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Abstract: In the multicore era, achieving ultimate single process performance is
still an issue e.g. for single process workload or for sequential sections in par-
allel applications. Unfortunately, despite tremendous research effort on branch
prediction, substantial performance potential is still wasted due to branch mis-
predictions. On a branch misprediction resolution, instruction treatment on the
wrong path is essentially thrown away. However, in most cases after a conditional
branch, the taken and the not-taken paths of execution merge after a few instruc-
tions. Instructions that follow the reconvergence point are executed whatever the
branch outcome is.

We present SYRANT (SYmmetric Resource Allocation on Not-taken and Taken
paths), a new technique for exploiting control independence. SYRANT essentially
uses the same pipeline structure as a conventional processor. SYRANT tries to
enforce the allocation of the exact same resources on the out-of-order execution
mechanism (physical register, load/store queue and reorder buffer) for both the
taken and not-taken paths. Thus, on a branch misprediction, the result of an in-
struction already executed on the wrong path after the reconvergence point can be
conserved in the same structure when it is data independent. Adding SYRANT
on top of an aggressive superscalar execution core allows to improve performance
for applications suffering a significant branch misprediction rate.

As a side but important extra contribution, we introduce ABL/SBL a simple
and non-intrusive hardware reconvergence detection mechanism. ABL/SBL can
be used in a conventional superscalar processor to improve branch prediction ac-
curacy through exploiting the execution of branches along the wrong path.

Key-words: Architecture, sequential, multicore, manycore, control independence,
control flow reconvergence, SYRANT



SYRANT : allocation de ressources fait de manière

symétrique sur le chemin pris et non pris

Résumé : De plus en plus d’avancées dans le domaine de l’architecture des processeurs
sont basées sur l’exécution spéculative des instructions. Dans le cas particulier de
la spéculation liée aux branchements, le chemin d’exécution pour le branchement
pris et le branchement non pris reconverge souvent après quelques instructions.
Ce phénomène est appelé reconvergence du flot de contrôle. Il en résulte que ces
instructions sont exécutées quelque soit la direction du branchement. On parle
alors d’indépendance de contrôle. Plusieurs techniques ont été précédement pro-
posées pour l’exploiter. Elles sont étudiées dans ce rapport.

Une nouvelle technique exploitant l’indépendance de contrôle est présentée
dans ce rapport. Nommée SYRANT (SYmmetric Resource Allocation on Not-
taken and Taken paths), elle consiste à forcer l’allocation des mêmes ressources
sur le chemin pris et non pris. Ainsi, lors d’une mauvaise prédiction, le travail
déjà effectué sur le mauvais chemin et situé après le point de reconvergence peut
être conservé.

Mots-clés : Architecture, séquentiel, multicœurs, massivement multicœurs, in-
dépendance de contrôle, reconvergence de flots, SYRANT
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1 Introduction

Each core in a modern multicore is a superscalar processor [19], and while
parallelism is the avenue to increase peak performance, poor parallelism
in many applications and Amdahl’s law [3] are pushing to continue the re-
search on improving superscalar architectures [11]. In particular, while for
parallel or multiprogrammed workloads energy consumption is a major is-
sue, this constraint is much less important on sequential workloads since
only one core is active. Therefore hardware mechanisms to improve single
process performance particularly makes sense if they can be easily pow-
ered down when a multiprogrammed or parallel workload is executed.
SYRANT, the major proposition presented in this paper, should be con-
sidered in this context.

Any gain on branch prediction accuracy results in a performance gain
on a superscalar processor. Unfortunately since 2006 [18], the conditional
branch prediction accuracy seems to have reached a plateau. Other tech-
niques are needed to improve the superscalar processor performance, for
instance exploiting control flow reconvergence [16, 8, 2, 5]. After a condi-
tional branch, the taken and the not-taken paths of execution of a branch
often merge after a few instructions (Figure 1).

In case of a branch misprediction, substantial work concerning the in-
structions subsequent to the reconvergence point might have been exe-
cuted before the branch misprediction is resolved and execution resumes
on the correct path.

Figure 1: Illustration of the point of reconvergence and the merge of the
taken and the not-taken path of a branch.

Instructions that follow the reconvergence point are executed whatever
the branch outcome is. They are referred as control independent (CI) in-
structions [2]. If the operands of a CI instruction are independent on the
executed path then its result is also independent on the path. These instruc-
tions are called Control Independent Data Independent (CIDI) instructions
[2]. While the standard pipeline correction mechanism flushes all the in-
structions after a mispredicted branch, the objective of exploiting control
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independence is to save the results of CIDI instructions and use them with-
out reexecuting the instructions.

Control independence has already been considered in the literature.
Several proposals are trying to exploit it to gain performance. A major
study on control independence [16] has shown that it can be used to reduce
the performance losses due to branch mispredictions. Exploiting control in-
dependence on a subset of mispredicted branches [8] is already sufficient to
have performance gain. As exploiting control independence often means to
change how the instructions are executed, quite complex logic and costly
hardware are needed [2]. Modifying the instruction sequencing order to
favor the execution of control independent instruction was also proposed
[5].

The first contribution of this paper is SYRANT, a new technique for ex-
ploiting control flow reconvergence that respects the major pipeline flow
of a superscalar processor. SYRANT, SYmmetric Resource Allocation on
Not-taken and Taken paths, tries to enforce the allocation of the exact same
resources on the out-of-order execution mechanisms (physical registers,
Load/Store Queue (LSQ) and ReOrder Buffer (ROB)) in the execution core.
Thus on a misprediction, the work already executed on the wrong path af-
ter the reconvergence point can be conserved in the out-of-order execution
storage structures (registers, LSQ).

