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ABSTRACT 
 

Most commercially available reverse osmosis (RO) and nanofiltration (NF) 

membranes are based on the thin film composite (TFC) aromatic polyamide 

membranes. However, they have several disadvantages including low resistance to 

fouling, low chemical and thermal stabilities and limited chlorine tolerance. To 

address these problems, advanced RO/NF membranes are being developed from 

polyimides for water and wastewater treatments. The following three projects have 

resulted from my research.   

(1) Positively charged and solvent resistant NF membranes. The use of solvent 

resistant membranes to facilitate small molecule separations has been a long standing 

industry goal of the chemical and pharmaceutical industries. We developed a solvent 

resistant membrane by chemically cross-linking of polyimide membrane using 

polyethylenimine. This membrane showed excellent stability in almost all organic 

solvents. In addition, this membrane was positively charged due to the amine groups 

remaining on the surface. As a result, high efficiency (> 95%) and selectivity for 

multivalent heavy metal removal was achieved.  

(2) Fouling resistant NF membranes. Antifouling membranes are highly desired 

for “all” applications because fouling will lead to higher energy demand, increase of 

cleaning and corresponding down time and reduced life-time of the membrane 

elements. For fouling prevention, we designed a new membrane system using a 

coating technique to modify membrane surface properties to avoid adsorption of 

foulants like humic acid. A layer of water-soluble polymer such as polyvinyl alcohol 

(PVA), polyacrylic acid (PAA), polyvinyl sulfate (PVS) or sulfonated poly(ether ether 

ketone) (SPEEK), was adsorbed onto the surface of a positively charged membrane. 

The resultant membranes have a smooth and almost neutrally charged surface which 
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showed better fouling resistance than both the positively charged NF membranes and 

commercially available negatively charged NTR-7450 membrane. In addition, these 

membranes showed high efficiency for removal of multivalent ions (> 95% for both 

cations and anions).  Therefore, these antifouling surfaces can be potentially used for 

water softening, water desalination and wastewater treatment in a membrane 

bioreactor (MBR) process.  

(3) Thermally stable RO membranes. Commercial RO membranes cannot be 

used at temperature higher than 45°C due to the use of polysulfone substrate, which 

often limits their applications in industries. We successfully developed polyimides as 

the membrane substrate for thermally stable RO membranes due to their high thermal 

resistance. The polyimide-based composite polyamide membranes showed 

desalination performance comparable to the commercial TFC membrane. However, 

the key advantage of the polyimide-based membrane is its high thermal stability. As 

the feed temperature increased from 25oC to 95oC, the water flux increased 5 - 6 times 

while the salt rejection almost kept constant. This membrane appears to provide a 

unique solution for hot water desalination and also a feasible way to improve the 

water productivity by increasing the operating temperature without any drop in salt 

rejection. 
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CHAPTER 1  

 
INTRODUCTION 

 
1.1 Reverse osmosis (RO) and nanofiltration (NF) membranes – materials, 

structure and limits 

The reverse osmosis process which uses polymeric membranes to achieve 

selective mass transport has become the simplest and most efficient technique to 

desalt the seawater and brackish water [1]. The desalination performance of a RO 

membrane depends largely on the membrane material and the membrane structure [2]. 

An industrially useful RO membrane must exhibit several characteristics such as high 

water flux, high salt rejection, mechanical stability, tolerance to temperature variation, 

resistance to fouling, and low cost. So far, a number of polymer materials such as 

cellulose acetates [3], polyamides [4, 5, 6], crosslinked poly (furfuryl alcohol) [7] and 

sulfonated polyethersulfone [8] have been used to make RO membranes. Of these, the 

following two have been the most successful.  

Cellulose acetate (CA) was the first high-performance RO membrane material 

discovered. A typical CA membrane exhibits a flux of 0.9 m3m-2day-1 at 425 psi and 

an average NaCl rejection of 97.5% from a 2000 mg/L NaCl feed solution. The main 

advantage of CA is its low price and hydrophilic nature which makes it less prone to 

fouling. CA also has a good chlorine resistance up to 5 ppm. Thus, today, CA 

membranes still maintain a small fraction of the market. However, an inherent 

weakness of CA is that it can be eaten by microorganisms. It also slowly hydrolyzes 

over time and is generally not used above 35oC [9].  
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Figure 1.1 Schematic of thin-film-composite (TFC) RO membrane and the 
chemical structure of the aromatic polyamide thin-film layer [10]. 

A more successful, commercially available RO membrane for desalination is 

the thin film composite (TFC) aromatic polyamide membrane. Since it appeared 

around 1980, the TFC membranes have dominated the water desalination market 

because they show both high flux and very high salt rejection. A typical membrane 

exhibits a NaCl rejection of 99.5 % and a flux of 1.2 m3/m2⋅day for a feed solution of 

35,000 mg/L NaCl at 800 psi [9]. A typical composite reverse osmosis membrane as 

commercially produced today is shown schematically in Figure 1.1 [10]. A base layer 

of a woven or a nonwoven fabric is overcoated with a layer of an anisotropic 

microporous polymer (usually polysulfone). The surface of the microporous support 

is coated with an ultrathin layer of a crosslinked aromatic polyamide. The porous 

support provides mechanical strength, whereas the separation is performed by the thin 

polyamide top-layer [2]. Still aromatic polyamides have several disadvantages 

including: 
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1) Low resistance to fouling. Membrane fouling (scale, silt, biofouling, organic 

fouling etc.) is the main cause of permeate flux decline and loss of water quality.  

2) Limited oxidant tolerance due to the existence of secondary amides and 

electron-rich aromatic rings [11]. Chlorine is commonly used to kill bacteria in water.  

However, membrane selectivity is rapidly and permanently lost once exposed to feed 

water containing more than a few ppb levels of chlorine or hypochlorite disinfectants, 

which means that additional pre-treatment steps to remove chlorine must be taken 

before feed water is exposed to polyamide TFC membranes. Thus, today, the world is 

still waiting for a good composite membrane for RO and NF, which can tolerate about 

20 ppm chlorine or hypochlorite. 

3) Low chemical and thermal stabilities. They could hardly be used at 

temperature higher than 50oC. They are also hardly used in non-aqueous systems 

because the substrate material, polysulfone, can be attacked by many organic solvents 

[12, 13]. It should be noted that hot wastewater from the food, chemical and 

petroleum processing industries are discharged directly and the energy loss is 

estimated at 1-2% of the total energy consumption in the US annually.  

Nanofiltration (NF) has often been described as a process between ultrafiltration 

and reverse osmosis. Commonly, NF membranes are negatively charged so that they 

can efficiently reject multivalent anions such as sulfate and phosphate. The rejection 

to monovalent ions such as sodium chloride varies from 20% to 80% depending on 

the feed concentration and the material and manufacture of the membranes. NF also 

rejects uncharged, dissolved materials with a molecular weight cut-off (MWCO) of 

200 – 1000 Dalton.  The operating pressure for NF is considerably lower than the one 

for RO, which reduces the operating cost significantly. Industrial applications of 

nanofiltration are quite common in the food and dairy sector, in chemical processing, 
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in the pulp and paper industry, and in textiles, although the chief application continues 

to be in the treatment of fresh, process and waste waters. Membrane materials for NF 

include polyethersulfone, polyamides and cellulose derivatives. These materials, 

however, quickly lose their stability in contact with organic solvents. They are also 

subject to scaling and fouling and have low stability at high temperatures and pH 

extremes [2].  

Therefore, the development of advanced membranes with higher thermal and 

chemical resistance as well as anti-fouling properties is critically required for water 

purification. 

1.2 Membrane formation 

So far, two different techniques have been adopted for the development of 

polymeric RO membranes, namely (i) the phase inversion method for asymmetric 

membranes and (ii) the interfacial polymerization technique for composite 

membranes [14].  

Phase inversion is a process in which a polymer in solution is converted to a 

solid in a controlled manner. The change in phase can be initiated in a number of 

ways, such as solvent evaporation, thermal precipitation, immersion precipitation and 

vapor precipitation [15]. In this study, immersion precipitation has been used for 

membrane preparation and will be discussed here briefly. 

In general, a polymer solution is cast as a film on a support (glass plate or non-

woven fabric) with a casting knife. Then this film is immersed into a coagulation bath 

containing a non-solvent. Rapid exchange of solvent and non-solvent occurs with a 

consequently rapid phase separation and solidification at the interface. Once the skin 

forms, counter-diffusion of the solvent and non-solvent decreases and a highly porous, 

open substructure is developed.  
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The membrane morphology and performance are strongly influenced by the 

characteristics of the casting solution, such as the polymer concentration, the intrinsic 

viscosity and the composition. The introduction of a third component as an additive 

into the casting solution has been an effective way to improve the membrane 

performance. This additive may have several effects on the membrane formation 

process. For example, the viscosity of the polymer solution will be changed. Smid et 

al. [16] found that the minimal skin thickness of the membrane is reduced when a 

higher intrinsic viscosity of the polymer is used, leading to a decrease in membrane 

resistance and an increase in water flux through the membrane. Also, specific 

interactions between polymer and additive, solvent and additive, coagulant and 

additive, can be induced. The diffusion rate of solvent and non-solvent may be altered 

as well. Thus, the membrane development is mostly an empirical process and the 

membrane performance is usually optimized based on trial-and-error procedures.  

Interfacial polymerization has been employed to prepare a thin layer of cross-

linked polyamide depositing on a substrate ultrafiltration membrane. The performance 

of the membrane is mainly determined by the monomers used in the interfacial 

polymerization. Even small changes in the monomer’s structure can strongly 

influence the membrane properties. So far, the best results were obtained using 

trimesoyl chloride and m-phenylene-diamine as monomers [2]. The membrane 

performance and morphology is dependent on several synthesis conditions, such as 

concentration of reactants, reaction time and post treatments of the resulting films 

[17]. Moreover, the surface roughness and pore dimension of the substrate membrane 

also have significant effects on the formation of the interfacial film. Generally, a 

smooth surface may favor the formation of a thick defect-free active layer. The 

resultant composite membrane will give high salt rejection and low flux. On the other 
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hand, a rough surface may result in a thin active layer with some defects. So the 

composite membrane may have higher flux with a little sacrifice of salt rejection [18, 

19, 20].  

1.3 Surface modification of membranes 

Surface modification has commonly been used to further improve membrane 

performance of the prepared membranes. According to Zeman and Zydney, almost 

50% of all MF and UF membranes marketed by 1996 were surface modified. 

However, the additive used and procedures followed in commercial membrane 

manufacture remain industrial secrets [21, 22]. By physical and/or chemical 

modification, membrane chemistry, morphology and pore structure may be altered 

resulting in improved selectivity and permeability. Many techniques can be used for 

this purpose and will be briefly summarized below. 

1. Surface functionalization. Functional groups can be introduced to the 

membrane surface by plasma treatment or classical organic reactions like sulfonation. 

For example, by oxygen plasma treatment, aromatic polyamide RO membranes 

showed improved hydrophilicity and permeability due to the formation of carboxyl 

groups [23]. Similar results were observed by low-temperature H2O or CO2 plasma 

treatment of polymers such as polysulfone (PSf), polyethersulfone (PES), 

polyethylene (PE), polyamide (PA), poly-phenylene ether (PPE), poly(methyl 

methacrylate) (PMMA), etc. [24, 25, 26]. Sulfonic goups can be introduced to 

polymer membranes by direct reaction of cross-linked membranes based on 

polystyrene with concentrated sulfuric acid [27] or by blending polysulfone with 

sulfonated polysulfone [28]. Both water flux and salt rejection were thus increased. 

Polyacrylonitrile (PAN) membranes could be treated with NaOH or 3-(dimethylamino) 

propyl amine which correspondingly generated carboxylic or amine groups 
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respectively. The resultant membranes were either negatively or positively charged 

depending on the functional groups and their performance to various salts varied 

significantly [29, 30]. 

2. Cross-linking. Membranes are often prepared from soluble polymers by 

phase inversion method. Their solvent resistance is usually low and can be improved 

by cross-linking. Several strategies have been reported in the literature including 

reaction with di- or tri-functional molecules, hydrolysis by base treatment and UV or 

ion-beam irradiation. For example, a membrane prepared from poly(acrylonitrile-co-

glycidyl methacrylate) (PANGMA) with a defined epoxide content was cross-linked 

by ammonolysis reaction yielding an extraordinary solvent-resistant and autoclavable 

membrane [31]. The PAN membranes became resistant to all common organic 

solvents including DMF, DMSO, and NMP after hydrolysis by NaOH, which 

provides a candidate material for either the selective layer or the supporting layer for a 

solvent resistant composite membrane [32]. Polyimide membranes were modified by 

immersing the films in the diamine/methanol solution for a stipulated period of time 

[33]. A series of linear aliphatic cross-linking diamine reagents (ethylenediamine, 

propane-1,3-diamine, and butane-1,4-diamine) were used. This study demonstrated 

for the first time that diamine crosslinked membranes possess high separation 

performance and provide impressive separation efficiency for H2/CO2 separation. 

Membrane surfaces can also be modified both chemically and physically when they 

are exposed to high energy particles. UV/ozone irradiation can break most C-C bonds 

and also can induce chain scission and cross-linking on polymer surface [34]. A 

commercial sulfonated polysulfone membrane was modified by ion-beam irradiation 

[35]. During modification, some of the sulfonic groups on the surface of the 

membrane were broken, which resulted in cross-linking of the polymer. These 
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changes modified the surface morphology of the membrane, and also decreased the 

negative charge of the membrane. It was observed that fouling of the modified 

membrane was significantly less severe than that of the virgin membrane [22]. 

3. Grafting. Most membrane materials such as polysulfone, polyethersulfone, 

polypropylene, polyamide and polyvinylidenefluoride (PVDF) are hydrophobic [36]. 

Although these membranes have excellent thermal, chemical and mechanical 

stabilities, they are easily susceptible to fouling, i.e., nonspecific adsorption of solutes 

on the membrane surface and pores resulting in severe flux decline [21, 36]. 

Therefore the most important purpose of surface modification of membranes is the 

improvement of membrane fouling resistance. A common strategy is to graft a layer 

of hydrophilic polymer on the membrane. Hydrophilic surfaces have proven to be less 

susceptible for fouling and are often reversible [37, 38, 39, 40]. For example, 

hydrophilic polyethylene glycol (PEG) chains have often been grafted on commercial 

polyamide membranes for fouling improvement [41, 42]. Other grafting monomers 

include acrylic acid (AA) [43], N-vinyl pyrrolidone [44], N,N-dimethylaminoethyl 

methacrylate (DMAEMA) [45], and 2-acrylamido-2-methyl-1-propanesulfonic acid 

(AMPS) [46]. The grafting techniques may include UV photoinitiation [44, 46], redox 

initiation [43, 45], and plasma initiation [22, 47]. 

4. Coating. In grafting, hydrophilic species are covalently bonded to the 

membrane surface. Membrane properties are therefore permanently changed and long 

term stability of the membranes may be decreased [48]. In coating, however, the 

chemistry of the initial membranes is retained and a new layer of hydrophilic film 

bearing the antifouling property is coated on top of the membrane surface via 

hydrophobic interactions, hydrogen bonding, van der Waals attractions, and 

electrostatic interactions [48]. Two coating techniques have been frequently applied, 
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namely dip coating and dynamic coating. In dip coating, the membrane is dipped into 

the coating solution and the polymer material is then adsorbed on the membrane 

surface [49, 50]. Dynamic coating can be carried out in dead-end or cross-flow modes. 

The membranes are loaded in a filtration cell with the surface facing the coating 

solution. Then the coating solution is circulated under pressure resulting in the in-situ 

formation of a layer of polymer film on the membrane surface [51]. Poly(vinyl 

alcohol) (PVA) has been widely used as a coating material for commercial polyamide 

membranes to improve their fouling resistance [52, 53]. To increase the chemical, 

thermal and mechanical stability of PVA, cross-linking was often conducted by 

reacting with aldehydes, anhydrides or diisocyanates etc. [54, 55, 56]. In recent years, 

polyelectrolytes have been used as coating materials to modify membrane charge and 

hydrophilicity [57]. Such coatings can be multilayer [58] or monolayer [59] and show 

high resistance to common organic foulants like proteins and humic substances. If the 

fouling still occurs, membrane cleaning can be easily applied to regenerate the 

membranes [57, 59]. 

1.4 Polyimide (PI) materials 

Polyimides are the product of a reaction between a dianhydride and a diamine to 

produce a soluble polyamic acid, which is thermally or chemically converted to a 

polyimide by the loss of water. Typically, polyimides are excellent in thermal stability 

due to the stiff aromatic backbones. They are also resistant to a number of solvents 

such as aromatics, aliphatics, chlorinated hydrocarbons, ketones, esters and alcohols. 

Although polyimides are sensitive to alkalinity, they should be impervious to the pH 

encountered in natural feed waters for desalination.  

Most polyimides are infusible and insoluble and thus any products, including 

membranes, need to be processed from polyamic acid solution. For example, 
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Kapton™ polyimide film is processed from polyamic acid utilizing two monomers 

pyromellitic dianhydride (PMDA) and 4,4′-oxydianiline (ODA).  The PMDA/ODA 

polyimide has a very high glass transition temperature of approximately 400 oC and 

excellent resistance to most nonoxidizing acids at room temperature and almost all 

organic solvents [60]. Their thermal resistance allows separations to be performed for 

a long time at elevated temperatures [61]. Still, there are some soluble polyimides 

such as Lenzing P84 prepared from 3,3′,4,4′-benzophenone tetracarboxylic 

dianhydride with 80% toluenediisocynate and 20% methylphenylenediisocyanate 

(BTDA-TDI/MDI) with a glass transition temperature of 315 oC. Apparently, soluble 

polyimides have good processability for membrane development. 

A unique feature of polyimides is their chemical reaction with amines, which 

results in the opening of some of the imide functions to form ortho-diamide functions. 

This reaction can be used to introduce functional groups onto the polyimide 

membrane surface by choosing suitable amines. In particular, by reacting with 

multifunctional amines (di- or higher functional), PIs can be cross-linked so that the 

PI membranes would show improved separation efficiency and solvent resistance. 

[62, 63]. 

1.5 Objectives and organization of this research 

The goals of this project are to develop novel RO and nanofiltration (NF) 

membranes for desalination and water purification, which will greatly outperform 

current state-of-the-art RO/NF membrane systems. During the past 5 years, my 

research has been focusing on the development of positively charged and solvent 

resistant NF membranes, antifouling NF membranes, and thermally stable RO 

membranes. Polyimide materials were used for all the projects. 
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In chapter 2, we described the preparation and characterization of positively 

charged NF membranes by chemical modification of the P84 copolyimide asymmetric 

membranes using branched polyethylenimine (PEI). Optimized membrane 

performance was shown to be 50.9 ± 5.1% salt rejection to a 2.0 g/L NaCl solution 

with a flux of 1.2 ± 0.1 m3m-2 day-1 at 13.8 bar and room temperature. The rejection 

sequence of CaCl2 > NaCl > Na2SO4 indicates a positive charge at the membrane 

surface, which may be attributed to amine groups remaining after the reaction 

between PEI and polyimide. Upon modification, the pores of the membranes were 

filled with PEI molecules so as to cause the membranes to exhibit nanofiltration 

properties. The PEI-modified polyimide membranes likely have a highly cross-linked 

structure which makes these membranes stable in various operating environments 

including high temperature (100 ◦C), organic solvents, and mild acid and base (2 ≤ pH 

≤ 10). These membranes showed efficient removal of multivalent heavy metal ions (> 

95%) and may potentially be used for treatment of industrial wastewater. 

In Chapter 3, a coating technique was applied to prepare an antifouling 

nanofiltration membrane. The positively charged membranes as described in Chapter 

2 had low fouling resistance because of the strong adsorption of common foulants via 

electrostatic attraction. In order to avoid fouling, a layer of water-soluble polymers 

was adsorbed onto the membrane surface in a dynamic manner. With such coatings, 

membrane surface properties such as hydrophilicity, roughness and charge were 

modified to give improved resistance to fouling. Depending on the coating materials, 

the coating layer may be erasable or inerasable. For example, the neutral polymer 

polyvinyl alcohol (PVA) may be adsorbed onto the membrane surface by hydrogen 

bonding. Such interaction becomes weakened during acid cleaning so that the PVA 

layer can be detached. Thus, if membrane fouling occurs, the PVA layer and attached 
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foulants can be removed by acid cleaning to refresh the membrane. Negatively 

charged polymers such as polyacrylic acid (PAA) and polyvinyl sulfate (PVS) can be 

adsorbed onto the membrane surface by electrostatic force. Such strong interactions 

made the coating layers stable during acid cleaning. However, these coating layers 

permit removal of the foulants by a simple treatment with acid. 

