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Improved Signal-to-Noise Ratio Estimation
for Speech Enhancement

Cyril Plapous,Member, IEEE, Claude Marro, and Pascal Scalart

Abstract— This paper addresses the problem of single mi- emphasize the interest of estimating ghariori SNR thanks to
crophone speech enhancement in noisy environments. State-of-the decision-directed (DD) approach proposed by Ephend
the-art short-time noise reduction techniques are most often Malah in [2]. Capjg analyzed the behavior of this estimator in

expressed as a spectral gain depending on the Signal-to-Nois L
Ratio (SNR). The well-known decision-directed (DD) approach 6[3] and demonstrated that theepriori SNR follows the shape

drastically limits the level of musical noise but the estimateda Of the a posteriori SNR with a frame delay. Consequently,
priori SNR is biased since it depends on the speech spectrumsince the spectral gain depends on #priori SNR, it does
estimation in the previous frame. Therefore the gain function not match the current frame and thus the performance of the
matches the previous frame rather than the current one which noise suppression system is degraded.

degrades the noise reduction performance. The consequence . .
of this bias is an annoying reverberation effect. We propose We propose a method, called Two-Step Noise Reduction

a method called Two-Step Noise Reduction (TSNR) technique (TSNR), to refine the estimation of theepriori SNR which
which solves this problem while maintaining the benefits of the removes the drawbacks of the DD approach while maintaining
decision-directed approach. The estimation of the priori SNR is  jtg advantagej.e. highly reduced musical noise level. The
trﬁﬁned by a Setcr?“d Ste%to rt.emo"ﬁ thte bias of the DD approach, majior advantage of this approach is the suppression of the
us removing the reverberation effect. ) . i .
However, c?assic short-time noise reduction techniques, includ- Tame delay bias leading to the cancellation of the annoying
ing TSNR, introduce harmonic distortion in enhanced speech reverberation effect characteristic of the DD approach.
because of the unreliability of estimators for small signal-to- Furthermore, one major limitation that exists in classic
noise ratios. This is mainly due to the difficult task of noise short-time suppression techniques, including the TSNRa6
PSD estimation in single microphone schemes. To overcome_thlssome harmonics are considered as noise only components
problem, we propose a method called Harmonic Regeneration d | d by th . ducti
Noise Reduction (HRNR). A non-linearity is used to regenerate and consequently are suppressed by the noise reduction pro-
the degraded harmonics of the distorted signal in an efficient C€SS. This is inherent to the errors introduced by the noise
way. The resulting artificial signal is produced in order to refine spectrum estimation which is a very difficult task for single
the a priori SNR used to compute a spectral gain able to preserve channel noise reduction techniques. Note that in most spoke
the speech harmonics. languages, voiced sounds represent a large amount (around

These methods are analyzed and objective and formal subjec- o . .
tive test results between HRNR and TSNR techniques are pro- 80%) of the pronounced sounds. Then it is very interesting

vided. A significant improvement is brought by HRNR compared t0 overcome this limitation. For that purpose, we propose
to TSNR thanks to the preservation of harmonics. a method, called Harmonic Regeneration Noise Reduction
Index Terms— Speech enhancement, noise reductiom priori  (HRNR), that takes into account the harmonic characterati
Signal-to-Noise Ratio, a posteriori Signal-to-Noise Ratio, har- sSpeech. In this approach, the output signal of any classgeno
monic regeneration. reduction technique (with missing or degraded harmonics)
is further processed to create an artificial signal where the
|. INTRODUCTION missing harmonics have been automatically regeneratdd. Th
HE problem of enhancing speech degraded by additiagtificial signal helps to refine tha priori SNR used to
noise, when only a single observation is available, h&mpute a spectral gain able to preserve the harmonics of
been widely studied in the past and is still an active field dfie speech signal.
research. Noise reduction is useful in many applicatiomfisu These two methods, TSNR and HRNR, have been presented
as voice communication and automatic speech recognititm[4] and [5], respectively. This paper is an extension of
where efficient noise reduction techniques are required. this previous work. These two approaches are fully analyzed
Scalart and Vieira Filho presented in [1] a unified view ofnd comparative results are given. They consist in objectiv
the main single microphone noise reduction techniques avh@valuation using the cepstral distance and the segmental SN
the noise reduction process relies on the estimation of g-sh@nd subjective evaluation.
time spectral gain, which is a function of tlepriori Signal- This paper is organized as follows. In Section Il, we present
to-Noise Ratio (SNR) and/or thee posteriori SNR. They also the parameters and rules of speech enhancement techniques.
) i In Section Ill, we introduce a tool useful to analyze the SNR
This work was supported by Franc&l@&com. . . L
C. Plapous and C. Marro are with Francél&com - R&D/TECH/SSTP, estimators. In Section IV, we recall the principle of the DD
22307 Lannion Cedex, France. Phone: +33 296051791, e-mapproach and analyze it. In Section V, we present and analyze
cyril.plapous@francetelecom.com; claude.marro@franeete.com. the TSNR approach. In Section VI, we describe and analyze
P. Scalart is with University of Rennes - IRISA / ENSSAT, 6 Rde . . . .
Kerampont, B.P. 80518, 22305 Lannion, France. Phone: +3acmi4, e- e HRNR technique. Finally, in Section VII, we demonstrate
mail: pascal.scalart@enssat.fr. the improved performance of the HRNR, compared to TSNR.



