
Time-Free Authenticated Byzantine Consensus

Hamouma Moumen, Achour Mostefaoui

To cite this version:

Hamouma Moumen, Achour Mostefaoui. Time-Free Authenticated Byzantine Consensus.
Franck Capello and Hans-Peter Schwefel. 10th IEEE International Symposium on Network
Computing and Applications (NCA’11), Jul 2010, Cambridge, MA, United States. IEEE,
pp.140-146, 2010. <inria-00544518>

HAL Id: inria-00544518

https://hal.inria.fr/inria-00544518

Submitted on 8 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-Rennes 1

https://core.ac.uk/display/48237312?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/inria-00544518


Time-Free Authenticated Byzantine Consensus

Hamouma Moumen
Computer Science Department

University of Béjaia
06000, Béjaia, Algeria

Email: moumenh@gmail.com

Achour Mostefaoui
IRISA, Université de Rennes 1

Campus de Beaulieu,
35042 Rennes, France
Email: achour@irisa.fr

Abstract—This paper presents a simple protocol that solves
the authenticated Byzantine Consensus problem in asyn-
chronous distributed systems. To circumvent the FLP impos-
sibility result in a deterministic way, synchrony assumptions
should be added. In the context of Byzantine failures for
systems where at most t processes may exhibit a Byzantine
behavior and where not all the system is assumed eventually
synchronous, Moumen et al. provide the main result. They as-
sume at least one correct process, called 2t-bisource, connected
with 2t privileged neighbors with eventually timely outgoing
and incoming links. The present paper shows that a deter-
ministic solution for the authenticated byzantine consensus
problem is possible if the system model satisfies an additional
assumption that does not rely on physical time but on the
pattern of messages that are exchanged. The basic message
exchange between processes is the query-response mechanism.
To solve the Consensus problem, we assume a correct process
p, called �2t-winning process, and a set Q of 2t processes
such that, eventually, for each query issued by p, any process
q of Q receives a response from p among the (n − t) first
responses to that query. The processes in the set Q can exhibit a
Byzantine behavior and this set may change over time. Whereas
many time-free solutions have been designed for the consensus
problem in the crash model, this is, to our knowledge, the
first time-free deterministic solution to the Byzantine consensus
problem.

I. INTRODUCTION

The Consensus problem is a fundamental paradigm to
design or to implement reliable applications on top of fault
prone asynchronous distributed systems. It abstracts several
basic agreement problems. In the consensus problem, each
process proposes a value, and the correct processes have
to eventually decide on the same value initially proposed
by some processes. A process is correct if it meets its
specification during the whole execution, otherwise it is
faulty. A faulty process can crash (fail-stop process) or
exhibit an arbitrary behavior (Byzantine process). However,
there is no deterministic solution for the consensus prob-
lem in asynchronous systems subject to process failures
[12]. To circumvent this impossibility result, asynchronous
distributed systems have to be enriched with synchrony
assumptions [11], randomization [3], or unreliable failure
detectors [7].

The notion of unreliable failure detectors [7] is an ab-
straction of synchrony assumptions in the context of crash

failures. A failure detector is a distributed oracle that pro-
vides processes with information (possibly incorrect) about
process failures. Three approaches have been investigated to
implement failures detectors. The first, relies on the addition
of synchrony [7], called ”Timer-Based”. This assumption
considers the partially synchronous system model [7] which
is a generalization of the models proposed in [11]. In the
crash-failure model, a second approach consists in adding
a property that is based on the message pattern. In the
latter approach, we have the query-response-based winning
messages proposed in [21], [22] and the teta-model proposed
in [28]. There exist also hybrid approaches [24], [25]. In
a partially synchronous system model, there is a finite but
unknown time (called Global Stabilization Time) after which
there are bounds on process speeds and message transfer
delays (but those bounds are not known).

