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Abstract

An important challenge in detection theory is that the size of the state space may be very

large. In the context of universal hypothesis testing, two important problems pertaining to

the large state space that have not been addressed before are: (1) What is the impact of

a large state space on the performance of tests? (2) How does one design an effective test

when the state space is large?

This thesis addresses these two problems by developing a generalization of Kullback-

Leibler (KL) mismatched divergence, called mismatched divergence.

1. We describe a drawback of the Hoeffding test: The asymptotic bias and variance of

the Hoeffding test are approximately proportional to the size of the state space; thus,

it performs poorly when the number of test samples is comparable to the size of state

space.

2. We develop a generalization of the Hoeffding test based on the mismatched divergence,

called the mismatched universal test. We show that this test has asymptotic bias

and variance proportional to the dimension of the function class used to define the

mismatched divergence. The dimension of the function class can be chosen to be

much smaller than the size of the state space, and thus our proposed test has a better

finite-sample performance in terms of bias and variance.

3. We demonstrate that the mismatched universal test also has an advantage when the

distribution of the null hypothesis is learned from data.
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4. We develop some algebraic properties and geometric interpretations of the mismatched

divergence. We also show its connection to a robust test.

5. We develop a generalization of Pinsker’s inequality, which gives a lower bound of the

mismatched divergence.
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Chapter 1

Introduction

1.1 Motivation

Recent decades have seen significant advances in data acquisition and communication tech-

nologies. In various areas from finance to science, from personal entertainment to large

engineering projects, a lot of data are being collected. Many previously isolated data are

now aggregated together and have become more accessible. The result is the availability of

huge amounts of data that are still growing.

Consequently, we are now entering into a data-rich era, and we are still at its early

stage. While our ability to collect and share data has advanced significantly, our ability to

understand and use these data has not kept pace.

For example, high resolution digital cameras are almost everywhere, which has helped

create huge image databases. But basic tasks such as automatically recognizing an object

based on the image rather than its title are largely unsolved problems [1]. Developing

techniques to make sense of image data is likely to lead to novel and promising applications,

as suggested by various projects such as MOBVIS [2].

Another example is DNA microarray technology. It has made possible simultaneous

profiling of large numbers of genes. Using these and other related data to understand

biological system is a difficult challenge, as suggested by the acronym of the Dialogue for

Reverse Engineering Assessments and Methods (DREAM) project [3].

One problem that plays an important role in the task of understanding data is the

detection problem. In classical detection problems, one is given two or more candidate
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hypotheses. The problem is then to decide which hypothesis is true based on data.

The challenges mentioned above suggest a new emphasis: The data is usually of high

dimension. Or in a probabilistic context, the size of the state space is large. For example, in

the face recognition problem, the number of possible values a picture can take is relatively

large compared to the number of pictures taken of a particular person. Or in the problem

of detecting system abnormality, we use data collected from a large number of sensors.

It is then natural to ask two questions:

1. Does the high dimensionality/large state space matter?

2. If it matters, how can this complexity be addressed?

This thesis provides rigorous answers to these two questions in the particular context of

universal hypothesis testing. In universal hypothesis testing, we are only given information

regarding one of the candidate hypotheses (which we refer as null hypothesis). Our task is

to design a detector to decide whether this null hypothesis is true or not.

1.2 Previous Work

The study of high dimensionality in classification problems is not new. This topic is a

part of the probably almost correct (PAC) bound of probability of classification error (see [4]

and other related work), and high dimensionality is motivation for the regularization term in

classification algorithms. The wonderful survey [5] provides an overview of several important

techniques to handle high dimensionality. Another source of references is the textbook [6].

In the context of universal hypothesis testing, the size of the state space could be large.

To our best knowledge, the impact of a large state space has not been investigated before.

A closely related problem is the asymptotic statistics of the log-likelihood ratio test, studied

in [7], [8] and references therein. The main result there is that the asymptotic distribution

of log-likelihood ratio is a χ2 distribution whose degree of freedom is proportional to the size
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of the state space. Another related problem is the estimation of Kullback-Leibler divergence

when the state space is large or is of infinite dimension (see [9], [10] and references therein).

1.3 Contributions of this Thesis

In this thesis, we propose a generalization of the Hoeffding test [11] called the mismatched

universal test. We study the bias and variance of the Hoeffding test and mismatched univer-

sal test in the sequential hypothesis testing framework. We also study the bias and variance

when the underlying distribution of the known hypothesis has to be learned. The mis-

matched universal test is based on the notion of mismatched divergence, a generalization of

the Kullback-Leibler divergence. The concept of mismatched divergence was first introduced

in [12] and is developed in the research project that leads to this thesis.

The results of this thesis can be summarized as follows:

1. We describe a drawback of the Hoeffding test: Its asymptotic bias and variance are

approximately proportional to the size of the state space.

2. We develop the mismatched universal test and show that the mismatched universal test

has asymptotic bias and variance proportional to the dimension of the function class

used to define the mismatched divergence. This dimension of the function class can

be chosen to be much smaller than the size of the state space, and thus our proposed

test has a better performance in terms of bias and variance.

3. We demonstrate that when the distribution of the null hypothesis is learned from data,

the estimator of mismatched divergence has smaller bias and variance.

4. We develop some algebraic properties and geometric interpretations of the mismatched

divergence. We also show its connection to a robust hypothesis test studied in [13].

5. We develop a generalization of Pinsker’s inequality, which gives a lower bound of the

mismatched divergence.
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Some of the results of this thesis are published in [14] or included in a submitted

manuscript [15]. The mismatched divergence is connected to the I-Projection studied in

[16]. Some other generalizations of the KL divergence can be found in [16] and [10]. Part of

the bias and variance results can also be derived using results from [8], [16] and an unpub-

lished technical report [17].

1.4 Credits

It should be emphasized that many results described in this thesis are the result of joint

work with Jayakrishnan Unnikrishnan, Sean Meyn, Venugopal Veeravalli and Amit Surana,

and therefore a large percent of credit should go to them.
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Chapter 2

KL Divergence and Hoeffding Test

In this chapter, we introduce formally the universal hypothesis testing framework, KL di-

vergence and Hoeffding test. We then describe the bias and variance issue of the Hoeffding

test.

2.1 Preliminaries

2.1.1 Sequential hypothesis testing

The sequential hypothesis testing framework is given as follows: Let Z denote the state space.

When Z is a finite state space, we assume without loss of generality that Z = [N ] where

N = |Z| is the cardinality of Z. Let P(Z) denote the space of probability distributions on

Z. In the simple i.i.d setting of binary hypothesis testing, there are two hypotheses H0 and

H1. Under hypothesis Hi, i ∈ {0, 1}, (Z1, . . . , Zn) are assumed to be i.i.d. with distribution

πi ∈ P(Z). Given the observations (Z1, . . . , Zn), we would like to decide which of these two

hypotheses is true.

There is usually a chance that we make a wrong decision and there are two types of

errors: false alarm and miss. False alarm refers to the case where we decide in favor of H1

when the true underlying hypothesis is H0; miss refers to the case where we decide in favor

of H0 when the true underlying hypothesis is H1. It is well known that when n is finite,

usually we cannot make both errors arbitrarily small and there is a trade-off between these

two types of errors. In the classical Neyman-Pearson setting, we derive a test so that it
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minimizes one type of error subject to the constraint that the other type of error is no larger

than some threshold. This is a well known subject and its treatment can be found in many

textbooks such as [18].

When we allow n to grow into infinity, it is well known that, except in some pathological

cases, we can make both errors arbitrarily small [18]. In this context, the rate (error expo-

nent) at which the error decays becomes the object of interest. Analogous to the classical

Neyman-Pearson setting, there exists a trade-off between the error exponent of the two types

of errors. The goal is to derive a test so that it maximizes one error exponent subject to the

constraint that the other error exponent is no smaller than some threshold.

2.1.2 Universal hypothesis testing

In many problems of practical importance, one of the distributions is not known or hard to

model. For example, for systems such as the human body, or a secured computer network,

only the normal state (healthy person / no intrusion in the network) π0 is known. Therefore,

it is important to derive a test that only requires the knowledge of π0. This is the universal

hypothesis testing problem. In the asymptotic Neyman-Pearson setting, the problem was

first studied by Hoeffding [11] for the finite state space case. The main result is that there is

a test that does not depend on π1 and is still universally optimal in the sense that it achieves

the optimal error exponent in the asymptotic Neyman-Pearson setting for any π1. The case

when Z is not finite was studied in [19].

We now explain the asymptotic universal hypothesis testing formally. Denote the se-

quence (Z1, . . . , Zn) by Zn
1 . A decision rule based on Zn

1 is a (probably randomized) binary-

valued function φ(Zn
1 ). We decide in favor of H1 if φ(Zn

1 ) = 1, and H0 otherwise. The two
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error exponents are then defined for a test sequence φ := {φ1, φ2, . . . } as

J0
φ := lim inf

n→∞
−1

n
log(π0{φn(Zn

1 ) = 1}), (2.1)

J1
φ := lim inf

n→∞
−1

n
log(π1{φn(Zn

1 ) = 0}). (2.2)

The asymptotic Neyman-Pearson criterion of Hoeffding [11] is described as follows: For

a given constant bound η ≥ 0 on the false-alarm exponent, an optimal test is the solution to

β∗(η) = sup{J1
φ : subject to J0

φ ≥ η} , (2.3)

where the supremum is over all test sequences φ.

2.1.3 KL divergence and Hoeffding test

The Kullback-Leibler divergence for two probability distributions µ1, µ0 ∈ P(Z) is defined

as

D(µ1‖µ0) = 〈µ1, log(dµ1/dµ0)〉, (2.4)

where we use the notation 〈µ, g〉 := Eµ[g]. Sometime we also use the notation µ(g) := Eµ[g].