One of the issues that we had to address in the design of SYRANT was
the design of a cost-effective solution to detect the reconvergence point.
We propose ABL/SBL for Active Branch List/Shadow Branch List for this
purpose. As a side contribution, we show that as a stand-alone add-on
in the instruction fetch engine, ABL/SBL can be leveraged to improve the
branch prediction accuracy in an otherwise conventional superscalar pro-
cessor. ABL/SBL records the computed directions on the wrong paths. We
show that these informations can be leveraged to improve the prediction
accuracy of a state-of-the-art predictor such as TAGE [18].

The remainder of this article is organized as follows. Section 2 provides
background on control independence. Related work is discussed in Section
3. Section 4 presents the fundamental principles of SYRANT. Section 5 de-
tails the whole mechanism of SYRANT including ABL/SBL, our proposal
for detecting the reconvergence point. Section 6 points out that ABL/SBL
can be used as simple mechanism to improve the prediction of the branches
following the reconvergence point associated with a misprediction. Perfor-
mance evaluation framework and results are presented in Section 8. Finally,
Section 9 concludes this study.

RR n° 7463
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2 Control independence

2.1 Forms of control independence

A program can be seen as a flow of instructions that the processor exe-
cutes in the sequential order. This execution path is defined by branch in-
structions along it. Conditional branches offer two possible paths for the
execution: the taken and the not-taken paths. These two paths merge af-
ter a few or a few tens of instructions for most of the conditional branches.
This is called control flow reconvergence. In many cases, the reconvergence
point of conditional branch can be uniquely determined. Compilers often
exploit this property to perform some optimizations. Hence, after such a
reconvergent branch, one can distinguish between control dependent (CD)
instructions , which execution depends on the outcome of the branch and
the control independent (CI) instructions that are executed whatever the
branch outcome is.

Control independence after control flow reconvergence can be used to
partially hide a branch misprediction penalty. As instructions are executed
out-of-order, the instruction flow can reach the reconvergence point, start-
ing to treat CI instructions before a misprediction resolution. Thus, instead
of flushing all the pipeline to recover from a misprediction, one can try to
save the work done by these instructions.

Figure 2: Illustration of control dependence, control independence, control
independence data dependence and control and data independence [2].

Unfortunately the results of all CI instructions are not valid on both
paths. Data dependencies between CD and CI instructions can arise. As
illustrated in Figure 2, if a CI instruction has used a data operand produced
by an incorrect CD instruction then its result computed on the wrong path
is invalid (false data dependence). If a CI instruction has used an old data
operand that is modified by a correct CD instruction then its result is also
invalid (true data dependence). CI instructions can be divided in Control
Independent but Data Dependent (CIDD) and Control Independent and
Data Independent (CIDI). Only results of CIDI instructions are worth to be
saved, the other instructions have to be re-executed.

RR n° 7463
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2.2 Issues of control independence

To exploit control independence, one has first to be able to discriminate
between CD and CI instructions, i.e., to identify the reconvergence point.
Software (compiler or profiling) detection of the reconvergence point was
proposed in previous studies [16], but it induces extensions of the ISA. In
this study, we will rely on an hardware detection that preserves binary
compatibility.

Once the reconvergent point is detected, preserving the results of the
control independent instructions already executed is a major issue. In an
out-of-order execution superscalar processor, the results, and also the de-
pendency chain of the not committed instructions are stored in the out-
of-order execution hardware resources: physical registers, LSQ and ROB.
Entries in these structures are dynamically allocated by the front-end of
the processor pipeline in the instruction fetch order. On a branch mispre-
diction, these entries are simply deallocated and put back in the list of free
entries. Therefore, in most cases, the dynamic allocation within these struc-
tures is completely different on the taken and on the not-taken paths. Ex-
ploiting control independence after a branch misprediction resolution ne-
cessitates to find some hardware mechanisms to save the contents of phys-
ical registers, LSQ entries and ROB entries for wrong path control indepen-
dent instructions as well as some simple solutions to retrieve these data
when executing the correct path.

However, saving the results of control independent instructions is not
sufficient. One has also to discriminate CIDI and CIDD instructions. Only
CIDI instruction results can be conserved: the result of a CI instruction
executed on the wrong path can be conserved only if its dependency chain
does not include any control dependent instruction on the wrong path as
well as on the right path.

Therefore exploiting control independence necessitates 1) to discrimi-
nate between CD and CI instructions 2) to save CI results and dependency
chains 3) to correctly determine CIDI instructions.

3 Related work

Exploiting control independence has been considered in several previous
studies. Potential performance benefits could be drawn from this concept.
Several hardware techniques have been proposed to exploit its potential.

Rotenberg, Jacobson and Smith have studied [16] the potential of con-
trol independence in details. This work highlights the fact that the major
penalty for mispredictions come from “the wasted resources consumed by
incorrect CD instructions”. However they also showed that exploiting con-
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trol independence can yield to a gain up to half of the gain brought by
perfect branch prediction.

[16] also proposed an hardware implementation exploiting control in-
dependence. They dealt with reconvergence point detection through soft-
ware analysis; adding some bits in the ISA to encode the necessary infor-
mation. To address the data dependencies, the first steps of the execution of
each instruction are replayed. If there is a difference in the source registers,
the instruction must be re-executed. For memory access instructions, any
change in the order of the memory accesses is detected. This leads to select
the loads that have to be re-executed. The complete replay mechanism is
derived from the trace processor described in a previous work [15].

Gandhi, Akkary and Srinivasan proposed a technique called Selective
Branch Recovery (SBR) [8] that try to exploit control independence. In or-
der to limit hardware complexity, they consider only the particular set of
branches represented in Figure 3, i.e., the predicted not-taken if -then con-
struct but without the else statement. On a misprediction, there is no extra
CD instructions to be executed before the reconvergence point. The main
issue remains to discriminate between CIDD and CIDI instructions.