In Chapter 4, we attempted to apply the antifouling NF membranes as designed 

in Chapter 3 in a membrane bioreactor (MBR) process. One approach involved the 

use of partially PEI modified P84 copolyimide membranes with improved toughness 

to develop a series of membranes with various surface properties and separation 

capabilities. Another approach dealt with a nearly neutrally charged NF membrane 

developed by adsorption of a layer of negatively charged sulfonated poly(ether ether 

ketone) (SPEEK) onto the surface of a PEI modified PMDA-ODA polyimide 

membrane with positive surface charge. It was found that surface charge had 

significant influence on multivalent ion rejection and fouling resistance. The neutrally 

charged membrane could remove multivalent ions (both cations and anions) more 

efficiently (> 95%) than monovalent ions (80%) due to the size effect; a rejection 

sequence of CaCl2 ≈ MgSO4 ≈ Na2SO4> NaCl was observed. When using bovine 

serum albumin (BSA), humic acid and sodium alginate as the model foulants, the 

neutrally charged membrane exhibited much better fouling resistance than both the 

positively and negatively charged membranes. This result suggests that the foulants 

would less likely deposit onto a neutral membrane due to the elimination of the charge 

interaction between the membrane and the foulants. In addition, the neutrally charged 

NF membrane showed better resistance to activated sludge than the commercial NTR-

7450 membrane, which indicates this membrane may be potentially applied in the 

MBR process. 
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In Chapter 5, we developed a thermally stable RO membrane using PMDA/ODA 

polyimide as a substrate and polyamide as the selective top layer. This substrate 

membrane was prepared by immersion precipitation of a casting solution composed of 

15% polyamic acid (PAA) and 24% ZnCl2 additive. Zinc ions were able to interact 

with the carboxylic groups of PAA forming an ionic cross-linking structure which 

facilitated the formation of a membrane with improved surface properties, mechanical 

strength and permeability. The PAA membranes were chemically imidized by a 

mixture of acetic anhydride and triethylamine at 100 ˚C to prevent pore collapse. 

Composite membranes were developed via interfacial polymerization of m-

phenylenediamine (MPDA) and trimesoyl chloride (TMC) on the polyimide 

membranes. These composite membranes showed 98% rejection to 2.0 g/L NaCl 

solution with a permeation flux of 1.1 m3m-2day-1 at 55.2 bar and room temperature. 

This composite membrane demonstrated good thermal stability. As the test 

temperature increased from 25 ˚C to 95 ˚C, the permeated flux of 2.0 g/L NaCl 

solution increased 5 - 6 times from 0.74 m3m-2day-1 to 3.95 m3m-2day-1 with a stable 

rejection rate when the pressure was fixed at 27.6 bar.  

In summary, my research involves membrane preparation, characterization and 

application. The advanced membranes we have developed can greatly improve the 

separation capability of the commercial RO/NF membranes for desalination, water 

softening, heavy metal removal and organic removal, etc. They can also withstand 

harsh environments including organic solvents, high temperatures, and foulants. 

These membranes appear to display great commercial value. Future research can be 

conducted on the fundamental study of the antifouling mechanisms and the 

application in water purification or wastewater treatment in an MBR process.  
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CHAPTER 2  
 

CHEMICAL MODIFICATION OF P84 COPOLYIMIDE MEMBRANES BY 
POLYETHYLENIMINE FOR NANOFILTRATION 

2.1 Introduction 

In the past few decades, nanofiltration (NF) has emerged as an attractive 

membrane process for removal of colloidal, organic, and ionic contaminants from 

water [1, 2]. Commercial NF membranes are generally prepared as composites 

consisting of an ultrathin (< 200 nm) polymeric film deposited onto the surface of a 

thick, asymmetric porous supporting membrane (usually polysulfone). To date, thin 

film materials have primarily been limited to polyamides prepared by interfacial 

polymerization, while some additional polymeric materials such as sulfonated 

polyethersulfone (SPES), polyvinyl alcohol (PVA) derivatives, and sulfonated 

polyphenylene oxide (SPPO) have also been developed [3]. Although these 

membranes provide a variety of separation capabilities, they are generally negatively 

charged [4] and multivalent anions, like sulfate and phosphate, are rejected more 

effectively than monovalent anions like chloride [1]. Considering the strong influence 

of membrane charge on ion permeation due to the Donnan effect [5], it is of interest to 

develop positively charged NF membranes with enhanced rejection of multivalent 

cations, such as heavy metal ions (e.g. Ni2+, Cu2+, Zn2+, Pb2+) from industrial 

wastewater before discharging [6, 7, 8, 9].  

In order to prepare positively charged membranes, a common method is to 

functionalize the membrane surface with amine and/or ammonium groups. Childs et 

al. developed pore-filled NF membranes by in situ chemical cross-linking of 
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poly(vinylbenzyl chloride) or poly(4-vinylpyridine) in the pores of microporous 

polypropylene membranes [10]. Polyelectrolyte gels containing either tertiary amine 

and quaternary ammonium groups or pyridine and pyridinium groups were formed 

within the pores. Xu and Yang developed a composite membrane whose top layer was 

prepared by reaction of brominated polyphenylene oxide with a mixture of 

trimethylamine and ethylenediamine [11]. The membrane surface in this system 

contained a combination of primary, secondary, and tertiary amines and quaternary 

ammonium groups. Du and Zhao reported another composite membrane wherein the 

top layer was prepared by interfacial crosslinking of poly(N,N-dimethyl-aminoethyl 

methacrylate) using p-xylylene dichloride [12]. In this case only tertiary amines and 

quaternary ammonium chloride groups were present at the membrane surface. 

Recently Wang et al. prepared polyacrylonitrile (PAN) NF membranes by treatment 

of PAN ultrafiltration membranes with 3-(dimethylamino)propyl amine [13]. Upon 

reaction, tertiary amine groups were introduced at the membrane surface, which made 

the membrane positively charged.  

Due to their high mechanical strength, good thermal and chemical stability, 

polyimides (PIs) have been widely used in various membrane processes for separation 

of liquid and gaseous mixtures [14]. A unique feature of PIs is their chemical reaction 

with amines, which results in the opening of some of the imide groups to form ortho-

diamide functionalities. This reaction may be used to introduce functional groups onto 

the PI membrane surface by choosing suitable amines. In particular, by reacting with 

di- or multi-functional amines, PIs can be cross-linked such that the membranes show 
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improved separation efficiency and solvent resistance. For example, Albrecht et al. 

studied the surface functionalization of poly(ether imide) membranes by di- and 

multivalent amines [15]. It was shown when using high molecular weight 

polyethylenimine (PEI) as a modifying agent, poly(ether imide) membranes became 

insoluble even in polar aprotic solvents such as N,N-dimethylacetamide (DMAc). 

High contents of amine groups were detected, making the membranes more 

hydrophilic and positively charged as shown by contact angle and streaming potential 

studies, respectively [15, 16].  

P84, a co-polyimide of 3,3′,4,4′-benzophenone tetracarboxylic dianhydride with 

80% toluenediisocynate and 20% methylphenylenediisocyanate (BTDA-TDI/MDI), 

has a high glass transition temperature (Tg) of 315˚C, good resistance to many organic 

solvents including toluene, hydrocarbons, alcohols and ketones, as well as good 

resistance to a broad range of pH conditions. Chemical modification of P84 

membranes via treatment with diamines yields membranes useful for pervaporation 

dehydration of isopropanol [17] or for nanofiltration in polar aprotic solvents such as 

N,N-dimethylformamide (DMF) and N-methypyrrolidone (NMP) [18]. However, the 

diamines may only serve to act as crosslinkers to improve the chemical stability of the 

P84 membranes. In this study, we used PEI as the modification agent. In addition to 

enhancing membrane stability, this modification provided positively charged NF 

membranes due to the free amine groups at the membranes surface. These PEI-

modified P84 membranes showed good performance for removal of salts, especially 

multivalent metal ions, from water. 
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2.2 Experimental 

2.2.1 Chemicals 

27% P84 solution in dimethylformamide (DMF) was purchased from Inspec 

Fibers GmbH, Lenzing, Austria and used without further treatment. PEI (Mw: 25,000, 

Mn: 10,000) was purchased from Aldrich. All of the organic and inorganic reagents 

were of analytical grade and used as received. 

2.2.2  Preparation of asymmetric porous membranes 

Asymmetric porous P84 membranes were cast using the phase inversion 

method [1]. Casting solutions were prepared by diluting the original 27% polymer 

solution with DMF to give polymer concentrations of 25%, 23% and 21%. Then, the 

polymer solution was cast onto polyester support followed by immediate immersion 

into a room temperature water bath. After precipitation, the membranes were kept in 

the water bath overnight in order to remove the DMF. The membranes were then 

rinsed with and stored in deionized (DI) water prior to further chemical treatment. 

2.2.3 Chemical modification of the P84 membranes 

Chemical modification was conducted by immersing a membrane into a given 

PEI solution at 70˚C for varied amounts of time ranging from 0 to 120 min. The 

membrane was then rinsed several times using DI water to remove any loosely bound 

PEI, and finally stored in DI water until use. In order to determine the optimal 

modification conditions, several PEI solutions were prepared by dissolving PEI in 

either DI water, isopropanol, or a mixture of isopropanol and water (volume 1:1) at 

concentrations of 0.2%, 1% or 5% (wt/vol). 
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2.2.4 Nanofiltration tests 

Desalination performance of the modified P84 membranes was examined using 

a dead-end filtration cell (Sterlitech HP4750) and 300 mL of a 2.0 g/L NaCl aqueous 

feed solution under 13.8 bar and room temperature. The feed solution was stirred at a 

rate of 18.33Hz (1100 rpm) in the cell using a standard magnetic stirrer (Corning 

Stirrer/Hot Plate, Model PC-420) to minimize concentration polarization. Each 

membrane was compacted at a pressure of 13.8 bar for at least 1 h prior to 

measurements to ascertain that a steady state was obtained. The permeated solution 

was then refilled into the feed and permeate samples were collected as appropriate. 

The permeation flux F was determined by measuring the permeation volume V (5-10 

mL, 1.7-3.3% recovery) flowing across the membrane of area A (14.6 cm2) in the 

time period Δt, F (m3m-2day-1) = V/(A × Δt). The NaCl concentration was measured 

using a Cl- ion selective electrode (Cole-Parmer) with an OAKTON Benchtop Ion 510 

Meter. The salt rejection was calculated as R = (1 – Cp/Cf) × 100%, where Cp and Cf 

were the concentrations of the permeate and feed solution, respectively. For each data 

point, 3-5 membrane samples were tested to give an average value. 

Similarly, rejection to CaCl2, NaCl and Na2SO4 at four different initial 

concentrations (0.2, 0.5, 1.0 and 2.0 g/L) in aqueous solution was measured in order 

to qualitatively determine membrane charge. Concentrations of NaCl and CaCl2 were 

measured by a Cl- ion selective electrode and the concentration of Na2SO4 was 

measured by a Na+ ion selective electrode (Cole-Parmer). 
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2.2.5 Physical characterization methods 

Physical characterization was conducted by attenuated total reflectance Fourier 

transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM), 

thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). All 

membrane samples were dried using the solvent exchange method to prevent the 

porous structure from collapsing upon drying. Membranes were immersed in 

isopropanol for 24 hours during which time the solvent was refreshed 3 times in order 

to displace any water contained in the membranes. Subsequently, isopropanol was 

replaced by hexane by the same procedure. Finally, the residual solvent was removed 

from the membranes using vacuum prior to further experiments. 

ATR-FTIR spectra were collected at room temperature over a scanning range of 

600-4000 cm-1 with a resolution of 4.0 cm-1, using a Nexus 670 FT-IR (Thermo 

Electron Corporation, Madison, WI) with a Golden Gate™ MKII Single Reflectance 

ATR (Specac Inc., Woodstock, GA). The spectrometer was installed with a deuterated 

triglycine sulfate-potassium bromide (DTGS-KBr) detector and KBr beamsplitter. 

Spectra collection was performed using FT-IR software (OMNIC, Thermo Electron 

Corporation, Madison, WI).  

SEM images were obtained using a Hitachi S-4700 with 15.0 kV accelerating 

voltage. For cross-sectional observations the polyimide layer was peeled off of the 

polyester support and fractured after immersion in liquid nitrogen. All samples were 

coated by sputtering with gold and palladium before testing. 

DSC was performed on a Mettler-Toledo DSC 821e. For each analysis, 

approximately 20 mg of sample were accurately weighed (± 0.02 mg) into an 
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aluminum pan, which was then hermetically sealed. DSC traces recorded heat flow 

during heating at a rate of 10 ˚C /min over the temperature range 25˚C to 300˚C.  

TGA was performed on a Cahn TherMax 500 TGA system. Roughly 100-200 

mg of each of the polymer samples were heated from room temperature to 700˚C at a 

heating rate of 10 ˚C/min under flowing nitrogen. 

2.2.6 Membrane stability 

Thermal stability of the membranes was performed by annealing membranes 

(previously dried by solvent exchange) at 100 ˚C, 200 ˚C, or 300 ˚C for 2 hours and 

comparing the desalination performance of the membranes before and after annealing.  

Resistance to organic solvents was evaluated by immersing membranes for 16 

hours into one of several representative solvents including tetrahydrofurane (THF), 

methanol (MeOH), acetone, DMF, NMP and DMAc. Desalination performance of the 

membranes before and after solvent treatment was compared. Resistance to aqueous 

solutions of varying pH was evaluated by the same procedure. The pH of these 

solutions was adjusted using HCl or NaOH. 

2.2.7 Membrane performance for removal of multivalent metal ions 

Performance for removal of multivalent metal ions from water was determined 

using a feed solution containing either a single salt of ZnCl2, CuCl2, FeCl3 or AlCl3, 

or a mixture of ZnCl2/NaCl or FeCl3/NaCl. In order to prevent precipitation, all of the 

experiments were carried out at a pH of 2 adjusted by HCl. In the single-salt 

experiments, the salt concentration was 10 mM. For the mixtures, several molar ratios 

were tested, including 1 mM/10 mM, 10 mM/10 mM and 10 mM/1 mM. The 
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concentration of each metal ion in the permeate solutions was determined by ICP-MS 

(PerkinElmer-SCIEX ELAN DRCe ICP-MS).  

2.3 Results and discussion 

2.3.1 P84 membrane preparation 

In order to determine the appropriate polymer concentration for membrane 

development, four casting solutions containing 27%, 25%, 23% or 21% polymer were 

used to develop the P84 membranes by the phase inversion method. Their cross-

sectional and surface morphologies are shown in Figure 2.1. In all cases, a number of 

large parallel finger-like voids can be observed, indicating an instantaneous phase 

separation occurred during the precipitation step due to the strong mutual affinity 

between water and DMF [19]. As the polymer concentration is decreased, larger 

numbers of fingers are observed and the size of the pores at the surface becomes 

larger. This may be due to reduced polymer aggregation at lower polymer 

concentration [20]. These structural differences have a strong influence on mass 

transport through the membrane. As shown in Figure 2.2 (modification time = 0), a 

decrease in polymer concentration corresponds to an increase in water permeability. 

Negligible salt rejection was observed for the unmodified P84 membranes.  

2.3.2 Effect of chemical modification on membrane performance 

Chemical modification of the four as-mentioned P84 membranes was carried 

out by immersion into a PEI solution prepared by dissolving PEI at 1% concentration 

in a mixture of water and isopropanol (volume 1:1) at 70˚C. Figure 2.2 shows the 

effect of modification time on the desalination performance of the four P84 
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Figure 2.1 Cross-sectional (left) and surface (right) morphologies of the P84 
membranes developed from four polymer concentrations. 

membranes. With increasing modification time, salt rejection increased gradually and 

finally reached a stable value while permeation flux decreased throughout the range. 
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For each membrane, the optimum desalination performance was observed as the point 

where salt rejection just reached the maximum. Using this definition, the 27% 

membrane showed its best performance after 20 min modification while the other 

three membranes required 90 min to reach their optimal level. Comparing the 

optimum desalination performance of the four membranes, a trade-off between salt 

rejection and permeation flux can be seen. For example, the membranes developed 

from 27% to 21% concentrations showed decreasing rejections in the order of 70.4 ± 

2.6% > 48.8 ± 2.0% ≈ 50.9 ± 5.1% > 32.9 ± 4.2% whereas the fluxes increased in the 

order of 0.40 ± 0.073 < 0.95 ± 0.28 < 1.2 ± 0.1 < 1.8 ± 0.1 m3m-2day-1, respectively. 

We selected the 23% membrane for further studies because both the salt rejection and 

permeate flux were reasonably high.  

 

Figure 2.2 Effect of modification time on the desalination performance of the 
four P84 membranes. 
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The 23% membrane with 90 min modification was measured with regard to its 

rejections to CaCl2, NaCl, and Na2SO4 at various concentrations. The results are 

shown in Figure 2.3. A rejection sequence of CaCl2 > NaCl > Na2SO4 indicates a 

positive charge for the membrane [5]. Additionally, the decrease in salt rejection with 

increasing salt concentration is consistent with the Donnan exclusion model. As ionic 

strength increases the membrane charge is shielded, resulting in a lower effective 

charge and consequently lower salt rejection [13].  
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Figure 2.3 Salt rejection sequence of the PEI-modified P84 membrane indicating 

the positive charge of the membrane. 

No obvious improvements in membrane performance were found when 

different solvents and different concentrations of PEI were used during modification. 

For example, when water was used as the PEI solvent (see Table 2.1A) the modified 

membranes showed very low permeation flux although the salt rejection was slightly 

improved. On the other hand, when isopropanol was used high permeation flux and 

low salt rejection were obtained. This may be due to increased reactivity of PEI in 
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water versus isopropanol. In addition, with an increase of the PEI concentration from 

0.2% to 5% (see Table 2.1B), only slight increase of salt rejection was obtained. 

However, the permeation flux decreased 20-fold from 1.6 ± 0.4 m3m-2day-1 to 0.08 ± 

0.012 m3m-2day-1. This can be explained by faster reaction in higher PEI 

concentration solutions. Thus, it appears different reaction conditions only affected 

the overall speed of modification. It is also interesting to note permeation flux could 

become very low while there was a limited value of salt rejection. This independent 

variation may be explained by the changes of morphology and chemical composition 

of the membranes during modification. 

Table 2.1 Effect of various modification conditions on membrane performancea 

 
(A) Variation of PEI solventb 
Solvent of PEI Flux (m3m-2day-1) Salt rejection (%) 
Water 0.15 ± 0.02 65.5 ± 2.9 
Isopropanol 4.1 ± 1.2 27.6 ± 4.5 
(B) Variation of PEI concentrationc 
PEI concentration Flux (m3m-2day-1) Salt rejection (%) 
0.2% 1.6 ± 0.4 44.4 ± 7.1 
5% 0.08 ± 0.012 55.0 ± 3.2 
Notes: aMembranes prepared from 23% concentration; Test condition: 2.0 g/L 
NaCl aqueous solution, 13.8 bar and room temperature. bReaction condition: 1% 
PEI, 70˚C, 90min. cReaction condition: PEI in mixture of water and isopropanol 
(vol 1:1), 70oC, 90min. 

2.3.3 Effect of modification on membrane morphology 

For SEM analysis, five membrane samples were prepared by immersing the P84 

membranes in 1% PEI solution in water and isopropanol mixture (volume 1:1) at 

70˚C for 0, 30, 60, 90 and 120 min, respectively. Morphological observations of the 

membrane cross-sections and surfaces are displayed in Figure 2.4. The unmodified 

membrane (0 min) had a pore size of approximately 10 nm. During the reaction with 

PEI, pore size became smaller (30 min) until eventually no pores were observed. It is 
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Figure 2.4 Morphological changes of the P84 membrane cross-sections (left) and 

surfaces (right) when modified by PEI with various modification times. 
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possible that the membrane surface becomes covered by a thin layer of PEI. 

Meanwhile, the pores may be filled by PEI molecules on account of their diffusion 

into the pores and anchoring onto the pore walls. The cross-sectional images show a 

relatively dense layer on top of the membranes. For the unmodified membrane, the 

thickness of the dense layer was about 100 nm. After 30 min modification, the 

thickness of the dense layer increased to approximately 400 nm. With longer 

modification time, the top layer of the membrane became less porous and the dense 

layer became thicker (120 min). Both the decrease in pore size near the membrane 

surface and the increase in thickness of the top dense layer may be responsible for the 

decrease in permeation flux observed in the PEI-modified P84 membranes [21]. 

Initially, PEI molecules may diffuse from both the active layer side and the support 

layer side of the membrane. With the surface pore size decreasing, diffusion from the 

active layer side would slow gradually. However, diffusion from the support layer 

side may continue until the membrane is taken out from the PEI solution. 

Consequently, with high concentration of PEI or long modification time the 

membrane becomes dense and exhibits low permeation flux [15].  