II. NOISE REDUCTION PARAMETERS AND RULES is then estimated by applying the spectral gain to the noisy

In the usual additive noise model, the noisy speech soectrum: .
given by z(t) = s(t) + n(t) wheres(t) andn(t) denote the S(p, k) = Gp, k)X (p, k). ®)
speech and noise signal, respectively. Eét, k), N(p, k) and
X (p, k) represent théth spectral component of the short-time . SNR ANALYSIS TOOL
framep of the speech signal(t), noisen(t) and noisy speech In order to evaluate the behavior of speech enhancement
z(t), respectively. The objective is to find an estimafgp, k) techniques, we propose to use an approach described by
which minimizes the expected value of a given distortioRenevey and Drygajlo [12]. The basic principle is to conside
measure conditionally to a set of spectral noisy featurdfe a priori SNR as a function of the posteriori SNR in
Since the statistical model is generally nonlinear, anchbse order to analyze the behavior of the features defined by the
no direct solution for the spectral estimation exists, wst fir2-tuple (SN Rpost, SN Rprio).
derive an SNR estimate from the noisy features. An estimateln the additive model, the amplitude of the noisy signal can
of S(p,k) is subsequently obtained by applying a spectrile expressed as
gain G(p, k) to each short-time spectral componétp, k). X (p, k)| =
The choice of the distortion measure determines the gakn P;
behavior,i.e. the trade-off between noise reduction and speech/|S(p, k)|2 + [N (p, k)|2 + 2|S(p, k)|| N (p, k)| cos a(p, k)
distortion. However, the key parameter is the estimated SNR (6)
because it determines the efficiency of the speech enhantemehere a(p, k) is the phase difference betweet{p, k) and
for a given noise power spectrum density (PSD). N(p, k). Assuming the knowledge of the clean speech and
Most of the classic speech enhancement techniques reqtiire noise, the locah posteriori and a priori SNRs, can be
the evaluation of two parameters: theposteriori SNR and defined by

the a priori SNR, respectively defined b oca X(p, k)|?
P pectively y SN Rzl (p, k) = PP ™
X (p k)|2 IN(p, k)|
SNRpost(pa k) = 7725 (l) and
EHN(p’k” ] SNRlocal k |S(p, k)|2 8
and E[S(p, k) 2] T i
SN Rprio(p, k) = %, (2)  By-replacing| X (p, k)| in (7) by its expression (6) and using
E[[N(p, k)|?] :
(8), it comes
where H.] is the expectation operator. We define another B
parameter, thénstantaneous SNR, as: SNRG (p, k) =
X(p,k)|> — E[|N(p, k)|? 1+ SNR(p k) 4 24/ SN Recal (p k k). (9
SNR/”Lst (])7 k) — | (p7 E)[| N []L 2(]107 )‘ ] + S R])T‘ZO (p7 ) + S RpTlO (p7 )Cosa(p? ) ( )
N (p, k)| Note that this relationship depends an(p,k) which is
= SNR,st(p, k) — 1, (3) an uncontrolled parameter in classic speech enhancement

techniques. For example, in the derivation of the classic

which can be interpreted as a direct estimation of the lacakyjener filter. the SN R +(p, k) is assumed to be equal to
’ poSs ’

priori SNR in a spectral subtraction approach [8]. Actually, + SNR,.i0(p, k) which corresponds to a constant phase
this parameter is useful to evaluate the accuracy of &heiference a(p,k) = T (i.e noise and clean speech are
, 5 (e

priori SNR estimator. In practical implementations of spee pposed to add in quadrature).

enhancement systems, the PSDs of spedthi( )°] and | the following, the discussion will be illustrated using a
noise E|N (p, k)|*] are unknown since only the noisy speecentence corrupted by car noiselatlB global SNR but it can
spectrumX (p, k) is available. Thus, both treeposteriori SNR e generalized to other noise types and SNR conditions. The
and thea priori SNR have t°2 be est|mzj\ted. The estimatiofyayeform and spectrum of this signal are shown in Fig. 1.(a)
of the noise PSD EN(p, k)], noted 4, (p,k), will not  gnq () respectively. The relationship expressed by (9) is
be described in the paper. It can be practically estimatflsirated in Fig. 2. It presents treepriori SNR versus the

during speech pauses using a classic recursive relatioor[l]posteriori SNR in the ideal case where the clean speech and
continuously using the Minimum Statistics [6] or the Minimg, jise amplitudes are known.

Controlled Recursive Averaging approach [7] to get & more The features lie between two curves, the solid one (resp.

accurate estimate in case of noise level fluctuations. dashed) corresponds to the limit case whet@,k) = 0
Then, the spectral gai6(p, k) is obtained by the function (esp 1), i.e. noise and clean speech spectral components add
G(p, k) :g(SNRpM-O(p, k),SNRpost(p, k) @4 phase (resp. phase oppos_mo_n). _These two limits define
an area where the feature distribution depends on the true
depending on the chosen distortion measure. The fungtiorphase differencex(p, k). Note that since only the amplitudes
can be chosen among the different gain functions proposafdthe signals are used to obtain the SNRs involved in the
in the literature €.9. amplitude or power spectral subtractionspectral gain computation, estimation errors inherentht t
Wiener filtering, MMSE STSA, MMSE LSA, OM LSAegtc.) speech enhancement method cannot be avoided even knowing
[9], [8], [10], [2], [1], [11]. The resulting speech speatnu the clean speech.



X 10' @ SNR estimates. It will then be used as a reference in the next

o sections.
e}
2
g 0 IV. DECISION-DIRECTED APPROACH
< I . . .
— ‘ ‘ ‘ ‘ ‘ ‘ ‘ A. Principle of the Decision-Directed algorithm
In the sequel we use a classic noise estimation based
= on voice activity detection [1] (in contrast with continuu
I estimations [6], [7]). Using the obtained noise PSD, the
; posteriori anda priori SNRs are computed as follows:
()
s N X(p, k)?
SNRpost(pa k) = ‘A(pi)'a (10)
05 1 15 2 25 3 35 Yn (s k)
Time (s) and
Fig. 1. (a) Waveform and (b) spectrum of the French sentelfees”trois |§(p —1, kz)|2
heures je re-traverserai le salon.” corrupted by car ndidedB global SNR. SNRpmo( k) = 5W
40 +(1 = B)PISN Rpos (p, k) — 1], (11)
20! where B.] denotes the half-wave rectification aldp — 1, k)
?g e is the estimated speech spectrum at previous frame. dhis
e o priori SNR estimator corresponds to the so-called decision-
o8 <Ay directed approach [2], [3] whose behavior is controlled Hogy t
& parameters (typically g = 0.98). Without loss of generality,
—20r ‘ in the following the chosen spectral gain (functigin (4)) is
1 the Wiener filter, and then
_40 i i i i i i
-10 -5 0 5 100 15 20 25 30 SN Rmo(p, k)