Let Qα(π) denote the KL divergence neighborhood: Qα(π) = {µ ∈ P(Z) : D(µ‖π) < α},

for π ∈ P(Z) and α > 0.

Define the empirical distributions {Γn : n ≥ 1} as elements of P(Z):

Γn(A) =
1

n

n
∑

k=1

I{Zk ∈ A}, A ∈ Z.

At time n the Hoeffding test is a test based on the empirical distribution Γn. It compares

the KL divergence to a threshold δn,

φH(Zn
1 ) = I{D(Γn‖π0) ≥ δn}. (2.5)
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We remark again that the test (2.5) does not require the knowledge of π1.

When Z is finite, the test (2.5) with a fix threshold δn = η is optimal in the following

sense: for any π1 satisfying D(π1‖π0) > η,

J0
φH ≥ η, J1

φH ≥ β∗(η).

2.2 Bias and Variance Issue of the Hoeffding Test

Note that the the Hoeffding test is given by comparing the test statistic D(Γn‖π0) with

a threshold. It can be easily shown using the strong law of large numbers that D(Γn‖π0)

converges to D(πi‖π0) with probability one. On the other hand, it will be shown shortly

that the bias and variance of the test statistics are proportional to the size of the state space

divided by the number of samples. Therefore, using the Hoeffding test requires the number

of samples to be at least of the same order as |Z|, which makes it impractical when |Z| is very

large. This is summarized in the following result: We use the notation Var (X) to denote

the variance of X: Var (X) = E[X2] − E[X]2.

Theorem 2.2.1. For the model with i.i.d. observations whose marginal distribution is π =

π0, the test statistic sequence D(Γn‖π0) has the following asymptotic bias and variance when

π0 has full support over Z:

lim
n→∞

E[nD(Γn‖π0)] = 1
2
(N − 1), (2.6)

lim
n→∞

Var [nD(Γn‖π0)] = 1
2
(N − 1), (2.7)

where N = |Z| denotes the cardinality of Z. ⊓⊔

We remark that while the bias could be compensated by intentionally introducing a

time-varying offset to the threshold η, the variance issue cannot be easily amended.
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Chapter 3

Mismatched Divergence and

Generalized Pinsker’s Inequality

In this chapter, we first introduce the mismatched divergence. We then show that it includes

the KL divergence as a special case. We also show that—analogously to Pinsker’s inequality,

which connects the KL divergence to the total variation distance—the mismatched diver-

gence based on a linear function class admits a generalized Pinsker’s inequality.

3.1 Definition of Mismatched Divergence

The KL divergence D(µ‖π) has the following variational representation:

D(µ‖π) = sup
f

(

µ(f) − Λπ(f)
)

, (3.1)

where Λπ(f) = log(π(ef)). The supremum is taken over all f such that Λπ(f) < ∞ and

µ(f) is well defined. We remark that the supremum is achieved by the log-likelihood ratio:

f = log(dµ/dπ).

The mismatched divergence is defined by restricting the supremum in (3.1) to a function

class F :

DMM

F (µ‖π) := sup
f∈F

(

µ(f) − Λπ(f)
)

. (3.2)

To make sure that this is well defined, we assume that for any f ∈ F , Λπ(f) <∞ and µ(f)

is well defined. Usually we drop the subscript F when the function class used is clear from

the context. The name of the mismatched divergence comes from literature on mismatched

decoding [20].
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When the supremum on the right-hand side of (3.2) is uniquely achieved, we define the

twisted distribution as follows: let f ∗ denote the function that achieves the supremum, then

the twisted distribution π̌µ is defined as the distribution satisfying

π̌µ(g) :=
µ(ef

∗

g)

µ(ef∗)
for all g. (3.3)

Sometime we omit the subscript µ.

We define the mismatched divergence neighborhood QMM

α (π) as

QMM

α (π) := {µ ∈ P(Z) : DMM(µ‖π) < α}. (3.4)

3.1.1 Linear function class

A special function class is the finite-dimensional linear function class

F = {
d

∑

i

riψi : r ∈ R
d}, (3.5)

where {ψi} is the set of basis functions. Define the vector valued function ψ = [ψ1, . . . , ψd]
T.

We usually write fr :=
∑d

i riψi when the basis functions are clear from context. In this

case, the mismatched divergence is defined by a finite-dimensional unconstrained concave

problem, which can be efficiently solved using standard optimization solvers to find the

global maximum:

DMM(µ‖π) = sup
r∈Rd

(

µ(fr) − log(π(efr))
)

. (3.6)

The twisted distribution has the following representation:

π̌µ(g) =
µ(efr∗g)

µ(efr∗)
for all g, (3.7)

where r∗ achieves the supremum in the right-hand side of (3.6).
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3.2 Relationship to KL Divergence

Mismatched divergence is a lower bound of the KL divergence:

Lemma 3.2.1. The following inequality holds for a general function class F :

DMM(µ‖π) ≤ D(µ‖π).

The equality holds whenever the log-likelihood ratio log(dµ/dπ) ∈ F . If f ≡ 0 ∈ F , then

DMM(µ‖π) ≥ 0.

Proof. The inequality follows from the variational representation of the mismatched diver-

gence and KL divergence by using the fact that the feasible set of the function in the

representation of the KL divergence is no smaller than that of the mismatched divergence.

The equality follows from the fact that log(dµ/dπ) achieves the supremum in (3.1). ⊓⊔

We now consider quantizations of the KL divergence. A quantization {Ai} is a finite

partition of Z:

Z = ∪di=1Ai

where {Ai} are disjoint. The quantized probability measures µQ and πQ are defined over

the finite state space {1, . . . , dQ} :

µQ(i) := µ(Ai), π
Q(i) := π(Ai),

where dQ is the level of quantizations and Q stands for quantizations. The KL divergence

with quantizations is then defined as

DQ(µ‖π) := D(µQ‖πQ).

The KL divergence with quantizations is very useful when one wants to estimate the KL
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divergence from empirical distributions, especially when µ and π are continuous probability

distributions [9]. We now show that the KL divergence with quantizations is a special case

of the mismatched divergence defined using a linear function class in which the functions are

indicator functions.

Lemma 3.2.2. If the function class is taken to be F = {
∑dQ

i riψi : r ∈ R
dQ} where

ψi = Ix∈Ai
, then

DMM(µ‖π) = DQ(µ‖π). (3.8)

Proof. Let ψ∗
j (i) = Ii=j. Denote fr =

∑dQ

i riψi and f̄r =
∑dQ

i riψ̄i. It is easy to see that

µ(fr) = µQ(f̄r).

Since {ψi} are indicator functions,

π(efrIx∈Aj
) = π(erjIx∈Aj

) = πQ(erjIi=j) = πQ(ef̄rIi=j).

Consequently,

log(π(efr)) = log(πQ(ef̄r)).

Since the linear function class F̄ = {
∑

i riψ̄i : r ∈ R
dQ} contains all the integrable functions,

we have

D(µQ‖πQ) = sup
r∈Rd

(

µQ(f̄r) − log(πQ(ef̄r))
)

.

Combining the above results, we obtain (3.8). ⊓⊔
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3.3 Generalized Pinsker’s Inequality

Pinsker’s inequality [21] provides a lower bound on the KL divergence in terms of the total

variation distance,

‖µ− π‖TV := sup
A

|µ(A) − π(A)|.

Proposition 3.3.1. For any two probability measures

D(µ‖π) ≥ 2(‖µ− π‖TV)2. (3.9)

Our goal in this section is to obtain an equally simple lower bound on DMM(µ‖π) when

the function class is linear. For any function f : Z → R, the span norm is defined by

‖f‖∞,SP = (sup f(x)) − (inf f(x)).

Theorem 3.3.2 (Generalized Pinsker’s Inequality). For any two probability measures, the

mismatched divergence based on linear function class F admits the following lower-bound:

DMM

F (µ‖π) ≥ 2 sup

(

µ(fr) − π(fr)

‖fr‖∞,SP

)2

, (3.10)

where the supremum is over all non-zero r ∈ R
d.

Before proceeding with the proof we remark that Theorem 3.3.2 generalizes Pinsker’s

inequality. To see this, take d = 1 and r = 1 and let ψ1(x) = IA(x) for arbitrary A ∈ B(Z).

In this case we have ‖fr‖∞,SP = r = 1. Applying Theorem 3.3.2,

D(µ‖π) ≥ DMM(µ‖π) ≥ 2 sup
A

|µ(A) − π(A)|2.

This gives (3.9) since A is arbitrary.

The proof of the theorem is based on reducing the bound on DMM(µ‖π) to a convex

optimization problem that is solved using Hoeffding’s inequality [22]. We recall the following

consequence of Hoeffding’s inequality in Proposition 3.3.3:
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Proposition 3.3.3. For any bounded function f : Z → R, ε > 0, and any probability distri-

butions ν0, ν1 ∈ P(Z) satisfying ν1(f) − ν0(f) ≥ ε, we have

D(ν1‖ν0) ≥ 2
ε2

‖f‖2
∞,SP

.

The next key result used in the proof of Theorem 3.3.2 expresses solidarity between the

two rate functions.

Lemma 3.3.4. For all ǫ > 0, r ∈ R
d, and π ∈ P(Z), we have

inf
{

DMM(µ‖π) : µ(fr) − π(fr) ≥ ǫ
}

= inf
{

D(µ‖π) : µ(fr) − π(fr) ≥ ǫ
}

.

Proof of Theorem 3.3.2. We first prove the lower bound,

inf
µ:µ(fr)≥π(fr)+ǫ

DMM(µ‖π) ≥ inf
µ:µ(fr)≥π(fr)+ǫ

D(µ‖π).