2.3.4 Effect of modification on membrane chemistry 

Changes in chemical structure during the modification process were measured 

by ATR-FTIR and the results are illustrated in Figure 2.5. For the original P84 

membrane, a few characteristic absorption bands were observed at 1778 cm-1 

(symmetric C=O stretching, imide I), 1719 cm-1 (asymmetric C=O stretching, imide I) 

and 1360 cm-1 (C-N-C stretching, imide II). As the chemical reaction progressed, the 
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Figure 2.5 ATR-FTIR spectra of P84 membranes modified by PEI with various 

modification times. 

absorption peaks of the imide I bands gradually diminished and disappeared 

altogether after 90 min. Over this same progression, the characteristic peaks of amide 

groups at 1644 cm-1 (C=O stretching, amide I) and 1547 cm-1 (C-N stretching, amide 

II) appeared and increased progressively [17]. The bands in higher wavenumber 

regimes (4000-2500 cm-1) are shown in the inset of Figure 2.5. The absorption peaks 

at 2968 cm-1and 2926 cm-1 represent CH3 and CH2 groups of P84 polyimide, 

respectively. After reaction with PEI, the absorption band of CH2 group of PEI 

appeared at 2833 cm-1 and became stronger with increasing reaction time. The band at 

3267 cm-1 (N-H vibrations) indicates the existence of free amine groups. Judging 

from the FTIR data, one can conclude that within 90 min of reaction, the imide bonds 

were completely transformed into amide bonds, resulting in the amine modifier 

covalently bound to the P84 membrane with free amine functionalities. Interestingly, 
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there is a good correlation between the extent of modification and the salt rejection 

performance of the membrane. It seems that upon completion of the modification 

membrane surface properties such as chemical composition and pore structure 

remained constant, which made the membrane show a constant value of salt rejection. 

2.3.5 Thermal properties of the PEI-modified P84 membranes 

Thermal properties of the P84 membranes before and after modification were 

investigated by TGA and DSC, and the results are displayed in Figure 2.6 (dTGA) 

and Figure 2.7, respectively. The dTGA trace of the original P84 membrane exhibits 

two decomposition peaks. The first one at < 100 ˚C is attributed to the release of 

absorbed water [17]. The P84 membrane is thermally stable up to 400 ˚C and 
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Figure 2.6 Derivative TGA (dTGA) traces of the P84 membranes modified by 

PEI with various modification times. 
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Figure 2.7 DSC traces of the P84 membranes modified by PEI with various 
modification times. 

degradation of the polymer main chain occurs at 547 ˚C. After modification by PEI, 

however, a new peak at 350 ˚C appears and the peak intensity increases with 

increasing modification time. This result is in good agreement with the ATR-FTIR 

results. That is, with additional reaction time, the membrane takes on more PEI. With 

regard to the DSC curves, the original P84 membrane shows only one transition at 

roughly 100 ˚C, attributed to the evaporation of absorbed water. After modification, 

however, a peak at roughly 180 ˚C gradually appears, corresponding to the reaction of 

re-imidization [22]. The DSC curves suggest the chemical structure of the PEI-

modified P84 membrane is stable up to 150 ˚C. 

Thermal stability of the membranes was confirmed by ATR-FTIR analysis. The 

membranes with 90 min modification were annealed under vacuum for 2 hours at 100 

˚C, 200 ˚C and 300 ˚C, respectively. Figure 2.8 gives the ATR-FTIR spectra of these 
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membranes. No absorption due to imide groups can be detected after 100 ˚C 

treatment, indicating the chemical structure remained intact at 100 ˚C. After treatment 

at 200 ˚C, however, strong imide absorption can be seen and the amide absorption has 

almost disappeared, indicating re-imidization, which is in agreement with the DSC 

result. The spectrum of the 300 ˚C annealed sample still shows the absorption band of 

the CH2 group of PEI at 2822 cm-1, which means the PEI did not burn off completely 

at this temperature. On the other hand, with heat treatment at temperature higher than 

200 ˚C, sample color was observed to change from light yellow to dark brown and the 

membranes became brittle. One possible explanation for this behavior is that the 

polymer undergoes backbone scission with incorporation of an amine as an end group 

[22]. 
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Figure 2.8 ATR-FTIR spectra of the PEI-modified P84 membranes before and 
after heat treatment at various temperatures. 
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2.3.6 Effect of annealing on membrane performance 

Desalination performance of the membranes after annealing is shown in Table 

2.2. Although annealing has been commonly used for improving membrane 

selectivity due to the densification of the selective skins [23], this treatment afforded 

no apparent improvement for this system. Instead, the membranes showed good 

stability at temperature below 100 ˚C. For example, after 100 ˚C treatment, the salt 

rejection and permeation flux were almost unchanged. It is suggested that the PEI-

modified membranes have a rigid cross-linked structure and thus the molecular 

movement is limited at this temperature. It should be noted that the decrease in flux 

upon drying was likely induced by the shrinking of the nanopores due to the strong 

capillary forces [24]. After annealing at 200 ˚C and above, however, pore collapse 

may happen due to re-imidization. Thus, the permeation flux became impractically 

low for nanofiltration although the salt rejection did increase somewhat.  

Table 2.2 Effect of annealing on membrane performancea 
Annealing temperature (oC) Flux (m3m-2day-1)b Salt rejection (%)b 
R.T. 0.48 ± 0.20 57.0 ± 0.7 
100 0.33 ± 0.07 58.3 ± 4.2 
200 0.034 90.5 
300 Very low ----- 
Notes: aMembranes were dried by solvent exchange method and annealing was 
carried out under vacuum for 2h at various temperature. bTest condition: 2.0 g/L 
NaCl aqueous solution, 13.8 bar and room temperature. 

2.3.7 Effect of treatment with organic solvents on membrane performance 

The membrane samples with 90 min modification were treated for 16 hours by 

immersion into one of several organic solvents to examine their solvent resistance. 

Desalination performance of the membranes before and after treatment is shown in 

Table 2.3. It is interesting that both the salt rejection and permeation flux values were 

almost unchanged after treatment by THF, methanol, or acetone. Even after treatment 
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with DMF, NMP or DMAc, salt rejection still did not change much. The slightly 

decreased permeation flux may be caused by swelling and/or capillary forces induced 

by solvent exchange with water. These results suggest both the chemical structure and 

the pore dimension of the membrane should have excellent resistance to most organic 

solvents, since both of these factors are critical for membrane desalination 

performance. This solvent resistance is attributed to the cross-linked structure 

resulting from the reaction between the polyimide and the PEI. Thus this type of 

membrane shows promise for use in solvent-resistant nanofiltration (SRNF).  

Table 2.3 Effect of treatment by organic solvents on membrane performancea 

Solvents 
Before treatment After treatment 

Flux  
(m3m-2day-1)b 

Salt rejection 
(%)b 

Flux  
(m3m-2day-1)b 

Salt rejection 
(%)b 

THF 1.22 49.2 1.25 48.5 
MeOH 1.22 50.0 1.28 51.0 

Acetone 1.28 47.0 1.30 46.1 
DMF 1.06 52.1 0.80 51.4 
NMP 1.10 50.9 0.80 51.0 

DMAc 1.25 48.5 0.70 49.9 
Notes: aThe membranes were immersed into various organic solvents for 16h and 
then immersed into DI water for 2h. bTest condition: 2.0 g/L NaCl aqueous 
solution, 13.8 bar and room temperature.  

2.3.8 Effect of treatment with acids and bases on membrane performance 

In order to examine their pH resistance, the membranes were immersed into 

aqueous solutions with pH between 0 and 12 for 16 hours. Desalination performance 

of the membranes before and after treatment is shown in Table 2.4. It was observed 

that at a pH of 0 the membrane became brittle while at a pH of 12 the membrane 

gelled, probably due to the degradation of the polymer main chain at both of the pH 

extremes. However, under moderate acid and base conditions (2 ≤ pH ≤ 10) the 

membranes showed good stability. It should be noted that after acid treatment the 
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membranes had increased salt rejection, while after base treatment the membranes had 

reduced salt rejection. This rejection variation may be caused by the change of the 

membrane charge strength. Considering the amine groups on the membranes, residual 

acid may make the membranes more positively charged whereas residual base may 

make them less charged. 

Table 2.4 Effect of treatment by acids and bases on membrane performancea 

pHb 
Before treatment After treatment 

Flux  
(m3m-2day-1)c 

Salt rejection 
(%)c 

Flux  
(m3m-2day-1)c 

Salt rejection 
(%)c 

0 1.35 45.9 -----d -----d 
2 1.15 52.7 1.18 58.0 
5 1.25 48.1 1.30 50.3 
8 1.28 49.4 1.28 38.7 
10 1.38 43.0 1.38 35.7 
12 1.25 48.5 -----e -----e 

Notes: aThe membranes were immersed into various acids and bases for 16h and 
then immersed into DI water for 2h. bThe pH was adjusted by HCl and NaOH. 
cTest condition: 2.0 g/L NaCl aqueous solution, 13.8 bar and room temperature.  
dMembranes became brittle. eThe top layer exhibited poor mechanical integrity.  

2.3.9 Membrane performance for removal of multivalent metal ions 

Table 2.5 shows the membrane performance for removal of various metal ions 

from water. It can be seen that the membrane shows better rejection to NaCl in acid 

condition (72.7%) than in neutral condition (50.9 ± 5.1%). This is because the 

membrane became more positively charged in acid. In addition, it can be observed 

that with the same anion Cl-, the rejection increases in the order of Na+ < Zn2+ or Cu2+ 

< Fe3+ or Al3+. Thus, the metal ions with higher valence can be removed more 

efficiently, in agreement with the Donnan effect. The flux variation for each salt may 

be related to ionic concentrations. 
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Table 2.5 Membrane performance for removal of metal ionsa 

Salts Flux (m3m-2day-1)b Rejection (%)b 

NaCl  1.16 72.7 
CuCl2 1.03 92.9 
ZnCl2 0.86 94.5 
FeCl3 0.80 98.2 
AlCl3 0.92 99.2 

Notes: aFeed concentration: 10 mM; pH = 2 adjusted by HCl. bTest 
pressure: 13.8 bar; permeate concentrations were measured by ICP-
MS analysis. 

It is also of interest to consider the separation efficiency in a mixture of ions of 

different valence. As shown in Table 2.6, the rejection to divalent or trivalent ions 

was not significantly affected by the variation of salt concentrations. However, the 

rejection to monovalent Na+ ion was reduced in the presence of large amount of Zn2+ 

or Fe3+. Similar results have been reported in the literature [8]. This ion selectivity 

may be determined by several factors, such as the size and charge of each ion, the 

concentration of anions and cations, and the shielding of membrane charge by ions in 

solution [1]. With large amount of ZnCl2 or FeCl3, the high concentration of counter-

ion Cl- may result in efficient shielding of membrane charge. Although the less 

charged membrane may have decreased rejection to all the cations, it has stronger 

influence on the monovalent cation (Na+) than on the di- or trivalent ions (Zn2+ or 

Fe3+) because of the Donnan effect. On the other hand, the metal ion with higher 

valence has a larger hydrated radius and can hold the water molecules more strongly 

during filtration [25, 26]. For these reasons, the rejection to Na+ ion was decreased 

when mixed with Zn2+ or Fe3+, while the rejection to Zn2+ or Fe3+ was almost 

unchanged. 
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Table 2.6 Rejection of ionic species in a solution containing mixtures of saltsa 
(a) ZnCl2 and NaCl 
Feed Zn2+  

(mM) 
Feed Na+  

(mM) 
Flux  

(m3m-2day-1)b 
Rejection of 

Zn2+ (%)b 
Rejection of 

Na+ (%)b 
1 10 0.96 96.0 72.7 
10 10 0.91 96.1 57.4 
10 1 0.93 97.1 4.8 

(b) FeCl3 and NaCl 

Feed Fe3+  
(mM) 

Feed Na+  
(mM) 

Flux  
(m3m-2day-1)b 

Rejection of 
Fe3+ (%)b 

Rejection of 
Na+ (%)b 

1 10 0.99 78.5 c 69.9 
10 10 0.83 97.0 56.7 
10 1 0.81 97.1 21.3 

Notes: apH = 2 adjusted by HCl. bTest pressure: 13.8 bar; permeate 
concentrations were measured by ICP-MS analysis. cResult may not be accurate 
because permeate concentration was close to the test limit. 

2.4 Conclusions 

This work provided novel positively charged NF membranes via chemical 

modification of P84 asymmetric membranes using PEI as modifier. It was observed 

that the modification conditions affected both the pore size of the membranes and 

their NF properties. For a given P84 membrane, a maximum rejection rate was 

observed at a certain modification time after which point no additional benefit was 

attained with additional reaction time. On the other hand, the flux continued 

decreasing with additional reaction time. It is suggested that the membrane properties 

are governed by both the chemistry and morphology of the membrane.  

Due to their cross-linked structure, the modified membranes showed good 

stability in various conditions, especially in organic solvents and mild acid or base. 

This stability is important for application in treatment of industrial wastewater, for 

example during cleaning after fouling. These positively charged membranes showed 

good performance for multivalent heavy metal removal. Studies are now ongoing to 
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evaluate membrane resistance to fouling, including further modifications to improve 

resistance to common foulants, such as natural organic matter (NOM).  
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CHAPTER 3  
 

USING POLYELECTROLYTE COATINGS TO IMPROVE FOULING 
RESISTANCE OF A POSITIVELY CHARGED NANOFILTRATION 

MEMBRANE 

3.1 Introduction 

Membrane processes are often hindered by fouling due to a buildup of the 

material being rejected [1]. As fouling progresses, membrane productivity declines; 

higher pressures and thus more energy must be expended to achieve the desired 

throughput. Cleaning strategies must be implemented to remove foulant material and 

restore productivity. In many cases, however, the fouling is irreversible and the 

membrane elements must be replaced [2]. Organic impurities in the water such as 

proteins, humic substances, and polysaccharides have been implicated as strong, 

irreversible foulants [3]. Such foulants can adsorb to the membrane surface due to 

hydrophobic interactions, hydrogen bonding, van der Waals attractions, and 

electrostatic interactions [4]. Therefore, an effective method to reduce fouling is to 

modify the membrane surface to minimize these adsorptive interactions between 

foulant and membrane [3, 4, 5]. 

Several surface characteristics of membranes are known to be strongly related 

to fouling such as hydrophilicity, roughness and charge [6, 7]. It has been generally 

acknowledged that membranes with hydrophilic surfaces are less susceptible to 

fouling [4, 8, 9]. Membranes with rougher surfaces are observed to be more favorable 

for foulant attachment resulting in more extensive fouling and faster fouling rates [7, 

10, 11, 12, 13]. For charged organic compounds, electrostatic attraction or repulsion 

forces between the component and the membrane, which depend on pH, influence the 
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degree of fouling; when the surface and foulant have similar charge, foulant 

adsorption is reduced [14, 15]. Therefore, development of membranes with a smooth 

hydrophilic surface that has a surface charge similar to the foulant seems to be 

desirable for antifouling purposes [16].  

Over the last few years researchers have devised various strategies to modify 

membrane surfaces, which can be generally divided into two categories: grafting and 

coating [4]. In grafting, hydrophilic species such as polyethylene glycol and 

polyacrylic acid can be covalently bonded to the membrane surface by chemical, low-

temperature plasma, or photochemical techniques [17, 18, 19, 20, 21]. Although 

surface grafting has shown high fouling resistance, the technique leads to a permanent 

change of membrane chemistry and properties. For example, membrane permeability 

may be reduced because the grafting layer adds an extra hydraulic resistance [6, 17]. 

Grafting may also increase manufacturing costs due to process complications, time 

consumption, and extensive use of organic solvents and monomers [4]. Compared to 

grafting, coating a thin layer of water-soluble polymers or surfactants from solution 

by physical adsorption provides certain distinct advantages for surface modification 

[22, 23, 24, 25]. Adsorbed coatings are relatively simple to apply, the process can be 

performed in existing membrane installations, and the structure of the membrane is 

not likely to be affected by the adsorbed molecules. In addition, the type of coating 

can be tailored to the specific application of interest [25]. Until now, most studies of 

adsorbed coatings have focused on ultrafiltration membranes. Preparation of 
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antifouling nanofiltration membranes using the coating technique has not been 

reported. 

Depending on adsorption affinity with the membrane surface, the adsorbed 

coating layer can be stable or erasable. Thin films formed through layer-by-layer 

(LbL) deposition of positively and negatively charged polyelectrolytes show good 

stability due to electrostatic attraction among the membrane surface and the deposited 

layers [26]. These multilayer polyelectrolyte films have previously been deposited on 

ultrafiltration substrate membranes to prepare composite membranes for nanofiltration 

[26, 27]. Although anti-fouling properties of the LbL membranes are still rarely 

reported [28], this type of membrane may potentially have high fouling resistance due 

to the hydrophilicity of the applied polyelectrolytes and controllable surface charge 

[29]. On the other hand, hydrogen-bonded layer-by-layer films have attracted 

considerable attention in recent years because the hydrogen bonding can be altered by 

changes in solution pH and thus the films can be erased and replaced [30, 31, 32, 33, 

34]. When applying this erasable film to the membrane surface, any foulant material 

that deposits on top of the film could be effectively removed by detaching the film 

from the membrane surface, which leaves behind a clean membrane. It may be much 

easier and more cost-effective to remove and replace the film instead of replacing the 

membrane. To the authors’ knowledge, such an application has not been previously 

proposed.  

In a previous study, positively charged nanofiltration membranes were 

developed by chemical modification of P84 copolyimide membranes using branched 
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polyethylenimine (PEI) [35]. The PEI-modified polyimide membranes (P84-PEI 

membranes) have a highly cross-linked structure which makes these membranes 

stable in various operating environments including high temperature (100˚C), organic 

solvents, and mild acid and base (2 ≤ pH ≤ 10). Meanwhile, due to the Donnan 

repulsion effect, these membranes showed efficient removal of multivalent heavy 

metal ions (> 95%) and may potentially be used for treatment of industrial 

wastewater.  

In the present study, the P84-PEI membranes were further modified by 

adsorption of a layer of polymers from a dilute solution in a dynamic manner [36]. 

Polyvinyl alcohol (PVA), polyacrylic acid (PAA) and polyvinyl sulfate-potassium salt 

(PVS), were tested as modifying agents. The effect of these coatings on membrane 

surface roughness and hydrophilicity was characterized by atomic force microscopy 

(AFM) and contact angle measurements. The charge and pore size of the unmodified 

and modified membranes were qualitatively analyzed using ions and uncharged 

sugars as probes. Stability of the coating layers during acid or base cleaning was 

studied by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-

FTIR). Fouling experiments were carried out in a cross-flow setup using three model 

foulants, bovine serum albumin (BSA), sodium alginate (SA) and humic acid sodium 

salt (HA) representative of proteins, polysaccharides and natural organic matter 

(NOM). The effect of the polymer coatings for fouling prevention was tested with 

respect to both the reduction of flux decline and the cleanability by acid after fouling.  
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3.2 Experimental 

3.2.1 Chemicals 

P84 powder was purchased from HP Polymer Inc. and dried in vacuum at 

160˚C for 12 hours before use. PEI (MW: 25,000), PVA (MW: 89,000 - 98,000), 

PAA (MW: 250,000) and PVS (MW: 170,000) were purchased from Aldrich. Three 

dilute coating solutions with concentrations of 50 mg/L were prepared by dissolving 

PVA, PAA or PVS in deionized (DI) water at 80˚C overnight. The PVS solution was 

filtered before use to remove the insoluble impurities. The pH of the PVA, PAA and 

PVS solutions were 5.7, 4.7, and 5.8, respectively. No pH adjustment was made. The 

model foulants, BSA (MW: 66,000, ≥98%, Sigma), HA (sodium salt, Aldrich) and SA 

(Fluka) were used without further treatment. A concentration of 100 mg/L was 

applied for all the fouling experiments and the pH of these foulant solutions were 6 - 7 

without any adjustment. Three sugars, D-(+)-galactose (Sigma-Aldrich, ≥99%), D-

(+)-maltose monohydrate (Sigma-Aldrich, ≥99%) and D-(+)-raffinose pentahydrate 

(Sigma, ≥99%), were used as received. All of the other inorganic reagents including 

HCl, NaOH, NaCl, Na2SO4, CaCl2 were of analytical grade and used as received.  

3.2.2 Cross-flow apparatus 

A cross-flow system was used for the dynamic coating of polyelectrolyte on 

membrane surfaces and the following fouling experiments. The system was 

continuous, able to achieve steady state, and allowed for long-term operation. The 

cross-flow unit was designed as described in a concurrent study [37]. Running the 

experiment involved placing a rectangular (19.1 cm × 14.0 cm) flat sheet membrane 

of 140 cm2 active area into a permeation cell (SEPA II, GE Osmonics) and securing it 
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with an O-ring and a hydraulic press. A pump was used to circulate the feed solution 

with a flow rate of around 800 mL/min regulated by the variable-frequency motor. 