NR* (dB) Gpp(p k) = (12)
post

14 SNRW,O(p, k)

Fig. 2. SNRi5e! versusSNR ! assuming the knowledge of clean The approach defined by (10), (11) and (12) is called the DD
speech and noise amplitudes. The two lines illustrate emua®) when algorithm
a(p, k) = 0 (solid line) anda(p, k) = = (dashed line). '

B. Analysis of the Decision-Directed algorithm
Figure 3 illustrates the case where an estimation of theenois we can emphasize two effects of the DD algorithm which
PSD is used in (7) and (8) instead of the local noise bHhye been interpreted by Cappm [3]:
still assuming the knowledge of the clean speech amplitude.
In that case, thes N RI2¢%! corresponds t5 N R,,s: Of (1).

‘post

» When theinstantaneous SNR is much larger than 0dB,

h lead . : SNRpTio(p, k) corresponds to a frame delayed version
The noise PSD estimation errors lead to an important feature of the instantaneous SNR.

dispersion outside of the boundary for low SNR values and | When theinstantaneous SNR is lower or close to 0dB
slightly decrease the quality of the enhanced speech. Given SNR... (p.k) corresponds to a highly smoothed ahd
prio\t’

40 delayed version of thénstantaneous SNR. Thus the
variance of thea priori SNR is reduced compared to
the instantaneous SNR. The direct consequence for the
enhanced speech is the reduction of the musical noise
effect.

The delay inherent to the DD algorithm is a drawback espe-
cially in the speech transients,g speech onset and offset.
Furthermore, this delay introduces a bias in gain estimatio
which limits noise reduction performance and generates an
00 5 o - 1‘0 1‘5 2‘0 2‘5 20 annoying reverbera_tion effect. _

In order to describe the behavior of the DD approach, the

SNR2 or NR , (dB) _ o
po 2-tuple (SNRpost,SNRpm) is representeq in Fig. 4 where
Fig. 3. SNRL"C‘;Z versusSNle’ocgl assuming the knowledge of cleanthe a posteriori ar.]da priori SNRs ar? e.StImated using .(10)
speech amplitude but the noise BSD being estimated. The tesilinstrate  @Nd (11), respectively. To analyze this figure, the refezenc
equation (9) whenx(p, k) = 0 (solid line) anda(p, k) = = (dashed line). ~the case when SNRs are computed using known clean speech
amplitude and estimated noise PS®&. Fig. 3). In Fig. 4 a
a noise PSD estimation, this is the case leading to the betinge part of thea priori SNR features (approximately 60%
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in a very high amount of musical noise, leading to a poor
signal quality. However, this technique leads to the lowest
degradation level for the speech components themselves. Th

% a priori SNR, estimated in the DD approach, is widely used
%-g instead of thea posteriori SNR because the musical noise is
% reduced to an acceptable level. However, this estimated SNR

is biased and then the performance is reduced during speech
activity. From a subjective point of view, this bias is paveel
as a reverberation effect.

In order to measure the performance of SNR estimators,
it is useful to compare the estimated SNR values to the true
. D . ~ (local) ones as shown in Fig. 5 where the estimated SNRs are
Fig. 4. SNR,,, VersusSN Ryos; for the DD approach. The three lines gisplayed versus the true SNRs in (7) and (8). The SNRs are
illustrate equation (9) whem(p, k) = 0 (bold solid line), a(p, k) = =« . .
(dashed line) and:(p, k) = Z (thin solid line). plotted for 59 frames of speec_h activity to focus the analysi
on the behavior of the SNR estimators for speech components.

in this case) is underestimated which illustrates the eiféc

the DD bias on SNR estimation. @NR
If we consider the case where a speech component appe ' ' ' ' ' '
abruptly at framep, assuming that tha priori SNR is zero . 20 .
m |
at framep — 1, then for the current frame we have <)
g Or
SN Ryriy(p ) = (L= BPISN Ryl ) 1) (13) &
_20,
Actually, the estimate@ priori SNR will be a version of the
instantaneous SNR attenuated byl — ). A typical value -{910 30 20 -10 0 10 20 3c
8 = 0.98 leads to an attenuation of almakstdB. Note that if SNR™ (dB)
a(p, k) = Z, equation (9) becomes post
° (0) S\lRprio

SNRI (p, k) = SNRIS (p,k) — 1 = SNRI (p, k).
(14)
This relationship is illustrated in Fig. 4 by the thin solidd.
Thus, the attenuation introduced ly— g in equation (13)
is materialized by a high concentration of features aroul,
a shifted version (by—17dB) of this thin line curve. This
offset corresponds to the maximum bias and it is consiste

BT CR PR O o4 7 VA

with the degradation introduced by the DD approach durir 220 30 -20 -10 0 10 20 3C
speech onsets and more generally when speech amplit NRoA (dB)

. . . . . prio
increases rapidly. Note that i increases, the bias increases
too, further reducing the musical noise but introducingrgda Fig. 5. Estimated SNRs versus true SNRe. (ocal SNRs) in case of (a)

underestimation of tha priori SNR. a posteriori SNR and (b)a priori SNR. The bold line represents a perfect

. . . estimator and the thin line represents the mean of the estingt€dversus
We can also observe in Fig. 4 that soraepriori SNR 1o e SNR.

features are overestimated. This case occurs when a speech
component disappears abrupilg P[SN R, (p, k) —1] =0

leading to Figure 5.(a) illustrates tha posteriori SNR estimated in
. DD ‘g(p —1,k)2 the way proposed in equation (10) and Fig 5.(b) #hpriori
SNR,.;,(p, k) = ﬁW (15) SNR estimated using the DD approach given by equation (11).

