
c© 2010 Navid Aghasadeghi

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4824662?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

JOINT THROUGHPUT AND DELAY OPTIMIZATION IN MULTIHOP
NETWORKS

BY

NAVID AGHASADEGHI

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2010

Urbana, Illinois

Adviser:

Professor Bruce Hajek

ABSTRACT

As the use of the Internet evolves, more and more applications require qual-

ity of service constraints such as end-to-end delay requirements, in addition

to throughput guarantees. We have developed a framework for rate and

delay assignment in order to analyze networks of users with both rate and

end-to-end delay parameters. Within this theoretical framework, we have

proposed three algorithms, evaluated their performance, and analyzed their

convergence rates based on both theoretical and numerical results.

ii

To my parents, for their love and support

iii

ACKNOWLEDGMENTS

First and foremost, I would like to thank my adviser, Professor Bruce Hajek,

for his guidance and advice, and for showing me how to become a better

researcher. This thesis would not have been possible without his invaluable

insights and expertise.

My wonderful parents and sister have been the greatest source of emotional

support and motivation for me. I am greatly thankful to my father for helping

me excel and always believing in me, my mother for her love and for being

my best friend, and my sister for her kindness and thoughtfulness and for

making me a stronger person.

I would like to thank my dearest Shadi Kashani, for listening to me pa-

tiently, for supporting and encouraging me in this endeavor, and for filling

my life with many joyful moments.

I would also like to express my thanks to my friends, Ali and Sina Sirjani

and Javad Ghaderi, for always motivating me, and for making the last two

years of my education memorable ones.

Lastly, my special thanks go to my colleagues and friends at the Coordi-

nated Science Laboratory (CSL)—Farzad, Homa, Saman, Vineet, Jay, Figen

and Sara—for useful discussions and for making CSL a friendly and vibrant

research environment.

iv

TABLE OF CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES . vii

CHAPTER 1 INTRODUCTION . 1
1.1 Introduction and Motivation 1

CHAPTER 2 MODEL . 3
2.1 First and Original Formulation 5
2.2 Second Formulation . 7
2.3 Third Formulation . 9

CHAPTER 3 SOLUTIONS . 11
3.1 First Solution: Direct Utility Comparison 11
3.2 Second Solution: Payment Comparison 12
3.3 Third Solution: Stochastic Deceleration 23

CHAPTER 4 EXAMPLE SOLUTIONS 33
4.1 One Link Example: Solving an Approximation to the Sec-

ond Formulation . 33
4.2 One Link Example: Solving an Approximation to the Third

Formulation . 38

CHAPTER 5 NUMERICAL RESULTS 41
5.1 Numerical Experiment . 41

CHAPTER 6 CONCLUSION . 50
6.1 Conclusion and Future Work 50

REFERENCES . 51

v

LIST OF TABLES

5.1 Original Allocated Delays on Each Link. 42
5.2 Final Delay Allocation Using First Solution. 45
5.3 Final Delay Allocation Using Second Solution. 46
5.4 Final Delay Allocation Using Third Solution. 47
5.5 Algorithm Properties. 49

vi

LIST OF FIGURES

5.1 Displaying the Links and the Users on Each of Them 41
5.2 Sum of Utilities vs. Number of Time Slots Using Direct

Utility Comparison. 44
5.3 Sum of Utilities vs. Number of Time Slots Using Payment

Comparison. 45
5.4 Sum of Utilities vs. Number of Time Slots Using Stochastic

Deceleration. 46

vii

CHAPTER 1

INTRODUCTION

1.1 Introduction and Motivation

The Internet today is a highly sophisticated and rapidly changing technology.

Different applications with various requirements make use of the resources

that the Internet provides. These applications and users have various pa-

rameters such as their rate, delay constraint, etc., and the network has to

assign the users’ parameters according to the characteristics of the users, and

the available network resources. One accepted way of performing this task

is to model users as having utilities over their parameters, and subsequently

try to optimize some function of the users’ utilities subject to the network’s

resource constraint. In [1], the authors approach the problem of assigning

rates to different users in a network by assigning utilities as a function of

rate of the users and optimizing the sum of the utilities of the users subject

to the availability of the network resources. This problem poses several chal-

lenges, one of the most important of which is that the network has to assign

resources in a distributed manner. In other words, the network has to solve

the problem without knowledge of the utilities of the users.

As Internet applications grow, more and more applications require qual-

ity of service (QoS) constraints such as end-to-end delay requirements. For

example, different applications such as video or voice could require differ-

ent QoS constraints (i.e. delay constraints). While the problem of assigning

rates to users in a network has been solved using a theoretical framework

and in a provably optimal manner [1], the resource allocation problem where

users have different rates and also QoS constraints has not been solved in

a similar manner. In current networks only a best-effort level of service is

provided, which is not sufficient for some applications. Guerin and Peris [2]

discuss some of the methods used in providing service guarantees. It therefore

1

becomes more important than ever to analyze systems with QoS constraints.

The idea of pricing resources has been used in [1] to allocate rates ef-

ficiently. In this thesis, we want to exploit the idea of pricing, suggested

by [3], to come up with an implicit pricing for end-to-end delays. We will

consider the problem of providing delay guarantees, and assigning two pa-

rameters for burstiness and rate of flow of users in a multiple hop scenario in

an optimal manner. We will subsequently define a utility model that depends

on both the burstiness and the rate of flow as suggested by [3]. This also fits

into the framework of [4]. We will further define the utilities as functions of

end-to-end delay, in order to define a reasonable optimization problem.

This thesis is organized in the following manner. In Chapter 2, we will

introduce the formal model of this problem, and we will define the optimiza-

tion problem that we would like to solve. Subsequently, we will introduce

two new formulations of the optimization problem, which will later provide

the basis for developing new solutions. We will also provide an example of

a network with one link and two delays, in order to clarify the notation. In

Chapter 3, we will propose different solutions for the formulations, and we

will discuss each separately. In Chapter 4, we will derive the solutions for

the one link example. Chapter 5 will present the numerical analysis of the

different solutions, and finally, we will conclude in the last chapter.

2

CHAPTER 2

MODEL

The problem we are considering is N users, denoted by the set of users

S = {1, 2, ..., N}, trying to share K links. We will now define the differ-

ent values and parameters for the links and the users, and we will generally

use a superscript to denote the index of the link and a subscript to denote

the index of the user. The K links have capacities Ci where i ∈ {1, ..., K}.
Each link i offers J i delays to the users using that link. The sum of all the

delays offered is J =
∑K

i=1 J
i. The delays offered by each link i are denoted

by Di
k where k ∈ {1, ..., J i} and Di

k1 < Di
k2 iff k1 < k2. The routes used by

the users are predefined and fixed.

Each user s has a parameter σs that represents the burstiness of his flow,

a parameter ρs that represents the rate of his flow, and a parameter dis which

represents the delay guarantee that is offered to the user s by link i. We

will let dis = 0 if user s is not using link i. Also, we define the parameter

kis to be the index of the delay used by user s on link i, and we will let

kis = J i + 1 if user s is not using link i. Based on [3], we will be assigning

utility functions as functions of the three parameters σs, ρs and ds where

ds =
∑K

i=1 d
i
s. For simplicity, we will assume that the utility functions have

the following separable form: Us(σs, ρs, ds) = Uσ
s (σs)+Uρ

s (ρs)−Ps(ds), where

Uσ
s (σs) and Uρ

s (ρs) are increasing concave functions, and Ps(ds), the penalty

associated with having a sum delay of ds, is an increasing convex function.

Let the set F be the set of all possible delay allocations for all the users

on all links. Note that the set F does not contain allocations where users

change the links they are using because in our model, we are assuming that

routing is already determined. An element f ∈ F is defined as a K-by-N

matrix, where the element f is from the i-th row and the s-th column is equal

to kis. We are also going to define certain operations on the matrices in F

and also a certain element S̄ ∈ F in the following way:

• Operation “-”: for f, g, h ∈ F we will define f − g = h where his = f is if

3

gis > f is and his = J i + 1 otherwise ∀i ∈ {1, ..., K} and ∀s ∈ {1, ..., N}.

• Operation “∪”: for f, g, h ∈ F we will define f ∪ g = h where his =

min{f is, gis} ∀i ∈ {1, ..., K} and ∀s ∈ {1, ..., N}.

• Operation “∩”: for f, g, h ∈ F we will define f ∩ g = h where his =

max{f is, gis} ∀i ∈ {1, ..., K} and ∀s ∈ {1, ..., N}.

• Element “S̄ ∈ F”: S̄ = ∪|F |i=1fi, i.e. S̄ is the union (as defined above) of

all elements in F . This corresponds to the state where users have the

lowest delay possible on all the links that they are using.

• Element “∅ ∈ F”: ∅ = ∩|F |i=1fi, i.e. ∅ is the intersection (as defined

above) of all elements in F . This corresponds to the state where users

have the highest delay possible on all links that they are using.

The user parameters σs, ρs and ds could be functions of the delay allocation

of the system. In order to demonstrate this, the following notation will be

used. The delay of user s on each link i and the sum delay of user s as

functions of the delay allocation of the system will be denoted by dis(f) and

ds(f), respectively. The delay index of user s at link i will be denoted by

kis(f). The burstiness and rate of flow of user s will be denoted by σs(f) and

ρs(f).

One Link Example: In order to further explain the model, we will also

provide formulations for a single link example in the next sections. For the

single link example, we are going to define N -dimensional vectors f ∈ F as

the state of system. Also, we will not use a superscript, since there is only one

available link. Letting fs be the s-th element of f , then fs = 1 if user s has

ds = D1 and fs = 2 if user s has ds = D2. Furthermore, only for the single

link example, we are going to interpret f as a set too in the following way.

We say s ∈ f if ds = D1 and we say s /∈ f if ds = D2. The set F is then the

set of all possible vectors or, equivalently, the power set of S. Moreover, only

for this example, the penalty function is defined as Ps(ds) = −Ks I{ds=D1}.

Our problem is to allocate the capacities of the links and provide delay

guarantees in a way that the sum of utilities of all users is maximized. In

the next section, we will formally introduce this optimization problem.

4

2.1 First and Original Formulation

We can write in the following way the constraints that have to be met for

each link to be able to guarantee the QoS of the users of that link. Based

on the theory of deterministic network calculus, each link i offering J i delays

will have to satisfy J i + 1 linear constraints. We can therefore describe the

constraints in the following compact form. We will define a J i-by-2 matrix

Ai,fs for each s ∈ S and link i ∈ L and delay configuration f ∈ F . The first

column of this matrix corresponds to the contribution of the burstiness of

user s to each of the constraints of link i, and the second column corresponds

to the contribution of the rate of user s to each of the constraints of link

i. Formally, the elements of this matrix for a given delay allocation f are

defined in the following way:

Ai,fs (j, 1) = I{ki
s(f)≤j≤Ji}

Ai,fs (j, 2) = (Di
j − dis(f))I{ki

s(f)≤j≤Ji} + I{j=Ji+1 and ki
s(f)≤Ji}

where 1 ≤ j ≤ J i + 1.

