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Preprint (September 2008)

AN INTEGER-VALUED BILINEAR TYPE MODEL

ALAIN LATOUR,∗ Université Pierre Mendès-France – LJK-MS3

LIONEL TRUQUET,∗∗ Université de Paris 1 – CREST

Abstract

A integer-valued bilinear type model is proposed. It can take positive as well
as negative values. The existence of the process is established in Lm. In fact,
this process is the unique causal solution to an equation that is similar to a
classical bilinear type model equation. For the estimation of the parameters,
we suggest a quasi-maximum likelihood approach. The estimator is strongly
consistent and asymptotically normal.
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1. Introduction

As pointed in [19], integer-valued times series are common in practice. In epi-
demiology, we often consider the number of cases of a given disease over a 28-day
period. In this context, the data are collected to make sure that the population
is not threatened by an epidemic. As well as in intensive care monitoring, where
vital parameters have to be analyzed online, good modeling is required. As soon
as three consecutive values seem to be too high, governmental actions are planed
to avoid the widespread of the disease, since there may be serious consequences for
the population otherwise. See [12] where regression methods are used to perform
intensive care monitoring.

Concerning integer-valued time series, we may refer the reader to [9, 16, 17, 19].
For a review of various models and their statistical properties, we do recommend
[9] where some extensions of integer autoregressive and moving average models are
also presented. Many models encountered in the literature are based on thinning
operators as defined in [22]. In this paper, we use a more general definition.

Definition 1.1. (Signed thinning operator.) Let Y = {Yj}j∈Z be a sequence of indepen-
dent and identically distributed (i.i.d.) non-negative integer-valued random variables
with mean α > 0 independent of an integer-valued variable X. The thinning operator,
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α◦ is defined by:

α ◦ X =





sign(X)
|X|
∑
i=1

Yi, if X 6= 0;

0, otherwise.

The sequence {Yi}i∈Z is referred to as a counting sequence. This definition is more
general than the usual one where Y is a sequence of Bernoulli random variables with
expected value α. (See, for example, [6].) Here, it is a sequence of i.i.d. non-negative
integer-valued variables, for example, a sequence of Poisson distributed variables Yi

with parameter α. In fact, any non-negative integer-valued random sequence can be
used as a counting series. More, X can take negative values.

To avoid any confusion, if necessary, we can denote the operator by α(Y)◦ or
α(θ)◦ instead of α◦ to clearly indicate that it is based on the sequence Y or that it
depends on the parametric vector θ of the distribution of the variables involved in
the operator. Nevertheless, we prefer the simplest notation.

The reader should bear in mind that in Definition 1.1, the mean of the summands
Yi associated with the operator α◦ is α. Suppose α̃◦ is another thinning operator
based on a counting sequence {Ỹi}i∈Z. The operators α◦ and α̃◦ are said to be
independent if, and only if, the counting sequences {Yi}i∈Z and {Ỹi}i∈Z are mutually
independent.

Example 1.1. (Branching process with immigration.) The Bienaymé-Galton-Watson (BGW)
process with immigration can be written using a thinning operator. With this nota-
tion, if the offspring of an individual is distributed as Y, and if ζt is the immigration
contribution to the population at the tth generation, then the classical BGW process
satisfies

Xt = α ◦ Xt−1 + ζt. (1.1)

For each generation t, we need a counting sequence Yt, so {Yt}t∈Z is an i.i.d. process
of i.i.d. sequences {Yt,j}j∈N. In the case of a BGW process, Xt is never negative. The
links between branching processes with immigration and INARMA(p, q) is clearly
identified and explained in [2]. ✷

Example 1.2. (Inventory monitoring.) Suppose Xt represents the number of widgets
remaining in a distributor inventory at the end of a month. Also suppose if the
distributor runs out of stock, he registers the customer order to send it as soon as
the widget becomes available. In that case the number of items left at the end of the
month could be negative. ✷

Example 1.3. Given two counting processes, {Xt} and {Yt}, in some situations we
may be interested in the difference between the two processes: Zt = Xt − Yt, t ∈ Z,
is the excess of Xt over Yt. Clearly, Zt can be negative. ✷

It is clear that in many situations, standard univariate models are not appropriate in
the context of integer-valued time series analysis. Using classical real-valued models
is even more critical when we cope with a low frequency count data. This has been
pinpointed by [21] and many more authors (see [11, 20]). It could explain why
integer-valued processes are an important topic and why there have been so many
papers on the subject for more than twenty-five years. Many authors use thinning
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operators to define integer-valued process similar to classical econometric models.
See, for examples, [2, 3, 6, 8, 13].

In [21], a worthy discussion is made on integer-valued ARMA(p, q) processes.
In the latter paper, an efficient MCMC algorithm is presented for a wide class of
integer-valued autoregressive moving-average processes. In many papers, p and q
are assumed to be known. In [7], efficient order selection algorithms are studied for
these integer-valued ARMA processes.

It is clear that integer-valued ARMA processes cannot satisfy all practitioner ex-
pectations. A common working hypothesis is that the observed time series comes
from a stationary process. In some situations, there are good reasons to doubt about
this hypothesis.

For example, in Figure 1, we give Xt, the number of campylobacteriosis cases in
the Northern Québec, starting in January 1990, with an observation every 28 days.
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Figure 1: Number of campylobacteriosis cases in the Northern Québec, starting in January
1990, 13 regular observations per year. To the top, is the graphic of the original series, to the
bottom, is the sample simple correlogram.

One may believe that E[Xt] increases with t. Also, perhaps that there is a structural
change happening in the neighborhood of the 100th observation. In [10], problems

Infection with a Campylobacter species is one of the most common causes of human bacterial
gastroenteritis.
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with this series are clearly identified.
For reasons that are similar to the ones we met when we tackle the problem

of modeling real valued time series, we have to develop well-adapted tools for
practitioner needs. A Dickey-Fuller unit-root type test has been studied by [14]. For
a GARCH type model, [8] suggested a process with Poisson conditional distribution
with mean and variance λt. In [3], the authors tackled the problem of an integer-
valued bilinear process. They restricted their works to the following model:

Xt = a ◦ Xt−1 + b ◦ (εt−1Xt−1) + εt,

where {εt} is an i.i.d. sequence of non-negative integer-valued random variables.They
proved the existence of this stochastic process, suggested appropriate estimators
under a Poissonian hypothesis and applied it to a social medicine series. Recently, [5]
cleverly proved the existence of a more general version of this process and inspired
in this paper our existence proof of another process (see (3.2)).

The paper has the following structure. In Section 2, we recall a result from [4]
giving conditions for the existence of a solution to a quite general model equation in
which Xt is expressed in terms of its own past values and the present and past values
of a sequence of i.i.d. random variables (cf. (2.3)). A quite simple approximation
{X

(n)
t } to {Xt} is also given. For this approximation we have:

X
(n)
t

Lm

−−−→
n→∞

Xt and X
(n)
t

a.s.−−−→
n→∞

Xt.

