Fast algorithms for the computation of sliding sequency-ordered complex Hadamard transform
Jiasong Wu, Huazhong Shu, Lu Wang, Lotfi Senhadji

To cite this version:

HAL Id: inserm-00502110
http://www.hal.inserm.fr/inserm-00502110
Submitted on 18 Feb 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Fast algorithms for the computation of sliding sequence-ordered complex Hadamard transform

Jiasong Wu, Member, IEEE, Huazhong Shu, Senior Member, IEEE, Lu Wang and Lotfi Senhadji, Senior Member, IEEE

Abstract—Fast algorithms for computing the forward and inverse sequence-ordered complex Hadamard transforms (SCHT) in a sliding window are presented. The first algorithm consists of decomposing a length-N inverse SCHT (ISCHT) into two length-N/2 ISCHTs. The second algorithm, calculating the values of window i+N/4 from those of window i and one length-N/4 ISCHT and one length-N/4 modified ISCHT (MISCHT), is implemented by two schemes to achieve a good compromise between the computational complexity and the implementation complexity. The forward SCHT algorithm can be obtained by transposing the signal flow graph of the ISCHT. The proposed algorithms require O(N) arithmetic operations and thus are more efficient than the block-based algorithms as well as those based on the sliding FFT or the sliding DFT. The application of the sliding ISCHT in transform domain adaptive filtering (TDAF) is also discussed with supporting simulation results.

Index Terms—Fast algorithm, sequence-ordered complex Hadamard transform, sliding algorithm

I. INTRODUCTION

The discrete orthogonal transforms play an important role in the fields of digital signal processing, filtering and communications. In the past decades, various transforms including discrete Fourier transform (DFT) [1], discrete Hartley transform (DHT) [2], discrete cosine transform (DCT) and discrete sine transform (DST) [3], and Walsh-Hadamard transform (WHT) [4], [5] have been introduced and found wide applications in many scientific and technological areas. Recently, Aung et al. introduced the sequence-ordered complex Hadamard transform (SCHT) [6], which can be an alternative of DFT in some applications requiring lower computational complexity such as spectrum analysis and image watermarking. It was shown that the SCHT performs better than the WHT in asynchronous CDMA system [7]. Two block-based algorithms including the radix-2 decimation-in-time (DIT) [6] and decimation-in-sequency (DIS) [8] have been developed for fast computation of SCHT.

An interesting case appears when the spectrum of a nonstationary process, such as speech, radar, biomedical, and communication signals, is required. This leads to the so-called sliding transform, also known as time-dependent or short-time transform [1], to determine the time-varying spectrum. Basically, the sliding transform means that the transform is computed on a fixed-length window of the signal, which is continuously updated with new samples as the oldest ones are discarded [9]. In such cases, the signal properties (amplitudes, frequencies, and phases) usually change with time, a single orthogonal transform is not sufficient to describe the entire signal [10], [11]. Assume that the window contains N complex values \( x_0, x_1, \ldots, x_{N-1} \) at time instant \( i \), then, the sliding orthogonal transform is defined by [10]

\[
Y_N(k,i) = \sum_{m=0}^{N-1} x_{i+m} w_m \psi(m,k),
\]

where \( w_m \) is a window function, and \( \{\psi(m,k)\} \) is an orthogonal basis set. \( Y_N(k,i) \) represent the orthogonal transform of the windowed signal around time \( i \).

In the past, the sliding orthogonal transforms have been investigated and found applications in spectrogram analysis and adaptive filter design. Since the computation of sliding transform at each position of a sliding window is an intensive task, many fast algorithms were proposed [9-24]. Among them, the sliding FFT [14-16] and the sliding DFT [17-19] have attracted many attentions due to their extensive applications. By applying a property of radix-2 DIT FFT algorithm, Farhang-Boroujeny et al. proposed an efficient sliding FFT algorithm, which needs \( 4N-8\log_2N \) real multiplications, \( \log_2N-1 \) multiplications with the imaginary number \( j \) and \( 4N-4\log_2N-2 \) real additions [14], [15]. The sliding FFT algorithm was then extended to other discrete orthogonal transforms such as DHT, DCT, DST and WHT [16]. Based on the circular shift property of DFT, Jacobsen and Lyons developed a fast sliding DFT algorithm, which
requires $4N-16$ real multiplications, 2 multiplications with $j$ and $4N-6$ real additions [18], [19].

Recently, special attention has also been paid on the fast computation of sliding WHT [20-24] due to the real-time application requirement of pattern matching in many cases, such as video block motion estimation in H. 264 [21]. A fast algorithm, based on the radix-2 DIS WHT algorithm, which decomposes a length-$N$ WHT into two length-$N/2$ WHTs plus $2N-2$ additions, for the sliding WHT was proposed in [22]. This algorithm was further improved by Ben-Artzi et al. [23], who proposed the gray code kernel algorithm that utilizes the previously computed values in the leaves of the tree structure. Ouyang and Cham [24] presented a more efficient algorithm who proposed the gray code kernel algorithm that utilizes the previously computed values in the leaves of the tree structure. The fast 2 ICON WHT from two length-$N$ WHTs plus 3N/2+1 additions.

Inspired by the research work presented in [22] and [24], we propose in this correspondence two fast algorithms for efficient computation of sliding SCHTs. The first algorithm consists of decomposing a length-$N$ inverse SCHT (ISCHT) into two length-$N/2$ ISCHTs. The second algorithm, calculating the values of window $i+N/4$ from those of window $i$ and one length-$N/4$ ISCHT and one length-$N/4$ Modified ISCHT (MISCHT), is implemented by two schemes to achieve a good compromise between the computation complexity and the implementation complexity.

