriction is redun-
dant because all objects passed into a shader are immutable, which is discussed
in Section 4.2. Class dictionaries were specifically singled out in this restriction
because the PyStream compiler takes advantage of the immutability of class dic-
tionaries.

Portions of the Python Language Not Supported. As an engineering decision,
the PyStream language does not support some features of the Python language,
such as closures and generators. These features were not needed in the research.
There are no engineering, technical, or research reasons that would prevent these
features from being supported.

4.1.4 Translation Restrictions

All of the listed restrictions affect the entire compilation process in one way or
another. The final step in the PyStream compiler translates Python shaders into
GLSL shaders. There are some troublesome issues in this translation process that
create de facto restrictions on the Python shaders. These restrictions are discussed
in Section 10.7 because they are purely artifacts of the translation process and
do not affect the rest of the compiler. At a high level, the restrictions imposed
by the translation process are threefold. First, complex, mutable data structures
cannot be created inside loops. Second, variable-sized container objects are not
supported on the GPU, although common uses could be supported with additional
engineering. Third, some built-in Python data structures, such as strings, are not
supported on the GPU because GLSL does not provide an easy way to emulate
them. In many cases, these scenarios are dealt with by the compiler before they
become issues for the translation process. These restrictions are not considered
part of the design of PyStream, rather they are topics for future research.

35

4.1.5 Post-compilation Language Restrictions

The PyStream language formulates some of its restrictions to apply after compi-
lation, not before. Applying restrictions after compilation allows the PyStream
platform to support a wider range of programs because in many cases a com-
piler can eliminate undesirable features from a program. For instance, the use
of generic functions in the Python interpreter causes most Python shaders to be
recursive. A compiler can eliminate this recursion using function cloning. Pre-
compilation restrictions on recursion would result in most Python shaders being
immediately rejected as invalid. Post-compilation restrictions cause fewer shaders
to be rejected.

PyStream’s use of restrictions after compilation is an important difference from
the general approach of imposing restrictions before compilation. Most languages
define their restrictions in terms of the original program, which allows a compiler
to provide a clear, concise description of what caused a restriction to be violated.
Imposing restrictions after compilation is a central aspect of the PyStream plat-
form’s design that makes it possible to run Python shaders directly on the GPU.
If only pre-compilation restrictions were used, almost all Python shaders would
be invalid. In addition, Python’s use of metaprogramming means there is no static
definition of a program, which makes it difficult to link pre-compilation restric-
tions back to the original program. When using post-compilation restrictions, a
programmer must be more attentive to the transformations occurring during com-
pilation. This was not an issue in this research because PyStream is a research
compiler and the research required a full understanding of all transformations. An
open question is how to assist a programmer to understand more clearly how post-
compilation restrictions in the PyStream language map onto the original program.

4.2 Python Shader Programs in PyStream

The restrictions of the PyStream language allow it to be compiled and GLSL code
generated for the GPU. These restrictions alone are not sufficient to allow PyS-
tream to take full advantage of rendering-specific hardware on the GPU, however.
Python shader programs must be written in a specific format so that Python shader
programs can use rendering specific hardware, such as the rasterizer and frame-
buffer blending. PyStream has a specific format for writing these Python shader

36

A shader program
class SimpleShader(object):

Run per -vertex
def shadeVertex(self , context , pos , color):

Project position onto the screen
cameraPos = self.worldToCamera*pos
projected = self.projection*cameraPos

Output the projected position
context.position = projected

Output an attribute to be interpolated
return (color ,)

Run per -fragment
def shadeFragment(self , context , color):

Output the interpolated color
context.colors = (vec4(color , 1.0) ,)

Figure 4.1: Example Python Shader Program in PyStream

programs which allows Python shaders to use this hardware. PyStream’s shader
format is syntactically and semantically compatible with Python.

Figure 4.1 shows a simple shader program written in PyStream’s shader format.
A shader program contains several shader functions that are used to parametrize
different sections of the rendering pipeline running on the GPU. In this case, the
shader program contains a vertex shader and a fragment shader. This shader pro-
gram takes vertices composed of a position and a color. The vertex shader (the
part of the shader program that processes each vertex of a 3D shape) transforms
and projects the position onto the screen and then passes this position to the ras-
terizer. The vertex shader also passes the color to the rasterizer, to be interpolated
across the triangle. The fragment shader writes the interpolated color into the
frame buffer. PyStream’s shader format has several necessary features permitting
Python shaders to use rendering specific hardware on a GPU. Each Python shader
program is implemented in the PyStream language as a Python class. Different
shaders in a shader program are implemented as specially named methods of the
Python class. For example, the vertex shader of a shader program is implemented
in a method called shadeVertex. PyStream’s shader format was designed so
that object-oriented concepts in Python are used to create a format similar to that
in GLSL, but with better structure. Different parameters of a shader method are
defined as corresponding to different features of a GLSL shader program.

37

The first parameter of each Python shader method holds a data structure that
corresponds to uniform variables in GLSL. In the example, this is the self pa-
rameter. Uniform variables are shared between GLSL shaders. In the Python
shader, the first parameter of any shader method naturally corresponds to an in-
stance object of the Python shader program because of Python’s method dispatch
mechanism. Python data stored in an instance object of a shader program is shared
among all shaders and naturally maps to uniform variables in GLSL.

The second parameter of each Python shader method holds a data structure
(context object) that corresponds to built-in variables provided by GLSL. In the
example, this is the context parameter. These built-in variables are typically
used to pass data to rendering-specific hardware. Each Python shader method is
passed a different type of context object depending on the type of the shader. For
example, a vertex shader’s context object contains a position field that is used by
the rasterizer. The context object held in the second parameter can also expose
shader-specific functions as methods, such as derivatives in a fragment shader. In
PyStream, the output of each shader is written to a specific field on the context
object.

The remaining parameters of each Python shader method correspond to vary-

ing variables in GLSL. In the example vertex shader, these are the pos and color

parameters. In the example fragment shader, this is the color parameter. This
type of variable contains data that is streamed into the shader. In GLSL, data
transferred between shaders must be a flat list of values with intrinsic types. In
PyStream, data transferred between shaders can have structure so long as the struc-
ture is consistent. An inconsistent structure cannot be handled by the rendering-
specific hardware on the GPU, so PyStream disallows inconsistent structures. For
instance, the rasterizer cannot interpolate between a three-dimensional vector and
a two-dimensional vector. Similar restrictions are applied to the output of each
shader, as the output of one shader becomes the input of the next. Figure 4.2
shows a vertex shader that would be disallowed for having an inconsistent output
structure.

4.3 GLSL Intrinsic Functions and Types in PyStream

PyStream reimplements GLSL intrinsic functions and types in Python. For in-
stance, in PyStream there is a Python implementation of the GLSL vec3 type.

38

def shadeVertex(self , context , pos , condition):
cameraPos = self.worldToCamera*pos
projected = self.projection*cameraPos
context.position = projected

if condition:
color = vec3 (1.0, 0.0, 1.0)

else:
color = vec2 (0.0, 1.0)

return color

Figure 4.2: Vertex Shader with Inconsistent Output Structure

Functions that operate on the vec3 type are mostly implemented as methods in
PyStream. Reimplementing functions and types in Python ensures that every
Python shader is a valid Python program in its own right. Reimplementation also
makes it simpler to analyze a Python shader because GLSL functions and types
can be analyzed as Python equivalents. When translating Python shaders into
GLSL, the reimplemented functions and types can be replaced with their original
equivalents in GLSL.

Two features of GLSL that do not have direct analogues in Python are func-
tion overloading and swizzle attributes. Function overloading is where multiple
versions of a function are provided, each with different argument types. Python
does not have argument types, so function overloading is emulated in PyStream
by using “if” statements to explicitly decode the argument types and select the
correct implementation of the function. Swizzle attributes are attribute accesses
that simultaneously read or write multiple attributes. For example, t = v.zyx is
equivalent to t = vec3(v.z, v.y, v.x). PyStream emulates swizzle attributes
by generating an attribute descriptor for each possible swizzle.

4.4 Advantages of Using PyStream to Write Shaders

Rendering systems can be written in a single code base with the PyStream plat-
form. This simplifies the use of a GPU as a coprocessor. With the PyStream
platform, shader code can be written using Python’s abstractions. For instance,
polymorphism can be used to encapsulate points of variation in a shader with
PyStream. In existing shader languages, points of variation are handled by ex-

39

plicitly generating multiple versions of a shader. Because polymorphisms can be
mapped onto the GPU with PyStream, points of variation in a shader can then be
expressed in a simpler manner. A Python shader program can be written so that
the functionality of the shader is subdivided using object composition, which is
the defining of program structure with data structures rather than with function
calls. In comparison to PyStream, Sh allows the use of object composition to
define shaders but Sh does not support run time polymorphism like PyStream.

Object sharing can be used to define how a rendering system controls shaders,
and it occurs when multiple shaders have references to the same object. When the
shared object is modified, all shaders that use the object incorporate the modified
result. For example, shaders often have the concept of a “camera” that spatially
defines what portion of the image is being drawn. To draw a coherent image, every
shader must agree on where the camera is positioned. When directly using GLSL
code, the program must explicitly define a policy on what data is shared between
shaders and where it comes from. PyStream allows a simpler expression of this
policy because it uses Python data structures and can share objects between data
structures.

PyStream has a single code base and shares functions, methods, and data struc-
tures between the CPU and the GPU. In existing rendering systems, separate code
bases for each processor require that any shared code be duplicated, rewritten, and
maintained. Easily sharing code from a single code base between the CPU and
GPU is useful. For example, in real-time rendering, it is desirable to have the
color of the fog match the color of the background. This allows an object to fade
into the background as it fades into the fog. The background color is specified by
a CPU and the color of what is drawn is specified by shaders running on a GPU.
Complex shaders often process colors in a way such that the color specified for
the fog may not match the color that is actually drawn. In this situation, setting
the background color based on the fog color results in an image as shown in Fig-
ure 4.3a. By sharing code, PyStream allows the CPU to process the fog color in
the same way as the GPU shader, allowing the background color to match the fog.
The result of applying the same color processing on both the CPU and GPU is
shown in Figure 4.3b.

40

(a) (b)

Figure 4.3: Fixing Fog Color Mismatch

41

Chapter 5

PyStream’s Compiler Architecture

The PyStream compiler is a static compiler, rather than a dynamic compiler as
has become fashionable for dynamic languages. GPUs currently do not provide
the architectural features that would make dynamic compilation viable for the
PyStream platform.

The PyStream compiler turns Python shader programs into ASTs that are used
throughout the compilation process. A Python shader program is compiled with a
series of passes through the program. Each compiler pass analyzes, transforms, or
does both actions on the program. Each pass is implemented as a “type dispatcher”
that traverses the ASTs. PyStream uses a number of special AST nodes to rep-
resent low-level operations not directly available in Python. PyStream annotates
ASTs with the analysis information that it generates. As compilation progresses,
PyStream’s transformations refine the ASTs until they are refined enough to be
transformed into GLSL and run on the GPU. The PyStream compiler essentially
consists of a program representation (AST nodes and annotations) and a set of
type dispatchers.

Static compilation transforms code to run on a target architecture and does not
modify the code after it is initially translated. In contrast, dynamic compilation
uses information gained at run time to rewrite the code. GPU APIs do not in-
corporate an opportunity to halt or inspect execution under their current design.
Absence of this feature in the APIs prevents Python from being run on the GPU
with current dynamic compilation techniques. Compiling dynamic languages, like
Python, has historically been based on dynamic compilation techniques, such as
type feedback [22].

The PyStream compiler is written in Python. While a compiler for Python
could be written in many languages, PyStream was written in Python for two
main reasons. First, writing the compiler in Python for the purposes of this re-
search allowed for rapid development of the compiler because Python itself is a
rapid development language. Second, writing the PyStream compiler in Python

42

allows the Python interpreter to be used during compilation. Python exposes the
mechanisms to interpret the Python language to the programs being interpreted.
PyStream uses these mechanisms to preprocess code and fold constant expres-
sions. The basic architectural features of PyStream are detailed in the following
sections.

5.1 The PyStream Compiler Pipeline

The PyStream compiler pipeline is a sequence of steps that are designed to trans-
late Python shader programs into GLSL. The PyStream compiler pipeline has
three main logical grouping of steps. First, the compiler front end reads in and
preprocesses all of the shader programs that are being compiled. Second, all of
the shader programs are analyzed and optimized together simultaneously to re-
move Python’s abstraction overhead. (The shader programs are compiled together
because they often share functions, and it is more economical to compile them all
at once.) Third, each shader program is then optimized and transformed, isolated
from the other shader programs, to complete the translation into GLSL.

Compiler Front End. The steps used by the compiler front end to read and
preprocess shader programs are described in Chapter 6.

Analysis and Optimization. The compiler analyzes and optimizes shader pro-
grams with the following steps:

1. Initial pointer analysis. Initial pointer analysis discovers the call graph, type
information, and pointer information for all of the shaders. This informa-
tion is not explicitly contained in any shader, but it is needed for subsequent
steps in the pipeline. The initial pointer analysis is designed to provide
enough information to eliminate both polymorphism and abstraction over-
head. Pointer analysis is performed again, later in the pipeline, with greater
precision.

2. Method fusion. Python method calls are implemented in two operations.
Method fusion transforms method calls into a single operation. Method fu-
sion is done early in the pipeline to make subsequent transformations easier.

3. Escape analysis. A simple escape analysis is performed to bound the life-
time of each object and reduce the amount of read/modify information that

43

is propagated interprocedurally. Pointer analysis in PyStream is simple by
design and it does not bound the lifetime of objects, so escape analysis is
done as a separate step.

4. Constant folding and dead code elimination. Pointer analysis discovers that
some operations in the shader programs are spurious, and that other oper-
ations can be statically resolved. Constant folding and dead code elimina-
tion get rid of these operations. Eliminating these operations simplifies the
shader programs.

5. Function cloning. Function cloning duplicates functions according to how
the functions are used in the shader programs. This duplication splits poly-
morphic functions into a number of monomorphic functions.

6. Constant folding and dead code elimination. Once functions have been
cloned, many of the resulting monomorphic functions can be significantly
simplified.

7. Argument normalization. Argument normalization simplifies calls and func-
tion declarations wherever possible. Python’s full calling conventions are
largely used to implement generic, polymorphic functions. After function
cloning, the use of these calling conventions usually becomes unnecessary
and the calling conventions can be simplified.

8. Exhaustive inlining. Exhaustive inlining consolidates all of the functions
called by a shader into a single function. The PyStream compiler exhaus-
tively inlines all functions into the root function of each shader except for
functions that correspond to a GLSL built-in function. This prepares the
shaders to be translated into GLSL.

9. Constant folding and dead code elimination. Exhaustive inlining exposes
new opportunities for simplification.

10. Load/store elimination. Memory operations in a shader program can be
eliminated by replacing load operations with local variables that were pre-
viously stored or the result of other load operations. Exhaustive inlining
exposes many opportunities to do so.

11. Reapplication of pointer analysis. Pointer analysis is performed again to
refresh pointer information. Inlining can cause some pointer information to

44

become outdated. The compiler also increases heap sensitivity during this
step so that subsequent optimizations can be more aggressive.

12. Escape analysis. A simple escape analysis is again performed to bound the
lifetime of each object and reduce the amount of read/modify information
that is propagated interprocedurally.

13. Constant folding and dead code elimination. A final simplification pass is
performed to take advantage of information discovered by the reapplication
of pointer analysis.

14. Load/store elimination. A final pass is performed, again to take advantage
of information discovered by the reapplication of pointer analysis.

Transformation and translation into GLSL. Each shader program is optimized and
transformed in isolation to complete the translation into GLSL:

1. Tree transform and reapplication of pointer analysis. Each shader is sepa-
rated and pointer analysis is re-applied with assumptions that the input data
structures are tree shaped and do not alias. These assumptions make it easier
to subsequently map the shader into GLSL.

2. Output flattening. The output of each shader is transformed into a tree
shape, duplicating objects as necessary.

3. Load/store elimination. Output flattening generates load operations while
transforming a shader, and load/store elimination immediately removes the
loads from the shader while leaving the transformation intact.

4. Field transform. Unique fields, both in the input and in dynamically allo-
cated data structures, are transformed into local variables. This transforma-
tion is analogous to allocating objects on the stack, but is more powerful.

5. Load/store elimination. After the field transform, it may be possible to elim-
inate some of the remaining memory operations from a shader.

6. Emulating Python reference semantics and translating into GLSL. As a final
step, the Python shaders are translated into GLSL shaders. This step is
involved and is detailed in Chapter 10.

45

c l a s s BinaryOp (E x p r e s s i o n) :
_ _ f i e l d s _ _ = ’ l e f t : E x p r e s s i o n op : s t r r i g h t : E x p r e s s i o n ’

Figure 5.1: An AST Node Declaration

All steps in the PyStream compiler pipeline share a common representation of
the program being processed. This program representation is an annotated Ab-
stract Syntax Tree (AST) augmented with special PyStream-specific nodes. Most
steps in the compiler pipeline process programs using a mechanism called a type

dispatcher.

5.2 Abstraction Syntax Trees (ASTs)

Abstract syntax trees (ASTs) are a representation of code used internally by most
compilers. ASTs are tree structures where each node in the tree represents a fea-
ture in the code. For example, an AST could contain a node representing the
addition of two numbers and the two numbers would be children of that node.
PyStream uses ASTs to represent code throughout the compilation process, un-
like many compilers which transform their ASTs into control flow blocks early in
the compilation process. PyStream keeps using AST nodes because it uses term
rewriting [30] for code transformation. PyStream contains ASTs for both Python
and GLSL which are both based on the same technology.

5.2.1 Specification

PyStream uses metaprogramming to specify the structure of each AST node. Both
the field names and the field types of each AST node are declared in a string and
transformed into a Python class for use by the compiler.

In Figure 5.1, an AST node for binary arithmetic operations is declared. The
AST node has three fields: left, op, and right. The left and right fields contain
subexpressions. The op field contains text representing the precise operation.

46

5.2.2 Generic Traversal

Generic traversal of AST nodes is supported in PyStream through the use of
metaprogramming. Generic traversal is a feature that allows arbitrary operations
to be applied to the children of an AST node. Methods for performing generic
traversal are generated from a AST node’s specification string. Generic traversal
is used both for rewriting ASTs and analyzing ASTs. In situations where a par-
ticular rewrite or analysis does not concern a particular set of AST nodes, then all
the nodes can be traversed using the same code.

5.2.3 Symbol Rewriting

Symbol rewriting is the process whereby symbols in an AST are replaced with
other AST nodes. Symbols can be inserted into an AST to indicate where infor-
mation will be filled in later. PyStream uses symbol rewriting when generating
code. For example, when a Python shader is compiled into GLSL, a correspond-
ing Python class is also generated that contains glue code to bind the GLSL shader
to the GPU. Both the class and the glue code are generated by rewriting AST tem-
plates parametrized with symbols.

5.2.4 Shared Nodes

Most AST nodes are uniquely owned by the node that contains them. In some
cases, a node is shared by multiple parents. For example, nodes representing local
variables are shared between expressions. This makes it simpler to determine that
multiple expressions refer to the same variable. On the other hand, this makes term
rewriting more difficult because this sharing must be maintained by the rewrite.
Another type of shared AST node is the node representing a function. This allows
functions to directly refer to each other.

5.3 Special AST Nodes

In most cases, PyStream’s AST nodes correspond to Python’s AST nodes. PyS-
tream contains a group of AST nodes that that do not follow Python’s AST node

47

pattern. These nodes were added because there are features in PyStream’s compi-
lation process that do not correspond to features in Python. While transformations
are occurring the PyStream compiler uses some intermediate forms that are not
available in Python, but are useful to complete the transformation into GLSL. The
compilation process is made easier with these special AST nodes.

5.3.1 Existing Object Nodes

Existing object nodes are a generalized form of constant values. An existing ob-
ject node can point to any object that exists before a Python shader program is
run. For instance, existing object nodes can refer to constant strings, type objects,
and global dictionaries. Before transformation, an AST only contains existing ob-
ject nodes that point to constant value objects. Subsequent optimizations of the
shader program can create new existing object nodes that reference other types of
objects. The PyStream compiler uses existing object nodes for caching the result
of predictable memory access patterns. For example, loading a global variable re-
quires that it be looked up in a global dictionary. If this lookup will always return
the same object, the compiler replaces the lookup with an existing object node.

5.3.2 Direct Call Nodes

A direct call node is an extended Python call node that contains a reference to
the function being called. The call nodes normally contained in Python ASTs
may invoke any function, depending on the object being called. This means what
function a call node invokes may not be apparent when the compiler first inspects
the AST. Direct call nodes explicitly specify what function is invoked. In cases
where call nodes only call a single function, the compiler transforms them into
direct call nodes. Later in the compilation process, functions may be cloned.
In this instance, direct calls nodes can invoke functions that are different from
the function associated with the original object. Direct calls make Python code
more comparable to C code, since the target of most calls is specified in the AST.
Direct calls are also used to transform object model operations, such as adding
two objects, into calls to functions that implement these operations. This is further
discussed in Section 6.3.

48

5.3.3 Method Call Nodes

A method call is an AST node that looks up an attribute on an object and then calls
the object that was returned by the lookup. Although Python supports method
calls, it implements them indirectly and, as a result, one method call spans two op-
erations. PyStream identifies these two operations in an AST and fuses a method
call into a single operation using method fusion (Section 8.2).

5.3.4 Type Switch Nodes

A type switch is an AST node that selects between several code blocks depending
on the concrete type of an argument that is passed to it. Type switches are similar
to Python’s “if” statements, except that they select between multiple blocks based
on the type of the conditional. PyStream uses type switches to inline method
call nodes. A method call may invoke several different functions. A type switch
allows a single method call to be turned into several direct calls, and in turn the
direct calls may be inlined. A method call cannot be directly inlined if it invokes
multiple functions. Similar functionality to type switches can be implemented in
an AST using multiple “if” statements with type checks as conditionals. However,
representing a type switch as a single AST node allows analysis algorithms to
infer the type of the conditional when inside the code blocks contained by the
type switch. This can improve analysis precision in many cases.

5.3.5 Low Level Memory Operation Nodes

Python operations do not modify memory directly. An assignment to an attribute
results in a chain of function calls causing memory to be modified at the end of
the chain. The function that actually modifies memory is implemented by the
interpreter and it is not a Python function. If the PyStream compiler cannot di-
rectly perceive these memory operations, it is difficult to optimize and translate
them; therefore, PyStream lifts these memory operations into Python code so that
the compiler can process these exposed memory operations as Python code. To
accomplish this, PyStream adds low-level memory operation nodes to the AST.
These low-level memory operations include loading, storing, and checking for the
existence of fields on objects, and also allocating objects. One would expect to
find all of these memory operations in low-level languages, except for checking

49

the existence of a field. The check operation in PyStream returns a Boolean value
if the object in question contains the specified field. Python interpreters perform
similar checks internally, although they do so indirectly. Doing the check directly
improves analysis precision. PyStream does not perform check operations at run
time; they are only done during analysis. PyStream check operations are elim-
inated by the compiler after analysis with function specialization and constant
folding.

5.4 Annotations

Annotations are information produced by PyStream’s analysis algorithms that
cannot be directly stored in AST nodes. This analysis information is stored in
an annotation object that is attached to the AST node it concerns. PyStream re-
quires that all AST nodes and all annotations are immutable. By assuming im-
mutability, the compiler can use simpler algorithms when rewriting an AST. An
exception to PyStream’s rule of immutability is that AST nodes may be reanno-
tated, which allows new analysis information to be added to the AST without
completely rewriting it.

5.5 Intermediate Representation

An intermediate representation (IR) is a data structure in which a compiler holds
code while it compiles the code. PyStream’s intermediate representation is a re-
stricted AST. The restrictions used in PyStream’s IR are similar to those used in
most IRs. This type of restriction makes compilation easier. The most important
restriction used in the PyStream IR is that expression nodes cannot take other ex-
pressions as arguments; all arguments must be references. This restriction adopted
by PyStream simplifies compilation because the compiler does not need to process
nestled expressions.

PyStream uses an AST for its standard IR, rather than the more commonly
used control flow graph (CFG). Using an AST complicates certain transforma-
tions compared to a CFG. The reason PyStream uses an AST as its standard IR is
because the PyStream compiler does source-to-source translation. Using an AST
as an IR allows control flow structure to be explicitly represented and preserved.

50

Since GLSL only allows structured control flow, preserving this structure suits
ASTs for the compilation process.

In a few specific circumstances, the PyStream compiler uses a CFG as an IR.
The first circumstance is when Python bytecode is being decompiled. The control-
flow structure of bytecode is not immediately apparent, so an AST cannot be used.
A CFG is used during the intermediate steps of decompilation until an AST can be
created. The second circumstance is when performing a static single assignment
transformation. A CFG is well suited for this transformation process, although an
AST must be reconstructed from the CFG IR.

5.6 Type Dispatcher

A type dispatcher is a specific implementation of the visitor pattern created during
research for the PyStream compiler. The visitor pattern, combined with generic
traversal, forms the core of most passes in the PyStream compiler. Transformation
passes can be implemented by recursively rewriting AST nodes with a visitor.
Analysis passes can be implemented in a similar manner, but by traversing the
nodes instead of rewriting them. The visitor pattern is integral to the compiler,
and any flaws in the implementation of the pattern quickly become apparent.

Python has a standard idiom for implementing the visitor pattern. The idiomatic
Python visitor concatenates the string “visit” with the name of the type of the
object being visited. It then calls the method with this name attached to the visitor.
For example, visiting a “Local” AST node would invoke the “visitLocal” method
on the visitor. This idiom has two serious problems that are addressed by using
a type dispatcher. First, classes with the same name must have the same visitor
method. This is an issue for the PyStream compiler, because the Python and the
GLSL ASTs have nodes with the same name. This issue is resolved by using a
type dispatcher. The second problem is that types with different names must have
different visitor methods. A given visitor may treat a group of types in the same
way, such as ignoring them, or invoking a generic traversal. In this situation, a
wrapper visitor method must be created for each type within a group. Using a
type dispatcher eliminates the need for wrapper methods.

A type dispatcher maps types to methods by explicitly annotating each method
with the types being handled. The type dispatcher uses the type object to control
dispatch, rather than using the name of the type object. Different types with the

51

class Fold(TypeDispacher):
@dispatch(ast.BinaryOp)
def visitBinaryOp(self , node):

Process children
node = node.rewriteChildren(self)
Process the OP
return fold(node)

@defaultdispatch
def default(self , node):

This node will not be folded ,
but the children might ...
return node.rewriteChildren(self)

@dispatch(ast.leafNodes)
def visitLeaf(self , node):

A string constant , or similar.
No traversal is possible
return node

Figure 5.2: A Simple Type Dispatcher

same name can therefore be handled separately without complication. With a type
dispatcher, multiple types can be associated with a single method which avoids
the need for wrappers. A simple type dispatcher for folding binary arithmetic
operations is shown in Figure 5.2.

52

Chapter 6

PyStream’s Compiler Front End

The PyStream compiler meets the many challenges of compiling Python. One
challenge to compiling Python is that a Python program lacks a static program
declaration. Other languages, such as C, have static program declarations. As
a consequence of Python’s design, a Python compiler must acquire information
about a Python program differently from how a C compiler would do so for a
C program. The lack of a static program declaration was addressed partly by
the front end of PyStream’s compiler. The front end is the part of the compiler
that acquires information about a program. PyStream’s front end uses both new
concepts and concepts developed by other efforts to statically compile Python.

