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ABSTRACT 
 

With downscaling of device dimensions in integrated circuits (ICs), the risk of circuit 

failure due to electrostatic discharge (ESD) is increasing. In particular, the increased usage of 

automated handlers is causing charged device model (CDM) ESD induced failures to become 

more prominent. Gate oxide failure is the primary signature of CDM ESD. During CDM, the IC 

is the source as well as the path for the static charge. Therefore, it is important to include the 

circuit elements representing the package, ESD circuits and the silicon substrate of the packaged 

ICs. Power domain crossing circuits, also known as internal I/Os, are susceptible to gate oxide 

damage during CDM events. In this thesis, circuit-level simulations of internal I/O circuits are 

used to elucidate the roles of the package, power clamp placement, anti-parallel diode placement 

and decoupling capacitors in determining the amount of stress at the internal I/O circuits. This 

thesis will also provide design recommendations for preventing CDM failures in the internal I/O 

circuits. 
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Chapter 1. INTRODUCTION 

Electrostatic discharge (ESD) is the transfer of static charges between objects at different 

electric potentials [1]. Static charges are generated due to tribo-electric charging, ionic charging, 

direct charging or field-induced charging [2]. Discharge of static charges into or out of integrated 

circuits (ICs) can damage the internal circuits and render them unusable or degrade their 

performance. As the physical dimensions of the devices in the ICs are scaled down to increase 

the operating speed and decrease the area, the devices are becoming increasingly susceptible to 

the damage due to ESD events. Therefore, a few samples of the ICs are tested in the laboratory 

for ESD robustness before delivering the ICs to the customers. These tests are called ESD tests. 

Various models are used simulate the ESD events that the IC may experience in the real 

environment. The human body model (HBM) [3], machine model (MM) [4] and charged device 

model (CDM) [5] are the three component level ESD test models that are used by the IC 

vendors.  As the automated handling of ICs increases, CDM is becoming the most relevant of 

these three tests today. Two types of CDM tests are used in the industry: socketed CDM 

(SCDM) and field-induced CDM (FICDM). The work presented in this thesis is related to 

FICDM. This model is used since it is a better representation of CDM events in the real 

environment [6].  

 

1.1. Charged Device Model 
 

During a FICDM test, a packaged chip, called a device under test (DUT), is placed upside-

down on a charge plate as shown in Figure 1.1. The charge plate potential is raised to a 

predetermined pre-charge voltage and then a pogo pin, which is attached to a ground plate, is 

lowered until it makes contact with a pin of the DUT. Charge flows through the pogo pin to the 
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DUT in order to support the potential difference between the grounded component and the field 

charge plate. The charge flows through the lowest impedance paths that lie between the “zapped 

pin” and the charge storage sites throughout the component. This results in a high current stress as 

shown in Figure 1.2.  

 

Figure 1.1 Packaged component placed upside down between the charge plate and ground plate of an FICDM tester 

is shown. (Drawing taken from M. Etherton et al., “Study of CDM Specific Effects for a Smart Power Input 

Protection Structure,” EOS/ESD Symposium, 2004.) 

 

The pogo pin is then raised, and the pre-charge voltage is reduced to 0 V. A stress of 

negative polarity can then be applied by bringing the pogo pin down to make contact with the 

device pin. The peak current depends upon the amount of charge stored in the IC and the 

impedance of the discharge path. The amount of charge is determined by the total capacitance 

formed between the metallic parts of the IC and the charge plate. The pogo pin inductance, the 

resistance of the spark between the pogo pin and DUT, and the impedance of the discharge path 

on the chip determine the peak current for a given amount of charge storage. The DUT is 
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characterized before and after the CDM stress. The CDM robustness of the DUT is defined as the 

highest pre-charge voltage that can be used to stress all the pins of the DUT without causing a 

failure.  

Figure 1.2 Typical simulated waveform of the CDM discharge current through the pogo pin; CDM simulation of    

500 V was carried out on a quad flat package IC test case. 

 

1.2. Motivation for CDM Simulation of Circuits 

The CDM test is carried out on a packaged IC. Finding the ESD related failures after 

fabricating and packaging an IC costs much more than finding the same issues earlier in the 

design cycle, and fixing them before fabrication. Hence, it is desirable to detect the ESD 

weakness in the ICs and fix them before fabricating the ICs. In the HBM and the MM test, the 

peak current for a given pre-charge voltage is known beforehand. Designers can design and place 

the ESD protection circuits to minimize the stress on the circuits for each stress mode. In contrast, 

in the CDM test, the peak current varies from design to design, depending on the size of the die 

and of the package. Also, unlike in the other component level tests, during the CDM test, the path 
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of discharge is not well understood. The CDM discharge current has fast rise time, of the order of 

a few hundreds of pico seconds. The rise time dictates that the transient effects have to be 

included while analyzing the circuit reliability. Thus, transient circuit simulations are needed to 

study the robustness of circuits. Circuit simulations also allow designers to measure voltages and 

currents at the internal nodes, a method which is not easy to implement while testing packaged 

ICs.  