The I{} symbol is used to represent an indicator function. Now we de-

fine the matrix of constraints of link i under delay allocation f as the hor-

izontal concatenation of all the matrices corresponding to the users, Ai,f =

[Ai,f1 , ..., Ai,fN]. Subsequently, we will define the matrix Af as the vertical con-

catenation of all such matrices in the following way: Af = [A1,f ; ...;AK,f].

Now we can define capacity vectors, for each link i ∈ L, as C̄i, where the

j-th element of this vector is defined by Ci
j = CiDi

j for 1 ≤ j ≤ Ji and

Ci
j = Ci if j = J i + 1. The vector C is subsequently defined as the vertical

concatenation of these vectors: C = [C̄1; ...; C̄K]. Lastly, we are going to

define the matrix of all the σ and ρ parameters under the delay allocation f

as the matrix Xf where Xf (1, s) = σs and Xf (2, s) = ρs for s ∈ S.

With these definitions in mind, the optimization problem we are trying to

5

solve is the following:

max
σ≥0,ρ≥0,f∈F

∑
s∈S

Us(σs, ρs, ds(f)) = max
σ≥0,ρ≥0,f∈F

∑
s∈S

[
Uσ
s (σs) + Uρ

s (ρs)− Ps(ds(f))

]
s.t.

AfXf ≤ C

(2.1)

The constraint AfXf ≤ C is derived based on the theory of network cal-

culus, and if met, ensures that the network can guarantee the delays in delay

allocation f to all the users. For example, the constraint makes sure that

the sum of the rates ρ on each link are less than or equal to the capacity of

the link. Moreover, there are other constraints imposed on both the σ and ρ

of the user, which are used in providing delay guarantees. A summary of de-

terministic network calculus along with a derivation of the above constraints

can be found in [3].

This problem has an optimization over both continuous and discrete pa-

rameters. If we hold the delay allocation f fixed, optimization over the

continuous parameters could be done using well known convex optimization

techniques as discussed in [1]. However, optimization over the discrete delay

allocations involves solving a complicated combinatorial problem. Therefore,

we will try to change the formulation of the problem in order to come up with

more tractable solutions. To do this, instead of finding the optimum delay

allocation f ∗, we will assign probabilities pf to each of the delay allocations

f ∈ F , and we will try to optimize over the probabilities pf in a reasonable

formulation of the problem.

2.1.1 One Link Example of the First Formulation

The original formulation for a one link example where two delays are offered

is as follows:

6

max
σ≥0,ρ≥0,f∈F

∑
s∈S

Us(σs, ρs, ds)

s.t.∑
s:s∈f

σs ≤ CD1∑
s∈S

σs + (D2 −D1)
∑
s:s∈f

ρs ≤ CD2∑
s∈S

ρs ≤ C

(2.2)

2.2 Second Formulation

As mentioned in the previous section, the original formulation of the prob-

lem involves solving a complicated combinatorial optimization. In order to

simplify the problem, we try to derive other formulations of the problem by

assigning probabilities pf to each of the delay allocations f , and then op-

timizing over the probabilities according to the framework of [5]. One way

to do this is to have the constraints met in a probabilistic fashion, and still

have only one σs and ρs value for each user. Using this idea we relax our

constraints by enforcing them on averages of f ′s ∈ F , rather than for each

f ∈ F .

In this formulation, however, each user s has only one σs and ρs parameter,

independent of the delay state f of the system. Therefore, we are going to

define the matrix of all the σ and ρ parameters as the matrix X where

X(1, s) = σs and X(2, s) = ρs, ∀s ∈ S, independent of the delay state f .

With these definitions in mind, the relaxed optimization problem we pro-

pose is the following:

7

max
σ≥0,ρ≥0,p≥0

∑
s∈S

[
Uσ
s (σs) + Uρ

s (ρs)−
∑
f∈F

[
pfPs(ds(f))

]]
s.t.(∑
f∈F

pfA
f

)
X ≤ C∑

f∈F

pf = 1.

(2.3)

Note that because of the independence of the user parameters σs and ρs of

the delay vector f , we have formulated the problem so that the constraints

are met only on average, i.e. there could be times where for a certain delay

vector, and for parameters σs and ρs, the constraints are not satisfied, and

the link cannot guarantee providing the QoS requirements. Because of the

difference in the formulation of the problem, it is not clear if the answer

to this problem is the answer to the original formulation of the problem as

well. However, we can argue that this formulation is worth investigating

because the solution to this formulation is always larger than the solution to

the original formulation (at the cost of having constraints met on average.)

This is because the set of parameters that satisfy the constraints of the first

formulation is a subset of the set of parameters that satisfy the constraints

of the second formulation. In other words, any set of parameters that could

be a solution to the first formulation, also satisfies the constraints of the

second formulation. Moreover, this solution will be particularly useful if

the optimal probability distribution for the second formulation turns out to

be concentrated around one particular delay configuration, or possibly few

configurations that do not differ by much. In that case, the constraints of

the first formulation are not going to be violated by much, further making

this formulation a valuable one to investigate. We will further discuss this

issue when we develop the solutions and implement the algorithms.

2.2.1 One Link Example of the Second Formulation

To further demonstrate the second formulation, we have included an example

of a one link network with two delay offerings:

8

max
σ≥0,ρ≥0,p≥0

∑
s∈S

Uσ
s (σs) + Uρ

s (ρs) +Ks

∑
f :s∈f

pf

s.t.∑
s∈S

σs
∑
f :s∈f

pf ≤ CD1∑
s∈S

σs + (D2 −D1)
∑
s∈S

ρs
∑
f :s∈f

pf ≤ CD2∑
s∈S

ρs ≤ C∑
f∈F

pf = 1

(2.4)

2.3 Third Formulation

As we saw in the previous section, the second formulation cannot guarantee

QoS all the time since σ and ρ parameters do not change for different delay

vectors. In order to solve this issue, we introduce a new formulation of the

problem in this section. In this formulation, we are going to allow different

σ and ρ parameters for different delay vectors. We denote the burstiness

and rate of a user s under the configuration (delay vector) f as σfs and ρfs

respectively. We therefore have more parameters to solve for, and also more

inequalities that have to be satisfied. Therefore, in the formulation below,

the constraints have to be met ∀f ∈ F . The third formulation then becomes

the following:

max
σ≥0,ρ≥0,p≥0

∑
f∈F

pf
∑
s∈S

[
Uσ
s (σfs) + Uρ

s (ρfs)− Ps(dfs)
]

subject to the following constraints

AfXf ≤ C, ∀f ∈ F∑
f∈F

pf = 1

(2.5)

where σ = [σf : f ∈ F] and ρ = [ρf : f ∈ F], and σf and ρf are vectors of

the parameters for all users under configuration f .

9

Note that the solution to the third formulation is exactly the solution of the

original formulation (assuming the optimal sum of utilities only happens in

one particular delay state). This is because the optimal σ and ρ parameters

obtained by solving the third formulation will always satisfy the constraints

of the first formulation, no matter what delay configuration we have. Also, if

a particular delay vector is the optimal delay vector in the first formulation,

i.e. the optimal feasible sum of utilities for that delay vector is more than the

optimal feasible sum of utilities for any other delay vector, then the solution

to the third formulation will also assign all of the probability mass to that

delay vector, and therefore both solutions will yield the same optimal sum

of utilities.

2.3.1 One Link Example of the Third Formulation

To further demonstrate the third formulation, we have included an example

of a one link network with two delay offerings:

max
σ≥0,ρ≥0,p≥0

∑
f∈F

pf
∑
s∈S

[
Uσ
s (σfs) + Uρ

s (ρfs)− Ps(dfs)
]

subject to the following constraints ∀f ∈ F∑
s:s∈f

σfs ≤ CD1∑
s∈S

σfs + (D2 −D1)
∑
s:s∈f

ρfs ≤ CD2∑
s∈S

ρfs ≤ C∑
f∈F

pf = 1

(2.6)

where σ = [σf : f ∈ F] and ρ = [ρf : f ∈ F], and σf and ρf are vectors of

the parameters for all users under configuration f .

10

CHAPTER 3

SOLUTIONS

In this chapter, we discuss three solutions for the three problem formulations

in the last chapter. In each section, we explain in detail the proposed solution,

and we present relevant theoretical results and numerical simulations to show

the performance of each solution. The basic idea we use is that since we have

assigned utilities to the σ and ρ parameters of the users with different delays,

we now have access to different prices for the σ and ρ parameters of each

user, depending on the delay used by that particular user. These prices for

the parameters at different delays can implicitly offer prices for the different

delays at the different links. We can therefore try to come up with solutions

where we allow the users to change their delays given the prices offered by

the network.

3.1 First Solution: Direct Utility Comparison

The first solution we offer to this problem is the simplest one. Assuming we

start from an initial delay allocation among the users, we solve the maximiza-

tion in the first formulation of the problem for that fixed delay allocation,

i.e. we allow enough time for the distributed algorithms to get close to opti-

mal values of σ and ρ for the given delay vector. Now, for this given setup,

we have prices for different constraints. The network can then provide the

prices for the different constraints to the users. Subsequently, the network

can choose one or a few users at any time instant, and allow them to change

their delay allocation according to the prices of the different constraints. In

this algorithm, we allow some time after every change period for the param-

eters to converge close to the optimal values, before we select more users to

change their delay allocation.

Each user, if selected by the network, individually looks at the prices offered

11

by the network and determines which delay allocation maximizes its utility.

The user makes this decision with the assumption that he pays an amount

equal to the value of the σ or ρ parameter multiplied by the price of that

parameter. The user then chooses the best delays on all links as its new delay

allocation. Note that this algorithm relies heavily on the assumption that

prices do not change drastically when one user changes its delay allocation.

This assumption is a reasonable one if the network is rather large and the

number of users selected in every time slot is not big compared to the size

of the network. Otherwise, if a large number of users change their delay

allocations in one time slot, the prices they had seen will not be a good

indication of the future prices, because the prices might vary a lot after all

the users change their allocations.

As already discussed, this heuristic algorithm relies heavily on the assump-

tion that the prices offered to users at a time instant will not change consid-

erably. This assumption therefore imposes a trade-off on this algorithm. On

one hand, if the number of users selected by the network is small, the prices

are expected to remain close to their values at the time they were offered,

and, therefore, the users are more likely to make efficient changes to their de-

lay allocation. On the other hand, if the number of users selected to change

their delay allocation is small, the network will have a slower evolution to

its optimal or close-to-optimal allocation. Therefore, choosing a number of

users to be selected is a critical decision in this algorithm, and it might not be

clear how to choose this number in a systematic way a priori. Additionally,

this algorithm clearly requires the network to be in close contact with the

users in order to inform them whether or not they can change their delays.