PyPy established patterns for a Python compiler front end. The PyPy compiler
front end does not directly parse source code. Parsing source code is defined as an-
alyzing the code against a formal grammar and creating an internal representation
to use in the compilation process. PyPy uses a Python interpreter during compi-
lation to indirectly parse and initialize a program before extracting the program
from the interpreter’s memory. PyStream uses a similar method during compila-
tion and adds two unique features to its compiler front end. One feature deals with
foreign functions. The other feature “lowers” a Python program so the compiler
does not need to deal with the full extend of the Python language.

6.1 Code Preprocessing

PyStream uses a Python interpreter to preprocess code. Python does not have
a preprocessor but achieves the same effect with metaprogramming. Metapro-
gramming is useful when defining or processing a program, but programs that
use metaprogramming are hard to analyze. Metaprogramming prevents a closed
world assumption from being made since new functions and new classes can be
created at run time. PyStream allows metaprogramming to be performed before

53

the program is compiled and then disallows metaprogramming after compilation
has begun. This approach allows a closed world assumption to be made by the
compiler, but also allows the use of metaprogramming to construct the initial
program. Completely disallowing metaprogramming in a Python program would
not be practical since class declarations in Python are actually syntactic sugar for
constructing a class through metaprogramming. Supporting class declarations re-
quires supporting metaprogramming. A similar approach was used by PyPy.

The result of preprocessing the program is read out of the interpreter’s memory
using reflection. It is assumed that preprocessing is deterministic and will pro-
duce the same result every time it is performed. Each time a PyStream program
is executed, its initial memory image is set to the memory image produced by
preprocessing the program.

6.2 Decompilation

PyStream produces its ASTs by decompiling Python bytecode rather than parsing
Python source code. PyStream’s preprocessing step can dynamically construct
functions which have no readily available source code. Source code may not be
available for some Python modules loaded from disk. Since decompilation is
necessary for some functions, PyStream decompiles all functions for the sake of
uniformity.

Decompilation is performed in three steps. First, the Python bytecode is split
into a CFG. Second, the byte codes are translated from operating on a stack to
operating on local variables. Third, structural analysis is performed to reconstruct
the AST of the function.

An important feature of PyStream’s decompilation is that it is done in a lazy
manner: functions are decompiled only as they are requested by the compiler.
The initial memory image may contain many extra functions, module imports of-
ten import more functions than are needed by an application, and code used during
the preprocessing step may not be used during execution. For these reasons, eager
decompilation can result in an extremely large number of functions being decom-
piled compared to the number of functions that are used when the program is
executed.

54

6.3 Operation Lowering

The PyStream compiler front end transforms most operations in the Python lan-
guage into direct function calls. This process is referred to as operation lowering.
Python supports a large variety of operations, such as attribute accesses, binary op-
erators, and similar operations. Explicitly supporting all of these operations would
increase the complexity of the PyStream compiler. PyStream transforms these op-
erations into direct function calls to reduce the number of operations the compiler
must explicitly support. The replacement functions implement the semantics of
the original operations. For example, a+b is converted into interpreter_add(a,
b).

Operation lowering also makes implicit operations explicit. For example, when
evaluating an “if” statement, the conditional of the statement is implicitly con-
verted to a Boolean value. Converting an object to a Boolean value can have side
effects since in some cases the conversion may call a user-defined method. Oper-
ation lowering inserts a direct call before each “if” statement to explicitly convert
the conditional. This simplifies the semantics of “if” statements. Similar transfor-
mations are made when evaluating loop conditions and when coercing vargs into
tuples.

The simplicity of operation lowering belies its importance. Without operation
lowering, PyStream’s compiler would be significantly more complicated. In ef-
fect, PyStream transforms semantics originally embedded in the interpreter into
a Python library so that the interpreter can be compiled in tandem with a Python
program. This allows the compiled program to run without an interpreter, sim-
plifies optimizing the program, and helps reduce the overall complexity of the
compiler.

6.4 Static Single Assignment (SSA) Transformation

PyStream transforms all of the code it processes into the static single assignment
(SSA) form [31, 32, 33], which is a straightforward process for Python code. The
SSA transform renames variables inside of a function so that each variable is only
defined once. For example, Figure 6.1a shows a situation where the variable a is
defined twice. Although it should be possible to determine that the second defini-
tion of a is equal to 2, the fact that a has two definitions complicates associating a

55

a = 1
a = a + 1

(a)

a0 = 1
a1 = a0 + 1

(b)

Figure 6.1: SSA Transformation

value with the variable. Figure 6.1b shows the same figure after the SSA transfor-
mation has been applied. The variable a has been renamed into two variables: a0
and a1. Having two names makes it simpler to associate values with the variable.

The SSA transformation is complicated if local variables can be modified in-
directly. Indirect modification makes it difficult, if not impossible, to determine
where a variable is defined. Python does not allow the address of local variables to
be taken, as can be done in C. Allowing the address of local variables to be taken
allows the local variables to be modified indirectly. Without indirect modification
in Python, all uses and definitions of a local variable in Python are explicit and
contained within a single function.

It is possible to indirectly affect local variables by gaining access to a Python
interpreter’s stack frame and modifying the local variables held in the frame. This
would make the SSA transformation much more difficult. PyStream’s compilation
process eliminates interpreter stack frames because emulating them would impose
a large performance overhead. Access to stack frames is therefore disallowed in
PyStream and indirect modification of local variables is impossible.

6.5 Foreign Functions

PyStream cannot decompile functions unless functions are written in Python.
Some functions in the Python run time are written in other languages. For ex-
ample, in the CPython interpreter, this language is C. Functionality implemented
in the Python interpreter, such as the algorithm for adding two objects together, is
also not written in Python. The problems introduced by these foreign functions
are twofold: the compiler cannot analyze the functions, and once the program is
translated, these functions cannot be called from GLSL.

In some cases, foreign functions could have been implemented in Python, but
instead they were implemented in another language for performance reasons. For
example, the algorithm for adding two objects in Python could be implemented

56

in Python code, but it is performed often enough that interpreters implement it
in native code. PyStream replaces these foreign functions with equivalent Python
implementations. This type of replacement function is used extensively by opera-
tion lowering (Section 6.3).

In some situations, foreign functions could have been implemented in Python
if Python supported low-level memory operations. For example, the process of
setting a field on an object must eventually call a foreign function to perform
the operation. PyStream replaces these foreign functions with equivalent “low-
level” Python functions. Low-level Python functions are syntactically identical
to Python, but a transformation pass replaces calls to specially named functions,
such as “loadAttribute” or “storeArray”, with low-level memory operations. PyS-
tream has special AST nodes for low-level memory operations, as mentioned in
Section 5.3.5.

Some foreign functions in Python have equivalents in GLSL. For example,
Python has a function for taking the square root of a number, as does GLSL.
When this occurs the foreign function is replaced with a specially written stub
that describes the foreign function’s side effects. When the stub is translated onto
the GPU, it is replaced with its GLSL equivalent.

Some Python functions correspond to built-in GLSL functions. The compiler
does not have a problem analyzing these functions since they are written in Python.
Special care must be taken that these functions survive until the final translation
step, however. In the final translation step these functions are replaced with their
GLSL equivalents. For instance, PyStream contains a pure Python implementa-
tion of a three-dimensional floating point vector which is semantically equivalent
to GLSL’s vec3 type. The methods of the Python implementation are marked
by PyStream to prevent them from being inlined during compilation. In the fi-
nal translation step, the Python methods are replaced with their built-in GLSL
equivalents.

There are foreign functions that are not emulated by the PyStream compiler,
including functions that perform file IO, because in general these functions are
not supported by PyStream, as mentioned in Section 4.1.2.

57

Chapter 7

Pointer Analysis for Python

This chapter discusses how PyStream performs pointer analysis. PyStream re-
quires pointer analysis because compiling Python shaders into GLSL shaders re-
quires precise pointer information. Pointer analysis for Python has been previ-
ously demonstrated only in limited forms and is usually identified as type infer-
ence instead of pointer analysis. Generally, attempts to analyze Python have been
impeded by the complexity of Python’s semantics, and existing analysis algo-
rithms are only capable of handling a subset of Python.

In contrast, PyStream addresses Python’s complex semantics by formulating
pointer analysis in a manner that treats Python’s complex semantics as code. This
approach, developed for analyzing Python shaders in PyStream, shows the po-
tential for handling the full semantics of Python. PyStream’s formulation also
presents the opportunity to adapt for use in Python pointer analysis the techniques
developed for other languages. Once PyStream shifts Python’s semantics into
code, the resulting pointer analysis algorithm reflects those used for other lan-
guages.

Previous work on pointer analysis has focused on languages more widely used
than Python, such as C and Java. Pointer analysis for Python is similar to pointer
analysis for these languages, but different because Python has a number of id-
iosyncratic features that must be supported by the analysis. The description of
PyStream’s pointer analysis algorithm in this chapter focuses on how it differs
from pointer analysis algorithms used for other languages.

Pointer analysis determines what objects a reference can point to and what ob-
jects a memory operation can access. Information provided by pointer analysis
is necessary when performing important transformations in most languages. Fig-
ure 7.1 shows an example where pointer analysis would be straightforward. In this
example, a pointer analysis algorithm would determine that a can point to obj1,
b can point to obj2, and c can point to either obj1 or obj2.

Starkiller is the only system that thus far is known to have performed pointer

58

a = obj1
b = obj2

if cond:
c = a

else:
c = b

Figure 7.1: Pointer Analysis Example

analysis on Python code. Starkiller’s translation process uses a version of the
Cartesian product type inference algorithm [27] that has been extended for Python.
The Cartesian product algorithm (CPA) can be thought of as a pointer analysis al-
gorithm that is used to infer types, although it is not usually identified as such.
Type inference algorithms infer a single, generalized type for each variable. CPA
performs “concrete” type inference by determining the set of objects a variable
may point to and thus can be considered pointer analysis. Starkiller’s type infer-
ence can also be considered pointer analysis for the same reasons. Inferring type
information is the goal of both CPA and Starkiller and the precision of pointer in-
formation is only a concern insofar as it affects the precision of type information.
PyStream must distinguish between two objects of the same type to perform many
of its transformations, which requires greater precision than is provided by type
inference. For this reason, PyStream’s pointer analysis is explicitly formulated as
a pointer analysis, and not type inference.

7.1 Topics in Pointer Analysis

A pointer analysis algorithm infers from a program what variables point to what
objects and what objects are accessed by memory operations. A pointer analysis
algorithm does this without executing the program. If two variables simultane-
ously point to the same object, the variables are said to alias, meaning that there
are multiple names that can refer to the same object. Determining if variables
may be aliased is important because it indicates that a memory operation using
one variable may depend on a memory operation using the other variable. This
dependency between memory operations occurs because the operations can af-
fect the same object. Without pointer analysis, the compiler must assume that all

59

x.f = a
y.f = b
c = x.f

(a)

y.f = b
x.f = a
c = x.f

(b)

Figure 7.2: Memory Operation Dependencies

variables alias and all memory operations are interdependent. If a compiler er-
roneously assumes that two memory operations are independent of each other, it
may transform them in a way that is unsound; that is, the transformation may cause
an unintended change in the program’s behavior. For example, in Figure 7.2a, if x
and y alias, then c will contain the value held by b. If the operations are reordered
as seen in Figure 7.2b, then c will contain the value held by a.

Information produced by pointer analysis may only partially correspond to what
happens when the program is executed. In general, the only way to determine
exactly what a program does is to execute it. Pointer analysis must therefore
approximate a program’s expected behavior when analyzing it. These approxi-
mations must not cause the compiler to make unsound transformations. To avoid
causing unsound transformations, pointer analysis errs on the side of overestimat-
ing what objects a variable can point to. As long as pointer analysis determines all
of the objects a variable can point to at run time, all of the potential dependencies
between memory operations will be discovered. Overestimating the number of
objects that a variable can point to often results in an overestimation of the de-
pendencies between memory operations. Preserving a non-existent dependency
between memory operations can prevent certain optimizations but ensures that
transformations are sound.

7.1.1 Pointer Analysis Precision

Precision refers to how closely the information produced by a pointer analysis
matches the program’s behavior when it is executed. Pointer information is guar-
anteed to include all possible objects that a reference can point to, but it may
include additional objects that the reference cannot point to when the program is
executed. Different pointer analysis algorithms may infer a different number of
additional, unrealizable objects for any reference. Pointer information is termed
less precise as the number of unrealizable objects that it indicates a reference can

60

point to increases. Pointer information that is more precise allows a wider range
of sound transformations. Directly assessing precision is difficult, particularly for
large programs. Determining what aliases can occur in practice would require
manually inspecting a program. The result of such an inspection would be hard to
quantify since certain spurious dependencies between memory operations would
impact compilation more than others.

As a proxy for direct evaluation of precision, a variety of metrics have been
used to evaluate pointer analysis algorithms. This dissertation uses the access-
per-object (ApO) metric to evaluate the precision of PyStream’s pointer analysis.
ApO counts how many expressions appear to affect a given object and averages
this count across all objects. A higher ApO is correlated with less precision.

7.1.2 Pointer Analysis Concepts and Terms

Pointer analysis algorithms can be described with a common set of concepts and
terms. Those relevant to the present research are discussed here.

Assignment Modeling. Assignment modeling determines how a pointer anal-
ysis algorithm operates when one variable is assigned to another. There are two
primary methods of assignment modeling. Steensgaard-style assignment mod-
eling merges the information about variables when one is assigned to another.
Andersen-style assignment modeling keeps the variables separate and copies the
information from one to the other. Steensgaard-style analysis can provide better
performance, but with less precision than Andersen-style analysis. Andersen-
style analysis can be significantly more accurate and it can also be made to run
fast enough for most applications [34]. PyStream uses Andersen-style assignment
modeling because it offers the needed precision.

Context Sensitivity. Context sensitivity refers to an analysis algorithm’s abil-
ity to keep dataflow along different call paths separate. For example, if functions
A and B both call function C, data passed from A to C would not flow back
into B when the program was executed. When a pointer analysis approximates a
program’s expected behavior, an unrealizable data flow can occur, such as infor-
mation from A flowing into B via C. Context sensitivity can be improved with a
number of approaches. PyStream uses the same approach used in the Cartesian
product algorithm (CPA), which will be discussed in Section 7.4.3.

Heap Sensitivity. Heap sensitivity refers to an analysis algorithm’s ability to

61

keep separate the information about different objects. Pointer analysis algorithms
do not individually track each object that may be allocated by a program. It is not
possible to bound the number of objects allocated by a program except in limited
cases, making it impractical to individually track objects. Pointer analysis algo-
rithms put a finite bound on the number of objects that are analyzed by allowing
a single object to represent a group of objects at run time. Merging objects into a
group can cause precision loss if members of the group are used in fundamentally
different ways. Heap sensitivity can be improved by careful definition of groups.
PyStream’s solution for improving heap sensitivity is discussed in Section 7.8.

Field Sensitivity. Field sensitivity refers to an analysis algorithm’s ability to
keep separate the information about different fields on the same object. PyS-
tream’s pointer analysis algorithms are field sensitive. Using a field-insensitive
pointer analysis on Python code would result in a large precision loss because a
significant amount of data passes through the heap. Discussion of field sensitivity
in the literature has usually focused on pointer analysis for C. Pointer analysis al-
gorithms for C are often designed to be field insensitive because C allows fields to
be accessed indirectly using pointer arithmetic. If a pointer analysis is field insen-
sitive, then pointer arithmetic otherwise allowed by C can be ignored. Allowing
field sensitivity increases the complexity of pointer analysis for C because it then
requires that pointer arithmetic be modeled in the analysis. Pointer arithmetic is
not supported by Python.

Flow Sensitivity. Flow sensitivity refers to an analysis algorithm’s ability to
distinguish the order in which operations occur. Flow-insensitive pointer analysis
is easier to implement and tends to run faster because the order of operations does
not need to be taken into account. Precision is lost when using a flow-insensitive
algorithm. Transforming functions into static single assignment (SSA) allows
flow-insensitive analysis to produce results that are partially flow sensitive. PyS-
tream’s pointer analysis is flow insensitive and uses SSA.

Control Sensitivity. Control sensitivity is an analysis algorithm’s ability to dis-
tinguish what control flow can occur during execution. An operation in a function
may not be executed if control flow does not reach the operation. A control-
insensitive pointer analysis assumes that all operations in a function can be exe-
cuted. PyStream’s pointer analysis algorithm is control sensitive (Section 7.9).

62

Algorithm 7.1 PyStream’s Pointer Analysis

i n i t a l i z e E n t r y P o i n t s ()
w h i l e d i r t y C o n s t r a i n t s :

c u r r e n t = p o p C o n s t r a i n t ()
c u r r e n t . e v a l u a t e ()

7.2 Architecture of PyStream’s Pointer Analysis

The basic structure of PyStream’s pointer analysis is straightforward. PyStream’s
pointer analysis determines what set of objects each variable in a program can
point to. Each operation in a program can affect what objects a variable can point
to. For example, a variable copy operation such as a = b would imply that a
can point to whatever objects b can point to. This relationship between these two
variables is represented with a constraint that indicates that b is copied into a and
that a can point to, at minimum, anything that b can point to.

Points-to information is represented as a “set” data structure that contains all of
the objects that a variable may point to during the execution of the program. Each
variable in a program, including both local variables and fields on objects, has its
own “set” data structure to contain pointer information.

PyStream’s points-to information does not actually contain objects in the “set”
data structures; rather, it contains symbolic object names. An object is a run time
artifact that is created by a program to store data. When PyStream analyzes a
program, it must model how the program being analyzed allocates and uses ob-
jects. PyStream does not model each object in a program uniquely, because an
unbounded number of objects may be created when the program is run. Instead,
PyStream’s pointer analysis abstracts the structure of the heap and represents ob-
jects symbolically. Groups of run time objects are given a single name in the
pointer analysis, and references to the single name can potentially correspond to
any run time object in the group. During analysis, a run time object is designated
to have a single, unchangeable name. This abstraction allows the number of ob-
jects considered by the analysis to be bounded. For example, all instances of the
type Foo could be given the same name, Instance(Foo), by the analysis. In this
case, the pointer analysis would not distinguish between different objects with
the type Foo because they would all be named Instance(Foo). How groups of
objects are named is determined by a policy and does not affect the underlying
mechanics of the pointer analysis, although it does affect the precision of the re-

63

sults. Different objects’ names can be assigned based on the type of the object, the
operation at which the object was allocated, the call path to the object’s allocation
site, and the argument types passed to the object’s constructor. As a rule, objects
with different types are never given the same name. In addition, there are special
cases in which objects with the same Python type must be distinguished and given
different names to maintain the precision of the analysis. The technique for nam-
ing an object in these special cases is referred to as extended types due to how it
interacts with a context sensitivity technique borrowed from CPA. Extended types
are further discussed in Section 7.8.

The set of objects that a variable can point to starts empty and increases mono-
tonically as constraints are evaluated. For example, in the case of a = b, if the set
of objects that b can point to is ever updated, then the copy constraint is marked to
indicate that it must be reevaluated and the constraint is put in a queue. High-level
pseudocode for PyStream’s pointer analysis is shown in Algorithm 7.1. Con-
straints in the queue are removed one at a time and reevaluated. Reevaluating a
copy constraint updates the set of values pointed to by the target to include all val-
ues pointed to by the source. If this update changes the set of values pointed to by
the target, then any constraints that use the target variable as a source are marked
for reevaluation and put in the queue. In this manner, constraints are evaluated
until the pointer analysis reaches a steady state: no new pointer information can
be discovered by reevaluating any constraint. Since the number of object names
and variables is bounded and points-to information increases monotonically, it is
guaranteed that the algorithm will terminate.

Copy constraints are not the only type of constraint used by PyStream’s pointer
analysis. In PyStream’s pointer analysis, a constraint represents an invariant be-
tween the pointer information of two or more variables. The effect of each type
of constraint used in PyStream’s pointer analysis varies widely. The only features
that the constraints have in common are that they read and write points-to infor-
mation and that they are reevaluated using a work queue. There are eight types of
constraint used in PyStream’s pointer analysis:

Copy. copy(src, dst) Copy constraints indicate that the destination variable
can point to any object that the source variable can point to. When a copy con-
straint is reevaluated, the destination is updated to ensure that it includes all of the
points-to information of the source. If the destination already contains all of the
points-to information from the source, the destination is not updated.

Load. load(expr, fieldtype, name, dst) Load constraints resolve what

64

fields can be accessed by a load operation. Three pieces of information are used
to determine what fields are accessed: the object being loaded from, the type
of the field (this is discussed further in Section 7.6), and the name of the field.
The name of the field is typically a constant string object such as ’x’ that is
dynamically discovered by the pointer analysis. Dynamic discovery is necessary
because many loads occur in run time functions that are parametrized not just by
the object being loaded from, but also by the name of the field being loaded. It is
often the case that little can be determined about what field is accessed by a load
until pointer analysis has begun. Once it is determined that a load operation may
access a specific field, a copy constraint is created to copy the field variable into
the destination variable. Fields are modeled like any other type of variable by the
pointer analysis.

Store. store(src, expr, fieldname, name) Store constraints are similar
to load constraints, except that they copy data into a field rather than from it.

Allocate. allocate(expr, dst) Allocation constraints take a type object as
an input, and produce an instance of that type. Allocation constraints set the type
pointer on the instance object, but do no other form of initialization. The type
object is dynamically discovered, because many objects are allocated at a single
point in the Python run time, and calls to that function are parametrized by the
type that is being allocated.

Check. check(expr, fieldtype, name, dst) Check constraints are sim-
ilar to load constraints, except that they produce a Boolean value that indicates
whether or not an object contains a specified field, rather than loading the field.
Check operations are implemented as a constraint so that they can be resolved as
a constant, Boolean value whenever possible.

Is. is(a, b, dst) “Is” constraints check if one object is the same as another
object. The implementation of the “is” constraint is complicated by the fact that
the pointer analysis can group multiple objects into a single name. In general, the
“is” constraint can precisely determine that two objects are not the same if they
have different names and that they are the same if they have the same name and it
is known that the name corresponds to a single run time object. In all other cases,
the “is” constraint cannot be resolved precisely.

Call. call(expr, args, varg, dst) Call constraints determine what func-
tion is invoked by a call operation and transfer the arguments of the call operation
to the parameters of the function being called and the return value of the function
back to the call site. PyStream’s call constraints can handle both indirect and direct

65

o.m(a, b)

(a)

bound_method = o.m
bound_method(a, b)

(b)

Figure 7.3: Method Calls in Python

call operations. Because of operation lowering (Section 6.3), most operations in a
Python program are call constraints. Calls are implemented as constraints because
the potential targets of a call must be reevaluated when new pointer information
is discovered. The mechanics of how PyStream implements call constraints is
discussed in Section 7.7.

Deferred Branch. deferedBranch(cond, t, f) If a function contains a branch,
the creation of constraints for operations that occur after the branch is deferred un-
til it can be determined if the branch may be taken or not. (The uses of a deferred
branch constraint are discussed in Section 7.9.) A deferred branch constraint mon-
itors the condition used by the branch. If the condition can evaluate as true, the
deferred branch creates constraints on one side of the branch. If the condition can
evaluate as false, the constraint does the same for the other side of the branch. If
it cannot be determined that the condition will always evaluate to either true or
false, then the analysis will assume that both sides of the branch can be taken.

7.3 Pointer Analysis Issues in Python

Python’s design presents a number of challenges for pointer analysis. Many
of these challenges are illustrated in how method calls are resolved in Python.
Method calls in Python are lexically similar to method calls in other languages,
but there are a number of semantic complications in the method calls that pointer
analysis must deal with. The first complication is that a method call is not a sin-
gle operation but a combination of two operations. Figure 7.3a and Figure 7.3b
show how Python reduces a method call into an operation that creates a temporary
bound method object and an operation that calls the temporary object. The first
operation looks up the method’s name as if it were an attribute on an object. The
same mechanism is used for looking up every kind of attribute: instance variables,
class variables, methods, and arbitrary descriptors. The semantics of an attribute
lookup cannot be determined by inspecting a function. Python functions do not

66

contain type information and the meaning of an attribute lookup depends on the
type it is performed on. An attribute lookup followed by a call could either call
a method or simply read a function out of an instance variable and then call the
function. Algorithms that analyze Python must be able to bootstrap (Section 7.4.1)
in order to deal with this lack of information.

How Python implements “attributes” is a topic in its own right (Section 7.6).
The semantics contain a number of different cases for getting and setting an at-
tribute that must be supported by an analysis algorithm if the algorithm is to be
sound. Most operations in Python suffer from similar complications. Even adding
two objects together has a few different cases that must be dealt with by a pointer
analysis algorithm.

PyStream simplifies its pointer analysis algorithm by shifting most of Python’s
semantics into code (Section 7.5). Functionality in the interpreter and in the
Python run time is analyzed as if it were part of the program. This creates a
new set of challenges for PyStream’s pointer analysis, because it must be able to
analyze Python’s complex semantics precisely when they are represented as code.
These challenges are illustrated by examining how a method is called. The fol-
lowing example is lengthy, because significant functionality is subsumed within
Python that is not readily apparent when examining a program.

Figure 7.4a shows a simplified version of how the Python interpreter imple-
ments the operation for getting an attribute. This simplified version delegates the
operation to one of the object’s methods. This function is straightforward to an-
alyze, but it can create problems when the entire program is considered. Every
operation that gets an attribute calls this function. This makes the function highly

polymorphic. A pointer analysis algorithm for Python must have enough context
sensitivity to separate all operations that get different attributes (Sections 7.4.3
and 7.8.1). Another complication is that the name parameter will contain a string
object. A pointer analysis for Python must be able to precisely map string objects
to fields.

Figure 7.4b shows a simplified version of the most common method used to
get an attribute. It should be noted that, like all of the functions in this example,
this function is extremely simplified and only shows the case that creates bound
method objects. A common idiom in the Python run time is to distinguish between
distinctly different cases using control flow. This example checks to determine
whether the class dictionary contains a descriptor for the attribute in question. If
it does not, then other cases are considered. A pointer analysis for Python must be

67

def interpreter_getattribute(self , name):
getter = classLookup(self , ’__getattribute__ ’)
return getter(self , name)

(a)

def object__getattribute__(self , name):
Get the class dictionary
cls = load(self , ’type ’)
classDict = load(cls , ’dictionary ’)

Is there an attribute descriptor
in the class dictionary?
if checkDict(classDict , name):

desc = loadDict(classDict , name)

Use the descriptor to get the attribute.
get = classLookup(desc , ’__get__ ’)
return get(desc , self)

else:
...

(b)

def function_get(self , instance):
return method(self , instance)

(c)

def type_call(cls , *vparam):
obj = cls.__new__ (* vparam)
obj.__init__ (* vparam)
return obj

(d)

def type_new(cls , *vparam):
return allocate(cls)

(e)

def method_init(self , func , inst):
self.im_func = func
self.im_self = inst

(f)

Figure 7.4: Simplified Method Lookup

68

def method_call(self , *vparam):
func = self.im_func
inst = self.im_self
return func(inst , *vparam)

Figure 7.5: Simplified Method Call

control sensitive (Section 7.9) to avoid merging these distinct cases. Python does
not provide operations for directly loading or storing fields. Implementing the
Python run time as analyzable functions requires supporting these memory oper-
ations (Sections 5.3.5 and 7.6). In Figure 7.4b, load, checkDict, and loadDict

correspond to these operations.
Figure 7.4c shows how a function object acts as a descriptor object. If a function

object is used as a descriptor, it creates a bound method object holding both the
function object and the object from which the attribute is being read. The function
object creates the bound method object by calling the method type object. Fig-
ure 7.4d shows what occurs when a type object is called, in this case the method
type. This function creates a new instance of the type, as shown in Figure 7.4e,
and then calls the initializer of the new instance object, as shown in Figure 7.4f.
All bound method objects are allocated at a single point in the program. This
creates difficulties for heap-sensitive pointer analysis.