All of the deterministic solutions proposed for the Byzan-
tine consensus consider the partially synchronous model
[2], [16], [5], [8], [9], [10], [17], [18], [20]. To solve
the Byzantine Consensus problem, the notion of muteness
failure detector has been proposed [9], [16]. This notion
is an extension of crash failure detector to a context of
mute1 failures. Byzantine consensus algorithms proposed
in [13], [14] use directly an eventually perfect muteness
failure detector. Paxos-like protocols [4], [20] first look for
a stable leader before solving consensus or implementing
state machine replication. Finally, [10] and [18] establish
lower bounds relating resiliency and (very) fast decision.
[10] gives a generic algorithm that can be parametrized
(w/wo authentication, fast/very fast decision) by taking into
account the maximum number of processes that may crash
or have malicious behavior. [6] considers an other system
model based on the notion of Trusted Timely Computing
Base TTCB. In this system model, the consensus protocol
uses a special communication channel, called wormhole.
Similarly to the works presented above, it is assumed that the
wormhole allows timely communication between any pair of
correct processes.

The related works cited above assume that the whole

1Mute processes are processes that, after some time, stop sending
protocol messages.

2010 Network Computing and Applications

978-0-7695-4118-1/10 $26.00 © 2010 IEEE

DOI 10.1109/NCA.2010.24

140

2010 Ninth IEEE International Symposium on Network Computing and Applications

978-0-7695-4118-1/10 $26.00 © 2010 IEEE

DOI 10.1109/NCA.2010.24

140

2010 Ninth IEEE International Symposium on Network Computing and Applications

978-0-7695-4118-1/10 $26.00 © 2010 IEEE

DOI 10.1109/NCA.2010.25

140



system is eventually synchronous. In this setting, a link
between two processes is said to be timely at time τ if a
message sent at time τ is received not later than τ + δ.
The bound δ in not known and holds only after some finite
but unknown time τGST (called Global Stabilization Time).
In the context of the classical partially synchronous models
[7], [11] composed of n partially synchronous processes
where at most t may crash, many works [1], [15], [19] try to
restrict the required synchrony property of communication
to only a subset of links. The system model considered
in [1] assumes at least an eventual t-source. An eventual
t-source is a correct process with t outgoing eventually
timely links (processes communicate using point-to-point
communication primitives). On the other hand, the system
model considered in [19] assumes a broadcast communi-
cation primitive and at least one correct process with t
bidirectional but moving eventually timely links. These two
models are not comparable [15]. In such a context, [1]
proved that an �t-source (eventual t-source) is necessary
and sufficient to solve consensus which means that it is
not possible to solve consensus if the number of eventually
timely links is smaller than t or if they are not outgoing
links of a same correct process.

In the context of Byzantine consensus where t processes
can exhibit an arbitrary behavior, Aguilera et al. [2] propose
a system model with weak synchrony properties that allows
solving the consensus problem. The model assumes at least
an �bisource (eventual bisource). An �bisource is a correct
process with all its outgoing and incoming links eventually
timely. This means that the number of eventually timely
links could be as low as 2(n − 1) links. Their protocol
does not need authentication and consists of a series of
rounds each made up of 10 communication steps and Ω(n3)
messages. More recently, Moumen et al. [23] proposed a
system model that considers an eventual bisource with a
scope of 2t. The eventual bisource assumed by [2] has the
maximal scope (x = n − 1). An eventual 2t-bisource (�2t-
bisource) is a correct process where the number of privileged
neighbors is 2t where t is the maximum number of faulty
processes. Their protocol needs authentication and consists
of a series of rounds each made up of 5 communication
steps and Ω(n2) messages. When we look at the previous
approaches to implement failures detectors [7], we observe
that any failure detector implementation encapsulates addi-
tional assumptions to allow a deterministic solution for the
consensus problem.

The second approach assumes that some pattern of mes-
sages cannot happen [21], [22], [24], [25], [26]. This prop-
erty is abstracted in the notion of winning responses. The
approach considers that there is a correct process p and a
set Q of t processes (with p not in Q and Q can include
faulty processes) such that, each time a process q in Q
broadcasts a query, it receives a response from p among
the first (n− t) corresponding responses (such a response is

called a winning response). Note that such a property does
not prevent message transfer delays from being unboundedly
long as only the relative speed of messages is considered.
The obtained solutions are thus much more efficient then
timer-based solutions as any process only waits for the first
(n− t) responses (the fastest messages), whereas in the case
of timer-based solutions, we wait for a delay that is the worst
case message transfer delay.