1.3. Thesis Overview and Organization 

This work presents a simulation model that can be used to predict full chip CDM failures . 

Simulation of CDM events in integrated circuits requires modeling the plural charge storage 

locations and discharge paths. The charge is stored in various metallic parts of the IC, such as the 

conducting parts of the package and on-chip interconnect. The discharge path for each storage site 

may be different. In order to simulate the discharge current waveform, the netlist must include 

elements representing the package, ESD circuits and substrate [7],[8]. If full-chip modeling is 

undertaken, one can also simulate the CDM waveforms at power domain crossing circuits, known 

as internal I/Os. These circuits may be susceptible to gate oxide damage during CDM events 

[9],[10]. Previous work on full-chip CDM simulation to study the power domain crossing circuits 

did not include the substrate model [11]. This thesis shows that the substrate resistivity plays an 

important role in determining the stress at the power domain crossing circuits. 

Worley [10] introduced the concept of a structured cross-domain signal interface in which 

anti-parallel diodes (APDs, i.e. back-to-back diodes) and power clamps are placed near the driver 

and the receiver of the internal I/O. In practice, this requires the internal I/O to be placed close to 

the pad ring because this is the preferred location for placing a power clamp due to its large size. 

This impacts the chip’s floorplan and limits the blocks between which signals may be passed. 
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This work uses circuit simulation to explore whether an internal I/O may safely be located far 

from the pad ring and the primary ESD protection, if the primary protection is augmented by 

small APDs and decoupling capacitors placed near the internal I/O. In [10], APDs are also used 

between power rails, a strategy not preferred by designers due to a power sequencing problem. In 

this work, protection devices are therefore not placed directly between different power busses. 

Simulation results compare favorably with measurements obtained on a CDM testchip; this 

provides confidence in the results of the predictive simulations. 

Chapter 2 provides an overview of the simulation model for CDM and its individual 

components: the package, substrate and on-chip circuit models. Chapter 3 presents the test cases 

used for the research and the simulation results. Chapter 4 provides the comparison between the 

simulation results and the measurement data for one of the test cases. Last, a summary of the 

conclusions and some ideas for future work are presented in Chapter 5.  
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Chapter 2. MODELING METHODOLOGY 

Circuit simulations are only as good as the models used in the simulations. The presence 

of an accurate charge storage model is an important factor in determining the accuracy of the 

CDM simulation results. Once the charge storage locations are known for an IC, one can proceed 

to model all the relevant paths of discharge. A capacitive model is used to model the charge 

storage locations. Chapter 2.1 presents the charge storage model and an overview of the 

schematic model used in the simulations. 

2.1. Package Model  

2.1.1. Capacitive Model of Charge Storage 

The amount of charge transferred during a CDM event depends on the capacitors formed 

by the metallic parts of the DUT with the plates of the CDM tester. The capacitance between the 

plates of the tester also contributes to the amount of charge storage. A lumped three-capacitor 

model [12] is sufficient to calculate the total amount of charge; subsequently, the peak current 

may be found by roughly estimating the series impedance of the discharge paths [13]. Although 

this method for estimating the peak current is sufficient to predict the reliability of I/O circuits, 

distributed modeling of charge storage is needed to estimate the stress on the internal circuitry, 

particularly the power domain crossing circuits. Therefore, a distributed capacitance model of the 

part is needed. 

In this study, the various capacitances between the DUT and the tester plates were 

calculated using CSURF, a 3-D capacitance modeling tool [14]. The actual dimensions of the 

package and the die were drawn using the graphical user interface of CSURF. The package 

dielectric constant was entered and capacitances were extracted. The capacitance between the on-
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chip power/ground interconnect metal and the charge plate was estimated by extracting the area of 

the interconnect metal using a layout extraction tool. At each metal level, the area of the metal 

exposed to the charge plate was extracted. A customized layout extraction rule set was written to 

perform the extraction. 

This thesis presents the model of a cavity-up quad flat package (QFP). The QFP is placed 

in a dead-bug position on an FICDM charge plate as shown in Figure 2.1.  

Figure 2.1 QFP package that was modeled in this work. Important capacitances formed by the parts of the 

components with the charge plate and ground plate of the FICDM tester are shown. 

 

In a QFP with a large number of pins or long pin leads, package pins are the primary 

charge storage locations. Packages that have a small die attach plate in comparison to the package 

size can have long pin leads. This can lead to a large pin capacitance.   For very thin packages, the 

bondpads and the on-die interconnect will be closer to the charge plate and the capacitance 

formed by them with the charge plate may become significant. However, for a small die in a 

thicker package, the capacitances formed by the interconnect metal and the bondpads can be 

negligibly small. For packages with a metal heat sink, the capacitance between the heat sink and 

the charge plate will be significant, and the connection of the heat sink to the rest of the on-die 
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elements will decide the path of discharge for the charges stored in the heat sink. For example, the 

heat sink could be down-bonded to a ground pin of a particular power domain. In that case, 

zapping a pin belonging to another power domain will lead to a higher current flowing from the 

power domain connected to the heat sink to the zapped power domain, compared to that in the 

case of zapping a pin down-bonded to the heat sink. 