This follows from the expression for DMM(µ‖π) given in Theorem 7.1.1:

inf
µ:µ(fr)≥π(fr)+ǫ

DMM(µ‖π) = inf
µ:µ(fr)≥π(fr)+ǫ

[sup
α

inf
ν:ν(fα)≥µ(fα)

D(ν‖π)]

≥ sup
α

inf
µ:µ(fr)≥π(fr)+ǫ

[ inf
ν:ν(fα)≥µ(fα)

D(ν‖π)]

≥ inf
µ:µ(fr)≥π(fr)+ǫ

[ inf
ν:ν(fr)≥µ(fr)

D(ν‖π)]

= inf
µ:µ(fr)≥π(fr)+ǫ

D(µ‖π).

Applying the simple bound,

DMM(µ‖π) = sup
α

inf
ν:ν(fα)≥µ(fα)

D(ν‖π) ≤ D(µ‖π),
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we obtain the reverse inequality

inf
µ:µ(fr)≥π(fr)+ǫ

DMM(µ‖π) ≤ inf
µ:µ(fr)≥π(fr)+ǫ

D(µ‖π).

⊓⊔

Proof of the Generalized Pinsker’s Inequality. For any ε > 0 and any r, by Lemma 3.3.4 and

Proposition 3.3.3, we have

inf
µ,π:µ(fr)−π(fr)≥ǫ

DMM(µ‖π) = inf
µ,π:µ(fr)−π(fr)≥ǫ

D(µ‖π) ≥ 2
ε2

‖fr‖2
∞,SP

.

Therefore, for any µ we can set ε = |µ(fr) − π(fr)| to obtain

DMM(µ‖π) ≥ 2
(µ(fr) − π(fr))

2

‖fr‖2
∞,SP

.

⊓⊔

Note that D(µ‖π) ≥ DMM(µ‖π). It is natural to ask whether the generalized Pinsker’s

inequality provides a better lower bound for D(µ‖π) than (3.9). Unfortunately the answer

is no. For the finite state space case we have the following lemma. The proof can be easily

generalized to the general state space case.

Lemma 3.3.5. When the state space is finite, we have

(

µ(f) − π(f)

‖f‖∞,SP

)2

≤ sup
A

|µ(A) − π(A)|2.

Proof. Note that the left-hand side is invariant when we add a constant function to f or we

multiply f by a constant, i.e.,

(

µ(f) − π(f)

‖f‖∞,SP

)2

=

(

µ(α(f + c)) − π(α(f + c))

‖α(f + c)‖∞,SP

)2

.
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Consequently, we have the following inequality:

(

µ(f) − π(f)

‖f‖∞,SP

)2

≤ sup{(µ(f) − π(f))2 : f(z) ∈ [0, 1] for all z}.

Observe the maximization problem on the right-hand side. The objective function (µ(f) −

π(f))2 is a convex function in f and the constraint set {f : f(z) ∈ [0, 1] for all z} is a convex

set. Thus, there is an optimal solution that is also an extreme point of the constraint set,

and any extreme point of the constraint set is an indicator function. Thus, there exists a set

A such that

(µ(IA) − π(IA))2 = sup{(µ(f) − π(f))2 : f(z) ∈ [0, 1] for all z}.

⊓⊔
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Chapter 4

Mismatched Universal Test Using a

Linear Function Class

In this chapter, we introduce tests using mismatched divergence based on a linear function

class. We show that it is asymptotically optimal in a relaxed Neyman-Pearson setting. We

then study its bias and variance. Finally, we explain the connection between the mismatched

divergence based on a linear function class and graphical models. In this and the following

chapters, we restrict ourselves to the finite state space case.

4.1 Mismatched Test Based on a Linear Function

Class

Our proposed universal test using mismatched divergence is given as follows:

φMM(Z) = I{DMM(Γn‖π0) ≥ δn}, (4.1)

where Γn is the empirical distribution. We call this test the mismatched universal test. In

this chapter, we restrict ourselves to the case when the function class is linear.

The result in this chapter was developed jointly with Jayakrishnan Unnikrishnan, Sean Meyn and

Venugopal Veeravalli.
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4.1.1 Optimality

From the relationship between the mismatched divergence and KL divergence, it is clear that

when the set {ψi} spans all the functions, the test is optimal in the Neyman-Pearson sense

defined in the text around Equation (2.3). This is not an isolated case: The mismatched

universal test is optimal in a relaxed asymptotic Neyman-Pearson setting in which we restrict

the set of possible tests, as described in the following proposition:

Proposition 4.1.1. Suppose π1 and π0 satisfy DMM(π1‖π0) +DMM(π0‖π1) <∞. When the

observations Z = {Zt : t = 1, . . .} are i.i.d., then the universal test defined in (4.1) achieves

the optimal error rate in the relaxed Neyman-Pearson setting

βMM∗
η := sup{J1

φ : subject to J0
φ ≥ η, φ ∈ Φ},

where Φ is the set of tests of the following form:

Φ = {I{Γn(f) ≥ τ} : f ∈ F}.

This proposition is essentially [14, Proposition 3.1]. The main idea is to look at the

geometric picture for the relaxed Neyman-Pearson setting. We will not give the proof here

since it is not the major theme of our thesis and the proof is lengthy.

4.2 Bias and Variance

In this section, we will study the bias and variance DMM(Γn‖π0) when the sequence of

observations Z = {Zt : t = 1, . . .} are i.i.d. with marginal π. We will first consider the

case when the null hypothesis is true, and then extend it to the case when the alternate

hypothesis is true.
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4.2.1 Bias and variance when the null hypothesis is true

When π = π0, it is easy to see that DMM(π‖π0) = 0. Note that DMM(µ‖π0) is approximately

quadratic when µ ≈ π0, and the difference between Γn and π0 is on the order of 1/
√
n by

the central limit theorem. Thus it is not surprising that the bias is on the order of 1/n.

What is interesting is that the asymptotic bias and variance have a very simple expression

that depends on the dimension of the function class. Defining Σπ0 as

Σπ0 = π0(ψψT) − π0(ψ)π0(ψT),

we have the following theorem:

Theorem 4.2.1. Suppose Z is drawn i.i.d. from a finite set Z with marginal π0 and assume

Σπ0 is positive definite. Then the universal statistic has bias of order n−1 and variance of

order n−2, and the normalized asymptotic values have simple, explicit forms:

lim
n→∞

nE[DMM(Γnπ0)] = 1
2
d, (4.2)

lim
n→∞

n2
Var [DMM(Γnπ0)] = 1

2
d. (4.3)

The assumption on Σπ0 basically says that {ψi} is minimal. That is, no nontrivial linear

combination of {ψi} is a constant function almost surely with respect to π0. This assumption

is not restrictive since any set of basis functions can be reduced to a set of minimal basis

functions though d will change.

Proposition 4.2.1 suggests the following:

1. The asymptotic bias and variance of the mismatched universal test can be much smaller

than the Hoeffding test. Moreover, they can be controlled by properly selecting the

function class and thus provide a solution when |Z| is large and the number of samples

n is limited.
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2. When the log-likelihood ratio log(dπ/dπ0) is in the function class, we have

DMM(π‖π0) = D(π‖π0).

Thus the test based on the mismatched divergence is asymptotically optimal in the

usual asymptotic Neyman-Pearson setting.

3. The bias term suggests that instead of fixing δn to be η, a time-varying δn = η + d
2n

may perform better in practice when the number of samples n is finite.

The proof of Theorem 4.2.1 basically follows from analyzing the Taylor series expansion

of DMM(Γn‖π0). There is an issue of proving the convergence of mean and variance from

convergence in distribution. This issue is addressed by the following lemma proved in [15].

Let Cov (X) denote the covariance matrix of vector X as: Cov (X) = E[(X − E[X])(X −

E[X])T].

Lemma 4.2.2. Let X = {X i : i = 1, 2, . . .} be an i.i.d. sequence with mean x̄ taking

values in a compact convex set X ⊂ R
m, containing x̄ as a relative interior point. Define

Sn = 1
n

∑n

i=1X
i. Suppose we are given a function h : R

m 7→ R that is continuous over X

and a compact set K containing x̄ as a relative interior point such that

1. The gradient ∇h(x) and the Hessian ∇2h(x) are continuous over a neighborhood of K.

2. lim
n→∞

−1

n
log P{Sn /∈ K} > 0.

Let M = ∇2h(x̄) and Ξ = Cov (X1). Then,

(i) The normalized asymptotic bias of {h(Sn) : n ≥ 1} is obtained via

lim
n→∞

nE[h(Sn) − h(x̄)] = 1
2
tr (MΞ).
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(ii) If in addition to the above conditions, the directional derivative satisfies ∇h(x̄)T(X1−

x̄) = 0 almost surely, then the asymptotic variance decays as n−2, with

lim
n→∞

Var [nh(Sn)] = 1
2
tr (MΞMΞ).

⊓⊔

Proof of Theorem 4.2.1. To apply Lemma 4.2.2, h is specialized to be h(µ) := DMM(µ‖π0).

We take X i = (Iz1(Zi), Iz2(Zi), . . . , IzN
(Zi))

T, and Z = [0, 1]N . Take Ξ = Cov (X). Define

the matrix the Ψ as Ψi,j = ψi(j). It is easy to see that Σπ0 = ΨΞΨT.

We demonstrate that

M = ∇2h(π0) = ΨT(Σπ0)−1Ψ, (4.4)

and prove that the other technical conditions of Lemma 4.2.2 are satisfied. The rest will

follow from Lemma 4.2.2, as

tr (MΞ) = tr ((Σπ0)−1ΨΞΨT) = tr (Id) = d,

and similarly

tr (MΞMΞ) = tr (Id) = d.

The condition Σπ0 being positive definite indicates that the objective function of the

right-hand side of (3.6) is strictly concave and thus has a unique maximum for each µ. Let

r(µ) be the maximizer for a given µ. Then

h(µ) = µ(fr(µ)) − Λπ0(fr(µ)).