The two previous approaches are not comparable. How-
ever, although the timer-based approach has been considered
both in the case of crash failures (t-source) and Byzantine
failures (2t-bisource with authentication), the time-free ap-
proach has never been considered in the case of Byzantine
faults. This paper advances the state of the art by proposing
the first time-free deterministic solution to the Byzantine
consensus problem. Moreover, we can see a difference with
the timer-based approach. The time-free approach in the
authenticated Byzantine model needs twice more winning
links compared to the crash failures model whereas in the
case of the timer-based approach we need four times more
timely links to tolerate t Byzantine faults compared to the t
links needed for crash failures. This can be explained by the
query-response mechanism used by the time-free approach.

II. BASIC COMPUTATION MODEL AND CONSENSUS

PROBLEM

A. Asynchronous Distributed System with Byzantine Process

We consider a message-passing system consisting of a
finite set Π of n (n > 1) processes, namely, Π =
{p1, . . . , pn}. A process executes steps (send a message,
receive a message or execute local computation). The pa-
rameter t denotes the maximum number of processes that
can exhibit a Byzantine behavior. A Byzantine process may
behave in an arbitrary manner. It can crash, fail to send
or receive messages, send arbitrary messages, start in an
arbitrary state, send different values to different processes,
perform arbitrary state transitions, etc. A correct process is
one that is not Byzantine.

Processes communicate and synchronize with each other
by sending and receiving messages over a network. The link
from process p to process q is denoted p → q. Every pair of
processes is connected by two links p → q and q → p. Links
are assumed to be reliable. Namely, they do not create, alter,
duplicate or lose messages. Such a communication network
can be built atop of fair-lossy links as advocated in [15].
There is no assumption about message transfer delays and
processes are not assumed to be eventually synchronous.

We assume that an authentication mechanism along with
a public key infrastructure and a public key cryptography
such as RSA signatures [27] are available. We assume that
Byzantine processes cannot impersonate other processes.
Moreover, processes sign the messages they send. Con-
sequently, a Byzantine process cannot alter or modify a
message it relays as it cannot forge the signature of the

141141141



original sending process. In our authenticated Byzantine
model, we assume that Byzantine processes are not able to
subvert the cryptographic primitives.

To ensure the message validity, each process has an
underlying daemon that filters the messages it receives. For
example, the daemon will discard all duplicate messages
(necessarily sent by Byzantine processes as we assume reli-
able send and receive operations between correct processes).
The daemon, will also discard all messages that are not
syntactically correct, or that do not comply with the text
of the protocol.

B. A Time-Free Assumption

Query-Response Mechanism: In this paper, we con-
sider that each process is provided with a query-response
mechanism. More specifically, any process p can broadcast
a QUERY() message and then wait for corresponding RE-
SPONSE() messages from (n−t) processes (this is the max-
imal number of message p is sure to get without blocking).
Each of these RESPONSE() messages is a winning response
for that query, and the corresponding sending processes are
the winning processes for that query. The responses received
after the (n− t) first RESPONSE() messages are the losing
responses for that query and are automatically discarded. A
process issues a new query only when the previous one has
terminated (the first (n− t) responses received). Finally, the
response from a process to its own queries is assumed to
always arrive among the first (n − t) responses that it is
waiting for. Henceforth, we reuse the definitions introduced
in [21], [22], [24], [25] to define formally the notions of
winning link and �x-winning process.

Definition 1: (Eventually winning link) Let p and q be
two processes. The link p → q is eventually winning if
there is a time τ such that the response from p to every
query issued by q after τ is a winning response (τ is finite
but unknown or will hold only after some finite time).

Definition 2: A process p is an x-winning process at time
τ if:

• (1) p is correct.
• (2) There exists a set of processes X of size x, such

that for any process q in X , the link p → q is eventually
winning. The processes of X are said to be privileged
neighbors of p.

Definition 3: A process p is an �x-winning process if
there is a time τ such that, for all τ ′ ≥ τ , p is an x-winning
process at time τ ′.

For the rest of the paper, we consider an asynchronous
distributed system where the only additional assumption is
the one needed by the existence of at least one �x-winning
process with x ≥ 2t. This means that all the links that do
not participate to the establishing of the �x-winning property
could be purely asynchronous.