The trans-membrane pressure was controlled by a metering valve installed in the 

concentrate line immediately after the membrane cell. The operating temperature was 

controlled between 20 and 21˚C by a heat exchanger. For measurement of permeate 

flux, the permeate was fed into a collection vessel mounted on a balance. Balance 

measurements were logged automatically by the data acquisition/control system. For 

continuous balance measurements, a self-emptying collection vessel was used. Data 

analysis was performed with programs written in Matlab. Salt rejection was calculated 

as R = (1 – σp/σf) × 100%, where σp and σf were the conductivity of the permeate and 

the feed, respectively. Conductivity was measured with a bench-top conductivity 

meter (Oakton CON 510). 

3.2.3 Preparation of the positively charged NF membranes (P84-PEI membranes) 

The P84-PEI membranes were prepared with a procedure slightly modified 

from that described previously in Chapter 2 [35]. The casting solution was prepared 

by dissolving P84 powder in N, N-dimethylformamide (DMF) to give a polymer 

concentration of 23%. The polymer solution was then cast onto a polyester support 

(Calendered PET from Crane Nonwovens) followed by immediate immersion into a 

room temperature water bath. After overnight immersion in the water bath the 

membrane was rinsed with and stored in DI water.  

Chemical modification was conducted by immersing a membrane into a 5% PEI 

solution (wt/vol) in a mixture of isopropanol and water (volume 1:1) at 80˚C for 40 - 
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60 min until the desired permeability was obtained. The membrane was then rinsed 

several times using dilute HCl solution at pH 3 to remove any loosely bound PEI, and 

finally stored in DI water until use. 

3.2.4 Preparation of surface coatings onto the P84-PEI membranes 

Surface coating experiments were carried out with the cross-flow apparatus. 

First, the P84-PEI NF membrane was compacted at a pressure of 13.8 bar (200 psi) 

for 10 – 12 hours until a steady state was obtained. In order to accelerate the 

compaction process, a higher pressure of 20.7 bar (300 psi) was applied for several 

hours previously. Six liters of a 2.0 g/L NaCl aqueous solution were used as feed. 

Permeation flux and salt rejection performance of the membrane were recorded. After 

compaction, the membrane was rinsed with copious amounts of DI water to remove 

salt. Then the feed was changed to 6L of a 50 mg/L polyelectrolyte (PVA, PAA or 

PVS) aqueous solution. This feed was circulated for 8 - 12 hours until the flux 

reached a steady state. At this time, the maximum amount of polyelectrolyte was 

assumed to be adsorbed on the membrane surface forming a protective layer. After 

rinsing with DI water to remove any non-sorbed polyelectrolyte, the coated membrane 

was tested for its desalination performance (permeation flux and salt rejection) at 13.8 

bar using 6L of a 2.0 g/L NaCl aqueous solution as feed. This test was conducted to 

examine the stability of the surface coating in the salt solution and the effect of the 

coating on membrane desalination performance.  
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3.2.5 Removability of the surface coatings by acid or base cleaning 

In order to determine if the coating was removable, the coated membrane was 

washed for 10 - 12 hours at a low pressure of 4.8 bar (70 psi) with an HCl solution at 

pH 2. After cleaning, the coated membrane was examined for its desalination 

performance at 13.8 bar using 6L of a 2.0 g/L NaCl aqueous solution as feed. The 

removability of the coating was characterized by comparison of the flux change 

before and after acid cleaning.  

ATR-FTIR measurements were made on three membrane samples coated with 

PVA, PAA and PVS, respectively. Then the samples were cleaned by HCl at pH 2 or 

base at pH 9.1 under stirring for 15 - 20 hours. The base solution was prepared using 

0.1 mol/L NH4Cl solution and 0.1 mol/L NH3·H2O solution with a volume ratio of 2:1 

to give a buffer solution of pH 9.1. The cleaned samples were re-measured by ATR-

FTIR to determine if the coating materials were removed. 

3.2.6 Membrane fouling and cleaning experiments 

For the fouling studies, the uncoated or coated membranes were first compacted 

until a stable flux was reached (refer to section 2.4). Then the feed was changed to 6L 

of an aqueous solution containing 100 mg/L model foulant and 2 g/L NaCl. The 

fouling experiments were performed for 12 - 20 hours, and the flux decline was 

recorded.  

Following the fouling experiments, membrane cleaning was conducted to 

determine if the flux could be restored. The uncoated or coated membranes after 

fouling were washed for 10 - 12 hours at a low pressure of 4.8 bar (70 psi) with an 

HCl solution at pH 2. After cleaning, the membrane was rinsed with copious amounts 
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of DI water. Its desalination performance was examined at 13.8 bar using 6L of a 2.0 

g/L NaCl aqueous solution as feed. The cleanability of the uncoated and coated 

membranes was characterized by comparison of the flux change before and after acid 

cleaning. Conductivity was also measured to determine changes in salt rejection with 

modification. 

3.2.7 Characterization of surface charge and surface pore size 

Surface charge and surface pore size of the uncoated and coated membranes 

were characterized qualitatively using ions and uncharged sugars as probes, 

respectively. The order of rejection to three salts of CaCl2, NaCl and Na2SO4 may 

indicate the membrane surface charge to be negative or positive [1, 38]. Experiments 

were performed using a dead-end filtration cell (Sterlitech HP4750) with a procedure 

as described in a previous study [35]. A 2.0 g/L aqueous solution of each salt was 

used as feed. Salt rejection was calculated from the conductivity of the permeate and 

the feed (see section 2.2).  

 The rejection to uncharged solutes may be determined primarily by the surface 

pore size of the membrane [1, 39]. Therefore, rejection to three sugars galactose (180 

Da), maltose (342 Da) and raffinose (504 Da) was used to characterize relative pore 

size of the uncoated and coated NF membranes. A 10 mmol/L aqueous solution of 

each sugar was used as feed. Sugar concentrations in the permeate and feed solutions 

were determined by a colorimetric method based on treatment with phenol and 

sulfuric acid [40].  
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3.2.8 Physical characterization methods 

ATR-FTIR spectra were collected at room temperature over a scanning range of 

600 - 4000 cm-1 with a resolution of 4.0 cm-1, using a Nexus 670 FT-IR (Thermo 

Electron Corporation, Madison, WI) with a Golden GateTM MKII Single Reflectance 

ATR (Specac Inc., Woodstock, GA). The spectrometer was installed with a deuterated 

triglycine sulfate-potassium bromide (DTGS-KBr) detector and KBr beamsplitter. 

Spectral analysis was performed using FT-IR software (OMNIC, Thermo Electron 

Corporation, Madison, WI).  

Atomic force microscopy (AFM) was performed in air using a Veeco / Digital 

Instruments Dimension 3100 AFM. Surface roughness of the membranes was 

obtained by surface image analysis. Membrane hydrophobicity was estimated by 

water drop contact angle measurement using a goniometer (KSV Instruments Model: 

CAM 200). The dry membranes were fixed flat on a glass slide using double-sided 

tape. Five measurements were taken for the static contact angle immediately after the 

droplet was placed on the membrane. 

3.3 Results and discussion 

3.3.1  Preparation and characterization of membranes with surface coatings  

3.3.1.1 Surface chemistry of the P84-PEI NF membrane 

Figure 3.1 shows the chemical reaction between P84 copolyimide and PEI. It 

can be seen that the resultant P84-PEI NF membrane contains carbonyl, amide, 

amine, ammonium and phenyl groups on the surface. Among them, the amine and 

ammonium groups provide positive charge on the membrane surface [35]. Therefore, 

this membrane could adsorb negatively charged foulants via electrostatic attraction. 
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Common foulants like BSA, HA and SA contain carboxylic groups and thus are 

negatively charged at neutral pH [41, 42, 43].  

 
Figure 3.1 Chemical reaction between P84 copolyimide and branched 

polyethylenimine. 

To address this problem, a polymeric coating was applied as a protective layer. 

By selecting different coating materials the membrane surface properties like 

hydrophilicity, roughness and charge could be modified and optimized for different 

feed compositions. In this research, we used three high molecular weight polymers 

PVA, PAA and PVS as the coating materials representing neutral, partially charged 

and highly charged polyelectrolytes, respectively.   
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Figure 3.2 Normalized flux at different stages of the coating/cleaning 

experiments. (a) Membrane compaction with 2 g/L NaCl solution; (b) flux 
during coating with 50 mg/L polymer solution; (b′) flux with 2 g/L NaCl solution 
after coating; (c) flux with 2 g/L NaCl solution after cleaning with HCl solution 

at pH 2. A pressure of 13.8 bar was applied for all the stages. 

3.3.1.2 Effect of surface coating on membrane desalination performance 

Figure 3.2 shows the membrane permeate flux at different stages of the coating 

and cleaning experiments. Figure 3.2a gives the stabilized water fluxes of the P84-PEI 

NF membranes after compaction for several hours. For comparison, the water flux at 

any given time was normalized to the initial flux which was defined as the stable 

water flux at the end of the compaction period. The initial fluxes for each membrane 

are shown in the legend and were averaged to be 46.7 ± 3.1 L/m2·h (lmh). Figure 3.2b 

shows that when PVA was applied as the coating agent, the water flux gradually 

declined and leveled off after 10 hours, resulting in an 11% flux loss in total. It should 

be noted that at the start of PVA coating the water flux became higher than the initial 

flux. This was due to relaxation of the membrane structure during the lower pressure 
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membrane rinse step. The membrane with PVA coating was then tested using 2 g/L 

NaCl solution as the feed. The result is shown in Figure 3.2b′. An almost constant 

water flux was observed indicating that the PVA coating was stable during 

desalination. In order to study the removability of the PVA layer from the membrane 

surface, a cleaning step was performed using pH 2 HCl. The result is shown in Figure 

3.2c; after acid cleaning the water flux was almost completely restored to the initial 

flux.  

These findings suggest that PVA could be adsorbed onto the surface of the P84-

PEI NF membranes forming a protective layer and subsequently removed. 

Considering that PVA is a non-ionic polymer, the PVA molecules were most likely 

attached to the membrane surface by hydrogen bonding between the hydroxyl group 

of PVA and the carbonyl and amine groups of the membrane surface [44]. This 

hydrogen bonding was unique in that it remained stable at neutral pH during 

desalination and could be erased by the acid afterward. Any foulants that accumulate 

on the PVA layer could be removed altogether by acid cleaning to give a fresh 

membrane surface.  

When PVS was applied as the coating agent, flux was reduced by 35% (Figure 

3.2b). This coating was also stable during desalination (Figure 3.2b′). Acid cleaning 

could only slightly improve the water flux (Figure 3.2c). It was likely that the 

adsorption of PVS was induced by the ionic attraction between the opposite charges 

of the PVS and the membrane surface. A molecularly thin layer may be formed 

because of the repulsion forces among already adsorbed molecules and those in 
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solution of like charge. Similar PVS layers are known to be very homogeneous and 

stable [45, 46, 47]. Because the charge of PVS is nearly independent from the solution 

pH, this layer is not easily erased by changing the pH. 

Interestingly, PAA behaved differently than PVS as a coating. A rapid flux 

decline of 62% was induced by PAA within 1 h and then flux leveled off (Figure 

3.2b). This coating layer was unstable in the salt solution; a gradual increase of water 

flux was observed during desalination (Figure 3.2b′). Similar to PVS, the PAA layer 

could not be completely removed by acid cleaning. However, much better flux 

restoration was observed than that of PVS (Figure 3.2c). It has been reported that 

weak polyelectrolytes like PAA can form a film with the thickness depending on 

solution pH [48]. In this study, the pH of the PAA solution was 4.7 so PAA was 

partially charged. The adsorbed polymer chains tended to produce a thick layer, which 

may result in higher flux loss than the PVS monomolecular layer. However, when the 

pH increased to near 7 during desalination this thick PAA layer likely became 

thermodynamically unstable. At pH 7, the degree of ionization of the PAA molecules 

would approach 100%. The repulsion force among PAA chains may induce 

desorption of some of the material. This would then cause thinning of the PAA layer 

and an increase in flux [48, 49]. After cleaning, flux increased much further. It is 

possible that cleaning removed some PAA material even though the coating should be 

stable at low pH. Alternatively, when the feed changed to HCl solution at pH 2 for 

membrane cleaning, the molecular chains of PAA may have become protonated and 
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less charged which may have led to contraction of the PAA chains. Such contraction 

would increase the pore size leading to a relatively high flux restoration [49]. 

Table 3.1 Membrane rejection data at different stages of the coating/cleaning 
experimentsa. 

Sample Rejection before 
coatingb (%) 

Rejection after 
coatingc (%) 

Rejection after 
cleaningd (%) 

P84-PEI/PVA 55.0 59.6 62.3 
P84-PEI/PAA 58.7 74.5 68.8 
P84-PEI/PVS 46.5 48.5 52.5 

Notes: aTest condition: 2.0 g/L NaCl aqueous solution, 13.8 bar and room 
temperature. bAfter compaction at 13.8 bar. cCoating with 50 mg/L polymer 
solution. dAfter cleaning with HCl solution at pH 2. 

Table 3.1 shows rejection data of the NF membranes at different stages of the 

coating and cleaning experiments. Salt rejection improved in the presence of the 

coating layers, indicating these layers performed as secondary filters to reject more 

ions [50]. As will be mentioned later in Section 3.3.1.4, the coating materials could 

reduce membrane surface pore size, which may be the main reason for increased 

rejection. After acid cleaning, the PVA coating should have been removed; however, 

salt rejection did not decrease to the original value of the membrane before coating. It 

is possible that some PVA material remained on the membrane even after acid 

cleaning. It is also possible that the membrane became more positively charged by 

forming more quaternary ammonium groups during acid cleaning [35]. The PAA-

coated membrane showed lower salt rejection after acid cleaning. As discussed 

earlier, acid treatment could remove some PAA material, or it could induce 

contraction of the PAA chains leading to wider pores, which may allow more ions to 

pass through [49]. Salt rejection of the PVS-coated membrane did not change as much 
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as the PAA-coated membrane probably because of the good stability of the PVS 

coating at the tested pH values.  

 

Figure 3.3 ATR-FTIR spectra of the PVA-coated membranes before and after 
acid (pH 2) or base (pH 9.1) cleaning. 

3.3.1.3 ATR-FTIR characterization of the stability of the coating layers 

Figure 3.3 shows the ATR-FTIR spectra of the P84-PEI/PVA membranes 

before and after cleaning. After coating a layer of PVA, a few characteristic 

absorption bands were observed at 3280 cm-1 (O-H stretching), 2930 cm-1 (CH2 

stretching) and 1090 cm-1 (C-O stretching), indicating PVA had been effectively 

attached to the membrane surface. PVA was completely removed by acid cleaning, as 

indicated by the disappearance of the characteristic peaks. This result is in good 

agreement with previous analyses in section 3.3.1.2. After base cleaning these peaks 
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still existed, though their intensity was diminished. From this it appears that under 

weak basic conditions the interaction between PVA and the membrane remained 

strong enough that not all the PVA molecules were removed.     

 
Figure 3.4 ATR-FTIR spectra of the PVS-coated membranes before and after 

acid (pH 2) or base (pH 9.1) cleaning. 

Figure 3.4 shows the ATR-FTIR spectra of the P84-PEI/PVS membranes before 

and after cleaning. The strong absorption band at 1071 cm-1 was attributed to the 

sulfur-oxygen vibrations of -SO3
- groups [51]. The intensity of this band remained 

strong after acid cleaning and became much weaker after base cleaning. These results 

suggest that the PVS layer is stable in acidic conditions but unstable in basic 

conditions. It is likely that under acidic conditions the surface of the P84-PEI 

membrane was more positively charged so that the PVS could be held firmly to the 
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membrane surface by electrostatic attraction. Under basic conditions, however, the 

surface charge of the P84-PEI membrane may be effectively neutralized so that the 

electrostatic force was weakened.  

 
Figure 3.5 ATR-FTIR spectra of the PAA-coated membranes before and after 

acid (pH 2) or base (pH 9.1) cleaning. 

The P84-PEI/PAA membranes show similar stability with the P84-PEI/PVS 

membranes during acid or base cleaning. In Figure 3.5, the absorption peak at 1708 

cm-1 represents the carbonyl group of PAA. This peak was only slightly diminished 

after acid cleaning. After base cleaning the peak almost completely disappeared. At 

pH 2, the strong positive charge of the P84-PEI membrane may prevent PAA 

desorption. At pH 9.1, the P84-PEI membrane may become less charged and unable 
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to hold the PAA layer effectively. PAA is deprotonated at high pH and repulsion 

between PAA molecules may accelerate desorption.  

Table 3.2 Surface properties of the uncoated and coated membranes. 

Membrane P84-PEI P84-
PEI/PVA 

P84-
PEI/PAA 

P84-
PEI/PVS 

Contact angle (°)a 86.6 ± 3.3 76.6 ± 5.2 81.0 ± 4.5 75.7 ± 2.4 
Surface roughness (nm)b 8.4 3.0 7.3 12.7 

Surface chargec + + Close to 
neutral 

Close to 
neutral 

Notes: aFive measurements were taken for the static contact angle immediately 
after the droplet was placed on the membrane.  bBased on a scan area of 10μm × 
10μm. cBased on a qualitative analysis using three salts of NaCl, Na2SO4 and CaCl2 
as probes.   

3.3.1.4 Effect of surface coating on membrane hydrophilicity and roughness 

Surface properties of the membranes before and after coating are summarized in 

Table 3.2. Contact angle decreased after applying the coatings because of the 

hydrophilic character of the water-soluble polymers. This improved surface 

hydrophilicity is favorable for antifouling purposes [4, 9]. AFM images shown in 

Figure 3.6 illustrate the surface morphologies of these membranes. The uncoated 

membrane has a very smooth surface with a roughness of only 8.4 nm (Table 3.2). For 

comparison, the surface roughness of commercial polyamide membranes prepared by 

interfacial polymerization has been reported to be around one order of magnitude 

higher than that of this membrane [7]. After coating a layer of PVA or PAA, the 

membrane surface became even smoother. This was likely caused by the pressure 

during the dynamic coating process. The PVS coating induced slightly increased 

surface roughness, which might be caused by insoluble impurities in the PVS 

solution. Still, the resultant membrane remained quite smooth and visibly shiny. 
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Therefore, the overall effect of these coatings on membrane hydrophilicity and 

roughness would be positive for fouling resistance although the charge effect seems 

the most notable parameter as will be shown in section 3.3.2.  

 

Figure 3.6 AFM images of the uncoated and coated membranes. 

3.3.1.5 Effect of surface coating on membrane charge and pore size 

The four uncoated and coated membranes were measured with regard to their 

rejections to three charged solutes CaCl2, NaCl, and Na2SO4. The results are shown in 

Figure 3.7. The uncoated P84-PEI membrane had a rejection sequence of CaCl2 > 

NaCl > Na2SO4 indicating a positive charge for the membrane [38]. For the PVA-

coated membrane, the same rejection sequence was observed. While rejections of 

NaCl and CaCl2 were only slightly improved, Na2SO4 rejection became much greater 

than that of the uncoated membrane. This suggests that the positive charge of the P84-
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PEI membrane was weakened by the non-ionic PVA coating. However, the PVA-

coated membrane was still positively charged and the Donnan exclusion effect was 

likely dominant during ion filtration. When PVS and PAA were applied, the rejection 

to Na2SO4 was significantly improved resulting in a rejection sequence of CaCl2 > 

Na2SO4 > NaCl. This cannot be explained by Donnan exclusion. It is probable that the 

negative charge of PVS and PAA balanced the positive charge of the P84-PEI 

membrane resulting in a slightly negative surface layer. The overall membrane charge 

then became almost neutral and the Donnan exclusion effect did not govern the ion 

separation behavior. Instead, the hydrated diameter of each ion and the diffusion 

coefficient of each salt determined the different retentions [1, 38].  

 

Figure 3.7 Rejections to three charged solutes of the four uncoated and coated 
membranes indicating membrane charge. 
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Figure 3.8 Rejections to three uncharged solutes of the four uncoated and coated 
membranes indicating relative pore size of these membranes. 

Figure 3.8 shows rejection data for three uncharged solutes: galactose, maltose 

and raffinose. Rejection occurs by a sieving mechanism for these uncharged 

molecules so pore size effects can be investigated [1]. For each membrane, rejection 

increased with increasing molecular weight. The molecular weight cut-off (MWCO) 

was around several hundred Dalton. This result confirms that the separation 

performance of the four membranes is in the nanofiltration range. Sugar rejection 

decreased going from P84-PEI/PAA, P84-PEI/PVS, P84-PEI/PVA to P84-PEI 

suggesting that the PAA-coated membrane had the smallest pores and the uncoated 

membrane (P84-PEI) had the largest. As discussed earlier, PAA may form a thicker 

layer than PVS, resulting in smaller pores. PVA most likely was not able to form a 
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layer as tight as PVS and PAA because hydrogen bonding is weaker than electrostatic 

interaction.  