2.1.2. Full Chip Schematic Model 

Once a capacitive model is obtained, a schematic representation of the CDM simulation 

model for a QFP package can be drawn as shown in Figure 2.2. Only one package pin is shown in 

the figure. Parasitic resistance, inductance and mutual capacitance of the package pins can be 

obtained from the package data sheets. The parasitic resistance and the inductance of the 

bondwires can be calculated once the die is packaged and bondwire lengths are known. 

Alternatively, these values may be estimated with reasonable accuracy before packaging, if the 

die size and the package size are known. 

The charge stored in the Cdie-attach has to flow through the substrate, into the on-chip 

ground bus through the substrate contacts.  A substrate model is necessary to understand the flow 

of charges through the substrate and its impact on the on-chip circuits. The substrate model used 

in this study is presented in Chapter 2.2. Charge stored in all the pins other than the zapped pin 

has to flow through the on-chip ESD protection circuit and the power and the ground busses. This 

necessitates that the on-chip ESD protection network and the power and the ground interconnect 

be modeled for the simulation. Chapter 2.3 presents the on-chip circuit model used in this work. 
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Figure 2.2 High-level representation of CDM simulation model showing interconnection of substrate, package and 

on-chip models. 

 

2.2. Substrate Model 

The charge stored on Cdie-attach flows through the substrate, into the on-chip ground bus 

through the substrate contacts. To understand the flow of charge through the substrate and its 

impact on the on-chip circuitry, it is important to model the substrate. The chip substrate was 

divided into a 3-D grid of boxes, each represented by six resistors, as suggested in [7]. A script 

was written to create the substrate resistor network, given the substrate size and the grid size. The 

grid size and the chip size determine the number of nodes in the substrate model. The backside of 

the substrate is connected to Cdie-attach, and the top side of the substrate is connected to the 

substrate contacts of VSS busses as shown in Figure 2.3.  

Figure 2.3 corresponds to the particular case in which the die attach plate is connected to 

the die substrate using conductive glue (silver filled epoxy). If, instead, the die is attached using 

an insulating glue, the Cdie-attach should be distributed across the bottom-most grid boxes of the 

substrate in the x-y plane. 
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Figure 2.3 3-D substrate resistor grid. X1, X2 … Xn are the substrate contacts. The resistors in the top row model 

the Vss busses. A sample grid-box with 6 resistors is shown on the lower left corner. 

 

Capacitive coupling is stronger along the periphery of the substrate than in the center due 

to fringing fields, and thus the capacitors connected to the outermost grid boxes would be larger 

than those in the interior. The top-side of the substrate is connected to the substrate contacts. In 

this work, substrate contacts were automatically extracted from the layout and a reduction 

algorithm was used to merge the substrate contacts that were in the same grid box of the substrate 

model. The locations of the substrate contacts were extracted using a customized layout extraction 

rule set. A layout extraction tool called Calibre [15] was used as the extraction engine. The rule 

set was written in Calibre’s native extraction language. The locations of the substrate contacts 

were written into a text file. A pattern extraction and report language (PERL) [16] script was 

written to read the locations of the layout extracted substrate contacts from the file. The script 

then identified the top-most grid box of the substrate model that contained each of the substrate 
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contacts. Multiple substrate contacts contained within the same grid box were connected together. 

The output of the script is a netlist that connects the substrate contacts to the resistors in the Z-

direction of the top-most grid boxes of the substrate model. 

2.3. On-Chip Circuit Model 

The circuit-level model is connected to the package and the substrate models. The 

substrate contacts provide connection to the ground busses. The bondpads provide connection to 

the package model. The circuit-level model contains ESD protection devices at each pad, parasitic 

resistance of power and the ground busses, and decoupling capacitors between the power and the 

ground busses. In this work, ESD protection includes dual diodes at the signal pads and active 

clamps as the power clamps [17]. The circuit-level model should also contain any core circuitry of 

interest, e.g. internal I/O. The capacitance between the interconnect metal and the charge plate, if 

significant, should be included in the netlist. 

Figure 2.4 illustrates an internal I/O studied in this work. One can observe the 

connections between the circuit-level model, the package model and the substrate model. The 

driver is in the VDD1 domain and the receiver is in the VDD2 domain. Note that the respective 

grounds, VSS1 and VSS2, are connected by anti-parallel diodes (APDs) in the pad ring. The 

transistors in the internal I/O circuits have thin gate oxides which can conduct significant current 

under CDM conditions; therefore, Fowler-Nordheim gate tunneling current models [18] were 

used in the simulations. 
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Figure 2.4 Internal I/O circuit. Driver in VDD1 domain; receiver in VDD2 domain. The substrate contacts (X1, X2, 

etc.) are shown. Refer to Figure 2.3 for substrate connections. CVDD1, etc., are pin capacitors. 