Figure 3: Exact convergence: no control dependent instructions on the cor-
rect path.

Cher and Vijaykumar [5] proposed an alternative approach to exploit
control independence. They considered the main conclusion of the study
of Rotenberg, Jacobson and Smith [16] as the starting point for their work.
Their Skipper architecture simply skips the CD instructions until the branch
is resolved, concentrating the execution on the CIDI instructions thus avoid-
ing the waste of resources due to the execution of incorrect CD instructions
and CIDD instructions. Once the branch is resolved, the correct CD in-
structions are fetched and executed. This ensures that only correct instruc-
tions are executed. However, Skipper induces important modifications
of a superscalar core. Skipping over instructions means that instructions
are fetched out-of-order. Skipper creates a gap in the instruction window,
large enough to put the correct CD instructions once the branch is resolved.
Moreover, as it means that essential resources are reserved, the process is
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only used for branches difficult to predict in order to limit the amount of
resources used. Difficult-to-predict branches are identified through the use
of the JRS confidence predictor [13]. The different information needed by
the architecture, like reconvergence point, resources consumption, but also
CIDI information are gathered from previous dynamic executions of the
branches. If these information are erroneous, Skipper simply squashes all
the CI instructions and restarts the execution after the execution of the cor-
rect CD instructions.

Hilton and Roth proposed an new approach called Ginger [12]. Gin-
ger proactively protects a branch by keeping room for the correct CD in-
structions if the branch has to be corrected. Instead of re-fetching and re-
renaming the CI instructions after the correct path CD instructions have
been fetched, Ginger performs a “search-and-replace” operation on the
register tags by replacing the wrong path mapping checkpointed by the
one read from the current mapping table. Thus, they change the renaming
information of the in-flight CI instructions, updating the all the pipeline
structures with correct data dependencies information. Ginger necessitates
to halt the pipeline to perform the search and replace operation. When the
execution restarts, all the instructions with a modified renamed form are
re-executed as they are identified as CIDD.

Al-Zawawi, Reddy, Rotenberg and Akkary proposed a technique called
Transparent Control Independence (TCI) [2]. The key idea is to decouple
the CIDI instructions from the CD and CIDD instructions during the exe-
cution of the CD instructions. TCI constructs a self-sufficient recovery pro-
gram that is executed when the branch is mispredicted. The main structure
of their design is a FIFO buffer called re-execution buffer (RXB) in which
the CIDD instruction are stored with a copy of their source values if these
values are supplied by CIDI instructions. When the processor has to re-
cover from a mispredicted branch, the recovery program, constituted of the
correct CD instructions followed by the CIDD instructions taken from the
RXB, is executed. Therefore, the recovery is transparent for the processor,
as it only executes instructions without having to cancel other instructions.
TCI deals with all types of conditional branches. To detect reconvergence
points, TCI uses a predictor proposed by Collins et al. [7]. Several mod-
ifications are made to the original predictor in order to gather the specific
needed information. For example, an influenced register set (IRS) is col-
lected for each branch. This IRS contains the registers that will be used as
destination by the CD instructions. CIDI instructions are detected through
the use of the IRS.

TCI exhibits a quite high degree of complexity, both in logic and storage
structures of a conventional superscalar processor. For instance, a major
modification of the pipeline execution core is needed with the two possible
sources of instructions, the conventional instruction fetch pipeline and the
re-execution buffer.

RR n° 7463
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All these proposals have shown that exploiting control independence is
promising to reduce branch misprediction penalty. However, for some of
them, heavy hardware modifications and complex logic are needed. This
strongly modifies the pipeline structure. In contrast, with the SYRANT
proposal, we try to exploit control independence essentially respecting the
main structures of an out-of-order execution pipeline.

4 SYRANT, SYmmetric Resource Allocation on Not-

taken and Taken paths: resource allocation princi-

ple

In Section 2.2, we have pointed that on a misprediction for a given con-
trol independent instruction, two different sets of entries are successively
allocated in the ROB, the register file and the LSQ. In order to exploit con-
trol independence, information (dependencies, register values, etc) must
be preserved (e.g. copied) on misprediction detection and retrieved (on
right path execution). This may lead to complex design inducing a lot of
copying.

Our proposal SYRANT, SYmmetric Resource Allocation on Not-taken
and Taken paths, turns around this difficulty through enforcing the allo-
cation of the exact same entries in the main structures of the out-of-order
execution pipeline on the taken and the not-taken paths: that is, on the
taken and not-taken paths, a given CI instruction will be allocated the same
physical register, the same ROB entry and if it is a load/store instruction the
same LSQ entry.

To enforce this symmetric allocation, SYRANT inserts gaps in the struc-
tures to enforce both paths use the same number of physical registers, the
same number of ROB entries and the same number of LSQ entries. Thus,
at the reconvergence point, the pipeline has used exactly the same number
of resources on both paths. After the reconvergence point, a CI instruction
already renamed on the wrong path will be allocated the same physical
register, the same ROB entry and the same LSQ entry for memory instruc-
tions. Then the information (dependencies, results, etc) associated with the
CI instruction on the wrong path are available on the right path to be pro-
cessed.

Figure 4 illustrates the gap mechanism for physical registers. Here, the
taken path requires 2 registers (P5 and P6) and the not-taken path requires
5 registers (P2 to P6). Through “wasting” 3 registers (P2, P3 and P4) on
the taken path, we ensure that the same physical registers will be used on
both paths after the reconvergence point.