C. The Consensus Problem

We consider the multivalued consensus problem, where
there is no bound on the cardinality of the set of proposable
values. In the multivalued consensus problem, every process
p proposes a value v and all correct processes have to even-
tually decide on a single value among the values proposed
by the processes. Formally, the consensus problem is defined
by the following three properties:

• Termination: Every correct process eventually decides.
• Agreement: No two correct processes decide differ-

ently.
• Validity: If all the correct processes propose the same

value v, then only v can be decided.

III. THE BYZANTINE PROTOCOL WITH AN �2t-WINNING

PROCESS

The proposed protocol (Figure1) uses authentication and
assumes an �2t-winning process. Except the coordination
phase at the beginning of each round, the principle of
this protocol is similar to one that has been proposed in
[23]. This main difference is due to the extra assumption
that strengthens the basic purely asynchronous computing
model. The protocol proposed in [23] uses a timer-based
assumption (it assumes an �2t-bisource) whereas the present
one uses a time-free assumption. Each process pi executes
the protocol given by Figure1. It is composed of a main
task (T1), a decision task (T3) the aim of which is to
allow a process to stop participating in the protocol when
it decides. It implements some kind of reliable probdcast of
the decision value (certified value). T2[] is an array of tasks,
each associated with a round r executed by process pi. It is
tasks T2 that implement the query-response mechanism of
the coordination phase as explained in the following.

The proposed protocol uses authentication to reduce the
power of Byzantine processes. Indeed, a Byzantine process
p can relay falsely a value it has received from some process
q. If process q signs its message and process p cannot forge
the signature of q then either p relays correctly the message
of q or it does not relay it at all (the signed message received
by p from q is the certificate it has to append to the message
it uses to relay the message it received from q). In the latter
p can still lie by saying that it received no value from q.
Now suppose that p has to send to all processes the majority
value it has received (the most frequent value among all the
values it has received). The certificate will consist of the set
of signed message it has received. By this mean any process
can check whether the majority value sent by the process is
sound. Note that, this does not prevent some process p from
cheating. For example, if a Byzantine process p receives all
of the sent messages (n messages, one from each process
of the system), it can build two sets of (n − t) messages
that lead to two different most frequent values and then sent
each of these two values to different processes.

142142142



Each process pi manages a variable esti to store its
estimate of the decision value. In order to ensure the validity
property, the protocol starts with an init phase (lines 1-3) to
initialize the variable esti. This phase consists of an all-
to-all message exchange that allows to initializes the local
variable esti of a process pi to a value it has received at
least (n − 2t) times if any. Otherwise, esti is set to vi

the value proposed by pi. In the case where all correct
processes propose the same value v, the only value that
can be received at least (n − 2t) times is v and moreover
any of (n − t) received messages contains at least (n − 2t)
times the value v. Consequently, all possible sets of (n− t)
received messages certify only v and no Byzantine process
can introduce a wrong value as it will be discovered. If
not all correct processes do propose the same value, it may
happen that among the values received by a correct process
p, no value is received (n − 2t) times or more. In such a
case, process p keeps the value it proposes and can use the
set of (n− t) signed messages it received as a certificate to
justify why it kept its own value.

After the init phase, each process executes consecutive
asynchronous rounds. Each round is composed of
four communication phases and is coordinated by a
predetermined process pc (line 4).

First phase of a round r (lines 5-7). Each process that
starts a round (including the coordinator of the round) first
sends its own estimate (with the associated certificate) to
all processes. In a separate task (line 20), Each time a
process receives a valid QUERY message (perhaps from
itself) containing an estimate est, it sends a RESPONSE
message to the sender. If the process that responds to a
query message is the coordinator of the round to which
is associated the query message, the value it sends in
the RESPONSE message is the coordination value. If the
process that responds is not the coordinator, it responds with
any value as the role of such a message is only to define
winning links. as the reader can find it in line 19-22, the
value sent by the coordinator is the value contained in the
first valid query message of the round it coordinates. In the
main task at line 6, a process pi waits for the response
from pc (the coordinator of the round) or from (n − t)
responses from others processes. In the latter case, process
pi is sure that pc is not the right winning process as its
response is not winning. If a process receives a response
from the coordinator then it keeps the value in a variable
aux otherwise it sets aux to a default value ⊥ (this value
cannot be proposed).