Precisely distinguishing between different bound method objects is critical to
the overall precision of the pointer analysis. A lack of heap sensitivity with re-
gard to bound method objects creates ambiguity about which method is being
called on which object. Traditional techniques for improving heap sensitivity are
insufficient, because bound method objects are all allocated at the same point in
the program. Path-based heap sensitivity can distinguish between some bound
method objects if the paths are long enough to compensate for Python’s multi-
ple levels of indirection. Path-based heap sensitivity cannot distinguish between
bound method objects created for a polymorphic method call, however, since the
path will be the same in each case. PyStream uses extended types (Section 7.8) to
allow heap sensitivity in this critical case.

Figure 7.5 shows a simplified version of the function that the interpreter dele-
gates the call to when the bound method object is called. Even if the pointer anal-
ysis can provide sufficient heap sensitivity to distinguish between bound method

69

objects, the correlation between func and inst may be lost once they are loaded
from the bound method objects into local variables. This would eliminate any
benefits gained from heap sensitive pointer analysis. To make heap sensitivity
worthwhile, this function must be analyzed separately for every bound method
object. PyStream uses Cartesian product function contexts (Section 7.4.3) to do
this.

7.4 Current Techniques Used to Analyze Python

PyStream uses a number of techniques to analyze Python that are shared with
Starkiller, PyPy, and Shed Skin.

7.4.1 Bootstrapping

Bootstrapping is a process in which an analysis algorithm generates the informa-
tion that it needs as it runs. A bootstrapping analysis algorithm requires minimal
information about a program to start its analysis. Analyzing Python requires boot-
strapping, because the definition of a Python program is contained in a mutable
data structure that can change as the program runs, invalidating a priori assump-
tions. In Python types, calls, and even global variables are resolved dynamically.
Variable types are not specified in Python. The call graph of a Python program is
only discovered by evaluating the program. Seemingly simple operations, such as
addition, can result in arbitrary functions being called. It is only possible to put a
very loose bound on the functions that may be called in a Python program before
the program is evaluated. Objects that may be created and the fields that may be
accessed are also unknown prior to evaluation.

Pointer analysis algorithms that cannot bootstrap thus cannot be applied to
Python due to their inability to bootstrap. Analysis algorithms using binary deci-
sion diagrams (BDDs) often require that the set of values encoded in the BDD be
of a known, bounded size prior to analysis. Only loose bounds can be placed on
a Python program before it is analyzed. Thus analysis algorithms that require an
explicit enumeration of a call graph [35] are also unusable for Python.

70

7.4.2 Closed World

A closed world exists when every function that a program can execute is known by
the compiler at the start of compilation. Meaningful pointer analysis for Python
is impossible without assuming a closed world. A closed world is required be-
cause the definition of a Python program can be modified at run time. In Python,
a function declaration creates a function object and assigns it to a global variable
that may be later modified, meaning that one function may be replaced with an-
other at run time. An open world requires conservative assumptions about the
side effects of calling an unknown function. An unknown function could perform
arbitrary modifications to every global variable. This means that almost nothing
about a Python program’s call graph can be determined by a compiler if unknown
functions are invoked. Restrictions in the PyStream language that disallow code
creation at run time create a closed world.

7.4.3 Cartesian Product Algorithm Contexts

The Cartesian product algorithm (CPA) [27] is a type inference algorithm that
creates separate analysis contexts for different invocations of a polymorphic func-
tion. CPA does this by separating the analysis of a function for every possible
combination of concrete argument types. This approach is referred to in this dis-
sertation as CPA contexts. These contexts were originally called templates, but
this dissertation uses a different term to clarify how the concept links to the larger
body of work on pointer analysis.

A polymorphic function behaves differently depending on the types of the ar-
guments that are passed to it. One kind of polymorphism is parametric polymor-
phism, also known as generic programming, which occurs when a function has a
single definition but behaves polymorphicaly. Parametric polymorphism can de-
grade the precision of analysis algorithms if the algorithms do not keep separate
the different uses of the function. Parametrically polymorphic functions are easily
created in Python because it is a dynamically typed language.

Figure 7.6 shows a simple example illustrating parametric polymorphism. The
behavior of this function depends on the types of its arguments. For example, call-
ing add(1, 2) would invoke functionality that adds integers and returns 3. Call-
ing add(’foo’, ’bar’) would invoke functionality that concatenates strings
and returns ’foobar’. The functions sets called by these two examples are dif-

71

def add(a, b):
return a+b

Figure 7.6: An Example of Parametric Polymorphism

ferent. If these examples are analyzed together, the called functions intermingle,
and unrealizable dataflow results. For instance, the analysis of the example would
indicate that the program may attempt to arithmetically add 1 with ’bar’, a situ-
ation that causes a run time error. Parametric polymorphism is used in the Python
run time, in the Python interpreter, and in user code. Any pointer analysis per-
formed on Python must be able to deal precisely with parametric polymorphism.

PyStream’s compiler uses the Cartesian product algorithm to increase preci-
sion when performing pointer analysis on parametric polymorphic functions. The
Cartesian product algorithm separates invocations of a function into every possible
combination of parameter types. The Cartesian product algorithm then analyzes
each version separately. Separating function contexts in this manner is commonly
used when analyzing Python.

Using CPA contexts constrains the design of a pointer analysis algorithm. De-
termining the type of each function parameter requires that up-to-date pointer in-
formation be maintained for each parameter. Some pointer analysis algorithms
defer the computation of pointer information until it is requested for a specific
variable [34]. This optimization is unlikely to provide any benefit when analyzing
Python since most variables in Python are used as function arguments. Using CPA
contexts therefore requires that up-to-date pointer information be maintained for
virtually every variable.

7.5 Reducing Complexity of Pointer Analysis for
Python

Transforming interpreter functions into Python functions (Section 6.5) and reduc-
ing the number of operations that must be supported by the compiler (Section 6.3)
significantly simplify pointer analysis for Python. Python’s easy programmability
arises in part from the large number of special cases in its semantics, but the spe-
cial cases in Python’s semantics must be supported by any analysis algorithm, sig-
nificantly complicating that algorithm. PyStream’s pointer analysis implements

72

most of Python’s semantics as analyzable functions, significantly simplifying the
algorithm. PyStream can deal more effectively with all of Python’s special cases
because the special cases are not part of PyStream’s analysis algorithm. PyS-
tream’s pointer analysis algorithm deals mostly with function calls and memory
operations and contains little embedded information about Python.

The simplicity of this approach is made possible by PyStream’s evaluation of a
large number of additional functions. These additional functions within PyStream
contain the language semantics that systems such as Starkiller must otherwise em-
bed in their analysis algorithms. As will be seen later in this chapter, PyStream’s
pointer analysis processes roughly 10 support function contexts for every user
function context but only 2 support operations for every user operation.

7.5.1 Python Semantics Embedded in PyStream

Although PyStream lowers many of Python’s semantics into functions, PyStream
intentionally retains some of Python’s semantics in its pointer analysis algorithm
in order to enhance analysis precision. The retained semantics are most often
found where control-flow loops would otherwise occur in the lowered code. Like
most other pointer analysis algorithms, PyStream’s pointer analysis merges all
iterations of a loop when the loop is analyzed. If PyStream lowered loops into
code instead of retaining them in the analysis algorithm, then the loops would be
merged and not be resolved with precision. Implementing these loops in PyS-
tream’s analysis algorithm effectively allows the loops to be unrolled during eval-
uation, increasing the precision of the analysis.

One example of a loop from Python’s semantics, which PyStream implements
in its analysis, is a loop binding a varg object to function parameters. In Python,
varg objects are expanded into positional parameters by iterating over the fields of
the varg object. Merging the iterations of this loop would prevent arguments from
being precisely transferred to parameters. Embedding this loop in PyStream’s
pointer analysis allows the loop to be unrolled and each argument individually
transferred to its corresponding parameter.

A similar loop occurs when Python looks up values in a class dictionary. If a
requested attribute is not contained in the dictionary of a class, then the lookup is
performed on each superclass of the class until the attribute is found. This lookup
can be implemented as a loop that is terminated when the attribute is found. If this

73

loop is lowered into a function, the resulting analysis would not terminate when
the first match was found; rather, it would return the union of all matches. At min-
imum, this would severely reduce the precision of calls to overridden methods,
because the overriding method would not mask the overridden method. Adding
support for class dictionary lookups in the analysis algorithm, instead of lower-
ing them into a function, improves precision. Precision is improved by allowing
each iteration of the loop to be evaluated separately and by allowing for early
termination of the loop.

In order to further simplify class dictionary lookups, the PyStream language
requires that class dictionaries be immutable. Otherwise, the analysis would need
to monitor each class dictionary for changes and reevaluate certain lookups when
changes to a class dictionary were detected. Making class dictionaries immutable
avoids this complication. PyStream also improves performance by flattening class
dictionaries down the class hierarchy. Immutable class dictionaries are acceptable
when compiling a shader program, because all objects passed into the shader are
immutable.

7.6 Low-Level Object Modeling in PyStream

“Everything should be made as simple as possible, but not one bit
simpler.” - Albert Einstein (attributed)

For use in PyStream, a low-level object model for Python was developed. It is
a memory model that allows semantically accurate analysis of Python objects.
Python has complex semantics for getting and setting attributes on Python ob-
jects. If these semantics are not precisely modeled, the resulting analysis is un-
sound. Using a low-level object model allows for pointer analysis that actually
reflects true executions of a program. Before discussing PyStream’s low-level ob-
ject model, it is necessary to discuss how Python implements attributes, and how
other analysis algorithms model objects.

7.6.1 Python Attributes

When an attribute is set on an object, the Python run time first checks if a corre-
sponding descriptor can be found in the object’s class dictionary. Descriptors are

74

objects that contain methods for getting and setting the attributes of other objects.
How getting and setting an attribute is implemented by a descriptor depends on
the descriptor. A descriptor can either get or set a specific field, or call arbitrary
code. If no appropriate descriptor is found, the Python run time checks whether
the object has an associated dictionary. If it does, then the attribute is written
into the dictionary. This association of dictionaries with objects allows Python
to attach arbitrary attributes, referred to in this dissertation as ad hoc attributes,
to some objects. Ad hoc attributes can be modified indirectly by a Python pro-
gram, a feature that complicates analysis. Direct references can be obtained to ad
hoc attribute dictionaries during execution, which allows ad hoc attributes to be
read and written as if they were not attributes of the object. For example, Python
module objects store their ad hoc attributes in the same dictionary that is used by
functions inside the module as a global dictionary.

This overall process by which Python handles attributes creates a situation
where the nature of an “attribute” in Python is not clearly defined. Python object
attributes are a convention of the language rather than a feature of the implemen-
tation. This explanation of Python attributes addresses only the most common
methods used by Python for setting attributes. Additional methods can be intro-
duced because a programmer can customize what occurs when attributes are set.

7.6.2 Prior Approaches to Object Modeling

PyStream models objects differently from Starkiller and PyPy, which model ob-
jects at a high level. To decrease the complexity of the model, high-level modeling
only approximates Python’s semantics. Starkiller models attributes according to
Python’s high-level conventions. Operations in Starkiller that get and set attributes
are implemented as if they get and set fields on the target object. Starkiller’s high-
level model does not consider the full range of Python’s semantics but adds fea-
tures to its model that allow Python’s semantics to be approximated. For instance,
in Starkiller’s model, the creation of bound method objects in Python is supported
with a special feature and another special feature supports situations where the
getting or setting of attributes is customized. Some features of Python’s seman-
tics are unsupported by Starkiller. Two examples are the indirect access of ad hoc
attribute dictionaries and the use of descriptor objects, except for those that create
bound methods.

75

PyPy models Python attributes in a manner similar to that described for Starkiller.
Unlike Starkiller, PyPy’s analysis only applies to the RPython language, which is
a restricted version of Python. The RPython language is defined in a manner that
ends where it begins as being whatever PyPy’s analysis can be applied to. PyPy’s
analysis is therefore sound by definition. The use of high-level object modeling
by PyPy impedes expanding the definition of the RPython language because of
the complexities of fully supporting Python’s semantics with a high-level model.

7.6.3 PyStream’s Low-level Object Model

In contrast to Starkiller and PyPy, PyStream uses a low-level modeling approach,
which allows it to fully support Python’s semantics for object attributes. Starkiller
and PyPy support only a subset of Python’s object attribute semantics because
of approximations inherent in their high-level models. The model used by PyS-
tream is an abstracted version of how the interpreter implements objects. Corre-
spondence to high-level “object attributes” is not even considered by PyStream’s
pointer analysis. Instead, PyStream models memory operations at the level of the
Python interpreter. This is possible only because PyStream explicitly analyzes
code from the interpreter and from the Python run time.

Fields in PyStream are divided into four groups: interpreter fields, attribute
fields, array fields, and dictionary fields. These groups are described as follows:

Interpreter Fields. Interpreter fields are low-level fields that store bookkeeping
information used by the interpreter. For example, the type pointer for an object
and dictionaries used to store ad hoc attributes are held in interpreter fields.

Attribute Fields. Attribute fields are low-level fields that hold attributes that
have been explicitly declared for a type. These fields correspond to Python’s
__slots__ declaration within a class declaration. Declaring a slot in Python cre-
ates an attribute field on each instance object and adds a descriptor object to the
class dictionary that can get and set the field. Due to a quirk in Python’s imple-
mentation, a subclass may declare a slot with a name that has been previously
declared in a superclass. This can result in an instance having multiple fields that
share a single name. To deal with this rare case, attribute fields in PyStream are
given a unique name according to their descriptor object, rather than using their
declared name.

Array Fields. Array fields are low-level fields that hold the numerically in-

76

dexed attributes of tuple objects and list objects. For example, tuple objects have
explicitly numbered array fields, 0, 1, 2, etc. The length of a tuple is stored in an
interpreter field. List objects have a single array field used to hold every object
the list may contain. List objects can be dynamically edited and resized inside
loops, which makes tracking their precise contents impractical. If the length of a
tuple object cannot be determined by the pointer analysis, then the tuple object is
analyzed like a list object.

Dictionary Fields. Dictionary fields are two separate low-level fields that are
used together in PyStream’s pointer analysis to implement dictionary objects. One
dictionary field holds dictionary keys; the other holds dictionary values. When
a key/value pair is stored into a dictionary, the analysis checks if the key is a
preexisting value object, such as a string or an integer. If this is the case, the
interpreter is used to hash the key. Hashing creates a number for the key. The
key is then stored in a dictionary key field named for the hash. The value is
similarly stored in a dictionary value field, also named for the hash. If the hash
cannot be determined, storing the key/value pair is treated as if it were ambiguous.
An ambiguous memory operation is an instruction in a program that can access
more than one field at run time. The mechanics of ambiguous memory operations
are detailed in Section 7.6.4. A similar process is used to read values from a
dictionary. Modeling dictionaries in this manner allows global variables and ad
hoc attributes to be precisely resolved by PyStream’s pointer analysis because the
hashes rarely collide. In the rare case that they do collide, the analysis continues
with a slightly less precise result, referred to as graceful degradation.

7.6.4 PyStream’s Loadall and Storeall Fields

Loadall and storeall fields are used in PyStream to support ambiguous memory
operations for all of the previously described field types. Loadall fields are read
by ambiguous loads. Storeall fields are written to by ambiguous stores. These
fields are only created when an ambiguous memory operation arises.

Ambiguity can occur when PyStream’s pointer analysis cannot determine which
field is being accessed or when a single operation could access one of several
fields at run time. Both types of ambiguities may occur, for instance, when us-
ing Python’s built-in getattr function. The built-in getattr function can read
arbitrary attributes from an object. The attribute getattr accesses is determined

77

by a string passed to the function. If the string is a constant value, PyStream can
precisely resolve the load. If the string is dynamically allocated, PyStream is un-
able to determine which attribute will be loaded. In that case, the loadall field is
loaded instead. The loadall field contains a merged copy of all of the other sim-
ilarly typed fields. Ambiguous loads do not directly reference all of these fields
because new fields may be discovered later. When a new field is discovered, it is
simpler to connect it to the loadall field than to every ambiguous load. A similar
storeall field exists to support an ambiguous store. Storeall fields copy their con-
tents into every field. The example shaders used for this research do not contain
any ambiguous loads or stores.

7.7 Cascaded Call Constraints in PyStream

Pointer analysis in the PyStream compiler analyzes a program by building and
solving a network of constraints. One kind of constraint used in pointer analysis
is a call constraint. Low-level languages, such as C, have simple calling conven-
tions for which a call constraint is relatively simple to implement. Python has
complex calling conventions that make call constraints difficult to implement, es-
pecially as a single monolithic constraint. PyStream factors the implementation
of a call constraint into three steps, each in its own constraint. PyStream uses
multiple constraints to represent a single function call. This feature of PyStream’s
pointer analysis is referred to as cascaded call constraints. This approach allows
subproblems to be dealt with separately in sequence and makes it easier for the
pointer analysis to incrementalize the reevaluation of a call constraint.

The complexity inherent in evaluating Python function calls in a pointer analy-
sis arises from both the use of CPA contexts and the degree to which resolving a
call depends on the heap. The use of CPA contexts requires that a call constraint
be reevaluated whenever new argument types are discovered. If new argument
types are discovered by the pointer analysis, then the call must be linked to addi-
tional CPA contexts. Determining which contexts are called may also depend on
the contents of heap objects. For example, the contents of tuples held by a varg
are utilized to determine the CPA context. (PyStream’s use of operation lowering,
described in Section 6.3, guarantees that varg objects will be tuples.) Unpacking
the contents of a varg tuple while resolving a call requires checking the length of
the tuple and reading each field that in contains. A given call constraint may have

78

several possible varg tuples to consider. PyStream’s pointer analysis must reeval-
uate a call constraint whenever a new varg tuple is discovered or a field of a varg
tuple changes. Default arguments and kargs must be unpacked in a similar man-
ner. Python call constraints must monitor all arguments associated with the call
and must monitor any object fields discovered while evaluating how the call used
varg tuples, default dictionaries, and kargs. The large number of dependencies in
a call constraint make a single monolithic call constraint complex to implement,
particularly if incremental reevaluation is designed into the pointer analysis.

PyStream’s cascaded call constraints are simpler to implement than a single
monolithic constraint. Cascaded means that the first constraint can create mul-
tiple versions of the second constraint and a second constraint can in turn create
multiple versions of the third. The first constraint is created for every call site and
monitors the argument being called. When the first constraint discovers a new
object pointed to by the argument being called, it creates a second constraint for
each new object.

A second constraint unpacks the arguments contained in heap objects and maps
arguments to parameters. If the object being called is a Python function object, the
second constraint monitors the func_defaults field of the object. Each second
constraint also monitors the varg and the karg, if they exist. A second constraint
unpacks all the arguments contained in the heap objects, and for every possible
combination of heap objects, it computes how all of the call’s arguments are trans-
ferred to the invoked function. Each second constraint can immediately determine
what function is being invoked, based on the object which the first constraint used
to generate the second. If mapping between arguments and parameters is possible,
a second constraint creates a third constraint containing the mapping.

Each third constraint connects the call to the CPA contexts that are invoked.
The third constraint monitors all the arguments and fields that are mapped to pa-
rameters. The third constraint takes the Cartesian product of the parameters to
determine which context is invoked. Arguments are transferred to each context’s
parameters using filtered copy constraints that eliminate all objects whose types
do not match the CPA context.

79

7.8 Extended Types in PyStream

PyStream uses a technique called extended types to increase heap sensitivity in
known, critical cases. Extended types give critical objects with identical Python
types different names in PyStream’s pointer analysis, allowing precise resolution
of data polymorphism in these cases. Data polymorphism, also known as generic

data types, is a data type’s ability to hold a variety of object types. Without
sufficient heap sensitivity, the different uses of a polymorphic data type become
merged by the pointer analysis. Extended types keep critical objects separate us-
ing a policy, or a set of rules, applied by PyStream’s pointer analysis. Starkiller
also contains a policy that separates critical data polymorphic objects, but it only
covers a single case. PyPy’s approach is to infer one type per variable and to
explicitly parametrize polymorphic data types. A policy for separating data poly-
morphism is irrelevant to PyPy’s dataflow analysis, as a variable has only a single,
parametrized type.

Extended types are called “types” because of how they interact with CPA con-
texts. Objects with different extended types are not just given different names in
the analysis, but they are treated as separate types when CPA contexts are cre-
ated from parameter types. An example that illustrates PyStream’s extended type
system is to describe how it deals with bound method objects, which are objects
that Python creates when resolving method calls. A bound method object con-
tains a reference to both the object on which the method is being invoked and
to the function implementing the method. Bound method objects are a polymor-
phic data type because they may hold any type of instance object and any type
of function object. If PyStream’s pointer analysis happened to merge two unre-
lated bound method objects, the correlation between instance objects and function
objects would be lost. In other words, calling a merged bound method object re-
sults in every instance object being passed to every function. Without an extended
type policy, an N2 explosion of combinations would be considered by the pointer
analysis, almost all combinations unrealizable in practice. When a bound method
object is created during PyStream’s pointer analysis, PyStream’s extended type
policy gives the bound method object a type parametrized by both the instance
object and the function object. PyStream never merges objects of different types.
Parametrizing the bound method object’s type allows every combination of in-
stance object and function to be kept separate. Despite the fact that an object’s
type is parametrized by the types of its fields, extended types are unrelated to field

80

sensitivity, and are purely a mechanism for improving heap sensitivity.
An extended type must provide that none of its parameters, either directly or

indirectly, contain a similar extended type. If this occurred, the analysis might
create an unbounded number of extended types. For example, the extended type
for a bound method object cannot be parametrized with an extended type for an-
other bound method object. If this occurs, the analysis must unextend the type
used as a parameter.

PyStream uses the parameter types present in the CPA contexts to create all
of its extend types for dynamically allocated objects. PyStream does not pull
any information from additional sources. This makes it resilient with respect to
low-level transformations that may destroy the high-level structure of a program.
Starkiller generates extended types for bound method objects as well. Starkiller
pulls the information it uses to generate the extended types from its high-level
object modeling (Section 7.6).

PyStream uses extended types in a number of additional situations:
Vparam Tuples Created in Different Contexts. Different CPA contexts will cre-

ate vparam tuples with distinctly different content. If these tuples are not kept
separate, the precision of data passed through generic functions is reduced.

Ad hoc Attribute Dictionaries. If ad hoc dictionaries are not kept separate, ad
hoc attributes cannot be precisely correlated with the objects to which they are
attached.

Container Objects. Container objects including tuples, lists, and dictionaries
are inherently data-polymorphic.

Preexisting Objects. Preexisting objects are discussed in the following section.

7.8.1 Preexisting Object Types

PyStream’s pointer analysis keeps preexisting objects separate. Much of the in-
formation that determines the semantics of a Python program is stored in the heap
during program initialization. Python stores both function and class declarations
as data structures. If a pointer analysis cannot distinguish between these data
structures, the analysis cannot determine the structure of the program. PyStream
distinguishes between these structures by using extended types to distinguish be-
tween preexisting objects. This feature of the extended type system even includes
treating different constant strings as if the strings had different types and giv-

81

ing them different names in the analysis. This is essential for resolving attribute
lookups because this feature causes differently named attribute lookups to be sep-
arated by the CPA contexts.

PyStream’s policy for separating preexisting objects works well when compil-
ing shaders, as is demonstrated in this research, but may be too aggressive for the
broader range of Python programs. PyStream’s policy for distinguishing between
every preexisting object can create extraneous objects in the analysis. This phe-
nomenon can be observed when applying PyStream’s pointer analysis algorithms
to PyStone, a common Python benchmark. PyStone contains a list of lists imple-
menting a two-dimensional array. Modeling each of the sublists separately does
not improve precision because the sublists are used interchangeably. PyStream did
not encounter any such cases when compiling the example shaders. PyStream’s
extended type policy could be tuned to group preexisting objects in cases where
keeping them separate does not improve precision.

7.8.2 Other Techniques for Increasing Heap Sensitivity

One commonly used technique for increasing heap sensitivity, referred to in this
dissertation as k-op object cloning, keeps objects separate based on the last k
calls (where k may be an arbitrary number) that lead to an object’s allocation site.
This approach cannot replace extended types, but is complementary to it. An
example that illustrates why k-op object cloning cannot replace extended types is
polymorphic method calls in Python. Separating objects based on the call path
to their allocation site, as k-op object cloning does, cannot distinguish between
different versions of a polymorphic bound method object, because all versions
of the object are allocated at the same point in the program. Extended types can
distinguish between these versions of the object. PyStream has the option of using
k-op object cloning during analysis, when desired, to increase heap sensitivity in
cases not covered by the extended type policy.

7.9 Control Sensitivity in PyStream

Control sensitivity refers to the ability of an analysis algorithm to distinguish what
control flow can occur during execution. Control sensitivity is necessary to pre-
cisely analyze Python programs because Python programs commonly contain ad

82

class vec2(object):
def __init__(self , x, y=None):

if isinstance(x, vec2):
assert y is None
self.x = x.x
self.y = x.y

else:
self.x = x
self.y = y

Figure 7.7: vec2 Initializer

hoc polymorphism implemented using Python’s control flow constructs. Ad hoc
polymorphism occurs when a program provides different implementations of a
function depending on the types of the arguments. For example, function over-
loading in other languages is a form of ad hoc polymorphism. Python does not
support function overloading. A common Python idiom is to explicitly decode
parameter types inside of a function. Effectively, this is a dynamic version of
function overloading. Figure 7.7 shows how the explicit decoding of parameter
types is used to emulate GLSL’s overloaded constructors for the vec2 type in a
Python reimplementation of the vec2 type. If the vec2 constructor is passed a
vec2 object, it behaves like a copy constructor. If the vec2 constructor is passed
two floating point values, it initializes the new instance’s fields with each argu-
ment.

When the Python implementation of the vec2 constructor is analyzed without
control sensitivity, otherwise unrealizable dataflow appears in the analysis. Us-
ing CPA contexts will cause the two cases to be analyzed separately, but this is
not sufficient to maintain precision. Unrealizable dataflow appears because both
blocks of the “if” statement are evaluated without regard for the value of the con-
ditional. This has the same effect as if all versions of an overloaded function in a
C program were merged together before being analyzed. In the case where vec2

behaves as a copy constructor, a pointer analysis without control sensitivity will
indicate that self.x may point to a float or to a vec2, and self.y may point
to a float or None. In actuality, self.x and self.y can only point to floats. In
the case where vec2 is passed two floating point numbers, the analysis would pro-
vide the correct pointer information, but also indicate that the function attempts
to read the non-existent attributes x and y from the x argument. The more ad hoc
polymorphic cases there are in a function, the more the precision declines. The

83

idiom of explicitly decoding types to implement ad hoc polymorphism occurs re-
peatedly throughout the Python run time. This idiom occurs in critical sections of
code such as resolving an object’s attribute.