Enforcing the allocation of the same resources for CI instructions on
both paths is only possible if the volumes of resource used on both paths are
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Figure 4: Modification of the registers renaming mechanism: a gap is in-
troduced on the less demanding path in order to use the same registers on
both taken and not-taken paths for the control independent instructions.

known. In Section 5.1, we introduce a simple reconvergence point detection
mechanism and its use to monitor resource needs. Once the resource needs
are known for both paths from the previous dynamic instances of a branch,
they can be used on the next occurrence of this branch to create gaps of the
appropriate sizes.

As already pointed out, only CIDI instruction results must be preserved
when executing the right path. Therefore, data dependencies must be iden-
tified: register dependencies and memory induced dependencies. We de-
tail this process in Section 5.2.

5 SYRANT: detailed description

In this section, we detail the principal mechanisms in SYRANT, first the re-
convergence detection mechanism, then the dependency enforcing mecha-
nisms.

5.1 Reconvergence point detection

In order to compute the resources needed on the taken and not-taken paths,
the reconvergence point must be detected. However in practice, the knowl-
edge of the effective resource needs is not required but rather the difference
between the resource needs on the two paths, i.e., the sizes of the gaps.
Therefore rather than detecting the precise reconvergence point, which would
require to compare every instruction of the right path with every instruc-
tion on the wrong path we choose to detect the first branch after the recon-
vergence point as described below.

Detecting reconvergence For the reconvergence point detection, three
hardware structures are used. The Active Branch List (ABL) is used to
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record the branches on the path currently fetched (Figure 5.a). On a mispre-
diction resolution, all the branches on the wrong path in the Active Branch
List are copied in the Shadow Branch List (SBL) (Figure 5.b). Branch stor-
age in the ABL is resumed after the branch misprediction resolution. Each
new fetched branch is compared against the content of the SBL. The first
match indicates the reconvergence point (Figure 5.c).

(a) ABL and SBL before the de-
tection of the misprediction on
branch B2.

(b) First step of the correction of
B2.

(c) Detection of the reconver-
gence point of B2.

Figure 5: Monitoring process during the correction of a branch.

ABL entries and SBL entries are identical (Figure 6.a). An entry al-
lows to identify a branch and to record the amount of resources needed
on the path. It consists of the PC of the branch, the number of registers
that have been used before the branch, the number of instructions fetched
before the branch, the number of LSQ entries used and the direction of the
branch (taken or not-taken). Therefore upon the detection of the reconver-
gence point, one can determine the resource gaps by simply computing the
difference between the different fields for the current ABL entry and the
matching SBL entry. However, note that the computed resource gaps are
including the gaps consumed by inner reconvergent branches (see Figure
7).

Using reconvergence When detecting a reconvergence, the resource gaps
associated with the reconvergent branch are computed. This information
is stored in the Resource Allocation on Not-taken and Taken paths (RANT)
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table. A RANT entry (Figure 6.b) consists of the branch PC and the signed
value of the gaps for physical registers, ROB entries and LSQ entries.

At instruction fetch, the RANT table is checked; on a hit, the gap in-
sertion mechanism can be activated. In Section 7, we will show that gap
insertion is not always beneficial, but it can be conditionally activated.

PC #Rused,Before−Branch #Instsfetched #LSQused Directioncurrent

(a) An ABL/SBL entry: the PC of the branch, the number of registers used until this branch,
the number of instructions fetched until this branch and the current direction of the branch.

PC GapSizeR GapSizeROB GapSizeLSQ

(b) A RANT entry: the PC of the branch, the signed value of
the gaps for the registers (R), ROB entries (ROB) and LSQ
(LSQ) entries.

Figure 6: ABL/SBL entry, RANT entry

(a) ROB allocation
after the correc-
tion branch B1,
first time mispre-
diction.

(b) ROB alloca-
tion, next times
B1 is encountered
and predicted
taken

Figure 7: Monitoring process of the same branch at different times

5.2 Identifying Control Independent Instructions and Enforcing
Data Dependencies

Only CIDI results must be preserved. The result of a CI instruction can
be data dependent through two distinct channels: register dependency, i.e,
one register operand is computed differently on the correct path and mem-
ory induced dependency. Thus, CI instructions have to be register inde-
pendent (RI) but also memory independent (MI).

RR n° 7463
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5.2.1 Identifying Control Independent Instructions

The reconvergence point detection presented above associated with gap
insertion should enforce that after a misprediction control independent in-
structions are allocated to the same ROB entry it was already allocated on
the wrong path. Therefore detecting a CI instruction is straightforward.
The instruction is checked against the occupant of its assigned ROB entry.
If it is found that the instruction already present in the ROB entry is the
same as the one to be pushed in, then it is a control independent instruc-
tion.

Although the real reconvergence point of a branch can be before the one
that is detected, SYRANT is still able to identify the instructions between
these two points as CI instructions. As these instructions are present on
both paths (because they are CI instructions), the resources they consume
are counted on both paths. Therefore, the size of the gap that is computed
is the exact difference of resources consumed only by CD instructions on
both paths, not the consumption between the branch and its detected re-
convergence point. As a result, if a gap is made, all the CI instructions will
have the same allocated resources, even the one between the real and the
detected reconvergence point. Thus all CI instruction can be identified, as
long as the size of the gap is correct.

Note that even when gaps are inserted the lengths of the wrong path
and the correct paths may not match. In that case, the identification of
the CI instructions just fail. The pipeline just continue to act as usual po-
tentially missing some performance gain opportunities, but missing them
does not bring performance degradation.

5.2.2 Identifying and Propagating Register Dependencies

The renaming process is in charge of preserving the results of already ex-
ecuted CIDI instructions, but invalidating the results of CIDD instructions
and CD instructions.

After a misprediction, the instruction fetch is resumed and fetched in-
structions are checked against the wrong path instructions occupying their
entries in the register file, the ROB and the LSQ. To assess the validity of the
data already present in these structures, different rules are applied. For CI
instructions other than load instructions, the validity of the result of the in-
struction must be conserved if the operands of the instruction remain valid
on the correct path.