To accurately model the gate tunneling current, a voltage controlled current source was 

connected in parallel with the gate-source of the receiver transistors, Rx NMOS and Rx PMOS. 

The gate current can be modeled as 

     
     

  
⁄

                                                           (2.1)                                      

JG is the gate tunneling current density. A and B are the model fitting parameters. The 

gate leakage currents for the NMOS and the PMOS thin oxide devices were measured under the 

transmission line pulsing (TLP) [19] stress, and the mathematical model in Eq. 2.1 was fitted 

using MATLAB [20]. After obtaining the appropriate parameters for the measured data, the 

equation was implemented in verilog-A [21] script and the resulting verilog-A model was 

included in the Spectre [22] netlist used for the simulations.  
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During any CDM event in which the rail clamps turn on, the digital logic will be 

activated. The input to the driver may be pulled low or high depending upon the logic state of the 

pre-driver or the coupling of the signal line with the power or the ground bus. When the driver 

PMOS is ON, the potential at the gate of the receiver is approximately equal to V1, whereas, 

when the driver NMOS is ON, the potential at the gate of the receiver is approximately equal to 

V3. Since V1 is greater than V3, the stress at the receiver gates will be higher when the driver 

PMOS is ON. Thus, to simulate the worst case stress for the receiver, it was assumed that the 

input to the driver is pulled low. To reduce the simulation runtime, other functional circuits were 

not included in the netlist. 

Using the methodology described so far, a complete simulation netlist was created for 

two testcases in 90 nm technology. The testcases and the simulation results are described in     

Chapter 3.  
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Chapter 3. PREDICTIVE CDM SIMULATION OF 

POWER DOMAIN CROSSING CIRCUITS 

 

3.1. Description of Test Cases 

Simulation studies were conducted on two 90 nm test cases: Test Case A and Test Case B. 

Test Case A is a small chip that is used only for predictive (i.e., “what if”) simulations.  In Test 

Case A, a 500 µm x 500 µm die is modeled as being inside a 34-pin QFP package. The package 

height is 2.85 mm and its other dimensions are 20 mm x 16 mm. Its die attach plate is 6 mm x 6 

mm. A capacitance model was extracted as described in Section 2.1, and the values are tabulated 

in Table 3.1. For the 34-pin package, the total pin capacitance amounts to 3.74 pF, which is much 

larger than the next largest capacitor, Cdie-attach. The bondpad and the interconnect capacitance 

were found to be very small and were not included in the simulation netlist. Test Case A uses a 

high resistivity substrate (ρ = 15 Ω-cm), unless otherwise noted. 

Table 3.1 Values of capacitors extracted for the QFP package using 3-D capacitance extraction tool. Refer to Figure 

2.1 for component names. 

Component 

Name 

Value 

Component 

Name 

Value 

Cpin 0.11pF Cdie-attach 1.33pF 

Cpin-ground 60fF Cdie-attach-ground 160fF 

Cgp 20pF Cbondpad 0.08fF 

 

The pad assignments for Test Case A are illustrated in Figure 3.1. The power and ground 

busses for each domain run along the periphery of the chip. The VSS1 bus is continuous while 

the VSS2 bus runs only in the VDD2 domain section of the I/O ring. The parasitic resistance grid 
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of the core power bus and that of the core ground bus were created using a script and are shown 

in Figure 3.1. The substrate contacts were created with a regular grid and are shown as red dots 

in the figure. Note that the VDD1 domain is larger than the VDD2 domain.  The contents of each 

pad cell are shown in Figure 3.2. A decoupling capacitance of 10 pF was placed in each pad cell. 

The bus resistance of each power/ground bus is 0.25 Ω per pad cell. In the CDM simulations of 

Test Case A, the charge plate was brought to 300 V and then a VSS2 pin was grounded by the 

pogo pin. This study focuses on the stress induced at the internal I/O illustrated in Figure 2.4. 

 

 

Figure 3.1 Pad arrangement for Test Case A. VDD1/VSS1 domain is larger with higher pin count and larger number 

of substrate contacts. Ground bus model for the core is also shown. 
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Figure 3.2 Block diagram of each pad cell used in the pad ring described in Figure 3.1. 

 

Test Case B is a CDM test chip that was fabricated and tested. This chip was packaged in 

the 100-pin QFP package described in Chapter 2. The total pin capacitance for this package is 

large (11 pF). The die size is 2 mm x 4 mm. The test chip was built on a high resistivity substrate 

(ρ = 15 Ω-cm). The test chip has 64 pads and contains multiple internal I/Os that are similar to the 

one illustrated in Figure 2.4. The two domains, VDD1 and VDD2, are of the same size. In 

Chapter 4 of this thesis, the simulation results for Test Case B are compared with data obtained 

using capacitively coupled TLP (cc-TLP) [23] and very fast TLP (VFTLP) [24] testers. 