_ ~In these two cases, the bold line corresponds to a perfect
whereas a null value would be the best estimate. This overegiNR estimator § VR = SNR'!) that can be used as a

mation is related to the speech spectrum of the previoustfrarfeference to evaluate the performance of the real estisidtor
The reverberation effect characteristic of the DD appradachig gpvious that the features corresponding to ahgosteriori
explained by both underestimation and overestimation ef ti\R estimator are closer to the reference bold line and less

a priori SNR features. dispersed than tha priori SNR estimator ones.
The dispersion observed for the two cases (a) and (b) of
C. Comparison between a posteriori and a priori SNRs Fig. 5 can be characterized by the correlation coefficienthvh

It is interesting to underline the behavior of tagosteriori can be computed as
anda priori SNR estimators. It is well known that using only
the a posteriori SNR to enhance the noisy speech results p=



E[(SNR — E[SNR])(SNR!>**! — E[SNRloe!])] in this case the previous estimator of (19) degeneratedtieto

\/E[(SNR . E[SNR])Q]E[(SNRZOCGZ o E[SNRZOCH‘Z])Q} . fOllOWing particular case
(16) o TSNR ‘GDD(pa k)X(pa k)|2
For typical cases depicted in Fig. 5, we obtain,; = 0.79 SNR,., (p.k)= A F) .

a.ndpp”.‘) = 0.23 which is consistent with the ob;erved featurerhis avoids to introduce an additional processing delagesin
dispersion for the two cases (a) and (b) of Fig 5, a smallﬁ{

: . ) . . e term using the future is not required. Furthermore as
correlation coefficient leading to a greater dispersion. RVhe,, : . :

e ; . 8. = 1, the musical noise level will be reduced to the lowest
generalizing to a wider range of noise types and SNR levels i

4 .~ “level allowed by the DD approach. The choice ®f= 1 is
\évsja?ik();erved that,,.i, andpyos, are related by the following valid only for the second step in order to refine the first step

estimation: actually3 is set to a typical value 0§.98 for the
Pprio ~ Ppost — 07 5. (17) first step.

(20)

In Fig. 5.(a) and (b), the thin line represents the mean of Finally, we compute the spectral gain

i 1 i i ~ TSNR -
the gstlmated SNR knowing the true SNR and is theorencalleSNR(p’ k)=h (SNRWO (0, k), SN R ot (p, k)) (1)
obtained as follows
R : which is used to enhance the noisy speech
E[SNR|SN R'"c| = / shr p(sir|SNR) dshr (18) R
where p is the probability density function. The mean Qfote thath may be different from the functiop defined in
the estimated SNR is closer to the perfect estimator for tkl&:)_ However, without loss of generality, in the followinket

a posteriori SNR estimator. It is slightly underestimated fogposen spectral gain is the Wiener filter too, and then
high SNR whereas for tha priori SNR the underestimation  TSNR

is large for SNR greater than-17dB. However, since the SNR,., (pk)
dispersion is high for thea priori SNR features, even if Grsnr(p, k) = ~ TSNR :
the mean is largely underestimated, the case where SNR L+ SNRyo ()
features are overestimated exists. Furthermore,ath®iori This algorithm in two steps defined by (10), (11), (20) and
SNR is overestimated for SNR smaller thai7dB. Finally, (23) is called the TSNR technique.

these results confirm that thee posteriori SNR estimator is

more reliable than thea priori SNR estimator for speechp Theoretical analysis of the TSNR technique
components.

(23)

The noisy signal described in Section Il has been processed
by DD and TSNR algorithms. The typical behaviors of these
V. TWO-STEP NOISE REDUCTION TECHNIQUE algorithms are illustrated in Fig. 6 where the time varying

A. Principle of the TS\R technique SNRs at frequency 46? Hz are displayed. The first 20 framgs
) and the last 17 contain only car noise and the frames in

In order to enhance the performance of the noise reductiggnyeen contain noisy speech (SNR=12dB) including speech

process, we propose to estimate #y@riori SNR in a two-step gnset and offset. The thin solid line represents the timgingr
procedure. The DD algorithm introduces a frame delay when

the parameteps is close to one. Consequently, the spectr: ' ' ' ' '
gain computed at current framematches the previous frame 20|
p — 1. Based on this fact, we propose to compute the spectm
gain for the next frame + 1 using the DD approach and to2 Of
apply it to the current frame because of the frame delay. Ttg
leads to an algorithm in two steps. —20
In the first step, using the DD algorithm, we compute th ‘ ‘
spectral gainGpp(p, k) as described in (12). In the seconc 0 10 20

30 40 50

step, this gain is used to estimate th@riori SNR at frame Short-Time Frames
+1:
p Fig. 6.  SNR evolution over short-time frameg & 467 Hz). Thin solid
~ TSNR ~ DD line: instantaneous SNR; dashed linea priori SNR for the DD algorithm;
SNRprio (p, k’) = SNRpTio(p+17 k’) = Bold solid line:a priori SNR for the TSNR algorithm.