A difficulty is that different versions of the data operands can be succes-
sively available in the same physical register and for the same successive
instances of the instruction: register P1 can have been valid on the wrong
path allowing to execute instruction I2, then discovered as invalid on the
right path thus the operand for I2 is invalid, however if I1 is executed,
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register P1 becomes valid again. To ensure the use of the correct operand
version, we propose the tagging process for identify the correct version of
the data described below.

We refer to a sequence of instructions that are fetched, decoded and
renamed without any interruption by the correction of a branch mispredic-
tion or a load/store dependency as a rename sequence. A unique RS-tag
(Rename Sequence tag) is associated with any rename sequence. Basically,
this tag is used to determine when the information associated with the in-
struction has been computed.

The register renaming process acts as follows to preserve CIDI work:
after a misprediction, the current RS-tag is changed (incremented for in-
stance). At renaming, a RS-tag is associated with each instruction in the
ROB and with its destination register in the map table. For instructions
other than load instructions, the following rules are applied:

1. if the PC of the new instruction is different from the PC of the old
instruction in the same ROB entry then store the new RS-tag both in
the ROB entry and the register map table and mark the register as
invalid and the instruction as unexecuted.

2. else:

• if the instruction does not read any register operand but pro-
duces a result then keep the old RS-tag and preserve the register
validity and execution status.

• if the instruction reads operands which names after renaming,
including the RS-tags are identical to the ones from the wrong
path then conserve the old RS-tag, the register valid bit and the
execution status else

store the new RS-tag both in the ROB entry and the register map
table and mark the register as invalid and the instruction as un-
executed.

This process for all instructions except loads is illustrated on Figure 8.
At first decode, Tag T is associated with the result of an instruction. After
misprediction, Tag N is associated to CD instruction results as well as CIDD
instruction results.

In order to propagate memory dependencies, load/store instructions
require special treatments involving the LSQ. In the LSQ, the entry asso-
ciated with a store will be marked as invalid, i.e considered as storing an
invalid data, if the store does not match its associated LSQ entry or its ROB
entry. In case of matches, the entry will also be marked invalid if either its
load address operand or its write operand is invalid otherwise the validity
of the wrong path execution will be preserved.

RR n° 7463



SYRANT: SYmmetric Resource Allocation on Not-taken and Taken Paths 15

Figure 8: Illustration of the modified rename process and the mechanism to
identify data dependent instructions. T i means physical register number i
with tag T . Ni means physical register number i with tag N .

To preserve the validity of the result of a CI load instruction, its address
computation must be valid, i.e., the register operands must be valid. How-
ever, the validity of the load data depends also of the effective validity of
data read on the memory: a load instruction can get either its data from the
memory or from a non-committed store, i.e., data that is present in a LSQ
entry. That is the load data can have been forwarded on the wrong path
to the load by a store that is invalid on the right path. In order to handle
this case, we implement an extra feature on the LSQ. When a data for a non
committed store S is forwarded to a subsequent load L, the index of the en-
try associated with S in the LSQ is associated with L. When on the correct
path, L passes the rename stage, validity of store S is checked in the LSQ. If
the data associated with S is invalid then L is marked invalid (register and
LSQ entry).

Important remark on the LSQ in SYRANT On the execution of a store S,
all the speculatively executed loads that follow the store S must be checked
in order to verify that no memory dependency violation was done. As
SYRANT is preserving wrong path results of CI loads that can be posterior
to S, the results of these loads must also be invalidated in case of a memory
dependence violation with S.

Memory dependence prediction RAW hazards are costly in terms of per-
formance. Thus, predictors are used to try to avoid them. Several predic-
tors have been proposed in the literature: the synonym predictor [14], the
store sets predictor [6] and the store barrier predictor [10]. These predictors
try to identify loads that are dependent on some stores to issue them after
the stores they depend on have been executed.
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Our SYRANT implementation is compatible with these predictors and
we use the store sets predictor in our simulator.

5.3 Continuing Wrong Path Execution After Branch Mispredic-
tion Resolution

On a conventional superscalar processor, there is no interest to continue
the execution past the branch misprediction point. If one tries to exploit
Control Independence, it becomes interesting to continue execution of the
instructions, particularly CIDI instructions. Instructions that are on the
wrong path are not totally flushed upon a misprediction detection. We
refer to these instructions as phantom instructions. Phantom instructions
continue their execution in the pipeline as the valid instructions, with a
lesser priority than normal instructions. A phantom instruction is inval-
idated if one of its resources is reclaimed by the pipeline front-end for a
valid instruction, hopefully its valid instance on correct path.

5.4 Artificially matching path lengths

When a branch is fetched, it is searched in the RANT table. Upon a hit, the
corresponding gap size information are retrieved. Using these information,
if needed, gaps are inserted on the less demanding path.

5.4.1 Gaps insertion

Gaps are inserted after a branch either after its initial fetch or after its mis-
prediction resolution After the branch, the fetch and rename process con-
tinue as usual. In practice inserting a gap in the ROB, the free list physical
registers or the LSQ is simply moving a pointer and leaving some entries
free.

5.4.2 Recycling the resources

When a gap is inserted after a branch, the resources are reserved in a dif-
ferent way than by normal instructions. The associated resource needs to
be recycled to avoid resource starvation. ROB entries and LSQ entries are
very simple to recycle. These structures are circular buffers, the entries are
freed the same order as they are allocated. Freeing entries is simply incre-
menting a pointer. For registers, all the gap registers must be recycled in
the free list, when committing the branch instruction.