The paper is organized as follows. In Section II, preliminaries about the forward and inverse sliding SCHTs are given. The proposed sliding ISCHT algorithms are described and the comparison results with other algorithms are provided in Section III. Transform domain adaptive filtering is given in Section IV to illustrate the potential application of sliding ISCHT. Section V concludes the paper.

II. PRELIMINARY

In this section, we first give the definition of sliding SCHT based on the general sliding transform given in (1) and SCHT in [6]. Consider $M$ input signal elements $x$, where $i = 0, 1, ... , M-1$, which is divided into overlapping windows of size $N (M > N)$. Let $X_N(i) = [x_0, x_1, ..., x_{N-1}]^T$ and $Y_N(i) = [y_0, y_1, ..., y_{N-1}]^T$ be respectively the complex input vector and the transformed complex vector of the $i$th window, where $T$ denotes the transposition, and let $N = 2^n, n \geq 1$, the length-$N$ forward and inverse sliding SCHTs are defined as [6]

$$Y_N(i) = \frac{1}{N}H_N^N X_N(i), \quad (2)$$

$$X_N(i) = H_N^N Y_N(i), \quad (3)$$

where the superscript $H$ denotes the Hermitian transposition, $H_N$ is the order-$N$ ISCHT matrix whose elements are given by

$$H_N(k, l) = \prod_{r=0}^{n-1} R_n(r, l)^{k_r}, \quad (4)$$

where

$$k = b_{n-1}2^{n-1} + \cdots + b_12 + b_02^0, \quad (5)$$

$$R_n(r, l) = CRAD \left( r, \frac{4l+1}{2^{n+2}} \right), \quad (6)$$

$$CRAD(r, t) = CRAD(0, 2^r t), \quad (7)$$

$$CRAD(0, t + 1) = CRAD(0, t) = \begin{bmatrix} 1, \quad t \in [0,1/4] \\
 j, \quad t \in [1/4, 1/2) \\
 -1, \quad t \in [1/2, 3/4) \\
 -j, \quad t \in [3/4, 1) \end{bmatrix}. \quad (8)$$

From (4) to (8), we have

$$H_1 = [1], H_2 = \begin{bmatrix} 1 & 1 \\
 1 & -1 \end{bmatrix}, H_4 = \begin{bmatrix} 1 & 1 & 1 & 1 \\
 1 & j & -j & -j \\
 1 & -j & j & -j \\
 1 & -j & -j & j \end{bmatrix}.$$  

From (7) we have

$$H_8 = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
 1 & j & j & -j & -j & -j & j & j \\
 1 & j & -j & -j & j & -j & -j & j \\
 1 & -j & 1 & -1 & 1 & -1 & 1 & -1 \\
 1 & -1 & -1 & 1 & 1 & -1 & 1 & -1 \\
 1 & j & -j & j & j & j & -j & -j \\
 1 & -j & j & -j & j & -j & j & j \\
 1 & -j & -j & j & -j & j & j & j \end{bmatrix}. \quad (9)$$

If we ignore the normalization factor $1/N$ in (2), it can be seen that the implementation of the forward sliding SCHT can be obtained by transposing the signal flow graph of the sliding ISCHT. Therefore, for simplicity, we take the sliding ISCHT into consideration. Let

$$H_N = [H_N(0), H_N(1), ..., H_N(N-1)], \quad (10)$$

$$H_N^{1/2} = [H_N(0), H_N(1), ..., H_N(N/2-1)]^T = [H_N^{1/2}(0), H_N^{1/2}(1), ..., H_N^{1/2}(N-1)]^T, \quad (11)$$

where $H_N(k), k = 0, 1, ..., N-1$, is the $k$th column of ISCHT matrix $H_N$. $H_N^{1/2}(k), k = 0, 1, ..., N-1$, is the $k$th row of $H_N^{1/2}$. Note that the matrix $H_N$ verifies the symmetry property, that is, $H_N = H_N^T$.

Let $x_N(k, i)$ be the $k$th ISCHT projection value for the $i$th window, that is

$$x_N(k, i) = H_N^T(k) Y_N(i) \quad \text{for} \quad k = 0, 1, ..., N-1; \quad i = 0, 1, ..., M-N, \quad (12)$$

Let us also define

$$x_N^{1/2}(k, i) = H_N^{1/2}(k) Y_N^{1/2}(i) \quad \text{for} \quad k = 1, 3, ..., N-1; \quad i = 0, 1, ..., M-N; \quad N = 2^n, n \geq 2. \quad (13)$$

Equation (3) can then be rewritten as

$$X_N(i) = \begin{bmatrix} x_N(0, i) \\
 x_N(1, i) \\
 ... \\
 x_N(N-1, i) \end{bmatrix} = H_N Y_N(i) = \begin{bmatrix} H_N^T(0) & y_i \\
 H_N^T(1) & y_{i+1} \\
 ... & ... \\
 H_N^T(N-1) & y_{i+N-1} \end{bmatrix}. \quad (14)$$
In this section, we derive two fast algorithms for computing the sliding ISCHT.