3 |GDD(%7a k)X (p, k)|2+(1—ﬁ/)P[SNRpost(p+1,k)—l], instantaneous SNR. The dashed line and the bold solid one
Yn (D k) represent the priori SNR evolutions for the DD algorithm

, _(19) and for the TSNR algorithm, respectively. From Fig. 6, the

where 3 plays the same role as but can have a different o o,i0r of the TSNR algorithm can be described as follows

value. Note that to computENRpost(p + 1,k) we need the . .
knowledge of the future framé& (p + 1, k) which introduces  * WbenT;r]\veénstantaneous SNR is much larger than 0dB,

an additional processing delay and may be incompatible with SNV Bprio (P, F) foIIows[t)P})einstantaneous SNR without

the desired application. Thus, we propose to chgdse: 1, delay contrary toSNRpm(p, k). Furthermore, when



SN Rint(p, k) increases or decreases (speech onset or( (1 — B)P[SN Rposi(p, k) — 1] >ZSNR (p. k)
post b, .

offset), the response cﬂ’Né%TjiVR(p, k) is also instan- 14 (1 = B)P[SN Rpost (p, k) — 1]
taneous while that o8N R,,,..,(p, k) is delayed. _ _ _ (25)

. When theinstanga}{ggous SNR is lower than or close to BY searching the intersection between the curves defined by
0dB, theSNRZm (p, k) is further reduced comparedeguations (24) and (25) we show that if

~ DD .
to SNR,,;,(p, k). Furthermore, it appears that the sec- 1

ond step helps in reducing the delay introduced by the SN Rpost(p. k) > 35 (1 + 26+ 114;35) (26)
smoothing effect even when the SNR is small, while
keeping the desired smoothing effect. This behavior iben the TSNR approach delivers a greater SNR than the DD
consistent with the fact tha' = 1 in the second step one. Classically3 = 0.98 and this threshold is almost equal to
(20) which is a decision-directed estimator too, so b§.4dB. Consequently, if a signal component appears abruptly
increasing@' the residual musical noise is reduced to that framep, thus increasing tha posteriori SNR, the estimated
lowest level allowed by the DD approach. a priori SNR tends to the posteriori SNR suppressing the
ias introduced by the DD approach. This bias decreases when
a posteriori SNR increases. But if speech is absent at
ame p too, keeping thea posteriori SNR to a low level,
IS estimatedh priori SNR becomes lower than for the DD
pproach further limiting the musical noise.
The case corresponding to the upper limit of the features
eOJ Fig. 7 essentially occurs when treepriori SNR is high
gwﬁrestimated by DD approach or not) at frampe— 1

To summarize, the TSNR algorithm improves the nois
reduction performance since the gain matches to the curr
frame whatever the SNR. The main advantages of this
proach are the ability to preserve speech onsets and offs
and to successfully remove the annoying reverberatiorcieffé
typical of the DD approach. Note that in practice this reeerb
ation effect can be reduced by increasing the overlap betw

successive frames but cannot be suppressed whereas the T LN | Cf ) hen th ral h
approach makes it possible with a typical overlap 6. and becomes low at framg, 1.6 when the spectral speec

. . : component decays rapidly. In that case, we can derive from
A:n analysls %‘;55‘5 TSNR alg(')rlth'm usmg thg 2.-tuple€11) the following approximation [3]:
(SNRyost, SNR,,;, ) representation is depicted in Fig. 7. b
It is possible to distinguish two asymptotical behaviorsreo SNR,,..o(p, k) ~ BSN Rinst(p — 1, k). (27)
sponding to high point density in the feature space.
P g anp y P So, the spectral gain obtained after the first step can be
approximated by

40
SNRins - 13 k
" Gop(p. k)~ 5 il ZLE) )
™ 1+6SNRznst(p_17k)
e A
S, ol Furthermore, by considering th&tVR;,..(p — 1, k) > 1 and
LS that 5 is very close to 1, (28) reduces ®pp(p, k) ~ 1. If
G 20 we introduce this approximation in equation (20), this kad
- to
~ TSNR ~ N
—40\———‘ — AT L L L L L SNRprio (Pa k) ~ SNRpost (P, k) ~ SNRinst (P, k) (29)
-10 -5 0 5 100 15 20 25 €
S\II\Rpoi (dB) which explains that the shape of the upper limit is a straight

line. This refinement suppresses topriori SNR overestima-
Fig. 7. SNRZZ(I,VR versusSN Rpos: for the TSNR approach. The three 1ON- _ -
lines illustrate equation (9) whem(p, k) = 0 (bold solid line),a(p, k) = As a conclusion, the TSNR approach has the ability to
(dashed line) and(p, k) = 3 (thin solid line). preserve speech onsets and offsets and is able to suppeess th
reverberation effect typical of the DD approach. For highRSN

The case corresponding to the lower limit of the featurdge @ priori SNR underestimation which is due to the delay
occurs when no speech is present in the previous frame  introduced by the DD approach is suppressed while for low
leading toS(p — 1, k) = 0. Then at framey the DD approach SNR the underestimation is preserved in order to achieve the

gives the following estimation for tha priori SNR: musical noise suppression. Thepriori SNR overestimation
is also suppressed.
DD

SN Byrio (0 k) = (1 = BIPISN Rpoue(p. k) 1] (24) VI. SPEECH HARMONIC REGENERATION

which introduces an attenuation of almost 17dBi& 0.98. The output signalS(p, k), or 4(t) in the time domain,
When refining thea priori SNR estimation by the second stembtained by the TSNR technique presented in the previous
according to (20) and using (12) and (10), the TSNR approaséction still suffers from distortions. This is inherent tle
leads to estimation errors introduced by the noise spectrum estimat
since it is very difficult to get reliable instantaneous msties

TSNR . . . . . .
(p, k) = in single channel noise reduction techniques. Since 80% of

prio

SNR



the pronounced sounds are voiced in average, the distertisame positions as in clean speech. However, the harmonic
generally turn out to be harmonic distortion. Indeed son@mplitudes of this artificial signal are biased compared to
harmonics are considered as noise-only components and @dean speech. As a consequence, this sigpal...(t) cannot
suppressed. We propose to take advantage of the harmdrécused directly as clean speech estimation. Neverthetess,
structure of voiced speech to prevent this distortion. lrat t contains a very useful information that can be exploited to
purpose, we propose to process the distorted signal toecreatfine thea priori SNR :

a fully harmonic signal where all the missing harmonics are . _wrNR

regenerated. This signal will then be used to compute argpec prio (P> k) =

gain able to preserve the speech harmonics. This will bedall  ,;, £)(S(p, k)2 + (1 — p(p, k)| Sharmo(p, k)|?
the speech harmonic regeneration step and can be used to

ok
improve the results of any noise reduction technique and not ﬁ(p ) -
only the TSNR one. The p(p, k) parameter is used to control the mixing level

of [S(p, k)2 and [Sharmo(p, k)|? (0 < p(p,k) < 1). This
. . : mixing is necessary because the non-linear function is table
A. Principle of harmonic regeneration restore harmonics at the desired frequencies, but witrebias
A simple and efficient way to restore speech harmoniegnplitudes. Then the behavior of this parameter should be :
consists of applying a non-linear functioiiL (e.g. absolute  , when the estimation of(p, k) provided by the TSNR