PyStream is affected by this problem to a greater degree than other Python
compilers, such as Starkiller, because PyStream analyzes the Python run time as
code. Starkiller effectively contains specialized versions of each ad hoc polymor-
phic function in the run time and has a policy that indicates when each version
should be applied. Although this approach improves Starkiller’s precision in tar-
geted cases, it does not improve precision when dealing with arbitrary ad hoc
polymorphic functions. Embedding all of this information in Starkiller’s analysis
algorithm also increases the complexity of its algorithm.

PyPy handles ad hoc polymorphism by adding multimethods to Python for use
in its interpreter. A multimethod is analogous to an overloaded function, separat-
ing ad hoc polymorphism into a collection of methods. An analysis algorithm can
then select among these implementations as it resolves an invocation to a multi-
method. This avoids the need for control sensitivity because ad hoc polymorphism
is not implemented with control flow.

PyStream uses control sensitivity, rather than explicit specialization or multi-
methods, so that it can precisely resolve a wide range of ad hoc polymorphic func-
tions. PyStream is able to do this without embedding large amounts of language-
specific knowledge into its analysis algorithm. PyStream implements control sen-
sitivity by performing pointer analysis on an operation only when there is a proven
possibility that it may be executed. Determining if an operation will be executed
must be allowed in the design of the analysis algorithm. For example, to precisely
resolve an “if” statement in a control-sensitive pointer analysis will require that
the conditional evaluate to a constant Boolean value. This means that conditions
used to implement ad hoc polymorphism must evaluate to constant Boolean val-
ues, which in turn entails that some form of constant folding must be performed.

7.9.1 Dynamic Constant Folding

Dynamic constant folding is constant folding that occurs while a pointer analysis
is run. Control sensitivity is impossible in Python without the use of dynamic
constant folding. In general, constant folding cannot be performed dynamically
during pointer analysis, because it can create an unbounded number of objects

84

if isinstance(x, (vec2 , vec3 , vec4)):
....

(a)

isinstance = getGlobal(func , ’isinstance ’)
t0 = getGlobal(func , ’vec2 ’)
t1 = getGlobal(func , ’vec3 ’)
t2 = getGlobal(func , ’vec4 ’)
tup = buildTuple(t0 , t1, t2)
cond = isinstance(x, tup)
bcond = bool(cond)
if bcond:

....

(b)

Figure 7.8: Dynamic Constant Folding Example

when there are loops in the constraint graph. The cases in which PyStream’s
pointer analysis performs dynamic constant folding are restricted to avoid creating
an unbounded number of objects. Dynamic constant folding is performed only
when a function’s arguments are all preexisting objects and the function depends
only on its arguments, does not have side effects, and produces a finite number
of values. PyStream’s pointer analysis performs dynamic constant folding on a
function only if the function produces Boolean values or tuples of a known number
of non-tuple preexisting objects. This bounds the number of objects that can be
created during analysis, making it safe to perform dynamic constant folding. The
values produced by constant folding are considered preexisting objects, allowing
the output of one constant folding to be the input for another. Restrictions on
dynamic constant folding are designed so that control sensitivity is possible in
most precision-critical cases.

Figure 7.8a shows a prototypical example where dynamic constant folding is
necessary to enable control sensitivity. In this case, an “if” statement controls the
execution of subsequent code based on the type of the object held by x. Although
it is not immediately apparent, the example contains multiple operations that must
be precisely resolved to determine the resulting control flow. When the example
is converted into PyStream’s standard IR (Section 5.5), it is broken down into the
sequence of operations shown in Figure 7.8b. Resolving the control flow requires
that four global variable lookups be resolved precisely and that three function calls
be dynamically folded.

The global variable lookups are resolved precisely with the help of extended

85

types. The global dictionary attached to func will typically be preexisting and
unique, unless it has been replaced at run time. Preexisting objects are kept sep-
arate from each other, allowing the global lookups to be precisely resolved. The
call to buildTuple is folded because all of its arguments are existing objects and
the arguments are not tuples. The call to isinstance cannot be folded if x does
not point to a preexisting object. It is unlikely that x will point to a preexisting
object in practice. The call can be resolved precisely, however, since isinstance
is implemented as calling issubclass on x’s type object. Type objects are al-
most always existing objects, allowing issubclass to be folded. The call to
isinstance therefore produces the same result as if it were folded. Finally, the
call to bool is folded, returning the same constant Boolean object that is passed to
it. Control sensitivity can be applied because bcond is a constant Boolean value.

In most cases, dynamic constant folding allows for the precise resolution of
Python’s idiomatic ad hoc polymorphism. Dynamic constant folding is a nec-
essary condition for control sensitivity, since without dynamic constant folding
very few conditionals could be precisely resolved. Utilizing CPA contexts is an-
other necessary condition for making control sensitivity worthwhile. CPA con-
texts force each argument to have a single type, which allows precise folding of
type checks.

7.9.2 Field Check Operations

A field check operation is a low-level memory operation that checks if an object
contains a specified field. These operations are used in the Python interpreter to
implement ad hoc polymorphism depending on what fields an object contains. For
a pointer analysis to resolve a field check operation with precision, it must make
a determination of whether a field may be defined and whether a field may not be
defined. One does not necessarily exclude the other, as pointer analysis considers
all possible executions simultaneously. The existence of pointer information for a
field implies that the field may be defined, but does not guarantee it. For example,
a field may be deleted after it is defined. A flow-insensitive pointer analysis al-
gorithm will not delete the pointer information when a field is deleted. PyStream
augments pointer analysis by simultaneously performing a dataflow analysis that
determines whether a field can ever be undefined. Finding that a field may be
deleted will cause the dataflow analysis to indicate that the field may be undefined.

86

Combining pointer information with this dataflow analysis allows field check op-
erations to be precisely resolved. PyStream is able to precisely resolve all check
constraints in the example shaders used for this research (Section 8.4).

7.10 Quantifying the Results of PyStream’s Pointer
Analysis

Figure 7.9 shows the result of performing PyStream’s pointer analysis on the
Python example shaders. Figure 7.9a shows the number of live functions discov-
ered by the pointer analysis and the number of corresponding function contexts.
The functions are divided by type:

User. User functions are written by a programmer when creating a Python
shader program.

GLSL. GLSL functions have been reimplemented in Python to provide compat-
ibility with GLSL.

Interpreter. Interpreter functions are introduced by operation lowering. For
example, the addition of two objects is lowered into a direct call to an interpreter
function that implements Python’s semantics for addition.

Run time. Run time functions are part of Python but are not part of the Python
interpreter. For example, the default functionality for getting an attribute from an
object is implemented as a method and is considered part of the run time.

Primitive. Primitive functions implement operations such as adding two inte-
gers together. Primitive functions are abstracted versions of the low-level func-
tionality that manipulates Python’s data types.

Figure 7.9b shows the number of operations in the functions discovered by the
pointer analysis and the number of operations weighted by the number of contexts.
This gives a rough idea of the work done during pointer analysis.

7.10.1 Number of Contexts

The PyStream compiler creates a large number of function contexts. Many of the
functions in the example shaders used in this research are polymorphic. PyStream
uses multiple contexts to keep polymorphic instances of a function separate. The
transformations applied by the PyStream compiler immediately after pointer anal-

87

functions % contexts % ratio
user 47 32.0 69 3.4 1.5
glsl 34 23.1 97 4.7 2.9

interp 22 15.0 565 27.4 25.7
runtime 32 21.8 1234 59.9 38.6
primitive 12 8.2 94 4.6 7.8

total 147 100.0 2059 100.0 14.0

(a)

ops % c ops % ratio
user 661 30.2 788 4.2 1.2
glsl 1125 51.3 6255 33.1 5.6

interp 260 11.9 4398 23.3 16.9
runtime 134 6.1 7376 39.0 55.0
primitive 12 0.5 94 0.5 7.8

total 2192 100.0 18911 100.0 8.6

(b)

CopyLocal

Call

DirectCall

Load

Store
Allocate

Check
Is

(c)

Figure 7.9: Initial Pointer Analysis Statistics

88

ysis focus on specializing polymorphic functions. These transformations reduce
the ratio of contexts per function by a factor of six (Section 8.4).

The large number of contexts is also necessary to precisely resolve global vari-
ables and attributes. PyStream creates a unique context for each unique global
variable. PyStream creates, for each unique attribute access, a unique context for
three different functions.

Looking at Figure 7.9a, user functions compose 32.0% of the functions ana-
lyzed, but only 3.4% of the contexts analyzed. There are two reasons for this.
First, the user functions are not polymorphic and do not require additional con-
texts to maintain precision. Second, multiple interpreter and run time functions
are called from each user function, which means that interpreter and run time
functions will be called more often during execution than user functions. These
function are also highly polymorphic.

7.10.2 Precision

PyStream’s initial pointer analysis produces excellent precision for the example
shaders. This was determined by manually inspecting the results of the pointer
analysis. The call graphs produced were not overestimated. The pointer informa-
tion produced contains only objects with types that may occur at run time. There
were some false dependencies between memory operations. These false depen-
dencies arose because PyStream’s heap sensitivity is not particularly aggressive
during the initial pointer analysis, outside of the cases when PyStream uses ex-
tended types. These false dependencies were easily removed by reanalyzing the
program with greater heap sensitivity after abstraction overhead has been elimi-
nated.

Table 7.1a shows the ApO using various levels of k-op object cloning during the
initial pointer analysis of the example shaders. The ApO is measured relative to
the ApO that can be inferred from precise, concrete type information. The time is
measured relative to pointer analysis without object cloning. PyStream’s pointer
analysis is able to provide better precision than type inference, improving ApO
by 62.5% when using only extended types for heap sensitivity. During the initial
pass, k-op object cloning is not profitable, providing only a minor improvement in
ApO at a large performance cost. Object cloning does not significantly improve
ApO because most memory operations in the original program access preexisting

89

Table 7.1: ApO Improvement

(a) First Pass

k % APO Time
0 37.4% 1.00
1 37.3% 1.45
3 35.5% 3.54
5 35.5% 7.60
7 35.2% 10.86

(b) Second Pass

k % APO Time
0 57.9% 1.00
1 46.1% 1.71
3 44.1% 2.44
5 44.1% 2.47
7 44.1% 2.49

objects that define the structure of the program, such as type objects and global
dictionaries. Extended types already distinguish between these objects. Large
amounts of indirection in the original program also reduce the usefulness of k-op
object cloning for reasonable values of k.

Table 7.1b shows the same measurements, but taken later in the compiler pipeline,
after most abstraction overhead has been eliminated. These measurements are not
directly comparable to the first set of measurements, as the structure of the pro-
gram has changed. In this situation, object cloning shows a larger improvement
in ApO, because memory operations that read the structure of the program have
been optimized away, and most of the remaining memory operations access ob-
jects that are not handled by extended types. Object cloning is only profitable up
to a point, because the call graphs of the example shader programs are shallow
due to the transformations that have been applied.

Using a summary-based top-down bottom-up pointer analysis algorithm [34,
36] would further improve precision, reduce the number of function contexts that
are needed to maintain precision, and make object cloning cheaper. This type of
analysis algorithm carefully controls what information flows backwards through
invocations. A version of this algorithm is being developed for PyStream. This
is an area of anticipated future research. Early results indicate that this new al-
gorithm is faster and more precise than the algorithm currently used in PyStream.
Adapting a new version of this pointer analysis algorithm, one originally formu-
lated for C, to Python has so far been straightforward using the techniques detailed
in this chapter.

90

7.10.3 Importance of Each Feature in PyStream’s Pointer
Analysis

It would be instructive to disable key features of PyStream’s pointer analysis,
such as CPA contexts, extended types, and control sensitivity, and see how they
each contribute to the overall precision. Unfortunately, these features interact in a
highly non-linear manner, and disabling any one of them prevents the pointer anal-
ysis from terminating. PyStream treats interpreter and run time functions as part of
the program being compiled, and performs pointer analysis on them with the rest
of the program. These functions are highly polymorphic, and many of them can
take an unlimited number of arguments because of Python’s calling conventions.
Disabling any key feature of PyStream’s pointer analysis causes a large amount of
imprecision, and this imprecision is amplified by loops in the call graph running
through interpreter and run time functions. Because these functions are highly
polymorphic, almost any way that these functions are invoked is valid, which al-
lows an unbounded amplification of spurious data flow. The number of arguments
passed to certain functions, such as the one that is invoked when a method object is
called, increases in an unbounded manner when any of these features is disabled.
No meaningful measurements can be taken when this occurs. The importance of
each feature in PyStream’s pointer analysis cannot be examined separately; it is
the interaction of all of these features that makes analysis possible.

7.11 Chapter Summary

This chapter has discussed pointer analysis for Python, based upon PyStream’s
pointer analysis applied to shader examples. The results obtained from running
PyStream’s pointer analysis on Python shader examples contribute to a general
understanding of how pointer analysis can be performed on Python.

There are significant advantages to analyzing high-level languages, such as
Python, with a low-level approach as used by the PyStream compiler. Existing
high-level analysis algorithms, used in Starkiller and PyPy, approximate Python’s
semantics in an unsound manner in order to simplify the high-level analysis al-
gorithm. Low-level analysis algorithms have a less complex structure and do not
encourage unsound simplifications. A low-level approach also makes it straight-
forward to adapt algorithms formulated for low-level languages to Python but

91

provides minimal high-level information about a program. Because Python’s se-
mantics have so many special cases, high-level information, even if entirely sound,
may not be completely useful to a compiler because a transformation would need
to take into account all of these cases. In some situations, high-level information
can be reconstructed by the compiler from the results of a low-level analysis, as
discussed in Section 8.2. Reconstructing high-level information after a low-level
analysis allows the compiler to selectively ignore unsupported special cases by
not reconstructing them.

Whether using a low-level or high-level approach to analysis, the analysis must
still support the complex calling conventions of Python. The PyStream compiler
demonstrates that Python’s function calls can be evaluated using cascaded call
constraints. Breaking a call in Python into cascaded steps greatly simplifies im-
plementation of a call constraint for pointer analysis.

A pointer analysis algorithm for Python must give special attention to precisely
resolving polymorphism in all its forms. CPA contexts are a common way of
dealing with parametric polymorphic functions in Python. In contrast, the exist-
ing techniques for dealing with polymorphic data types are less well established.
PyStream introduces the concept of extended types for increasing precision when
dealing with specific polymorphic data types. Ad hoc polymorphism has received
minimal attention as an issue for pointer analysis because it is not an issue in
languages that support function overloading, which Python does not. Python’s id-
iosyncratic methods for implementing ad hoc polymorphism present a new prob-
lem for pointer analysis. PyStream’s compiler demonstrates that these idiosyn-
crasies in Python can be dealt with using control sensitivity and dynamic constant
folding.

An advantage of using a low-level approach to analyzing Python is the oppor-
tunity it offers to adapt pointer analysis algorithms from low-level languages such
as C. There are many pointer analysis algorithms available for C, but very few
available for Python. The preliminary research required to develop PyStream’s
compiler relied on a simple pointer analysis algorithm and not one of the more
sophisticated algorithms available. Using a simpler algorithm helped clarify, as
the research progressed, how more sophisticated algorithms can be adapted to
Python. A function of this research was to determine how pointer analysis for
Python relates to what is currently known about pointer analysis.

92

Chapter 8

Eliminating Abstraction Overhead in Python

This chapter presents a sequence of transformations that the PyStream compiler
uses to eliminate much of Python’s abstraction overhead. Abstraction overhead
refers to parts of a program that were added to make programming easier, rather
than contributing to the program’s computational goals. This overhead takes the
form of indirection in the interpreter and the run time: indirect function calls, deep
call chains, temporary objects, and switches used to implement ad hoc polymor-
phism. The PyStream compiler must eliminate as much of this overhead as pos-
sible for two reasons. First, shaders are a performance-sensitive application. Sec-
ond, GLSL does not support pointers, making it difficult to implement many forms
of indirection. PyStream applies a sequence of transformations, some new and
some in common use, that have been engineered to eliminate much of Python’s
abstraction overhead.

8.1 Direct References to Preexisting Objects in
PyStream

If a local variable always points to a preexisting object, PyStream transforms the
variable into a direct reference to that preexisting object. Direct references to pre-
existing objects can significantly simplify Python programs. Python programs are
defined as preexisting data structures containing class objects, function objects,
global dictionaries, and similar. These data structures are always dynamically tra-
versed by a Python program as they can change at run time. This type of data
structure rarely changes, but Python must always assume it can. Direct references
to preexisting objects therefore allow dynamic traversal to be bypassed when the
traversal always produces the same result.

Transforming variables into direct references is a low-level transformation in
the PyStream compiler that subsumes a number of high-level transformations. For

93

def hello ():
print "hello"

def test ():
hello()

(a)

def test ():
obj = global_lookup(test , ’hello ’)
obj()

(b)

def test ():
<hello >()

(c)

Figure 8.1: Direct Reference Example

example, global variable lookup loads a global dictionary from a field on the cur-
rent function and checks if the global name exists in the dictionary. If it does not,
then global variable lookup falls back on checking the “built-in” global dictionary
for the same name. If the fields read by a global lookup are not modified at run
time, then the variable holding the result of the lookup can be transformed into a
reference to a preexisting object. The global lookup is later eliminated because it
has no side effects and its output is unused. Techniques that explicitly transform
global lookups are unnecessary in PyStream because they are eliminated with this
technique.

Figure 8.1a shows how a function call is lexically specified in a Python pro-
gram. In this example, the function test calls the function hello. Semantically,
the function call is implemented in Python with a combination of a dynamic global
value lookup and a call to the result of the lookup, as shown in Figure 8.1b. If
the global variable is not modified during execution, then the PyStream compiler
can replace the global variable lookup with a reference to an existing object, the
hello function object. There is no Python syntax for this situation, so Figure 8.1c
represents it with angled brackets.

94

8.2 Method Fusion in PyStream

Method fusion is a Python-specific transformation developed for this research that
detects and optimizes method calls. Python does not have a specialized bytecode
for performing method calls. This stands in stark contrast to other bytecode-based
object-oriented languages such as Java and Smalltalk. In Python, method calls
are performed with two separate operations. First, the attribute is resolved, which
results in a bound method object if the attribute resolves to a function in the class
dictionary. Second, the result of the lookup is called. If the result of the lookup
is a bound method object, then the call results in a method call. Method calls can
only be inferred by considering all the operations in a function. In addition, the
call graph must be taken into account, because it is not guaranteed that an attribute
lookup corresponds to a method lookup, even if it returns a bound method. For
example, a bound method may be stored in an instance variable.

PyStream uses a transformation, method fusion, to fuse method calls whenever
it is sound to do so. Soundness is inferred from the presence of specific patterns in
the call graph. Method fusion uses a high-level understanding of the semantics of
Python’s method calls to ensure soundness. A fused method call is implemented
as a single, PyStream-specific operation (Section 5.3.3) instead of two separate
operations. Fusing method calls simplifies the call graph of the program and elim-
inates the need for a temporary method object. Method fusion in PyStream has a
threefold benefit to the compilation process. First, eliminating the method object
in turn eliminates a number of memory operations. Second, consolidating method
calls into a single operation simplifies any subsequent transformations. Finally,
eliminating the method object makes it easier to precisely resolve method calls in
any subsequent reanalysis. There are 91 method calls in the example shaders, and
they are all fused using this transformation.

8.2.1 Transforming Method Calls

Method fusion can be broken down into three phases. First, invocations that bind
methods and invocations that call methods are identified. Second, cases where
method fusion is sound are identified. Third, method fusion is performed.

The call graph of a program is examined to identify invocations that bind meth-
ods and invocations that call methods. To increase the applicability of this trans-
formation, invocations between contexts are considered rather than invocations

95

bound_method = o.m

interpreter_getattribute(o, ’m’)

object__getattribute__(o, ’m’)

function_get(func, o)

(a) Get Attribute

bound_method(...)

interpreter_call(bound_method, *vparam)

func(o, *vparam)

(b) Call

Figure 8.2: Method Fusion Call Chains

between functions. Python’s mechanism for getting attributes is highly polymor-
phic and the precise way it is being used can only be determined by examining the
individual contexts.

The analysis identifies unambiguous call chains that correspond to the standard
implementations for binding and calling methods. Figure 8.2a shows the standard
call chain for creating a bound method object. Creating bound method objects
starts with an interpreter operation to get an attribute, which then calls the default
object method for getting an attribute, which then uses a function object as a
descriptor object and calls the getter method of that function. Figure 8.2b shows
the standard call chain for calling a bound method object. Calling a bound method
object starts with an interpreter operation to call an object, which then calls a
bound method object, which in turn calls the function implementing the method.
Any deviation from these expected patterns or ambiguity in the call chain results
in the call chain being ignored. Any ambiguity in the data structures used for
method lookup also causes the call chain to be ignored.

Intraprocedural analysis is then performed to find cases where a bound method
object is created, called once, and never used again. In this case, the binding and
the calling operations are fused into a single method call operation, because the
transformation is known to be sound. It is worth noting that this transformation
changes the order of evaluation for a method call. Python’s semantics are such
that the method lookup is performed before any of the arguments are evaluated. If
evaluation of arguments associated with a method has any side effects that affect

96

method lookup, then this will cause the call chain corresponding to method lookup
to be ignored for reasons of ambiguity. Further, method lookup is guaranteed to
have no side effects that affect argument evaluation since method lookup only
modifies the bound method object, and the bound method object cannot leak in
cases where the transformation is applied. Changing the order of evaluation is
sound.

8.2.2 Necessity of a Specialized Transformation

Method fusion as used in the PyStream compiler cannot be duplicated with any
combination of aggressive low-level transformations. This is an exception to PyS-
tream’s overall low-level design. This exception is necessary because method calls
are an important feature in Python, but have no visible and concrete implemen-
tation when analyzed at a low level. The structure of method calls in Python can
be destroyed by low-level transformations because they do not understand higher-
level meaning. Knowledge about the structure of method calls in Python enables
an aggressive transformation in the PyStream compiler. Method fusion infers and
uses high-level information about a program.

Using a low-level approach, if the two operations implementing a method call
were fully inlined into a function, then it might be possible to use load elimination
to eliminate the use of a bound method object. Method fusion addresses two sig-
nificant problems with this low-level approach. First, a low-level approach does
not guarantee that inlining will produce such a serendipitous circumstance. In
fact, unless exhaustive inlining is preformed, or finely tuned heuristics are used,
it is highly unlikely that both operations implementing the method call will be
fully inlined. Second, the analysis of polymorphic method calls is imprecise un-
less there is a way to correlate the instance object with the function implement-
ing the method. The use of extended types initially allows this correlation to be
maintained by keeping each combination of instance and function separate in the
pointer analysis. Load elimination would dismantle this mechanism when it elim-
inates the bound method object. If the method call is transformed into a single
operation, maintaining this correlation is trivial.

Method fusion is low-level optimization that infers high-level information. This
allows for better results than using purely low-level optimizations. The low-level
formulation of this optimization makes it resilient when dealing with special cases

97

in Python’s semantics because high-level information is only inferred in the cases
that method fusion can be performed.

8.3 Initial Optimization Results

The transformations both creating direct references to preexisting objects and fus-
ing method calls are not stand-alone optimizations; rather, they enable aggressive
constant folding, dead code elimination, and the conversion of method calls into
direct calls. All of these transformations taken together reduce the size of the
example shaders by half, both in terms of actual operations and in terms of con-
textual operations. The result of applying these transformations is shown in Fig-
ure 8.3. Figure 8.3c shows the percentage of contextual operations that were re-
moved by these transformations. In general, the number of contextual operations
removed by various transformations better reflects the elimination of polymor-
phism and abstraction overhead than the number of actual operations removed.
For example, it is easier for a compiler to implement two load operations that ac-
cess one field each, than it is for the compiler to to implement one load operation
that can access two different fields. Measuring the number of actual operations
would not reflect this. In some cases the number of actual operations can increase
while the number of contextual operations can decrease significantly.

8.4 Function Cloning in PyStream

PyStream uses function cloning to create specialized copies of polymorphic func-
tions. Function cloning uses a number of heuristics to determine when duplicating
a function is worthwhile. The method used in PyStream does not differ signifi-
cantly from that described by Plevyak and Chien [37]. Function cloning is quite
important to the PyStream compiler, because the ensuing specialization eliminates
large amounts of overhead stemming from the use of polymorphism.

For example, Figure 8.4a shows an ad hoc polymorphic function, vec2_add,
being called from the function test with two different type signatures. Fig-
ure 8.4b shows the result of cloning vec2_add into two specialized versions,
vec2_add_0 and vec2_add_1. Because each version is no longer used as a poly-
morphic function, the control flow used to implement ad hoc polymorphism can

98

functions % contexts % ratio
user 47 33.1 69 4.8 1.5
glsl 34 23.9 97 6.7 2.9

interp 20 14.1 413 28.7 20.6
runtime 29 20.4 768 53.3 26.5
primitive 12 8.5 93 6.5 7.8

total 142 100.0 1440 100.0 10.1

(a)

ops % c ops % ratio
user 515 42.0 639 8.5 1.2
glsl 560 45.7 2419 32.2 4.3

interp 69 5.6 1147 15.2 16.6
runtime 69 5.6 3226 42.9 46.8
primitive 12 1.0 93 1.2 7.8

total 1225 100.0 7524 100.0 6.1

(b)

previous current % removed
CopyLocal 1366 273 80.0

Call 2199 482 78.1
DirectCall 6857 3771 45.0

Load 5795 2255 61.1
Store 502 137 72.7

Allocate 222 163 26.6
Check 1740 381 78.1

Is 230 62 73.0
Total 18911 7524 60.2

(c)

CopyLocal
Call

DirectCall

Load

Store
Allocate

CheckIs

(d)

Figure 8.3: Initial Optimization Statistics

99

def vec2_add(self , other):
if isinstance(other , vec2):

return vec2(self.x+other.x, self.y+other.y)
elif isinstance(other , float):

return vec2(self.x+other , self.y+other)
else:

return NotImplemented

def test ():
a = vec2 (1.0, 2.0)
b = vec2 (2.0, 1.0)
c = vec2_add(a, b)
d = vec2_add(c, -1.0)
return d

(a)

def vec2_add_0(self , other):
return vec2(self.x+other.x, self.y+other.y)

def vec2_add_1(self , other):
return vec2(self.x+other , self.y+other)

def test ():
a = vec2 (1.0, 2.0)
b = vec2 (2.0, 1.0)
c = vec2_add_0(a, b)
d = vec2_add_1(c, -1.0)
return d

(b)

Figure 8.4: Function Cloning Example

100

be specialized out of each cloned function. Despite the fact that the number of
functions increases, the number of operations remains the same.

Figure 8.5 shows the effects of applying function cloning on the example shaders
used in this research. It is interesting to note that despite quadrupling the number
of functions, the number of operations only increases by ~30%. This is can be at-
tributed to the extensive elimination of Python’s idiomatic ad hoc polymorphism.
Ad hoc polymorphism is mostly found in functions that have multiple contexts, so
the number of contextual operations is decreased by ~70% even though the num-
ber of actual operations is slightly increased. After cloning, all call operations
in the example shaders can be converted into direct call operations. All check
and “is” operations can also be discarded from the example shaders because their
results are constant once polymorphism is eliminated via cloning.

8.5 Argument Normalization in PyStream

Argument normalization is a Python-specific transformation developed for this
research that simplifies the use of Python’s calling conventions whenever pos-
sible. Python’s calling conventions (Section 7.7) are useful for implementing
generic functions, but most generic functions are completely specialized by func-
tion cloning. Most of the remaining vargs, vparams, and similar are therefore
vestigial, and can be eliminated with a transformation. Elimination of these fea-
tures simplifies the program and eliminates a number of memory operations and
object allocations. The PyStream compiler simplifies calling conventions with a
simple but novel transformation called argument normalization.