In Section 3, we give some basic properties of Definition 1.1 thinning operators.
Then, two models are presented: the INLARCH model and an integer-valued bilin-
ear type model. Simple conditions for the existence of these processes are given.

Section 4 is devoted to estimation of the parameters. The problem is tackled using
a quasi-maximum likelihood estimator for the bilinear model parameters. Before
announcing the properties of the estimator, working assumptions and hypotheses
are enunciated. Theorem 4.1 claims the strong consistency of the estimators and
Theorem 4.2 gives its asymptotic distribution.

In Section 5, we comment consequences of the results when we consider the almost
classical GINAR(p) process. Proofs are postponed to Section 6.

2. The model

From now on, the sequence {ξt}t∈Z is i.i.d. and takes values in a space E′ (in many
cases E′ is just R∞). Let (E, ‖·‖) be a Banach space. For a random variable Z ∈ E

and a real number m > 1, the expression ‖Z‖m stands for
(
E
[
‖Z‖m])1/m and E(N),

a subset of EN, denotes the set of sequences in EN with a finite number of non-null
terms. Let F : E(N) × E′ → E be a measurable function and assume there exists a
sequence of functions {aj}j∈N such that for all {xj}j∈N and {yj}j∈N in E(N),

‖F(0, 0, . . . ; ξ0)‖m < +∞, (2.1a)

‖F(x1, x2, . . . ; ξ0) − F(y1, y2, . . . ; ξ0)‖m 6

∞

∑
j=1

aj

∥∥xj − yj

∥∥ , (2.1b)
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with
∞

∑
j=1

aj := a < 1. (2.2)

Let us recall a general result of [4] about existence and approximation in Lm of a
stationary process {Xt}t∈Z

, solution of (2.3):

Xt = F (Xt−1, Xt−2, . . . ; ξt) . (2.3)

The following theorem is a consequence of Theorem 3 and Lemma 6 of [4].

Theorem 2.1. Assume properties (2.1a) and (2.1b) hold for some m > 1, then there exists a
unique stationary solution of (2.3) such that

Xt ∈ σ (ξt, ξt−1, . . .) , t ∈ Z. (2.4)

Moreover, the sequence of stationary processes defined ∀t ∈ Z as

X
(n)
t =

{
F(0; ξ0), n = 0;

F(X
(n−1)
t−1 , X

(n−1)
t−2 , . . . ; ξt), n > 1;

satisfies

X
(n)
t

Lm

−−−→
n→∞

Xt and X
(n)
t

a.s.−−−→
n→∞

Xt.

Remark 2.1. A solution of (2.3) which satisfies (2.4) is always ergodic. Indeed from
(2.4), we have: ⋂

t∈Z

σ (Xt−1, Xt−2 . . .) ⊂
⋂

t∈Z

σ (ξt−1, ξt−2 . . .) (2.5)

As ξ is i.i.d, any event in the σ-field of the right-hand side of (2.5) has probability 0
or 1 from which we conclude that any event in the σ-field of the left-hand side is also
of probability 0 or 1. This shows that the process {Xt}t∈Z is ergodic. The argument
comes from [6].

In the sequel, a solution (2.3) satisfying (2.4) will be called a causal solution in Lm.
Note that a such solution implies the independence of the σ-algebras σ(Xu : u ≤ s)
and σ(ξv : v ≥ t) when t > s.

3. Construction of integer-valued models

3.1. Basic properties of signed thinning operators

Lemma 3.1. Lets X, Z two random variables and Y , Ỹ two counting sequences associated
with the operators α◦ and α̃◦, respectively. Suppose the variance of the counting sequence

variables are β and β̃, respectively. Assume that (X, Z), Y , Ỹ are independent. Let m ∈
N∗ = N \ {0}. Then:

1. E[α ◦ X] = αE[X] and E
[
(α ◦ X)2

]
= βE[|X|] + α2E

[
X2] .

2. E[(α ◦ X)(α̃ ◦ Z)] = αα̃E[XZ] and cov[α ◦ X, α̃ ◦ Z] = αα̃ cov[X, Z] .

3. ‖α ◦ X − α ◦ Z‖m ≤ ‖Y‖m ‖X − Z‖m.
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4. For ℓ ≥ 2, we have

‖α ◦ X‖ℓ
≤ |α| ‖X‖ℓ

+ cℓ ‖Y − α‖ℓ ‖X‖1/2
ℓ−1

where the constant cℓ > 0 only depends on ℓ.

Remark 1. Consider the simple model:

Xt = α ◦ Xt−1 + εt. (3.1)

For t ∈ Z, let ξt = ({Yt,i}i∈N∗ , εt). For x ∈ Z, we define:

F(x, ξ0) = α ◦ x1 + ε0.

Suppose (ξt)t is an i.i.d. sequence and let m = 2. From the result 3. of Lemma 3.1,
one has:

‖F(x; ξ0) − F(y; ξ0)‖2 ≤ ‖Y‖2 |x − y| .

Moreover if F(0; ξ0) = ε0 ∈ L2, we can apply Theorem 2.1 if ‖Y‖2 < 1. But this is
not optimal. Indeed, it is well known that the condition α < 1 is sufficient for the
existence and uniqueness in Lm of a stationary solution of (3.1) (see [18]).

This is the reason why the construction of the model is in two steps. Firstly, we
apply Theorem 2.1 with m = 1 and get a solution in L1. Then we use a contraction
condition on the means of the counting sequences. Secondly, we show that this
solution is still unique in Lm, m being an integer.

3.2. Bilinear model

Let {Xt}t∈Z be a solution to the equation:

Xt =
∞

∑
j=1

αj ◦ Xt−j + εt

(
∞

∑
j=1

β j ◦ Xt−j

)
+ ηt, (3.2)

where ηt and εt are integer valued random variables in E = Z, αj◦ and β j◦ being
signed thinning operators associated with counting sequences Y (j) and Ỹ (j) respec-
tively. Theorem 3.1 gives conditions for the existence of a solution to (3.2).

Suppose E[εt] = 0 and for each t ∈ Z, let:

ξt =
(
{Y

(j)
t,i }(i,j)∈N∗×N∗ , {Ỹ

(j)
t,i }(i,j)∈N∗×N∗ , εt, ηt

)
.

The random variable ξt takes values in ZN∗×N∗ × ZN∗×N∗ × Z × Z . We suppose the
process {ξt}t∈Z is i.i.d.