Algorithm 1: Decomposing a length-N ISCHT into two length-N/2 ISCHTs

By performing a similar strategy as presented in [22], and by utilizing a property of radix-2 DIS ISCHT algorithm, we extend the algorithm proposed in [8] to the sliding ISCHT algorithm. By performing the radix-2 DIS method on \( H_N \) [8], we have

\[
H_N = P_N^T \left[ \begin{array}{cc} H_{N/2} & I_{N/2} \\ H_{N/2} & -I_{N/2} \end{array} \right] S_N, 
\]

(15)

where \( I_N \) is the identity matrix of order \( N \),

\[
S_N = \left[ \begin{array}{c} I_{N/2} \\ jI_{N/2} \end{array} \right],
\]

(16)

and \( P_N \) is the permutation matrix such that for the input vector \( Y_N(i) \):

\[
P_N Y_N(i) = \left[ y_i, y_{i+2}, ..., y_{i+N-2}, y_{i+4}, y_{i+6}, ..., y_{i+N-1} \right]^T.
\]

(17)

Equation (15) can be rewritten as

\[
H_N^T(k) = \begin{cases} 1 \otimes H_{N/2}^T(k/2), & k = 0, 2, 4, 6, ..., N-2 \\ 0 \otimes H_{N/2}^T(k), & k = 1, 3, 5, 7, ..., N-1 \end{cases}
\]

(18)

\[
H_N^{1/2}(k) = \begin{cases} [1 \otimes H_{N/4}^T(k/4)], & k = 1, 5, 9, ..., N-3 \\ [j \otimes H_{N/4}^T(k/4)], & k = 3, 7, ..., N-1 \end{cases}
\]

(19)

where \( \otimes \) is the Kronecker product and \( \lfloor x \rfloor \) denotes the lower integer part of \( x \). The starting point is

\[
H_2^{1/2}(1) = H_2^{1/2}(0) = [1].
\]

The tree structure of ISCHT matrix construction is shown in Fig. 1. Using the projection relationships in (12) and (13), (18) and (19) can be equivalently expressed as their projection values:

\[
x_N(k, i) = x_{N/2}(k/2, i) + x_{N/2}(k/2, i + N/2), k = 0, 2, ..., N - 2
\]

(20)

\[
x_N^{1/2}(k, i) = x_N^{1/2}(k, i + N/2), k = 1, 3, ..., N - 1
\]

(21)

The starting point is \( x_2^{1/2}(1, i) = x_1(0, i) \).

So far, the algorithm in [8] has been extended to the sliding ISCHT. The main difference between (18) and (20) is that the latter computes the current projection values from those of the last layer in the tree structure shown in Fig. 1. Using a similar analysis of the computational complexity and memory storage requirement reported in [14-16] and [22], it can be seen that \( N/2-1 \) multiplications with \( j \), \( 2(N-1) \) complex additions, and \( 2N(\log_2N-1) \) words of memory are needed for computing the length-\( N = 2^n \) sliding ISCHT. Note that the multiplication by \( j \) or \( -j \) can be realized by switching the real and imaginary parts of the input with one sign changing, so that there is no memory storage requirement. As stated in [8], the operations of swapping and subtraction can be jointly performed with the help of the 2:1 complex multiplexers to accomplish the multiplications with \( -j \). The proposed Algorithm 1 is similar to the algorithm reported in [22], but slightly different from the sliding FFT algorithms [14-16] since the latter are based on the radix-2 DIT FFT algorithm. Note that if we extend the radix-2 DIT ISCHT algorithm [6] to sliding algorithm, we obtain exactly the same algorithm as those presented in [14-16].

Algorithm 2: Computing the values of window \( i+N/4 \) from those of window \( i \) and one length-N/4 ISCHT and one length-N/4 MISCHT

Inspired by a research work presented in [24], we propose another algorithm which computes the values of length-\( N \) sliding ISCHT of window \( i+N/4 \) from those of window \( i \). A. Fast algorithm for \( N = 4 \)

The proposed algorithm is shown in Table I, from which we have

\[
x_4(k, i+1) = (-j)^k \left[ x_4(k, i) - t_2 \left( \frac{k}{2}, i \right) \right], k = 0, 1, 2, 3
\]

(22)

where

\[
\begin{bmatrix} t_2(0, i) \\ t_2(1, i) \end{bmatrix} = H_4^{1/2} \begin{bmatrix} d_4(i) \\ d_4(i) \end{bmatrix},
\]

(23)

\[
d_4(i) = y_i - y_{i+4}.
\]

(24)

B. Fast algorithm for \( N = 8 \)

The proposed algorithm is shown in Table II, from which we have

\[
x_8(k, i+2) = (-j)^k \left[ x_8(k, i) - t_4 \left( \frac{k}{2}, i \right) \right], k = 0, 1, ..., 7
\]

(25)

where

\[
\begin{bmatrix} t_4(0, i) \\ t_4(1, i) \\ t_4(2, i) \\ t_4(3, i) \end{bmatrix} = H_8^{1/2} \begin{bmatrix} d_8(i) \\ d_8(i) \\ d_8(i+1) \\ d_8(i+1) \end{bmatrix},
\]

(26)

\[
d_8(i + u) = y_{i+u} - y_{i+8+u}, \quad u = 0, 1.
\]

(27)

where \( S_2 \) and \( P_4 \) are respectively defined in (16) and (17).