5.5 Using SYRANT for selective instruction invalidation

When a RAW memory dependency is violated, i.e., a load is executed pre-
maturely and loads a wrong value, the complete chain of dependent in-
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structions may have been executed or issued before the RAW violation is
detected. All these instructions must be invalidated. Selective invalidation
is a complex mechanism to implement in a pipeline and most processors
simply flush the pipeline and rely on dependence prediction to avoid as
many flushes as possible. SYRANT offers an intermediate implementation
between ad-hoc selective invalidation preserving all the executed instruc-
tions and complete flush of the pipeline.

5.6 Hardware complexity considerations

SYRANT induces some modifications in the pipeline of a superscalar pro-
cessor, but essentially the information flow of a conventional superscalar
processor is respected. The major structures of the out-of-order execution
pipeline are only marginally modified (RS-tag added to the register name
in the ROB and index to retrieve the forwarding store in the LSQ). The mon-
itoring process to compute the gap is the major cost with the introduction
of the ABL, the SBL and the RANT table and of a few comparators in the
front-end of the processor.

6 Using wrong path computed branches to improve

branch prediction

The ABL/SBL structure proposed in Section 5.1 to detect the reconvergence
point after a branch can also be used to keep the directions of the branches
on the wrong path. This will obvious help in the context of the SYRANT
proposal since it allows to directly exploit the computed CIDI branches for
fetching on the corrected path. Interestingly the ABL/SBL structure can
be useful per se even if the remainder of the SYRANT mechanisms are not
implemented.

When a branch B has been computed on the wrong path, its computed
direction is present in the SBL. If the ABL/SBL mechanism detects that
the branch B is posterior to the reconvergence point then on re-fetch af-
ter branch correction, the pre-computed direction of branch B can be used
for branch prediction instead of the usual branch prediction. It should be
noted the ABL/SBL mechanism per itself is not able to discriminate be-
tween CIDD branches and CIDI branches. However, we found that, in
many applications the quality of ABL/SBL prediction is better than the
quality of the state-of-the-art TAGE branch prediction we use in our simu-
lations. Moreover we found that this property can be monitored globally
on the whole application with a single 4-bit counters.

In the remainder of the paper, we will refer to a prediction made using
the information recorded in the SBL as a SBL prediction.
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We would like to point out that the introduction of the SBL prediction
in the pipeline is very local, since it does mot modify the global structure
of any component of the superscalar processor, apart the branch predictor.

7 Limiting the size of gaps

Preliminary experiments showed that, for most applications, applying sys-
tematically SYRANT would lead to waste a huge amount of resources in
the gaps, thus generally leading to performance losses. In our simulation
framework, all benchmarks apart one were suffering performance losses.

Therefore we explored several techniques for limiting the number of
gap insertions as well as their size based on their anticipated utility, on
their anticipated moderate impact on performance if inserted on the correct
path. The most useful filters of gap insertion are described below.

In order to limit the possible performance loss on the correct path, a
first possibility is to insert the gaps if the branch was mispredicted. At de-
code time, it can not be determined that the branch will be mispredicted.
By inserting gaps only upon the correction of a mispredicted branch, we
only insert gaps when there is a chance to recover some useful work. How-
ever through this technique, gaps are only inserted if the mispredicted path
was the most demanding path. We will refer to this gap insertion filter
as On Correction Only filter. This strategy targets approximately the same
branches that Selective Branch Recovery (SBR) [8] .

While gap insertion on the corrected path appears as natural, one can
also use several indicators to assess the usefulness of gap insertion on the
predicted path. Confidence on the branch prediction is a natural indicator.
As a confidence estimator for the TAGE predictor [18], we use the provider
component and the value of the prediction counter. The TAGE predictor
was also modified as suggested in [17] in order to ensure a high mispredic-
tion coverage for low confidence predictions and a very low misprediction
rate for the high confidence predictions. We will refer to this filter as the
Confidence filter.

The quality of the reconvergence information is also important to assess
if the gap insertion will be useful. For instance, one would like to insert
gaps only if the information on the resource usage on taken and not-taken
paths is stable enough, i.e., the reconvergence has been detected several
times and the sizes of the gaps remained constant. It can be implemented
as a stability counter associated with each RANT entry counting the num-
ber of times the branch has reconverged. If the size of the gap changes
between two reconvergences, the counter is reset. Gaps are only inserted
if the stability counter reach a threshold. We will refer to this filter as the
Stability filter.
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Limiting the size of each inserted gap is also a way to decrease the re-
source waste generated by the gaps. When the size of the gap is large, there
is a high probability that control independent instructions will be data de-
pendent. The gap is inserted only when its size is inferior to a threshold.
We will refer to this filter as the Size filter.

Of course these filters can be also combined in order to further select
the gap insertions that are the most likely to be useful.

8 Performance evaluation

A simulation study has been carried out for evaluating the SYRANT pro-
posal. We derive our out-of-order simulator from the SimpleScalar frame-
work [4].

8.1 Characteristics of the simulator

Unless otherwise noted, the simulator models a very aggressive 8-way su-
perscalar processor with a 1024-entry ROB, a 512-entry LSQ and 2048 phys-
ical integer and floating point registers. We have chosen very large struc-
tures in order to maximize the number of in-flight instructions. The width
of the different stages is set accordingly to fetch enough instructions before
the detection of a misprediction in order to reach the reconvergence point
of a maximum of mispredicted branches. For SYRANT, we use 256 entries
on ABL and SBL, and 4K entries on the RANT table.

The processor also features a state-of-the-art conditional branch predic-
tor, the TAGE predictor described in [18]. We model fetching up to two
basic blocks per cycle with a maximum of 8 instructions. We use the store
sets predictor [6] to predict memory dependencies. The minimum mispre-
diction penalty is 20 cycles. The other characteristics are summarized in
Table 1.

We will refer to this configuration as the base configuration (BASE).