Theorem 3.1. Suppose for an integer m ≥ 1,

a =
∞

∑
j=1

‖Y(j)‖1 + ‖ε‖m ‖Ỹ(j)‖1 < 1,
∞

∑
j=1

‖Y(j)‖m + ‖Ỹ(j)‖m + ‖η0‖m < ∞, (3.3)

then there exists a unique causal solution to (3.2) in Lm.



An integer-valued bilinear type model 7

3.3. INLARCH(∞) time series model

An INLARCH(∞) time series model satisfies

Xt = α ◦ εt +
∞

∑
j=1

αj ◦
(
εtXt−j

)
, t ∈ Z. (3.4)

For j ∈ N∗, we will denote by Y (j) (resp. Y) the counting sequences associated
with the operator αj◦ (resp. α◦).
As for the bilinear model, we suppose {ξt}t∈Z is an i.i.d. sequence. Theorem 3.2
states a sufficient condition for the existence of this process.

Theorem 3.2. Suppose for an integer m ≥ 1,

a = ‖ε‖m ∑
j∈N∗

‖Y(j)‖1 < 1, ∑
j∈N∗

‖Y(j)‖m + ‖Y‖m < ∞,

then equation (3.4) admits a unique causal solution in Lm.

4. Quasi-maximum likelihood estimator in bilinear model

This section aims at giving a quasi-maximum likelihood estimators (QMLE) for
the parameters of the bilinear model (3.2) with a finite number of terms in the two
summations. Without lost of generality, we may assume that there are p terms in
each summation; otherwise some αj◦ or β j◦ are 0◦. The equation satisfied by the
process is:

Xt =
p

∑
j=1

αj ◦ Xt−j + εt

p

∑
j=1

β j ◦ Xt−j + ηt. (4.1)

Example 4.1. Let p = 2 and consider

Xt = α1 ◦ Xt−1 + α2 ◦ Xt−1 + εtβ1 ◦ Xt−1 + ηt,

where: α1◦ is based on a Bernoulli counting series with p = 1/2; α2◦ and β1◦, on
Poisson counting series with means 1/8 and 1/2, respectively; {ηt} is a sequence
of i.i.d. Poisson random variables with parameter λ = 1/2; {εt} is a sequence of
differences between two independent Poisson variables with parameter λ = 2/3. A
simulated trajectory is presented in Figure 2. Note that there is “period”, just after
t = 80 with quite high values compared to the other ones. ✷

For (t, j) ∈ Z× {1, . . . , p}, we define the following σ−algebras:

Ft = σ(Xt−k : k ∈ N
∗), Gt,j = σ(Y

(j)
t,i : i ∈ N

∗), and G̃t,j = σ(Ỹ
(j)
t,i : i ∈ N

∗),

From now on, we suppose the following working assumptions are satisfied:

1. {ξt}t∈Z is an i.i.d. sequence of random variables.

2. For all t ∈ Z, the σ-algebras Gt,1, . . . ,Gt,p (resp. G̃t,1, . . . , G̃t,p) are independent.
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Figure 2: Simulated trajectory generated by model Xt = α1 ◦ Xt−1 + α2 ◦ Xt−1 + εtβ1 ◦ Xt−1 + ηt, where:
α1◦ is based on a Bernoulli counting series with p = 1/2; α2◦ and β1◦, on Poisson counting series with
means 1/8 and 1/2, respectively; {ηt} is a sequence of i.i.d. Poisson random variables with parameter
λ = 1/2; {εt} is a sequence of differences between two independent Poisson variables with parameter
λ = 2/3.

3. For all t ∈ Z, the σ-algebras σ(εt), σ(ηt) and (∨1≤j≤pGt,j) ∨ (∨1≤j≤pG̃t,j) are
mutually independent.

Remark 4.1. Assumptions with respect to the σ-algebras allow dependence between
the set of operators {αj◦}16j6p and the set of operators {β j◦}16j6p.

For an integer d ≥ 1, let Θ be a subset of Rd and θ0 ∈ Θ. For 1 ≤ j ≤ p, consider
functions bj, cj, wj, µ, ν : Θ → R such that:

i) bj(θ0) = αj and cj(θ0) = β j.
To ensure identifiability, we suppose there exists j0 ∈ {1, . . . , p} such that β j0 >

0 and the function cj0 is positive on Θ.

ii) wj(θ0) = var
[
Y(j)

]
+ σ2 × var

[
Ỹ(j)

]
, σ2 = var[ε].

iii) µ(θ0) = E[η] and ν(θ0) = var[η].

The following hypotheses will also be required.

H1) Θ is a compact subset of Rd.

H2) Condition (3.3) holds with m = 2.

H3) The distribution support of ηt contains at least 5 different points if var[εt] 6= 0
and 3, otherwise.

H4) The following condition is satisfied : h = inf
θ∈Θ

ν(θ) > 0.
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H5) The function f : Θ → R3p+2 defined by

f (θ) =
((

bjθ), cj(θ), wj(θ)
)

1≤j≤p
, µ(θ), ν(θ)

)

is injective and continuous on Θ.

For (t, θ) ∈ Z× Θ, let

mt(θ) = µ(θ) +
p

∑
j=1

bj(θ)Xt−j

and

Vt(θ) = σ2

(
p

∑
j=1

cj(θ)Xt−j

)2

+
p

∑
j=1

wj(θ)
∣∣Xt−j

∣∣+ ν(θ).

Observe that under assumption H4, we have:

inf
θ∈Θ

Vt(θ) ≥ h, a.s. (4.2)

Lemma 4.1. Let {Xt} given by (4.1). We have:

E[Xt | Ft−1] = mt(θ0), var[Xt | Ft−1] = Vt(θ0).

Remark 4.2. On the one hand, the conditional expectation is the same as the one of
a GINAR(p) process. On the other hand, a second-degree polynomial appears in the
conditional variance.

4.1. Estimators definition

For the estimation of the parameters, no distribution assumptions are made and
a quasi-maximum likelihood approach turns out to be well suited to this setup. The
maximum is found assuming a conditional Gaussian density for Xt, given the past
until time t − 1. In [23] this method is used in ARCH modeling.

Let us give the details for model (4.1). Suppose we observe X−p+1, . . . , X0 and let:

qt(θ) =
(Xt − mt(θ))2

Vt(θ)
+ ln Vt(θ), t > 1;

QT(θ) =
1
T

T

∑
t=1

qt(θ);

Q(θ) = E

[(
(X0 − m0(θ))2

V0(θ)
+ ln V0(θ)

)]
;

θ̂T = arg min
θ∈Θ

QT(θ).

So, θ̂T is the QMLE for θ and the actual value of θ is θ0.

4.1.1. Consistency of the estimator.
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Theorem 4.1. Under hypotheses H1 to H5, the estimator θ̂T is a strongly consistent esti-

mator of θ0: θ̂T
a.s.−−−→

n→∞
θ0.