3.2. Simulation Results and Discussions 

The simulation results for Test Case A will be presented in this section. Cadence’s Spectre 

[22] was used as the simulation engine. As previously stated, the simulations are for a 300 V 

CDM event with respect to a VSS2 pin. The currents through the APD and the grounded pin are 
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plotted in Figure 3.3. A large fraction of the total current flows through the APD from VSS1 to 

VSS2. This is because most of the charge is stored in the pin capacitors and most of the pins are in 

the VDD1 domain. The primary path for ESD current from the VDD1 to the VDD2 domain is 

through the VSS busses and the APD. 

 

Figure 3.3 Simulated current waveforms at the grounded pin and at the APD. Current flows through the APD from 

VSS1 to VSS2. 

3.2.1. Effect of Substrate Resistivity 

Simulations were performed for two cases: ρsub = 15 Ω-cm (default case) and ρsub = 0.02 

Ω-cm. In Figure 3.4, the peak Vgs of the receiver NMOS and that of PMOS are plotted as a 

function of the per cell power/ground bus resistance in the pad ring. Despite the internal I/O being 

off-path for the ESD current, large potential differences appear across the gate oxides of the 

receiver transistors, especially when a high-resistivity substrate is used. During this CDM event, 

the NMOS is biased in inversion and the PMOS is biased in accumulation. The stress can be 

measured in terms of the voltage drop across the oxide, which is Vgs in inversion and Vgb in 
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accumulation. However, since the source and body nodes of these transistors are tied together, 

there is no need to distinguish between Vgs and Vgb. 

 

Figure 3.4 Vgs of the receiver transistors for low and high resistivity substrates. 

 

 Using the node voltages previously introduced in Figure 2.4, the voltage stress across the 

receiver NMOS can be written as 

                                                                              (3.1)           

      (     )  (     )  (     )                               (3.2) 

The right-most quantity in Eq. (3.1) is approximately equal to Vgs-nmos since the ESD current 

primarily flows through the pad ring and there is little voltage drop in the core busses, e.g. there 

was a negligible potential drop through RVSS2-core or RVDD1-core. In Eq. (3.2), the quantity (V1-V2) 

is the voltage drop across the power clamp. V2-V3 is the voltage drop in the VSS1 bus between 

the power clamp and the APD. V3-V4 is the voltage drop across the APD.  
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Similarly the stress across the receiver PMOS can be written as 

                                                                 (3.3) 

               (     )  (     )                               (3.4) 

The quantity (V4-V5) is the voltage drop in the VSS2 bus between the point at which the receiver 

source is connected to the VSS2 bus in the I/O ring and the VDD2 power clamp.   V6-V5 is the 

voltage drop between VDD2 and VSS2; this quantity is positive because current flows from 

VDD2 to VSS2 when a VSS2 pin is zapped. 

Equation (3.4) explains why the receiver PMOS, not just the NMOS, is stressed when 

VSS2 pin is zapped. Vgs-pmos may be higher or lower than Vgs-nmos depending upon the relative 

values of (V4-V5) and (V6-V5). If the quantity (V6-V5) is larger, the voltage stress on the 

receiver PMOS oxide will be smaller than the stress on the NMOS oxide. However, in this test 

case, the VDD2 domain is small and the current flowing from VDD2 to VSS2 is small, leading to 

a very small voltage drop between VDD2 and VSS2. This leads to a significant voltage stress 

across the PMOS.  

The oxide breakdown voltage of 90 nm thin oxide transistors was measured using a very 

fast transmission line pulsing (VFTLP) system with a pulse width of 10 ns. The oxide breakdown 

voltage for an NMOS in inversion was about 4.8 V, and the PMOS oxide breakdown voltage in 

accumulation region was about 5.2 V. The simulation results of Figure 3.4 indicate that oxide 

breakdown at the internal I/O is far more likely to occur when a high resistivity substrate is used 

rather than using a low resistivity substrate. 

In order to simulate the case of a chip built on a low resistivity substrate (0.02 Ω-cm), the 

substrate model was replaced with a new resistance grid, appropriate for the lower resistivity 
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material. When a low resistivity substrate is used, the charge from Cdie-attach flows through the 

substrate directly to the grounded VSS2 bus. Although the charge stored on the pins in the VDD1 

domain will enter the VSS1 bus, a large amount is diverted to the low resistivity substrate that is 

in parallel, thus bypassing the APD and the bus resistances; the reduced voltage drop across the 

VSS1 bus resistance and the APD yields a greatly reduced receiver Vgs. Therefore, CDM failures 

at internal I/O’s are not expected to occur in ICs built on low-resistivity substrates. 

3.2.2. Effect of Decoupling Capacitance 

Increasing the amount of decoupling capacitance placed between the power and the 

ground busses reduces the stress on the internal I/O receiver gates, as shown in Figure 3.5. 