8.2 Benchmarks

The benchmarks are part of the Spec 2006 benchmarks set [1]. As we have
targeted the Alpha instruction set, we were only able to compile 18 of them.
There are 11 integer benchmarks and 7 floating point benchmarks. The in-
teger benchmarks are: astar, bzip2, gcc, go, h264, hmmer, mcf, omnetpp, perl,
quantum and sjeng. The floating point benchmarks are: lbm, leslie3d, milc,
namd and povray. To reduce the amount of simulation time, we use the
Simpoint methodology [9] to summarize each benchmark in a set of 100
millions instructions slices. Each slice represents a certain part of the bench-
mark execution with a weight corresponding to the importance of this part
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fetch/decode/issue 8/8/8/8
commit width
ROB entries 1024

Rename registers
LSQ entries 512

Cache data L1 64Kb 4-way
set-associative

Cache instruction L1 64Kb 4-way
set-associative

Cache shared L2 4Mb 8-way
set-associative

Data TLB 4096-entry
fully-associative

Memory latency 100 cycles
Integer ALU 6

Integer Multipliers 2
Floating Point ALU 4

Floating Point multipliers 4
Memory ports 4

Branch predictor 256Kbits TAGE
Memory dependence Store sets

predictor
Minimum 20 cycles

misprediction penalty

Table 1: Characteristics of
the simulated architecture

Benchmark Number of IPC Miss rate (MPKI)
Simpoints (BASE) (BASE) (with SBL prediction)

Floating Point Benchmarks
bwaves 20 5.01 0.01 0.01
gromacs 19 4.84 1.14 1.06

lbm 13 0.97 0.03 0.03
leslie3d 22 2.56 0.01 0.01

milc 19 1.39 0.001 0.001
namd 20 4.18 1.56 1.26

povray 19 3.95 0.35 0.35
Integer Benchmarks

astar 18 2.96 11.14 9.26
bzip2 17 4.26 2.91 2.67

gcc 19 3.65 0.78 0.78
go 17 2.60 6.93 6.60

h264 18 4.87 0.60 0.54
hmmer 9 2.57 9.05 7.8

mcf 24 0.60 8.32 6.98
omnetpp 13 1.80 2.56 2.51

perl 8 2.89 0.33 0.32
quantum 20 1.74 0.05 0.04

sjeng 26 2.67 4.01 4.01

Table 2: Characteristics of the bench-
marks set

among the total execution. For each, the results shown are the weighted
mean of the set results. Table 2 shows the number of simpoints taken for
each benchmark.

8.3 Benchmark misprediction rates

Table 2 also lists the branch misprediction rates for each of the used bench-
marks. As shown in Table 2, some benchmarks have a really low mispre-
diction rate. On these benchmarks, it can be expected that a mechanism ex-
ploiting control independence will not increase performance. These bench-
marks are bwaves, lbm, leslie3d, milc, povray, gcc, h264, perl and quantum.
For the class of applications that encounters very small misprediction rate
dynamic activation / deactivation of SYRANT could be considered to op-
timize energy consumption. Such a mechanism is out of the scope of this
paper and will be considered in future work.

On the other hand, the remaining benchmarks exhibit a significant miss
rate, especially astar, go, hmmer and mcf.

8.4 Reconvergence detection

Detecting the reconvergence of the mispredicted branches is a sine-qua-non
condition for achieving some performance gain. The ABL/SBL mechanism
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is able to detect most of the reconvergence cases on the benchmarks ex-
hibiting significant misprediction rates (Figure 9).

We fail to detect reconvergence when misprediction is detected before
reconvergence branch is fetched.
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Figure 9: Breakdown of the mispredicted branches: reconvergence is de-
tected for some of them.

8.5 Gap insertion filters
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Figure 10: IPC improvement with SYRANT over BASE with different gap
insertion filtering mechanisms.

Figure 10 illustrates our experiments assuming the very aggressive 8-
way issue configuration with 1024 ROB entries, 1024 integer registers, 1024
floating point registers and 512 Load Store Queue entries. Performances
are illustrated as speed-up over the base configuration without SYRANT.

The Phantom configuration does not use SYRANT, but continues exe-
cution on the wrong path till resources are claimed back by the main ex-
ecution path (see Section 5.3). Phantom execution, by itself is beneficial
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for some benchmarks as it leads to often prefetch data for the correct path.
This phenomenon is visible on mcf and omnetpp. For a few applications,
phantom execution results in marginal wasting of memory bandwidth and
some cache pollution and therefore results in a small performance loss.

With On Correction Only filter, gaps are inserted only if the correct path
was the less demanding path is the correct path. This strategy eliminates a
large amount of useless gaps since most branches are correctly predicted.
Therefore it results in performance gains on nearly all the benchmarks.
However the performance gains are relatively minor except for hmmer. Sta-
tistically only half of the control independence situations are candidate for
exploitation.

Inserting gaps at prediction time can be useful for performance but their
insertion has to be filtered by some mechanism.

Several gap insertion filtering policy have been proposed in Section 7.
Due to space limitation, we only report the best combination we explored,
Stab+(Conf or Size)+Stabrand32).

The Stab+(Conf or Size)+Stabrand32 filter systematically inserts gap on
branch correction but uses several filters for the insertion at prediction time:

• Stab (stand for Stability): this filter inserts a gap only if the reconver-
gence has been detected several times and with the same gap values.
Using Stability filter with various thresholds was tested and using
thresholds higher or equal than 2 were found to results in approxi-
mately equivalent performances.

• Conf or Size (stand for Confidence or Size): when using the Confidence fil-
ter, a gap is inserted on low confidence branches and if the predicted
path is the less demanding path. The Size filter inserts gap only if its
size is less than a threshold. Thus with the Conf or Size filter, a gap is
only inserted on low confidence branches or if its size is less than a
certain threshold.