4.1.2. Asymptotic normality of QMLE. In the following, if g is a function, g : Θ 7→ R,
∇g is its gradient and ∇2g is its Hessian matrix.

Other hypotheses are needed.

H7) Condition (3.3) holds with m = 4.

H8) The f function is twice differentiable on Θ and rank∇ f (θ0) = d. More, inf
θ∈Θ

wj(θ) >

0, ∀j = 1, . . . , p.

H9) θ0, the actual value of θ, is an interior point of Θ, θ0, that is θ0 ∈ Θ◦.

Theorem 4.2. Under hypotheses H1, . . . , H9, the estimator θ̂T is asymptotically normal:

√
T(θ̂T − θ0)

L−−−→
T→∞

N (0, F−1
0 G0F−1

0 )

where

F0 = E
[
∇2q0(θ0)

]

= E
[
V0(θ0)

−2∇V0(θ0)∇V0(θ0)
⊤
]
+ 2E

[
V0(θ0)

−1∇m0(θ0)∇m0(θ0)
⊤
]

and

G0 = var[∇q0(θ0)]

= E
[
V0(θ0)

−4(X0 − m0(θ0))
4∇V0(θ0)∇V0(θ0)

⊤
]

− E
[
V0(θ0)

−2∇V0(θ0)∇V0(θ0)
⊤
]
+ 4E

[
V0(θ0)

−1∇m0(θ0)∇m0(θ0)
⊤
]

+ E
[
V0(θ0)

−3(X0 − m0(θ0))
3∇V0(θ0)∇m0(θ0)

⊤
]

+ E
[
V0(θ0)

−3(X0 − m0(θ0))
3∇m0(θ0)∇V0(θ0)

⊤
]

5. QMLE for GINAR(p) processes

When σ2 = 0, (4.1) leads to a GINAR(p) process:

Xt =
p

∑
j=1

αj ◦ Xt−j + ηt.

Estimation for this process has been tackled by least squares (see [6, 18]).
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The conditional least squares estimator is given by:

θ̂T = argminθ∈Θ

1
T

T

∑
t=1

(Xt − mt(θ))2 .

But this approach cannot be applied to obtain estimators for all the parameters if
the probability distribution of the counting sequences depends on two parameters
or more.

In particular, suppose the operators αj◦, 1 6 j 6 p, are counting series with
variables for which the support is a 3-point set {a, b, c} and we want to estimate:

(qa,j, qb,j) =
(

Pr
(

Y
(j)
0,0 = a

)
, Pr

(
Y

(j)
0,0 = b

))

1 ≤ j ≤ p, as well as (E[η] , var[η]). Let

θ0 =
(

qa,1, qb,1, . . . , qa,p, qb,p, E[η0] , var[η0]
)
∈ Θ ⊂ R

2p+2.

For 1 ≤ j ≤ p, let
bj(θ) = (a − c)θ2j−1 + (b − c)θ2j + c

wj(θ) = (a2 − c2)θ2j−1 + (b2 − c2)θ2j + c2 − bj(θ)2

µ(θ) = θ2p+1, ν(θ) = θ2p+2

A least squares approach is not tractable because θ0 is not identifiable by just con-
sidering mt(θ) = ∑

p
j=1 bj(θ)Xt−j, t ∈ Z, the conditional means of the process {Xt}.

In fact, the function θ 7→
(
b1(θ), . . . , bp(θ), µ(θ), ν(θ)

)
is not injective. However, it is

clear that the function:

θ 7→
(
b1(θ), w1(θ), . . . , bp(θ), wp(θ), µ(θ), ν(θ)

)

is injective and we can use Section 4.1 results to estimate parameter θ0.

Example 5.1. Let us return to Example 4.1. It is quite easy to proceed to the estima-
tion of the parameters using a widespread and simple tool like Microsoft Excel. We
use the Excel’s Solver macro to find the optimum. The estimated model is:

Xt = α̂1 ◦ Xt−1 + α̂2 ◦ Xt−1 + εt β̂1 ◦ Xt−1 + ηt,

where: α̂1◦ is based on a Bernoulli counting series with p̂ = 0.65; α̂2◦ and β̂1◦,
on Poisson counting series with means 0.12 and 0.58 respectively; {ηt} a sequence
of i.i.d. Poisson random variables with parameter λ = 0.47; {εt} is a sequence of
differences between two independent Poisson variables with parameter λ = 0.49. So,
θ̂ = (0.645; 0.120, 0.503; 0.669; 0.469)⊤. Recall that the actual value of the parameter
is : θ = (0.5; 0.125; 0.5; 0.667; 0.500)⊤.
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6. Extended proofs of the results

6.1. Proof of Lemma 3.1

Proof. 1. EX=x[α ◦ X] = E

[
sign(x)

|x|
∑

i=1
Yi

]
= xα and the first result follows from

expectation with respect to X.

For the second point, note that:

EX=x

[
(α ◦ X)2

]
= E

[ |x|
∑
i=1

Yi

]2

= |x|E[Y2] + |x| (|x| − 1)α2,

and again the result follows from expectation with respect to X.

2. Since the variables (α ◦ X, Z) and Ỹ are independent, from result 1., we get the
following equality:

E[(α ◦ X) × (α̃ ◦ Z)] = α̃E[(α ◦ X) · Z)] .

As Y is independent of (X, Z), we obtain α̃E[(α ◦ X) · Z)] = αα̃E[XZ]. The
second assertion is obvious.

3. We use the first point of item 1 and if x, z ∈ Z:

‖α ◦ x − α ◦ z‖m ≤ ‖Y‖m |x − z| .

Independence between Y and (X, Z) yields the result after expectation with
repesct to X and Z.

4. See [5, Theorem 2.2], for a proof of this inequality.

6.2. Proof of Theorem 3.1

The demonstration proceeds in two steps. Firstly, we show that under Theorem
3.1 hypotheses, equation (3.2) has a unique causal solution in L1. Then, we show
that this solution has moments of order m.

To show the existence in L1, we use Theorem 2.1. Let F : Z(N∗) ×Z → Z be:

F
(
{xj}j∈N∗ ; ξ0

)
=

∞

∑
j=1

αj ◦ xi + ε0

(
∞

∑
j=1

β j ◦ xi

)
+ η0.

We have: ‖F(0; ξ0)‖1 = ‖η0‖1 < ∞. More, by the result 3. of Lemma 3.1, we get:

∥∥F
(
{xj}j∈N∗ ; ξ0

)
− F

(
{yj}j∈N∗ ; ξ0

)∥∥
1 ≤

∞

∑
j=1

(‖Y(j)‖1 + ‖ε0‖1 ‖Ỹ(j)‖1)
∣∣xj − yj

∣∣

≤
∞

∑
j=1

(‖Y(j)‖1 + ‖ε0‖m ‖Ỹ(j)‖1)
∣∣xj − yj

∣∣ .
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Because a = ∑
∞
j=1 (‖Y(j)‖1 + ‖ε0‖m ‖Ỹ(j)‖1) < 1, we can apply Theorem 2.1 and

conclude that there exists in L1 a unique causal stationary process {Xt}, solution to
(3.2), such that ‖Xt‖1 < ∞.