Increasing the decoupling capacitance reduces the voltage drop between VDD1 and VSS1, which 

is the quantity (V1-V2) in Eq. (3.1). The displacement current through the decoupling capacitors 

(I=C*dv/dt) is not negligible in the CDM timescale. The beneficial properties of decoupling 

capacitors were noted in [10]; this work highlights the quantitative importance of including them 

in CDM simulation models. Even though decoupling capacitance reduces the stress across the 

receiver gates, it may not be sufficient to protect the receiver gates from oxide breakdown. 

Therefore, additional protection strategies are considered in the following sections. 
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Figure 3.5 Effect of decoupling capacitance on the receiver NMOS Vgs. 

3.2.3. Effect of Cross-Domain Power Clamp 

A cross-domain power clamp may be used to reduce the stress at the internal I/Os, as 

shown in Figure 3.6. However, the cross-domain clamp is beneficial only if the VDD12 clamp 

shown in Figure 3.6 is placed near the VSS2 pad, such that RVDD12 and RVSS12 are minimized. A 

plot of PMOS and NMOS Vgs as a function of the sum of RVDD12 and RVSS12 is shown in Figure 

3.7. Although the cross-domain clamps reduce the voltage stress across the receiver gate oxides, 

the voltage stress may not be low enough to protect the gate oxide. This depends upon the 

parasitic resistance of the power and the ground bus and the placement of the clamp. Designers 

who are concerned with noise isolation between the domains may not wish to use cross-domain 

power clamps. 
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Figure 3.6 Internal I/O circuit with cross-domain power clamps between VDD1 and VSS2 and between VDD2 and 

VSS1. 

 
Figure 3.7 The cross-domain power clamps  (VDD1-VSS2 and VDD2-VSS1) reduce Vgs of the receiver transistors. 

Resistance from the clamp to the respective pads is important. 
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3.2.4. Local APD 

As shown in Figure 3.8, a small APD is placed between VSS1 and VSS2 in close 

proximity to the internal IO circuit in order to augment the APD in the I/O ring. Rcon is the 

parasitic resistance of the ground bus connecting the local APD to the source of the driver NMOS 

or to the source of the receiver NMOS. 

The local APD reduces the voltage drop between the VSS busses local to the driver and 

the receiver. The local APD carries very little current compared to the APDs in the I/O ring. As 

shown in Figure 3.9, the receiver Vgs is reduced significantly when using a local APD. Rcon was 

set to 0.5 Ω in the simulations. 

The data in Figure 3.9 show that the voltage stress can be further reduced by increasing 

the amount of decoupling capacitance in the vicinity of the driver and the receiver in addition to 

adding the local APD. Decoupling capacitors placed near the driver reduce the receiver NMOS 

Vgs. Clocal placed near the driver reduces the local potential difference V1’–V3’, while the local 

APD reduces the potential difference V3’–VS-N, thus the two reduce the potential difference      

V1’–VS-N. Decoupling capacitors placed near the receiver reduce the receiver PMOS Vgs. 

Specifically, Clocal in the receiver domain (i.e. VDD2 domain) reduces the potential difference   

VS-P – VS-N, which reduces the potential difference V1–VS-P. 
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Figure 3.8 Internal I/O circuit with a local APD added close to the driver and the receiver, in addition to the APD in 

the I/O ring. 

 
Figure 3.9 A local APD along with local decoupling capacitance greatly reduces Vgs of the receiver transistors. 

Local APD perimeter = 42 µm. Perimeter of the APD in the I/O ring is 210 µm. 

 

 

Increasing the size of the APD devices in the pad ring does not provide the same benefit as 

does adding a local APD, as evidenced by the data shown in Figure 3.10. In these simulations, the 
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parasitic resistance from the core VSS1 and VSS2 busses to the APD in the I/O ring (Rvss1-core and 

Rvss2-core in Figure 3.6) is 6 Ω each, and the parasitic resistance to the local APD (Rcon) is 0.5 Ω. 

Figure 3.11 is a plot of the peak Vgs of the receiver NMOS as a function of both the 

amount of local decoupling capacitance and the local APD perimeter. Vgs decreases as either the 

amount of decoupling capacitance is increased and/or the perimeter of the local APD is increased.  

To clamp the Vgs to a particular value at a given CDM stress level, one adjusts the diode perimeter 

or the value of Clocal. For example, a local APD with a perimeter of 84 µm needs 40 pF of Clocal to 

clamp the NMOS Vgs to about 4.5 V. In order to get a further reduction of 0.3 V, either the local                                                   

APD perimeter can be increased by about 150%, to 210 µm, or the value of Clocal can be increased 

by about 50%, to 60 pF.  