Figure 8.6a shows the function that is invoked when a type object is called to
create an instance object. After function cloning, the number of variable parame-
ters may be fixed. For example, when calling the vec2 type object with two float

values as parameters, the vparam will have a length of two. Figure 8.6b shows the
effect of argument normalization if it is known that the function has exactly two
variable parameters.

Argument normalization is an intraprocedural transformation. The transforma-
tion first looks for functions with a vparam parameter containing tuples of a single
known length. This means that the parameter can hold more than one tuple, but
all of the tuples it holds must have the same finite length. The transformation then
checks if the vparam is only used inside the function as a varg, or indexed with

101

functions % contexts % ratio
user 52 8.4 69 5.0 1.3
glsl 43 7.0 97 7.1 2.3

interp 187 30.4 409 29.9 2.2
runtime 322 52.3 700 51.2 2.2
primitive 12 1.9 93 6.8 7.8

total 616 100.0 1368 100.0 2.2

(a)

ops % c ops % ratio
user 525 32.1 609 20.4 1.2
glsl 551 33.7 1023 34.3 1.9

interp 202 12.3 436 14.6 2.2
runtime 347 21.2 818 27.5 2.4
primitive 12 0.7 93 3.1 7.8

total 1637 100.0 2979 100.0 1.8

(b)

previous current % removed
CopyLocal 273 22 91.9

Call 482 0 100.0
DirectCall 3771 2542 32.6

Load 2255 125 94.5
Store 137 137 0.0

Allocate 163 153 6.1
Check 381 0 100.0

Is 62 0 100.0
Total 7524 2979 60.4

(c)

CopyLocal

DirectCall

Load

Store
Allocate

(d)

Figure 8.5: Function Cloning Statistics

102

def type_call(cls , *vparam):
obj = cls.__new__ (* vparam)
obj.__init__ (* vparam)
return obj

(a)

def type_call(cls , p0 , p1):
obj = cls.__new__(p0 , p1)
obj.__init__(p0, p1)
return obj

(b)

Figure 8.6: Argument Normalization Example

Table 8.1: Argument Normalization Statistics

Original Cloned Normalized
vparam 5 27 0

varg 4 29 0

constant values. If this is the case, then the function parameters are transformed,
eliminating the vparam and adding new positional parameters. The number of
positional parameters matches the length of the vparam tuple. The body of the
function is transformed by replacing uses of the old vparam with the correspond-
ing new positional parameters.

Table 8.1 shows the number of vparams and vargs in the original shaders, after
cloning, and after argument normalization. The vparams and vargs in the example
shaders are largely found in the interpreter and run time code. Argument normal-
ization is able to eliminate them all. Argument normalization is quite effective
despite the strict conditions for soundness, similar to method fusion. This can be
attributed to the predictable nature of most code.

8.6 Exhaustive Function Inlining in PyStream

After argument normalization, PyStream exhaustively inlines functions. Exhaus-
tive inlining is a transformation that consolidates a Python shader into a single
function. Function inlining is a transformation that replaces a call site with the
body of the function being called. This eliminates function call overhead and
allows additional opportunities for optimization. Exhaustive inlining is a transfor-
mation that inlines functions until it is no longer possible to do so.

Algorithm 8.1 shows the algorithm that PyStream uses to exhaustively inline
functions. The PyStream compiler exhaustively inlines all of a Python shader’s
functions into the root function of the shader. PyStream prevents functions corre-
sponding to built-in GLSL functions from being inlined so that the functions can

103

Algorithm 8.1 Exhaustive Function Inlining

for function in bottomUp(callGraph):
for op in function:

if isDirectCall(op):
target = invokes(op)
if notGLSLFunction(target):

replace(op, body(target))

def vec2_add_0(self , other):
return vec2(self.x+other.x, self.y+other.y)

def vec2_add_1(self , other):
return vec2(self.x+other , self.y+other)

def test ():
a = vec2 (1.0, 2.0)
b = vec2 (2.0, 1.0)
c = vec2_add_0(a, b)
d = vec2_add_1(c, -1.0)
return d

(a)

def test ():
a = vec2 (1.0, 2.0)
b = vec2 (2.0, 1.0)
c = vec2(a.x + b.x, a.y + b.y)
d = vec2(c.x + -1.0, c.y + -1.0)
return d

(b)

Figure 8.7: Function Inlining Example

be replaced when the shader is translated into GLSL. Exhaustive inlining allows
the subsequent transformation of a shader program into GLSL to be formulated
as an intraprocedural transformation. However, exhaustive inlining can duplicate
large amounts of code. This can reduce performance of a program and make a
compiler do more work, but for this research project, reducing the complexity
of translating Python into GLSL was worth using exhaustive inlining. In further
research, exhaustive inlining may become unnecessary when translating Python
into GLSL.

Figure 8.7a shows the result of function cloning, as previously shown in Fig-
ure 8.4b. Figure 8.7b shows the result of applying function inlining to this ex-
ample. Even if a Python shader was not exhaustively inlined, a less aggressive

104

functions contexts ratio
total 67 208 3.1

(a)

ops c ops ratio
total 1279 1851 1.4

(b)

previous current % removed
CopyLocal 22 54 -145.5
DirectCall 2542 983 61.3

Load 125 469 -275.2
Store 137 166 -21.2

Allocate 153 179 -17.0
Total 2979 1851 37.9

(c)

CopyLocal

DirectCall
Load

Store

Allocate

(d)

Figure 8.8: Function Inlining Statistics

form of inlining would still be necessary to clean up the call graph after function
cloning. Function cloning and the ensuing specialization result in a call graph
that contains a large number of small functions that do nothing but call other
functions. Most of these small functions are specialized versions of ad hoc poly-
morphic functions.

Figure 8.8 shows the result of performing exhaustive function inlining on the
example shaders. Unlike previous figures, the number of functions and operations
are not broken down by function type because functions intermingle once inlining
is performed. Function inlining reduces the number of direct calls by ~60%, while
increasing the number of loads and stores by ~240%. The overall effect on the
shader programs is a ~40% reduction of contextual operations because there are
more direct call operations that any other type.

105

8.7 Chapter Summary

The first set of transformations applied by the PyStream compiler reduces the ac-
tual size (number of operations) of the example shaders by 43%. This percentage
belies the amount of polymorphism that is specialized by these transformations
because, if weighted by the number of contexts, the size of the example shaders
is reduced by 92%. This percentage reduction in shader size is more indicative of
the importance of these transformations, which were primarily designed to elimi-
nate indirection and ambiguity. Eliminating indirection and ambiguity effectively
eliminates abstraction overhead, making it easier to implement memory opera-
tions when the shaders are translated into GLSL.

Based on the operations that remain after inlining, it can be inferred that the
PyStream compiler is very successful at eliminating abstraction overhead in the
example shaders. All calls have been converted into direct calls and many direct
calls have been eliminated. In addition, all of the check and “is” operations —
which are primarily used to implement ad hoc polymorphism — are eliminated.
The PyStream compiler’s success at eliminating abstraction overhead is the result
of several factors. The PyStream language contains a number of design choices
that make it easier to compile than the full Python language. Requiring a closed
world and modeling shaders so that all input objects are immutable significantly
increase the latitude the PyStream compiler has in applying transformations. An-
other factor that makes compiling shaders easier is that the example shaders are
programmed in a style that favors allocating new objects over modifying existing
objects. This style is not particularly onerous to follow and it reduces the number
of difficult cases the compiler must deal with. Another factor is that the example
shaders do not contain any cases that are particularly tricky for the compiler to
deal with. On one hand this indicates that the problem has not been solved in the
general case, and on the other hand it indicates that the problem has been solved
in a specific usable case.

PyStream uses two language-specific transformations to eliminate part of the
abstraction overhead in Python: method fusion and argument normalization. Nei-
ther of these transformations can be duplicated without incorporating high-level
information about Python into the transformations. Extrapolating results from
the PyStream compiler indicates that it may be easier to eliminate abstraction
overhead for high-level languages than from low-level languages. Low-level lan-
guages may initially have minimal abstraction overhead, but abstractions are often

106

built into a program to compensate for the lack of abstractions in the low-level
language. In general, a compiler can be built to eliminate known abstractions pro-
vided by a language. If the abstractions are defined within a program, and not the
language itself, it is less likely that the compiler can eliminate the abstractions.

107

Chapter 9

Eliminating Memory Operations in PyStream

The PyStream compiler is designed to eliminate as many memory operations as
possible when translating Python into GLSL. The PyStream compiler eliminates
memory operations in shaders for two reasons. First, it makes it easier to trans-
late a Python shader into GLSL. References are not supported in GLSL, requiring
that reference semantics be emulated in the translated code. Reducing the num-
ber of memory operations in turn simplifies the reference semantics that must
be emulated. Second, eliminating memory operations makes optimization easier.
Dataflow through memory is harder to track than local dataflow. Transforming
memory operations into local variables makes potential optimizations obvious to
the PyStream compiler because a program’s dataflow becomes local.

In general, it is impossible to eliminate every memory operation. However, the
PyStream compiler needs only to eliminate memory operations in Python shaders,
and not in all programs. When considering Python shaders, there are a number of
features in the PyStream language and its restrictions that simplify the solution to
eliminating memory operations:

• The PyStream language is strongly typed; that is, the types of objects do not
change.

• Python does not allow references to the internal structure of an object, a
feature carried over into PyStream.

• Recursion is not allowed in PyStream’s shaders.

• PyStream was designed so that objects are copied in and out of shaders.

The combination of strong typing and the absence of references to the internal
structure of objects allows for fast and precise field-sensitive analysis. Field-
sensitive analysis in turn allows the PyStream compiler to build a sufficiently
precise picture of the structure of the heap. PyStream does not allow recursive

108

function calls because it cannot translate them into GLSL. Taking advantage of
this recursive function call restriction, PyStream’s shaders can be exhaustively in-
lined, which significantly simplifies the subsequent elimination of memory oper-
ations by the PyStream compiler. PyStream’s design in which objects are copied
in and out of shaders means that transformations that eliminate memory opera-
tions do not need to take into account what happens outside of a specific shader.
The combination of these features in PyStream make it possible to eliminate the
majority of memory operations in the example shaders.

This chapter is an overview of the sequence of transformations and analysis
by which memory operations are eliminated in Python shaders by the PyStream
compiler. The sequence of steps is:

1. Heap-sensitive reanalysis

2. Load/store elimination

3. Tree transform and re-analysis

4. Output flattening

5. Field transform and object analysis

9.1 Heap-Sensitive Reanalysis

Before load/store elimination is performed, pointer analysis is re-applied to the
Python shaders, but with a greater heap sensitivity than previously used. During
reanalysis, objects are named according to the three call sites immediately pre-
ceding the site at which the object is allocated. Additional heap sensitivity during
reanalysis allows the compiler to distinguish between all objects that are not allo-
cated in loops, which aids the elimination of memory operations. This increased
level of heap sensitivity was not used during previous pointer analysis. Before
Python programs are transformed, they allocate most objects at a single site and
have very long call paths through Python interpreter and run time functions. Func-
tion cloning and inlining duplicate the single allocation site and reduce the length
of the call paths. Before these transformations are performed, achieving a simi-
lar level of heap sensitivity in the pointer analysis would require naming objects
according to the seven to nine call sites immediately preceding the allocation.

109

obj0.f = data
result = obj0.f

first = obj1.f
second = obj1.f

(a)

obj0.f = data
result = data

first = obj1.f
second = first

(b)

result = data

first = obj1.f
second = first

(c)

Figure 9.1: Load/Store Elimination Example

Additional heap sensitivity was not needed earlier when eliminating abstraction
overhead, so the cost of additional heap sensitivity was previously not worthwhile.

9.2 Load/Store Elimination

Load/store elimination is a transformation that turns load and store memory oper-
ations into references to local variables. Load/store elimination is a combination
of two transformations: redundant load elimination and dead store elimination.
These transformations together significantly reduce the number of memory oper-
ations in a Python shader. These are standard transformations, and their effective-
ness is boosted by exhaustive inlining and precise pointer information. Figure 9.1a
shows two cases where load/store elimination is worthwhile. In these figures, at-
tribute access is used as a shorthand for memory operations, even though there is
not a direct correspondence in Python. In the first case, data is stored to a field
of obj0 and immediately loaded. In the second case, a redundant load is made
from a field of obj1. Figure 9.1b shows the result of applying redundant load
elimination in these two cases. In the first case, the load is redirected to copying
the variable that is stored into the field, eliminating a load operation. In the second
case, the redundant load is redirected to copying the result of the first load, again
eliminating a load operation. Figure 9.1c shows the result of applying dead store
elimination. In the first case, assuming there are no other loads from obj0 and
obj0 does not escape from the program, stores that affect obj0 can be eliminated
because they will never be read.

Load/store elimination is performed throughout the process of eliminating mem-
ory operations. Load/store elimination is interleaved with other transformations to
opportunistically eliminate both existing and newly produced memory operations.
Existing memory operations are exposed by other transformations, which allows

110

these operations to be removed in situations where load/store elimination was
previously unable to remove them. Other transformations generate new memory
operations with the expectation that all new memory operations will be removed
by subsequent load/store elimination.

The PyStream compiler uses a simple formulation of load elimination. Load
elimination in PyStream is performed in straight-line code and through control-
flow splits. Load elimination is not performed in the PyStream compiler through
merges, which is a more complex formulation of load elimination. When compil-
ing the example shaders used in this research, the simpler formulation was suffi-
cient because the field transform (9.6.2) was able to eliminate memory operations
in the cases where the simpler formulation of load elimination was not sufficient.
For a production compiler, a more aggressive form of load elimination would be
desirable to ensure that more cases could be dealt with. Code hoisting is also an
option to regain any precision lost by control flow merges and further boost the
effectiveness of load elimination.

The sequence of transformations described in this chapter interact synergisti-
cally with load elimination. Eliminating some of the memory operations sub-
sequently allows the elimination of other memory operations by the PyStream
compiler.

9.3 Characterization of the Remaining Memory
Operations

Exhaustive inlining combined with load/store elimination significantly reduces
the number of memory operations in the example shaders but some still remain.
There are four groups of remaining memory operations: loads from input objects,
stores to output objects, operations using local variables carried through merges,
and operations on objects allocated inside of a loop.

The first two groups of memory operations cannot be eliminated from a shader
using load/store elimination because these operations load fields that are defined
outside of the shader and store fields on objects that leak outside of the shader.
Loads from input objects and stores to output objects cannot be eliminated be-
cause the transformations cannot see the operations that create or consume the
corresponding fields.

The third group is memory operations on variables carried through merges.

111

Variables carried through merges sometimes produce ambiguous analysis infor-
mation because the analysis cannot distinguish which branch of the merge pro-
duced the variable. This lack of information limits the effectiveness of redundant
load elimination since there may be more that one store that defines the field. In
a production compiler, a more aggressive formulation of load/store elimination
would be able to deal with many of the variables carried through merges.

The fourth group is memory operations on objects that are allocated inside a
loop. No matter how heap sensitive the pointer analysis, it is usually not possible
to distinguish between objects allocated in different iterations of a loop. Load/-
store elimination can eliminate memory operations in some cases, but in others
the lack of object uniqueness prevents elimination. For example, if a store is per-
formed on one version of a non-unique object, then all subsequent loads from any
other version of the non-unique object must be performed because the possibility
exists that the objects may alias. This issue arises only if more that one version of
the loop allocated object can exist at the same time. If there is a unique pointer to
the loop allocated object, load elimination functions normally.

9.4 Tree Transform

The tree transform is a re-analysis of the Python shaders that assumes the input
data structures to each shader are tree shaped, which means that a unique ac-
cess path in an input data structure always references a unique object. A tree
shape eliminates any potential aliases between input objects. If input objects may
alias, the tree transform duplicates them. This duplication is sound because in-
put objects are immutable in Python shaders. Eliminating aliases is important for
ensuring that the input data structures have a well-defined form. This simplifies
implementing the data structures on a platform without pointers.

When transforming the input data structures into a tree shape, the transforma-
tion only considers field names as the access path and not the specific type of
object that contains those fields. This prevents similarly named fields on poly-
morphic objects from being duplicated. Objects that the PyStream compiler can
determine are unique are not cloned. This means that preexisting objects, includ-
ing type objects, are not duplicated.

112

9.5 Output Flattening

Output flattening is a transformation in the PyStream compiler that turns data
structures output from a Python shader into a tree shape. Shader output informa-
tion is used by subsequent operations in the rendering pipeline. For example, a
vertex shader produces the screen-space position of a vertex and any attributes
that will be used by the subsequent fragment shader. Similar to the issues dealt
with by the tree transform, passing arbitrary data structures in and out of a shader
is complicated by the lack of pointers and can be simplified by enforcing a tree
shape on the data. Unlike applying the tree transform on input data structures,
output flattening is more than just an assumption about the shape of the output.
Output flattening adds operations to the shader to reshape the shader’s output.
Output flattening makes the tree shape implicit and reduces the output to a flat list
of variables with built-in types. Output flattening generates a series of load oper-
ations to accomplish this. Objects that may be shared are cloned. This is a sound
transformation because the output objects are immutable in subsequent stages of
the rendering pipeline.

Load elimination is then performed after output flattening to eliminate the loads
that were generated and the stores that were previously used to build the output
structures. Mappings from the flat list of outputs back into the original data struc-
tures are maintained because the output of one shader must be linked to the input
of the next shader.

The PyStream compiler transforms the output data structures of a Python shader
into a flat list of variables with built-in types because GLSL does not support
transferring structures between shaders. PyStream requires output data structures
to have an unambiguous structure, in part to help this flattening to occur. PyStream
primarily requires unambiguous output data structures because functionality of the
rendering pipeline requires it, such as the rasterizer. A rasterizer cannot interpolate
between dissimilar data structures.

Figure 9.2a shows an output of a vertex shader that generates a basis of three
three-dimensional vectors and passes them to the fragment shader. This is sim-
plified from one of the example shaders used in this research. Figure 9.2b shows
the code after exhaustive inlining. Figure 9.2c shows the code after output flatten-
ing, but before load/store elimination. Figure 9.2d shows the code after load/store
elimination.

Due to a quirk of PyStream’s escape analysis, stores made redundant by out-

113

...
tsbasis = TangentSpaceBasis(normal , tangent , bitangent)
return tsbasis

(a)

...
tsbasis = allocate(TangentSpaceBasis)
tsbasis.normal = normal
tsbasis.tangent = tangent
tsbasis.bitangent = bitangent
return tsbasis

(b)

...
tsbasis = allocate(TangentSpaceBasis)
tsbasis.normal = normal
tsbasis.tangent = tangent
tsbasis.bitangent = bitangent
out0 = tsbasis.normal
out1 = tsbasis.tangent
out2 = tsbasis.bitangent
return out0 , out1 , out2

(c)

...
return normal , tangent , bitangent

(d)

Figure 9.2: Output Flattening Example

114

put flattening cannot be immediately removed because the analysis believes that
the stores affect objects that may escape the shader. After output flattening, these
object are no longer used and do not escape, but pointer information has not been
updated to reflect this. Statistics are not given for output flattening in this disser-
tation, as output flattening combined with load elimination combined with stale
pointer information results in virtually no change in the number of operations in
the shaders. Output flattening clarifies data flow to the outputs of a shader, but
does not immediately remove allocations and stores that were previously used to
build output structures. A subsequent transformation removes these operations
indirectly by transforming the fields into locals, and then immediately eliminating
them because they are unused.

9.6 Field Transform and Object Analysis

The field transform turns fields of unique and mutually exclusive objects into lo-
cal variables. To make this transformation, the field transform needs information
about which objects are unique and which objects are mutually exclusive. Object
analysis is performed before the field transform to provide this information.

9.6.1 Object Analysis

Object analysis is done in PyStream before the field transform for the purposes
of identifying unique and mutually exclusive objects. Unique objects are objects
in the pointer analysis that correspond to only one object at run time. Mutually
exclusive objects are objects that cannot exist at the same time during run time.
Identifying unique and mutually exclusive objects in turn identifies fields that can
be transformed into local variables. Unique objects are identified during object
analysis by two means. Objects contained in a Python shader’s input data structure
are unique due to the tree transform. Objects allocated inside of a Python shader
are unique as long as they are only allocated by a single operation that is not
contained inside a loop.

Mutually exclusive objects are identified during object analysis, again with dif-
ferent means for input data structures and objects allocated inside the shader. If
an ambiguous reference exists in an input data structure, such as occurs when a
reference holds a polymorphic object, then the objects held by that reference are

115

def shadeFragment(self , context , color):
modulated = self.material.color*color
return modulated ,

(a)

def shadeFragment(self , context , color):
modulated = field0*color
return modulated ,

(b)

Figure 9.3: Field Transform Example

mutually exclusive. This can be inferred from the fact that each object held by a
reference must be unique and only one of the objects may exist when the shader is
run. Mutual exclusion is determined for objects allocated inside of a shader based
on the mutual exclusivity to the control flow that leads to the point at which they
are allocated.

9.6.2 Field Transform

The field transform in PyStream converts the fields of unique objects into local
variables. Transforming each field directly into a local variable is insufficient be-
cause there are cases in which a field can be loaded from more than one object. In
these instances, the load would need to be transformed into an “if” statement that
selects between multiple local variables. To only create necessary “if” statements,
the field transform identifies memory operations that affect multiple fields that are
mutually exclusive and unique. The field transformation then merges these mutu-
ally exclusive fields into a single field before transforming it into a local variable.
If an accessed field is not mutually exclusive from every other field accessed by a
memory operation, then the transformation is not applied. After this transforma-
tion is done, local variables that are created may not be in the SSA form, so the
SSA transformation is reapplied to the Python shader.

Figure 9.3a shows a simple fragment shader that reads fields from the shader
program’s uniform data structure. Again, attribute accesses are used as a short-
hand for memory operations. Figure 9.3b shows the result of applying the field
transform to this shader. The field transform will work even if the material object
is polymorphic because the tree transform guarantees that polymorphic objects in
the uniform data structure are mutually exclusive and unique.

116

The field transform effectively flattens the input data structures of a Python
shader. This is caused by a transformation of the fields of the input data structures
into local variables. Some fields may not be transformed, so the input data struc-
tures may not be entirely flat. This means that some of the memory operations
loading from input data structures may need to be translated into GLSL.

Similar to output flattening, the field transform maintains a mapping of the
original fields onto the new local variables. This mapping is used to connect the
shaders in a shader program to one another. The field transform also overlaps
with output flattening because the field transform could flatten the output data
structures by converting their fields to local variables. This transformation would
not necessarily result in a tree shape for the output, so the output transform is an
explicit part of the sequence of eliminating memory operations.

9.7 Chapter Summary

After the sequence of transformations detailed in this chapter have been applied
by the PyStream compiler, all of the memory operations in the example shaders,
except for intrinsic memory operations, are eliminated. Table 9.1a shows the num-
ber of memory operations contained in each shader program after the tree trans-
form. ILoad and IStore are categories for intrinsic memory operations, such as
loading the field x from a vec3 object. Memory operations that load and store
from objects with GLSL intrinsic types are intentionally not eliminated, because
they can be efficiently implemented in GLSL. Table 9.1b shows the result of ap-
plying the transformations in this chapter. Instances exist where memory opera-
tions might not be eliminated by PyStream’s transformations, but none of these
instances were encountered during research. How these instances would be dealt
with when translating them to GLSL is discussed in Chapter 10.

In three identified instances, memory operations may not actually be elimi-
nated and must be translated into GLSL to preserve the semantics of the Python
shader program. If two non-mutually-exclusive objects flow into the same vari-
able because of a merge, then any subsequent memory operations loading or
storing through that variable cannot be transformed by the field transform. As
discussed in Section 9.2, the use of an aggressive load elimination algorithm in
PyStream would minimize occurrences of this instance by performing load elimi-
nation through merges. If an object is allocated in a loop and multiple versions of

117

Table 9.1: Shader Program Operations

(a)

DirectCall Load ILoad Store IStore Allocate
material 105 26 19 14 0 3
skybox 11 5 0 9 0 2

ssao 248 4 0 6 0 2
bilateral 50 9 0 6 0 2
ambient 17 8 0 6 0 2

light 41 13 2 6 0 2
blur 20 2 0 6 0 2
post 33 10 0 6 0 2
total 525 77 21 59 0 17

(b)

DirectCall Load ILoad Store IStore Allocate
material 103 0 19 0 0 0
skybox 11 0 0 0 0 0

ssao 231 0 0 0 0 0
bilateral 44 0 0 0 0 0
ambient 16 0 0 0 0 0

light 41 0 2 0 0 0
blur 20 0 0 0 0 0
post 33 0 0 0 0 0
total 499 0 21 0 0 0

118

that object may be simultaneously held by a Python shader, then load/store elim-
ination may not be able to eliminate all of the memory operations. In this second
instance, the field transform cannot transform the memory operations because the
objects are not uniquely named. In a third instance, if a memory operation is
ambiguous in terms of the field accessed, then the memory operation cannot be
eliminated. This third instance can occur when reading array fields in a loop, for
example.

119

Chapter 10

Emulating Python Reference Semantics in
GLSL

The last step in the pipeline of the PyStream compiler translates Python into
GLSL. This last step requires the compiler to implement the semantics of Python
on an architecture that does not support features that Python relies on. For exam-
ple, Python expects that data can be held by reference and GLSL only allows data
to be held by value. This is a significant semantic gap. Compilers normally do
not bridge significant semantic gaps because the code being compiled is usually
written for the architecture on which it will run.

Earlier steps in the PyStream compiler pipeline eliminated as many of the im-
pediments to translating Python into GLSL as possible before the last step. The
need for an interpreter is eliminated by compiling the Python interpreter in tan-
dem with the program. Many of Python’s semantics are transformed into code,
reducing the semantics that must be explicitly translated. Information about a
Python shader, previously implicit in a memory image, is made explicit while
transforming and specializing the program’s functions. Abstraction overhead is
eliminated both to improve performance and to simplify what must be later trans-
lated. Memory operations are aggressively eliminated because GLSL does not
offer the memory model that Python expects. By the last step in the compilation
process, many of the features that would make Python difficult to translate into
GLSL have been eliminated.

The biggest remaining impediment for the compiler is the semantic gap be-
tween the memory model that Python assumes and the memory model that GLSL
provides. Python assumes that data can be held by reference and memory can be
dynamically allocated. GLSL assumes that data is held by value and has no con-
cept of dynamic memory allocation. This chapter describes how PyStream takes
the last step in the compiler pipeline and translates code across the semantic gap,
and what PyStream cannot translate across the gap.

120

10.1 Reference Semantics

Reference semantics is defined in this dissertation as the manner by which a com-
puter language deals with memory. Two widely used forms of reference semantics
are those that hold data by reference and those that hold data by value. There are
several issues that must be dealt with when translating a language that holds data
by reference into a language that data holds by value. The most obvious issue
is that aliasing is no longer possible; languages that hold by value copy the data
between variables, and modifications to that data is only reflected in the current
copy. To emulate the semantics of aliases, there must be a single, central copy of
the value. On the other hand, in cases where aliased values are not modified, data
can be freely copied. Another, more subtle issue is that languages that hold by
value must be able to resolve a field access into an exact memory location before
the program is run. In languages that hold by reference, field access can be im-
plemented with pointer arithmetic by simply adding an offset to the pointer from
which the field is being read. If aliasing issues can be emulated, then the base
pointer becomes constant, which allows the field location to be statically deter-
mined in most cases. Emulating field access is complicated in situations where
memory operations are inherently ambiguous and may be able to access multi-
ple fields. For example, a loop that iterates over an array will access a different
field every iteration using the same memory operation. Emulating array accesses
is a straightforward process since GLSL itself contains arrays. Not all ambigu-
ous memory operations are as easy to emulate. For example, Python dictionary
lookups generally have no simple equivalent in GLSL if they can access more than
one field in the dictionary.