 

Figure 3.9 Normalized flux of the P84-PEI NF membrane during fouling and 
after cleaning. (a) Membrane compaction with 2 g/L NaCl solution; (b) flux with 
a solution containing 2 g/L NaCl and 100 mg/L BSA, HA or SA; (c) flux with 2 
g/L NaCl solution after cleaning with HCl solution at pH 2. A pressure of 13.8 

bar was applied for all the stages. 

3.3.2 Effect of surface coatings on membrane fouling and cleaning 

3.3.2.1  Fouling behavior of the uncoated P84-PEI membrane 

Figure 3.9 shows flux decline during cross-flow filtration of feed solutions 

containing 2 g/L NaCl and 100 mg/L BSA, HA or SA and the flux restoration by 

cleaning using HCl at pH 2. Figure 3.9a shows the normalized stable fluxes after 

compaction. The initial fluxes for each membrane are given in the legend; the average 

initial flux was 52.7 ± 4.1 lmh. As seen in Figure 3.9b, all three model foulants 

induced rapid flux decline within the first 1 - 2 hours. Flux decline became much 
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slower after 2 h, but no stable state was observed over a period of 12 - 15 h. This 

fouling behavior may be explained by the attractive force between the positively 

charged membrane and the negatively charged foulants, which results in quick 

adsorption of the foulants onto the membrane surface in the initial stage forming a 

monomolecular layer. Once the membrane surface is covered with foulants, these 

foulant layers may neutralize the membrane surface and shield it from direct 

interactions with additional foulants. Further slow flux loss may be caused by the 

interactions between adsorbed foulants and foulants in solution forming a multilayer 

cake. Also, in later stages the flux is reduced so convection of foulants toward the 

surface is minimized and cake-layer buildup is slowed.  

Different foulants induced varying degrees of fouling. The total flux loss caused 

by BSA, HA and SA was 20, 35 and 42%, respectively. This difference may be 

correlated to the chemical characteristics of the three foulants. Their carboxylic 

acidities were reported to be 1.0, 3.4 and 3.5 mequiv./g for BSA, HA and SA, 

respectively [41, 42, 43]. The higher the concentration of carboxylic functional 

groups, the higher the adhesion force between foulant and membrane resulting in 

faster adsorption. In addition, the resultant fouling layer may be tighter causing a 

more dramatic flux loss.  

Figure 3.9c shows that cleaning by acid only partially restored the water flux, 

suggesting that foulant adsorption was sufficiently strong that some material remained 

after cleaning. The relatively high flux immediately after cleaning was likely due to 
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relaxation of the membrane structure because the cleaning process was performed at a 

lower pressure (4.8 bar) than the operating pressure (13.8 bar) during desalination.   

 

Figure 3.10 Normalized flux of the P84-PEI/PVA membranes during fouling and 
after cleaning. (a) Membrane compaction with 2 g/L NaCl solution; (b) flux with 
a solution containing 2 g/L NaCl and 100 mg/L BSA, HA or SA; (c) flux with 2 
g/L NaCl solution after cleaning with HCl solution at pH 2. A pressure of 13.8 

bar was applied for all the stages. 

3.3.2.2 Effect of PVA coating on membrane fouling 

Figure 3.10 shows the flux versus time profiles for the membranes with a layer 

of PVA coating during fouling and after cleaning. Generally, membrane antifouling 

properties were improved. Figure 3.10b shows that the total flux loss caused by BSA, 

HA and SA was 5, 27 and 41%, respectively, lower than that of the uncoated 

membranes. However, similar to the uncoated membranes, the PVA-coated 

membrane still showed a two-stage fouling process. The flux decline was very quick 

in the first hour and then became much slower. This result suggests that the 
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interaction force between the foulants and the membrane surface was still dominated 

by electrostatic attraction because the PVA-coated membrane was still positively 

charged. The lower charge strength of the PVA-coated membrane than that of the 

uncoated membrane may result in less buildup of the fouling layer and thus less flux 

loss. For the foulants with strong negative charge such as HA and SA, severe 

membrane fouling was still observed. However, for the weakly charged foulant BSA, 

charge interaction with the membrane was minimized leading to low fouling. 

Therefore, the PVA layer could effectively protect the membrane to prevent 

adsorption of proteins. 

Cleanability results are given in Figure 3.10c. The PVA-coated membrane with 

BSA fouling exhibited over 100% flux restoration after acid cleaning. This result 

proves the previous hypothesis that the PVA layer can be removed together with the 

BSA layer during the cleaning process. Although the PVA-coated membranes with 

HA and SA fouling were not able to be cleaned completely due to the electrostatic 

force, better flux restoration than the uncoated membranes was still observed. 

Therefore, it can be concluded that a PVA coating can be used effectively to prevent 

protein fouling. PVA was not as effective for the negatively charged foulants like HA 

and SA, presumably because of the positive charge of the PVA-coated membrane. 

3.3.2.3 Effect of PVS coating on membrane fouling 

Figure 3.11 shows the flux versus time profiles for the membranes with a layer 

of PVS coating during fouling and after cleaning. Figure 3.11b shows that the total 

flux loss caused by BSA, HA and SA was 4, 17 and 14%, respectively. The rapid flux 
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decline step seen with the virgin and PVA-coated membranes was diminished greatly 

here. This indicates that the PVS-coated membrane had less charge resulting in lower 

fouling potential.  

 

Figure 3.11 Normalized flux of the P84-PEI/PVS membranes during fouling and 
after cleaning. (a) Membrane compaction with 2 g/L NaCl solution; (b) flux with 
a solution containing 2 g/L NaCl and 100 mg/L BSA, HA or SA; (c) flux with 2 
g/L NaCl solution after cleaning with HCl solution at pH 2. A pressure of 13.8 

bar was applied for all the stages. 

In addition to the prevention of foulant adsorption, this PVS layer also 

improved cleanability after fouling. As shown in Figure 3.11c, BSA and SA were 

effectively removed and flux restoration was about 100%. It is likely that the PVS-

coated membrane would remain almost neutral under acidic conditions so the charge 

interaction between the membrane and BSA or SA was small and the foulants could 

be gradually desorbed. However, HA was not as effectively cleaned, probably 
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because HA is more hydrophobic resulting in additional attractive interactions with 

the membrane.   

 

Figure 3.12 Normalized flux of the P84-PEI/PAA membranes during fouling and 
after cleaning. (a) Membrane compaction with 2 g/L NaCl solution; (b) flux with 
a solution containing 2 g/L NaCl and 100 mg/L BSA, HA or SA; (c) flux with 2 
g/L NaCl solution after cleaning with HCl solution at pH 2. A pressure of 13.8 

bar was applied for all the stages. 

3.3.2.4 Effect of PAA coating on membrane fouling 

Coating the membrane with PAA gave similar results as PVS. As shown in 

Figure 3.12b, the total flux loss caused by BSA, HA and SA was 5, 10 and 10%, 

respectively. Again, the rapid flux decline step initiated by electrostatic forces was 

minimized, indicating an almost neutral surface was obtained due to charge 

compensation by PAA. However, the cleanability of the PAA-coated membranes was 

not as good as the PVS-coated membranes since flux was not completely restored 

(Figure 3.12c). This was likely due to the surface charge of the PAA-coated 
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membrane. During acid treatment, PAA would be protonated and less negatively 

charged while the P84-PEI membrane below the PAA layer would be more positively 

charged due to the formation of additional ammonium groups. The overall effect of 

acid was to make the PAA-coated membrane more positively charged. For this 

reason, the negatively charged foulants were not easily desorbed. 

3.4 Conclusions 

In this study we used three water-soluble polymers PVA, PVS and PAA to form 

a protective coating layer on the surface of a positively charged NF membrane to 

improve membrane fouling resistance. After applying these coatings, pore size was 

reduced, permeation flux decreased, and rejection to uncharged sugars and charged 

salts increased. Hydrophilicity and smoothness were improved by these coatings, 

which was favorable for fouling resistance. Surface charge varied with different 

coating materials. The PVA-coated membrane showed positive charge because the 

non-ionic PVA did not significantly alter the positive charge of the P84-PEI 

membrane. However, PVS- and PAA-coated membranes had surface charge close to 

neutral because the negative charge of PVS and PAA could balance the positive 

charge of the P84-PEI membrane.  

The coating layer of PVA, PVS and PAA showed different stability toward acid 

cleaning. PVA can be adsorbed onto the membrane surface by hydrogen bonding and 

the PVA layer was stable at neutral pH (~ 7), which is the normal condition for 

desalination. However, this layer could be removed by acid cleaning at pH 2 and thus 

it was possible to regenerate the membrane after fouling. The PVS- and PAA-coated 
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membranes showed high stability during acid cleaning because of strong electrostatic 

interactions with the membrane surface. These coatings are not as easily regenerable 

as PVA.  

Membrane surface charge played the most important role in foulant adsorption. 

The uncoated membrane had strong positive charge so that foulants like BSA, humic 

acid and sodium alginate were adsorbed quickly and firmly. The PVA-coated 

membrane also had positive charge and fouling by negatively charged materials like 

humic acid and sodium alginate was still severe. PVA worked very well to resist 

weakly charged proteins like BSA. PVS- and PAA-coated membranes had a low 

surface charge and fouling due to charge interactions was diminished. These results 

suggest that membrane surface properties can be tailored by different coating 

materials; the technique is flexible for membrane modification to meet various 

industrial demands. Currently, we are testing and optimizing such antifouling NF 

membranes for application in membrane bioreactor (MBR) processes for wastewater 

treatment.   
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CHAPTER 4  
 
 

DESIGN OF ANTIFOULING NANOFILTRATION MEMBRANES FOR 
POTENTIAL MEMBRANE BIOREACTOR APPLICATION 

4.1 Introduction 

Nanofiltration (NF) is an attractive membrane process for removal of colloidal, 

organic, and ionic contaminants from water [1, 2]. NF membranes have relatively 

high charge and pores on the order of 1 nm. Consequently, both charge effects and 

sieving mechanisms influence the rejection behavior of solutes with NF membranes, 

which are typically characterized by high rejection of divalent ions, lower rejection of 

monovalent ions, and higher fluxes than reverse osmosis (RO) membranes [3, 4]. NF 

membranes have a variety of applications, including desalination of brackish and 

seawater, reclamation of wastewater, in biological processes such as membrane 

bioreactors (MBR), and other industrial separations [3, 5].  However, the use of 

membrane filtration in all applications has often limited by fouling caused by 

inorganic and organic materials, which can adhere to the surface and pores, resulting 

in deterioration of performance and increase in costs of energy and membrane 

replacement [6, 7, 8]. Therefore, it is critically important to develop advanced NF 

membranes that have high chemical and biological stability, high resistance to 

fouling, and separation abilities that can be tailored to meet various demands.   

Composite membranes consisting of a polysulfone membrane as support for a 

very thin skin layer have been the standard design since invented in 1980s [4]. To 

date, polyamides prepared by interfacial polymerization are still the dominant thin 

film material [4]. Although the polyamide membranes have very good separation 

capabilities, their surfaces are generally rough, negatively charged and hydrophobic 

[9].  The rough surface of thin-film composite membranes was found to increase 

fouling rate, which is explained by the fact that particles preferentially accumulate in 
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the ‘valleys’ of rough membranes, resulting in ‘valley clogging’ and hence in a severe 

flux decline [10, 11, 12, 13]. The strongly negatively charged polyamide membranes 

experienced higher fouling rates than less negatively charged membranes during a 

field study [14]. Also, hydrophilic membranes such as regenerated cellulose 

membranes have been observed to have a lower fouling tendency than the polyamide 

membranes [10]. Hence, development of membranes with a smooth, hydrophilic and 

less charged surface seems desirable for antifouling purposes [15, 16, 17, 18, 19, 20, 

21]. Indeed, the polyamide membranes have often been chemically or physically 

modified to improve fouling resistance [22]. For example, fouling was greatly 

reduced by coating a layer of polyvinyl alcohol (PVA) onto the polyamide surface, 

resulting in a smoother, less charged and hydrophilic surface due to the neutral and 

hydrophilic characteristics of PVA [23]. The low fouling nature of a commercial 

polyamide membrane, ESNA1-LF, was attributed to the smoothness of the surface 

and the near neutral surface charge [24].  

Nanofiltration membranes have been applied in MBR processes for wastewater 

treatment in recent years [25, 26, 27, 28, 29]. Although the MBR using ultrafiltration 

(UF) membranes showed a high removal efficiency of bacterial flocs and suspended 

solids, the system was not adequate to remove known and unknown dissolved organic 

matter with several hundred Dalton range, due to the relatively coarse pore size 

distribution of the UF membranes [25, 26]. Concerning organic contaminants in 

natural waters, especially drinking water sources, may potentially affect human health 

through chronic exposure, it is essential to reduce or minimize the contaminants 

released into the water environment [27]. The NF-based MBR process has potential 

here. However, the MBR filtration performance inevitably decreases with filtration 

time due to membrane fouling [30]. The foulants include dissolved inorganic or 
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organic compounds, colloids, bacteria and suspended solids. In addition, many 

extracellular polymeric substances (EPS) such as polysaccharides, proteins, and 

natural organic matter (NOM) have often induced irreversible flux decline. Thus 

development of antifouling membranes is still highly demanded for widespread 

application of MBRs [31, 32].  

During the past few years, we have developed several advanced NF 

membranes, including positively charged NF membranes for multivalent heavy metal 

ion removal and antifouling NF membranes using a coating technique [33, 34, 35]. 

The positively charged NF membrane was still polyamide prepared by chemical 

modification of polyimide membrane using polyethylenimine (PEI). The resultant NF 

membrane was very smooth: the surface roughness is one order of magnitude less 

than the interfacial polymerized polyamide membranes. By coating a layer of water 

soluble polyelectrolytes, the membrane surface was modified to reduce fouling by 

common foulants such as proteins, humic substances, and polysaccharides [35]. This 

improved fouling resistance is believed to be related to the smooth and low charged 

surface. Considering the common foulants like NOM are heterogeneous mixtures and 

may have a variety of functional groups [36], the low charged membranes may have 

advantages to minimize any charge related adsorption.  

In this study, we continued to prepare and characterize antifouling NF 

membranes with an aim to apply them in MBR process. In the first approach, we tried 

to improve membrane flux by partial modification of polyimide membranes at room 

temperature and controlled reaction time. PVA and polyvinyl sulfate-potassium salt 

(PVS) were tested as surface modifying agents. In the second approach, another 

coating material sulfonated poly(ether ether ketone) (SPEEK) was used for surface 

modification. Membrane preparation and optimization, membrane morphology and 
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chemistry characterization, membrane separation capability and fouling resistance 

were extensively studied.  Finally, the membranes prepared by these two approaches 

were tested for their fouling resistance to activated sludge.  

4.2 Experimental 

4.2.1 Chemicals 

P84 powder was purchased from HP Polymer Inc. and dried in vacuum at 

160˚C for 12 hours before use. Poly(pyromellitic dianhydride-co-4,4’-oxydianiline) 

amic acid solution (PMDA-ODA PAA) was purchased from Aldrich as a 15% 

solution in N-methyl-2-pyrrolidone (NMP) and stored in a freezer. PEI (MW: 

25,000), PVA (MW: 89,000 - 98,000) and PVS (MW: 170,000) were purchased from 

Aldrich. Poly (ether ether ketone) (PEEK) pellets were purchased from Polysciences 

Inc. The water soluble sulfonated PEEK (SPEEK) was prepared according to the 

literature [37]. Three coating solutions with concentrations of 0.3 g/L were prepared 

by dissolving PVA, PVS or SPEEK in deionized (DI) water at 80˚C overnight. The 

PVS solution was filtered before use to remove the insoluble impurities. The pH of 

the PVA, PVS and SPEEK solutions were 5.7, 5.8, and 1.0, respectively. All of the 

other organic and inorganic reagents including D-(+)-galactose (Sigma-Aldrich, 

≥99%), propionic acid, acetic anhydride, triethylamine, NaCl, Na2SO4, CaCl2, 

MgSO4, were of analytical grade and used as received.  

4.2.2 Preparation of partially modified P84 copolyimide membranes with PEI (p-
P84-PEI) 

The p-P84-PEI membranes were prepared with a procedure slightly modified 

from that described previously [33]. Four casting solutions were prepared by 

dissolving P84 powder in N, N-dimethylformamide (DMF) to give polymer 

concentrations of 19%, 21%, 23% and 25%, respectively. The polymer solution was 
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then cast onto a polyester support (Calendered PET from Crane Nonwovens) followed 

by immediate immersion into a room temperature water bath. After overnight 

immersion in the water bath the membranes were rinsed with and stored in deionized 

(DI) water.  

Chemical modification was conducted by immersing a membrane into a 5% PEI 

aqueous solution (wt/vol) at room temperature for up to 20 min until a stable 

permeability was obtained. After rinsing by DI water, the membrane was annealed at 

90 ˚C for 5 min to complete the chemical reaction and finally stored in DI water until 

use. 

4.2.3 Preparation of PEI modified PMDA-ODA polyimide membranes (PI-PEI) 

Five casting solutions were prepared by adding 0%, 10%, 20%, 40% and 60% 

propionic acid into the 15% PAA/NMP solution. With more than 60% propionic acid, 

the polymer will precipitate since propionic acid is a nonsolvent for PAA.  The 

percentage of added propionic acid was based on the polymer solution. For example, 

to make a casting solution with 10% propionic acid, 10 g of propionic acid was added 

to 100 g of the 15% PAA/NMP solution. The mixture was then stirred by a 

mechanical stirrer until a clear solution was obtained. After that, the solution was 

degassed under vacuum to remove all the bubbles. The casting solution was then cast 

onto a polyester support (Calendered PET from Crane Nonwovens) and immersed 

immediately into a water coagulation bath at room temperature. The membrane 

thickness was controlled at roughly 100 micron. After 30 min, the membrane was 

removed from the water bath and washed thoroughly with DI water. Then the PAA 

membrane was dried by an isopropanol-hexane displacement sequence [38]: the 

membrane was immersed in the isopropanol for 90 min during which the isopropanol 

was refreshed 3 times. Subsequently, the isopropanol was replaced by hexane using 
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the same procedure. Chemical imidization was performed by immersing the PAA 

membranes into a mixture of acetic anhydride (Ac2O) and triethylamine (TEA) 

(volume 4:1) at 100 ˚C for 36 hours. The resultant PI membranes were then washed 

using isopropanol several times and stored in isopropanol. 

Chemical modification was conducted by immersing a membrane into a 1% PEI 

solution (wt/vol) in a mixture of isopropanol and water (volume 1:1) at 80˚C for 60 

min until the permeability became stable. The membrane was then rinsed several 

times using dilute HCl solution at pH 3 to remove any loosely bound PEI, and finally 

stored in DI water until use. 

4.2.4 Preparation of surface coatings onto the p-P84-PEI and the PI-PEI 
membranes 

Surface coating experiments were carried out with a dead-end filtration cell 

(Sterlitech HP4750). Either the p-P84-PEI or the PI-PEI membranes were loaded in 

the cell followed by filling the cell with about 200 mL of a given coating solution so 

that only the surface of the membranes contacted the coating solution. Then the 

coating solution was pressed through the membrane under a pressure of 13.8 bar for 

10 min. Vigorous stirring at a rate of 18.33Hz (1100 rpm) was applied using a 

standard magnetic stirrer (Corning Stirrer/Hot Plate, Model PC-420) in order to make 

an uniform coating.  The membrane was then rinsed with copious amount of tap 

water.  

4.2.5 Membrane performance measurement 

Desalination performance of the polyelectrolyte-coated membranes was 

examined in dead-end mode using 300 mL of a 2.0 g/L NaCl aqueous feed solution 

under 13.8 bar and room temperature. The feed solution was stirred at a rate of 

18.33Hz in the cell to minimize concentration polarization. Each membrane was 
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compacted at a pressure of 13.8 bar for at least 1 h prior to measurements to ascertain 

that a steady state was obtained. The permeated solution was then refilled into the 

feed and permeate samples were collected as appropriate. The permeation flux F was 

determined by measuring the permeation volume V (15-20 mL, 5 – 6.7% recovery) 

flowing across the membrane of area A (14.6 cm2) in the time period Δt, F (m3m-2day-

1) = V/(A × Δt). Salt rejection was calculated as R = (1 – σp/σf) × 100%, where σp and 

σf were the conductivity of the permeate and the feed, respectively. Conductivity was 

measured with a bench-top conductivity meter (Oakton CON 510). 