3.2 Second Solution: Payment Comparison

In this section, we find implementable solutions to the second formulation.

The solution we develop has two major components. One component in-

volves a Markov chain, which we will assume has faster dynamics than the

dynamics of the parameters of the users, and will change the delay vector

of the system. The second component involves optimizing the σs and ρs pa-

rameters for different users s ∈ S. In this section, we solve for the optimal

probability distribution, and we will use the optimal probability distribution

12

as the stationary distribution of a carefully designed discrete time Markov

chain. The optimal σ, ρ, and µ parameters are later obtained based on the

optimal probability distribution, i.e. given the assumption that the Markov

chain converges instantaneously. In fact, the need for the Markov chain to

converge instantaneously is why we assume faster dynamics for the Markov

chain compared to the parameters and the prices. It is nonetheless clear

that in practice we Slater have the Markov chain converge instantaneuosly,

and therefore the optimal probability distribution is not going to be achieved

completely. Thus, the σ, ρ and µ parameters are going to be time varying.

Since the second formulation of the problem is also complicated, we solve

the following approximation to the second formulation introduced in Sec-

tion 2.2:

max
σ≥0,ρ≥0,p≥0

∑
s∈S

[
Uσ
s (σs) + Uρ

s (ρs)−
∑
f∈F

[
pfPs(ds(f))

]]
− 1

β

∑
f∈F

pf log pf

s.t.

AX ≤ C∑
f∈F

pf = 1.

(3.1)

Note that the only difference between this optimization problem and that

in the second formulation is the fact that the objective function of this new

approximation involves an entropy term scaled by 1
β
, which increases with

increasing randomness in the distribution p. However, since the entropy term

is multiplied by 1
β
, it can arbitrarily approximate the second formulation as

β gets large, i.e. the effect of the entropy term on the solution decreases as

β increases.

3.2.1 Solving for the Optimal Probability Distribution

In order to derive algorithms to solve the second formulation of the problem,

we will first solve for the optimal probability distribution p∗ given any set of

σ and ρ parameters. Now, we can write the optimization in (3.1) only over

13

the probability distribution as the following:

max
p≥0

∑
s∈S

[
Uσ
s (σs) + Uρ

s (ρs)−
∑
f∈F

[
pfPs(ds(f))

]]
− 1

β

∑
f∈F

pf log pf

s.t.

AX ≤ C∑
f∈F

pf = 1.

(3.2)

Since the objective and the constraints are linear in p (because A is linear

in p), and Slater’s condition holds, we can use strong duality and solve the

following problem:

min
µ≥0

max
p≥0

∑
s∈S

[
Uσ
s (σs) + Uρ

s (ρs)−
∑
f∈F

[
pf Ps(ds(f))

]]
− 1

β

∑
f∈F

pf log pf

−
K∑
i=1

Ji∑
j=1

[
µij
[∑
s∈S

(
Ais(j, 1)σs + Ais(j, 2)ρs

)]]
+

K∑
i=1

Ji∑
j=1

µijC
i
j

s.t.∑
f∈F

pf = 1

which can be expanded and written as

min
µ≥0

max
p≥0

∑
s∈S

[
Uσ
s (σs) + Uρ

s (ρs)−
∑
f∈F

[
pf Ps(ds(f))

]]
− 1

β

∑
f∈F

pf log pf

−
K∑
i=1

Ji∑
j=1

[
µij
[∑
s∈S

([∑
f∈F

[
pf I{ki

s(f)≤j≤Ji}
]]
σs+

[∑
f∈F

pf
[

(Di
j − dis(f))I{ki

s(f)≤j≤Ji} + I{j=Ji+1 and ki
s(f)≤Ji}

]
ρs
])]]

+
K∑
i=1

Ji∑
j=1

µijC
i
j

s.t.∑
f∈F

pf = 1.

14

We will use µij to denote the Lagrange multiplier on the j-th constraint

of the i-th link. We can then rewrite the problem in the following way, and

then maximize with respect to the probability distribution p:

max
p≥0

∑
f∈F

pf

[∑
s∈S

(
− Ps(ds(f))

−
K∑
i=1

Ji∑
j=1

[
µij

(
I{ki

s(f)≤j≤Ji}σs + (Di
j − dis(f))I{ki

s(f)≤j≤Ji}ρs

+ I{j=Ji+1 and ki
s(f)≤Ji}ρs

)])]
− 1

β

∑
f∈F

pf log pf

s.t.∑
f∈F

pf = 1.

For each user s and each delay allocation f we can define the parameter

Vs(f) =

(
− Ps(ds(f))

−
K∑
i=1

Ji∑
j=1

[
µij

(
I{ki

s(f)≤j≤Ji}σs + (Di
j − dis(f))I{ki

s(f)≤j≤Ji}ρs

))
.

The maximization problem now becomes:

max
p≥0

∑
f∈F

pf

[∑
s∈S

Vs(f)

]
− 1

β

∑
f∈F

pf log pf

s.t.∑
f∈F

pf = 1.

Now, we can verify the Karush-Kuhn-Tucker (KKT) conditions to find the

optimal stationary distribution, denoted by p∗, as the following:

15

p∗f (V) =
exp(β

∑
s∈S Vs(f))∑

f ′∈F

exp(β
∑
s∈S

Vs(f
′))
∀f ∈ F.

Note that if there exists a unique state f ∗ = argmaxf∈F
∑

s∈S Vs(f), as

β increases to infinity, the optimal probability distribution is going to be

only allocated to the delay configuration f ∗, therefore ensuring that the

constraints of the first formulation are met as well (given optimal σ and

ρ parameters.)

How to use this result: One way to use this result is to treat this proba-

bility distribution as the stationary distribution of a carefully chosen discrete

time Markov chain, and design the transition probabilities to achieve the de-

sired stationary distribution. Moreover, in addition to finding transition

probabilities that will give rise to the above stationary distribution, it is also

important to choose transition probabilities which will allow a distributed

implementation of the Markov chain. We will derive transition probabili-

ties below using the detailed balance equation. We will allow transitions

among any two pairs of states fi, fj ∈ F . Note that allowing transitions

among any two states would intuitively produce a Markov chain that has a

fast convergence rate. Moreover, we will see that such transitions could be

easily implemented distributedly. Let qfi,fj
denote the transition probability

from state fi to state fj. We will write the detailed balance equations in the

following way:

16

p∗fi
× qfi,fj

= p∗fj
× qfj ,fi

and let qfi,fj
=

exp (β
∑
s∈S

[
Vs(fi ∪ fj)− Vs(fi)

]
)∏

s∈S

γ(1 + exp (βVs(fi ∪ fj))
⇔

p∗fi
× qfi,fj

=
exp(β

∑
s∈S Vs(fi))∑

f ′∈F

exp(β
∑
s∈S

Vs(f
′))
×

exp (β
∑
s∈S

[
Vs(fi ∪ fj)− Vs(fi)

]
)∏

s∈S

γ(1 + exp (βVs(fi ∪ fj))
=

exp (β
∑
s∈S

Vs(fi ∪ fj))[∑
f ′∈F

exp(β
∑
s∈S

Vs(f
′))
]∏
s∈S

γ(1 + exp (βVs(fi ∪ fj)))
= p∗fj

× qfj ,fi
.

3.2.2 A Distributed Implementation of the Discrete Time
Markov Chain

A distributed implementation of the discrete time Markov chain discussed is

possible. In this distributed implementation, every user will have a separate

Markov chain based on the prices offered by the network and its own param-

eters. The user will decide to remain in the current delay state or change its

delay state based on that Markov chain.

In order to have a distributed implementation of this algorithm, let every

user s ∈ {1, ..., N} change delays on every link that it is using according to

the following algorithm:

Delay Changing Algorithm: If user s has delay Di
j on link i, he will

change to Di
k with probability qs

Di
j ,D

i
k

=
exp (β[Vs(fj ∪ fk)− Vs(fj)])
γ(1 + exp (βVs(fj ∪ fk)))

and he

will not make that change with probability 1 − qs
Di

j ,D
i
k
. In this transition

probability, fj is the current state of the system with user s having delay Di
j

on link i, and fk is the state of the system where all users remain the same,

and only user s changes his delay on link i to Di
k.

It is easy to verify that if all users act according to the above algorithm, we

will have the mentioned transition probabilities between different states in

F . Note that these changes can be done in a completely distributed manner,

17

since each user s knows the value of Vs(fj ∪ fk)− Vs(fj) (used in the above

algorithm), because it only depends on the prices (which could be shared

with the users by the network) and parameters of the user who is changing

his delay. Therefore, the Markov chain can be implemented in a completely

distributed manner.

3.2.3 Solving for Optimal σ, ρ and µ Parameters

If we assume that the discrete time Markov chain designed in the previous

section converges to its optimal stationary distribution instantaneously, we

can then solve for the optimal σ and ρ parameters, along with optimal µ prices

for the network. Assuming we have the optimal probability distribution p∗,

we can solve for the user parameters and prices by solving the approximation

to the second formulation only with respect to σ, ρ and µ. Since for given

p∗f ’s, the problem is convex, and Slater’s condition holds, then there is no

duality gap and we can solve the following problem:

min
µ≥0

max
σ≥0,ρ≥0

∑
s∈S

[Uσ
s (σs) + Uρ

s (ρs)] +
∑
f∈F

p∗f

[∑
s∈S

(
− Ps(ds(f))

−
K∑
i=1

Ji∑
j=1

[
µij

(
I{ki

s(f)≤j≤Ji}σs+

(Di
j − dis(f))I{ki

s(f)≤j≤Ji}ρs + I{j=Ji+1 and ki
s(f)≤Ji}ρs

)])]

+
K∑
i=1

Ji∑
j=1

µijC
i
j.

We can write the following primal-dual algorithm for finding the optimal

18

values of the parameters and the prices.

µ̇ij =kij(µ
i
j)

[∑
f∈F

∑
s∈S

p∗f

(
I{ki

s(f)≤j≤Ji}σs + (Di
j − dis(f))I{ki

s(f)≤j≤Ji}ρs

+ I{j=Ji+1 and ki
s(f)≤Ji}ρs

)
− Ci

j

]+

µi
j

σ̇s =hs(σs)

[
Uσ
s
′(σs)−

∑
f∈F

p∗f

K∑
i=1

Ji∑
j=1

(
µijI{ki

s(f)≤j≤Ji}

)]+

σs

ρ̇s =rs(ρs)

[
Uρ
s
′(ρs)−

∑
f∈F

p∗f

K∑
i=1

Ji∑
j=1

(
(Di

j − dis(f))I{ki
s(f)≤j≤Ji}

+ I{j=Ji+1 and ki
s(f)≤Ji}

)]+

ρs

,

where k, h and r are positive and continuous functions, and the function

[x]+y = max(0, x) if y ≤ 0 and equals x otherwise. Note that in the above

update equations, the network and each of the nodes need to know the p∗f
values, which could be hard to obtain. However, we can rewrite the up-

date equations in another way, which although it is quite similar, allows

for another interpretation and implementation of the algorithm, as will be

explained below.