Emulating memory allocation is another issue in languages that hold by value.
In effect, variables in GLSL preallocate the space needed to hold a given value.
Aliasing issues can make it hard to determine the number of values in a data
structure. Loops can also result in data structures of unbounded size. In order to
translate code that holds by reference into code that holds by value, the translator
must statically and pessimistically overallocate memory to account for the largest
possible data structure.

121

10.2 Volatile Values

Volatility is a term used in this dissertation to describe fields and objects in a
shader that are both held by multiple references and can be modified. This means
that a volatile value can be modified using one reference and read through another.
When a value is volatile, it cannot be freely copied. When a value is not volatile,
it can be freely copied. Thus, volatility is important.

The PyStream compiler implements objects and fields formerly held in Python
by reference as values in GLSL. The PyStream compiler copies values whenever
possible, a feature making it easier to subsequently optimize the generated GLSL
shader. Volatile values cannot be copied, but they can be identified. If a field of
an object is modified while the object is held by multiple references, then copy-
ing the corresponding value would prevent the modified field from being visible
through other references. In cases such as these, the field is volatile. Volatility is
determined by the PyStream compiler on a per-field basis, and not per object, so
that as much of the object as possible can be copied.

Whether a field can be modified is determined by inspecting information pro-
duced by the pointer analysis. To increase precision, the PyStream compiler only
uses modification information if it is either the result of an explicit store or the
result of an assignment to a swizzle attribute, which is a feature in GLSL that
simultaneously reads or writes multiple fields of an intrinsic type. Built-in GLSL
functions implicitly modify an object when the function creates an object, but the
functions never modify existing objects. Objects created by built-in GLSL func-
tions are uniquely held until they are returned, so any modifications to an object
before it is returned do not affect volatility. It is therefore safe to ignore the side
effects of built-in GLSL functions when analyzing volatility.

Determining if an object is uniquely held requires counting the number of refer-
ences to the object inside of a given shader. If the number of references is greater
than one, the object is not uniquely held. The fact that multiple versions of a field
may exist at run time does not need to be taken into account since an object may
only be modified if it is also held in a local variable. This implies that any object
used in a shader is not uniquely held if it is held by a field.

Objects that are in fact uniquely held during execution may not be marked as
uniquely held by the analysis. The method used by the PyStream compiler to
determine if an object is uniquely held is conservative. The method counts the
number of variables that hold a given object without taking into account the life-

122

Table 10.1: Object Classifications in the Example Shaders

Multiple Refs Uniquely Held
Mutable 0 0

Immutable 45 307
Samplers 0 22

time of each of the variables. If the lifetimes of all of the variables do not overlap,
then the object is uniquely held in practice, despite being held by multiple vari-
ables. This situation was not encountered in the example shaders.

The PyStream compiler uses a flow-insensitive pointer analysis that does not
distinguish between iterations of a loop (Chapter 7). Such a pointer analysis is un-
able to distinguish situations in which an object is uniquely held when it is modi-
fied, and then later loses its uniquely held status. In this case, using a more aggres-
sive pointer analysis could allow additional fields to be declared non-volatile. In
a production compiler, the use of a flow-sensitive pointer analysis algorithm or it-
eration disambiguation [38] could distinguish instances where a value is uniquely
held when it is modified, but later shared between variables. This situation was
not encountered in the example shaders.

GLSL does not allow texture samplers to be copied, so the PyStream compiler
marks all texture samplers as volatile to ensure that they are not copied. The
inability to copy texture sampler in GLSL affects the entire process of translating
Python shaders into GLSL, well beyond needing to mark them as volatile. For
example, texture samplers are treated as a special case when generating glue code
to transfer texture samplers from Python into GLSL.

Table 10.1 shows how all the objects in the example shaders are classified.
There are no mutable objects in the example shaders once they have reached the
last step in the compiler pipeline, due in part to PyStream’s aggressive elimination
of memory operations and in part to the coding style used in the shaders. The ag-
gressive elimination of memory operations also has synergies with the SSA form,
resulting in most objects being held by only a single reference. The net effect
is that there are no volatile values in the example shaders other than the texture
samplers. The last step in PyStream’s compiler pipeline has been designed to ac-
commodate volatile values, but in practice they seem to be rare after optimizations
have been applied.

123

10.3 Implementing References

The approach used by the PyStream compiler to preserve Python’s reference se-
mantics in GLSL follows an unexpected pattern. One would expect that reference
semantics should be preserved by preserving object structure, because programs
are generally described by their object structure. The PyStream compiler directly
preserves reference semantics and the effects of accessing fields through a refer-
ence. PyStream does not concern itself with preserving object structure during
translation. This approach, for emulating Python’s reference semantics in GLSL,
exposes more opportunities for optimization as each accessed field can be im-
plemented separately for each reference. In contrast, if object structure was pre-
served, then there would be only a single, central copy of each field in a shader.

A local variable in Python is implemented in GLSL as a data structure that can
contain up to three distinct components, depending on how the variable is used.
These components allow a local variable to support Python’s reference semantics
in GLSL. The three possible components of a local variable, when it has been
implemented in GLSL, are:

TypeID. If a variable can point to more than one type of object, then the data
structure contains a typeID field to indicate what type of object is currently being
held by the variable. Object types are immutable in PyStream so it is safe to embed
the type of an object in the variable that holds it. If a variable only contains a
single type, then the typeID field is implicitly a constant value and is not explicitly
implemented.

Objects with Intrinsic Types. If a variable can point to an object with an intrinsic
type, then the data structure contains a field for every intrinsic type of all objects
that the variable can hold. Although certain intrinsic types could be packed within
others, PyStream does not pack them. For example, a three-dimensional vector
could be packed into the same field that could hold a four-dimensional vector.
PyStream does not pack these types because multiple intrinsic types are never
held by the same variable in the example shaders.

Fields on Objects with Non-Intrinsic Types. If a variable can point to a non-
intrinsically typed object that contains fields which are accessed in the shader,
then the data structure implementing the variable contains a field for each field that
can be accessed. Each field is implemented in GLSL with the same type of data
structure that is used to implement local variables since they are both references.
Variables can have nestled substructures. PyStream restricts the use of recursive

124

data structures in a Python shader which keeps nestled data structures finite in
the GLSL shader. As previously shown in Figure 9.1b, all non-intrinsic memory
operations in the example shaders are eliminated before translation. Since these
operations were eliminated, PyStream’s implementation for emulating fields has
not been completely tested.

10.4 References to Volatile Values

This section details how the PyStream compiler implements references to volatile
values in GLSL. A GLSL data structure that implements a reference can contain
fields that holds a volatile values. These volatile values cannot be directly embed-
ded in the GLSL data structure and are held indirectly so that they can be shared
between references and modified. Values that are not volatile are directly em-
bedded in the GLSL data structure and copied whenever the reference is copied.
Fields that are not volatile are effectively inlined into the local variable.

In a GLSL shader, a volatile value is held indirectly in a pool. A pool is an
array containing a group of volatile values. A field that contains a volatile value
contains an index into the pool array instead of the volatile value itself. A volatile
value can either be a field from an object without an intrinsic type or the entire
object if the object has an intrinsic type.

A pool array in GLSL must be of a fixed size due to the limitations of GLSL. It
is necessary for the PyStream compiler to bound the number of different values a
pool may contain, so that the size of the underlying array can be bounded. The size
of a pool can be bounded by counting the number of values in the pool. If the pool
array only contains objects that are not allocated in loops, then the objects can be
counted directly. If some of the values are loop allocated, then the number of loop
iterations must be bounded and the values weighted and counted by the maximum
number of loop iterations. The PyStream compiler does not contain heuristics to
bound the number of loop iterations, so objects allocated inside loops must be
nonvolatile for the translation process to occur.

All objects contained in a pool may be mutually exclusive. Methods for deter-
mining if objects are mutually exclusive are discussed in Section 9.6.1. A pool
containing mutually exclusive objects that are not loop-allocated is called a sin-

gleton pool because the pool array only needs to hold a single value. Because the
pool array contains a single value, references to a singleton pool do not need to

125

retain an index into the array.
When pools are implemented, they are paired with an integer that indicates the

number of values that currently reside in that pool. When a new value is added
to the pool, it is placed at the indexed position indicated by the integer and the
integer is incremented by one.

PyStream simplifies implementation of pools by marking all of the values con-
tained in a pool as volatile values, even if they are not. By this procedure, PyS-
tream keeps nonvolatile values from being copied in and out of pools. Although
copying values in and out of pools may expose more opportunities for optimiza-
tion in a shader, doing so disrupts counting objects in a pool. A single nonvolatile
value could be copied in and out of a pool multiple times. If this occurs, then
the value may be duplicated an unknown number of times and counting cannot
be done within the pool. Marking all pooled values as volatile prevents any value
from being copied in and out of a pool.

Within GLSL, when values are transferred from a CPU to a GPU, these values
are initially transferred into immutable memory on the GPU. A GPU exposes both
immutable and mutable memory to a shader, but the GPU initially copies only to
immutable memory. If any of the transferred values are to be placed in a pool
on the GPU by the compiler, then these values must be copied into that pool at
the beginning of a shader’s execution. Such a pool is defined by the compiler
and it will contain both mutable and immutable values. To implement such a
pool, GLSL requires that the pool be contained in mutable memory on the GPU.
The entire pool must be contained in mutable memory, even though the pool may
contain some immutable values. All of the values transferred from a CPU to a
GPU are immutable inside a PyStream shader. PyStream generates a GLSL shader
which copies into the GPU’s mutable memory any immutable values placed in
pools.

An exception to the requirement that a GLSL shader copy immutable values
into a mutable pool is with texture samplers. Texture samplers are discussed in
Section 10.2. Texture samplers are immutable values that cannot be copied, ac-
cording to a specification in GLSL. As a consequence of this specification, pools
of texture samplers are also immutable and cannot be copied. An entire pool of
texture samplers is transferred to the GPU in final form.

126

10.5 Implementing Ambiguous Memory Operations
in GLSL

The PyStream compiler eliminates as many memory operations as possible be-
fore translating a Python shader into GLSL. An ambiguous memory operation —
a single load or store that can access multiple fields — is an instance where mem-
ory operations are not always eliminated by the PyStream compiler. Ambiguous
memory operations must be specifically supported by a compiler during the trans-
lation process because a single ambiguous memory operation can access multiple
fields, and this affects how field access semantics are implemented in GLSL. For
example, iterating over the contents of a tuple results in an ambiguous memory
operation. Ambiguous memory operations can be supported by grouping into an
array all fields that may be accessed by a specific memory operation. This al-
lows ambiguous memory operations to be implemented in a GLSL shader as an
indirection through an array. When arrays (lists and tuples) are accessed ambigu-
ously in Python, then array fields in the low-level object model can be emulated in
GLSL by direct lookup of the field index, effectively implementing Python arrays
as GLSL arrays. Ambiguous access to other types of fields can be dealt with in a
compiler by assigning a constant index to each possible field. In practice, func-
tion cloning eliminates all ambiguous access to interpreter and attribute fields as
a side effect of specializing polymorphic functions. Dictionary fields are another
possible source of ambiguous memory operations. There are more troublesome
issues with dictionary fields, which are discussed in Section 10.7.2. Emulating
ambiguous memory access is currently not supported by the PyStream compiler.

10.6 Algorithm Summary for Emulating References

The PyStream compiler has an algorithm to select how every reference in a Python
shader program is implemented in GLSL. The algorithm takes into account the
types of values that can be held by each reference and what volatile values are
shared between references. The values considered by the algorithm include both
objects with intrinsic types and fields from objects without intrinsic types. These
values are found by examining the pointer analysis information associated with
each local variable in a program. All memory operations in a program are exam-
ined to determine what fields contained in an object may be accessed together and

127

what fields are modified. Objects with non-intrinsic types are inlined into each
GLSL reference data structure, but the semantics of dereferencing fields is pre-
served. The exact structure of each reference depends on how the values held by
the reference are used throughout the shader program.

The following is a statement of conditions (rules) incident to the algorithm
which are necessary for the algorithm to emulate reference semantics. The PyS-
tream compiler implements reference data structures in GLSL following these
rules:

1. A GLSL reference data structure has a typeID if the reference can hold more
than one type of object.

2. A GLSL reference data structure has a separate field for every type of value
it can contain. For example, a reference data structure could have one field
for holding vec3 objects and one for holding the diffuseColor field of
Material objects.

3. A value held in a reference data structure is marked volatile if the value is
ever modified while held by more than one reference.

4. A nonvolatile value is embedded in a reference data structure and is copied
with the reference.

5. All volatile values are stored in pools and reference data structures contain
indexes into such pools instead of directly containing volatile values. Only
the index into the pool is copied when a reference is copied.

6. A specific volatile value is stored in only one pool. There is only ever
one copy of a volatile value, and it remains in the same pool for its entire
lifetime.

7. If a single memory operation can access fields from different objects, then
all these fields are implemented as having the same name inside of any
reference data structure that can hold any of these objects. This allows
memory operations to be implemented by reading a field from a reference
data structure without taking into account the specific object held by the
reference.

8. If a single memory operation can ever access multiple fields on a single
object, then these fields are held in an array in the reference data structure.

128

This allows memory operations to select between the fields without using
control flow. For instance, if a loop iterates over the contents of a tuple,
then all of the array fields in the tuple are stored in an array in the GLSL
reference.

9. If a reference data structure holds different volatile values in the same field
— for example, if it can hold two volatile vec3 objects — then all of the
values must be stored in the same pool. This allows a volatile value to be
retrieved by indexing into a single, known pool.

The algorithm emulating references is applied to all references in a Python shader.
In the example shaders, the most common category of references dealt with by
this algorithm point to one or more non-volatile objects sharing a single intrinsic
type. The implementation of this particular category is efficient because the data
structure implementing the reference will only contain a single intrinsic value
which will be copied between the emulated references.

10.7 Boundaries to Emulating Python Reference
Semantics

The semantics of Python can be emulated in GLSL, but there are scenarios that
cannot be dealt with using the algorithm described in this chapter. In general,
the PyStream compiler can translate Python programs into GLSL if the programs
are mostly numeric and do not create volatile data structures inside of loops. This
describes most all shader programs. There are scenarios where the PyStream com-
piler cannot emulate Python reference semantics in GLSL because the compiler
cannot bound the size of a data structure. It is also troublesome to emulate certain
built-in Python data structures, such as strings and dictionaries, because GLSL of-
fers little support for anything but numeric computation. Python shaders can also
be further constrained by the resource limits of GLSL. These scenarios remain as
an issue only if they continue to exist after compilation. Transformations applied
by the compiler may eliminate all of these scenarios as the compiler simplifies the
program, making it unnecessary to translate these scenarios into GLSL.

129

def unboundedLoop ():
list = []
while random ():

list.append (0)
return list

Figure 10.1: Unbounded Data Structure Example

10.7.1 Bounding Data Structure Size

The PyStream compiler must be able to bound the size of a data structure to trans-
late the data structure into GLSL. Because GLSL does not support references,
memory must be pessimistically preallocated for every possible data structure.
Two features in Python that may create data structures of unbounded size are re-
cursive calls and loops. Recursive calls are disallowed in the PyStream language
because they cannot be implemented in GLSL. Loops are allowed by the PyS-
tream language and they can create data structures of unbounded size in two cases:
when they modify recursive data structures and when they modify container ob-
jects, such as lists and dictionaries. Recursive data structures are also disallowed
in the PyStream language, which leaves container objects that are manipulated in
a loop as the only data structure with a potentially unbounded size. In some cases
it may be possible to bound the number of iterations in a loop, and thereby bound
the size of the container object, but there may be cases in which is it impossible
to bound the number of loop iterations. Figure 10.1 shows a Python function that
cannot be translated into GLSL because the size of the data structure cannot be
bounded.

The PyStream compiler must be able to bound the number of volatile values
created during the execution of a shader. The bound must be on the number of
volatile values created, not on the number that may exist at any one time, because
the algorithm for emulating references currently has no way to deallocate values
once they are no longer used. It is hard to create an unbounded number of volatile
values in a Python shader. To do so, a Python shader must create and mutate ob-
jects inside of an unbounded loop while maintaining multiple references to the
created objects and do it in such a way that frustrates load/store elimination from
eliminating the memory operations that result in the objects being volatile. This
situation is difficult to contrive without using recursive data structures or container
objects of unbounded size. Figure 10.2 shows an example where this scenario is

130

def unboundedVolatile ():
old = vec2 (1.0, 0.0)

while random ():
current = vec2 (1.0, 0.0)
old.x = old.x + 1
current.x = current.x+old.x
old = current

return old.x

Figure 10.2: Unbounded Volatile Value Example

achieved using loop-carried variables. Because PyStream’s pointer analysis in-
dicates that current and old can point to the same object, the objects are not
considered to be uniquely held, and are marked volatile. In addition, the inter-
leaving of field modifications (both in the allocation and in the stores) prevents
load elimination from being performed because the pointer analysis cannot dis-
tinguish between objects created in different iterations of a loop. The research
results suggest that the use of both aggressive pointer analysis and aggressive load
elimination could make this scenario extremely rare.

10.7.2 Emulation of Built-in Python Data Structures

Python has certain built-in data structures not easily emulated in GLSL. These
data structures are provided by Python to break some general data structure rules
that apply to user-defined classes. These built-ins include variable-sized container
objects (lists, dictionaries, and sets), strings, and long integers. These built-in data
structures did not affect the example shaders because they were compiled out of
the shaders and because the example shaders were designed to operate without
them.

Built-in data structures not easily emulated in GLSL include:
Lists. Lists are variable-sized container objects whose size must be bounded to

be translated into GLSL. In general, fixed-size tuples can be used as a substitute
for lists.

Dictionaries. Similar to lists, their sized must be bounded to be translated into
GLSL.

131

def uglyDictionary ():
d = {}
i = 0
while i < 10:

d[i] = i
i += 1

return d[5]

Figure 10.3: Unemulatable Dictionary Keys Example

Sets. Sets are similar to dictionaries and the same issues apply.
Strings. Strings are effectively immutable container objects with character data,

but string manipulation can produce new strings with hard-to-bound lengths.
Long Integers. Long integers are effectively immutable container objects with

integer data with similar problems to strings.
In some special cases, a compiler could emulate a built-in data structure by

emulating the effect of using the structure and not its actual contents. For example,
preexisting constant string objects could each be assigned a unique identifier, and
equality operations on these objects could be emulated by comparing the unique
identifiers. This idea could be extended to support other types of operations on
preexisting constant values.

Python dictionaries cannot be easily emulated on the GPU. Dictionaries are
widely used in Python to define the structure of a program, but using them does not
require emulating them on the GPU. The PyStream compiler optimizes away most
of these dictionary uses while maintaining the semantics of a Python program. A
dictionary only needs to be translated into GLSL if the dictionary is used directly
in a computation and load/store elimination cannot transform data flow through
the dictionary into local data flow. In the general case, there is no clear way to
emulate the semantics of mapping arbitrary keys onto values. Figure 10.3 shows
an example where it would be hard to determine how to map keys to values, even
though the keys are all integers. If keys used to look up values in a dictionary are
a known set of preexisting value objects, then each of the keys can be assigned a
unique identifier and the dictionary can be implemented as an array on the GPU.

132

10.7.3 GLSL Resource Limits

Even if a compiler can bound the size of data structures in a shader program, there
is no assurance that the final bounded size will be small. The compiler must make
pessimistic assumptions about data structure size to allow the generated shaders to
support the worst case. Both GLSL and GPUs in general place a hard limit on the
resources available to any one shader. On modern GPUs this limit is comfortably
large, but pessimistic assumptions about data structure size during translation can
inadvertently push a shader toward the limits of a GPU.

The list data type is a feature of Python that can cause a mismatch with the
resource limits of GLSL. Even if the maximum size of a list is bounded, the com-
piler must allocate space for the potentially longest version of the list holding the
largest objects that the list can hold. A list would be useful, for example, in any
shader that calculates the contribution of multiple lights to the color of a surface
in a single pass. Such a list could hold an arbitrary collection of polymorphic
lights. However, each light in the list can use one or more texture samplers when
computing its own effect on a surface. GLSL imposes a limit on the number of
texture samplers that can be declared in a shader program and a list of polymor-
phic lights would quickly exceed GLSL’s limit. The limit is on the number of
texture samplers declared without regard to how many are actually used. Im-
plementing a polymorphic light in GLSL requires the implementation to declare
enough texture samples to match the maximum number of texture samples used
by any type of light. This potentially causes an explosive growth in the number of
texture samplers declared in a list of polymorphic lights.

Resource limits of GLSL were not explored in this research. As previously
mentioned, the PyStream platform design did not support the list data type, which
made resource limits not an issue. The Python example shaders render each light
using a separate shader. This design kept the shaders well within the resource lim-
its of GLSL. Automatic shader partitioning [39] could be later used to partition
PyStream’s shaders in those cases where the shaders exceed GLSL’s resource lim-
its. Further research may be necessary to determine how pools of volatile values
may interact with shader partitioning.

133

10.7.4 Performance Considerations

In general, any Python shader that can be translated into GLSL should run fast.
GLSL is designed to ensure performance by eliminating language features that
would slow it down. The main question is not whether a shader will perform
well once translated into GLSL, but whether a shader can be translated into GLSL
at all. Python offers an abundance of ways to write a shader program. Some
translated Python features may reduce performance, and should this happen, other
features from Python can be selected instead. Among the potential performance
considerations for Python shaders are:

• Objects should not be modified after they are created, particularly if the
object is held by multiple references. Volatility does prevent a value from
being copied in GLSL, can require indirection, and can result in additional
memory usage. Allocating new objects should be favored over modifying
existing objects in a Python shader.

• Ambiguous memory operations (operations that can access more than one
field) should be minimized, as implementing them in GLSL requires indi-
rection.

• Ambiguous control flow should be minimized. Ambiguous control flow
inserts branches in the generated GLSL shader program. Poorly used poly-
morphic method calls in a Python shader can result in a large number of
branches in the GLSL shader. This issue may not be immediately appar-
ent when inspecting a Python shader program, but it is implicit in Python’s
method call semantics.

10.8 Chapter Summary

All steps in the PyStream compiler combined to make it easier than expected
to translate Python reference semantics into GLSL. The last step in the pipeline
requires the PyStream compiler to implement the semantics of Python on an ar-
chitecture that does not support some features Python expects to have available.
There is a significant semantic gap between how Python and GLSL each deal with
memory and references to memory. PyStream bridges this gap to allow Python
shaders to run on the GPU, which is an architecture on which Python was not

134

designed to run. This chapter discussed how to translate into GLSL the broadest
possible range of Python’s reference semantics, even though the example shaders
did not require it. The PyStream compiler was capable of simplifying the Python
shaders and eliminating cases that would have been hard to translate. These hard-
to-translate cases did not exist by the last step in the PyStream compiler pipeline.

135

Chapter 11

PyStream’s Implementation Outcomes

A real-time rendering system was created, written entirely in Python. The shaders
in the rendering system were compiled by the PyStream compiler to run on the
GPU. Existing real-time rendering algorithms were used as a means to test the
effectiveness and efficiency of the PyStream compiler design and to test the new
algorithms developed for the compiler to run Python shaders on the GPU. Ex-
isting shader algorithms were reimplemented on the PyStream platform because
novel compiler algorithms, not novel rendering algorithms, were the focus of this
research. Compiler algorithms developed for the PyStream compiler demonstrate
that Python, in the form of Python shaders, can run on the GPU.

11.1 Example Python Shaders Used to Test PyStream

A shader is a specialized function that is used to process a specific type of data (for
example, vertices, fragments, and others) while producing an image in a real-time
rendering system. A shader program contains multiple shaders working together
to produce a desired effect while rendering an image. A real-time rendering sys-
tem contains multiple shader programs and combines the effects of each program
to produce the desired image. PyStream offers a platform for creating shader pro-
grams that run on the GPU. These programs can combine to build a real-time
rendering system.

All example shader programs created for this research were designed to be
combined into a single real-time rendering system. Figure 11.1 shows an im-
age produced by this rendering system. Existing Python shaders for real-time
rendering were not found in the literature, so new example Python shaders were
created which were patterned after the rendering techniques used by state-of-the-
art games [8, 40]. The rendering system created for this research uses a deferred
rendering approach to produce images. Deferred rendering is a technique that di-

136

Figure 11.1: An Image Produced by the Example Rendering System

vides the calculation of geometric properties and the calculation of lighting into
separate shader programs. This decouples the run time cost of the lighting from
that of the geometry. The rendering system is also built to support high dynamic
range rendering (HDR). In HDR rendering, colors can exceed the dynamic range
of the output device. This is important for rendering realistic images since the
dynamic ranges seen in nature can be five orders of magnitude, whereas modern
output devices can only reproduce two to three orders of magnitude.

There are eight individual shaders in the example rendering system created for
this research. Each shader corresponds to types of shaders used in other real-time
rendering systems, although there are no established names for these individual
shaders. These shaders are described as follows:

Material. The material shader generates the geometric properties of each thing
rendered. Figure 11.2 shows the material shader program. For each pixel covered
by the thing rendered, the material shader generates the position, the surface nor-
mal, and properties related to how the surface reflects light. All of these properties
are stored and later read by other shaders.

Sky Box. The sky box shader draws the background behind everything else.

137

class Material(object):
__slots__ = [’objectToWorld ’, ’light ’, ’material ’, ’perturb ’, ’env ’]

def createTSBasis(self , trans , normal , tangent , bitangent):
newnormal = transformNormal(trans , normal)
newtangent = transformNormal(trans , tangent)
newbitangent = transformNormal(trans , bitangent)
return TangentSpaceBasis(newnormal , newtangent , newbitangent)

def shadeVertex(self , context , pos , normal , tangent , bitangent , texCoord):
trans = self.env.worldToCamera*self.objectToWorld
newpos = trans*pos

Create an orthonormal basis that translates from
texture space to camera space
tsbasis = self.createTSBasis(trans , normal , tangent , bitangent)

Pass the screen -space position to the rasterizer
context.position = self.env.projection*newpos

return newpos.xyz , tsbasis , texCoord

def shadeFragment(self , context , pos , tsbasis , texCoord):
e = -pos.normalize ()

Perturb the texture coordinate
texCoord = self.perturb.perturb(tsbasis , texCoord , e)

Get the normal at the peturbed texture coordinate
normal = self.perturb.normal(tsbasis , texCoord)

Create a structure holding properties of the surface
at this fragment
surface = self.material.surface(pos , normal , e, texCoord)

Reflect the sky box off the model
envSpecular = self.env.specularColor(-e.reflect(normal))
surface.specularLight += envSpecular*fresnel(normal , e)

Calculate the color or the surface
surfaceColor = surface.litColor ()
mainColor = self.env.processSurfaceColor(surfaceColor , surface.p)

Write the outputs into the material buffer
context.colors = packGBuffer(mainColor ,

surface.diffuseColor ,
surface.specularColor.r, self.material.shiny ,
pos , normal)

Figure 11.2: Material Shader Program

138

class SkyBox(object):
__slots__ = [’env ’]

def shadeVertex(self , context , pos):
newpos = self.env.worldToCamera*pos
context.position = self.env.projection*newpos
Use the offset from the origin as a texture coordinate
return pos.xyz ,

def shadeFragment(self , context , texCoord):
emissive = self.env.envColor(texCoord)
The sky box does not correspond to real "geometry"
so most of the data written into the GBuffer is bogus.
context.colors = packDistantGBuffer(emissive)

Figure 11.3: Sky Box Shader Program

class LightPass(FullScreenEffect):
__slots__ = [’gbuffer ’, ’light ’, ’env ’]

def process(self , texCoord):
g = self.gbuffer.sample(texCoord)
e = -g.position.normalize ()

Calculate the direction to the light and the
light ’s color at this point in the image
l, color = self.light.lightInfo(g.position , self.env.worldToCamera)

Calculate how the light reflects off the surface
diffuseLighting = g.diffuse*nldot(g.normal , l)
specularLighting = blinnPhong(g.normal , l, e, g.shiny)*g.specular
lit = (diffuseLighting+specularLighting)*color
return vec4(lit , 1.0)

Figure 11.4: Lighting Shader Program

Figure 11.3 shows the sky box shader program. The background is referred to as
a sky box because the background is modeled as an infinitely large textured cube
containing everything else.