Recall that π̌µ is the twisted distribution defined in (3.3). Define Σ̌µ as

Σ̌µ = π̌µ(ψψ
T) − π̌µ(ψ)π̌µ(ψ

T).
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The first order optimality condition in the right-hand side of (3.6) gives

µ(ψ) − π̌µ(ψ) = 0.

On taking the derivative with respect to µz with z ∈ Z, we have

ψ(z) − Σ̌µ

∂r(µ)

∂µ(z)
= 0.

Then it is straightforward to show that

∂

∂µ(z)
h(µ) = fr(µ)(z),

∂2

∂µ(z)∂µ(z̄)
h(µ) = ψT(z)

∂r(µ)

∂µ(z̄)
= ψT(z)Σ̌−1

µ ψ(z̄).

When µ = π0, we have r(π0) = 0 and Σ̌µ = Σπ0 . Thus,

∂2

∂µ(z)∂µ(z̄)
h(π0) = ψT(z)Σ−1

π0 ψ(z̄).

We now verify the remaining conditions required in Lemma 4.2.2:

1. It is straightforward to see that h(π0) = 0.

2. The function h is uniformly bounded since h(µ) = DMM(µ‖π0) ≤ D(µ‖π0) ≤ maxz log( 1
π0(z)

)

and π0 has full support.

3. Since fr(µ) = 0 when µ = π0, it follows that ∂
∂µ(z)

h(µ)
∣

∣

∣

µ=π0

= 0.

4. Pick a compact set K that contains π0 as an interior point, and

K ⊂ {µ ∈ P(Z) : max
u

|µ(u) − π0(u)| < 1
2
min
u

|π0(u)|}.
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This choice of K ensures that limn→∞− 1
n

log P{Sn /∈ K} > 0. Since r(µ) is continu-

ously differentiable on K, we conclude that h is C2 on K.

⊓⊔

4.2.2 Bias and variance when the alternate hypothesis is true

There is more than one way to derive the result for the asymptotic bias and variance of

DMM(Γn‖π0) when π 6= π0. Here we show that the case when π 6= π0 can be derived from

the case when π = π0 using the following lemma:

Lemma 4.2.3. Suppose the supremum in DMM(µ‖π0) and DMM(π1‖π0) are both achieved.

Denote π̌ = π̌π1. We have

DMM(µ‖π0) = DMM(µ‖π̌) +DMM(π1‖π0) + 〈µ− π1, log(π̌/π0)〉.

Here we use the theory of I-projection [16] to derive Lemma 4.2.3. Let L denote the

linear family of probability distributions:

L(µ) = {ν : ν(ψi) = µ(ψi), for all i}

Let E denote the exponential family of probability distributions:

E = {ν : ν(z) =
π0(z)efr(z)

π0(efr)
, r ∈ R

d}.

Then by the theory of I-projection, π̌µ is the unique intersection of the linear family and

exponential family [16]:

L(µ) ∩ E = {π̌µ},

and

DMM(µ‖π0) = D(π̌µ‖π0).
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Proof of Lemma 4.2.3. From the definition of the exponential family, π̌, π̌µ and π0 belong

to the same exponential family. Therefore, DMM(µ‖π0) = D(π̌µ‖π0), DMM(µ‖π̌) = D(π̌µ‖π̌)

and DMM(π1‖π0) = D(π̌‖π0). Consequently,

DMM(µ‖π0) = D(π̌µ‖π0) = D(π̌µ‖π̌) + 〈π̌µ, log(
π̌

π0
)〉

= D(π̌µ‖π̌) + 〈µ, log(
π̌

π0
)〉

= DMM(µ‖π̌) + 〈µ, log(
π̌

π0
)〉

= DMM(µ‖π̌) + 〈π̌, log(
π̌

π0
)〉 + 〈µ− π̌, log(

π̌

π0
)〉

= DMM(µ‖π̌) +D(π̌‖π0) + 〈µ− π̌, log(
π̌

π0
)〉

= DMM(µ‖π̌) +DMM(π1‖π0) + 〈µ− π̌, log(
π̌

π0
)〉

= DMM(µ‖π̌) +DMM(π1‖π0) + 〈µ− π1, log(
π̌

π0
)〉,

where the third equality 〈µ, log( π̌
π0 )〉 = 〈π̌µ, log( π̌

π0 )〉 follows from the fact that log( π̌
π0 ) ∈ F

and π̌µ ∈ L(µ); and the last equality 〈π̌, log( π̌
π0 )〉 = 〈π1, log( π̌

π0 )〉 follows from a similar

reasoning. ⊓⊔

Applying Lemma 4.2.3, we obtain:

DMM(Γn‖π0) = DMM(Γn‖π̌) +DMM(π1‖π0) + 〈Γn − π̌, log(π̌/π0)〉. (4.5)

The decomposition suggests that the bias and the variance of DMM(Γn‖π0) come from the

first and third term. The first term DMM(Γn‖π̌) can be studied using an argument similar

to that of the case π = π0 and shown to have asymptotic bias of order n−1 and variance

of order n−2. The third term has a mean 0 and the central limit theorem applying to Γn

suggests that the variance of the second term is of order n−1. This observation suggests

the following statement and an approach to prove it: The bias of the overall term is mainly

contributed by the first term and is of order n−1; when n is large, the variance of the overall

24



term is mainly contributed by the third term and is of order n−1. In the rest of this section

we will make this precise. We remark that when n is small, the variance of the first term

could be very significant.

Theorem 4.2.4. Suppose Z is drawn i.i.d. from a finite set Z with marginal π = π1 6= π0.

Assume Σπ0 is positive definite and π � π0. Then the universal statistic has bias of order

n−1 and variance of order n−1, and given by the explicit forms:

lim
n→∞

nE[DMM(Γn‖π0) −DMM(π‖π0)] = 1
2
tr (Σ̌−1

π Σπ0), (4.6)

lim
n→∞

nVar [DMM(Γn‖π0)] = Cov (log(π̌/π0)), (4.7)

where π̌ = π̌π1 and

Σ̌π = π̌(ψψT) − π̌(ψ)π̌(ψT).

When log(π1/π0) ∈ F , the bias has a simple form:

limn→∞nE[DMM(Γn‖π0) −DMM(π‖π0)] = 1
2
d. (4.8)

To prove Theorem 4.2.4 we first investigate the bias and variance of the two terms in

(4.5), as summarized in the following two lemmas:

Lemma 4.2.5. Under the assumptions of Proposition 4.2.4, we have

lim
n→∞

nE[DMM(Γn‖π̌)] = 1
2
tr (Σ̌−1

π Σπ0), (4.9)

lim
n→∞

n2
Var [DMM(Γn‖π̌)] = 1

2
tr (Σ̌−1

π Σπ0Σ̌−1
π Σπ0). (4.10)

Proof. The proof is similar to that of Proposition 4.2.1 and is left to the Appendix. ⊓⊔
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Lemma 4.2.6. Under the assumptions of Proposition 4.2.4, we have

E[〈Γn − π1, log(
π̌

π0
)〉] = 0, (4.11)

nVar [〈Γn − π1, log(
π̌

π0
)〉] = Cov (log(π̌/π0)). (4.12)

Proof. The proof is trivial. ⊓⊔

Proof of Theorem 4.2.4. Using Lemma 4.2.7 we obtain that supremum in the definition of

the mismatched divergence is achieved and the conditions of Lemma 4.2.3 are satisfied.

Combining (4.5), (4.9) and (4.11), we obtain (4.6). When log(π1/π0) ∈ F , we have π̌ = π1

and obtain (4.8). We now compute the variance. To prove (4.7) we first use the short-hand

notations

Xn = DMM(Γn‖π̌), Y n = 〈Γn − π1, log(
π̌

π0
)〉.

The variance is then expressed as

nVar (Xn + Y n) = nVar (Xn) + nVar (Y n) + 2nE
[

(Xn − E[Xn])(Y n − E[Y n])
]

,

where the last term can be bounded using the Cauchy-Schwarz inequality:

n|E
[

(Xn − E[Xn])(Y n − E[Y n])| ≤
√

nVar (Xn)nVar (Y n).

Since (4.10) and (4.12) imply,

lim
n→∞

nVar (Xn) = 0, , lim
n→∞

nVar (Y n) ≤ ∞,

we have

lim
n→∞

nE
[

(Xn − E[Xn])(Y n − E[Y n]) = 0.
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Therefore,

lim
n→∞

nVar (Xn + Y n) = lim
n→∞

nVar (Y n).

Substituting the right-hand side using (4.12), we obtain (4.7). ⊓⊔

Lemma 4.2.7. If µ � π for all i and Σπ is positive definite, then the right-hand side of

the definition of mismatched divergence based on linear function class (3.6) has a unique

maximizer.

The proof is given in the appendix.

Specializing Theorem 4.2.4 to the KL divergence with quantizations, we have

Corollary 4.2.8. Suppose Z is drawn i.i.d. from a finite set Z with marginal π = π1 6= π0

and π1 � π0. Then the quantized divergence DQ(Γn‖π0) has bias of order n−1 and variance

of order n−1, and the normalized asymptotic values have explicit forms:

lim
n→∞

nE[DQ(Γn‖π0) −DQ(µ‖π0)] = 1
2
(dQ − 1),

lim
n→∞

nVar [DQ(Γn‖π0)] = Var µQ

(

log(
dµQ

dπ0Q
)
)

.

4.3 Application to Graphical Models

Graphical models can be used to model interactions between random variables and are useful

in many applications. The reference [23] is an excellent tutorial. Here we only consider a

special case. Let {Xi, i = 1, . . . , K} be a set of random variables taking values in a finite

set which we assume without loss of generality to be [M ] = {1, 2, . . . ,M}. We assume that

their joint distribution is modeled using an exponential family:

Pr{X1 = x1, . . .XM = xN} = C exp
{

∑

i,a

λi,aI{xi = a} +
∑

i,j,a,b

θi,j,a,bI{xi = a}I{xj = b}
}

,

(4.13)
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where C is a normalizing constant. Thus, a distribution π is specified by the set of weights

{θi,j,a,b} and {λi,a}. The distribution is associated with an undirected graph G = (V,E).