µ̇ij =kij(µ
i
j)

[∑
f∈F

∑
s∈S

p∗f

(
I{ki

s(f)≤j≤Ji}σs + (Di
j − dis(f))I{ki

s(f)≤j≤Ji}ρs

+ I{j=Ji+1 and ki
s(f)≤Ji}ρs − Ci

j

)]+

µi
j

σ̇s =hs(σs)
∑
f∈F

p∗f

[
Uσ
s
′(σs)−

K∑
i=1

Ji∑
j=1

(
µijI{ki

s(f)≤j≤Ji}

)]+

σs

ρ̇s =rs(ρs)
∑
f∈F

p∗f

[
Uρ
s
′(ρs)−

K∑
i=1

Ji∑
j=1

(
(Di

j − dis(f))I{ki
s(f)≤j≤Ji}

+ I{j=Ji+1 and ki
s(f)≤Ji}

)]+

ρs

.

19

Now note that by writing the update equations in the above form we can

derive the following implementable algorithm that will not require knowledge

of the values of p∗f .

Implementation: In order to implement the above update equations,

the users and the network simply do the following. Whenever the system is in

a state f , the prices and parameters should be updated according to the setup

of that configuration. In other words, when the system is in configuration

f , the network and the users can assume that they are permanently in that

configuration. Therefore, the network should update prices for each resource

depending only on the users that are using that resource under configuration

f , and the users should receive prices for a particular resource only if they

are using that resource in that configuration. Now, because the system is

going to be in that configuration a p∗f portion of the time, if users use the

update equation corresponding to that configuration while in that state, the

update equation will automatically be multiplied by the value of p∗f . This

means that everyone just has to act depending on the configuration they

are in, and no one needs to know the values of p∗f . Again, note that in our

implementation of this algorithm, we have a Markov chain that converges

instantaneously, and, therefore, the system does not spend exactly a fraction

p∗f in each delay configuration f .

In order to implement this algorithm, we will use the following discrete

version of the above update equations.

µij(t+ 1) =µij(t) + kij

[∑
s∈S

(
I{ki

s(f)≤j≤Ji}σs + (Di
j − dis(f))I{ki

s(f)≤j≤Ji}ρs

+ I{j=Ji+1 and ki
s(f)≤Ji}ρs − Ci

j

)]+

µi
j

σs(t+ 1) =σs(t) + hs(σs)

[
Uσ
s
′(σs)−

K∑
i=1

Ji∑
j=1

(
µijI{ki

s(f)≤j≤Ji}

)]+

σs

ρs(t+ 1) =ρs(t) + rs(ρs)

[
Uρ
s
′(ρs)−

K∑
i=1

Ji∑
j=1

(
(Di

j − dis(f))I{ki
s(f)≤j≤Ji}

+ I{j=Ji+1 and ki
s(f)≤Ji}

)]+

ρs

.

20

Note that the described implementation would be exact if the Markov

chain converges to its stationary distribution instantaneously, and if users

and network update the parameters and the prices at a slower rate compared

to the evolution of the Markov chain. Since this is clearly not possible in

practice, we will perform numerical experiments, and evaluate the results

to see how the relaxation of this assumption affects the performance of the

algorithm. It is now evident that the convergence rate (mixing time) of the

Markov chain would be a critical issue in the implementation of this solution.

We will therefore devote the next subsection to analyzing the mixing time of

the Markov chain.

3.2.4 Bounding the Mixing Time of the Markov Chain

In this section, we use geometric bounds derived by [6] to bound the mixing

time of our Markov chain.

The following notation is adopted from [6]. Define Γ to be the set of all

one-edge paths between any two states in the Markov chain. This set is going

to contain paths between any two states since there is an edge between any

two states of the Markov chain. Moreover, the set Γ will only contain paths

between different states in the Markov chain. Define the weight of the edge

between two states fi and fj as Q(fi, fj) = p∗fi
×qfi,fj

= p∗fj
×qfj ,fi

,∀fi, fj ∈ F ,

since the chain is reversible. Also define γfi,fj
∈ Γ as the path between two

states fi and fj. Define the path length |γfi,fj
|Q =

∑
e∈γfi,fj

Q(e)−1. Since we

have defined the Markov chain such that all states communicate, and we

have picked Γ as the set of all one-edge paths, this statement simplifies to

the following: |γfi,fj
|Q = (p∗fi

× qfi,fj
)−1. Now we will define the value of κ in

the following way. The value of κ can later help us bound the second largest

eigenvalue (not in absolute value sense).

κ = κ(Γ) = max
e

∑
γfi,fj

:e∈γfi,fj

|γfi,fj
|Qp∗fi

p∗fj
= max

fi,fj

p∗fi
× p∗fj

p∗fi
× qfi,fj

.

Let Z =
∑
f ′∈F

exp(β
∑
s∈S

Vs(f
′)). We can find a bound for κ in the following

21

way:

κ = max
fi,fj

p∗fi
× p∗fj

p∗fi
× qfi,fj

= max
fi,fj

p∗fj

qfi,fj

= max
fi,fj

exp(β
∑

s∈S Vs(fj))×
∏
s∈S

γ(1 + exp (βVs(fi ∪ fj))

Z × exp (β
∑
s∈S

[
Vs(fi ∪ fj)− Vs(fi)

]
)

= max
fi,fj

exp(β
∑

s∈S
[
Vs(fi ∩ fj))

]
×
∏
s∈S

γ(1 + exp (βVs(fi ∪ fj))

Z

= max
fi,fj

∏
s∈S

γ(1 + exp (βVs(fi ∪ fj)))× p∗fi∩fj

We can solve the maximization, by trying to maximize the first and second

term independently. Since the values γ(1+exp (βVs(fi ∪ fj)) > 1,∀s ∈ S, we

solve the maximization by maximizing the first and second part individually,

by choosing f ∗i = S̄, i.e. by choosing f ∗i to be a state in F such that all users

have the lowest delay on all links that they are using. This will ensure that

the first term is as large as possible. Note that by choosing f ∗i = S̄ we have

not restricted ourselves, since f ∗i ∩ fj = fj, and therefore we can achieve any

element in F by choosing fj. Therefore, we will choose f ∗j such that the first

term is maximized. Thus:

κ =
∏
s∈S

γ(1 + exp (βVs(S̄)))× max
f∈F−{S̄}

p∗f ≤
∏
s∈S

γ(1 + exp (βVs(S̄)))×max
f∈F

p∗f .

The value of κ can now be used to bound the second largest eigenvalue of the

probability tranistion matrix. We will denote the largest eigenvalue of the

probability transition matrix P as β0 = 1, the second largest eigenvalue (not

in absolute value sense) by β1 and the smallest eigenvalue value by βmin ≥ −1.

Eventually, we are trying to bound the value β∗ = max(β1, |βmin|).
We can now use the inequality β1 ≤ 1 − 1

κ
to bound β1 in the following

way:

β1 ≤ 1− 1∏
s∈S

γ(1 + exp (βVs(S̄)))×max
f∈F

p∗f
= 1− qS,∅

max
f∈F

p∗f
≤ 1− qS,∅.

22

Similar calculations can be done to find a bound for the smallest eigen-

value. Again, based on [6] we define λf as the path from state f to it-

self, where the path has an odd number of edges. Since our Markov chain

is irreducible and aperiodic, we are always guaranteed to have paths of

this sort. Now let Λ be the set of paths of this form, where there is one

path for each state f ∈ F in the set Λ. Now we define the length of a

path as before in the following way: |λf |Q =
∑

e∈λf
Q(e)−1, which simpli-

fies to |λf |Q = (p∗f × qf,f)
−1. With these definitions, we can now define

ι = ι(Λ) = maxe
∑

e:e∈λf
|λf |p∗f = max

f∈F

p∗f
p∗f × qf,f

= max
f∈F

1

qf,f
=

1

min
f∈F

qf,f
.

Finally, we can use the bound βmin ≥ −1 +
2

ι
, derived in [6], to write

βmin ≥ −1 + 2(min
f∈F

qf,f).

These inequalities can assist us in bounding the mixing time of the Markov

chain. Subsequently, bounds on the convergence rate of the Markov chain

can further help us in deciding how long to run the Markov chain before

updating the parameters, and how close the Markov chain will get to its

stationary distribution.

3.3 Third Solution: Stochastic Deceleration

In this section, we find implementable solutions to the third formulation. The

solution we develop has two major components. One component involves

optimizing the σfs and ρfs parameters for different users s ∈ S and different

configurations f ∈ F . This part of the solution will ensure that the sum of

utilities under a certain configuration f is optimal, and the constraints are

met deterministically. The second component involves a Markov chain, which

we will assume has slower dynamics than the dynamics of the parameters of

the users, and will change the delay vector of the system. This is due to the

fact that we need the optimal σ and ρ parameters and optimal µ prices in

order to find the transition probabilities of the Markov chain.

Since the third formulation of the problem is also complicated, we will

23

solve the following approximation to the third formulation:

max
σ≥0,ρ≥0,p≥0

∑
f∈F

pf
∑
s∈S

[
Uσ
s (σfs) + Uρ

s (ρfs)− Ps(dfs)
]
− 1

β

∑
f∈F

pf log pf

subject to the following constraints ∀f ∈ F

AfXf ≤ C∑
f∈F

pf = 1

(3.3)

where σ = [σf : f ∈ F] and ρ = [ρf : f ∈ F], and σf and ρf are vectors of

the parameters for all users under configuration f . Note that the only dif-

ference between this optimization problem and that in the third formulation

is the fact that the objective function of this new approximation involves an

entropy term scaled by 1
β
, which increases with increasing randomness in the

distribution p. However, since the entropy term is multiplied by 1
β
, it can

arbitrarily approximate the third formulation as β gets large, i.e. the effect

of the entropy term on the solution decreases as β increases. We will later

discuss the role of the β parameter in our algorithm implementation, and

how it introduces a trade-off to our solution.

3.3.1 Solving for the Optimal Probability Distribution

In order to solve for the optimal probability distribution, first assume that

the user parameters converge instantaneously to their optimal values de-

pending on the configuration. The optimal probability distribution will later

be used as the stationary distribution of a carefully designed Markov chain.

In fact, the reason why the dynamics of the Markov chain are going to be

slower than the dynamics of the parameters is that the optimal probability

distribution will be a function of the optimal parameters and prices. We

will derive algorithms for finding the optimal parameters in the next section.