Let us show that Xt ∈ Lm. To this end, let us introduce the stationary process
defined by:

Xn,t =

{
F(0; ξt), n = 0;
F
(
{Xn−1,t−j}j≥1; ξt

)
, n > 1;

t ∈ Z.

By Theorem 3.1, we have:

Xn,t
a.s.−−−→

n→∞
Xt and Xn,t

L1

−−−→
n→∞

Xt.

Next, we show that supn∈N
‖Xn,0‖m < ∞. From this last inequality, using Fatou’s

Lemma, we will conclude that

‖X0‖m ≤ lim inf
n→∞

‖Xn,0‖m < ∞.

We use induction to show that for each ℓ ∈ {1, . . . , m}, we have supn∈N
‖Xn,0‖ℓ

< ∞.
Since limn→∞ Xn,0 = Xn in L1, we have supn∈N

‖Xn,0‖1 < ∞ and the result follows
for ℓ = 1.

Suppose for ℓ ∈ {1, . . . , m − 1} we have supn∈N
‖Xn,0‖ℓ

< ∞. We want to show
that supn∈N

‖Xn,0‖ℓ+1 < ∞. Let n ∈ N. We have:

‖Xn+1,0‖ℓ+1 6

∞

∑
j=1

∥∥αj ◦ Xn,−j

∥∥
ℓ+1 + ‖ε0‖ℓ+1

∞

∑
j=1

∥∥β j ◦ Xn,−j

∥∥
ℓ+1 + ‖η0‖ℓ+1 .

To simplify the equations writing, let :

dj,h = ‖Y(j) − αj‖h + ‖ε0‖h ‖Ỹ(j) − β j‖h , for j ≥ 1 and h ∈ {1, . . . , m}.

Using result 4. of Lemma 3.1, we get:

‖Xn+1,0‖ℓ+1 ≤ cℓ+1

∞

∑
j=1

dj,ℓ+1
∥∥Xn,−j

∥∥1/2
ℓ

+ ‖η0‖ℓ+1

+
∞

∑
j=1

(∣∣αj

∣∣+
∣∣β j

∣∣ ‖ε0‖ℓ+1
) ∥∥Xn,−j

∥∥
ℓ+1

≤ a ‖Xn,0‖ℓ+1 + B.

where B = cℓ+1 supk

∥∥Xk,0
∥∥1/2

ℓ
∑

∞
j=1 dj,l+1 + ‖η0‖ℓ+1.

As X0,0 = η0, this leads to ‖Xn+1,0‖ℓ+1 ≤ an+1 ‖η0‖ℓ+1 + B ∑
n
i=1 ai.

Observe that

B ≤ cℓ+1 sup
k

∥∥Xk,0
∥∥1/2

ℓ

∞

∑
j=1

dj,m + ‖η0‖m .
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Then by condition (3.3) and the induction hypothesis, B is finite and we get:

‖Xn+1,0‖ℓ+1 ≤ ‖η0‖ℓ+1 +
B

1 − a

and supn∈N
‖Xn,0‖ℓ+1 < ∞. Hence, by finite induction on the subset {1, . . . , m}, we

have supn∈N
‖Xn,0‖m < ∞. Finally, by the remark made previously, ‖X0‖m < ∞.

Uniqueness in Lm follows from uniqueness in L1.

6.3. Proof of Lemma 4.1

The conditional expectation of Xt given the past until time t − 1 is :

E[Xt | Ft−1] = E[η] +
p

∑
j=1

EFt−1

[
αj ◦ Xt−j

]
= E[η] +

p

∑
j=1

αjXt−j = mt(θ0).

For the conditional variance, we get:

var[Xt | Ft−1] = varFt−1

[
p

∑
j=1

αj ◦ Xt−j

]
+ σ2EFt−1

[(
p

∑
j=1

β j ◦ Xt−j

)]
+ var[η]

Simple computations lead to

EFt−1

[
(αj ◦ Xt−j)(αk ◦ Xt−k)

]
=

{
αjαkXt−jXt−k, j 6= k;

α2
j X2

t−j + var
[
Y(j)

] ∣∣Xt−j

∣∣ , j = k.

Similar formulas can be found if β j◦ is substituted for αj◦. Using these expressions
in var[Xt | Ft−1] expansion leads to the final expression:

var[Xt | Ft−1] = σ2

(
p

∑
j=1

β jXt−j

)2

+
p

∑
j=1

wj(θ0)
∣∣Xt−j

∣∣+ var[η] ,

where wj(θ0) = var[Y(j)] + σ2 var[Ỹ(j)]. This is exactly Vt(θ0).

6.4. Proof of Theorem 3.2

The proof is very similar to proof given to Theorem 3.1 and is omitted.

6.5. Proof of Theorem 4.1

Before giving the demonstration, some intermediate results are required. Let us
recall Theorem 6.1 from [23].

Theorem 6.1. Let Θ a compact set of Rd and {vt}t∈Z a stationary ergodic sequence of
random elements with values in C (Θ, R). Then the uniform strong law of large numbers is
implied by

E

[
sup
θ∈Θ

|v0(θ)|
]

< ∞.

Lemma 6.1 follows from Theorem 6.1.
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Lemma 6.1.
sup
θ∈Θ

|QT(θ) − Q(θ)| −−−→
T→∞

0.

Proof. Let us verify that Theorem 6.1 hypotheses are satisfied. Firstly, we prove
that ∀θ ∈ Θ, {qt(θ)}t>1 is an ergodic stationary sequence. From Remark 2.1, {Xt} is
a stationary ergodic process. More, for (t, θ) ∈ Z × Θ, by definition of qt(θ), there
exists a measurable function fθ defined on Rp+1 such that qt(θ) = fθ

(
Xt, . . . , Xt−p

)
.

This implies that the sequence {qt(θ)}t∈Z is also stationary and ergodic.

Secondly, we have:

|q0(θ)| 6
[X0 − m0(θ)]2

h
+ |ln(V0(θ))| .

Then, from H1, H2, H4 and H5, we get:

|X0 − m0(θ)| 6 |X0| + ‖µ‖∞ +
p

∑
j=1

∥∥bj

∥∥
∞

∣∣X−j

∣∣ ∈ L
2,

and

h 6 V0(θ) 6 σ2

(
p

∑
j=1

∥∥cj

∥∥
∞

∣∣X−j

∣∣
)2

+
p

∑
j=1

∥∥wj

∥∥
∞

∣∣X−j

∣∣+ ‖ν‖∞ ∈ L
1.