(1)

value, minimum or maximum relative to a threshott) o aigorithm (for example) is reliable, the harmonic regen-
the time signal enhanced in a first procedure with a classic gration process is not needed ag, k) should be equal
noise reduction technique. Then the artificially restorigta to 1.
Sharmo(t) is obtained by « when the estimation of(p, k) provided by the TSNR
Sharmo(t) = NL(3(t)). (30) falgorlth_m is unreliable, the har_mon_|c regeneration preces
_ is required to correct the estimation aptp, k) should
Note that the restored harmonics &f.,.(t) are created be equal tad (or any other constant value depending on

at the same positions as the clean speech ones. This very the chosen non-linear function).

interesting and important characteristic is implicitlysared e propose to choose(p, k) = Grsnyr(p, k) to match this
because a non-linearity in the time domain is used to restqjgnhavior. Thep(p, k) parameter can also be chosen constant
the harmonics. For illustration, Fig. 8 shows the typicéef to realize a compromise between the two estimaffs, k)
and Sharmo(pv k)

@ : o « HRNR .
The refineda priori SNR, SNR,,.;,  (p, k), is then used
to compute a new spectral gain which will be able to preserve
the harmonics of the speech signal:

~ HRNR -~
= Crnnr(pk) = v (SNRyiy  (0.k), SN Rpout(p. k) -

(32)
The function v can be chosen among the different gain
functions proposed in the literature.d. amplitude or power
spectral subtraction, Wiener filteringtc.) [9], [8], [10], [2],
[1], [11]. Without loss of generality, in the following the

[e2]
o

Ampl. (dB)
N b
5

[o2]
o

Ampl. (dB)

S &

P
@ > 1

=

>

2

@ 60 ‘ chosen spectral gain is the Wiener filter, and then

=40 . HRNR

=3 SNR,_,. K

g2 ‘ ‘ ‘ Gurnr(p k) = APMIZRN(IZ; ) (33)

0 05 1 15 2 25 3 35 4 1+SNR,., (pk)
Frequency (kHz . . . .
a y (dHz) Finally, the resulting speech spectrum is estimated aevisl|

Fig. 8. Effect of the non-linearity on a voiced frame. (a) @lepeech spec- G _
trum; (b) Enhanced speech spectrum using TSNR techniquelriificially S(p, k) = Gurnr(p, k) X(p, k). (34)
restored speech spectrum after harmonic regeneration. This approach, defined by (30), (31), and (33), which has

the ability to preserve the harmonics suppressed by classic
of the non-linearity and illustrates its interest. Figur@®rep- algorithms and thus avoids distortions, is called the Haiimo
resents a reference frame of voiced clean speech. Figwe 8gegeneration Noise Reduction (HRNR) technique.
represents the same frame after being corrupted by noise andclJ
processed by the TSNR algorithm presented in Section V.dt Theoretical analysis of harmonic regeneration
appears clearly that some harmonics have been completel;i_o analyze the harmonic regeneration step, we will focus on
suppressed or severely degraded. Figure 8.(c) repredents t '

artificially restored frame obtained using (30) where the-no? parUcngr nqn—lmearlty, W'thOUt loss pf generall'FyethaIf
. . e . . ~wave rectification. Replacing the non-linear functidi, by
linearity (half wave rectificationj.e. the maximum relative

to 0, has been used in this example) applied to the Sigr%gF Max function in (30), it follows

5(t) has restored the suppressed or degraded harmonics at the Sharmo(t) = Max(5(t),0) = $(t)p(5(¢)) (35)



wherep is defined as will still be an harmonic comb, its fundamental frequency
1 ifu>0 being imposed by the voiced lower part of the spectrum. Then
p(u) = { 0 if u<o (36) the spectrum of the resulting Sign&IT (sp,q,mo(t)) Will be
the result of equation (38) exactly as in voiced only speech
Figure 9 represents a frame of the voiced speech sigial case. However, since the envelope of the harmonic comb is
(dotted line) and the correspondings(t)) signal (dashed rapidly decreasing, each frequency bin is obtained usirg on
line). Note that this signal is scaled to make the figure elearits corresponding neighboring area in the spectrums(of.
It can be observed that the signdk(t)) amounts to a repeti- Then, the unvoiced spectrum part will lead to an unvoiced
tion of an elementary waveform (solid line) with periodicit,  restored spectrum since the harmonics of the spectrustit pf
corresponding to the voiced speech pitch period. Assunfieg twill not be used to restore the unvoiced part.
Now let us consider the case where the full band of speech is
x10 ‘ ‘ ‘ ‘ ‘ unvoiced. The FT op(5(t)) (37) is obviously not an harmonic

== T - comb, it will be an undetermined spectrum. However, the
o 05 | i R convolution in (38) between the unvoiced spectrum and this
E : b ,' 1 undetermined spectrum will automatically lead to an uredic
Ez O = i H spectrum. Thus, in that case too, the unvoiced parts of Bpeec
< 55 will not be degraded by the harmonic regeneration process.
This behavior for unvoiced speech components ensures that
-1t ‘ ‘ ‘ ‘ ‘ ‘ unvoiced speech parts are not degraded by the harmonic
20 40 %)ampleso 100 120 regeneration process.