• Stabrand32 (stand for Stability randomly decreased with a 1

32
probability:

it is not a filter but an additional operation on the Stability counters.
Each time a gap is inserted at decode time, the Stability counter asso-
ciated to the branch is decremented with a 1

32
probability. Thus, if cre-

ating gap at decode time is not useful anymore, the Stability counter
will go under the threshold after some time, reducing the number of
unnecessary gaps.

With this filter, a gap is inserted at decode time if it is stable (Stability
filter) and (if the branch is low confidence or the insertion gap size is under
some threshold). In the illustrated experiments, the threshold is 4 ROB
entries, 4 registers and 2 LSQ entries. In practice, on our benchmark set,
Stab+(Conf or Size)+Stabrand32 performs at the same performance range as
the best of the Confidence, Stability and Stab+Conf filters.
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This configuration performs better than the On Correction Only config-
uration for nearly all the benchmarks, except for mcf and omnetpp where
the number of additional gaps inserted at decode time is still a little bit too
large.

Compared with the BASE configuration the Stab+(Conf or Size)+Stabrand32
filter leads to performance gain for all of our benchmarks.

As it could be expected, there is a strong correlation between the TAGE
misprediction rate and the ability of SYRANT to increase the performance.

8.6 SBL prediction
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Figure 11: IPC improvement of SYRANT, SBL prediction and
SYRANT+SBL Prediction over BASE.

As pointed out in Section 6, the ABL/SBL hardware mechanism can
be used to improve branch prediction per itself by exploiting the executed
branches after the reconvergence branch.

Table 2 illustrates the misprediction accuracy improvement obtained
through using SBL prediction on top of the TAGE prediction. This accu-
racy improvement is significant for a few benchmarks and results in some
performance improvement (Figure 11). For instance hmmer, mcf, astar and
namd have very significantly reduced mis prediction rate and experience a
visible performance improvement. On the other hand, sjeng and omnetpp
do not benefit from the SBL prediction, but do not lose any prediction ac-
curacy.

Figure 11 also illutrates the combination of the Stab+(Conf or Size)+Stabrand32
SYRANT filter with SBL prediction (column SYRANT+SBL prediction ). For
some benchmarks (astar, go, h264 and hmmer), benefits of SYRANT and SBL
prediction appear as nearly cumulative while on a few others, (gromacs,
namd, bzip2 and mcf ) the performance gains do not cumulate.
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8.7 Moderate issue width

We run experiments using SYRANT on a 4-way superscalar processor us-
ing half of the execution resources of the aggressive configuration. On Fig-
ure 12, we only illustrate the results for the SYRANT+SBL prediction config-
uration (called only SYRANT). The same benchmarks as for the aggressive
configuration are exhibiting speed-ups.
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Figure 12: IPC improvement with SYRANT over BASE on a 4-way super-
scalar configuration

8.8 Varying the instruction window size

Figure 13 illustrates simulations using instruction windows of respectively
256, 512 and 1024 instructions using the SYRANT+SBL prediction. At the
exception of Quantum the performance benefit from using SYRANT in-
creases with the size of the instruction window. Moreover, a window of
512 instructions seems to be sufficient to observe significant results using
SYRANT. More aggressive filters would be required for small instruction
windows.

9 Conclusion

For achieving ultimate performance on sequential codes, exploiting control
flow reconvergence is appealing since it allows to reuse already executed
instructions. However, the prior proposals relied on complex hardware
mechanisms [8, 5, 12, 2, 20] necessitating complex modification in the exe-
cution pipeline of superscalar processor

This hardware complexity may prevent processor designers to imple-
ment control flow reconvergence. We have elaborated a new proposal called
SYRANT, SYmmetric Resource Allocation on Not-taken and Taken paths.
SYRANT does not imply major modifications of the execution core on the
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Figure 13: Variations of the results with respect to the Instruction Widow
Size (IWS).

superscalar execution core. SYRANT is designed to allocate the same re-
sources of the out-of-order execution core to the same instructions after the
reconvergence point on the taken and the not-taken paths. Thus complex
data movements are no longer needed to exploit control independence. Re-
associating the result of a Control Independent instruction I already exe-
cuted on the wrong path with the new instance of the same instruction I on
the correct path is trivial.

The symmetric resource allocation is enforced through gap insertions
in the out-of-order execution structures (register free list, ROB, LSQ). This
allows to ensure that the same resources are used on both paths. We have
presented simple mechanisms to detect the reconvergence and to enforce
data dependencies while preserving already executed control independent
data independent instructions.

The simulation presented in this paper indicates that provided a correct
filtering of the gap insertion, SYRANT is able to bring a small speed-up on
most of the applications exhibiting significant branch misprediction ratios.

In the process of defining SYRANT, we had to invent a new and effec-
tive mechanism for detecting reconvergence points. The definition of our
ABL/SBL mechanism appears as an important contribution for improving
superscalar processor performance with very limited intrusion in the pro-
cessor structure. ABL/SBL allows to monitor branch reconvergence and to
keep the results of executed branches on the wrong path. The addition to
ABL/SBL to a conventional pipeline is not intrusive, but would allow to
significantly improve branch prediction accuracy on some hard-to-predict
benchmarks.

While SYRANT preliminary results might not justify the hardware im-
plementation of SYRANT, we intend to pursue the research using the SYRANT
framework in several directions to improve ultimate sequential performance.
Continuing the exploration of new insertion gap filters seem necessary, in
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particular for medium size instruction windows. The speculative execution
of the branches on the wrong path could be exploited to enhance branch
prediction after branch misprediction recovery. SYRANT also appears as a
possible framework to implement dual-path execution at a reasonable cost.
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