Similarly, rejection to CaCl2, NaCl, Na2SO4 and MgSO4 at four different initial 

concentrations (10, 50, 100 and 200 mmol/L) in aqueous solution was measured in 

order to test the separation capability of the membranes to various ions and 

qualitatively determine membrane charge. The rejection to uncharged solutes may be 

determined primarily by the surface pore size of the membrane [39]. Therefore, 

rejection to a sugar molecule galactose (180 Da) was used to estimate surface pore 

size and characterize pore size change during chemical modification of the polyimide 

membranes. A 10 mmol/L aqueous solution of galactose was used as feed. Sugar 

concentrations in the permeate and feed solutions were determined by a colorimetric 

method based on treatment with phenol and sulfuric acid [40].  

4.2.6 Characterization of the antifouling property of membranes 

The antifouling measurement was conducted according to the process in the Ref. 

[58] with some modifications. Three membrane samples, namely positively charged 

NF membrane PI-PEI, near neutrally charged NF membranes SPEEK-coated PI-PEI 

and commercial negatively charged NF membrane NTR-7450, were tested and 

compared under the same experimental conditions. Three kinds of model foulants 

were used: (1) 1% (w/v) bovine serum albumin (BSA) in phosphate buffered saline 
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(PBS) (pH 7.4, powder form from Sigma); (2) 1.0 g/L humic acid (HA, from Aldrich) 

with 1mM CaCl2  in DI water; and (3) 1.0 g/L sodium alginate (SA, from Aldrich) in 

DI water. Membranes were assembled into a SterlitechTM HP475 stirred dead-end 

cell with a cell volume of 300 ml. The applied pressure was adjusted according to the 

flux of each membrane to ascertain the initial flux close to a certain value. DI water 

was first passed through the membrane for at least 2 h until the flux remained stable. 

The DI water was then replaced by a given foulant solution and the flux change with 

time was recorded. When permeate exceeded about 100 ml, the permeated solution 

was then refilled into the feed and the experiment was resumed until the flux was 

almost stable. 

4.2.7 Fouling resistance of membranes to activated sludge 

Similar to the antifouling tests, membrane fouling was measured using activated 

sludge as the feed. Three membrane samples, namely PVS-coated p-P84-PEI, 

SPEEK-coated PI-PEI and NTR-7450 were tested and compared under the same 

experimental condition. Fresh activated sludge was taken from a municipal activated 

sludge wastewater treatment plant located in Urbana, Illinois. On the day of sampling, 

mixed liquor suspended solids (MLSS) was measured to be 3000 – 4300 mg/L. 

4.2.8 Physical characterization methods 

ATR-FTIR spectra were collected at room temperature over a scanning range of 

600 - 4000 cm-1 with a resolution of 4.0 cm-1, using a Nexus 670 FT-IR (Thermo 

Electron Corporation, Madison, WI) with a Golden GateTM MKII Single Reflectance 

ATR (Specac Inc., Woodstock, GA). The spectrometer was installed with a deuterated 

triglycine sulfate-potassium bromide (DTGS-KBr) detector and KBr beamsplitter. 

Spectral analysis was performed using FT-IR software (OMNIC, Thermo Electron 

Corporation, Madison, WI).  



87 
 

SEM images were obtained using a Hitachi S-4700 with 15.0 kV accelerating 

voltage. For cross-sectional observations the polyimide layer was peeled off of the 

polyester support and fractured after immersion in liquid nitrogen. All samples were 

coated by sputtering with gold and palladium before testing. 

Membrane hydrophobicity was estimated by water drop contact angle 

measurement using a goniometer (KSV Instruments Model: CAM 200). The dry 

membranes were fixed flat on a glass slide using double-sided tape. Five 

measurements were taken for the static contact angle immediately after the droplet 

was placed on the membrane. 

4.3 Results and discussion 

4.3.1 Preparation and characterization of PVA- or PVS-coated p-P84-PEI NF 
membranes 

4.3.1.1 Preparation and characterization of p-P84-PEI 

In previous studies [33], we described the preparation of a chemically modified 

polyimide membrane by polyethylenimine. It was found that the polyimide could be 

completely transformed into polyamide with free amine groups remaining, which led 

to a positive charge on the surface. The resultant NF membranes showed very good 

desalting capability and could especially be used for multivalent heavy metal ion 

removal. The highly cross-linked structure of the membranes could resist attack by 

most organic solvents. However, such rigid chemical structure would induce 

membrane embrittlement. Membrane permeability was also relatively low for MBR 

application. Thus, it is advantageous to develop membranes with a more modest 

degree of cross-linking so that both membrane toughness and permeability would be 

improved. 
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Figure 4.1 Surface morphology of membranes at different preparation stages. 

In order to determine the appropriate polymer concentration for membrane 

development, four casting solutions containing 25%, 23%, 21% or 19% polymer were 

used to develop the P84 membranes by the phase inversion method. A concentration 

of lower than 19% would result in large pores and cracks on the membrane surface. 

The resultant membranes were designated as P84-25%, P84-23%, P84-21% and P84-

19%, respectively. Surface structure of the P84-25%, P84-23% and P84-21% 

membranes can be found in the previous study [33]. It can be seen that the less 

concentration of the casting solution was used, the larger pore size of the resultant 

membrane was observed. The pore size of the P84-19% membrane can reach 20 – 30 

nm, as shown in Figure 4.1a. This may be due to reduced polymer aggregation at 

lower polymer concentration [41]. These structural differences have a strong 

influence on mass transport through the membrane. As shown in Table 4.1 (Original 
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membrane), a decrease in polymer concentration corresponds to an increase in water 

permeability. No salt rejection was observed for all the unmodified P84 membranes 

(Table 4.2, Original membrane). 

 
 

Table 4.1 Water flux data of membrane at different preparation stagesa. 
 19% 21% 23% 25% 

Original 
membrane 76.0 ± 6.3 41.4 ± 3.4 16.0 ± 4.5 5.4 ± 0.6 

20 min reaction 
with 5% PEI/H2O 19.1 ± 1.8 12.8 ± 1.1 3.0 ± 0.5 2.2 ± 0.2 

10 min adsorption 
with 0.3 g/L PVS 3.8 ± 0.6 2.4 ± 0.7 1.5 ± 0.1 0.9 ± 0.2 

60 min adsorption 
with 0.3 g/L PVA 17.3 ± 2.5 11.0 ± 0.5 2.0 ± 0.6 2.3 ± 0.3 

Note: aTest condition: 2.0 g/L NaCl aqueous solution, 13.8 bar and room 
temperature. 

 
 

Table 4.2 Salt rejection data of membrane at different preparation stagesa. 
 19% 21% 23% 25% 

Original 
membrane 0 0 0 0 

20 min reaction 
with 5% PEI/H2O 0 0 6.6 ± 1.1 6.7 ± 1.5 

10 min adsorption 
with 0.3 g/L PVS 2.3 ± 0.9 14.8 ± 4.4 46.4 ± 2.7 27.7 ± 3.1 

60 min adsorption 
with 0.3 g/L PVA 0 0 37.6 ± 3.5 17.9 ± 1.0 

Note: aTest condition: 2.0 g/L NaCl aqueous solution, 13.8 bar and room 
temperature. 
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Figure 4.2, Effect of modification time on membrane flux. The P84-21% 

membrane was modified by a 5% PEI/H2O solution at room temperature. 
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Figure 4.3 Effect of annealing at 90 ˚C on membrane flux. The partially 
modified P84-21% membrane was annealed to complete reaction. 
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Chemical modification of the four as-mentioned P84 membranes was carried 

out by immersion into a 5% PEI/H2O solution at room temperature. Figure 4.2 shows 

the effect of modification time on water flux of the P84-21% membrane (tap water 

was used). With increasing modification time, water flux decreased quickly and 

finally reached a stable value within 20 min. It was assumed that the maximum 

amount of PEI was reacted with the polyimide membrane at this modification 

condition. After that, the membrane was cured at 90 ˚C to complete the reaction. As 

shown in Figure 4.3, 5 min annealing would be sufficient since longer annealing time 

resulted in flux decreasing due to the pore shrinking upon drying.   
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Figure 4.4, ATR-FTIR spectra of membranes at different preparation stages. (a) 

Partially modified P84 (P84-21%) membrane (p-P84-PEI); (b) With PVS 
coating; (c) with PVA coating. 

 

The partial modification of the P84 membrane by PEI was confirmed by ATR-

FTIR. As shown in Figure 4.4a, the characteristic absorption bands of the imide 
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groups remained strong at 1778 cm-1 (symmetric C=O stretching, imide I), 1719 cm-1 

(asymmetric C=O stretching, imide I), while the characteristic peaks of amide groups 

at 1644 cm-1 (C=O stretching, amide I) appeared. The absorption peaks at 2833 cm-

1and 2926 cm-1 represent CH2 groups of PEI. The band at 3267 cm-1 (N-H vibrations) 

indicates the existence of free amine groups.  

Membrane desalination properties of the four kinds of partially modified 

membranes are summarized in Table 4.1 and Table 4.2. Water flux was decreased 

after PEI modification because PEI molecules may fill the pores by diffusing into the 

pores. Figure 4.1b shows the surface morphology of the PEI modified P84-19% 

membrane. It looks that the large pores could not be effectively blocked while some 

areas containing small pores became much denser. Therefore, this membrane showed 

ultrafiltration properties with high flux and no salt rejection. However, the PEI 

modified membranes gradually became less permeable when using the membranes 

developed from 19% to 25% concentrations as the starting membranes. The latter two 

membranes showed nanofiltration properties with some desalting capability.  

4.3.1.2 Preparation and characterization of PVS- and PVA-coated p-P84-PEI 

PVS and PVA were used to modify surface properties of the p-P84-PEI 

membranes. Figure 4.5 and Figure 4.6 show the effect of coating time on the water 

flux using the PEI modified P84-21% membrane as an example. It appeared that 

water flux decreased with increasing adsorption time and finally reached a stable 

state. The PVS coating was formed much quicker (5 – 10 min) than the PVA coating 

(30 – 60 min). On the other hand, the PVS coating displayed a more sever flux loss 

(84.6%) than the PVA coating (14.1%). These results suggest that the electrostatic 

attraction force between the PVS and the modified membrane makes the adsorption 

faster and the coating layer denser while the hydrogen bonding between the PVA and  
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Figure 4.5 Effect of PVS coating on membrane flux. 
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Figure 4.6 Effect of PVA coating on membrane flux. 

the modified membrane make the adsorption slower and the coating layer looser. 

From Figure 4.1c and Figure 4.1d, it can also be observed that the original porous 

membrane surface could be completely covered by PVS or PVA. The PVA coating 

appeared looser that the PVS coating. ATR-FTIR characterization of the PVS- and 

PVA-coated membranes is shown in Figure 4.4b and Figure 4.4c respectively. The 
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characteristic peaks of PVS at 1050 cm-1 (-SO3
-) and PVA at 3269 cm-1 (-OH) can be 

clearly observed.  

Desalination properties of the PVS- or PVA-coated membranes are summarized 

in Table 4.1 and Table 4.2.  These membranes showed a variety of desalination 

properties. For example, for both PVS- and PVA-coated membranes, the membrane 

originating from P84-19% membrane showed the highest flux and lowest salt 

rejection while the membrane originating from P84-23% membrane showed the 

highest salt rejection. Therefore, these two kinds of membrane will be used as the 

representatives of ultrafiltration membrane and nanofiltration membrane for further 

antifouling test, which will be described in Section 4.3.3. 

4.3.2 Preparation and characterization of SPEEK-coated PI-PEI NF membranes 
 

4.3.2.1 Preparation and characterization of PMDA-ODA polyimide (PI) membranes 

Because PMDA/ODA polyimide is an insoluble material, membrane preparation 

was processed from its precursor polyamic acid (PAA) followed by chemical 

imidization to transform the PAA into PI. This reaction process is shown in Figure 4.7 

(i). In preparing asymmetric membranes by phase inversion, propionic acid was added 

to the initial PAA/NMP system to modify membrane morphology and permeability. 

The resultant polyimide membranes prepared with 0%, 10%, 20%, 40% and 60% 

propionic acid additive will be referred to as PI-0%, PI-10%, PI-20%, PI-40% and PI-

60%, respectively. 

Figure 4.8 shows the effect of propionic acid additive on membrane 

permeability. By adding 10% propionic acid, the resultant PI membrane became less 

permeable than the membrane prepared without additive. However, adding more than 

10% propionic acid led to higher permeability of the obtained membranes. With over 

60% additive, PAA would precipitate because propionic acid is a nonsolvent.  
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Figure 4.7 (i) Synthesis of polyimide from polyamic acid precursor via chemical 

treatment; (ii) Chemical modification route of polyimide with PEI. 
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Figure 4.8 Effect of propionic acid additive on membrane permeability 
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Figure 4.9 Cross-sectional (left) and surface (right) morphologies of the 
polyimide membranes developed from polyamic acid solutions with different 

amount of propionic acid additive. 

Figure 4.9 presents SEM images of the membrane cross-sections and surfaces. 

In the previous study [42], it was shown that the PI-0% membrane had a highly 

porous structure containing a large amount of macrovoids, which led to mechanical 

weakness. With 10% propionic acid additive, however, the macrovoids show a typical 
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finger-like structure and surface pores become smaller. With more propionic acid, the 

macrovoids appear to be thinner and more densely packed. Surface pores also become 

larger. The structures of these membranes are closely correlated to their water 

permeability as shown in Figure 4.8. 

These results may be explained by the complex formation between propionic 

acid and the solvent NMP [43]. Hydrogen bonding between them can be represented 

in Figure 4.10 [44]. Such interaction would greatly decrease the solvent power of 

NMP resulting in stronger polymer-polymer interaction. Therefore, during 

coagulation in a water bath rapid polymer gelation will take place to form a skin layer. 

Such rapid skin formation could help to avoid surface inhomogeneities such as 

pinholes. Moreover, the complex can be quickly dissociated by water into solvent and 

nonsolvent species. Thus the polymer solution will contain a higher level of 

nonsolvent and correspondingly a lower level of solvent than what could be obtained 

without the complexation effect. The sudden large increase in effective concentration 

of nonsolvent leads to a dramatically accelerated coagulation process [43]. It has been 

known that instantaneous phase separation could often induce parallel finger-like 

structure [45]. Therefore the more propionic acid added, the more significance of the 

complexation effect may be observed resulting in larger number of fingers. On the 

other hand, polymer concentration would decrease with the increased amount of 

propionic acid added, which induced larger pore size of the membrane due to reduced 

polymer aggregation at lower polymer concentration [46].  

N
O + HOOCCH2CH3

N
O H-OOCCH2CH3

 

Figure 4.10 Formation of complex between propionic acid and NMP through 
hydrogen bonding 
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4.3.2.2 Preparation and characterization of PEI modified polyimide (PI-PEI) NF 
membranes 

Figure 4.7 (ii) shows the chemical reaction between PMDA-ODA polyimide and 

PEI. It can be seen that the resultant PI-PEI NF membrane has a fully cross-linked 

structure and contains ether, amide, amine, ammonium and phenyl groups on the 

surface. Such chemical characteristics make the membrane positively charged and 

rather hydrophilic. This positive charge permits the adsorption of a layer of negatively 

charged polyelectrolyte (SPEEK) to prepare a near neutrally charged NF membrane 

due to charge compensation. 
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Figure 4.11 Effect of reaction time of polyimide membranes with PEI on the 

water permeability, NaCl rejection and galactose rejection performance of the 
PI-20% membrane sample. 

Figure 4.11 shows the effect of reaction time on the water permeability, NaCl 

rejection and galactose rejection performance of the PI-20% membrane. With 

increasing modification time, water flux decreased gradually and finally reached a 

stable value after 1 h. Meanwhile, both galactose rejection and salt rejection increased 
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until a maximum value was reached. The rejection of galactose may be determined 

primarily by the surface pore size of the membrane while the rejection of salt may be 

determined by both the surface pore size and surface charge of the membrane [1]. 

Therefore, these results indicate that both surface pore size and surface chemistry 

became stable with 1 h modification. The optimum separation performance of the 

obtained membrane would be 67.9% NaCl rejection and 93% galactose rejection with 

a 1.1 m3m-2day-1 water flux.  

Table 4.3 Desalination performance of the various membranes 
Samples Flux (m3m-2day-1) Rejection (%) 
PI-10% 0.5 78 
PI-40% 1.6 48.6 
PI-60% 2.9 25.7 

 

Prepared under the same modification and test conditions, the other three PI 

membranes demonstrated a trade-off trend between salt rejection and permeation flux 

(Table 4.3). For each membrane, surface chemistry should be the same after 

modification. However, their surface pore size may maintain the same order as the 

initial PI membranes assuming that same amount of PEI was anchored onto the pore 

wall. Larger pores would allow faster mass transport and consequently lower salt 

retention and vice versa.  We selected the PI-20% membrane for further studies 

because both the salt rejection and permeate flux were reasonably high.  

Figure 4.12 shows the change in static contact angles of the PEI modified 

polyimide membranes in dependence on the modification time. The initial membrane 

(PI-20%) was relatively hydrophobic with a contact angle of 75 ± 8°. With increasing 

reaction time contact angle was observed to decrease gradually and finally reach a 

stable value of 59 ± 4° after 1 h.  This considerable decrease of contact angle suggests 

that membrane hydrophilicity was improved by introducing hydrophilic functional 

groups like amines and ammonium onto membrane surface.  These results are in good 
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agreement with the desalination data, confirming that highest modification degree was 

reached within 1 h to give a fully modified PI-PEI membrane. Surprisingly, the 30 

min modified membrane showed a contact angle of 48 ± 4°, lower than that of the 

membrane with longer modification time. It is likely that at 30 min, the large PEI 

molecules could only partly bond to the membrane surface. The nonbonding parts of 

PEI may cover the membrane surface so that contact angle became very low due to 

the hydrophilic amine groups.  
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Figure 4.12 Contact angle of the PEI modified polyimide membranes in 
dependence on the modification time. 

 

Figure 4.13 shows the rejection to various salts as a function of the feed 

concentration for the PEI modified polyimide membranes. A rejection sequence of 

CaCl2 > MgSO4 > NaCl > Na2SO4 indicates a positive charge for the membrane [33]. 

Additionally, the decrease in salt rejection with increasing salt concentration is 

consistent with the Donnan exclusion model. As ionic strength increases the 
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membrane charge is shielded, resulting in a lower effective charge and consequently 

lower salt rejection [1].  
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Figure 4.13 Rejection to various salts as a function of the feed concentration for 

the PEI modified polyimide membranes. 

4.3.2.3 Preparation and characterization of SPEEK-coated PI-PEI NF membranes 

SPEEK is a negatively charged polyelectrolyte which can be adsorbed firmly 

onto the positively charged PI-PEI membranes due to electrostatic attractions.  During 

coating process, a pressure of 13.8 bar was applied to pass a vigorously stirred 

SPEEK solution through the PI-PEI membrane. It has been shown that pressure may 

compact the coating film and make it uniform and free of defects [58]. A low 

concentration of 0.3 g/L was used in order to control the film thickness and make the 

membrane charge nearly neutral [35]. If a high concentration of several grams per 

liter was used, excessive material may deposit on the membrane resulting in 

membrane charge overbalanced [47]. In addition, a short adsorption time of 10 min 

was used as referred to the optimum preparation conditions of PVS coating (see 
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section 4.3.1.2). The resultant PI-PEI/SPEEK NF membranes showed a pure water 

flux of about 1 m3m-2day-1 when tested at room temperature and 13.8 bar.  
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Figure 4.14 Rejection to various salts as a function of the feed concentration for 
the SPEEK-coated PI-PEI NF membranes. 

The PI-PEI/SPEEK NF membrane was measured with regard to its rejection to 

four charged solutes CaCl2, MgSO4, NaCl, and Na2SO4. The results are shown in 

Figure 4.14. Within the concentration range between 10 and 200 mmol/L, a similar 

rejection value to CaCl2, MgSO4, and Na2SO4 can be observed to be around 95%. The 

rejection to NaCl was around 80%, lower than the other three salts. Therefore, this 

membrane could remove multivalent ions, both cations and anions, more efficiently 

than monovalent ions. This cannot be explained by Donnan exclusion. It is probable 

that the negative charge of SPEEK balanced the positive charge of the P84-PEI 

membrane resulting in a slightly negative surface layer. The overall membrane charge 

then became almost neutral and the Donnan exclusion effect did not govern the ion 
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separation behavior. Instead, the hydrated diameter of each ion and the diffusion 

coefficient of each salt determined the different retentions [1, 48].  

4.3.2.4 Characterization of membranes at different preparation stages 

Figure 4.15 shows the ATR-FTIR spectra of membranes at different preparation 

stages. The PMDA/ODA polyimide (PI) membrane exhibits several characteristic 

bands as follows: 1778 cm-1 (symmetric C=O stretching, imide I), 1722 cm-1 

(asymmetric C=O stretching, imide I), and 1378 cm-1 (C-N-C stretching, imide II). 