RESPONSE(r, est) messages are sent by each process
from another parallel task T2[r] because the coordinator of
round r could be stuck in previous rounds and if it does not
respond quickly, the sender on the QUERY message may
receive (n−t) RESPONSE messages from others processes.
There is one task T per round. When the coordinator

receives the first valid QUERY message for a round it
coordinates, it stores the included estimate in a local variable
c esti. It is this value that the coordinator will send as all
RESPONSE messages to the query messages associated with
this round that it will receive (this allows a coordinator to
coordinate a round with a certified value it has received
even if it is itself lying far behind). The others RESPONSE
messages sent by the others processes than the coordinator
are only used to prevent processes from blocking while
waiting (line 6) for the response of a faulty coordinator
and the values carried by these messages are not used by
processes.

If the current coordinator is a �2t-winning it has at
least 2t privileged processes among which at least t are
correct processes. Consequently, at least (t + 1) correct
processes (the t correct processes and the coordinator
itself) got the value v of the coordinator and thus set their
variable aux to v (v �= ⊥). If the current coordinator
is not a �2t-winning process or if it is Byzantine, the
three next phases allow correct processes to behave in
a consistent way. The aim of the first phase is that if
the coordinator is an �2t-winning process then at least
(t+1) correct process will get its value at the end of line (1).

Second phase of a round r (lines 8-10). At the end of the first
phase, if the current coordinator is an �2t-winning process
then at least (t+1) correct processes set their variable auxi

to the same non-⊥ value (the value sent by the coordinator in
RESPONSE messages). During the second phase, all correct
processes relay, at line 9, either the value they received from
the coordinator (with its certificate) or the default value ⊥
if they received (n − t) RESPONSE messages from others
processes. Each process collects (n− t) valid messages and
stores the values in a set Vi (line 9).

At line 9, if the coordinator is correct only one value is
valid and can be relayed. Moreover, if the coordinator is a
�2t-winning process then any correct process pi will get in
its set Vi at least one copy of the value of the coordinator
as among the (t + 1) copies sent by the (t + 1) correct
processes that got the value of the coordinator a correct
process cannot miss more than t copies (recall that a correct
process collect (n− t) valid messages). If the coordinator is
not an �2t-winning process or if it is Byzantine, this phase
has no particular effect. The aim of this second phase is
that if the coordinator is an �2t-winning process then all
the correct processes will get its value.

Third phase of a round r (lines 11-13). This phase is a filter;
it ensures that at the end of this phase, at most one non-⊥
value can be kept in the aux variables in the situations
where the coordinator is Byzantine. If the coordinator is
correct, this is already the case. When the coordinator is
Byzantine two different correct processes may have set
their auxi variables to different values. In this phase, each

143143143



process collects (n− t) valid messages, the values of which
are stored in a set Vi. If Vi carries only the same value v
(Vi = v) then v is kept in auxi otherwise auxi is set to
⊥. At the end of this phase, there is at most one certified
value v (v �= ⊥). This phase has no particular effect if
the coordinator is correct. It ensures that eventhough the
coordinator is Byzantine, at most one value is kept in the
aux variables.

Fourth phase of a round r (lines 14-17). This phase ensures
that the Agreement property will never be violated. This
prevention is done in the following way. If a correct process
pi decides v during this round then if some processes
progress to the next round, then v is the only certified value.
In this decision phase, a process pi collects (n − t) valid
messages and stores the values in Vi. If Vi carries only a
unique non-⊥ value v, pi decides v. If a process pj has
received only values ⊥, it is sure that no process decides
during this phase and thus it can keep the value it has already
stored in estj . These two cases are exclusive. A third case
may occur. If some process pi receives both v values and
⊥ values, it does not know whether some process decides
during this round or not. Hence, in a conservative way, it sets
its variable esti to v before starting a new round. This way,
if some process decides, all other correct processes receive at
least one copy of the decided value due to the intersection of
the sets of received values. If no process decides, different
processes may start the next round with different but still
valid values.

Before deciding (line 16), a process first sends to all other
processes a signed message DEC that contains the decision
value (and the associated certificate). When a process pi

receives a valid DEC message at line 23, it first relays is
to all other processes and then decides (not all processes
decide necessarily during the same round).