C. Fast algorithm for \( N = 2^n, \quad n \geq 3 \)

Using the same strategy as for \( N = 4 \) and \( N = 8 \), we have

\[
x_N(k, i+N/4) = (-j)^k \left[ x_N(k, i) - t_{N/2} \left( \frac{k}{2}, i \right) \right], \quad k = 0, 1, ..., N - 1
\]

(28)
two schemes are presented in the following.

\[
\begin{bmatrix}
t_{N/2}(0,i) \\
t_{N/2}(1,i) \\
\vdots \\
t_{N/2}(N/2-1,i)
\end{bmatrix}
= H_{N/2}^N \begin{bmatrix}
d_N(i) \\
d_N(i+1) \\
\vdots \\
d_N(i+N/4-1)
\end{bmatrix}
\]

(29)

\[
= P_{N/2}^T \begin{bmatrix}
H_{N/4} \circ S_{N/4}
\end{bmatrix}
\begin{bmatrix}
d_N(i) \\
d_N(i+1) \\
\vdots \\
d_N(i+N/4-1)
\end{bmatrix}
\]

(30)

where \(S_N\) and \(P_N\) are given in (16) and (17).

The derivation of (28) is given in Appendix. Fig. 2 shows the signal graph of the proposed Algorithm 2, whose computational complexity and memory storage requirement are analyzed as follows (assuming that the algorithm is implemented in parallel):

1) The computation of (30) for \(u = N/4 - 1\) needs 1 complex addition. Note that the values of \(d_N(i+u), u = 0, 1, \ldots, N/4 - 2\), have already been obtained during the computation of \(x_N(k, i+u), v = 1, 2, \ldots, N/4 - 1\). Memory size of \(N/2\) is required for storing \(d_N(i+u), u = 0, 1, \ldots, N/4 - 1\). The input \(y_{1u}\) and \(y_{1+N/4+u}\) for \(u = 0, 1, \ldots, N/4 - 1\), needs \(N\) memory, which can be released after performing (30) since it will not be used in the following steps.

2) The computation of (29) needs a length-\(N/4\) ISCHT (\(H_{N/4}\)) and a length-\(N/4\) MISCHT (\(H_{N/4} \circ S_{N/4}\)). Memory size of \(N\) is needed for storing the values \(\hat{y}_{1u}(i+u), u = 0, 1, \ldots, N/2 - 1\). We also assume that the computation of length-\(N/4\) ISCHT and length-\(N/4\) modified ISCHT needs \(M_N^{ISCHT}\) and \(M_N^{MISCHT}\) memory, respectively.

3) The computation of (28) needs \(N/2\) multiplications with \(j\) and \(N\) complex additions. The values of \(x_N(k, i+v), v = 0, 1, \ldots, N/4 - 1\), can be obtained by zero padding method reported in [21]. For the implementation, we first distribute \(2N\) memory for \(x_N(k, i), k = 0, 1, \ldots, N/4 - 1\), which is then overlaid by \(x_N(k, i+N/4), k = 0, 1, \ldots, N/4 - 1\) after performing (28).

Thus, the computational complexity and memory storage requirement of Algorithm 2 are given by

\[
\begin{align*}
M_N^{ISCHT} &= M_{N/4}^{ISCHT} + M_{N/4}^{MISCHT} + N/2, \\
A_N^{ISCHT} &= A_{N/4}^{ISCHT} + A_{N/4}^{MISCHT} + N + 1, \\
M_N^{MISCHT} &= N/2 + \max\left\{M_N^{ISCHT}, M_{N/4}^{ISCHT} + M_{N/4}^{MISCHT}\right\}
\end{align*}
\]

(31)

Note that the additions shown in (31) are complex additions.

In the following, we discuss the way to compute \(H_{N/4}\) and \(H_{N/4} \circ S_{N/4}\) appearing in (29). For the length-\(N/4\) MISCHT \(H_{N/4} \circ S_{N/4}\), the input data is first multiplied by \(S_{N/4}\), resulting in the change of the two inputs: \(d_N(i)\) replaced by \(jd_N(i+N/4)\) and \(jd_N(i+N/8)\) by \(d_N(i+N/8)\). This change makes the implementation of \(H_{N/4} \circ S_{N/4}\) not exactly the same as that of \(H_{N/4}\). So algorithm 1 is used for the implementation of \(H_{N/4} \circ S_{N/4}\). On the contrary, the length-\(N/4\) ISCHT \(H_{N/4}\) can be implemented by either algorithm 1 or algorithm 2. Therefore, two schemes are presented in the following.
twiddle factors \( W_N^0 = -W_N^{N/2} = 1; W_N^{N/4} = -W_N^{3N/4} = -j \) have been taken into account. As can be seen from Tables III and IV, the proposed algorithms are also more efficient than the algorithms shown in [14-19]. This is because the proposed algorithms only need the multiplications with \( j \) and real additions, and can save the memory for storing the twiddle factors.

The computation of the forward SCHT, if ignoring the normalization factor \( 1/N \), can be simply realized by replacing \( j \) by \(-j\) in (16), \( H_N \) by \( H_N^T \) in (18)-(21) and \( x \) by \( y \) in (28)-(30).

IV. AN APPLICATION EXAMPLE

In this section, we gave an example of ISCHT domain least-mean-square (LMS) adaptive filter with supporting simulation result to illustrate the potential application.

Transform domain LMS adaptive filters (TDLMSAF) introduced by Narayan et al. [25], exploit the de-correlation properties of some well-known signal transforms such as DFT, DCT, DHT and WHT, in order to pre-whiten the input data and speed up filter convergence [p413, 26]. For a given process \( x(n) \), the performance of the TDLMSAF algorithm may vary significantly depending on the selection of the transformation matrix \( T \). A transform which performs well for a given input process may perform poorly once the statistics of the input change [p210-p211, 27].