For each i, Xi is associated with a vertex vi in V . Each edge ei,j is associated with the set

of weights {θi,j,a,b, a ∈ [M ], b ∈ [M ]}. There is no edge between vi, vj if and only if all the

weights in {θi,j,a,b, a ∈ [M ], b ∈ [M ]} are zero.

Consider a universal hypothesis testing problem where in the null hypothesis {Xi} has

distribution π0 and weights Θ0 = {θ0
i,j,a,b}, Λ0 = {λ0

i,a}; and in the alternate hypothesis {Xi}

has distribution π1 and weights Θ1 = {θ1
i,j,a,b}, Λ1 = {λ1

i,a}. Only the weights Θ0 and Λ0

are known, and the graphical structure (namely the edges) are known. Our task is to decide

whether the set of weights is Θ0, or not.

From the theory above, we know that the Hoeffding test has asymptotic bias and variance

given by the following corollary.

Corollary 4.3.1. Suppose the null hypothesis is true. The universal hypothesis testing

statistics D(Γn‖π0) have asymptotic bias and variance given by

lim
n→∞

E[nD(Γn‖π0)] = 1
2
(M |V | − 1),

lim
n→∞

Var [nD(Γn‖π0)] = 1
2
(M |V | − 1).

Note here that the definition of KL divergence is extended to the multi-dimensional

distribution using the variational representation in (3.1).

We may also use the prior knowledge of the graph structure, and using the mismatched

universal test with the following function class:

F =
{

∑

i,a

λi,aI{xi = a} +
∑

i,j,a,b

θi,j,a,bI{xi = a}I{xj = b}, for all Λ, Θ consistent with G
}

.

(4.14)

From the connection between exponential families and mismatched divergence, for any two

distributions π1, π0 consistent with the graphical model, the log-likelihood ratio log(π1/π0)
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is in the function class F . Therefore we have the following corollary.

Corollary 4.3.2. Suppose the null hypothesis is true. The mismatched universal test using

F given by (4.14) is optimal in the asymptotic Neyman-Pearson setting. The test statistics

DMM(Γn‖π0) have asymptotic bias and variance given by

lim
n→∞

E[nD(Γn‖π0)] = 1
2

(

(M − 1)2|E| + (M − 1)|V |
)

,

lim
n→∞

Var [nD(Γn‖π0)] = 1
2

(

(M − 1)2|E| + (M − 1)|V |
)

.

The reduction in bias and variance is due to the restriction of pairwise interactions and the

edge structure. The reduction is more significant when the graph is sparse: For a complete

graph, the bias and variance are proportional to ((M − 1)|V |(|V | − 1)/2 + |V |). For a graph

that is a tree structure, the bias and variance are proportional to ((M − 1)(|V | − 1) + |V |).

For example, consider a model with binary outputs, xi ∈ {0, 1} for each 1 ≤ i ≤ 10.

That is, M = 2 and |V | = 10. For the Hoeffding test, the variance is given by 1
2
(210 − 1).

If the graph is complete and we use the mismatched universal test, the variance is given by

55
2
. If the graph is a tree and we use mismatched universal test, the variance is given by 19

2
.
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Chapter 5

Mismatched Universal Test Using a

General Function Class

In this chapter, we extend the theory in Chapter 4 to more general cases, in which we

allow the function class to be nonlinear. We also show that the general mismatched universal

test includes a robust hypothesis test studied in [13].

5.1 Bias and Variance of a Robust Test

In this section, we study the bias and variance of the robust test studied in [13] by exploring

its connection to the mismatched universal test. In the robust hypothesis testing framework,

the null hypothesis π0 is only known to belong to a moment class P defined by a set of

functions {ψi, i = 1, . . . , d}:

P = {̟ : ̟(ψi) = ci, i = 1, . . . , d}

The robust test is given by

Φ = I{ inf
̟∈P

D(µ‖̟) ≥ τ}.

Loosely speaking, inf̟∈PD(Γn‖̟) measures the worst-case error exponent when the true

distribution belongs to P.

We assume the following regularity condition in this section, which also appears in [13].

The result in this chapter was developed jointly with Jayakrishnan Unnikrishnan, Sean Meyn and

Venugopal Veeravalli.
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Assumption 5.1.1. Assume that ψ1, . . . , ψd are continuous over Z, and c lies in the interior

points of the set of feasible moment vectors, defined as

∆ := {π(ψ), for some π ∈ P(Z)}.

Define

R(ψ, r0) := {r ∈ R
d : r0 + rTψ(x) > 0 for all x ∈ Z}.

The following lemma follows from Theorem 1.4 and the statement in Section 3.3 in [13]:

Lemma 5.1.2. [13] Suppose Assumption 5.1.1 holds, then

inf
̟∈P

D(µ‖̟) = sup{µ(log(r0 + rTψ)) : r0 + rTc = 1, r ∈ R(ψ, r0)}, (5.1)

and there exists an optimizer satisfying r0 6= 0.

The conclusion that the optimizer satisfies r0 6= 0 is indicated by the proof of Theorem

1.4 in [13] since r0 is a Lagrangian multiplier for the constraint π(1) = 1 in inf̟∈PD(µ‖̟),

and it always has nonzero sensitivity.

Using Lemma 5.1.2, we can show that the robust test is a special mismatched universal

test:

Theorem 5.1.3. Suppose that Z is compact, the functions {ψi} are continuous. The function

class F is defined as

F = {log(1 + rTψ) : r ∈ R(ψ, 1)}.

The robust test statistics have the following alternative representation:

inf
̟∈P

D(µ‖̟) = DMM(µ‖π0),

where π0 is any distribution satisfying π0 ∈ P.
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Proof. For each µ ∈ M1, by applying Lemma 5.1.2, we obtain

inf
̟∈P

D(µ‖̟) = sup
(r0,r):r∈R(ψ,r0),r0+rTc=1

{µ(log(r0 + rTψ))}

= sup
(r0,r):r∈R(ψ,r0),r0+rTc=1

{µ(log(r0 + rTψ)) − log(π0(r0 + rTψ))}

= sup
(r0,r):r∈R(ψ,r0)

{µ(log(r0 + rTψ)) − log(π0(r0 + rTψ))}

= sup
(r0,r′):r′r0∈R(ψ,r0)

{µ(log(r0(1 + r′Tψ))) − log(π0(r0(1 + r′Tψ))}

= sup
r′∈R(ψ,1)

{µ(log(1 + r′Tψ)) − log(π0((1 + r′Tψ))}

= sup
r′∈R(ψ,1)

{µ(log(1 + r′Tψ)) − Λπ0

(

log(π0(1 + r′Tψ))
)

}

= sup
f∈F

{µ(f) − Λπ0(f)}

= DMM(µ‖π).

The second equality follows because when π0(r0 + rTψ) = 1, we have log(π0(r0 + rTψ)) = 0.

The fifth equality follows from the fact that µ(log(rTψ))−Λπ(log(rTψ)) is invariant when r

is multiplied by a positive real number. ⊓⊔

Based on this connection, we have the following result on the bias and variance of the

robust test, which is a special case of a more general result that we will prove later.

Proposition 5.1.4. Suppose Z is drawn i.i.d. from a finite set Z with marginal π0 ∈ P and

Assumption 5.1.1 holds. Assume Σπ0 := π0(ψψT) − π0(ψ)π0(ψT) is positive definite. Then

the universal statistic has bias of order n−1 and variance of order n−2, and the normalized

asymptotic values have simple, explicit forms:

lim
n→∞

nE[ inf
̟∈P

D(Γn‖̟)] = 1
2
d,

lim
n→∞

n2
Var [ inf

̟∈P

D(Γn‖̟)] = 1
2
d.

The proof will be given after we derive the more general case.
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5.2 Bias and Variance for Mismatched Universal

Tests using a General Function Class

In this section, we consider a general case: The function class is only assumed to have a

d-dimensional parameterization r:

F = {fr, r ∈ R
d}.

While in the linear case the test is optimal in the relaxed asymptotic Neyman-Pearson

setting as claimed in Proposition 4.1.1, the optimality is not necessarily true in the general

case. The problem is that F is not necessarily a pointed cone and the condition of Theo-

rem 7.1.1 fails. On the other hand, the bias and variance result can be generalized to the

general case, as given by the following theorem:

Theorem 5.2.1. Suppose that the observation sequence Z is i.i.d. with marginal π. Suppose

that there exists r∗ satisfying fr∗ = log(π/π0) and fr(z) is C2 in r in an open neighborhood

B1 of r∗ for every z ∈ Z. Further, suppose that

1. There is an open neighborhood B of π, such that for any µ ∈ B, the supremum in the

definition of DMM(µ‖π0) is uniquely achieved.

2. The matrix Σπ := π(∇fr(∇fr)T) − π(∇fr)π0((∇fr)T)
∣

∣

r=r∗
is positive definite.

Then,

(i) When π = π0, we have

lim
n→∞

E[nDMM(Γn‖π0)] = 1
2
d, (5.2)

lim
n→∞

Var [nDMM(Γn‖π0)] = 1
2
d. (5.3)
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(ii) When π = π1 6= π0 satisfying π1 ≺ π0, we have with σ2
1 := Cov π1(fr∗),

lim
n→∞

E[n(DMM(Γn‖π0) −D(π1‖π0))] = 1
2
d, (5.4)

lim
n→∞

Var [n
1
2DMM(Γn‖π0)] = σ2

1. (5.5)

Similarly to the case of the linear function class, the second result where π = π1 6= π0 can

be derived from the first result using the following lemma which generalizes Lemma 4.2.3:

Lemma 5.2.2. Suppose the supremum in DMM(µ‖π0) and DMM(π1‖π0) are both achieved.