IV. CORRECTNESS OF THE PROTOCOL

This section presents the proof of the termination property.
Indeed, the proofs of the Agreement and Validity properties
are similar to the ones presented in [23]. The proposed
protocol considers at most t Byzantine processes. There are
five message exchanges: lines 1-2, lines 5-6, lines 8-9, lines
11-12 and lines 14-15.

Lemma 1: If no process decides a certified value during
a round r′ ≤ r, then all correct processes start round r + 1.

Proof: Let us first note that a correct process cannot
be blocked forever in the init phase. Moreover, it cannot
be blocked at line 6 because at least all correct processes
respond to QUERY messages and there are at least n − t
correct processes.

The proof is by contradiction. Suppose that no process
has decided a certified value during a round r′ ≤ r, where

r is the smallest round number in which a correct process
pi blocks forever. So, pi is blocked at lines 9, 12 or 15.

Let us first examine the case where pi blocks at line 9.
In that case, as r is the smallest round number in which a
correct process pi blocks forever, and as line 9 is the first
statement of round r where a process can block forever this
means that all correct processes (they are at least (n − t))
eventually execute line 8. Consequently as communication
is reliable between correct processes the messages sent by
correct processes will eventually arrive at pi that blocks
forever at line 9. The same reasoning holds for lines 12
and 15. It follows that if pi does not decide, it will proceed
to the next round. A contradiction.

Theorem 1 (termination): If there is a �2t-winning pro-
cess in the system, then all correct processes decide eventu-
ally.

Proof: As the protocol uses authentication, if some
process receives a valid DEC message, it can decide even if
the message has been sent by a faulty process. Recall that
a Byzantine process cannot forge a signature. If a correct
process decides at line 16 or at line 23 then, due to the
sending of DEC messages at line 16 or line 23, respectively,
prior to the decision, any correct process will receive such
a message and decide accordingly (line 23).

Now, suppose that no correct process decides. The proof
is by contradiction. By assumption, there is a time τ after
which there is a process px that is a �2t-winning process. Let
pj be a correct process and one of the privileged neighbors
of the winning process px. Let r be the first round that starts
after time τ and that is coordinated by px. As by assumption
no process decides, due to Lemma 1.

All correct processes pi (and possibly some Byzantine
processes) start round r and send a valid QUERY message
to px (line 5). This QUERY message contains a value est
which is the estimate of process pi. When the coordinator
px of round r receives the first QUERY message (line 20)
possibly from itself, it sets a local variable c estx to the
valid value contained in the message. Then each time process
px receives a QUERY message related to this round (r), it
sends a RESPONSE message to the sending process. If we
consider any correct process pi privileged neighbor of px,
the RESPONSE message from px the coordinator to the
QUERY message of pi will be received by pi among the
first n − t responses at line 6.

In the worst case, there are t Byzantine processes among
the 2t+1 privileged neighbors of px (t Byzantine processes,
t correct processes and itself). During the second phase, a
Byzantine process can either relay the value of px or relay
⊥ arguing that it did not receive the response of px among
the first n− t RESPONSE messages (the value of px and ⊥
are the only two valid values for this round). This allows to
conclude that the value v sent by px the coordinator of the
present round is relayed at line 8) by, at least, the t+1 correct

144144144



Function Consensus(vi)

Init: ri ← 0;

Task T1: % basic task %
——————————————————- init phase ———————————————————–

(1) send INIT(vi) to all;

(2) wait until
(

INIT messages received from at least (n− t) distinct processes
)

;

(3) if
(
∃v : received at least (n− 2t) times

)
then esti ← v else esti ← vi endif;

repeat forever
(4) c← (ri mod n) + 1; ri ← ri + 1;

—————————————————- round ri ———————————————————–
(5) send QUERY(ri, esti) to all;

(6) wait until
(

RESPONSE(ri, est) received from pc

or RESPONSE(ri, est) received from (n− t) distinct processes
)

(7) if (RESPONSE(ri, est) received from pc) then auxi → est; % else ⊥ % endif;

(8) send RELAY(ri, auxi) to all;

(9) wait until
(

RELAY(ri, ∗) received from at least (n− t) distinct processes) store values in Vi;
(10) if (Vi − {⊥} = {v}) then auxi ← v else auxi ← ⊥ endif;

(11) send FILT1(ri, auxi) to all;