The peaks at 1500 cm-1 and 1245 cm-1 are from the C-C stretching of benzene ring 

and the C-O-C stretching of ODA, respectively [49]. On the other hand, the typical 

polyamic acid absorption bands at 1660 cm-1 (C=O stretching, amide I) and 1550 cm-1 

(C-N stretching, amide II) [50], and typical isoimide bands at 1800 cm-1 [51] are 
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Figure 4.15 ATR-FTIR spectra of membranes at different preparation stages. 



104 
 

totally absent. Therefore, this membrane has an identical infrared spectrum to the 

polyimide film cured by thermal process [49, 50, 51], indicating the polyamic acid 

was completely transformed to polyimide under these reaction conditions.  

After reaction with PEI, the absorption peaks of the imide I bands almost 

disappeared. Meanwhile, the characteristic peaks of amide groups at 1644 cm-1 (C=O 

stretching, amide I) and 1547 cm-1 (C-N stretching, amide II) appeared [52]. The band 

at 3267 cm-1 (N-H vibrations) indicates the existence of free amine groups. From the 

FTIR data, one can conclude that within 1 h of reaction, the imide bonds were 

completely transformed into amide bonds, resulting in the amine modifier covalently 

bound to the PI membrane with free amine functionalities. 

When SPEEK was coated, a few new absorption peaks of SPEEK clearly 

appeared at 1600 cm-1 (C=O stretching), 1472 cm-1 (phenyl ring), 1084 cm-1 

(symmetric O=S=O), 1027 cm-1 (S=O stretching) and 3450 cm-1 (O-H), indicating 

SPEEK was successfully deposited on the membrane surface.  

 

Figure 4.16 SEM spectra of the PI-PEI and the PI-PEI/SPEEK NF 
membranes. 

Figure 4.16 shows SEM morphology of the PI-PEI and the PI-PEI/SPEEK NF 

membranes. No pore could be observed on the surface of these two membranes. The 

PI-PEI membrane looks a little rough while the PI-PEI/SPEEK membrane is very 
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smooth which could be attributed to the preparation method. This smooth surface is 

beneficial for fouling resistance.  

4.3.2.5 Antifouling property of the PI-PEI/SPEEK membrane in comparison with 
the PI-PEI and NTR-7450 membranes 

Three NF membranes PI-PEI, PI-PEI/SPEEK and commercial NTR-7450 were 

used as representative of positively charged, near neutrally charged and negatively 

charged membranes respectively. The NTR-7450 membrane was selected because it 

has similar sulfonated surface with the PI-PEI/SPEEK membrane. However, The 

NTR-7450 membrane has higher permeability than the PI-PEI/SPEEK membrane. 

Therefore, a lower pressure of 10.3 bar (150 psi) was used for NTR-7450 while a 

pressure of 13.8 bar was used for both the PI-PEI and the PI-PEI/SPEEK membranes 

which resulted in similar water fluxes for three of them. It has been shown that the 

initial flux, rather than applied pressure, seems to directly affect the extent of flux 

reduction [53]. With similar initial fluxes and the same other experimental conditions, 

the difference in degree of flux decline during fouling tests may reflect different 

fouling resistance of these membrane with different surface charging. Their fouling 

resistance was measured in dead-end mode using three model foulants of BSA, HA 

and SA as representative of proteins, NOM and polysaccharides, respectively. 

Figure 4.17 shows flux decline during dead-end filtration of a feed solution 

containing 1% (w/v) BSA in 0.01 M PBS.  For each membrane, the water flux at any 

given time was normalized to the initial stabilized flux after compaction. The initial 

fluxes for each membrane are shown in the legend. For all the membranes, fluxes 

decreased with the increase of filtration time. The flux decline may be caused by both 

membrane fouling and concentration of the feed solution due to the high retention of 

the solutes. In order to remove the concentration effect, at certain filtration time (90 
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min or 120 min), the permeate was refilled into the feed to restore the initial feed 

concentration. Then the flux would be restored to a higher value which may be caused 

primarily by the fouling effect. By this definition, the PI-PEI/SPEEK membrane had 

very little fouling since the flux was almost fully recovered after feed refill. Both the 

PI-PEI and the NTR-7450 membranes showed similar flux profile. The foulant-

caused flux decline of these was much more than that of the PI-PEI/SPEEK 

membrane. These results suggest that the neutrally charged membrane has much 

better fouling resistance than both the positively charged and the negatively charged 

membranes. Although the overall charge of BSA is close to neutral, it has a variety of 

functional groups including amines and carboxylic acid, which provide both positive 

sites and negative sites respectively. It is likely that these charged sites could be 

adsorbed on an oppositely charged surface via electrostatic interactions. However, for 

a membrane with a low surface charge, such electrostatic interaction could be 

minimized resulting in very little BSA adsorption. 
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Figure 4.17 Dead-end filtration of model protein solution (bovine serum albumin, 

1.0 g/L, 13.8 bar) with PI-PEI, PI-PEI/SPEEK and NTR-7450 
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Figure 4.18 Dead-end filtration of model NOM solution (humic acid, 1.0 g/L, 1 

mM CaCl2, 13.8 bar) with PI-PEI, PI-PEI/SPEEK and NTR-7450 
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Figure 4.19 Dead-end filtration of model polysaccharide solution (sodium 

alginate, 1.0 g/L, 13.8 bar) with PI-PEI, PI-PEI/SPEEK and NTR-7450 
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Flux decline caused by 1.0 g/L HA or 1.0 g/L SA is shown in Figure 4.18 and 

Figure 4.19 respectively. The HA solution also contains 1mM CaCl2 to enhance 

fouling tendency of humic acid because Ca2+ ions can bridge the carboxyl groups of 

humic acid. Both figures show the same sequence of flux decline: PI-PEI/SPEEK < 

NTR-7450 < PI-PEI indicating the fouling resistance of the three membranes has a 

reversed order. Both the HA and SA contain a lot of carboxylic groups and thus are 

negatively charged. As expected, the positively charged membrane could adsorb the 

oppositely charged foulants due to charge attractions giving the highest flux decline. 

Although a negatively charged membrane could repulse negatively charged small 

molecules like surfactants, it may not be true for large complicated polymers like HA 

and SA. Similar to BSA, HA and SA may also have some positive sites. The charge 

interaction with a negative surface could be stronger than that with a neutral surface. 

Therefore, the neutral membrane would show the lowest foulant adsorption by 

eliminating any charge related interactions. 

4.3.3 Resistance to activated sludge of  the PI-PEI/SPEEK and the P84-PEI/PVS 
membranes in comparison with the NTR-7450 membrane 

 
The results from above studies suggest that the newly designed NF membranes 

by coating a layer of negatively charged polyelectrolytes onto the surface of positively 

charged NF membranes should exhibit lower fouling and produce higher quality 

effluents in MBR operations compared with UF membranes conventionally 

employed.  For potential MBR application, fouling tendency of three membranes, PI-

PEI/SPEEK, P84-PEI/PVS and commercial NTR-7450 was preliminarily investigated 

in dead-end mode using activated sludge taken from an aerobic bioreactor. Figure 

4.20 compares the normalized flux data for the three NF membranes. The PI-

PEI/SPEEK membrane showed less flux decline for the entire time range and 

correspondingly better resistance to activated sludge than the NTR-7450 membrane. 
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However, the P84-PEI/PVS membrane showed much worse resistance to activated 

sludge than both the PI-PEI/SPEEK and the NTR-7450. This surprising result may be 

related to other surface characteristics such as hydrophilicity, surface roughness and 

pore structure. Since the activated sludge may consist of complicated components 

including salts, organics, colloidal and particles, further detailed studies are required 

to characterize and modify the membrane surface properties for use in MBR 

application.    
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Figure 4.20 Dead-end filtration of model activate sludge solution (MLSS: 3000 – 

4300 mg/L, 13.8 bar) with PI-PEI/SPEEK, NTR-7450 and P84-PEI/PVS 
 

4.4 Conclusions 

In order to prepare a fouling resistant NF membrane for potential MBR 

application, we designed two kinds of membrane systems. The first system consisted 

of a partially modified P84 polyimide membrane with PEI and a surface coating using 

PVS or PVA. By decreasing the extent of chemical modification which was carried 



110 
 

out at a low reaction temperature and controlled time, membrane brittleness was 

improved due to the decreased degree of cross-linking. Several initial P84 membranes 

were prepared from casting solutions with various concentrations from 19% to 25%. 

Their pore size and water permeability varied considerably. After modification with 

PEI and coating with PVS or PVA, the final membranes showed properties in a broad 

range between loose ultrafiltration to nanofiltration. These membranes may meet the 

needs in various industrial applications such as MBR. 

Another system involved preparation of a nearly neutrally charged NF membrane 

developed by adsorption of a layer of negatively charged SPEEK onto the surface of a 

positively charged NF membrane. Still, the positively charged NF membranes were 

prepared by chemical modification of PMDA-ODA polyimide membranes using PEI. 

The modified PI-PEI membrane showed a rejection sequence of CaCl2 > MgSO4 > 

NaCl > Na2SO4, which could be explained by Donnan repulsion effect. After coating 

SPEEK, the PI-PEI/SPEEK membrane could remove multivalent ions more 

efficiently (> 95%) than monovalent ions (80%) due to the size effect; a rejection 

sequence of CaCl2 ≈ MgSO4 ≈ Na2SO4> NaCl was observed. When using bovine 

serum albumin (BSA), humic acid and sodium alginate as the model foulants, the 

neutrally charged membrane exhibited much better fouling resistance than both the 

positively charged and negatively charged membranes. This result suggests that the 

foulants would be less likely to deposit onto a neutral membrane due to the 

elimination of the charge interaction between the membrane and the foulants.  

In an attempt to apply these two systems in an MBR process, it was found that 

the second membrane system PI-PEI/SPEEK showed much better resistance to 

activated sludge than the first membrane system P84-PEI/PVS. Although these two 

membranes had similar surface chemistry and surface charging, they may have other 
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differences in surface properties such as hydrophilicity, roughness and pore structure, 

which needs further detailed studies in the future.  
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CHAPTER 5  
 

PREPARATION OF PMDA-ODA POLYIMIDE MEMBRANE FOR USE AS 
SUBSTRATE IN A THERMALLY STABLE COMPOSITE MEMBRANE 

5.1 Introduction 

Today, thin-film-composite (TFC) membranes, prepared by coating a very thin 

layer of aromatic polyamide onto a polysulfone substrate, are well accepted for water 

desalination because of their high rejection rate and high water permeability [1]. 

However, it is still a challenge to develop chemically and thermally stable polymeric 

membranes which can withstand harsh environments including pH extremes, oxidants 

like chlorine, organic solvents, and very low or high temperatures, etc. while 

maintaining or even enhancing the separation capacity of the commercial TFC 

membranes [1, 2]. Such membranes are highly desired for many industrial processes. 

For example, in the sugar industry, a temperature of around 95 ˚C is desired to avoid 

repeated cooling and heating in the sugar production process, and to reduce microbial 

growth [3]. The pulp and paper industry also needs membranes which can resist high 

temperatures of 70 - 90 ˚C and alkaline conditions [3]. Therefore it is of interest to 

develop thermally stable membranes to overcome the limitation of 45 ˚C for the 

commercial membranes [4, 5, 6, 7]. For this purpose, high performance polymers like 

polyimides (PIs) may be considered for developing a new generation of membranes 

for water purification and desalination [8].  

Due to their unique properties, polyimides have been developed into 

membranes for separation of gases, vapors and liquids [9]. Polyimide membranes 

exhibit excellent resistance to almost all chemical agents. Their thermal resistance 
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allows separations to be performed for a long time at elevated temperatures [10]. 

Specifically, poly(pyromellitic dianhydride-co-4,4’-oxydianiline) (PMDA/ODA PI) 

has a very high glass transition temperature of approximately 400 ˚C and excellent 

resistance to most non-oxidizing acids at room temperature and almost all organic 

solvents [11]. However, because the PMDA/ODA PI is both insoluble and infusible, 

any products, including membranes, can only be processed from its precursor, 

polyamic acid (PAA), which requires an additional step to transform the PAA into PI 

by either thermal or chemical treatments. So far, studies have focused on its 

fabrication into symmetric membranes or composite membranes for separation of 

gases and organics [8, 12, 13, 14, 15]. A dense symmetric membrane, prepared from 

PAA solution via solvent evaporation followed by chemical imidization, has also been 

applied for water desalination. Although the salt rejection was high, the water flux 

was very low [16]. 

There are several problems with developing PMDA/ODA PI asymmetric 

membranes from PAA using the phase inversion method. Firstly, because of the 

hydrophilic carboxylic groups, PAA has strong interaction with water, which makes 

the phase inversion slow. The resultant PAA membranes usually contain large 

amounts of macrovoids, which make the membranes mechanically very weak [17]. 

Secondly, PAA is known to be thermally unstable even at room temperature and tends 

to hydrolysis with water [18]. Thirdly, when transforming the PAA into PI by the 

thermal process, the pores of the membranes tend to collapse, which results in a 

shrinking of the PI membranes. Consequently, dense membranes are obtained with 
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very low permeability [19]. To solve these problems, several approaches have been 

reported to modify the PAA to decrease its hydrophilicity and improve its hydrolytic 

stability as well. For example, partially imidized PAA was used for membrane 

development and the effect of PAA imidization on solution characteristics and 

membrane morphology was studied [20]. With a benzimidazole additive, the 

carboxylic groups of PAA were blocked so as to decrease the hydrophilicity of PAA 

[19]. PAA amine salts, prepared by reaction with tertiary amines like triethylamine, 

have shown improved hydrolytic stability [21]. However, the PAA amine salt 

polymers are soluble in water and thus may not be suitable for developing asymmetric 

membranes by the phase inversion method. In order to prevent membrane shrinking 

during the thermal imidization process, a chemical process using acetic anhydride as 

dehydration agent and triethylamine as catalyst provides an alternative option [9].  

Because of their strong coordination with the transition metal ions, the 

carboxylic groups of PAA can be neutralized by cations, such as Zn2+, Ni2+ and Cu2+, 

to form ionomers. These divalent cations may act as cross-linkers so that these 

ionomers behave as thermoplastic elastomers [22]. Immersion of PAA films or fibers 

into aqueous solutions of transition metal salts leads to chelation of a certain amount 

of metals onto the PAA, confirming the strong interaction between the PAA and the 

metal ions [23]. The improvements in physical properties and chemical stability after 

coordination with metal ions may benefit the development of asymmetric 

PMDA/ODA PI membranes. To the best of our knowledge, no related studies have 

been reported on preparation of PI membranes using this method. 
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In this study, we added predetermined amounts of zinc chloride (ZnCl2) into a 

PAA solution to modulate the physical properties of the casting dope. We selected 

ZnCl2 instead of zinc acetate (ZnAc2) as an additive because ZnCl2 could be readily 

dissolved in PAA/NMP solution while even small amounts of ZnAc2 would 

precipitate the polymer. The change in viscosity of the polymer solution was 

measured with increasing amounts of the ZnCl2 added. Then the ZnCl2-containing 

casting dope was cast onto a polyester support followed by immersing into a water 

bath to prepare an asymmetric porous PAA membrane. The effect of ZnCl2 on the 

morphology of PI membrane was then investigated. By chemical imidization, the 

PAA membrane was transformed into PI membrane which could then be used as 

substrate for depositing a thin layer of cross-linked aromatic polyamide by interfacial 

polymerization. This composite membrane could be used for water desalination with 

much better thermal stability than the commercial composite membranes based on 

polysulfone substrate. 

5.2 Experimental 

5.2.1 Chemicals 

Poly(pyromellitic dianhydride-co-4,4’-oxydianiline) amic acid solution (PAA) 

was purchased from Aldrich as a 15% solution in N-methyl-2-pyrrolidone (NMP) and 

stored in a freezer. Trimesoyl chloride (TMC; Aldrich, 98%) was distilled under 

reduced pressure and stored in a desiccator to prevent hydrolysis of the acyl chloride 

groups. m-Phenylenediamine (MPDA; Aldrich, ≥ 99%) and anhydrous zinc chloride 



 

119 
 

(ZnCl2; Aldrich, ≥ 98%) were used as received. All the other reagents and solvents 

were of analytical grade and used as received. 

5.2.2 Preparation of the polyimide membranes 

Three casting solutions were prepared by adding 0%, 6% and 24% ZnCl2 into 

the 15% PAA/NMP solution. With more than 24% ZnCl2, the polymer solution was 

so highly viscous that membrane processing became difficult. The percentage of 

added ZnCl2 was based on the polymer solution not on the polymer itself. For 

example, to make a casting solution with 6% ZnCl2, 6 g of anhydrous ZnCl2 was 

added to 100 g of the 15% PAA/NMP solution. The mixture was then stirred by a 

mechanical stirrer until the zinc chloride was totally dissolved. After that, the solution 

was degassed under vacuum to remove all the bubbles. The casting solution was then 

cast onto a polyester support (Calendered PET from Crane Nonwovens) and 

immersed immediately into a water coagulation bath at room temperature. The 

membrane thickness was controlled at roughly 100 micron. After 30 min, the 

membrane was removed from the water bath and washed thoroughly with deionized 

(DI) water. Then the PAA membrane was dried by an isopropanol-hexane 

displacement sequence [24]: the membrane was immersed in the isopropanol for 90 

min during which the isopropanol was refreshed 3 times. Subsequently, the 

isopropanol was replaced by hexane using the same procedure. Chemical imidization 

was performed by immersing the PAA membranes into a mixture of acetic anhydride 

(Ac2O) and triethylamine (TEA) (volume 4:1) at 100 ˚C for 36 hours, as shown in 
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Scheme 5.1. The resultant PI membranes were then washed using isopropanol several 

times and stored in isopropanol. 

 
Scheme 5.1 Synthesis of polyimide from polyamic acid precursor via 

chemical treatment. 

5.2.3 Preparation of the composite membranes 

The composite membranes were prepared by the interfacial polymerization of 

MPDA with TMC on the surface of the PI membrane support. The PI membrane was 

dipped into an aqueous solution of MPDA. After removing excess liquid on the 

membrane surface using soft paper tissues, the membrane was immersed into a 

hexane solution of TMC, which resulted in an in-situ formation of a barrier layer over 

the surface of the polyimide substrate. The resulting composite membrane was dried 

at room temperature in air for two minutes to evaporate hexane and then stored in DI 

water prior to characterization. The preparation parameters including the monomer 

concentrations, immersion times, and post annealing were evaluated in order to obtain 

optimal desalination performance. For each data point, a minimum of two membrane 

samples were tested and averaged. 

5.2.4 Membrane desalination performance measurements 

Desalination performance of the composite membranes was examined using a 

dead-end filtration cell (Sterlitech HP4750) and 300 mL of a 2.0 g/L NaCl aqueous 

feed solution under 55.2 bar (800 psig). The feed solution was stirred at a rate of 1100 

rpm in the cell using a standard magnetic stirrer (Corning Stirrer/Hot Plate, Model 
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PC-420) to minimize concentration polarization. Each membrane was compacted at a 

pressure of 55.2 bar for nine hours prior to measurements to ensure a steady state was 

obtained. The permeated solution was then refilled into the feed and permeate 

samples were collected as appropriate. The permeation flux F was determined by 

measuring the permeation volume V (20 mL, 6.7% recovery) flowing across the 

membrane of area A (14.6 cm2) in the time period Δt, F (m3m-2day-1) = V/(A × Δt). 

The salt rejection was calculated as R = (1 – σp/σf) × 100%, where σp and σf were the 

conductivity of the permeate and the feed respectively. The conductivity of the NaCl 

solution was measured with a bench-top conductivity meter (Oakton CON 510). 

5.2.5 Membrane thermal stability measurements 

The thermal stability of the TFC membrane was evaluated by measuring the 

change of water flux and salt rejection with temperature increasing from 25 ˚C to 95 

˚C under a constant pressure of 27.6 bar (400 psi) and a 2.0 g/L NaCl solution. 

Heating of the testing solution was performed by immersing the dead-end filtration 

cell in a temperature controlled water bath.  

5.2.6 Characterization techniques 

The viscosities of the casting solutions containing various amounts of ZnCl2 

were measured using an Ubbelohde capillary viscometer in a thermostated water bath 

at 29.0 ± 0.1 ˚C. The relative viscosity value of each ZnCl2-containing casting 

solution was determined by normalizing its efflux time with respect to that of ZnCl2-

free polymer solution. 
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Characterization of membrane chemistry and morphology was conducted by 

attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-

ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and 

atomic force microscopy (AFM). All membrane samples were dried using the solvent 

exchange method to prevent the porous structure from collapsing upon drying [25]. 