We will denote the optimal parameter values by including an asterisk (∗) as

their superscript. Now, we can write the optimization in (3.3) only over the

24

probability distribution as

max
p≥0

∑
f∈F

(
pf
∑
s∈S

[
Uσ
s (σf∗s) + Uρ

s (ρf∗s)− Ps(dfs)
])
− 1

β

∑
f∈F

pf log pf

s.t.∑
f∈F

pf = 1.

It can be shown by verifying the KKT conditions that the following distri-

bution is the unique solution to the above optimization:

p∗f (U) =

exp

(
β
∑

s∈S

[
Uσ
s (σf∗s) + Uρ

s (ρf∗s)− Ps(dfs)
])

∑
f ′∈F exp

(
β
∑

s∈S

[
Uσ
s (σf

′∗
s) + Uρ

s (ρf
′∗
s)− Ps(df

′
s)

])∀f ∈ F.

How to use this result: Again, one way to use this result is to treat

this probability distribution as the stationary distribution of a carefully cho-

sen Markov chain. Moreover, in addition to finding transition probabilities

that will give rise to the above stationary distribution, it is also important to

choose transition probabilities that will allow a distributed implementation

of the Markov chain. We will derive transition probabilities below using the

detailed balance equation. We will allow transitions between any two states

fi, fj ∈ F . Now to come up with transition probabilities, we use the following

detailed balance equation, where qfi,fj
denotes the transition probability of

going from state fi to fj.

25

∀fi, fj ∈ F : p∗fi
× qfi,fj

= p∗fj
× qfj ,fi

⇔

exp

(
β
∑

s∈S

[
Uσ
s (σfi∗

s) + Uρ
s (ρfi∗

s)− Ps(dfi
s)

])
∑

f ′∈F exp

(
β
∑

s∈S

[
Uσ
s (σf

′∗
s) + Uρ

s (ρf
′∗
s)− Ps(df

′
s)

]) × qfi,fj
=

exp

(
β
∑

s∈S

[
Uσ
s (σ

fj∗
s) + Uρ

s (ρ
fj∗
s)− Ps(d

fj
s)

])
∑

f ′∈F exp

(
β
∑

s∈S

[
Uσ
s (σf

′∗
s) + Uρ

s (ρf
′∗
s)− Ps(df

′
s)

]) × qfj ,fi
.

Therefore let

qfi,fj
=

∏
s∈S αs

exp

(
β
∑

s∈S

[
Uσ
s (σfi∗

s) + Uρ
s (ρfi∗

s)− Ps(dfi
s)

])
(|F | − 1)

and similarly

qfj ,fi
=

∏
s∈S αs

exp

(
β
∑

s∈S

[
Uσ
s (σ

fj∗
s) + Uρ

s (ρ
fj∗
s)− Ps(d

fj
s)

])
(|F | − 1)

,

where the αs parameters are positive constants and |F |

is the number of delay states in F.

Note that there are many possible transition probabilities that we can

choose. However, many of these transition probabilities could depend on the

state we are transitioning to; for example, they could depend on different

utilities under the new state (delay configuration). However, such transi-

tion probabilities are not useful for our problem since users do not have

information about what their utilities are going to be under the new setup.

Therefore, we will come up with transition probabilities that are only a func-

tion of the information available in the current state, such as the utilities

under the current state (delay allocation).

Also note that the above transition probabilities depend on the utilities of

all of the users. In the next subsection, we will come up with a distributed

implementation of this Markov chain.

26

3.3.2 A Distributed Implementation of the Markov chain

Note that the transition probability between delay states derived in the last

section is still a function of all the utilities of the users in a particular con-

figuration. However, we know that each user only has access to information

about his own utility, and the server does not know the utilities of the users.

We will rewrite the transition probability in the following way:

qfi,fj
=

∏
s∈S αs

exp

(
β
∑

s∈S

[
Uσ
s (σfi∗

s) + Uρ
s (ρfi∗

s)− Ps(dfi
s)

])
(|F | − 1)

=

1

|F | − 1

∏
s∈S

αs exp

(
−β
[
Uσ
s (σfi∗

s) + Uρ
s (ρfi∗

s)− Ps(dfi
s)

])
.

In order to be able to implement the Markov chain derived in the last part

distributedly, and in discrete time, consider the following algorithm for each

user s:

Each user s at any given configuration (delay vector) f will pick to be in

either of two states (S = {S1, S2}), with the states being S1 = No Change

and S2 = Change. Each of these states is like the vote of that user to change

the delay allocation or not (more on this later). User s will vote for change

with probability πS2 = πChange = αs exp
(
− β[Uσ

s (σf∗s) + Uρ
s (ρf∗s) − Ps(dfs)]

)
and he will not vote for change with the probability 1− πS1 = πS1 .

Note that the αs parameters could be used to make sure the values are less

than or equal to 1. Moreover, the αs parameters can affect the speed of the

convergence of the Markov chain.

Now assume that the link (the server) changes the delays according to the

following rule:

• In each time slot, the server will look at the “vote,” i.e. state of of each

user.

• If all the users are “voting for change,” then the server will uniformly

randomly pick one of delay states as the new state.

Given that the server acts as above, then the transition probability between

27

two states fi and fj is given as the following:

qfi,fj
=

∏
s∈S αs

exp

(
β
∑

s∈S

[
Uσ
s (σfi∗

s) + Uρ
s (ρfi∗

s)− Ps(dfi
s)

])
(|F | − 1)

and vice versa, which is the desired transition probability.

As we already mentioned, the parameter α can be chosen to increase the

speed of convergence of the Markov chain. We can see this by looking at

the transition probabilities, and observing that increasing α in fact increases

the transition probabilities, while still ensuring that we have the desired

stationary distribution.

3.3.3 Solving for Optimal σ, ρ and µ Parameters

In this section we will derive algorithms to find optimal σ and ρ parameters

for every delay allocation in F . We will use primal-dual algorithms to find

differential equations that will serve as an update equation for the σ and ρ

parameters and the prices.

Assuming the probability distribution is fixed, we can solve for the user

parameters and the prices by solving the approximation to the third formu-

lation only with respect to σ, ρ and µ. Since for fixed pf ’s, the problem is

convex, and Slater’s condition holds, then there is no duality gap and we can

solve the following problem:

min
µ≥0

max
σ≥0,ρ≥0

∑
f∈F

pf
∑
s∈S

[
Uσ
s (σfs) + Uρ

s (ρfs) + Us(d
f
s)

]
− 1

β

∑
f∈F

pf log pf

−
∑
f∈F

K∑
i=1

Ji∑
j=1

[
µi,fj

∑
s∈S

(
I{ki

s(f)≤j≤Ji}σ
f
s+

[
(Di

j − dis(f))I{ki
s(f)≤j≤Ji} + I{j=Ji+1 and ki

s(f)≤Ji}
]
ρfs

)]
,

where µi,fj s denotes the Lagrange multiplier for the j-th constraint of the i-th

link, under the delay vector f .

Now, if the probability distribution is fixed (in practice, we could have the

probability distribution converging much slower than the parameters, or fix

28

the probability distribution before solving for a new set of parameters), we

can have the following primal-dual algorithm for finding the optimal values

of the parameters:

µ̇i,fj =kij(µ
i,f
j)

[∑
s∈S

(
I{ki

s(f)≤j≤Ji}σ
f
s+

[
(Di

j − dis(f))I{ki
s(f)≤j≤Ji} + I{j=Ji+1 and ki

s(f)≤Ji}
]
ρfs

)
− Ci

j

]+

µi,f
j

σ̇fs =hfs (σ
f
s)

[
Uσ
s
′(σfs)pf −

K∑
i=1

Ji∑
j=1

µi,fj I{ki
s(f)≤j≤Ji}

]+

σf
s

ρ̇fs =rfs (ρfs)

[
Uρ
s
′(ρfs)pf −

K∑
i=1

Ji∑
j=1

µi,fj
[
(Di

j − dis(f))I{ki
s(f)≤j≤Ji}

+ I{j=Ji+1 and ki
s(f)≤Ji}

]]+

ρf
s

,

where k, h and r are continuous and positive functions.

Note that in practice we do not need to keep track of all of the parameters

under different configurations. Instead, whenever we transition to a new

delay configuration, we can freeze any transitions, remain in that state, and

optimize the parameters under that configuration, in order to have optimal

utility under that configuration and also to satisfy the constraints. Moreover,

note that there is a term pf needed in the update equations of the σ and ρ

parameters. It would be very hard in practice to compute this value; however,

we do not really need this value in updating the parameters, because all users

have one particular probability multiplied in their update equation, and it

is as if we are trying to optimize the sum of utilities under a given setup

f all scaled by the probability pf . The answer to this optimization is the

same as the answer to the optimization if the utilities were not scaled by pf .

Therefore, we can simply omit pf from the above calculations and do not

need to compute it. The discrete version of the above update equations used

for implementation purposes is as follows:

29

µi,fj (t+ 1) =µi,fj (t) + kij(µ
i,f
j)

[∑
s∈S

(
I{ki

s(f)≤j≤Ji}σ
f
s+

[
(Di

j − dis(f))I{ki
s(f)≤j≤Ji} + I{j=Ji+1 and ki

s(f)≤Ji}
]
ρfs

)
− Ci

j

]+

µi,f
j

σfs (t+ 1) =σfs (t) + hfs (σ
f
s)

[
Uσ
s
′(σfs)−

K∑
i=1

Ji∑
j=1

µi,fj I{ki
s(f)≤j≤Ji}

]+

σf
s

ρfs (t+ 1) =ρfs (t) + rfs (ρfs)

[
Uρ
s
′(ρfs)−

K∑
i=1

Ji∑
j=1

µi,fj
[
(Di

j − dis(f))I{ki
s(f)≤j≤Ji}

+ I{j=Ji+1 and ki
s(f)≤Ji}

]]+

ρf
s

.

3.3.4 Bounding the Mixing Time of the Markov Chain

In this subsection, we use conductance results from [7] to bound the mixing

time of the Markov chain. We can assume that the optimal σ, ρ and µ

parameters are available to the Markov chain, and therefore, we can calculate

a bound on its mixing time. In practice, we can allow enough time for the

σ, ρ and µ parameters to converge close to their optimal values, before we

allow a change to the Markov chain.