Denote π̌ = π̌π1 which is defined in (3.3). Define G = F − fr∗ := {fr − fr∗ : r ∈ R
d}. Then

we have

DMM

F (µ‖π0) = DMM

F (µ‖π̌) +DMM

G (π1‖π0) + 〈µ− π1, log(π̌/π0)〉.

To prove this lemma, we need the following equality from [15, Proposition II.3] which

holds when the supremum in the definition of the mismatched divergence is achieved:

DMM(µ‖π0) = D(µ‖π0) − inf
ν∈Eπ

D(µ‖ν) = D(µ‖π0) −D(µ‖π̌µ). (5.6)

Proof. In the following identities, the first, third and fifth equalities follow from (5.6).

DMM

F (µ‖π0) = D(µ‖π0) − inf{D(µ‖ν) : ν = π0 exp(f − Λπ0(f)), f ∈ F}

= D(µ‖π̌) + 〈µ, log(
π̌

π0
)〉 − inf{D(µ‖ν) : ν = π̌ exp(f − Λπ̌(f)), f ∈ G}

= DMM

G (µ‖π̌) + 〈µ, log(
π̌

π0
)〉

= DMM

G (µ‖π̌) + 〈µ− π1, log(
π̌

π0
)〉 +D(π1‖π0) −D(π1‖π̌)

= DMM

G (µ‖π̌) + 〈µ− π1, log(
π̌

π0
)〉 +DMM

F (π1‖π0).

⊓⊔

Proof of Theorem 5.2.1. (1) We first prove the result for the case π = π0, and the argument
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is similar to that of Theorem 4.2.1. To apply Lemma 4.2.2, h is specialized to be h(µ) :=

DMM(µ‖π0). Take X i = (Iz1(Zi), Iz2(Zi), . . . , IzN
(Zi))

T. Let X = [0, 1]N and Ξ = Cov (X).

Redefine the matrix Ψ as Ψi,j = (∇fr)i(j)
∣

∣

r=r∗
. It is easy to see that Σπ0 = ΨΞΨT.

We demonstrate that

M = ∇2h(π0) = ΨT(Σπ0)−1Ψ, (5.7)

and prove that the other technical conditions of Lemma 4.2.2 are satisfied. The rest will

follow from Lemma 4.2.2, since

tr (MΞ) = tr ((Σπ0)−1ΨΞΨT) = tr (Id) = d,

and similarly

tr (MΞMΞ) = tr (Id) = d.

By the assumption, when µ ∈ B we can define a function r(µ) such that r(µ) is the

maximizer of the definition of the mismatched divergence. We will first prove that around

an open neighborhood of π0, r(µ) is a continuously differentiable function of µ. The first

order optimality condition in the right-hand side of (3.6) gives

µ(∇fr) −
π0(efr∇fr)
π0(efr)

= 0. (5.8)

The derivative of the left-hand side of (5.8) with respect to r is given by

∇
(

µ(∇rfr) −
π0(efr∇fr)
π0(efr)

)

= µ(∇2fr) − [
π0

(

efr∇fr∇fT

r

)

+ π0
(

efr∇2fr
)

π0(efr)
− π0

(

efr∇fr
)

π0
(

efr∇fT

r

)

(π0(efr))2
]. (5.9)

When µ = π0, (5.8) is satisfied with fr = 0 by the hypothesis. Then the derivative (5.9) is

given by the negative of Σπ0 = π0(∇fr(∇fr)T) − π0(∇fr)π0((∇fr)T)
∣

∣

r=r∗
which is positive

definite by the hypothesis. Therefore, by the implicit function theorem, around an open
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neighborhood U ⊆ B ∩ r−1(B1) around µ = π0, r(µ) is continuously differentiable.

On taking the derivative of (5.8) with respect to µ(z) with z ∈ Z, we have

∇fr(z) + ∇
[

µ(∇rfr) −
π0(efr∇fr)
π0(efr)

]∂r(µ)

∂µ(z)

∣

∣

r=r(µ)
= 0. (5.10)

When µ = π0, we have

∇fr(z)
∣

∣

r=r∗ = Σπ0

∂r(µ)

∂µ(z)

∣

∣

µ=π0
. (5.11)

It is straightforward to see that

∂

∂µ(z)
h(µ) = fr(µ)(z),

∂2

∂µ(z)∂µ(z̄)
h(µ) = ∇fr(z)T

∣

∣

r=r∗

∂r(µ)

∂µ(z̄)
. (5.12)

When µ = π0, note that r(µ) = r0 and applying (5.11), we have

∂2

∂µ(z)∂µ(z̄)
h(µ)

∣

∣

µ=π0
= (∇fr(z))T(Σπ0)−1∇fr(z̄)

∣

∣

r=r∗
. (5.13)

Now since r(µ) is continuously differentiable on U , and fr(z) is smooth in r for each z, we

have that ∂2

∂µ(z)∂µ(z̄)
f(µ) = ∇fr(µ)(z)

T ∂r(µ)
∂µ(z̄)

is continuous on U . Then we can pick a compact

set K such that

K ⊂ U ∩ {µ ∈ P(Z) : max
u

|µ(u) − π0(u)| < 1
2
min
u

|π0(u)|},

and K contains π0 as an interior point. It follows that − 1
n

log P{Sn /∈ K} > 0. In sum, we

can pick K so that all the technical conditions on K outlined in Lemma 4.2.2 are satisfied.

(2) To prove the result for the case π = π1, we can use an argument similar to that of

Theorem 4.2.4, and use Lemma 5.2.2 in place of Lemma 4.2.3. ⊓⊔
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Proof of Proposition 5.1.4. It suffices to prove that for the robust test, the conditions of

Theorem 5.2.1 are satisfied.

The maximum at π0 is clearly achieved by r = 0, and it is easy to see that the function

fr is of C2 in the open neighborhood near r = 0.

When r0 = 1, the Hessian of log(µ(r0 + rTψ)) with respect to r is given by H(µ) =

µ
(

ψψT

(r0+rTψ)2

)

. At µ = π0, it is equal to Σπ0 which is positive definite. Therefore, when µ is

in a neighborhood B of π0, the Hessian H(µ) is also positive definite. Thus the maximizer

in (5.1) is unique for r0 = 1. Thus the maximizer of mismatched divergence using function

class F is unique. ⊓⊔
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Chapter 6

Bias and Variance in Learning

In most applications, the underlying distribution π0 is not given and has to be learned from

data. In this chapter we study a simple case in which m i.i.d. samples with marginal π0 are

given as the training data. We then use the resulting empirical distribution Γ̄m in place of

π0 in the test statistics, i.e. DMM(Γn‖Γ̄m) instead of DMM(Γn‖π0), where Γn is the empirical

distribution from π. However, DMM(Γn‖Γ̄m) can be unbounded when the support of Γ̄m is a

strict subset of the support of Γn. Thus, we use the following test instead:

φMM(Z) = I{DMM

F (Γn‖Γ̄m) ∧ M̄ ≥ δn}, (6.1)

where M̄ is a constant chosen large enough so that M̄ is much larger than maxz log( 1
π0(z)

).

It is clear that the test statistic DMM

F (Γn‖Γ̄m)∧M̄ will converge to DMM(π‖π0) asymptot-

ically when both n and m go to infinity. Motivated by results in the previous chapters, we

would like to investigate its finite length properties. In this chapter we derive the asymptotic

bias and variance of DMM(π0‖Γ̄m)∧ M̄ . Extending this result to the case where π 6= π0 is an

ongoing study.

Our main result in this chapter is given in the following proposition:

Proposition 6.0.3. Suppose Z is drawn i.i.d. from a finite set Z with marginal π0 and

assume Σπ0 is positive definite. Let Γ̄m(z) = 1
m

∑m

i=1 I{Zi = z}. Then DMM(π0‖Γ̄m) ∧ M̄

has bias of order n−1 and variance of order n−2, and the normalized asymptotic values have
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the following simple, explicit forms:

lim
m→∞

mE[DMM(π0‖Γ̄m) ∧ M̄ ] = 1
2
d,

lim
m→∞

m2
Var [DMM(π0‖Γ̄m) ∧ M̄ ] = 1

2
d.

Proposition 6.0.3 suggests that

1. When using the empirical distribution in place of the true underlying distribution, the

bias and variance of test statistics using mismatched divergence can be much smaller

than that using KL divergence. This suggests the possibility that using mismatched

divergence could require less training data, though this requires confirmation through

further experimental study and analysis.

2. The bias term suggests that we should use a threshold δn,m that also depends on the

number of training samples m.

Proof of Proposition 6.0.3. The proof is similar to that of Theorem 4.2.1. To apply Lemma 4.2.2,

h is specialized to be h(µ) :=DMM(π0‖µ) ∧ M̄ and take X i = (Iz1(Zi), Iz2(Zi), . . . , IzN
(Zi))

T

and X = [0, 1]d. Let Ξ = Cov (X). Redefine the matrix Ψ as Ψi,j = ψi(j). Also denote the

vector valued function ψ = [ψ1, . . . , ψd]
T. It is easy to see that Σπ0 = ΨΞΨT.

We will demonstrate the gradient and Hessian of h(π0) are given by

∇h(π0) = −1, (6.2)

M = ∇2h(π0) = 11T + (µ(ψ)1T + Ψ)T(Σπ0)−1(µ(ψ)1T + Ψ), (6.3)

and prove that the other technical conditions of Lemma 4.2.2 are satisfied. Note that Ξ1 = 0.