(12) wait until
(

FILT1(ri, ∗) received from at least (n− t) distinct processes) store values in Vi;
(13) if (Vi = {v}) then auxi ← v else auxi ← ⊥ endif;

(14) send FILT2(ri, auxi) to all;

(15) wait until
(

FILT2(ri, ∗) received from at least (n− t) distinct processes) store values in Vi;
(16) case (Vi = {v}) then send DEC(v) to all; return(v);
(17) (Vi = {v,⊥}) then esti ← v;
(18) endcase;

————————————————————————————————————————–
end repeat

Task T2[r]: % Query-response and coordination tasks - There is one such task per round r %
(19) c esti → ⊥;
(20) upon receipt of QUERY(r, est) from pj ;
(21) if pi is the coordinator of round r and c esti = ⊥ then c esti → est;
(22) send RESPONSE(r, c esti) to pj ;

Task T3:
(23) upon receipt of DEC(est): send DEC(est) to all; return(est);

Figure 1. A Byzantine Consensus Protocol with �2t-winning

processes with which px has winning links (the only other
possible value is ⊥). Since each process collects at least
(n − t) RELAY messages we can conclude that all correct
processes will get at least one RELAY message containing
the value v of px and consequently will set the variable auxi

to v at line 10.

During the third phase (lines 11-13), as the value v of
px is the only certified value (at the previous phase, any
set of n − t messages contain at least one value ⊥), all the
processes that emit a certified message emit v. This allows to
conclude that all processes will have to set their aux value
to v value line 13. By the same way, all processes that emit
certified messages will emit v at line 14. From there we can
conclude that correct processes will all decide at line 16, a
contradiction.

V. CONCLUSION

This paper presented the first time-free deterministic
protocol that solves authenticated Byzantine Consensus in
an asynchronous distributed system. The protocol assumes
a weak additional assumption on message pattern where
at least 2t communication links are eventually winning.
These links connect the same correct process. In favorable
setting, the proposed protocol can reach decision in only
5 communication steps and needs only Ω(n2) messages in
each step. The major contribution of this paper is to show
that Byzantine Consensus is possible with a weak additional
assumption on the pattern of messages that are exchanged
to satisfy the properties required by a �2t-winning process.
Compared with the time-based approach, the cost is rela-
tively lower when we shift from crash failures to Byzantine
failures.

145145145



REFERENCES

[1] Aguilera M.K., Delporte-Gallet C., Fauconnier H. and Toueg
S, Communication-efficient leader election and consensus with
limited link synchrony. Proc. 23nd ACM Symposium on Princi-
ples of Distributed Computing (PODC’04), ACM Press, 2004.

[2] Aguilera M.K., Delporte-Gallet C., Fauconnier H. and Toueg
S., Consensus with byzantine failures and little system syn-
chrony. Proc. International Conference on Dependable Systems
and Networks (DSN’06), Philadelphia, 2006.

[3] Ben-Or M., Another Advantage of Free Choice: Completely
Asynchronous Agreement Protocols. Proc. 2nd ACM Sym-
posium on Principles of Distributed Computing (PODC’83),
ACM Press, pp. 27-30, 1983.

[4] Boichat B., Dutta P., Frolund S., and Guerraoui G., De-
constructing paxos. SIGACT News in Distributed Computing,
34(1):47-67, 2003.

[5] Castro, M. and Liskov, B., Practical Byzantine fault tolerance.
Proc. of the 3rd Symposium on Operating Systems Design and
Implementation, New Orleans, USA, February 1999.

[6] Correia M., Neves N.F., Lung L.C. and Verissimo P., Low
Complexity Byzantine-Resilient Consensus. Distributed Com-
puting, Volume 17, 13 pages, 2004.

[7] Chandra T.D. and Toueg S., Unreliable Failure Detectors for
Reliable Distributed Systems. Journal of the ACM, 43(2):225-
267, 1996.

[8] Correia M., Neves N.F., Lung L.C. and Verissimo P., Low
Complexity Byzantine-Resilient Consensus.Distributed Com-
puting, Volume 17, 13 pages, 2004.

[9] Doudou A., Garbinato B. and Guerraoui R., Encapsulating
Failure Detection: from Crash to Byzantine Failures. Proc.
International Conference on Reliable Software Technologies,
Vienna (Austria), 2002.