The paper [7] defines the underlying graph of a Markov chain with transi-

tion probability matrix Q = {qfi,fj
} and stationary probabilities p∗fi

,∀fi ∈ F
as GQ(F,W), where F is the set of states and W is the set of weights on

the graph. These weights are defined as wfi,fj
= p∗fi

qfi,fj
. We can calculate

the values of these weights for the Markov chain in the third algorithm for

the case where transitions exist between any two states fi, fj ∈ F as the

following:

wfi,fj
=p∗fi

× qfi,fj
= w =

=

∏
s∈S αs∑

f ′∈F exp

(
β
∑

s∈S

[
Uσ
s (σf

′∗
s) + Uρ

s (ρf
′∗
s)− Ps(df

′
s)

])
(|F | − 1)

Note that the weights of all edges in our graph are the same, and we there-

30

fore denote all the edge weights by the symbol w. Subsequently, the paper [7]

defines conductance of a subset A ⊂ F as ΦQ(A) =

∑
fi∈A

∑
fj∈F\Awfi,fj∑
fi∈A p

∗
fi

and

the conductance of the Markov chain with probability transition matrix Q as

ΦQ = min
A⊂F :

∑
fi∈A p∗fi

≤1/2
ΦQ(A), where F\A denotes the set of delay states that

are in F and not in A. The conductance of the Markov chain can provide a

bound for the mixing time of the chain. Therefore, we provide a bound for

the conductance value below:

ΦQ = min
A⊂F :

∑
fi∈A p∗fi

≤1/2
ΦQ(A) = min

A⊂F :
∑

fi∈A p∗fi
≤1/2

w × |A| × |F\A|∑
fi∈A p

∗
fi

⇒ ΦQ ≥
min

A⊂F :0≤
∑

fi∈A p∗fi
≤1/2

w × |A| × |F\A|

max
A⊂F :0≤

∑
fi∈A p∗fi

≤1/2

∑
fi∈A

p∗fi

≥
min

A⊂F :0≤
∑

fi∈A p∗fi
≤1/2

w × |A| × |F\A|

1/2

where | · | denotes the size or number of elements in a set.

In the above minimization, we added a “0 ≤” to the constraint, since the

denominator could not be zero. Therefore, the minimizing set A∗ cannot

be the empty set. Moreover, we cannot have A∗ = F , because in that case

we will have
∑

fi∈A∗ p
∗
fi

= 1, which will violate the minimization constraint

again. Therefore, the minimization becomes: min
1≤i≤|F |

i × (|F | − i) = |F | − 1,

which can be obtained by picking A∗ = {fi} s.t. p∗fi
≤ 1/2. We therefore

have

ΦQ ≥ 2× w × (|F | − 1)

=
2
∏

s∈S αs∑
f ′∈F exp

(
β
∑

s∈S

[
Uσ
s (σf

′∗
s) + Uρ

s (ρf
′∗
s)− Ps(df

′
s)

]) .
If we denote the probability distribution at time t ≥ 0 by

→
x (t), and the

stationary probability distribution by
→
p
∗
, the paper [7] states that for the

case of a strongly aperiodic (i.e. qfi,fi
≥ 1/2,∀fi ∈ F) and time-reversible (i.e.

wfi,fj
= wfj ,fi

) Markov chain, the rate at which discrepancy
→
e (t) =

→
x (t)−

→
p
∗

31

vanishes is bounded as follows:

∥∥∥→e (t)
∥∥∥ ≤ (1− ΦQ

2/2)t
∥∥∥→e (0)

∥∥∥
and the magnitude is given by

∥∥∥→e (t)
∥∥∥ =

∑
f

e2
f (t)

p∗f
.

We therefore have

∥∥∥→e (t)
∥∥∥

≤ (1−
2(
∏

s∈S αs)
2[∑

f ′∈F exp

(
β
∑

s∈S

[
Uσ
s (σf

′∗
s) + Uρ

s (ρf
′∗
s)− Ps(df

′
s)

])]2)t
∥∥∥→e (0)

∥∥∥

First of all, note that the above bound depends on β, and as β is in-

creased, the mixing time of the Markov chain reduces. This introduces an

accuracy versus speed trade-off, because the accuracy of our algorithm in-

creases with increasing values of β; however, this comes at a cost of reduced

speed. Moreover, note that the speed of the Markov chain will be very slow

for large values of

[∑
f ′∈F exp

(
β
∑

s∈S

[
Uσ
s (σf

′∗
s) + Uρ

s (ρf
′∗
s)− Ps(df

′
s)

])]2

.

Since this term involves a possible exponential sum of exponential terms, all

raised to the power of two, this number is expected to be rather large, and

we would expect the Markov chain to have a slow mixing time. Therefore,

in order to have implementable versions of this algorithm with faster speed,

we will reduce the value of β in our simulations.

32

CHAPTER 4

EXAMPLE SOLUTIONS

In this chapter, we discuss the different solutions for the one link exam-

ple with two delays offered. The equations and notation from the previous

chapter will be used for this example. We hope that this example can fur-

ther clarify the solutions, and demonstrate the ease of implementation of the

solutions.

4.1 One Link Example: Solving an Approximation to

the Second Formulation

In this section, we solve the following approximation to the second formula-

tion for the one link example:

max
σ≥0,ρ≥0,p≥0

∑
s∈S

Uσ
s (σs) + Uρ

s (ρs) +Ks

∑
f :s∈f

pf −
1

β

∑
f∈F

pf log pf

s.t.∑
f∈F

pf
∑
s:s∈f

σs ≤ CD1∑
s∈S

σs + (D2 −D1)
∑
f∈F

pf
∑
s:s∈f

ρs ≤ CD2∑
s∈S

ρs ≤ C∑
f∈F

pf = 1.

(4.1)

33

4.1.1 One Link Example: Solving for the Optimal Probability
Distribution

In order to derive algorithms to solve the approximation to the second for-

mulation, we first solve for the optimal probability distribution p∗ given any

set of σ and ρ parameters. Now, we can write the optimization in (4.1) only

over the probability distribution as

max
p≥0

∑
s∈S

Uσ
s (σs) + Uρ

s (ρs) +Ks

∑
f :s∈f

pf −
1

β

∑
f∈F

pf log pf

s.t.∑
f∈F

pf
∑
s:s∈f

σs ≤ CD1∑
s∈S

σs + (D2 −D1)
∑
f∈F

pf
∑
s:s∈f

ρs ≤ CD2∑
s∈S

ρs ≤ C (this constraint will be satisfied automatically)∑
f∈F

pf = 1.

(4.2)

Since the objective and the constraints are linear in p, and Slater’s condition

holds, we can use strong duality and solve the problem

min
µ≥0

max
p≥0

∑
s∈S

[Uσ
s (σs) + Uρ

s (ρs) +
∑
f∈F

pf
∑
s:s∈f

Ks]− µ1

∑
f∈F

pf
∑
s:s∈f

σs + µ1CD1−

µ2

∑
s∈S

σs − µ2(D2 −D1)
∑
f∈F

pf
∑
s:s∈f

ρs + µ2CD2 −
1

β

∑
f∈F

pf log pf

s.t.∑
f∈F

pf = 1,

where the µ parameters are Lagrange multipliers of the constraints.

We can rewrite the problem in the following way, and just maximize with

34

respect to the probability distribution p:

max
p≥0

∑
f∈F

pf
∑
s:s∈f

(Ks − µ1σs − (D2 −D1)µ2ρs)−
1

β

∑
f∈F

pf log pf

s.t.∑
f∈F

pf = 1.

We can verify the KKT conditions, and find the following probability dis-

tribution as the optimal distribution:

p∗f (K, σ, ρ, µ) =

exp(β
∑
s:s∈f

(Ks − µ1σs − (D2 −D1)µ2ρs))∑
f ′∈F

exp(β
∑
s:s∈f ′

(Ks − µ1σs − (D2 −D1)µ2ρs))
∀f ∈ F.

For each user s we can define the parameter Vs = Ks−µ1σs− (D2−D1)µ2ρs

(Note that Vs here is slightly different than Vs(f) defined in the general

notation.) Now the optimal stationary distribution can be written as:

p∗f (V) =

exp(β
∑
s:s∈f

Vs)∑
f ′∈F

exp(β
∑
s:s∈f ′

Vs)
∀f ∈ F

where V is the vector with i-th element equal to Vi for i ∈ {1, ..., N}.
How to use this result: Again, as mentioned before, we use the optimal

probability distribution as the stationary distribution of a carefully designed

Markov chain. We then derive transition probabilities that will enable a

distributed implementation of the Markov chain using the detailed balance

equation. We allow transitions among any two pairs of states fi, fj ∈ F . Let

qfi,fj
denote the transition probability from state fi to state fj. We write the

detailed balance equations in the following way:

35

p∗fi
× qfi,fj

= p∗fj
× qfj ,fi

and let qfi,fj
=

exp (β
∑

s:s∈fj−fj∩fi

Vs)∏
s:s∈fi∪fj

γ(1 + exp (βVs))
⇔

p∗fi
× qfi,fj

=

exp(β
∑
s:s∈fi

Vs)∑
f ′∈F

exp(β
∑
s:s∈f ′

Vs)
×

exp (β
∑

s:s∈fj−fj∩fi

Vs)∏
s:s∈fi∪fj

γ(1 + exp (βVs))
=

exp(β
∑

s:s∈fi∪fj

Vs)[∑
f ′∈F

exp(β
∑
s:s∈f ′

Vs)
] ∏
s:s∈fi∪fj

γ(1 + exp (βVs))
= p∗fj

× qfj ,fi
.

4.1.2 A Distributed Implementation of the Markov Chain

In order to have a distributed implementation of this algorithm, let every

user s ∈ {1, ..., N} change delays according to the following algorithm:

Delay Changing Algorithm

• If user s has delay D1 he will change to D2 with probability psD1,D2
=

1
γ(1+exp (βVs))

and he will not change with probability 1− psD1,D2
.

• If user s has delay D2 he will change to D1 with probability psD2,D1
=

exp (βVs)
γ(1+exp (βVs))

and he will not change with probability 1− psD2,D1
.

It is easy to verify that if all users act according to the above algorithm, we

will have the mentioned transition probabilities between different states in

F . Note that these changes can be done in a completely distributed manner,

since each user s knows the value of Vs since it only depends on the prices

(which could be shared with the users by the netwrok) and parameters of

the user who is changing his delay. Therefore, the Markov chain can be

implemented in a completely distributed manner.

36

4.1.3 One Link Example: Solving for Optimal σ, ρ and µ
Parameters

Assuming the optimal probability distribution is known, we can solve for

the user parameters and prices by solving the approximation to the second

formulation only with respect to σ, ρ and µ. Since for given p∗f ’s, the problem

is convex, and Slater’s condition holds, then there is no duality gap and we

can solve the following problem:

min
µ≥0

max
σ≥0,ρ≥0

∑
s∈S

[Uσ
s (σs) + Uρ

s (ρs) +Ks

∑
f :s∈f

p∗f]− µ1

∑
f∈F

p∗f
∑
s:s∈f

σs + µ1CD1−

µ2

∑
s∈S

σs − µ2(D2 −D1)
∑
f∈F

p∗f
∑
s:s∈f

ρs + µ2CD2 + µ3C − µ3

∑
s∈S

ρs.

We can write the following primal-dual algorithm for finding the optimal

values of the parameters and the prices. Note that in the equations below,

we have replaced some of the summations with indicator functions. This

change will later help us in deriving simpler forms of the update equations.