The rest will follow from Lemma 4.2.2, since

∇h(π0)T(µ− π0) = −1T(µ− π0) = 0, (6.4)
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as required in the lemma. The limiting values in the lemma are

tr (MΞ) = tr (11TΞ + (µ(ψ)1T + Ψ)T(Σπ0)−1(µ(ψ)1T + Ψ)Ξ)

= tr
(

ΨT(Σπ0)−1ΨΞ + (µ(ψ)1T + Ψ)T(Σπ0)−1µ(ψ)1TΞ + (µ(ψ)1T)T(Σπ0)−1ΨΞ
)

= tr (ΨT(Σπ0)−1ΨΞ) + tr ((µ(ψ)1T)T(Σπ0)−1ΨΞ)

= tr ((Σπ0)−1ΨΞΨT) + tr (Ξ1µ(ψ)T(Σπ0)−1Ψ)

= tr (Id) + 0 = d, (6.5)

and similarly

tr (MΞMΞ) = tr (Id) = d.

The Hessian of π0(fr) − Λµ(fr) at µ = π0 is given by the positive defnite matrix Σπ0 .

Thus, the objective function of the right-hand side of (3.6) is strictly concave and thus has

a unique maximum for each µ in an open neighborhood B of π0. Let r(µ) be the maximizer

for a given µ.

The first order optimality condition in the right-hand side of (3.6) gives

π0(ψ) − µ(er(µ)Tψψ)

µ(er(µ)Tψ)
= 0 for all i.

On taking the derivative with respect to µz with z ∈ Z, we have

0 = − ∂

∂µ(z)
(
µ(er

Tψψ)

µ(erTψ)
)
∣

∣

r=r(µ)
−∇r

(µ(er
Tψψ)

µ(erTψ)

)
∣

∣

r=r(µ)

∂r(µ)

∂µ(z)

= −
(er

Tψ(z)ψ(z)

µ(erTψ)
− µ(er

Tψψ)er
Tψ(z)

µ(erTψ)2

)
∣

∣

r=r(µ)

−
[µ(er

TψψψT)

µ(erTψ)
− µ(er

Tψψ)µ(er
TψψT)

µ(erTψ)2

]
∣

∣

r=r(µ)

∂r(µ)

∂µ(z)
.
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When µ = π0, we have r(π0) = 0. Consequently,

−(ψ(z) − µ(ψ)) = Σπ0

∂r(µ)

∂µ(z)

∣

∣

µ=π0
. (6.6)

Since h(π0) = 0 and h(µ) is continuous in B, there exists an open set B1 ⊆ B such

that h(µ) ≤ M̄ for µ ∈ B1. Thus, for µ ∈ B1, h(µ) = DMM(π0‖µ). The following is

straightforward:

∂

∂µ(z)
h(µ) = − er

Tψ(z)

µ(erTψ)
,

∂2

∂µ(z)∂µ(z̄)
h(µ) =

er
Tψ(z)er

Tψ(z̄)

µ(erTψ)2

∣

∣

r=r(µ)
−

(er
Tψ(z)ψ(z)

µ(erTψ)
− µ(er

Tψψ)er
Tψ(z)

µ(erTψ)2

)

T
∣

∣

r=r(µ)

∂r(µ)

∂µ(z̄)
.

When µ = π0, we obtain

∂

∂µ(z)
h(µ) = −1,

∂2

∂µ(z)∂µ(z̄)
h(µ)

∣

∣

µ=π0
= 1 + (ψ(z) − µ(ψ))TΣ−1

π0 (ψ(z) − µ(ψ)).

We now verify the remaining conditions required in applying Lemma 4.2.2:

1. It is straightforward to see that h(π0) = 0.

2. The function h is uniformly bounded.

3. Since fr(µ) = 0 when µ = π0, it follows that ∂
∂µ(z)

h(µ)
∣

∣

∣

µ=π0

= 0.

4. Pick a compact set K that contains π0 as an interior point and

K ⊂ B1 ∩ {µ ∈ P(Z) : max
u

|µ(u) − π0(u)| < 1
2
min
u

|π0(u)|}.

This choice of K ensures that limn→∞− 1
n

log P{Sn /∈ K} > 0. Note that since r(µ) is

continuously differentiable on B1, it follows that h is C2 on K ⊂ B1.

⊓⊔
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Chapter 7

Other Properties of Mismatched

Divergence

In this chapter we derive other properties of the mismatched divergence: mainly its difference

and similarity to the KL divergence, and its geometric interpretation.

An important property of the KL divergence D(µ‖π) is that it is convex with respect to

(µ, π). The mismatched divergence inherits this property:

Lemma 7.0.4. DMM(µ‖π) is convex in (µ, π).

Note that this is stronger than being convex in both µ and π.

Proof. For a given f , µ(f) is linear in µ. Since π(ef ) is linear in π, Λπ(f) is concave in π.

Therefore, µ(f) − Λπ(f) is convex in (µ, π). The result follows as it is well known that the

supremum of a set of convex functions is convex [24]. ⊓⊔

The other properties in this chapter are specialized to the case where the function class

is linear.

7.1 Linear Function Class

Recall that the mismatched divergence using linear function class can be written as:

D(µ‖π) = sup
r∈Rd

(

µ(fr) − Λπ(fr)
)

.
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7.1.1 Geometric interpretations

Here we give a geometric interpretation of the mismatched divergence. The result also holds

when the function class F is a pointed cone.1

For a given function f ∈ F and c ∈ R, we define a subset of P(Z) by H = {µ ∈ P(Z) :

〈µ, f〉 = c}. This set is interpreted as a hyper-plane, even though it is restricted to the

simplex P. The associated “half spaces” are defined by

H−
f,c = {µ ∈ P(Z) : µ(f) ≤ c}, H+

f,c = {µ ∈ P(Z) : µ(f) ≥ c}. (7.1)

The set QGM

α (π) ⊂ M1 is defined as the intersection of all half spaces defined using functions

from F that contain Qα(π). Formally, for each α ≥ 0,

QGM

α (π) :=
⋂

{

H−
f,c : Qα(π) ⊂ H−

f,c, f ∈ F , c ∈ R
}

. (7.2)

Theorem 7.1.1. When F ⊂ F∗
π is a pointed cone, the mismatched divergence has the

following geometrical interpretation:

DMM(µ‖π) = inf{α : µ ∈ QGM

α (π)} = sup
f∈F

inf
ν
{D(ν‖π) : ν(f) ≥ µ(f)}. (7.3)

To prove this theorem, we need the following lemma.

Lemma 7.1.2. For any G : Z → R and c ∈ R,

inf{D(µ‖π) : µ(G) ≥ c} = sup
θ≥0

(

θc− Λπ(θG)
)

. (7.4)

Proof. This is a direct consequence of Sanov’s and Cramer’s theorems. ⊓⊔

1A cone is pointed if it includes the origin.
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Proof of Theorem 7.1.1.

µ /∈ QGM

α (π) ⇒ There exists f ∈ F such that inf
ν
{D(ν‖π) : ν(f) ≥ µ(f)} ≥ α

⇒ sup
f∈F

inf
ν
{D(ν‖π) : ν(f) ≥ µ(f)} ≥ α.

Consequently, for any ǫ > 0, we have

sup
f∈F

inf
ν
{D(ν‖π) : ν(f) ≥ µ(f)} + ǫ ∈ {α : µ ∈ QGM

α (π)}.

Since ǫ is arbitrary, this means that we have

inf{α : µ ∈ QGM

α (π)} ≤ sup
f∈F

inf
ν
{D(ν‖π) : ν(f) ≥ µ(f)}.

Similarly, we also have

µ ∈ QGM

α (π) ⇒ For any f ∈ F , inf
ν
{D(ν‖π) : ν(f) ≥ µ(f)} ≤ α

⇒ sup
f∈F

inf
ν
{D(ν‖π) : ν(f) ≥ µ(f)} ≤ α,

which implies that

inf{α : µ ∈ QGM

α (π)} ≥ sup
f∈F

inf
ν
{D(ν‖π) : ν(f) ≥ µ(f)}.

Therefore,

inf{α : µ ∈ QGM

α (π)} = sup
f∈F

inf
ν
{D(ν‖π) : ν(f) ≥ µ(f)}

= sup
f∈F

sup
θ≥0

{θµ(f) − Λπ(θf)}

= sup
f∈F

{µ(f) − Λπ(f)},
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where the last equality follows from the assumption that F is a pointed cone. ⊓⊔

7.1.2 Necessary and sufficient conditions for DMM(µ‖π) = 0 and

DMM(µ‖π) = ∞

It is natural to ask how to interpret DMM(µ‖π) = 0 and DMM(µ‖π) = ∞. When DMM(µ‖π) =

0, loosely speaking, µ and π cannot be strictly separated by any hyperplane defined using

any function f ∈ F . Formally we have the following:

Lemma 7.1.3. The following three statements are equivalent:2

1. DMM(µ‖π) = 0,

2. DMM(π‖µ) = 0,

3. µ(fr) = π(fr) for all r.

Here we give a proof based on the generalized Pinsker’s inequality.

Proof. We first prove (1) indicates (3): By the generalized Pinsker’s inequality, we obtain

from DMM(µ‖π) = 0 that

sup

(

µ(fr) − π(fr)

‖fr‖∞,SP

)2

= 0.

Consequently, µ(fr) = π(fr) for all r. We now prove that (3) indicates (2): Since µ(fr) =

π(fr) for all r, we have

DMM(π‖µ) = sup
r

{µ(fr) − Λπ(fr)} = sup
r

{π(fr) − Λπ(fr)} = DMM(π‖π) = 0,

where the last equality is obtained using the following chain of inequalities from Lemma 3.2.1:

0 ≤ DMM(π‖π) ≤ D(π‖π) = 0.