Similar to the DFT domain LMS adaptive filter [25-28], the ISCHT domain LMS adaptive filter algorithm, shown in Fig. 3, is described as follows:

The input signal vector \( Y_N(i) \) is first transformed into ISCHT domain by

\[
X_N(i) = [x_N(0, i), x_N(1, i), ..., x_N(N-1, i)]^T = H_N Y_N(i),
\]

Then, \( X_N(i) \) is multiplied by the ISCHT domain adaptive weight vector

\[
W_N(i) = [w_N(0, i), w_N(1, i), ..., w_N(N-1, i)]^T,
\]

to obtain the filter output

\[
z(i) = W_N(i)X_N(i),
\]

The output error is given by

\[
e(i) = d(i) - z(i),
\]

where \( d(i) \) denotes the desired response.

The weight vector \( W_N(i) \) is updated by the power-normalized LMS algorithm

\[
W_N(i+1) = W_N(i) + 2\mu D^{-1}(i)e(i)X_N^*(i),
\]

where \( \mu \) is a positive step-size, \( e(i) \) is the output error and \( D(i) \) is a diagonal matrix of the estimated input powers which is defined by

\[
D(i) = \text{diag}\{\sigma^2(k, i)\}, k = 0, ..., N-1
\]

\[
\sigma^2(k, i) = \beta \sigma^2(k, i-1) + (1 - \beta)|x_N(k, i)|^2, 0 < \beta < 1
\]

The aforementioned transform domain LMS adaptive filters with the proposed sliding ISCHT algorithms, sliding FFT [14-16] and sliding DFT [17-19] have been implemented using "C++" programming language. The execution time comparison and signal-to-noise ratio (SNR) analysis between the proposed algorithms and sliding FFT and sliding DFT are carried out on a PC machine, which has an AMD single core CPU with speed of 3200MHz and 4096MB RAM. The run time of these algorithms have been calculated using GNU GCC compiler version 3.4.5.

In this example, a 7 Hz sinusoid with 1024 samples per second corrupted by additive Gaussian white noise with SNR equal to 0dB is processed through the 32-tap filter. The parameters are set as \( \mu = 0.01 \) and \( \beta = 0.9 \). The resulting SNRs of filtered signals by TDLMSAF using sliding ISCHT, sliding FFT, and sliding DFT are exactly the same (6.98dB). Fig. 4 shows the desired signal, corrupted signal and the filtered signals processed by TDLMSAF. Table V shows the execution time of sliding transforms and their corresponding TDLMSAFs. The execution times represent the average obtained by repeating the execution of the algorithms. It can be seen from this table that the proposed sliding ISCHT saves 10.0%-13.9% compared to sliding DFT, and saves 22.4%-25.8% compared to sliding FFT in the execution of sliding transformations. While the TDLMSAF with proposed sliding ISCHT is 3.3%-4.1% faster than TDLMSAF with sliding DFT, and 6.4%-7.3% faster than TDLMSAF with sliding FFT.

V. CONCLUSION

In this correspondence, we have presented two fast algorithms for computing the forward and inverse sliding SCHT. The arithmetic complexity order of the proposed algorithms is \( N \), a factor of \( \log_2 N \) improvement is made over the block-based algorithm for the length-\( N \) SCHT. The proposed algorithms are also more efficient than that of the sliding FFT algorithm and the sliding DFT algorithm. The application of sliding ISCHT to transform domain adaptive filtering (TDAF) has been discussed. Note that the proposed algorithms can be easily extended to multidimensional case.

APPENDIX

To prove (28), we need first the following lemma:

Lemma 1: Let \( h_{ij}(k, l) \) be the \((k, l)\)th element of the matrix \( H_N \), then we have

\[
\begin{align*}
\hat{h}_{ij}(k, l + N/4) &= j^k h_{ij}(k, l), \quad \text{for } l = 0, 1, ..., 3N/4 - 1 \\
\hat{h}_{ij}(k, l + 3N/4) &= (j^k)^3 h_{ij}(k, l), \quad \text{for } l = 0, 1, ..., N/4 - 1
\end{align*}
\]

Proof: By the definition of \( h_{ij}(k, l) \) given in (4), we have

\[
\begin{align*}
h_N(k, l + N/4) &= \prod_{r=0}^{N-1} R_{n}(r, l + N/4)^{t_{r}} \\
\end{align*}
\]

where

\[
R_{n}(r, l + N/4) = \text{CRAD} \left( r, \frac{4l + 4}{2^{n+2}} \right)
\]

Using (7), (6) becomes

\[
\text{CRAD} \left( r, \frac{4l + 4}{2^{n+2}} \right) + \frac{1}{4}
\]
\( R_n(r, l) = \text{CRAD} \left( 0, 2^r \cdot \frac{4l+1}{2^n+2} \right) \). \hspace{1cm} (A3)

On the other hand, it can be deduced from (8) that

\[
\text{CRAD} \left( 0, t + \frac{n}{4} \right) = j^n \text{CRAD} (0, t), \hspace{1cm} (A4)
\]

\[
\text{CRAD} \left( 0, t + \frac{3n}{4} \right) = (-j)^n \text{CRAD} (0, t). \hspace{1cm} (A5)
\]

Using (6), (A4) and (A3), we have

\[
R_n(r, l + N/4) = \text{CRAD} \left( 0, 2^r \cdot \frac{4l+1}{2^n+2} + \frac{2}{4} \right) = j^2 \text{CRAD} \left( 0, 2^r \cdot \frac{4l+1}{2^n+2} \right) = j^2 R_n(r, l). \hspace{1cm} (A6)
\]

Substituting (A6) into (A1) leads to

\[
h_N(k, l + N/4) = \prod_{r=0}^{n-1} j^{b_r^2} R_n(r, l)^{b_r} = j^k h_N(k, l). \hspace{1cm} (A7)
\]

The proof of \( h_N(k, l + 3N/4) = (-j)^k h_N(k, l) \) can be done in a similar way by using the relationship (A5).