This shows that E
[
supθ∈Θ |q0(θ)|

]
< ∞. Moreover, from assumption H5, the function

θ 7→ q0(θ) is continuous and Theorem 6.1 leads to the result.

In the sequel, we use Zt to denote
(
Xt−1, . . . , Xt−p

)
, t ∈ Z.

Lemma 6.2. Let t ∈ Z. Then for any realization {zt} of {Zt}, the distribution support of
the random variable Xt |Zt=zt

has at least five points if σ 6= 0 and at least three, if σ = 0.

Proof. The distribution of Xt |Zt=zt
is the same as the distribution of Czt + ηt with

Czt =
p

∑
j=1

αj ◦ xt−j + εt

p

∑
j=1

β j ◦ xt−j.

By H3 and using the fact that ηt are Czt independent, the result follows.

Lemma 6.3 will also be required for Theorem 4.1 demonstration.

Lemma 6.3. Let t ∈ Z. We have:

1. If
p

∑
j=1

γjXt−j = γ then γ = γj = 0, ∀j ∈ {1, . . . , p}.

2. If we suppose σ 6= 0 and

(
p

∑
j=1

sjXt−j

)(
p

∑
j=1

ujXt−j

)
+

p

∑
j=1

γj

∣∣Xt−j

∣∣ = γ, then either

sj = γj = γ = 0, ∀j ∈ {1, . . . , p} or uj = γj = γ = 0, ∀j ∈ {1, . . . , p}.
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3. If we suppose σ = 0 and
p

∑
j=1

γj

∣∣Xt−j

∣∣ = γ, then γj = γ = 0, j = 1, . . . , p.

Proof. 1. suppose m = min{j ∈ {1, . . . , p} : γj 6= 0} exists. Then, Xt−m is
measurable with respect to Ft−m−1. This is in contradiction of Lemma 6.2.
Hence, we deduce that γj = 0, ∀j ∈ {1, . . . , p} from which it follows that γ = 0.

2. Suppose that m = min{j ∈ {1, . . . , p} :
∣∣sj

∣∣+
∣∣uj

∣∣+
∣∣γj

∣∣ 6= 0} exists. Note that
if m does not exist, the result is obviously true.

Suppose first that m ≤ p − 1. Let

F(Zt−m) =
p

∑
j=m+1

(umsj + smuj)Xt−j

and

G(Zt−m) = γ −
(

p

∑
j=m+1

sjXt−j

)(
p

∑
j=m+1

ujXt−j

)
−

p

∑
j=m+1

γj

∣∣Xt−j

∣∣

We have
smumX2

t−m + F(Zt−m)Xt−m + γm |Xt−m| = G(Zt−m).

Using Lemma 6.2, we see that for any realization zt−m of Zt−m, there exist five
solutions to the equation with unknown x:

smumx2 + F(zt−m)x + γm |x| = G(zt−m).

Consequently, smum = 0, G(zt−m) = 0 and |F(zt−m)| = |γm|.
Without loss of generality, suppose sm = 0. Then, the random variable F(Zt−m) =

∑
p
j=m+1 umsjXt−j can take only two values almost surely: ±γm. If um = 0, then

γm = 0 and this is in contradiction of the assumption that m exists. Hence,
um 6= 0. suppose r = min{j : m + 1 ≤ j ≤ p, sj 6= 0} exists. As

p

∑
j=r

sjXt−j ∈ {γm/um,−γm/um}

we conclude that for any realization zt−r of the random vector Zt−r, the dis-
tribution support of the conditional law Xt−r |Zt−r=zt−r

has two points. This is
in contradiction of Lemma 6.2. Hence, sj = 0, ∀j ∈ {1, . . . , p}. Hence equality

G(Zt−m)
a.s.
= 0 leads to

p

∑
j=m+1

γj

∣∣Xt−j

∣∣ a.s.
= γ.

If q = inf{j ∈ {m + 1, . . . , p} : γj 6= 0} exists, the distribution support of the
conditional law Xt−q |Zt−q=zt−q

contains only two values. This is in contradiction

of Lemma 6.2. So, γj = 0, ∀j ≥ 1. Finally γ = 0 and the result follows.
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In the case where m = p, we have spupX2
t−p + γp|Xt−p| = γ. By Lemma 6.2,

we conclude that necessarily spup = γp = γ = 0.

3. Suppose m = min{j ∈ {1, . . . , p} : γj 6= 0} exists. Then, |Xt−m| is measurable
with respect to Ft−m−1. Hence for each zt−m the distribution support of the
conditional law of Xt−m | Zt−m=zt−m

contains at most two points. This is in
contradiction of Lemma (6.2) and the result follows.

Lemma 6.4. If, m0(θ) = m0(θ0) and V0(θ) = V0(θ0) are satisfied, then θ = θ0.

Proof. Let us suppose m0(θ) = m0(θ0). Applying the first point of Lemma 6.3
with γj = bj(θ) − bj(θ0), 1 ≤ j ≤ p and γ = µ(θ0) − µ(θ), we obtain bj(θ) = bj(θ0),
j = 1, . . . , p and µ(θ) = µ(θ0).
More, suppose V0(θ) = V0(θ0). Two cases need to be considered.

• Firstly, assume that σ2 = var[εt] 6= 0. We apply result 2. of Lemma 6.3 setting
for j ∈ {1, . . . , p}:

sj = σ(cj(θ) − cj(θ0)), uj = σ(cj(θ) + cj(θ0)), γj = wj(θ) − wj(θ0),

and γ = ν(θ0) − ν(θ). Then, it is easily seen that wj(θ) = wj(θ0), j = 1, . . . , p,
and ν(θ) = ν(θ0). Moreover, we have either cj(θ) = cj(θ0), ∀j ∈ {1, . . . , p},
either cj(θ) = −cj(θ0), ∀j ∈ {1, . . . , p}. From the fact that there exists j0 ∈
{1, . . . , p} such that the function cj0 is positive and cj0(θ0) > 0, we can only
have cj(θ) = cj(θ0), j = 1, . . . , p.

• Secondly, assume that σ = 0. By the third point of Lemma 6.3 applied with
γ = ν(θ0) − ν(θ) and γj = wj(θ) − wj(θ0), 1 ≤ j ≤ p, we get ν(θ) = ν(θ0) and
wj(θ) = wj(θ0), j = 1, . . . , p.

The final conclusion, θ = θ0, follows from H5.

Now we can give Theorem 4.1 demonstration. In fact, it is done in a very classical
way. By Lemma 6.1, we have:

sup
θ∈Θ

|QT(θ) − Q(θ)| −−−→
T→∞

0.