2To the author’s best knowledge, the fact the first and second are equivalent was first proved using a

different approach by Jayakrishnan Unnikrishnan.
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Since the second statement is symmetric in µ and π, the above argument also indicates

that (3) implies (1) and (2) implies (3). ⊓⊔

The case when DMM(µ‖π) = ∞ is a little bit more complicated. We use ess supπ(f)

to denote the essential supremum inf{α : π({x : f(x) > α}) = 0}. The following lemma

illustrates a sufficient condition and a necessary condition:

Lemma 7.1.4. If there exists f ∈ F such that µ(f) > ess supπ(f), then DMM(µ‖π) = ∞; If

the supremum in the definition of DMM(µ‖π) is not achieved, in particular if DMM(µ‖π) = ∞,

then there exists f ∈ F such that µ(f) ≥ ess supπ(f).

Note that the necessary and sufficient conditions differ in whether the equality holds.

The following two examples in which µ(f) = ess supπ(f) for all f ∈ F illustrate that the

lemma is almost the best possible.

Example 7.2. Consider the one-dimensional function class ψ(x) = x. Let µ({0}) =

π({0}) = 1. Then µ(f) = ess supπ(f) for any f ∈ F and DMM(µ‖π) = 0.

Example 7.3. Consider again the one-dimensional function class ψ(x) = x. Let µ and π be

the discrete probability measure: µ({0}) = 1; for all positive integer k, π({− 1
k
}) = 2−k. It is

easy to see that for any f ∈ F , ess supπ(f) = 0 = µ(f). We now show that DMM(µ‖π) = ∞:

−DMM(µ‖π) = inf
θ

log(

∞
∑

k=1

e−( θ
k
+k log 2))

≤ inf
θ≥0

log(
M

∑

k=1

e(
θ
k
+k log 2) + 2−M)

≤ inf
θ≥0

log(Me−2
√
θ log 2 + 2−M)

= −M log(2).

Since this holds for any M > 0, we have DMM(µ‖π) = ∞.
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Proof of Lemma 7.1.4. We first prove that µ(f) > ess supπ(f) implies DMM(µ‖π) = ∞. The

following is straightforward: for any α > 0,

Λπ(αf)

α
≤ ess sup

π

(f),

Consequently,

lim inf
α→∞

µ(αf) − Λπ(αf)

α
≥ µ(f) − ess sup

π

(f) > 0.

Thus

DMM(µ‖π) ≥ lim inf
α→∞

µ(αf) − Λπ(αf) = ∞.

We now prove that if the supremum is not achieved, then µ(f) ≥ ess supπ(f) by giving

a construction of one such function: Since the supremum in the definition of mismatched

divergence is not achieved, there exists {fn = rT

nψ} ⊂ F such that

lim inf
n→∞

µ(fn) − Λπ(fn) > 0. (7.5)

Thus, taking a subsequence if necessary, we can assume that the sequence of vectors {rn}

associated with {fn} satisfies ‖rn‖ → ∞ as n → ∞ and µ(fn) − Λπ(fn) > 0 for every n.

Define gn = fn

‖rn‖ . By considering a subsequence if necessary, we can assume without loss of

generality that the sequence gn is convergent point-wise. Define g∞ = limn→∞ gn. Clearly,

g∞ ∈ F . We will prove that g∞ satisfies µ(g∞) ≥ ess supπ(g∞).

Let b0 = ess supπ(g∞). We have for any ǫ > 0,

π{x : g∞ ≥ b0 −
1

2
ǫ} > 0.

Since I{gn ≥ b0 − ǫ}I{g∞ ≥ b0 − 1
2
ǫ} converges to I{g∞ ≥ b0 − 1

2
ǫ} point-wise, by the
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dominated convergence theorem, there is an n(ǫ) such that for n > n(ǫ)

π{x : gn ≥ b0 − ǫ} > 0.

Therefore,

1

‖rn‖
Λπ(fn) =

1

‖rn‖
Λπ(‖rn‖gn)

=
1

‖rn‖
log

(

π(e‖rn‖gn)
)

≥ 1

‖rn‖
log

(

π{x : gn(x) ≥ b0 − ǫ}e‖rn‖(b0−ǫ))
)

.

Therefore,

lim inf
n→∞

1

‖rn‖
Λπ(fn) ≥ b0 − ǫ.

Since this holds for any ǫ > 0, we have

lim inf
n→∞

1

‖rn‖
Λπ(fn) ≥ b0. (7.6)

Consequently,

lim sup
n→∞

1

‖rn‖
(

µ(fn) − Λπ0(fn)
)

≤ µ(g∞) − b0.

On the other hand, we obtain from the fact that µ(fn) − Λπ(fn) > 0 for every n:

0 ≤ lim sup
n→∞

1

‖rn‖
(

µ(fn) − Λπ0(fn)
)

.

Therefore,

0 ≤ µ(g∞) − b0 = µ(g∞) − ess sup
π

(g∞).

Thus, g∞ ∈ F is a function that satisfies µ(g∞) ≥ ess supπ(g∞). ⊓⊔
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Chapter 8

Conclusions

We investigated the asymptotic bias and variance of the Hoeffding test and mismatched

universal test. We have shown that the asymptotic bias and variance of mismatched uni-

versal test can be much smaller than the Hoeffding test. In addition, we showed that the

mismatched universal test includes a robust test as a special case. Consequently, the bias

and variance of the robust test increase proportionally to the co-dimension of the uncertainty

set.

We also investigated the performance of the test when the distribution of the null hy-

pothesis is learned from data. As a preliminary result, we showed that the bias and variance

depend on the number of training samples as well as the dimensionality of the function class.

We developed other properties of the mismatched divergence. In particular, we showed

that the mismatched divergence admits a generalized Pinsker’s inequality.

For future work, there are many important problems:

1. The mismatched universal test is optimal when the log-likelihood ratio is in the function

class. It is not clear what the performance is when the log-likelihood ratio is not in

the function class. One question in this direction is how many distributions can be

distinguished using a mismatched divergence test based on function classes of a given

dimension.

2. The performance of the mismatched universal test depends on the function class used.

Therefore, it is important to study how to choose the function class.

3. We made some preliminary study on how the function class impacts the test when
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the underlying distribution is learned. An interesting question is to derive PAC type

bounds, and study how the dimensionality affects the probability of error.

4. We have shown that a robust test is a special case of mismatched divergence. One

question in this direction is to find connections between mismatched divergence and

other distance/divergence, such as the f -divergence in [16] and other generalizations

defined in [10].
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Appendix A

Proofs of Lemmas 4.2.5 and 4.2.7

A.1 Proof of Lemma 4.2.5

Proof of Lemma 4.2.5. In our case, to apply Lemma 4.2.2, h is specialized to be h(µ) :=

DMM(µ‖π0), and take X i = (Iz1(Zi), Iz2(Zi), . . . , IzN
(Zi))

T, and Z = [0, 1]N . Take Ξ =

Cov (X). Define the matrix Ψ as Ψi,j = ψi(j). Also denote the vector valued function

ψ = [ψ1, . . . , ψd]
T. It is easy to see that Σπ0 = ΨΞΨT.

We demonstrate that

M = ∇2h(π0) = ΨT(Σ̌π)
−1Ψ,

and prove that the other technical conditions of Lemma 4.2.2 are satisfied. The rest follows

from Lemma 4.2.2, since

tr (MΞ) = tr ((Σ̌π)
−1ΨΞΨT) = tr (Σ̌−1

π Σπ0),

and similarly

tr (MΞMΞ) = tr (Σ̌−1
π Σπ0Σ̌−1

π Σπ0).

The condition Σπ0 being positive definite indicates that the objective function of the

right-hand side of (3.6) is strictly concave and thus has a unique maximum for each µ. Let

r(µ) be the maximizer for a given µ. Then

h(µ) = µ(fr(µ)) − Λπ0(fr(µ)).
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Recall that π̌µ is the twisted distribution defined in (3.3). Define Σ̌µ as

Σ̌µ,i,j = π̌µ(ψiψj) − π̌µ(ψi)π̌µ(ψj),

The first order optimality condition in the right-hand side of (3.6) gives

µ(ψ) − π̌µ(ψ) = 0.

On taking the derivative with respect to µz with z ∈ Z, we have

ψ(z) − Σ̌µ

∂r(µ)

∂µ(z)
= 0.

Then it is straingforward to show that

∂

∂µ(z)
h(µ) = fr(µ)(z).

∂2

∂µ(z)∂µ(z̄)
h(µ) = ψT(z)

∂r(µ)

∂µ(z̄)
= ψT(z)Σ̌−1

µ ψ(z̄).

When µ = π1, we have r(π) = 0 and Σ̌µ = Σ̌π. Thus,

∂2

∂µ(z)∂µ(z̄)
f(π) =

∑

i

ψi(z)Σ̌
−1
π ψ(z̄).

We now verify the remaining conditions required in Lemma 4.2.2:

1. It is straightforward to see that h(π0) = 0.

2. The function h is uniformly bounded since h(µ) = DMM(µ‖π0) ≤ D(µ‖π0) ≤ maxz log( 1
π0(z)

)

and π0 has full support.

3. Since fr(µ) = 0 when µ = π0, it follows that ∂
∂µ(z)

h(µ)
∣

∣

∣

µ=π0

= 0.
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4. Pick a compact K that contains π0 as an interior point and

K ⊂ {µ ∈ P(Z) : max
u

|µ(u) − π0(u)| < 1
2
min
u

|π0(u)|}.

This choice of K ensures that limn→∞− 1
n

log P{Sn /∈ K} > 0. Note that since r(µ) is

continuously differentiable on K, it follows that h is C2 on K.

⊓⊔

A.2 Proof of Lemma 4.2.7

Proof of Lemma 4.2.7. The supremum is of course achieved when µ = π. Thus we only

need to prove the case µ 6= π. Using Lemma 7.1.4, since µ � π and µ 6= π, for any f

µ(f) < ess supπ(f); therefore the supremum is achieved. Since the Hessian of µ(fr)−Λπ(fr)

is given by Σπ which is positive definite, we have that the function µ(fr)−Λπ(fr) is strictly

concave and the maximizer is unique. ⊓⊔
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