**Lemma 2:** The following relationship holds for \( k = 0, 1, \ldots, N/2 - 1 \), \( l = 0, 1, \ldots, N/4 - 1 \)

\[
h_N(2k, l) = h_N(2k + 1, l). \hspace{1cm} (A8)
\]

**Proof:** Letting \( m = 2k \), \( m \) and \( m+1 \) can then be expressed in binary representation as

\[
m = a_{n-1}2^{n-1} + \cdots + a_2 2^2,
\]

\[
m + 1 = a_{n-1}2^{n-1} + \cdots + a_2 2^0. \hspace{1cm} (A9)
\]

Thus

\[
h_N(2k, l) = h_N(m, l) = \prod_{r=0}^{n-1} R_n(r, l)^{a_r} = \prod_{r=0}^{n-1} R_n(r, l)^{a_r}, \hspace{1cm} (A11)
\]

\[
h_N(2k + 1, l) = h_N(m + 1, l) = \prod_{r=0}^{n-1} R_n(r, l)^{a_r} = R_n(0, l) \prod_{r=0}^{n-1} R_n(r, l)^{a_r}. \hspace{1cm} (A12)
\]

Since \( 0 \leq l \leq N/4 - 1 \), we have \( 0 \leq \frac{4l+1}{2^n+2} < 1/4 \), it can be deduced from (6) and (8) that

\[
R_n(0, l) = \text{CRAD} \left( 0, \frac{4l+1}{2^n+2} \right) = 1. \hspace{1cm} (A13)
\]

The proof has been completed.

Based on the above two lemma, we provide the derivation of (28) in the following.

Equation (12) can be written as

\[
x_N(k, i) = \mathbf{H}_N^T(k) \mathbf{Y}_N(i) = \sum_{i=0}^{N-1} h_N(k, l) y_{i+l}. \hspace{1cm} (A14)
\]

Similarly,

\[
x_N(k, i + N/4) = \mathbf{H}_N^T(k) \mathbf{Y}_N(i + N/4) = \sum_{i=0}^{N-1} h_N(k, l) y_{i+N/4+l}. \hspace{1cm} (A15)
\]

Using Lemma 1, (A14) and (A15) become

\[
x_N(k, i) = \sum_{i=0}^{N/4-1} h_N(k, l) y_{i+l} + j^k \sum_{i=0}^{3N/4-1} h_N(k, l) y_{i+N/4+l}, \hspace{1cm} (A16)
\]

\[
x_N(k, i + N/4) = \sum_{i=0}^{3N/4-1} h_N(k, l) y_{i+N/4+l} \hspace{1cm} (A17)
\]

\[
+ (-j)^k \sum_{i=0}^{N/4-1} h_N(k, l) y_{i+N+l}. \hspace{1cm} (A18)
\]

(A16) can be rewritten as

\[
\sum_{i=0}^{3N/4-1} h_N(k, l) y_{i+N/4+l} \hspace{1cm} (A19)
\]

Substituting (A18) into (A17), we have

\[
x_N(k, i + N/4) = (-j)^k \left[ x_N(k, i) - \sum_{i=0}^{N/4-1} h_N(k, l) (y_{i+l} - y_{i+N+l}) \right] \hspace{1cm} (A19)
\]

where

\[
d_N(i+l) = y_{i+l} - y_{i+N+l}, \hspace{1cm} i = 0, 1, \ldots, N/4-1 \hspace{1cm} (A20)
\]

\[
t_N(k, i) = \begin{bmatrix} d_N(i) \\ h_N(k, 0), h_N(k, 1), \ldots, h_N(k, N/4-1) \\ d_N(i+1) \\ \vdots \\ d_N(i+N/4-1) \end{bmatrix}, \hspace{1cm} (A21)
\]
From (18), we have
\[ h_N(2k,l) = h_{N/2}(l,k), \quad k = 0, 1, \ldots, N/2-1, l = 0, 1, \ldots, N/4-1. \]  
(A22)

Using Lemma 2 and (A22), we obtain
\[
t_N(2k+1,i) = t_N(2k,i) = \begin{bmatrix}
d_N(i) \\
0 \\
\vdots \\
d_N(i+N/4-1)
\end{bmatrix}
\]
\[
t_N(2k+1,i) = \begin{bmatrix}
d_N(i) \\
0 \\
\vdots \\
d_N(i+N/4-1)
\end{bmatrix}
\]
(A23)

The above equation can be expressed in matrix representation as
\[
\begin{bmatrix}
t_{N/2}(0,i) \\
t_{N/2}(1,i) \\
\vdots \\
t_{N/2}(N/2-1,i)
\end{bmatrix} = \mathbf{H}^{1/2}_{N/2} \begin{bmatrix}
d_N(i) \\
d_N(i+1) \\
\vdots \\
d_N(i+N/4-1)
\end{bmatrix}
\]
(A24)