[10] Dutta P., Guerraoui R., and Vukolic M., Best-Case Complex-
ity of Asynchronous Byzantine Consensus. Technical Report
EPFL/IC/200499, EPFL, February 2005.

[11] Dwork C., Lynch N.A. and Stockmeyer L., Consensus in
the presence of partial synchrony. Journal of the ACM, vol
35(2):288-323, 1988.

[12] Fischer M.J., Lynch N., and Paterson M.S., Impossibility of
Distributed Consensus with One Faulty Process. Journal of the
ACM, vol 32(2):374-382, 1985.

[13] Friedman R., Mostefaoui A. and Raynal M., Simple and
Efficient Oracle-Based Consensus Protocols for Asynchronous
Byzantine Systems. IEEE Transactions on Dependable and
Secure Computing, vol2(1):46-56, 2005.

[14] Friedman R., Mostefaoui A., Raynal M., �P-Mute-Based
Consensus for Asynchronous Byzantine Systems. Parallel Pro-
cessing Letters, vol 15(1-2):169-182, 2005.

[15] Hutle M., Malkhi D., Schmid U., and Zhou L., Chasing
the Weakest System Model for Implementing Omega and
Consensus. Research Report 74/2005, Technische Universität
Wien, Institut für Technische Informatik, July, 2006.

[16] Kihlstrom K.P., Moser L.E., and Melliar-Smith P.M., Solving
Consensus in a Byzantine Environment Using an Unreliable
Fault Detector, Proc. of the Int. Conference on Principles of
Distributed Systems (OPODIS), pp. 61-75, 1997.

[17] Kursawe K., Optimistic Byzantine Agreement. Proc. of
the 21st IEEE Symposium on Reliable Distributed Systems
(SRDS’02 Workshops), 2002.

[18] Lamport, L., Lower Bounds for Asynchronous Consensus.
Distributed Computing, vol 19(2):104-125, Springer Verlag,
2006.

[19] Malkhi D., Oprea F., and Zhou L., Meets Paxos: Leader
Election and Stability without Eventual Timely Links. Proc. on
the 19th International Conference on Distributed Computing
(DISC’05), Cracow, Poland, pp. 26-29, 2005,

[20] Martin J.P., and Alvisi L., Fast Byzantine Paxos. Proc. Iof
the International Conference on Dependable Systems and
Networks (DSN’05), Yokohama, Japan, pp. 402-411, 2005.

[21] Mostefaoui A., Mourgaya E., and Raynal M., ”Asynchronous
Implementation of Failure Detectors, Proc. of the IEEE Inter-
national Conference Dependable Systems and Networks (DSN
’03), pp. 351-360, 2003.

[22] Mostefaoui A., Mourgaya E., Raynal R. and Travers C.,
A Time-free Assumption to Implement Eventual Leadership.
Parallel Processing Letters, vol 16(2):189-208, 2006.

[23] Moumen H., Mostefaoui A., Tredan G., Byzantine Consensus
with Few Synchronous Links. Proc. of the Int. Conference
on Principles of Distributed Systems (OPODIS’07), pp. 76-89,
2007.

[24] Mostefaoui A., Powell D., Raynal M., A Hybrid Approach
for Building Eventually Accurate Failure Detectors. Proc. of
the IEEE Pacific Rim International Symposium on Dependable
Computing (PRDC’04), pp. 57-65, 2004.

[25] Mostefaoui A., Raynal M. and Travers C., Time-Free and
Timer-Based Assumptions Can Be Combined to Obtain Even-
tual Leadership. IEEE Transactions on Parallel and Distributed
Systems, vol. 17(7), pp. 656-666, July, 2006.

[26] Mostfaoui A., Raynal M. and Trédan G., On the Fly Esti-
mation of the Processes that Are Alive in an Asynchronous
Message-Passing System. IEEE Transactions on Parallel and
Distributed Systems, vol 20(6):778-787, 2009.

[27] Rivest R., Shamir A., and Adleman L., A Method for
Obtaining Digital Signatures and Public-Key Cryptosystems.
Communications of the ACM, vol 21(2):120-126, February,
1978.

[28] Widder J., and Schmid U., The Theta-Model: Achieving Syn-
chrony without Clocks. Distributed Computing, vol 22(1):29-
47, Springer Verlag, 2009.

146146146