Fig. 9. Voiced speech framit) (dotted line) and associated scajgd@(t)) C. lllustration of HRNR behavior

signal (dashed line). Repeated elementary waveform (sioky. | . . .
gnal ( ) Rep Y (sote) The principle and an analysis of the HRNR technique have

been proposed in the previous subsections. We propose to
dllustrate its behavior and performance in a typical case of
noisy speech. Figure 10 shows four spectrograms, Fig.)10.(a
represents the noisy speech in the context described in Sec-
. 1 m m tion 1l (car noise at 12dB global SNR), Fig. 10.(b) and
FT(p(5(t)) = T Z R (T) 0 (f N T) 37 Fig. 10.(c) show the enhanced noisy speech using the TSNR
e and HRNR techniques, respectively. Figure 10.(d) reptesen
where corresponds to the Dirac distributioff,denotes the the clean speech and is therefore the reference to compare
continuous frequency anf(7) is the FT of the elementary the results obtained by TSNR and HRNR approaches. Note
waveform taken at discrete frequengy. Note that the sam- that no threshold is used to constraint the noise reduction
pling frequency coincides with the harmonic positions & thfilter of each algorithm to make the spectrograms clearer. By
elementary waveform. Finally, using (35), the FTsaf.-mo (1)  comparing cases (b), (c) and (d) in Fig. 10, it appears that
can be written as many harmonics are preserved using HRNR technique whereas
et m my they are suppressed when using TSNR. So, this example shows
FT(sharmo(t)) = FT(3(t))*— > R (f) 0 (f - f) that taking into account the voiced characteristic of spem
m=-o (38) be used to enhance harmonics completely degraded by noise.

guasi-stationarity of speech over a frame duration, theiEou
transform (FT) ofp(3(¢)) comes down to a sampled versio
(by % steps) of the elementary waveform’s FT:

where 0 is the phase at origin. Thus the spectrum of the

restored signalsnarmo(t), IS the convolution between the

spectrum of(t), signal enhanced by the TSNR as in Fig.8.(b), VII. REsSULTS

and an harmonic comb. This comb has the same fundamentarhe output of the TSNR technique is used as an input of the

frequency as the voiced speech sigi@) which explains the HRNR technique. Hence, the comparison of results obtained

phenomenon of harmonic regeneration. The main advantdgeboth techniques will give the improvement brought by the

of this method is its simplicity to restore speech harmoanics harmonic regeneration process alone. The TSNR technique

desired positions. Furthermore, the envelope@f(p(s(¢))), will then be used as the reference. The sampling frequency

symmetric aboutn = 0, is rapidly decreasing whephn| of the processed signals is 8kHz. Accordingly, the follayvin

increases, thus a missing harmonic is regenerated onlg usgparameters have been chosen: frame dize- 256 (32ms),

the information of the few neighboring harmonics. Of coursavindows overlap50%, FFT's size Nppr = 512. Recall that

because of this behavior, the harmonic regeneration psoct®e spectral gain used for both algorithmsiii equation (4),

will be less efficient if too many harmonics are missiegy. h in equation (21) andy in (32)) is the Wiener filter df.

signal with too small input SNR). (12), (23) and (33)). In the TSNR technique, the parameters
It is also important to investigate the behavior of thare 3 = 0.98 and 3 = 1. In the HRNR technique, the

harmonic regeneration process for unvoiced speech. Letamsen non-linear function is the half wave rectificatich (

consider a hybrid signal where the lower part of the spectruf®5)) and the rule retained for the mixing parameter of (31) i

is voiced and the upper part unvoiced. The FTp6f(t)) (37) p(p,k) = Grsnr(p, k).
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Fig. 10. Speech spectrograms. (a) Noisy speech corrupte@bgaise at
12dB SNR. (b) Noisy speech enhanced by TSNR technique. (isyMpeech
enhanced by HRNR technique. (d) Clean speech.

and enhanced speech. For each sentence the CD values are
averaged during speech activity giving a mean CD. For each
noise type and SNR value, a mean CD is given that is the
result of the averaging of the mean CD obtained for 36
sentences. The proposed HRNR technique achieves the best

TABLE |

A. Objective results MEAN CEPSTRAL DISTANCE BETWEEN CLEAN SPEECH AND SPEECH

To measure the performance of the TSNR and HRN"QNHANCED USINGTSNRAND HRNR TECHNIQUES RESPECTIVELY, FOR
VARIOUS NOISE TYPES ANDSNR CONDITIONS.

techniques, we chose the cepstral distance (CD) [13] asit is
degradation measure correlated with subjective testdtsesiu

is usually admitted that the distortion is not audible if €8 is
below 0.5. An example is given in Fig. 11 based on the noisy
speech of Fig. 10.(a). This figure shows the time variations
of the CD between clean speech and speech enhanced by
TSNR technique, Fig. 11.(b), and speech enhanced by HRNR
technique, Fig. 11.(c), respectively. The clean speechsis d
played in Fig. 11.(a) to ease the interpretation of the Ch& T
CD for HRNR technique is smaller than for TSNR technique,
therefore the HRNR technique introduces less distortibas t
the TSNR resulting in a better quality of the enhanced speech
Note that in Fig. 11.(b) and (c), high peaks are located in
low energy zonescf. Fig. 11.(a)) which are of low perceptual
importance.