Using the relationship \( \mathbf{H}^{1/2}_{N/2} = \mathbf{H}_N \mathbf{I}_{N/2} \) and (15), we obtain
\[
\mathbf{H}^{1/2}_{N/2} = \mathbf{P}_N \begin{bmatrix}
\mathbf{H}_{N/2}^{1/2} \\
\mathbf{H}_{N/2}^{1/2} \\
\mathbf{S}_{N/2}^{1/2} \\
\mathbf{S}_{N/2}^{1/2}
\end{bmatrix} \begin{bmatrix}
\mathbf{I}_{N/2} \\
\mathbf{I}_{N/2} \\
\mathbf{I}_{N/2} \\
\mathbf{I}_{N/2}
\end{bmatrix} \begin{bmatrix}
\mathbf{I}_{N/2} \\
\mathbf{I}_{N/2} \\
\mathbf{I}_{N/2} \\
\mathbf{I}_{N/2}
\end{bmatrix}
\]
\[
\mathbf{H}^{1/2}_{N/2} = \mathbf{P}_N \begin{bmatrix}
\mathbf{H}_{N/2}^{1/2} \\
\mathbf{H}_{N/2}^{1/2} \\
\mathbf{S}_{N/2}^{1/2} \\
\mathbf{S}_{N/2}^{1/2}
\end{bmatrix} \begin{bmatrix}
\mathbf{I}_{N/2} \\
\mathbf{I}_{N/2} \\
\mathbf{I}_{N/2} \\
\mathbf{I}_{N/2}
\end{bmatrix} \begin{bmatrix}
\mathbf{H}_{N/2}^{1/2} \\
\mathbf{H}_{N/2}^{1/2} \\
\mathbf{S}_{N/2}^{1/2} \\
\mathbf{S}_{N/2}^{1/2}
\end{bmatrix}
\]
(A25)

The proof of (28) has been completed.

ACKNOWLEDGMENT

The authors would like to thank the reviewers and Associate Editor Dr. Gross for their insightful suggestions for improving the manuscript. We are also thankful to Dr. Aung for providing his MATLAB code constructing the SCHT matrix and Dr. Ouyang for helpful discussion.

REFERENCES

Fig. 1 Tree structure for the ISCHT matrix construction

Fig. 2 Signal flow graph of the length-N sliding ISCHT transform (algorithm 2)

Fig. 3 Block diagram of ISCHT domain adaptive filtering

Fig. 4 Transform domain adaptive filtering using sliding ISCHT and sliding DFT
Table I Fast algorithm for length-4 ISCHT

<table>
<thead>
<tr>
<th>(x_d(0,j))</th>
<th>(x_d(0,j+1))</th>
<th>(Y_1)</th>
<th>(Y_2)</th>
<th>(Y_{2+1})</th>
<th>(Y_{2+2})</th>
<th>Proposed algorithm 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>(x_d(0,j+1) = x_d(0,j) + \sqrt{2} \cdot x_d(0,j))</td>
</tr>
<tr>
<td>(x_d(1,j))</td>
<td>(x_d(1,j+1))</td>
<td>1</td>
<td>(j)</td>
<td>-1</td>
<td>(-j)</td>
<td>(x_d(1,j+1) = j \cdot x_d(1,j) - \sqrt{2} \cdot x_d(1,j))</td>
</tr>
<tr>
<td>(x_d(2,j))</td>
<td>(x_d(2,j+1))</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>(x_d(2,j+1) = -x_d(2,j))</td>
</tr>
<tr>
<td>(x_d(3,j))</td>
<td>(x_d(3,j+1))</td>
<td>1</td>
<td>(-j)</td>
<td>1</td>
<td>-1</td>
<td>(x_d(3,j+1) = j \cdot x_d(3,j) - \sqrt{2} \cdot x_d(3,j))</td>
</tr>
</tbody>
</table>

Table II Fast algorithm for length-8 ISCHT

<table>
<thead>
<tr>
<th>(x_d(0,j))</th>
<th>(x_d(0,j+2))</th>
<th>(Y_1)</th>
<th>(Y_2)</th>
<th>(Y_{2+1})</th>
<th>(Y_{2+2})</th>
<th>Proposed algorithm 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>(x_d(0,j+2) = x_d(0,j) + \sqrt{2} \cdot x_d(0,j))</td>
</tr>
<tr>
<td>(x_d(1,j))</td>
<td>(x_d(1,j+2))</td>
<td>1</td>
<td>(j)</td>
<td>-1</td>
<td>(-j)</td>
<td>(x_d(1,j+2) = j \cdot x_d(1,j) - \sqrt{2} \cdot x_d(1,j))</td>
</tr>
<tr>
<td>(x_d(2,j))</td>
<td>(x_d(2,j+2))</td>
<td>1</td>
<td>(-j)</td>
<td>1</td>
<td>(-j)</td>
<td>(x_d(2,j+2) = -x_d(2,j))</td>
</tr>
<tr>
<td>(x_d(3,j))</td>
<td>(x_d(3,j+2))</td>
<td>1</td>
<td>(-j)</td>
<td>1</td>
<td>-1</td>
<td>(x_d(3,j+2) = j \cdot x_d(3,j) - \sqrt{2} \cdot x_d(3,j))</td>
</tr>
<tr>
<td>(x_d(4,j))</td>
<td>(x_d(4,j+2))</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>(x_d(4,j+2) = -x_d(4,j))</td>
</tr>
<tr>
<td>(x_d(5,j))</td>
<td>(x_d(5,j+2))</td>
<td>1</td>
<td>(-j)</td>
<td>-1</td>
<td>1</td>
<td>(x_d(5,j+2) = j \cdot x_d(5,j) - \sqrt{2} \cdot x_d(5,j))</td>
</tr>
<tr>
<td>(x_d(6,j))</td>
<td>(x_d(6,j+2))</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>(x_d(6,j+2) = -x_d(6,j))</td>
</tr>
<tr>
<td>(x_d(7,j))</td>
<td>(x_d(7,j+2))</td>
<td>1</td>
<td>(-j)</td>
<td>-1</td>
<td>-1</td>
<td>(x_d(7,j+2) = j \cdot x_d(7,j) - \sqrt{2} \cdot x_d(7,j))</td>
</tr>
</tbody>
</table>