Lighting. The lighting shader is used to draw each light in the scene. Fig-
ure 11.4 shows the lighting shader program. The lighting shader reads the infor-
mation produced by the material shader to calculate how a light interacts with the
surface for every pixel covered by the light.

Screen-space ambient occlusion (SSAO). The SSAO [8, 40] shader calculates
how occluded the surface is at each pixel in the image. For example, the bottom
of a crease is only visible from directly above the crease and it is occluded if
viewed from other directions. The overall occlusion of a point on a surface is used
to modulate the amount of ambient light that reaches that point. In other words,
creases are rendered darker than flat surfaces. Figure 11.5 shows the SSAO shader
program.

139

class SSAO(FullScreenEffect):
__slots__ = [’gbuffer ’]
__fieldtypes__ = {’gbuffer ’: GBuffer}

def sample(self , texCoord , position , normal , offset):
Flip the offset to be in the normal ’s hemisphere.
facing = normal.dot(offset)
if facing < 0.0:

offset -= normal*facing *2.0

Sample at the screen space position
g = self.gbuffer.sample(texCoord+offset.xy /512.0)

diff = g.position -position
dist = diff.length ()

Make the occlusion fall off with distance.
weight = max(1.0- dist*dist , 0.0)
amt = 1.0

Calculate the occlusion with a bias to avoid artifacts
if dist > 0.001:

dir = diff.normalize ()
amt = clamp (1.01-dir.dot(normal)*1.01* weight , 0.0, 1.0)

return amt

def process(self , texCoord):
g = self.gbuffer.sample(texCoord)
p = g.position
n = g.normal

Average a number of occlusion samples
ssao = self.sample(texCoord , p, n,

vec3 (-0.515199 , 0.641665 , 0.568187)*4.0)
ssao += self.sample(texCoord , p, n,

vec3 (0.627079 , 0.543492 , 0.558022)*4.0)
ssao += self.sample(texCoord , p, n,

vec3 (-0.530851 , 0.609046 , 0.589288)*4.0)
ssao += self.sample(texCoord , p, n,

vec3 (0.785924 , -0.551296 , 0.279993)*4.0)
ssao += self.sample(texCoord , p, n,

vec3 (-0.642479 , 0.591967 , 0.486616)*4.0)
ssao += self.sample(texCoord , p, n,

vec3 (-0.731236 , 0.672430 , -0.114596)*4.0)
ssao += self.sample(texCoord , p, n,

vec3 (0.535317 , 0.487092 , -0.690056)*4.0)
ssao += self.sample(texCoord , p, n,

vec3 (-0.623743 , 0.199685 , -0.755692)*4.0)

ssao /= 8.0

return vec4(ssao)

Figure 11.5: SSAO Shader Program

140

class DirectionalBilateralBlur(FullScreenEffect):
__slots__ = [’gbuffer ’, ’source ’, ’offset ’, ’samples ’, ’falloff ’, ’similarity ’]

def rawSample(self , texCoord):
g = self.gbuffer.sample(texCoord)
color = self.source.texture(texCoord)
return g.position , color

def sample(self , texCoord , offset , position):
sposition , color = self.rawSample(texCoord)

distance = (position -sposition). length ()

diff = offset*self.falloff + distance*self.similarity

weight = math.exp(-diff)

return color*weight , weight

def process(self , texCoord):
position , color = self.rawSample(texCoord)
weight = 1.0

offset = 1.0
while offset < self.samples:

scaledOffset = self.offset*offset
c, w = self.sample(texCoord+scaledOffset , offset , position)
color += c
weight += w

c, w = self.sample(texCoord -scaledOffset , offset , position)
color += c
weight += w

offset += 1.0

return color/weight

Figure 11.6: Directional Bilateral Blur Shader Program

Directional Bilateral Blur. The directional bilateral blur [41, 42] shader is used
to smooth the output of the SSAO shader. Figure 11.6 shows the directional bilat-
eral blur shader program. Blurring can be used to achieve good effects in real-time
rendering. The SSAO shader calculates ambient occlusion by sampling occlusion
in a number of directions and averaging the result. For efficiency purposes, the
SSAO shader calculates only a limited number of samples, so the result contains
sampling noise and the directional bilateral blur filter is used to smooth out this
noise. A bilateral blur is different than other types of blurs because it takes into
account the underlying geometry of the surface and only blurs values between
similar points on the surface. Values are not blurred across geometric edges in an
image. The blur filter is referred to as “directional” because it only performs the
blur in one direction at a time. To blur an image in two dimensions the shader
needs to be applied twice in two separate directions. Applying a directional blur

141

class AmbientPass(FullScreenEffect):
__slots__ = [’gbuffer ’, ’env ’, ’ao ’]

def process(self , texCoord):
g = self.gbuffer.sample(texCoord)
ao = self.ao.texture(texCoord).xyz
ambientLight = self.env.ambientColor(g.normal)*ao
return vec4(g.diffuse*ambientLight , 1.0)

Figure 11.7: Ambient Lighting Shader Program

class DirectionalBlur(FullScreenEffect):
__slots__ = [’colorBuffer ’, ’offset ’]

def process(self , texCoord):
color = self.colorBuffer.texture(texCoord)
color += self.colorBuffer.texture(texCoord+self.offset)*0.825
color += self.colorBuffer.texture(texCoord -self.offset)*0.825
color += self.colorBuffer.texture(texCoord+self.offset *2.0)*0.384
color += self.colorBuffer.texture(texCoord -self.offset *2.0)*0.384

weight = (1.0+0.825*2.0+0.384*2.0)

return color/weight

Figure 11.8: Directional Blur Shader Program

twice is usually more efficient than applying a two-dimensional blur.
Ambient Lighting. The ambient lighting shader computes how colors radiating

from the sky box light the scene. Figure 11.7 shows the ambient lighting shader
program. The ambient lighting shader reads the information produced by the ma-
terial shader to calculate how every pixel on the screen is lit. The output of the
SSAO shader is used as an input to the ambient lighting shader to modulate the
lighting.

Directional Blur. The directional blur shader is similar to the directional bi-
lateral blur shader, but it does not take into account the underlying geometry of
an image. Figure 11.8 shows the directional blur shader program. This shader is
used to “bloom” bright spots in an image. Blooming the bright spots in an image
simulates how the human optical system reacts to high-dynamic range lighting.

Post-Processing. The post-processing shader computes the final color for each
pixel. Figure 11.9 shows the post-processing shader program. This shader first
combines a blurred copy of the image with an unblurred copy to simulate bloom.
Then it computes a radial blur to simulate “streaking” effects in the bloom. As a
last step, it performs tone mapping to increase the effective dynamic range of the
displayed image.

142

class PostProcess(FullScreenEffect):
__slots__ = [’colorBuffer ’, ’blurBuffer ’, ’samples ’, ’scaleFactor ’,

’falloff ’, ’bias ’, ’blurAmount ’, ’radialAmount ’, ’env ’]

def computeRadial(self , texCoord):
color = vec4 (0.0)
scale = 1.0
amount = 1.0
weight = 0.0

i = 0
while i < self.samples:

Shift to the center
uv = (texCoord -0.5)* scale +0.5
scale *= self.scaleFactor

Weighted sample
color += self.blurBuffer.texture(uv , self.bias)* amount
weight += amount
amount *= self.falloff

i += 1

return color/weight

def process(self , texCoord):
Blend the original image and the bloom
original = self.colorBuffer.texture(texCoord)
blured = self.blurBuffer.texture(texCoord)
color = original.mix(blured , self.blurAmount)

Add radial streaks to the bloom
color += self.computeRadial(texCoord)*self.radialAmount

return vec4(self.env.processOutputColor(color.xyz), 1.0)

Figure 11.9: Post-Processing Shader Program

143

(a) Raw SSAO (b) Blurred SSAO

(c) Without SSAO (d) With SSAO

Figure 11.10: Example of SSAO

SSAO is an important effect in the example rendering system, and it is produced
in three steps. Figure 11.10a shows the output of the SSAO shader. Figure 11.10b
shows the effect of applying a bilateral blur to the SSAO output. Figures11.10c
and 11.10d show the final image, with unmodulated ambient lighting and with
SSAO. The effect is subtle, but it helps define the shape of the objects in the
scene.

11.1.1 Use of Python’s Abstractions in the Example Shaders

The PyStream platform allows abstraction mechanisms from the Python language
to be used when writing Python shader programs. Other shader languages in

144

class Environment(object):
__slots__ = [’worldToCamera ’, ’projection ’,

’cameraToEnvironment ’, ’envMap ’, ’ambientMap ’,
’fog ’, ’exposure ’]

def processSurfaceColor(self , color , p):
return self.fog.apply(color , p)

def processOutputColor(self , color):
Scale , tonemap , and apply gamma correction
return rgb2srgb(tonemap(color*self.exposure))

Called on the CPU
def clearColor(self):

return self.processOutputColor(self.fog.color)

def ambientColor(self , n):
edir = transformNormal(self.cameraToEnvironment , n)
return self.ambientMap.texture(edir).xyz

def specularColor(self , dir):
edir = transformNormal(self.cameraToEnvironment , dir)
return self.envColor(edir)

def envColor(self , dir):
return self.envMap.texture(dir).xyz

Figure 11.11: Environment Class

common use do not provide abstractions to the degree available in PyStream. As
discussed in Chapter 2, these other shader languages call for the use of custom
tools to overcome the deficiencies in the shader languages. PyStream does not
need these other tools because it has Python’s abstractions.

Using abstractions contained in Python improves the structure of a shader pro-
gram and makes the shader program easier to modify throughout its lifetime. One
abstraction used throughout the examples is the concept of an environment, en-
capsulated in a single, shared object. Figure 11.11 shows the class implementing
the environment. The environment contains data that is shared between shaders,
for example, the environment contains the transformation between the world and
the camera. This transformation is used by the material, sky box, lighting, and
ambient lighting shaders. This transformation is consistent across all invocations
of each of these shaders. In the rendering system, a single environment object is
created and shared between all shader program instances. Updates to the envi-
ronment object are therefore seen by all shaders. The environment object takes
advantage of two features that are offered by Python and not by GLSL: shared
values can be held by reference, and shader functionality can be defined by com-
posing data structures. In existing shader languages, sharing values would be
performed with specially written glue code. Shader composition would be done

145

class GBuffer(object):
__slots__ = [’color ’, ’surface ’, ’position ’, ’normal ’]

Allocate the buffers when the rendering system
is initialized.
def allocate(self , fbo , width , height):

self.color = fbo.createTextureTarget(width , height)
self.surface = fbo.createTextureTarget(width , height)
self.position = fbo.createTextureTarget(width , height)
self.normal = fbo.createTextureTarget(width , height)

Setup the buffers as rendering targets for
the material shader.
def bindForWriting(self , fbo):

fbo.bind()
fbo.bindColorAttachment (0, self.color.textureData)
fbo.bindColorAttachment (1, self.surface.textureData)
fbo.bindColorAttachment (2, self.position.textureData)
fbo.bindColorAttachment (3, self.normal.textureData)
fbo.drawBuffers ([0, 1, 2, 3])

Sample the buffers inside of a shader.
Dead code elimination will eliminate unused portions
of the sample , so just read everything.
def sample(self , coord):

surface = self.surface.texture(coord)
position = self.position.texture(coord)
normal = self.normal.texture(coord)

g = GSample ()
g.diffuse = surface.xyz
g.specular = surface.w
g.shiny = normal.w
g.position = position.xyz
g.normal = normal.xyz.normalize ()

return g

class GSample(object):
__slots__ = [’diffuse ’, ’specular ’, ’shiny ’, ’position ’, ’normal ’]

Figure 11.12: GBuffer Class

with custom code generation.
A similar object shared between shaders encapsulates the buffers that hold in-

formation generated by the material shader. Figure 11.12 shows the class imple-
menting the material buffer. Unlike the environment object, the material buffer
object is used both inside shaders and by the rendering system. The material
buffer object is used inside shaders when they need to read values from the mate-
rial buffer. The material buffer object is used by the rendering system to create the
underlying material buffers when the rendering system is initialized, and to con-
figure the rendering pipeline so the result of the material shaders gets written into
the buffers. The material buffer is interesting because the abstraction is shared by
the rendering system and the shaders. Without PyStream’s unified code base, this

146

class FullScreenEffect(object):
__slots__ = []

def shadeVertex(self , context , pos , texCoord):
context.position = pos
return texCoord ,

def shadeFragment(self , context , texCoord):
context.colors = (self.process(texCoord),)

Figure 11.13: Fullscreen Effect Base Class

(a) Pass Through (b) Normal Map (c) Parallax Occlusion

Figure 11.14: Surface Perturbation Algorithms

would require code duplication and glue code.
All of the shaders, except for the material and sky box shaders, inherit from the

FullScreenEffect base class. Figure 11.13 shows this class that specializes the
basic PyStream shader into one that processes all the pixels in an input image. This
eliminates the need to write boilerplate code when creating a shader that processes
an entire image. Some existing rendering systems support this abstraction using a
custom code generator. PyStream supports this abstraction by implementing it as
class inheritance.

Object-oriented polymorphism is used to parametrize the functionality of two
of the shaders. For instance, a material shader contains an object that can affect
how the surface normal is computed. Figure 11.14 shows the results produced by
the three classes that can be used parametrize the material shader. One class passes
through the surface normal of the underlying geometry, and another perturbs the
normal based on normal data stored in a texture map. The third class performs

147

parallax occlusion mapping [15] which traces rays against a texture map to perturb
the surface. Polymorphism is used in the lighting shader to implement different
kinds of lights. Currently, a lighting shader can render either a point light or a spot
light, depending on the object attached to it.

Early in the research, the rendering system was built as a forward rendering
system, not a deferred rendering system as was subsequently used. A forward ren-
dering system combines the functionality of the material and lighting shaders into
a single shader. In the course of research, the forward rendering system was refac-
tored into a deferred rendering system to better match the current state-of-the-art
in rendering systems. Refactoring the system into a deferred rendering system
was straightforward, however, because the existing shaders encapsulated much
of their functionality in objects. Refactoring the rendering system only required
changing the top-level function of each shader. The rendering system developed
for this research strongly suggests that use of Python’s abstraction mechanisms
can significantly simplify the engineering of a real-time rendering system.

11.2 Performance of the Example Python Shaders

Measuring the overall performance of a rendering system is complicated because
performance depends on a number of factors, some of which interact. The choice
of what rendering algorithms are used affects performance and it is generally not
informative to compare two rendering systems if they do not render images us-
ing the same algorithms. For example, one rendering system may focus on image
quality at the cost of performance, whereas another may make the opposite choice.
Algorithms can also be optimized and tuned at a high level, meaning that the same
algorithm can perform differently depending on how it was optimized. Perfor-
mance is also affected by low-level choices about how a rendering algorithm is
implemented on the hardware. Measuring a rendering system’s performance is
further complicated by the fact that it can vary depending on what is being ren-
dered. For instance, a simple image can be rendered faster than a complex image.
In addition, various aspects of a rendering system can bottleneck overall perfor-
mance depending on what is being rendered. Overall performance can be limited
by processing vertices, processing fragments, or even CPU overhead from API
calls. The example rendering system used in this research does not have an exist-
ing rendering system with which to compare it. The number of real-time rendering

148

systems written in Python is small, and the number of real-time rendering systems
with Python shaders is non-existent beyond this research.

The performance of the example rendering system is evaluated indirectly using
a number of measures. First, images produced by the rendering system are shown.
The speed at which these images are produced is also documented. The images
and speed allow the inference that the rendering system indeed runs in real time
and produces high-quality images. Second, the performance of each individual
shader is compared to the same shader interpreted by a Python interpreter to show
the speedup achieved by the PyStream compiler. Third, a manual inspection of
the generated GLSL code is performed to determine how efficiently the Python
shaders are implemented on the GPU. Fourth, measurements are taken to show
that the PyStream compiler can improve shader performance by generating glue
code for different versions of an API.

All of the measurements were performed in Windows XP on an AMD Athlon
64 X2 3800+ CPU and on an NVidia 9800 GT GPU. The CPython 2.6.4 interpreter
was also used.

11.2.1 Performance of the Overall Rendering System

Figure 11.15a shows the number of frames that can be rendered every second
(FPS) as the number of objects drawn increases. These measurements were taken
while rendering to a 1024x1024 frame buffer. In general, more than 15 FPS is
considered interactive, and 60 FPS provides a high-fidelity illusion of smooth
movement. The example rendering system easily provides interactive frame rates,
and scales well in terms of the number of objects being drawn.

Figure 11.15b shows the FPS of the example rendering system as the size of the
frame buffer increases. The specified resolution is in both dimensions, so doubling
the resolution actually quadruples the number of pixels drawn. Deferred rendering
systems are bandwidth intensive and it is not surprising that performance tapers off
as the resolution is increased. It is apparent that when rendering to a 1024x1024
frame buffer, the performance of the example rendering system is largely bound
by the number of pixels drawn.

Overall, the performance of the example rendering system is good. The ren-
dering algorithms themselves have not been aggressively optimized, and it is ex-
pected that even better performance could be achieved by hand-tuning the algo-

149

Table 11.1: Shader Performance

Pixels GPU GPU/Pixels CPU CPU/Pixels Improvement
material 0.77 4.33 ms 5.62 ms 169.8 s 220.5 s 39,211x
skybox 0.27 0.22 ms 0.81 ms 9.6 s 35.5 s 43,568x

ssao 1.00 1.44 ms 1.44 ms 444.9 s 444.9 s 308,958x
bilateral 2.00 2.97 ms 1.49 ms 858.2 s 429.1 s 288,956x
ambient 1.00 0.84 ms 0.84 ms 64.1 s 64.1 s 76,310x

light 5.00 4.75 ms 0.95 ms 635.5 s 127.1 s 133,789x
blur 4.00 2.14 ms 0.54 ms 296.8 s 74.2 s 138,692x
post 0.23 2.20 ms 9.57 ms 101.8 s 442.6 s 46,272x
total 14.27 17.59 ms 1.23 ms 2580.7 s 180.8 s 146,712x

rithms, but that is outside the scope of this research.

11.2.2 API Optimization in PyStream

The PyStream compiler can improve shader performance by changing the API
(Section 2.5) for which it generates shader code. It has been previously demon-
strated that incorporating high-level information about an API into the compi-
lation process can improve performance for the domain of linear algebra [43].
PyStream can generate glue code and GLSL shader code for both the OpenGL 2
API and the OpenGL 3 API. As it relates to PyStream’s code generation, the main
difference between OpenGL 2 and OpenGL 3 is that OpenGL 3 requires fewer
calls within its glue code. When generating code for OpenGL 2, the example
Python shaders are often bound by API call overhead. Figure 11.15a shows that
generating code for OpenGL 3 improves the performance of the rendering system
by ~20% when large numbers of objects are drawn and the performance of the
rendering system is limited by API call overhead. This performance improvement
was obtained without changing the Python shaders. PyStream’s capability to im-
prove performance without modifying the rendering system demonstrates that a
domain-specific compiler for real-time rendering has both performance and engi-
neering advantages.

150

Objects

0 10 20 30 40 50 60 70 80 90 100

F
P

S

0

10

20

30

40

50

60

70

OpenGL3 OpenGL2

(a)

Resolution

0 256 512 768 1024 1280 1536 1792 2048

F
P

S

0

10

20

30

40

50

60

70

80

90

(b)

Figure 11.15: Rendering System Performance

151

11.2.3 Compiled GPU vs. Interpreted CPU Shaders

Table 11.1 shows the total execution time of each shader when rendering a typi-
cal scene. The measurements were taken when rendering to a 1024x1024 frame
buffer. The “Pixels” column shows the number of pixels drawn by a shader pro-
gram, divided by the number of pixels in the frame buffer. This shows the number
of times a shader program was run per pixel. The “GPU” and “CPU” columns
show the time taken by each shader when rendering the image. The “GPU/Pix-
els” and “CPU/Pixels” columns show the time taken, divided by the number of
times the shader was run per pixel. This illustrates the relative performance of
each shader. Comparing the total time taken by Python shaders running on the
GPU to the same Python shaders interpreted on the CPU shows that PyStream can
run shaders on the GPU at least 146,000 times faster than the Python interpreter
can on the CPU. This number is a lower bound because no complete rendering
system exists to use the Python shaders on the CPU. The performance measure-
ments of a Python shader program interpreted on the CPU are extrapolated from
the average performance of its fragment shader and weighted by the number of
pixels that would be processed. This estimate is biased in favor of the shader be-
ing interpreted on the CPU because it does not factor in time taken by the shader
on the CPU to transform vertices, rasterize triangles, sample textures, write to the
frame buffer, and similar rendering functions. The measurements of the Python
shader programs running on the GPU take into account all costs. In general, the
shaders that show the least speedup have few numeric operations and mostly sam-
ple textures, a situation that causes the time taken on the CPU to be significantly
underestimated.

A speedup of five orders of magnitude may seem astonishing, but it is rea-
sonable if the sources of the speedup are individually accounted for. For exam-
ple, consider the directional blur shader, which performs 48 floating point opera-
tions per pixel. This means that the measured performance of the blur filter is 95
GFLOPS (billions of floating point operations per second). This is 28% of the the-
oretical maximum achievable on this GPU (Table 11.2). Based on benchmarks for
LINPACK, a common CPU benchmark, this CPU can achieve 945 MFLOPS in
practice. This meansthat , if only FLOPS are considered, two orders of magnitude
speedup can be achieved by moving from the CPU to GPU. In the CPython in-
terpreter running on the same CPU, an optimized loop of add/multiply operations
can achieve 11 MFLOPS. This indicates that interpreted Python is roughly 2 or-

152

Table 11.2: Floating-Point Operations Per Second

FLOPS
CPython Shader 0.8 M

CPython Benchmark 11.0 M
LINPACK Benchmark 945.0 M

Observed GPU 95.0 G
Theoretical GPU 336.0 G

ders of magnitude slower than code running directly on the CPU. This slowdown
includes interpreting byte codes, keeping each floating point value as a separate
object, and using double-precision floating-point math instead of single-precision.
Taken together, this means that a speedup of roughly four orders of magnitude
can be accounted for by changing the underlying architecture from interpreting
the shader on the CPU to directly running it on the GPU.

The final order of magnitude can be attributed to removal of abstraction over-
head by the PyStream compiler. Many of Python’s abstraction mechanisms were
used in the example shaders. The example Python shaders were written for sim-
plicity, not for speed. The cost of many of the abstractions used is orthogonal to
the cost of interpreting Python. For example, most of the shaders divide their func-
tionality into a number of short methods and functions, increasing the number of
calls that must be made. Each shader splits its data across multiple objects, reduc-
ing cache coherency. Python’s idiom for ad hoc polymorphism was extensively
used when reimplementing GLSL functions and types in Python. This means
that every class initializer contains extensive control flow. GLSL arithmetic op-
erations also contain control flow to determine the types of the arguments. The
PyStream compiler eliminates most memory operations in a shader, eliminating
the overhead of both allocating objects and loading and storing fields. An order
of magnitude improvement for eliminating these abstractions is more than reason-
able. Taking all of these sources of improvement into account, a speedup of five
orders of magnitude is not unexpected.

11.2.4 Quality of the Generated Code

Manual inspection of the example shaders shows that the generated code imple-
ments the functionality specified in the Python shaders without any abstraction
overhead. In many situations, the PyStream compiler generates code that copies

153

Table 11.3: Performance of PyStream’s Compiler Pipeline

Time (ms) % Total % No Clone
Decompilation 558 1.5% 2.7%

Pointer Analysis 6178 16.1% 29.8%
Method Fusion 278 0.7% 1.3%
Escape Analysis 1883 4.9% 9.1%

Simplify 470 1.2% 2.3%
Function Cloning 17510 45.8% -
Function Inlining 1683 4.4% 8.1%
Pointer Analysis 2 2596 6.8% 12.5%
Escape Analysis 2 974 2.5% 4.7%

Load/Store Elimination 751 2.0% 3.6%
Tree Transform 4005 10.5% 19.3%

Output Flattening 803 2.1% 3.9%
Field Transform 204 0.5% 1.0%

GLSL Transform 368 1.0% 1.8%

variables when a human being would not. These extra copy operations generated
by the PyStream compiler are not a performance overhead for the GLSL shaders.
The extra copies are likely eliminated with a straightforward copy-elimination
optimization when the GLSL shader is compiled onto the GPU.

11.3 Compilation Speed in PyStream

Table 11.3 shows the time consumed by each step in the PyStream compiler
pipeline when compiling all of the example shaders, both in terms of absolute
time and in terms of a relative percentage. The entire process takes 38.5 seconds.
The two most time-expensive operations in the compiler are the initial pointer
analysis and the function cloning.

Function cloning is time-expensive in the PyStream compiler due to an indi-
rectly observable flaw in the implementation. As the size of the example shaders
increases, the function cloning transformation slows down by a disproportional
amount. This indicates that performance characteristics of the function cloning
transformation are unintentionally non-linear. The source of this non-linearity is
unknown, but it does not significantly affect the results of this research. In Ta-
ble 11.3, the column “% No Clone” shows the relative performance of each step
if the time taken by cloning is ignored. This provides a clearer picture of the time

154

taken by each step.
The initial pointer analysis is time-expensive, in part due to how it is im-

plemented and in part due to the nature of Python. The selected underlying
pointer analysis algorithm used in PyStream is intentionally unsophisticated. Sec-
tion 7.10.2 indicates that a more sophisticated pointer analysis algorithm can run
faster. Features inherent in Python generally make it time-expensive to analyze.
Python has abstraction overhead that has both a run-time-cost and slows down
analysis. Pointer analysis of Python has to contend with multiple levels of indi-
rection, both for pointer data and in the call graph. When the PyStream compiler
reanalyzes the Python shaders after abstraction overhead has been eliminated, the
analysis is about twice as fast despite the fact that heap sensitivity is increased
during reanalysis. The improved performance during reanalysis indicates that ab-
straction overhead is time-expensive for pointer analysis. When analyzing Python,
inherently expensive analysis algorithms, such as flow-sensitive pointer analysis,
should be deferred until after transformations have eliminated as much as possible
of Python’s abstraction overhead.

Table 11.3 shows that the novel algorithms of the PyStream compiler are effi-
cient. PyStream’s novel algorithms, including method fusion, argument normal-
ization, output flattening, field transform, and emulating reference semantics, are
all time-inexpensive compared to other operations in the PyStream compiler.