 

Figure 3.10 The effect of adding a local APD close to the internal I/O is compared with the effect of increasing the 

perimeter of the APD in the I/O ring. Clocal = 150 pF in both cases, APD perimeter in the I/O ring = 210 µm. The 

local APD is not present initially. 
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It might appear that adjusting Clocal is the more favorable approach; however, the absolute 

silicon area required to increase the amount of decoupling capacitance is 12 times higher than that 

required to increase the local APD perimeter. This analysis suggests that in light of the silicon 

area constraint, improved voltage clamping is best achieved by increasing the local APD 

perimeter, rather than increasing the amount of local decoupling capacitance. However, in designs 

with a large amount of core decoupling capacitance, a small local APD may be sufficient to clamp 

the Vgs to a safe level. 

The efficacy of the local APD also depends on the parasitic resistance between the APD 

terminals and the source terminals of the driver and receiver NMOS transistors, Rcon. If Rcon is 

comparable to the parasitic resistance from the internal I/O to the APD in the I/O ring (Rvss1-core 

and Rvss2-core in Figure 3.8), the local APD provides little benefit, as shown in Figure 3.12. The 

 

Figure 3.11 Peak Vgs across receiver NMOS as function of local decoupling capacitance for various perimeters of 

local APD. 
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Figure 3.12 The effect of parasitic resistance connecting the driver and receiver transistors to the local APD 

terminals. The perimeter of APD in the I/O ring is 210 µm. Rvss1-core and Rvss2-core are each 6 Ω, this is the parasitic 

resistance to the APD in the I/O ring. Clocal=150 pF. 

local APD is intended for use when the internal I/O is located far from the pad ring, in which case 

Rcon will be smaller than the resistance out to the ring, e.g., Rvss1-core. In flip-chip designs with the 

power and ground bumps over the core region, the APDs in the I/O ring may behave as local 

APDs if Rvss1-core is very small. 

If placing an APD in the core region between the analog and the digital grounds is a noise 

concern, the APD could be replaced by a circuit which is off during normal circuit operation and 

conducts current between the domains only during an ESD event [25]. 

3.2.5. Local Clamps 

A local clamp may be placed at the receiver input [2], but this will increase the path delay 

unless the designer considers the capacitive loading due to the ESD clamp when sizing the driver. 

Simulation results show, however, that the CDM benefits of local clamps are significant. A 
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receiver with a diode based local clamp is shown in Figure 3.13. The peak stress voltage across 

the receiver gate oxides is plotted in Figure 3.14 as a function of the series resistance Rseries. 

 

Figure 3.13 The internal I/O protected by a local clamp consisting of diodes across the gate-source terminals of the 

receiver transistors and a series resistor. 

 

Figure 3.14 There is voltage stress at the receiver transistors when there is a diode based clamp at the receiver input. 

The perimeter of each diode in the dual diode clamp is 42 µm. 
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The stress voltage is clamped to a lower value when Rseries is increased. However, 

increasing Rseries provides diminishing returns. The simulation results indicate that an Rseries of     

20 Ω provides a sufficient margin to protect the receiver gate oxides against a 300 V CDM event. 

Table 3.2 compares the peak Vgs of the receiver transistors for all of the investigated 

protection strategies. From Table 3.2, one can see that the local APD with local decoupling 

capacitance can clamp the voltage across the gate oxides below the gate oxide breakdown voltage 

(BVox). A local clamp at the receiver input will clamp the voltage to an even lower value, but 

there is a performance penalty due to an additional series resistor and the capacitance of the 

diodes. The driver transistors may need to be resized to meet the initial performance goals. 

Table 3.2 Comparison of peak voltage stress across the receiver transistors for different protection strategies. 

Simulation results.  

ESD Protection Methods 

Receiver Voltage Stress 

RX NMOS Vgs 

(V) 

RX 

PMOS Vgs (V) 

Diode based Clamp at the 

gate(Diode perimeter=42µm, 

Rseries=20Ω) 

3.3 1.7 

Local APD of 120µm perimeter 

with Clocal=150pF, 

3.64 4.8 

Cross domain power clamp 

(VDD1-VSS2) with 

RVDD12+RVSS12=0.5Ω 

5 3.11 
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Chapter 4. COMPARISON OF SIMULATION 

RESULTS WITH MEASUREMENT DATA 

 

In this section, the simulation results for Test Case B will be compared with the actual 

measurement data to establish the validity of the simulation model and the methodology. A 

simulation model was created for the 64-pad CDM testchip embedded in the 100-pin QFP 

package. The measurement method used on the test chip was developed by my colleague Nathan 

Jack [23]. 

The simulation model was created for the die on the VFTLP tester. A VF-TLP stress of   

80 V was applied between the VDD1 and VSS2 pads of the design. The measurement data for the 

testchip were reused from the previous work [26]. Waveforms at the internal nodes of the CDM 

testchip were obtained using real-time probing at the die level, and the voltage monitor circuits 

recorded peak voltages at the internal nodes [23]. Table 4.1 compares the measured and simulated 

values of peak NMOS Vgs at two internal receivers, one with and one without a local clamp at the 

input. This local clamp was a grounded-gate NMOS. The simulation results match well with the 

measurement data. 