Lemma 6.4 can be used to show that

Q(θ0) < Q(θ), ∀θ ∈ Θ \ {θ0}

(see for example the proof of proposition 2.1 in [15]).
From these last two properties, a classical compactness argument leads to the strong
consistency of θ̂T (see for example [23, Theorem 2.2.1, p. 19]).

6.6. Proof of Theorem 4.2

Let t ∈ Z. In Section 4.1, qt(θ) has been defined as:

qt(θ) =
(Xt − mt(θ))2

Vt(θ)
+ ln Vt(θ).
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So the first and second derivatives are:

∇qt(θ) =
∇Vt(θ)

Vt(θ)

(
1 − (Xt − mt(θ))2

Vt(θ)

)
− 2

(Xt − mt(θ))∇mt(θ)

Vt(θ)
(6.1)

∇2qt(θ) =
1

Vt(θ)2

[
∇Vt(θ)∇Vt(θ)⊤

(
2
(Xt − mt(θ))2

Vt(θ)
− 1
)

+ ∇2Vt(θ)

(
1 − (Xt − mt(θ))2

Vt(θ)

)
+ 2(Xt − mt(θ))∇mt(θ)∇Vt(θ)⊤

+ 2Vt(θ)∇mt(θ)∇mt(θ)⊤ − 2Vt(θ)(Xt − mt(θ))∇2mt(θ)

+ 2 (Xt − mt(θ))∇Vt(θ)∇mt(θ)⊤
]

(6.2)

Lemmas 6.5 to 6.7 give important properties of ∇qt(θ) and ∇2qt(θ). They are
required to prove Theorem 4.2

Lemma 6.5. For all θ ∈ Θ, the sequences {∇qt(θ)}t and {∇2qt(θ)}t are ergodic and
stationary.

Proof. We use the same argument than the one we gave in Lemma 6.1 proof to
show that the sequence (qt(θ))t is stationary and ergodic.

From now on, ‖·‖ is the Euclidean norm on Rd or the matrix norm associated
with, as required.

Lemma 6.6. We have:

E
[
‖∇q0(θ0)‖2

]
< ∞ and E

[
sup
θ∈Θ

∥∥∥∇2q0(θ)
∥∥∥
]

< ∞.

Proof. Recall that if P is a polynomial of degree q defined on Rp, then there exist
non-negative constants d0, . . . , dp such that:

∣∣P
(
X−1, . . . , X−p

)∣∣ ≤ d0 +
p

∑
j=1

dj

∣∣X−j

∣∣q , a.s.

Proof of the first assertion: E
[
‖∇q0(θ0)‖2

]
< ∞.

• We first observe that the ratio:

(X0 − m0(θ0))∇m0(θ0)

V0(θ0)

is square integrable. Indeed, as

EF−1

[
(X0 − m0(θ0))

2 ‖∇m0(θ0)‖2

V0(θ0)2

]
=

‖∇m0(θ0)‖2

V0(θ0)
≤ ‖∇m0(θ0)‖2

h
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there exist positive constants d0, . . . , dp such that

EF−1

[
(X0 − m0(θ0))

2 ‖∇m0(θ0)‖2

V0(θ0)2

]
≤ d0 +

p

∑
j=1

djX
2
−j

and the integrability follows from E
[
X4

0
]

< ∞.

• Now, we show that ∇V0(θ0)
V0(θ0)

(
1 − (X0−m0(θ0))

2

V0(θ0)

)
is square integrable.

As V0(θ0) ≥ h a.s. and E
[
X4

0
]

< ∞, it is easily seen that the ratio ∇V0(θ0)
V0(θ0)

is

square integrable. Then it is enough to show that the variable V0(θ0)
−2∇V0(θ0)(X0 −

m0(θ0))
2 is square integrable. Let

C0(θ0) = (X0 − m0(θ0))
2.

As ∇V0(θ0) is square integrable and measurable with respect to F−1, it is
sufficient to show that the random variable V−4

0 (θ0)EF−1

[
C2

0(θ0)
]

is bounded.
We notice that:

EX−1=x−1,...,X−p=x−p

[
C0(θ0)

2
]

=

∥∥∥∥∥
p

∑
j=1

bj(θ0) ◦ x−j + ξ0

p

∑
j=1

cj(θ0) ◦ x−j −
p

∑
j=1

wj(θ0)
∣∣x−j

∣∣+ ηt

∥∥∥∥∥

4

4

≤
[

p

∑
j=1

∥∥∥Y
(j)
0,0

∥∥∥
4

∣∣x−j

∣∣+ ‖ξ0‖4

(
p

∑
j=1

∥∥∥Z
(j)
0,0

∥∥∥
4

∣∣x−j

∣∣
)

+
p

∑
j=1

wj(θ0)
∣∣x−j

∣∣+ ‖η0‖4

]4

.

We deduce that there exist constants d0, . . . , dp such that

EF−1

[
C0(θ0)

2
]
≤ d0 +

p

∑
j=1

dj

∣∣X−j

∣∣4 .

Since V0(θ0) ≥ wj(θ0)
∣∣X−j

∣∣ ∧ h for j = 1, . . . , p, it follows that:

V0(θ0)
−4EF−1

[
C0(θ0)

2
]
≤ d0

h4 +
p

∑
j=1

dj

wj(θ0)4 .

We have shown that V0(θ0)
−4EF−1

[
C0(θ0)

2] is bounded.

Proof of the second assertion: E
[
supθ∈Θ

∥∥∇2q0(θ)
∥∥] < ∞. We start the demonstra-

tion by showing that

E

[
sup
θ∈Θ

‖∇V0(θ)‖2 V0(θ)−3[X0 − m0(θ)]2
]

< ∞. (6.3)
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For this, we have:

EF−1

[
sup
θ∈Θ

V−3
0 (θ)[X0 − m0(θ)]2

]

≤ 2

h inf
θ∈Θ

V2
0 (θ)

EF−1

[
X2

0 + (
p

∑
j=1

∥∥bj

∥∥
∞

X−j + ‖µ‖∞)2

]

≤
2
(

m0(θ0)
2 + V0(θ0) + (∑

p
j=1

∥∥bj

∥∥
∞

X−j + ‖µ‖∞)2
)

h inf
θ∈Θ

V2
0 (θ)

.

Hence, there exist non-negative constants d, d1, . . . , dp such that

EF−1

[
sup
θ∈Θ

V−3
0 (θ)[X0 − m0(θ)]2

]
≤ 1

inf
θ∈Θ

V2
0 (θ)

(
d +

p

∑
j=1

djX
2
−j

)
.