µ̇1 = k1

[∑
f∈F

∑
s∈S

p∗fσsI{s∈f} − CD1

]+

µ1

µ̇2 = k2

[∑
s∈S

σs + (D2 −D1)
∑
f∈F

∑
s∈S

p∗fρsI{s∈f} − CD2

]+

µ2

µ̇3 = k3

[∑
s∈S

ρs − C
]+

µ3

σ̇s = hs

[
U ′s(σs)−

∑
f∈F

p∗fµ1I{s∈f} − µ2

]+

σs

ρ̇s = rs

[
U ′s(ρs)−

∑
f∈F

p∗fµ2(D2 −D1)I{s∈f} − µ3

]+

ρs

Note that in the above update equations, the network and each of the nodes

need to know the p∗f values, which could be hard to obtain. However, we

can actually rewrite the update equations in the following way, to solve this

37

problem, and actually use this fact to our advantage (as explained below).

µ̇1 = k1

(∑
f∈F

p∗f

[∑
s∈S

σsI{s∈f} − CD1

])+

µ1

µ̇2 = k2

(∑
f∈F

p∗f

[∑
s∈S

σs +
∑
s∈S

[
(D2 −D1)ρsI{s∈f}

]
− CD2

])+

µ2

µ̇3 = k3

[∑
s∈S

ρs − C
]+

µ3

σ̇s = hs

(∑
f∈F

p∗f

[
U ′s(σs)− µ1I{s∈f} − µ2

])+

σs

ρ̇s = rs

(∑
f∈F

p∗f

[
U ′s(ρs)− µ2(D2 −D1)I{s∈f} − µ3

])+

ρs

Now note that by writing the update equations in the above form we can

derive an implementable algorithm that will not require knowledge of the

values of p∗f as described in section 3.2.3.

4.2 One Link Example: Solving an Approximation to

the Third Formulation

In this section, we will solve the following approximation to the third formu-

lation for the one link example:

38

max
σ≥0,ρ≥0,p≥0

∑
f∈F

pf
∑
s∈S

[
Uσ
s (σfs) + Uρ

s (ρfs) + Us(d
f
s)

]
− 1

β

∑
f∈F

pf log pf

subject to the following constraints ∀f ∈ F∑
s:s∈f

σfs ≤ CD1∑
s∈S

σfs + (D2 −D1)
∑
s:s∈f

ρfs ≤ CD2∑
s∈S

ρfs ≤ C∑
f∈F

pf = 1

(4.3)

where σ = [σf : f ∈ F] and ρ = [ρf : f ∈ F], and σf and ρf are vectors of

the parameters for all users under configuration f .

4.2.1 One Link Example: Solving for the Optimal Probability
Distribution

The optimal probability distribution for the one link example, and the dis-

tributed implementation of the Markov chain, is exactly the same as the one

described in the last chapter, and we will therefore not discuss it further in

this section.

4.2.2 One Link Example: Solving for Optimal σ and ρ
Parameters

Assuming the probability distribution is fixed, we can solve for the user

parameters by solving the approximation to the third formulation only with

respect to σ and ρ. Since for fixed pf ’s, the problem is convex, and Slater’s

condition holds, then there is no duality gap and we can solve the following

39

problem:

min
µ≥0

max
σ≥0,ρ≥0

∑
f∈F

pf
∑
s∈S

[
Uσ
s (σfs) + Uρ

s (ρfs) + Us(d
f
s)

]
− 1

β

∑
f∈F

pf log pf

−
∑
f∈F

µf1

(∑
s:s∈f

σfs − CD1

)
−
∑
f∈F

µf2

(∑
s∈S

σfs + (D2 −D1)
∑
s:s∈f

ρfs − CD2

)
−
∑
f∈F

µf3

(∑
s∈S

ρfs − C
)

where the µfi s are the Lagrange multipliers for the i-th constraint under the

delay vector f .

Now if the probability distribution is fixed (in practice, we could have the

probability distribution converging much slower than the parameters, or fix

the probability distribution before solving for a new set of parameters), we

can have the following primal-dual algorithm for finding the optimal values

of the parameters:

µ̇f1 = kf1

[∑
s:s∈f

σfs − CD1

]+

µf
1

µ̇f2 = kf2

[∑
s∈S

σfs + (D2 −D1)
∑
s:s∈f

ρfs − CD2

]+

µf
2

µ̇f3 = kf3

[∑
s∈S

ρfs − C
]+

µf
3

σ̇fs = hfs

[
U ′s(σ

f
s)pf −

∑
f :s∈f

µf1 −
∑
f∈F

µf2

]+

σf
s

ρ̇fs = rfs

[
U ′s(ρ

f
s)pf − (D2 −D1)

∑
f :s∈f

µf2 −
∑
f∈F

µf3

]+

ρf
s

.

40

CHAPTER 5

NUMERICAL RESULTS

5.1 Numerical Experiment

Setup: In this numerical experiment, three links are shared among 60 users.

Each user s ∈ {1, ..., 60} has a utility of the form Us(σs, ρs, ds) = s log(σs) +

s log(ρs)−0.007(d1
s+d2

s+d3
s)

2. We have assigned different weights to different

users in order to differentiate them and also to be able to analyze the effect

of having different utility functions on the user parameters.

As seen in Fig 5.1, in this setup, the three links being shared all have the

same capacity equal to 9. Moreover, all three links offer the same 10 and 40

ms delays. We have used the same capacity for all links in order to be able

to analyze the effect of the loads on the links. Therefore, in this experiment,

we have one link (link 2) that is the busiest in terms of the number of users

it serves, another link (link 1) that serves less users, and the last link (link

3) that serves the least number of users.

Figure 5.1: Displaying the Links and the Users on Each of Them

Table 5.1 lists the original delay allocation in this experiment. In the tables

in this chapter, a value of 1 indicates that the user was allocated delay 1 on

the corresponding link. Moreover, a dash (-) indicates that the user was not

41

using the corresponding link.

Table 5.1: Original Allocated Delays on Each Link.

Users 1-10

Link 1 2 2 2 2 2 - - - - -
Link 2 - - - - - 2 2 2 2 2
Link 3 - - - - - - - - - -
Users 11-20
Link 1 - - - - - - - - - -
Link 2 2 2 2 2 2 2 2 2 2 2
Link 3 - - - - - - - - - -
Users 21-30
Link 1 - - - - - - - - - -
Link 2 1 1 1 1 1 1 1 1 1 1
Link 3 2 2 2 2 2 2 2 2 2 2
Users 31-40
Link 1 2 2 2 2 2 2 2 2 2 2
Link 2 1 1 1 1 1 1 1 1 1 1
Link 3 - - - - - - - - - -
Users 41-50
Link 1 1 1 1 1 1 1 1 1 1 1
Link 2 2 2 2 2 2 2 2 2 2 2
Link 3 1 1 1 1 1 2 2 2 2 2
Users 51-60
Link 1 - - - - - 1 1 1 1 1
Link 2 - - - - - - - - - -
Link 3 1 1 1 1 1 - - - - -

Implementation: We implemented the three algorithms in this numerical

experiment. We implemented the first algorithm according to the implemen-

tation instructions in Section 3.1. We used the discrete update equations in

Section 3.3.3, with hfs (σ
f
s) = 0.00005σfs and rfs (ρfs) = 0.000001ρfs ,∀s, f , and

ki,f1 (µi,f1) = 0.0002,∀i, f and ki,fj (µi,fj) = 0.001,∀i, f and for j = 2, 3. We

initialized all parameters to zero, and allowed 5500 time slots with no delay

changes for the algorithm to stabilize. In our simulation, the network picks

one user randomly once every 10 time slots and allows that user to change

its delay values. The 10 time slot period allows time for stabilization of the

different parameters and prices in the network; however, it was chosen arbi-

trarily based on experiments. The number of users chosen and the wait time

before choosing the next user(s) should be adjusted according to the size and

42

structure of each network.

The implementation of the second algorithm involved two parts. We im-

plemented a discrete time Markov chain according to Section 3.2.2. For the

Markov chain, we picked β = 1.5 and γ = 3000. The second part of the imple-

mentation involved update equations for the σ, ρ and µ parameters. We used

the discrete update equations in Section 3.2.3, with hs(σs) = 0.00005σs and

rs(ρs) = 0.000001ρs,∀s ∈ S, and ki1(µi1) = 0.0002, ∀i and kij(µ
i
j) = 0.001,∀i

and for j = 2, 3. We initialized all parameters to zero, and allowed 5500 time

slots with no delay changes for the algorithm to stabilize. In this implemen-

tation, users can independently decide to change their delays at any time

slot, and the network does not pick certain users to change their delays.

The implementation of the third algorithm, similarly to the second one,

involved two parts. One part of the algorithm involved update equations

for the σ, ρ and µ parameters. We used the discrete update equations in

Section 3.3.3, with hfs (σ
f
s) = 0.00005σfs and rfs (ρfs) = 0.000001ρfs ,∀s ∈ S,

and ki,f1 (µi,f1) = 0.0002,∀i and ki,fj (µi,fj) = 0.001,∀i, f and for j = 2, 3.

We initialized all parameters to zero, and allowed 5500 time slots with no

delay changes for the algorithm to stabilize. Two delay changes according

to the Markov chain were allowed after the intial phase, once every 10 time

slots. Note that we purposely allowed only two delay changes, as opposed to

possibly all delays changing, in order to have a Markov chain that changes

slower and in order to have parameters converge within the next 10 time slots

after every change. We implemented a discrete time Markov chain according

to Section 3.3.2. For the Markov chain, we picked β = 0.005, to have a

Markov chain with a reasonable mixing time. Also, we picked αs according

to the assumption that the minimum utility value for each user is going to be

20 percent less than the utility value the user converged to after the initial

phase. With this assumption, we chose αs to have a vote for change with

probability one when the utility of the user equals its minimum utility.

Expected Properties of Solutions: Different users in this experiment

use different numbers of links with different initial delay assignments. A

group of users, users 6 to 20, only use link 2. We can therefore anticipate

these users to pick the higher delay, because for these users, d1
s = 0 and

d3
s = 0, and because the penalty function in the users’ utility function gets

steeper as the sum of delays increases. Similarly, users 1 to 5 and users 56

to 60 also only use link 1. While we anticipate these two groups also to have

43

a large delay (because of the last reason), we anticipate users 56 to 60 to be

more inclined to have a larger delay because they have large weights on their

σ and ρ parameters, and the cost of transferring these users to the smaller

delays is more expensive than for users with smaller weights on their σ and

ρ parameters.

Users 21 to 30 use two links, namely link 2 and link 3. We expect these

users to have their smaller delay (if they do have one) on the less busy link

(link 3) more often than on the busier link (link 2). Similarly, users 31 to 40

will use both links 1 and 2, and we again expect them to have their lower

delay more often on link 1 than on link 2. Lastly, users 41 to 50 will use all

three links.