Table III Comparison results of the proposed algorithms with the block-based ones in [6] and [8]. \(\text{Muls}(j)\) means multiplication with \(j\), \(\text{Adds}\) means real additions, \(\text{Me}\) denotes memory (words)

<table>
<thead>
<tr>
<th>(N)</th>
<th>(\text{Muls}(j))</th>
<th>(\text{Adds})</th>
<th>(\text{Me})</th>
<th>(\text{Muls}(j))</th>
<th>(\text{Adds})</th>
<th>(\text{Me})</th>
<th>(\text{Muls}(j))</th>
<th>(\text{Adds})</th>
<th>(\text{Me})</th>
<th>(\text{Muls}(j))</th>
<th>(\text{Adds})</th>
<th>(\text{Me})</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>16</td>
<td>8</td>
<td>1</td>
<td>12</td>
<td>8</td>
<td>2</td>
<td>10</td>
<td>10</td>
<td>2</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>48</td>
<td>36</td>
<td>3</td>
<td>26</td>
<td>32</td>
<td>5</td>
<td>26</td>
<td>28</td>
<td>5</td>
<td>26</td>
<td>28</td>
</tr>
<tr>
<td>16</td>
<td>12</td>
<td>128</td>
<td>96</td>
<td>7</td>
<td>60</td>
<td>96</td>
<td>13</td>
<td>56</td>
<td>56</td>
<td>13</td>
<td>58</td>
<td>56</td>
</tr>
<tr>
<td>32</td>
<td>32</td>
<td>320</td>
<td>152</td>
<td>15</td>
<td>124</td>
<td>256</td>
<td>28</td>
<td>120</td>
<td>112</td>
<td>27</td>
<td>122</td>
<td>112</td>
</tr>
<tr>
<td>((\geq 16))</td>
<td>(N(\log_2N - 1)/4)</td>
<td>(2N/\log_2N)</td>
<td>(N/2-1)</td>
<td>(4N-4)</td>
<td>(2N(\log_2N - 1)/(\log_2N - 2))</td>
<td>(4N-2\log_2N-4)</td>
<td>(4N-2\log_2N-4)</td>
<td>(N/2\times(3N, Me)\times(4/16), N(\log_2N-3))</td>
<td>(7N/8-1)</td>
<td>(4N-6)</td>
<td>(N/2\times(3N, N(\log_2N-3)))</td>
<td></td>
</tr>
</tbody>
</table>

Table IV The computational complexity and the memory complexity of the sliding FFT in [14]-[16] and sliding DFT in [17]-[19]. \(\text{Muls}(j)\) means multiplication with \(j\), \(\text{Adds}\) means real additions. \(\text{Me}\) denotes memory (words)

<table>
<thead>
<tr>
<th>(N)</th>
<th>(\text{Muls}(j))</th>
<th>(\text{Adds})</th>
<th>(\text{Me})</th>
<th>(\text{Muls}(j))</th>
<th>(\text{Adds})</th>
<th>(\text{Me})</th>
<th>(\text{Muls}(j))</th>
<th>(\text{Adds})</th>
<th>(\text{Me})</th>
<th>(\text{Muls}(j))</th>
<th>(\text{Adds})</th>
<th>(\text{Me})</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>8</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>2</td>
<td>18</td>
<td>40</td>
<td>16</td>
<td>26</td>
<td>2</td>
<td>26</td>
<td>26</td>
<td>2</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>16</td>
<td>32</td>
<td>3</td>
<td>46</td>
<td>120</td>
<td>48</td>
<td>58</td>
<td>3</td>
<td>58</td>
<td>58</td>
<td>3</td>
<td>58</td>
<td>58</td>
</tr>
<tr>
<td>32</td>
<td>88</td>
<td>4</td>
<td>106</td>
<td>312</td>
<td>112</td>
<td>122</td>
<td>2</td>
<td>122</td>
<td>122</td>
<td>2</td>
<td>122</td>
<td>122</td>
</tr>
<tr>
<td>((\geq 4))</td>
<td>(4N-8\log_2N)</td>
<td>(\log_2N-1)</td>
<td>(4N-4\log_2N-2)</td>
<td>(2N\log_2N-8)</td>
<td>(4N-6)</td>
<td>(4N-6)</td>
<td>(4N-6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table V Comparison of execution time on an AMD single core CPU using the GCC compiler

<table>
<thead>
<tr>
<th>Sliding ISCHT</th>
<th>Algorithm 1</th>
<th>Execution time of sliding transformation (ms)</th>
<th>Complete execution time of filtering (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algorithm 1</td>
<td>2.2771</td>
<td>12.7219</td>
<td></td>
</tr>
<tr>
<td>Algorithm 2 (scheme 1)</td>
<td>2.3377</td>
<td>12.1945</td>
<td></td>
</tr>
<tr>
<td>Algorithm 2 (scheme 2)</td>
<td>2.3813</td>
<td>12.2297</td>
<td></td>
</tr>
<tr>
<td>Sliding FFT [14]-[16]</td>
<td>3.0681</td>
<td>13.0721</td>
<td></td>
</tr>
<tr>
<td>Sliding DFT [17]-[19]</td>
<td>2.6437</td>
<td>12.6426</td>
<td></td>
</tr>
</tbody>
</table>