As
X2
−j

inf
θ∈Θ

V2
t (θ)

≤ 1

inf
j∈Θ

w2
j (θ)

, according to hypothesis H8, we conclude that there exists

a constant M > 0 such that

EF−1

[
sup
θ∈Θ

V−3
0 (θ)[X0 − m0(θ)]2

]
< M. (6.4)

We note that using H8 only for i = 1, . . . , d,

∥∥∥∥
∂V0

∂θi

∥∥∥∥
∞

≤ 2σ2

(
p

∑
j=1

∥∥cj

∥∥
∞

∣∣X−j

∣∣
)(

p

∑
j=1

∥∥∥∥
∂cj

∂θi

∥∥∥∥
∞

∣∣X−j

∣∣
)

+
p

∑
j=1

∥∥∥∥
∂wj

∂θi

∥∥∥∥
∞

∣∣X−j

∣∣+ ‖ν‖∞ .

Whence, we conclude that if E
[
X4

0
]

< ∞ then E
[
supθ∈Θ ‖∇V0(θ)‖2

]
< ∞.

From (6.4) follows (6.3).
We notice that the other terms of (6.2) are uniformly bounded by polynomials of

the fourth degree in |X−1| , . . . ,
∣∣X−p

∣∣. This completes the proof.

Lemma 6.7. The entries of the column vectors of the differential of the function θ 7→
(m0(θ), V0(θ)) evaluated at θ0 are linearly independent random variables.

Proof. The proof is done in three steps.

Step 1. Suppose there exist constants λ1, . . . , λd such that

d

∑
i=1

λi
∂m0

∂θi
(θ0)

a.s.
= 0 or

d

∑
i=1

λi
∂V0

∂θi
(θ0)

a.s.
= 0.
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Since m0(θ0) = µ(θ0) + ∑
p
j=1 bj(θ0)X−j, the partial derivatives at θ0 are:

∂m0

∂θi
(θ0) =

∂µ

∂θi
(θ0) +

p

∑
j=1

∂bj

∂θi
(θ0)X−j, i = 1, . . . , d.

Then we have:

d

∑
i=1

λi
∂m0

∂θi
(θ0) =

d

∑
i=1

λi
∂µ

∂θi
(θ0) +

p

∑
j=1

d

∑
i=1

λi

∂bj

∂θi
(θ0)X−j

a.s.
= 0.

By the first result of Lemma 6.3, we get:

d

∑
i=1

λi
∂µ

∂θi
(θ0) =

d

∑
i=1

λi

∂bj

∂θi
(θ0)

a.s.
= 0, j = 1, . . . , p.

Step 2. Since V0(θ0) =

(
σ

p

∑
j=1

cj(θ0)X−j

)2

+
p

∑
j=1

wj(θ0)
∣∣X−j

∣∣ + ν(θ0), the partial

derivatives at θ0 are:

∂V0

∂θi
(θ0) = 2σ2

(
p

∑
j=1

cj(θ0)X−j

)(
p

∑
j=1

∂bj

∂θi
(θ0)X−j

)

+
p

∑
j=1

∂wj

∂θi
(θ0)

∣∣X−j

∣∣+ ∂ν

∂θi
(θ0),

for i = 1, . . . , d. So, we have:

d

∑
i=1

λi
∂V0

∂θi
(θ0) = 2σ2

(
p

∑
j=1

cj(θ0)X−j

)(
p

∑
j=1

d

∑
i=1

λi

∂cj

∂θi
(θ0)X−j

)

+
p

∑
j=1

d

∑
i=1

λi

∂wj

∂θi
(θ0)

∣∣X−j

∣∣+
d

∑
i=1

λi
∂ν

∂θi
(θ0) = 0.

The last equation can be written as:

2σ2

(
p

∑
j=1

cj(θ0)X−j

)(
p

∑
j=1

d

∑
i=1

λi

∂cj

∂θi
(θ0)X−j

)

+
p

∑
j=1

d

∑
i=1

λi

∂wj

∂θi
(θ0)

∣∣X−j

∣∣ = −
d

∑
i=1

λi
∂ν

∂θi
(θ0).
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Using the second result of Lemma 6.3 and the assumption that cj0(θ0) = β j0 > 0, we
get

2σ2
d

∑
i=1

λi

∂cj

∂θi
(θ0) =

d

∑
i=1

λi

∂wj

∂θi
(θ0) =

d

∑
i=1

λi
∂ν

∂θi
(θ0) = 0, j = 1, . . . , p.

Step 3. By the last two steps and hypothesis H8, we deduce that λ1 = · · · = λd = 0
which shows that the entries of the vectors of the differential of the bifold function
(m0(θ), V0(θ)) evaluated at θ0 are linearly independent random variables.

We are now ready to prove Theorem 4.2.
Proof of Theorem 4.2. The technique for the proof of this theorem is very classical,
we follow the proof given in [23, Theorem 2.2.1, p. 19]. Since θ ∈ Θ◦, using a Taylor
expansion, we get:

0 = ∇QT(θ̂T) = ∇QT(θ0) + M̃T · (θ̂T − θ0)

where M̃T is the matrix of the second order derivatives, that is :

M̃T(i, j) =
∂2QT

∂θi∂θj
(γi), 1 6 i, j 6 d.

with
∥∥θ̂T − γi

∥∥ 6
∥∥θ̂T − θ0

∥∥ , i = 1, . . . , d. Hence,

√
TQT(θ0) =

√
TM̃T · (θ̂T − θ0)

By Lemma 6.5, {∇2qt(θ0)}t∈Z is an ergodic stationary sequence. By hypothesis
H8, its values are in C(Θ, Rd × Rd). According to Lemma 6.6, supθ∈Θ

∥∥∇2q0(θ)
∥∥

is integrable. Then, we can apply Theorem 6.1 and since θ̂T
a.s.−−−→

T→∞
θ0, we conclude

that M̃T
a.s.−−−→

T→∞
F0 = E

[
∇2qt(θ0)

]
. More, F0 is non-singular. Indeed:

F0 = E
[
V0(θ0)

−2
{
∇V0(θ0)∇V0(θ0)

⊤ + 2V0(θ0)∇m0(θ0)∇m0(θ0)
⊤
}]

,

and by Lemma 6.7, this matrix is positive-definite. More:

√
TQT(θ0) =

1√
T

T

∑
t=1

∇qt(θ0) and EFt−1[∇qt(θ0)] = 0.

Since by Lemma 6.6, E[‖∇q0(θ0)‖2] < ∞, the sequence {∇qt(θ0)}t is an ergodic
stationary Ft-martingale difference sequence of finite variance. Then by [1, Theorem

23.1, p. 206], we have:
√

TQT(θ0)
D−−−→

T→∞
N (0, G0), with G0 = E[∇q0(θ0)∇q0(θ0)

′] .

Consequently, we get:

√
T(θ̂T − θ0)

D−−−→
T→∞

N (F−1
0 G0F−1

0 ).
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The expression of G0 follows from straightforward computations using the expres-
sion (6.1).
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