Observed Properties of Solutions: Figures 5.2, 5.3 and 5.4 show the

evolution of the sum of the utilities of the users versus the number of time

slots. Moreover, Tables 5.2, 5.3 and 5.4 represent the final delay state of the

system using the different solutions.

0.5 1 1.5 2 2.5 3
x 104

2000

1500

1000

500

0

500

1000

1500

Figure 5.2: Sum of Utilities vs. Number of Time Slots Using Direct Utility
Comparison.

The first and second algorithms resulted in similar outcomes. Both algo-

rithms resulted in a significant increase in the aggregate utility of the system.

Moreover, the second algorithm, after enough time to stabilize, convereged

to one or a few delay states that were not very different. Therefore, we

did not see a significant violation in the original constraints of the problem.

Namely, although the second algorithm was solving a relaxed version of the

original problem with constraints met on average, in practice the algorithm

44

Table 5.2: Final Delay Allocation Using First Solution.

Users 1-10

Link 1 2 1 1 2 1 - - - - -
Link 2 - - - - - 1 1 1 2 2
Link 3 - - - - - - - - - -
Users 11-20
Link 1 - - - - - - - - - -
Link 2 2 1 2 2 2 2 2 2 2 2
Link 3 - - - - - - - - - -
Users 21-30
Link 1 - - - - - - - - - -
Link 2 2 1 2 1 2 2 2 2 1 2
Link 3 1 1 2 1 1 1 1 1 1 2
Users 31-40
Link 1 2 2 2 2 1 2 1 1 2 2
Link 2 2 1 2 2 2 2 2 2 2 2
Link 3 - - - - - - - - - -
Users 41-50
Link 1 1 1 2 1 2 1 1 2 1 2
Link 2 1 1 1 1 1 2 1 2 2 1
Link 3 1 1 1 1 1 1 1 2 1 1
Users 51-60
Link 1 - - - - - 2 2 2 2 2
Link 2 - - - - - - - - - -
Link 3 2 2 2 2 2 - - - - -

0.5 1 1.5 2 2.5 3
x 104

2000

1500

1000

500

0

500

1000

1500

Figure 5.3: Sum of Utilities vs. Number of Time Slots Using Payment
Comparison.

45

Table 5.3: Final Delay Allocation Using Second Solution.

Users 1-10

Link 1 1 1 1 1 2 - - - - -
Link 2 - - - - - 1 2 2 2 2
Link 3 - - - - - - - - - -
Users 11-20
Link 1 - - - - - - - - - -
Link 2 2 2 2 2 2 1 2 2 2 2
Link 3 - - - - - - - - - -
Users 21-30
Link 1 - - - - - - - - - -
Link 2 1 1 1 2 1 1 2 2 1 1
Link 3 2 2 2 1 2 2 2 2 2 2
Users 31-40
Link 1 2 1 1 2 1 1 2 2 1 1
Link 2 2 1 2 2 2 1 1 2 2 2
Link 3 - - - - - - - - - -
Users 41-50
Link 1 2 1 1 1 1 1 2 2 1 1
Link 2 1 2 1 1 1 2 1 1 2 2
Link 3 1 1 2 2 2 2 1 1 1 1
Users 51-60
Link 1 - - - - - 2 2 2 2 2
Link 2 - - - - - - - - - -
Link 3 2 2 2 2 2 - - - - -

0.5 1 1.5 2 2.5 3
x 104

2000

1500

1000

500

0

500

1000

1500

Figure 5.4: Sum of Utilities vs. Number of Time Slots Using Stochastic
Deceleration.

46

Table 5.4: Final Delay Allocation Using Third Solution.

Users 1-10

Link 1 2 2 1 2 2 - - - - -
Link 2 - - - - - 2 2 2 2 2
Link 3 - - - - - - - - - -
Users 11-20
Link 1 - - - - - - - - - -
Link 2 2 2 1 2 2 2 2 2 2 2
Link 3 - - - - - - - - - -
Users 21-30
Link 1 - - - - - - - - - -
Link 2 2 1 1 1 2 2 1 1 1 1
Link 3 2 2 2 1 2 2 2 1 2 2
Users 31-40
Link 1 2 2 2 2 1 2 2 2 2 2
Link 2 1 1 2 1 1 1 1 1 1 1
Link 3 - - - - - - - - - -
Users 41-50
Link 1 1 1 1 1 1 1 1 1 1 1
Link 2 2 2 2 2 2 2 1 1 1 2
Link 3 1 1 1 1 1 2 2 2 2 2
Users 51-60
Link 1 - - - - - 1 1 1 2 1
Link 2 - - - - - - - - - -
Link 3 1 2 1 1 1 - - - - -

convereged to states that were not significantly different, subsequently, caus-

ing the constraints to be met deterministically.

As we expected, many of the users 6-20 picked the higher delay because

they were only using link 2 and therefore still had a small end-to-end delay.

Also, most of the users 1-5 changed their delay to the lower delay because

they had a smaller utility of σ and ρ and therefore paid a small price for

their parameters by picking a small delay. However, users 56-60, who had

a similar situation (only using link 1), picked the higher delay because by

doing that they had large utilities of σ and ρ and could get lower prices for

these parameters with the higher delay. Users 51-55 made a similar change

for the same reason. In both cases, many of the users 21-30 and users 31-40

tend to have their lower delay on the less busy link (link 3 and link 1) as

we expected. Finally, users 41-50 changed most of their delays to the lower

47

delay, since they have the same delay penalty function as the other users;

however, because of using all three links, they started with large end-to-end

delays. Again, most of the lower delays tend to be on the less busy links

(this is more evident in the first simulation).

We can look at these changes from the network’s perspective as well. For

example, the network tends to assign users with bigger σ and ρ parameters a

larger delay. For example, the network assigned users 51-55 or 56-60 a large

delay since these users were more inclined to have large σ and ρ parameters;

and by allocating them the larger delay, the network would save more of its

resources.

The third algorithm carried out some of the expected delay changes, which

resulted in an increased aggregate utility; however, the number of useful delay

changes done by this algorithm were less than the number of useful delay

changes done by the first and second algorithm, therefore causing the third

solution to have a lower final aggregate utility.

Discussion of Algorithm Performance: The first and second algo-

rithms had similar performances in this experiment. The first algorithm is

rather simple and performs well; however, implementing the first algorithm

requires the constant supervision of the network over the users, monitoring

which users change their delays and at what times. The number of users

who can change their delays, and how often delays are changed depends on

the network, and must be determined empirically. Also, while this method

is distributed, it still requires every probed user to do
∏

i∈L J
i utility calcu-

lations, because every probed user has to calculate its utility for all delay

combinations and pick the best allocation, which is a combinatorial problem.

This utility calculation could be complex if the number of links and delays

used by the user are large.

The second algorithm also had similar performance. The parameters that

might have to be set empirically in this experiment are the β and γ pa-

rameters, relating to the Markov chain. This algorithm does not require a

constant supervision of the network over the users, because any user can

choose to change any of its delays at any time according to its Markov chain

implementation. Also, every user has to compute
∑

i∈L(J i−1) probabilities.

The third algorithm didn’t perform as well as the first two algorithms,

as we can clearly see from the figures. This is mainly because the third

algorithm has a slow convergence rate, and we therefore had to choose a

48

small value of 0.005 for β, which in turn caused the resulting solution to be

less accurate. Also, in this algorithm, the network has to collect the votes of

the users, and subsequently make a decision about which delays to change

next.

We have summarized some of the important properties of the three imple-

mented algorithms in Table 5.5.

Table 5.5: Algorithm Properties.

Algorithm Properties First Algo-
rithm

Second Al-
gorithm

Third Algo-
rithm

Randomness Selection of
user to probe

Delay vector
update

Delay vector
update

Update Criteria User utility at
new delay

Lower cost
given current
σ and ρ

Value of cur-
rent state

Is the change in σ and
ρ considered in deci-
sion?

Yes No No

Number of σ, ρ and
µ updates per possible
delay updates

10 1 10

Number of possible
delays changed at
once

All delays of
one user

Unlimited Two delays

Markov chain param-
eters

Not applicable β = 1.5, γ =
3000

β = 0.005, αs
depends on
min utility

Complexity Probed user
makes

∏
i∈L J

i

utility calcula-
tions

User makes∑
i∈L(J i − 1)

probability
calculations

User makes
one probabil-
ity calculation

49

CHAPTER 6

CONCLUSION

6.1 Conclusion and Future Work

The problem of allocating throughput and delays to users in a network is

an important and very challenging problem [2]. The authors in [1] have de-

veloped a theoretical framework for allocating rates in an arbitrary network.

As suggested in [3], we tried to extend this framework for optimization over

rate, burstiness and end-to-end delay. We developed a provably optimal al-

gorithm in Section 3.3 as the solution to the third formulation of the problem

for multihop networks. This solution, however, seems to be slow, which moti-

vated us to introduce two new solutions. Both the first and second algorithm

have been simulated, and show very promising results and fast convergence

times. Of these two algorithms, the second algorithm seems to be easier to

implement, since it does not require the network to constantly choose users

to change delays; rather, every user can change its delays according to its

Markov chain.

Future directions of this research include analyzing the first algorithm more

closely, and providing some bounds on the performance of this algorithm.

Similarly, the second algorithm could be analyzed futher to see rigorously

how far it is from the optimal solution. Lastly, further research can be done

on the third algorithm to improve the speed of convergence of the Markov

chain.

50

REFERENCES

[1] F. P. Kelly, A. Maulloo, and D. Tan, “Rate control in communication
networks: shadow prices, proportional fairness and stability,” Journal of
the Operational Research Society, vol. 49, pp. 237–252, 1999.

[2] R. Guerin and V. Peris, “Quality-of-service in packet networks: Basic
mechanisms and directions,” Computer Networks, vol. 31, no. 3, pp. 169–
179, February 1999.

[3] B. Hajek and S. Yang, “A mechanism for pricing service guarantees,”
IEEE Information Theory Workshop, June 2009.

[4] R. J. Gibbens and F. P. Kelly, “On packet marking at priority queues,”
IEEE Transactions on Automatic Control, vol. 47, pp. 1016–1020, June
2002.

[5] M. Chen, S. Liew, Z. Shao, and C. Kai, “Markov approximation for com-
binatorial network optimization,” in Proceedings of Infocom Conference,
March 2010.

[6] P. Diaconis and D. Stroock, “Geometric bounds for eigenvalues of markov
chains,” The Annals of Applied Probability, vol. 1, no. 1, pp. 36–63, Febru-
ary 1991.

[7] M. Mihali, “Conductance and convergence of markov chains - a combi-
natorial treatment of expanders,” FOCS, pp. 526–531, 1989.

51