The PyStream compiler operates at a speed usable for research. For a pro-
duction compiler, this compilation speed could be increased with a number of
optimizations. As a general concept, a compiler written in Python is slower than
a compiler written in C. Writing the PyStream compiler in Python causes it to
run one to two orders of magnitude slower than it would if it were written in C.
The design of the PyStream compiler was largely unconcerned with compilation
speed, so further optimizations to increase compilation speed can be readily ac-
complished.

155

Chapter 12

Future Work

The PyStream platform explores running a high-level language on a restricted
high-performance architecture for which the language was not designed. This
opens up new areas of future research. There are aspects of the PyStream platform
that can be modified, extended and expanded, either to accommodate evolving
GPUs or to increase the subset of Python which is translated.

12.1 Integrating the CPU and GPU for Real-Time
Rendering

The PyStream platform allows both a CPU and a GPU to be programmed in tan-
dem with a single code base, a feature that invites future research topics. The
capacity of the PyStream platform to compile Python can be applied to more than
just shaders. In the long-term, the PyStream platform could be used to compile
an entire rendering system. This would allow whole-program domain-specific
optimizations to be applied by the compiler. Possible topics for future research
include:

Debugging Shaders on the CPU. CPUs typically provide a better environment
in which to debug programs. Using the PyStream platform, shaders could be
debugged on the CPU because a single code base would allow the same code to
be run on either processor.

Dynamic Compilation. The PyStream compiler was designed and implemented
as a static compiler. An area of future research is to determine what benefits may
be realized by using a dynamic compiler to generate code for the GPU.

CPU/GPU Optimizations. Transformations can move code between the CPU
and the GPU. The single code base allowed by the PyStream platform makes it
easier. What benefits may be obtained by exploiting the ease of moving code
between the CPU and the GPU is an area of future research. For instance, certain

156

computations can be lifted out of a shader and onto the CPU. This optimization
would reduce the frequency with which the computation is performed.

Global Domain-Specific Optimizations. If an entire rendering system is com-
piled by the PyStream platform, global domain-specific optimizations can be ap-
plied. For instance, an area of research would be how to globally optimize data
passed between each shader in a rendering system.

Improving Low-Level Shading Languages. A native shader language with fewer
restrictions than GLSL would simplify running Python shaders on the GPU. CUDA
was considered for research use because it presents a flexible programming model.
GLSL was used instead of CUDA in the research because CUDA does not expose
rendering-specific hardware on the GPU. A future area of research is whether a
shading language can be created that combines the flexible programming model
of CUDA with access to rendering-specific hardware.

12.2 Pointer Analysis for Python

The articulation within the PyStream compiler of how to perform pointer analysis
for Python invites future research on pointer analysis for Python. Specific topics
for future research include the following:

Supporting More Features of Python Using a Low-level Approach. There are a
number of features in Python that are not supported by PyStream’s pointer analy-
sis because they were outside of the scope of this research. The PyStream platform
can be modified to support these features. Future research may be able to demon-
strate that a low-level approach can support all Python features, such as closures,
generators, and kargs.

Supporting Exceptions. Supporting exceptions when compiling Python requires
further research. Supporting exceptions in a pointer analysis for Python would re-
quire that the analysis be flow sensitive, due to how Python deals with undefined
attributes. If an undefined attribute is read in Python, an exception is raised at run
time. All attributes are initially undefined when an object is allocated. A flow-
insensitive analysis would conclude that attributes of a dynamically allocated ob-
ject can always be undefined and any attempt to read one of these attributes can
always result in an exception. If reading an attribute can cause an exception in
most cases, very few transformations can be applied to a program because excep-
tion semantics of Python would need to be preserved. A flow-sensitive analysis

157

is required to verify that most attributes are defined in a Python program before
they are read. Efficient flow-sensitive analysis of Python programs is a topic of
research. PyPy assumes that an exception does not occur unless the program con-
tains code needed to handle a specific exception; this approach is inadequate for
compiling the full Python language.

Increasing Heap Sensitivity. Another area of future research is how to improve
heap sensitivity for pointer analysis of Python. Python stores a lot of information
in the heap that is critical for resolving the behavior of a program. PyStream
uses extended types (Section 7.8) to target known, critical situations where heap
sensitivity is required. Extended types work in specific cases, but they do not
improve heap sensitivity in general. An Andersen-style formulation of the pointer
analysis algorithm described by Lattner et al. [36] could improve heap sensitivity.

Python Interpreters Written in Python. PyStream’s low-level approach to pointer
analysis may have synergies with PyPy’s implementation of a Python interpreter
in Python. This may be a matter worth further research. PyStream’s low-level ap-
proach to pointer analysis, when fully developed, will result in most of the Python
interpreter functions being rewritten in Python for analysis and compilation onto
the GPU. It is unknown whether these two different implementations of Python in-
terpreter functions written in Python will converge, because each implementation
is being engineered for entirely different purposes.

Generating a Pointer Analysis Algorithm from a Python Interpreter. The low-
level approach used in the PyStream compiler reinforces that there is a correspon-
dence between analyzing and interpreting a program. PyPy has demonstrated that
its Python interpreter can be translated into a JIT compiler for Python [44]. Us-
ing a similar approach, it may be possible to generate a low-level pointer analysis
algorithm for Python by transforming a Python interpreter.

12.3 Emulating Reference Semantics

Establishing the Limits of the Translation Process. PyStream demonstrates that
Python’s semantics can be efficiently translated into GLSL for the example shaders.
The limits of this translation process were not tested during this research. Future
work may determine what more can be translated efficiently and what cannot. This
translation process can likely be adapted to other domains, such as translating a
Python program onto an FPGA.

158

Avoiding Exhaustive Inlining. The PyStream compiler uses exhaustive inlining
to simplify translation of Python into GLSL. There are two issues associated with
use of exhaustive inlining. Exhaustive inlining has the undesirable side effect of
duplicating functions. Exhaustive inlining would fail if recursive function calls
were allowed in the PyStream language. A future area of research is to deter-
mine whether transformations in the PyStream compiler can be reformulated to
eliminate the need for exhaustive inlining.

159

Chapter 13

Conclusions

The PyStream platform successfully runs Python shaders on a GPU. This is an
important step toward understanding how to run high-level languages on restricted
high-performance architectures for which the language was not designed. An
important feature of the PyStream platform is that it generates and optimizes glue
code to connect the CPU and the GPU. This allows the GPU coprocessor to share a
single code base with the CPU. This approach can be extended to other languages
and coprocessors. For example, it is possible that portions of a program written in
the Ruby language could be compiled onto an FPGA using techniques similar to
those created for the PyStream platform. Within boundaries, Python can run on a
GPU when translated into a very restricted low-level language.

The PyStream platform requires fewer programming decisions than are re-
quired in a low-level language, making it easier to use. The PyStream platform has
the potential to run faster, because complicated and delicate implementation issues
can be shifted onto the compiler. When a high-performance architecture, such as
a GPU, is introduced into the discussion, then the burden inherent in low-level
programming is increased. This problem is illustrated by the issues confronted
when engineering a real-time rendering system, issues which the PyStream plat-
form was designed to address.

The PyStream platform demonstrates that Python can be run on a GPU for the
subset of Python used in the example shaders. Previously, none of Python could
be run on the GPU. The PyStream platform provides comparable functionality
to that available in existing shading languages, but it does even more. The PyS-
tream platform brings object-oriented programming to the restricted architecture
of a GPU, including references to objects, methods, and polymorphic types. The
PyStream platform also brings a subset of Python’s semantics onto a GPU, such
as attribute lookup. The PyStream platform demonstrates that some features of
Python not supported on a GPU can be used in Python shaders that run on the
GPU because these features can be eliminated by a compiler. For instance, all of

160

the example Python shaders implicitly use dictionary objects as a consequence of
Python’s semantics for global variable lookup. The PyStream compiler eliminated
all uses of these dictionary objects in the example shaders. Although emulating
dictionary objects may be necessary to fully support Python on the GPU in future
extensions of this research, it was not necessary in the example shaders used in
the research.

The PyStream platform easily and efficiently runs portions of Python on the
GPU. While there may be undiscovered complications when the full Python lan-
guage is run in a similar manner on a GPU, the PyStream platform demonstrates
that running a restricted subset of Python offers greater ease of programming than
existing shader languages. The PyStream platform offers a number of engineering
advantages as well, because the shaders and the rest of the rendering system are
written in the same language. The PyStream platform demonstrates that these en-
gineering advantages happen even when running a subset of Python on the GPU.

13.1 Analyzing Modern High-Level Dynamic
Languages

Analyzing Python is an open problem. The PyStream compiler advances the so-
lution in two areas. The PyStream compiler takes a low-level approach to analysis
which directly addresses the complexities of implementing an analysis for a mod-
ern high-level language like Python. An analysis algorithm should use lower-level
abstractions with minimal special cases so that it can deal with a larger portion of
the language in a sound manner. The low-level approach further simplifies the
analysis algorithm by moving language semantics into analyzed code. Results
from using a low-level analysis approach in the PyStream compiler indicate that
the subset of Python being compiled can be increased more easily than with the
high-level approaches previously used.

The other advance toward analyzing Python, as demonstrated by the PyStream
compiler, is linking pointer analysis for Python to the larger body of work on
pointer analysis. This is made possible in part by using a low-level approach
which increases the similarity between analyzing Python and analyzing languages
such as C.

161

13.2 Abstraction Overhead in High-Level Dynamic
Languages

PyStream demonstrates, in a specific case, the feasibility of using high-level lan-
guages for high-performance applications. It is not well understood how much of
the “abstraction penalty” in high-level languages is inherent in their design and
how much is due to failures in their implementation. The research for this dis-
sertation demonstrates that a good portion of the abstraction penalty in a Python
shader can be compiled away. A number of novel techniques, described in this
dissertation, were created to assist in this process.

13.3 Domain-Specific Compilers

The PyStream platform demonstrates the utility of domain-specific compilation
for real-time rendering. The architecture and programming interfaces for GPUs
have been constantly changing as GPUs have evolved and their utility increasingly
understood. This trend will likely continue. Domain-specific compilation allows
the compiler to transparently take advantage of new and changing features. This
capacity of the PyStream platform is important for real-time rendering, because
it allows performance improvements by using new features without the need to
rewrite an existing program.

162

Appendix A

Research Tangents

The PyStream platform came into being through extensive experimentation with
various compiler techniques. As with any experimentation, there were things that
were tried that turned out to be less than optimal. Some of these techniques were
good, but they did not work in the context of the PyStream compiler.

Experimentation indicated that Python is singularly unsuited for generating
code via metaprogramming. The first iteration of the PyStream platform used
metaprogramming to generate shaders, similar to Sh [16, 17]. This did not work.
Python’s lexical convention of using white space to indicate program structure can
only be applied to Python code and not to a metaprogram. A metaprogram embed-
ded in Python code is therefore difficult to read and understand if it contains any
significant structure. PyGPU [18] avoids this problem by manually interpreting
the byte codes of a Python function rather than executing the function directly.

Experimenting with pointer analysis techniques that used binary decision dia-
grams (BDDs) did not work. Particularly, attempting to formulate a BDD pointer
analysis as described by Whaley and Lam [35] had a number of issues including
problems bounding the size of a Python program and overall difficulties getting
the algorithm to perform well.

A novel BDD-inspired technique was used to maintain the correlation between
different sets of pointer information using a sparse tree structure. This did not
work either. This approach increased the complexity of the analysis because the
analysis algorithm needed to simultaneously traverse all of the trees for all of
the values that might be needed to resolve a given operation. The larger idea of
keeping values correlated is important, however, since it is what makes CPA work.

Region-based shape analysis with tracked locations [45] is a novel form of
shape analysis that seems as if it should be able to be performed efficiently. During
development, the PyStream compiler contained an implementation of this analy-
sis algorithm so that PyStream could better deal with shaders which did not have
tree shaped inputs and outputs. This did not work either. It was hard to determine

163

how to efficiently implement the algorithm, particularly when the complexities of
using CPA contexts were added.

At one point during development, the PyStream compiler converted shader code
into a dataflow IR [46], which explicitly represents dependencies between mem-
ory operations. This did not work either. It was thought that this would make
eliminating memory operations easier, but in fact it made it harder. Because the
dependencies were explicitly represented, any re-analysis that refined the com-
piler’s view of memory dependencies (Section 9.4) required rewriting the IR. Sim-
ilarly, transformations that eliminated memory operations (Chapter 9) needed to
rewrite the affected dependencies. Keeping memory dependencies implicit in the
IR simplified many of PyStream’s transformations.

164

References

[1] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey,
S. Junkins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski,
T. Juan, and P. Hanrahan, “Larrabee: A many-core x86 architecture for vi-
sual computing,” ACM Trans. Graph., vol. 27, no. 3, pp. 1–15, 2008.

[2] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and
P. Hanrahan, “Brook for GPUs: Stream computing on graphics hardware,”
in SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers, 2004, pp. 777–786.

[3] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel
programming with CUDA,” in SIGGRAPH ’08: ACM SIGGRAPH 2008
Classes, 2008, pp. 1–14.

[4] A. Munshi. (2009) The OpenCL specification - version 1.0. [Online].
Available: http://www.khronos.org/registry/cl/specs/opencl-1.0.48.pdf

[5] A. Lefohn, M. Houston, J. Andersson, U. Assarsson, C. Everitt, K. Fa-
tahalian, T. Foley, J. Hensley, P. Lalonde, and D. Luebke, “Beyond pro-
grammable shading (parts i and ii),” in SIGGRAPH ’09: ACM SIGGRAPH
2009 Courses, 2009, pp. 1–312.

[6] F. Mannuß and A. Hinkenjann, “Interactive shader development using
Python scripts,” Brazilian Symposium on Computer Graphics and Image
Processing, 2005.

[7] Blender. [Online]. Available: http://www.blender.org/

[8] M. Mittring, “Finding next gen: CryEngine 2,” in SIGGRAPH ’07: ACM
SIGGRAPH 2007 Courses, 2007, pp. 97–121.

[9] NVIDIA FX Composer 2.5 GPU shader authoring environment. [Online].
Available: http://developer.nvidia.com/object/fx_composer_home.html

[10] RenderMonkey toolsuite. [Online]. Available: http://ati.amd.com/developer/
rendermonkey/

[11] M. McGuire, G. Stathis, H. Pfister, and S. Krishnamurthi, “Abstract shade
trees,” in I3D ’06: Proceedings of the 2006 Symposium on Interactive 3D
Graphics and Games, 2006, pp. 79–86.

165

http://www.khronos.org/registry/cl/specs/opencl-1.0.48.pdf
http://www.blender.org/
http://developer.nvidia.com/object/fx_composer_home.html
http://ati.amd.com/developer/rendermonkey/
http://ati.amd.com/developer/rendermonkey/

[12] J. Andersson and N. Tatarchuk, “Rendering architecture and real-time pro-
cedural shading & texturing techniques,” in SIGGRAPH ’07: ACM SIG-
GRAPH 2007 Classes, 2007.

[13] Unreal development kit. [Online]. Available: http://developer.nvidia.com/
object/udk.html

[14] R. L. Cook, “Shade trees,” SIGGRAPH Comput. Graph., vol. 18, no. 3, pp.
223–231, 1984.

[15] N. Tatarchuk, “Dynamic parallax occlusion mapping with approximate soft
shadows,” in I3D ’06: Proceedings of the 2006 Symposium on Interactive
3D Graphics and Games, 2006, pp. 63–69.

[16] M. D. McCool, Z. Qin, and T. S. Popa, “Shader metaprogramming,” in
HWWS ’02: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Con-
ference on Graphics Hardware, 2002, pp. 57–68.

[17] M. McCool, S. Du Toit, T. Popa, B. Chan, and K. Moule, “Shader algebra,”
in SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers, 2004, pp. 787–795.

[18] C. Lejdfors and L. Ohlsson, “Implementing an embedded GPU language by
combining translation and generation,” in SAC ’06: Proceedings of the 2006
ACM Symposium on Applied Computing, 2006, pp. 1610–1614.

[19] D. Tarditi, S. Puri, and J. Oglesby, “Accelerator: using data parallelism to
program GPUs for general-purpose uses,” in ASPLOS-XII: Proceedings of
the 12th International Conference on Architectural Support for Program-
ming Languages and Operating Systems, 2006, pp. 325–335.

[20] W. Thies, M. Karczmarek, and S. P. Amarasinghe, “StreamIt: A language for
streaming applications,” in CC ’02: Proceedings of the 11th International
Conference on Compiler Construction, 2002, pp. 179–196.

[21] Scipy. [Online]. Available: http://www.scipy.org/

[22] A. Rigo, “Representation-based just-in-time specialization and the Psyco
prototype for Python,” in PEPM ’04: Proceedings of the 2004 ACM SIG-
PLAN Symposium on Partial Evaluation and Semantics-based Program Ma-
nipulation, 2004, pp. 15–26.

[23] G. Ewing. (2010, Apr.) Pyrex: A language for writing Python extension
modules. [Online]. Available: http://www.cosc.canterbury.ac.nz/greg.ewing/
python/Pyrex/

[24] Pypy. [Online]. Available: http://codespeak.net/pypy/dist/pypy/doc/

166

http://developer.nvidia.com/object/udk.html
http://developer.nvidia.com/object/udk.html
http://www.scipy.org/
http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/
http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/
http://codespeak.net/pypy/dist/pypy/doc/

[25] D. Ancona, M. Ancona, A. Cuni, and N. D. Matsakis, “RPython: A step
towards reconciling dynamically and statically typed OO languages,” in DLS
’07: Proceedings of the 2007 Symposium on Dynamic Languages, 2007, pp.
53–64.

[26] M. Salib, “Starkiller: A static type inferencer and compiler for Python,”
Master’s thesis, Massachusetts Institute of Technology, Department of
Electrical Engineering and Computer Science, 2004. [Online]. Available:
http://hdl.handle.net/1721.1/16688

[27] O. Agesen, “Concrete type inference: Delivering object-oriented applica-
tions,” Sun Microsystems Laboratories, Mountain View, CA, USA, Tech.
Rep. SMLI TR-96-52, 1996.

[28] Shed Skin. [Online]. Available: http://code.google.com/p/shedskin/

[29] O. Agesen and U. Hölzle, “Type feedback vs. concrete type inference: A
comparison of optimization techniques for object-oriented languages,” in
OOPSLA ’95: Proceedings of the Tenth Annual Conference on Object-
oriented Programming Systems, Languages, and Applications, 1995, pp. 91–
107.

[30] M. Bravenboer, K. T. Kalleberg, R. Vermaas, and E. Visser, “Stratego/XT
0.16: Components for transformation systems,” in PEPM ’06: Proceed-
ings of the 2006 ACM SIGPLAN Symposium on Partial Evaluation and
Semantics-Based Program Manipulation, 2006, pp. 95–99.

[31] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck, “Effi-
ciently computing static single assignment form and the control dependence
graph,” ACM Trans. Program. Lang. Syst., vol. 13, no. 4, pp. 451–490, 1991.

[32] V. C. Sreedhar and G. R. Gao, “A linear time algorithm for placing φ -nodes,”
in POPL ’95: Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, 1995, pp. 62–73.

[33] K. D. Cooper, T. J. Harvey, and K. Kennedy, “A simple, fast dominance
algorithm,” Software - Practice and Experience, vol. 4, pp. 1–10, 2001.

[34] E. Nystrom, “Fulcra pointer analysis framework,” Ph.D. dissertation,
Department of Electrical and Computer Engineering, University of Illinois
at Urbana-Champaign, 2005. [Online]. Available: http://www.crhc.uiuc.
edu/IMPACT/ftp/report/phd-thesis-erik-nystrom.pdf

[35] J. Whaley and M. S. Lam, “Cloning-based context-sensitive pointer alias
analysis using binary decision diagrams,” in PLDI ’04: Proceedings of the
ACM SIGPLAN 2004 Conference on Programming Language Design and
Implementation, 2004, pp. 131–144.

167

http://hdl.handle.net/1721.1/16688
http://code.google.com/p/shedskin/
http://www.crhc.uiuc.edu/IMPACT/ftp/report/phd-thesis-erik-nystrom.pdf
http://www.crhc.uiuc.edu/IMPACT/ftp/report/phd-thesis-erik-nystrom.pdf

[36] C. Lattner, A. Lenharth, and V. Adve, “Making context-sensitive points-
to analysis with heap cloning practical for the real world,” SIGPLAN Not.,
vol. 42, no. 6, pp. 278–289, 2007.

[37] J. Plevyak and A. A. Chien, “Type directed cloning for object-oriented pro-
grams,” in LCPC ’95: Proceedings of the 8th International Workshop on
Languages and Compilers for Parallel Computing, 1996, pp. 566–580.

[38] S. Ryoo, C. I. Rodrigues, and W.-M. W. Hwu, “Iteration disambiguation for
parallelism identification in time-sliced applications,” The 20th International
Workshop on Languages and Compilers for Parallel Computing, pp. 110–
124, 2007.

[39] A. Heirich, “Optimal automatic multi-pass shader partitioning by dynamic
programming,” in HWWS ’05: Proceedings of the ACM SIGGRAPH/EURO-
GRAPHICS Conference on Graphics Hardware, 2005, pp. 91–98.

[40] D. Filion and R. McNaughton, “Effects & techniques,” in SIGGRAPH ’08:
ACM SIGGRAPH 2008 Classes, 2008, pp. 133–164.

[41] G. Petschnigg, R. Szeliski, M. Agrawala, M. Cohen, H. Hoppe, and
K. Toyama, “Digital photography with flash and no-flash image pairs,” in
SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers, vol. 23, no. 3, 2004, pp.
664–672.

[42] E. Eisemann and F. Durand, “Flash photography enhancement via intrinsic
relighting,” in SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers, 2004, pp.
673–678.

[43] S. Z. Guyer, “Incorporating domain-specific information into the compila-
tion process,” Ph.D. dissertation, The University of Texas at Austin, 2003.

[44] A. Cuni, D. Ancona, and A. Rigo, “Faster than C#: Efficient implementation
of dynamic languages on .NET,” in ICOOOLPS ’09: Proceedings of the
4th Workshop on the Implementation, Compilation, Optimization of Object-
Oriented Languages and Programming Systems, 2009, pp. 26–33.

[45] B. Hackett and R. Rugina, “Region-based shape analysis with tracked lo-
cations,” in POPL ’05: Proceedings of the 32nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, 2005, pp. 310–323.

[46] M. Budiu and S. C. Goldstein, “Pegasus: An efficient intermediate repre-
sentation,” Carnegie Mellon University, Tech. Rep. CMU-CS-02-107, May
2002.

168

	Chapter 1 Introduction
	Goal Statement and Research Questions
	Contributions
	Organization

	Chapter 2 Engineering Real-Time Rendering Systems
	Historical Emergence of Real-Time Rendering
	Rendering Heuristics
	Real-Time Rendering System Life Cycle
	GPU Architecture
	GPU Application Programming Interfaces (APIs)
	Software-Defined Rendering Pipelines
	Shader Languages
	Lack of Abstraction in Shader Languages
	Barriers Between the CPU and GPU
	Prior Work to Simplify Shader Programming

	Computation on the GPU
	PyGPU
	Data Parallel Array Libraries
	Stream Programming Languages
	Compute Unified Device Architecture (CUDA)

	Example Rendering System

	Chapter 3 Python
	An Introduction to Python
	Dynamic Types
	Everything is an Object
	Function Objects
	Class Objects
	Built-in Container Types
	Python Semantics are Complex
	Calling Conventions
	Metaprogramming
	Integrating Python With Other Languages

	Compiling Python

	Chapter 4 The PyStream Language
	Restrictions on Python in PyStream
	Compilation Restrictions
	GLSL Restrictions
	Engineering Restrictions
	Translation Restrictions
	Post-compilation Language Restrictions

	Python Shader Programs in PyStream
	GLSL Intrinsic Functions and Types in PyStream
	Advantages of Using PyStream to Write Shaders

	Chapter 5 PyStream's Compiler Architecture
	The PyStream Compiler Pipeline
	Abstraction Syntax Trees (ASTs)
	Specification
	Generic Traversal
	Symbol Rewriting
	Shared Nodes

	Special AST Nodes
	Existing Object Nodes
	Direct Call Nodes
	Method Call Nodes
	Type Switch Nodes
	Low Level Memory Operation Nodes

	Annotations
	Intermediate Representation
	Type Dispatcher

	Chapter 6 PyStream's Compiler Front End
	Code Preprocessing
	Decompilation
	Operation Lowering
	Static Single Assignment (SSA) Transformation
	Foreign Functions

	Chapter 7 Pointer Analysis for Python
	Topics in Pointer Analysis
	Pointer Analysis Precision
	Pointer Analysis Concepts and Terms

	Architecture of PyStream's Pointer Analysis
	Pointer Analysis Issues in Python
	Current Techniques Used to Analyze Python
	Bootstrapping
	Closed World
	Cartesian Product Algorithm Contexts

	Reducing Complexity of Pointer Analysis for Python
	Python Semantics Embedded in PyStream

	Low-Level Object Modeling in PyStream
	Python Attributes
	Prior Approaches to Object Modeling
	PyStream's Low-level Object Model
	PyStream's Loadall and Storeall Fields

	Cascaded Call Constraints in PyStream
	Extended Types in PyStream
	Preexisting Object Types
	Other Techniques for Increasing Heap Sensitivity

	Control Sensitivity in PyStream
	Dynamic Constant Folding
	Field Check Operations

	Quantifying the Results of PyStream's Pointer Analysis
	Number of Contexts
	Precision
	Importance of Each Feature in PyStream's Pointer Analysis

	Chapter Summary

	Chapter 8 Eliminating Abstraction Overhead in Python
	Direct References to Preexisting Objects in PyStream
	Method Fusion in PyStream
	Transforming Method Calls
	Necessity of a Specialized Transformation

	Initial Optimization Results
	Function Cloning in PyStream
	Argument Normalization in PyStream
	Exhaustive Function Inlining in PyStream
	Chapter Summary

	Chapter 9 Eliminating Memory Operations in PyStream
	Heap-Sensitive Reanalysis
	Load/Store Elimination
	Characterization of the Remaining Memory Operations
	Tree Transform
	Output Flattening
	Field Transform and Object Analysis
	Object Analysis
	Field Transform

	Chapter Summary

	Chapter 10 Emulating Python Reference Semantics in GLSL
	Reference Semantics
	Volatile Values
	Implementing References
	References to Volatile Values
	Implementing Ambiguous Memory Operations in GLSL
	Algorithm Summary for Emulating References
	Boundaries to Emulating Python Reference Semantics
	Bounding Data Structure Size
	Emulation of Built-in Python Data Structures
	GLSL Resource Limits
	Performance Considerations

	Chapter Summary

	Chapter 11 PyStream's Implementation Outcomes
	Example Python Shaders Used to Test PyStream
	Use of Python's Abstractions in the Example Shaders

	Performance of the Example Python Shaders
	Performance of the Overall Rendering System
	API Optimization in PyStream
	Compiled GPU vs. Interpreted CPU Shaders
	Quality of the Generated Code

	Compilation Speed in PyStream

	Chapter 12 Future Work
	Integrating the CPU and GPU for Real-Time Rendering
	Pointer Analysis for Python
	Emulating Reference Semantics

	Chapter 13 Conclusions
	Analyzing Modern High-Level Dynamic Languages
	Abstraction Overhead in High-Level Dynamic Languages
	Domain-Specific Compilers

	Appendix A Research Tangents
	References