ATR-FTIR spectra were collected at room temperature over a scanning range of 

600 - 4000 cm-1 with a resolution of 4.0 cm-1, using a Nexus 670 FT-IR (Thermo 

Electron Corporation, Madison, WI) with a Golden Gate™ MKII Single Reflectance 

ATR (Specac Inc., Woodstock, GA). The spectrometer was installed with a deuterated 

triglycine sulfate-potassium bromide (DTGS-KBr) detector and KBr beam splitter. 

Spectra collection was performed using FT-IR software (OMNIC, Thermo Electron 

Corporation, Madison, WI).  

XPS experiments were performed on a Physical Electronics PHI Model 5400 

surface analysis system using an achromatic Mg Kα (1253.6 eV) X-ray source 

operated at 300 W.  

SEM images were obtained using a Hitachi S-4700 with 15.0 kV accelerating 

voltage. For cross-sectional observations the polyimide layer was peeled off of the 

polyester support and fractured after immersion in liquid nitrogen. All samples were 

coated by sputtering with gold and palladium before testing.  

AFM was performed in air using a Veeco / Digital Instruments Dimension 3100 

AFM. Surface roughness of the membranes was obtained by surface image analysis. 
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5.3 Results and discussion 

5.3.1 Effect of ZnCl2 additive on viscosities of the casting solutions 

Figure 5.1 shows the change of viscosities of the polymer solutions by adding 

up to 10% ZnCl2. With more ZnCl2, the solution became too viscous to be measured 

by the viscometer. It can be seen that initially the solution viscosity increased linearly 

until 6% ZnCl2 was added. With more ZnCl2 from 6% to 10%, the solution viscosity 

increased more rapidly. An intersection at 6% can be clearly observed, at which point 

the molar ratio of Zn2+ to 2COOH can be calculated to be 1.2, close to equality.  

 
Figure 5.1 Change of viscosities of the PAA solutions by adding ZnCl2. Viscosity 
was measured using an Ubbelohde Capillary Viscometer in a thermostated water 

bath at 29.0 ± 0.1 ˚C. 

These results may be explained by the interaction between Zn2+ and both the 

polymer PAA [23] and the solvent NMP [26]. Due to the strong coordination 
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interaction between Zn2+ ion and carboxylic groups [27], initially each Zn2+ ion 

preferably binds to two PAA carboxylic groups in an intermolecular manner forming 

an ionic cross-linking network, as shown in Figure 5.2. The ionic cross-linking would 

decrease the mobility of the polymer chains resulting in enhanced viscosity. In 

addition, in the presence of zinc ions, the charge of the PAA is reduced due to the 

charge screening effect as well as the complex formation. This ionic cross-linking and 

charge decrease can reduce the hydrophilicity of the PAA and thus are favorable for 

membrane formation. At the point of 6% ZnCl2 added, however, the complexation 

reaches a maximum value. With more ZnCl2, a stable complex can be formed 

between Zn2+and the NMP, which would reduce the solvating power of NMP for the 

polymer and increase the solution viscosity further.  

 

Figure 5.2 Possible intermolecular cross-linking structure formed by the 
interaction between Zn2+ and polyamic acid. 
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5.3.2 Preparation and characterization of the polyimide substrate membranes 

5.3.2.1 Effect of ZnCl2 additive on membrane morphologies  

In this study, we prepared three kinds of membranes from polyamic acid 

solution containing 0%, 6% and 24% ZnCl2 respectively and then imidized the 

polyamic acid into polyimide. These PI membranes will be referred to as PI-0%, PI-

6% and PI-24% membranes. Figure 5.3 presents SEM images of the membrane cross-

sections and surfaces. The PI-0% membrane shows a highly porous structure 

containing a large amount of macrovoids. Most of the macrovoids extend deeply to 

the bottom of the membrane. Consequently, these macrovoids lead to mechanical 

weakness and the membrane easily ruptured in high pressure operations. When 6% 

ZnCl2 was added to the casting solution, the macrovoids become smaller showing a 

parallel finger-like structure. Meanwhile, a sponge-like structure formed at the 

membrane bottom. When the ZnCl2 content in the solution was raised to 24%, the 

content of the sponge-like structure increased significantly while the number of the 

macrovoids decreased. While the PI-0% membrane contains a lot of micropores on 

the surface with the diameter ranging from 10 to 20 nm, at 6% ZnCl2 additive the pore 

diameter decreased to 5 - 8 nm, and at 24% ZnCl2 additive no pores were detected. 

Therefore, the ZnCl2 additive played an important role to suppress the macrovoid 

formation in the membranes, which made the membranes mechanically stronger. 

Meanwhile, the membrane surface became less porous after adding ZnCl2 to the 

casting solution. 
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Figure 5.3 Cross-sectional (left) and surface (right) morphologies of the 
polyimide substrate membranes developed from polyamic acid solutions with 

different amount of ZnCl2 additive. 

Morphological changes of these membranes may be closely related to the 

properties of the casting solutions. Before adding ZnCl2, the PAA/NMP solution had 

low viscosity. Due to the strong mutual affinity between water and NMP, rapid 

solvent/nonsolvent exchange occurred during the quench step. This process, so-called 

instantaneous phase separation, can commonly result in membranes having a 

microporous skin layer and a finger-like substructure [28, 29]. The addition of 6% 
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ZnCl2 could facilitate polymer precipitation during quenching in water through the 

formation of a cross-linked structure as mentioned before. Consequently, the resultant 

membrane has a relatively dense surface which can hinder the exchange diffusion 

between the solvent and the nonsolvent. This decreased diffusion rate could delay the 

phase separation process so that the growth of the macrovoids was suppressed [30]. 

This effect became more evident when 24% ZnCl2 was added to the casting solution. 

The diffusion between the solvent and the nonsolvent became even more difficult due 

to the denser membrane surface as a result of very high viscosity of the casting 

solution [31]. Similar effects on membrane structure have been observed when using 

inorganic salt additives in various polymer-solvent systems [17, 32, 33]. 

 
Figure 5.4 AFM images of the surface morphologies of the polyimide substrate 
membranes developed from polyamic acid solutions with different amount of 

ZnCl2 additive. Scanning area: 10 µm×10 µm. 

Figure 5.4 shows the three-dimensional AFM images of the three membrane 

surfaces. The PI-0%, PI-6% and PI-24% membranes have surface roughness of 68.5 

nm, 37.4 nm and 3.4 nm (root mean square RMS roughness), respectively. The 

reduction in surface roughness by adding ZnCl2 may be attributed, in part, to the 

reduction of the surface pore size as illustrated by SEM. Moreover, it can be seen 
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from Figure 5.3 that there are some spherical protuberances in PI-0% and PI-6% 

membrane surfaces, which may also contribute to the membrane roughness. However, 

there is no such structure in the PI-24% membrane surface. It is likely that such 

spherical globules were induced by polymer aggregation during the phase inversion 

process. By coordinating with Zn2+ ions the polymer chains may exist in a gel-like 

structure which could restrain the polymer aggregation and make the membrane 

smooth.  

5.3.2.2 Effect of ZnCl2 additive on membrane permeability 

Permeability of the three polyimide membranes was tested at 13.8 bar and room 

temperature using tap water as the feed. The results are shown in Figure 5.5. Clearly, 

the permeate flux decreased with the increase of operating time, indicating membrane 

compaction happened. It is of interest to compare the initial fluxes of the three 

membranes prepared with 0%, 6% and 24% ZnCl2. These values are 29.4 ± 16.8, 8.8 

± 2.8 and 17.3 ± 0.81 m3m-2day-1 respectively. The PI-6% membrane is less 

permeable than the PI-0% membrane, which may be explained by the fact that the PI-

6% membrane has a smaller pore size than the PI-0% membrane. However, 

surprisingly, the PI-24% membrane shows higher permeability than the PI-6% 

membrane. It is likely that by using 24% ZnCl2 a large number of fine pores were 

formed so that the overall membrane porosity was increased [17]. On the other hand, 

it can be observed that the more ZnCl2 was used, the less flux variation from 

membrane to membrane was found, which suggests that the membrane properties 

became more stable and uniform by using ZnCl2 as additive.  
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Figure 5.5 Pure water permeability of the polyimide substrate membranes 

developed from polyamic acid solutions with different amount of ZnCl2 additive. 
Experiments were conducted at 13.8 bar and room temperature. 

5.3.2.3 Characterization of the chemical composition of the polyimide membrane 

It is of interest to investigate the chemical composition of the membranes after 

imidization. ATR-FTIR and XPS were used to characterize the conversion of 

polyamic acid to polyimide and the presence of Zn2+ after imidization, respectively. 

The membrane sample was prepared with 24% ZnCl2 and the results are displayed in 

Figure 5.6 and Figure 5.7, respectively.  

The ATR-FTIR spectrum exhibits a few characteristic bands of PMDA/ODA 

polyimide as follows: 1778 cm-1 (symmetric C=O stretching, imide I), 1722 cm-1 

(asymmetric C=O stretching, imide I), and 1378 cm-1 (C-N-C stretching, imide II). 

The peaks at 1500 cm-1 and 1245 cm-1 are from the C-C stretching of benzene ring 

and the C-O-C stretching of ODA, respectively [34]. On the other hand, the typical 
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polyamic acid absorption bands at 1660 cm-1 (C=O stretching, amide I) and 1550 cm-1 

(C-N stretching, amide II) [35], and typical isoimide bands at 1800 cm-1 [36] are 

totally absent. Therefore, this membrane has identical infrared spectrum to the 

polyimide film cured by thermal process [49, 50, 51], indicating the polyamic acid 

was completely transformed to polyimide under these reaction conditions.  

 

 
Figure 5.6 ATR-FTIR spectrum of the polyimide membrane after chemical 

imidization. The membrane was prepared with 24% ZnCl2 additive. 

From the XPS survey spectrum, one can see that only carbon, oxygen and 

nitrogen atoms are present on the membrane surface. No zinc atoms (Zn 2p at 1021 

eV) could be detected. This result is in good agreement with the ATR-FTIR result. It 

is likely that the Zn2+ ions were dissolved into the reagent mixture of Ac2O/TEA 

during the imidization process. Therefore, it can be concluded that the only role of 
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ZnCl2 was to regulate membrane morphology and permeability and it can be 

completely removed during membrane preparation process. 

 
Figure 5.7 XPS survey spectrum of the polyimide membrane after chemical 

imidization. The membrane was prepared with 24% ZnCl2 additive. 
 

5.3.3 Preparation and characterization of the composite membranes using 
polyimide membranes as substrates 

5.3.3.1 Effect of the PI substrate membranes on desalination performance  

The three polyimide membranes PI-0%, PI-6% and PI-24% were employed as 

substrates for fabrication of composite RO membranes. The polyamide thin films 

were prepared by immersing the polyimide substrate membranes in a 1.0% 

MPDA/H2O solution for 30 s and then in a 0.02% TMC/hexane solution for 5 s. 

These preparation parameters were optimized using the PI-24% membrane as 
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substrate, and these will be shown in detail in the following parts. The membrane 

performance data in terms of water flux and salt rejection are shown in Table 5.1.  

Table 5.1 Effect of different substrate membranes on desalination performancea. 
Membrane samples Fluxb (m3m-2day-1) Rejectionb (%) 

PI-0% 0.80 ± 0.04 61.4 ± 15.1 
PI-6% 0.60 ± 0.01 95.3 ± 0.4 

Notes: aThin film preparation conditions: 1.0% MPDA/H2O, 30 s; 0.02% 
TMC/hexane, 5 s. bTest conditions: 2.0 g/L NaCl solution, 55.2 bar and room 
temperature, 9 h compaction at 55.2 bar. 

It can be seen that the PI-0% membrane is not a good support for the composite 

membrane because the salt rejection is low. It is likely that this substrate membrane 

could be ruptured at high pressure, which could induce defects to the top polyamide 

film. By using the PI-6% membrane as a substrate, the composite membrane shows 

better salt rejection but less water flux. In this case, the substrate membrane may have 

additional resistance to water transport. Therefore, we used the PI-24% membrane as 

substrate for further parametric studies because of its good mechanical stability. In 

addition, its smooth surface may facilitate the formation of a uniform thin film. 

5.3.3.2 Effect of concentration of the monomers on desalination performance 

In Table 5.2 are presented the desalination data of a given thin film composite 

membrane prepared by interfacial polymerization of MPDA and TMC at various 

concentrations. At a constant concentration of TMC (0.15%), permeate flux was 

found to decline with an increase of the MPDA concentration. However, best salt 

rejection was obtained with 1% MPDA/H2O solution. Therefore, the concentration of 

MPDA was fixed at 1% and various concentrations of TMC were studied. Generally, 
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by decreasing the concentration of TMC, the permeate flux was improved while the 

salt rejection did not show significant change. Comparatively, a low concentration of 

0.02% TMC gave the best membrane performance. With a high TMC content of 4%, 

the membrane showed high permeate flux but low salt rejection.  

Table 5.2 Effect of monomer concentration on desalination performancea. 
CMPDA (w/v) CTMC (w/v) Fluxb (m3m-2day-1) Rejectionb (%) 

0.5% 0.15% 0.81 95.7 ± 0.2 
1.0% 0.15% 0.71 98.1 
2.0% 0.15% 0.67 ± 0.02 96.8 ± 0.9 
4.0% 0.15% 0.62 ± 0.07 95.9 ± 0.6  
1.0% 0.01% 1.06 96.9 
1.0% 0.02% 1.13 ± 0.04 97.8 ± 0.7 
1.0% 0.05% 1.15 ± 0.09 96.8 ± 0.8 
1.0% 0.1% 0.96 ± 0.04 96.9 ± 0.7 
1.0% 0.2% 0.83 ± 0.03 96.2 ± 0.8 
1.0% 0.4% 1.13 ± 0.32 93.8 ± 1.3 

Notes: aThin film preparation conditions: using PI-24% membrane as substrate, 60 s 
in MPDA/H2O, 10 s in TMC/hexane. bTest conditions: 2.0 g/L NaCl solution, 55.2 
bar and room temperature, 9 h compaction at 55.2 bar. 

The effect of TMC on membrane surface morphology was studied by SEM. The 

result is shown in Figure 5.8. The membrane prepared with 0.02% TMC shows the 

typical ridge-and-valley structure with some polymer strands on the surface [37]. 

When TMC concentration increases to 0.15%, the membrane shows a dense surface, 

which may explain the membrane performance of low permeate flux and high salt 

rejection. However, when TMC concentration increases to 4%, some porous defects 

appear on the membrane surface, which likely result in the observed high permeate 

flux and low salt rejection. 
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Figure 5.8 SEM images of polyamide thin films prepared with various 
concentration of TMC. 
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The relationship between preparation conditions of the polyamide thin film and 

membrane performance has been studied by many others in recent years [38, 39, 40]. 

Generally, the permeate flux depends primarily on the film thickness and surface 

hydrophilicity while salt rejection is mainly governed by surface chemistry, pore size 

and charge [38, 40]. With different concentrations and ratios of the two monomers, 

the reaction rate and degree of polymerization were different. Therefore, the 

polyamide may contain various amounts of functional groups such as carboxylic acid 

and amine groups, which, in turn, may induce various changes in pore size and charge 

density [39]. Nevertheless, most studies on the optimization of preparation conditions 

of the polyamide thin films are usually based on trial-and-error procedures.  

5.3.3.3 Effect of immersion time on desalination performance 

With fixed concentrations of the two monomers, various immersion times in 

both of them were studied. Table 5.3 shows the desalination performance of the 

resultant membranes. With 10 s immersion in MPDA and 10 s immersion in TMC, 

the membrane shows high permeate flux but low salt rejection. It is likely that the 

loading of MPDA in the membrane was not sufficient to prepare a uniform thin film. 

The MPDA loading became sufficient with an immersion time of 30 s because the 

resultant membranes show consistently good desalination performance. However, 

with a greater immersion time of 120 min, membrane performance decreased slightly. 

Similarly, the optimal reaction time in TMC solution was observed to be 5 - 10 s. 

More or less reaction time decreased the desalination performance of the resultant 

membranes.  
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Table 5.3 Effect of immersion time in MPDA and TMC on desalination 
performance. 

Immersion time in 
MPDA (s) 

Immersion time 
in TMC (s) 

Flux (m3m-2day-1) Rejection (%) 

10 10 1.40 ± 0.13 94.5 ± 2.4 
30 10 1.13 ± 0.02 97.5 ± 0.1 
120 10 1.10 ± 0.12 96.0 ± 0.9 
30 3 1.31 ± 0.14 91.0 ± 2.3 
30 5 1.13 ± 0.04 97.4 ± 0.1 
30 20 1.10 ± 0.16 97.3 ± 1.2 

Notes: Membrane prepared with 1% MPDA/H2O and 0.02% TMC/hexane. 
Test conditions: 2.0 g/L NaCl solution, 55.2 bar and room temperature, 9 h 
compaction at 55.2 bar. 

5.3.3.4 Effect of post annealing on desalination performance  

We also studied the effect of annealing on the desalination performance of the 

membranes. The results are shown in Table 5.4. Although annealing has been 

commonly used for improving membrane selectivity due to the densification of the 

selective skins [41], this treatment afforded no apparent improvement for this system. 

For example, after annealing at 50 ˚C for 5 min, the water flux decreased slightly 

while the salt rejection remained constant. By annealing at 80 ˚C for 5 min, however, 

membrane curling became noticeable and defects were likely induced in the 

membrane active layer. Therefore, salt rejection was reduced significantly.  

Table 5.4 Effect of post thermal treatment on desalination performance. 
Annealing 

temperature (oC) 
Annealing time 

(min) 
Flux (m3m-2day-1) Rejection (%) 

50 5 1.07 ± 0.02 97.6 ± 0.4 
80 5 1.10 ± 0.08 94.8 ± 0.7 

Notes: Membrane preparation conditions: 1% MPDA/H2O, 30 s and 0.02% 
TMC/hexane, 5 s. Test conditions: 2.0 g/L NaCl solution, 55.2 bar and room 
temperature, 9 h compaction at 55.2 bar. 

Based on these studies, it can be concluded that the optimal conditions for 

obtaining good composite membranes of polyamide were achieved by immersion in 
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1.0% MPDA/H2O solution for 30 - 60 s and then immersion in 0.02% TMC/hexane 

solution for 5 - 10 s without any annealing treatment. The rejection of the membrane 

prepared under such conditions for 2.0 g/L NaCl aqueous solution is about 98%, and 

the flux is about 1.1 m3m-2day-1 when tested at 55.2 bar and room temperature.  

5.3.4 Thermal stability of the composite membranes 

 

Figure 5.9 Effect of operating temperature on membrane performance. Test 
conditions: 27.6 bar, 2.0 g/L NaCl aqueous solution. 

Thermal stability of the composite membrane was tested by measuring its 

permeation characteristics under various solution temperatures. The results are shown 

in Figure 5.9. The testing pressure was 27.6 bar (400 psi) instead of 55.2 bar (800 psi) 

because at elevated temperatures permeate flux will increase rapidly. For this reason, 

low pressure was required to measure the flux in a controlled manner. As the feed 

temperature increases from 25 ˚C to 95 ˚C, the water flux increases 5 - 6 times from 
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0.74 m3m-2day-1 to 3.95 m3m-2day-1, while the salt rejection stays roughly constant. 

The thermal stability of this membrane may be attributed to the high mechanical 

strength of the polyimide substrate, which can resist pore expansion as temperature 

increases. Therefore, these results suggest that this membrane provides a unique 

solution for hot water desalination. In addition, this membrane provides a feasible 

way to improve water flux by increasing the operating temperature without any drop 

in salt rejection.  

5.4 Conclusions 

Thermally stable RO membranes were developed using PMDA/ODA PI 

membranes as substrate and MPDA/TMC polyamide as the top thin film. We 

prepared the PI substrate membranes from PAA and then imidized the PAA into a PI 

substrate membrane. Zinc chloride was introduced into the PAA solution where an 

ionic cross-linking structure was formed by coordination of Zn2+ ions with carboxylic 

groups of PAA. As a result, membrane structure and permeability were effectively 

regulated. By using 24% ZnCl2, the resultant PI membranes show a smooth surface 

with good permeability and mechanical strength. These properties are favorable for 

preparation of a stable and high performance composite membrane. In addition, 

chemical imidization by AC2O/TEA at 100 ˚C was found to convert the PAA to PI 

completely and the ZnCl2 additive was totally removed after membrane preparation.  

 Composite RO membranes were prepared by coating a thin layer of aromatic 

polyamide via interfacial polymerization. Detailed parametric studies were conducted 

and the optimized RO membranes based on polyimide showed a salt rejection of 98% 
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with a permeate flux of 1.1 m3m-2day-1 when tested with a 2.0 g/L NaCl solution at 

55.2 bar and room temperature. The key advantage of the polyimide-based membrane 

is its high thermal stability. As the feed temperature increases from 25 ˚C to 95 ˚C, the 

water flux increases 5 - 6 times while the salt rejection remains almost constant.  
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