Table | generalizes the previous example for a speech
database lasting 72 minutes. This corpus is composed of 4
speakers (2 females and 2 males), 9 sentences per speaker,
5 SNR conditions (0, 6, 12, 18 and 24dB) and 3 noise
types (Street, Car and Babble). The input SNRs are computed

Noise | Input SNR Mean Cepstral Distance
type (dB) TSNR HRNR
0 1.05 1.00
6 0.90 0.81
Street 12 0.75 0.61
18 0.58 0.44
24 0.42 0.31
0 0.89 0.85
6 0.75 0.62
Car 12 0.60 0.44
18 0.46 0.32
24 0.37 0.22
0 1.09 1.03
6 0.89 0.79
Babble 12 0.71 0.58
18 0.52 0.40
24 0.35 0.25

using the ITU-T recommendation P.56 [14] speech voltmetezsults (bold values) under all noise conditions which cori
(SV56). Table | presents values obtained for TSNR and HRNRat this approach succeeds in limiting speech degradation

techniques, the CD being computed between clean spe

@uinoduced by TSNR. These degradations are mainly due to the
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noise PSD estimation errors inherent to single channelcspedevels were judged too critical and then were not retained in
enhancement techniques. However the HRNR techniquethigs subjective test. This test was conducted with 24 lesten
able to overcome this limitation for voiced speech comptsierand using the corpus described in subsection VII-A. The
by regenerating the degraded harmonics in order to computliséeners had to listen the sentences by pairs (TSNR teagniq
spectral gain preserving these harmonics. However, when ttHRNR technique or in reverse order, the order being random)
input SNR is too smallj.e. 0dB, the improvement is small and then rate the second sentence in contrast to the first one.
which confirms the analysis of subsection VI-B. Actually inThe scale goes from -5 to 5 by steps of 1. The listeners used
such a condition, the TSNR approach cannot restore enoubls scale to give global preference that take into accoattt b
harmonics to make the harmonic regeneration process efficigesidual noise level and distortion level. The results iolsté

Based on the database described in the previous paragraph, displayed in Fig. 12. The CMOS (Comparative Mean
Table 1l presents the input SNRs of noisy speech and the

corresponding average segmental SNRs obtained using TSN~ 1.5
and HRNR techniques. The segmental SNR measure takes ir 1) ]
account both residual noise level and speech degradatin ag
. .. o 0.5¢ 1
can be computed, during speech activity, as follows 2
M-1 Lm+L-1 () 8 O |
gSNR=— Y 1010 i=lm 39) 3 -o0s ]
59 M Z Yo LmAL=15(1) — s(1))2 (39 5 -0s —— Street noise
m=0 l=Lm .
. . . -1r - = =Car noise |-
where M is the number of frames that contain active speect | | Babble noise
and! is a discrete-time index. For each noise type and SNF 1.5 12dB 1848 24dB

value, the average segmental SNR is the result of the angragi

of the segmental SNRs obtained for 36 sentences. The HRE}"\BA%OlSZ- Resultz of t?‘é CCR tht blet\Nee“_TSNfR ?r?d Hg&';ﬂaégﬂﬂé
. . . scores and confiaence Intervals are given 1or three an

technique achieves the best results (bold values) undeoiak 24dB) and three noises types (Street, Car and Babble).

conditions. The segmental SNR improvement brought by the

HRNR technique is explained by its ability to preserve thgpinion Score) score and the associated confidence interval
harmonics degraded by the TSNR. are displayed versus the SNR for each noise type. A positive
value indicates that the HRNR technique is preferred to the
TSNR one. We can observe that the HRNR technique is always
preferred, with significant mean scores, to the TSNR tecieiq
which is in agreement with the objective results presemnted i

TABLE Il
OUTPUT AVERAGE SEGMENTALSNRS USINGTSNRAND HRNR
TECHNIQUES IN VARIOUS NOISE ANDSNR CONDITIONS.

Noise | Input SNR || Average segmental SNR (dB Table | and Il. However there is less improvement for the
type (dB) TSNR HRNR babble noise (speech-like noise) than for street and caegoi
0 3.44 367 This is recurrent for speech enhancement techniques as it is
6 816 8.79 difficult to deal with non-stationary noises. We can alsoenot
Street 1 1331 1416 that the amelioration increases with the SNR. As explained
18 18.58 1041 in subsection VI-B, the efficiency of the HRNR technique
24 23.95 24.62 depends on the degradation level of the signal. It is easier t
0 497 531 restore harmonics when only a few are degraded or missing
6 928 0.93 which explains the better behavior for high SNRs.
Car 12 14.01 14.84
18 18.91 19.72 VIIl. CONCLUSION
24 24.04 24.74 In this paper, we have proposed and analyzed a noise
0 3.42 3.69 reduction technique in order to improve the DD approach.
6 791 8.53 The TSNR technique is based on the estimation of ahe
Babble 12 13.29 14.20 priori SNR in two steps. Tha priori SNR estimated using
18 19.03 20.02 the DD approach shows interesting properties but suffers
24 24.78 2571 from a frame delay which is removed by the second step

of the TSNR algorithm. So, this technique has the ability to
immediately track the non-stationarity of the speech digna
o without introducing musical noise. Consequently, the shee
B. Formal subjective test onsets and offsets are preserved and the reverberaticet effe
To confirm the objective results, a formal subjective test haharacteristic of the DD approach is removed.
been conducted. It consists in a Comparative Category §Ratin We have also proposed a noise reduction technique based
(CCR) test compliant into the UIT-T recommendation P.806n the principle of harmonic regeneration. Classic teaheg
[15]. For each algorithm, TSNR and HRNR, the parametenscluding the TSNR, suffer from harmonic distortions when
have been tuned to obtain a satisfactory trade-off betwetr® SNR is low. This is mainly due to estimation errors
noise reduction and speech distortion. The 0 and 6dB SNRroduced by the noise PSD estimator. To solve this proplem



a non-linearity is used to regenerate the degraded harso

of the distorted signal in an efficient way. The resultin

artificial signal helps to refine tha priori SNR which is
then used to compute a spectral gain that preserves spgech PLACE

harmonics, and hence avoids distortions. The role of the ngn
linearity and the principle of harmonic regeneration have
been detailed and analyzed. Results are given in terms

iC
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of

cepstral distance and segmental SNR on a large corpus_of

signals to illustrate the efficiency of the HRNR techniqueseyeiopment, Lannion,

All these results demonstrate the good performance of the
HRNR technique in terms of objective results. For the sake
of completeness, results of a formal subjective test haea be

given and confirm the significant performance improveme

brought by the HRNR technique.
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