Table 4.1 Comparison of measured and simulated voltage stress across the receiver NMOS gate oxide under VF-

TLP stress. 

 Voltage 

Monitor 

Reading (V) 

Simulated 

voltage (V) 

  No 

clamp at 

the gate 
3.4 3 

  Local 

clamp at 

the gate  
1.89 1.86 
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Table 4.2 quantifies the effect of a local APD, without local decoupling capacitors, using 

both measurement and simulation. The measurement data was reused from the previous work 

[26]. Here, the potential difference was measured between the sources of the driver and the 

receiver NMOS devices. A cc-TLP stress was applied to the VSS2 pad near the receiver in the 

core. The peak discharge current was 1 A. The potential difference was measured between the 

VSS1 and VSS2 probe pads placed near the driver and the receiver, respectively. The agreement 

between the measurement and the simulation results is reasonably good. The data in Table 4.1 and 

Table 4.2 provide confidence in the simulation results presented in Chapter 3. 

Table 4.2 Comparison of cc-TLP measurement results with the simulation results. 

 
cc-TLP 

Measurement (V) 

Simulation 

Results (V) 

Control Case 5.58 6.15 

Internal I/O with 

local APD 

5.05 5.45 

 

The minor differences between the measurement and the simulation results stem from 

known inaccuracies in the model for the core power/ground bus mesh and in the models of the 

ESD protection devices. The extracted core power and the ground bus parasitic resistance 

networks were very large. To reduce the simulation runtime, a simple lumped model was used for 

the core power and ground bus in the simulation netlist. The model consisted of a resistor 

representing the point-to-point resistance between each of the internal I/O transistor terminals and 

the I/O ring power and the ground bus. The test chip consisted of a snapback based ESD device 

[2] in parallel with the active power clamp [17]. The snapback based ESD device was not 

modeled in the simulation netlist due to the absence of stand-alone test structure for the 



32 

 

measurement and modeling. Thus, only the active power clamps were modeled in the simulation 

netlist. Also, the diode models used in the simulation did not include the conductivity modulation 

effect prevalent during high current conduction [27]. However, both the measurement and the 

simulation results indicate that the stress at the receiver gate is lower in the case of the local APD 

placed near the internal I/O circuit. 
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Chapter 5. CONCLUSIONS AND FUTURE WORK 

A simulation model for the CDM simulation of internal I/O circuits was presented in this 

work. Simulation results indicating the importance of modeling the package, the substrate and the 

on-chip ESD network were discussed. A summary of conclusions based on the simulation results 

will be presented in this chapter. 

5.1. Conclusions 

On chips that have been built on high resistivity substrates, internal I/O receivers may 

experience significant voltage stress unless an ESD protection circuit is appropriately placed near 

the internal I/O circuit. At an internal I/O, if the driver output is high, then not only the receiver 

NMOS but also the receiver PMOS can experience significant voltage stress when the receiver 

ground is zapped. This is especially the case if the charge storage capacitance of the receiver 

power domain is small. A local APD along with some local decoupling capacitance reduces the 

gate voltage stress at internal I/Os significantly with no performance penalty. However, the 

interconnect resistance between the local APD and the source terminals of the driver and receiver 

NMOS transistors has to be small in order for the local APD to effectively reduce the voltage 

stress at the receiver. Cross-domain clamps provide another approach to reduce the stress at the 

internal I/O; they are effective if placed close to the receiver ground pad.  

This work also illustrated that when using a local clamp at the gate of the internal I/O, a 

small series resistor is sufficient to clamp the voltage below the gate oxide breakdown voltage. 

The simulation results also showed that the internal I/O failures are less likely to occur with a low 

resistivity substrate.  
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5.2. Future Work 

The substrate model used in this study did not account for p-well and n-well regions above 

the uniformly doped substrate region. P-well is a thin sheet of highly doped region compared to 

the lowly doped, thicker substrate region. Similarly, the substrate to n-well diode provides another 

discharge path for the charge stored on the substrate backside (Cdie-attach). Modeling these regions 

will increase the accuracy of the simulation results. The substrate model used in this study also 

does not account for the dielectric property of the silicon substrate. To account for this, a purely 

resistive model for the substrate is not sufficient. Each grid box has to be modeled by a parallel 

combination of a resistor and a capacitor. In the future, the impact of these factors should be 

studied. 

In this study, it was assumed that the receiver sees the worst case stress when the driver 

output is high. It will be interesting to study the case in which the driver output is low. It will also 

be interesting to understand the conditions that lead to a particular state of the driver output under 

the CDM conditions.  

 Finally, the reliability risk from a CDM discharge to an integrated circuit in a stacked die 

package is largely unknown. Charge storage and CDM circuit simulation models for SiP ICs have 

not appeared in the current literature. In the future, the simulation model needs to be extended to 

stacked die designs. 
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