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HIGHLY SPARSE REPRESENTATIONS FROM DICTIONARIES ARE
UNIQUE AND INDEPENDENT OF THE SPARSENESS MEASURE

R. GRIBONVAL AND M. NIELSEN

Abstract. The purpose of this paper is to study sparse representations of signals from
a general dictionary in a Banach space. For so-called localized frames in Hilbert spaces,
the canonical frame coefficients are shown to provide a near sparsest expansion for sev-
eral sparseness measures. However, for frames which are not localized, this no longer
holds true and sparse representations may depend strongly on the choice of the sparse-
ness measure. A large class of admissible sparseness measures is introduced, and we give
sufficient conditions for having a unique sparse representation of a signal from the dictio-
nary w.r.t. such a sparseness measure. Moreover, we give sufficient conditions on a signal
such that the simple solution of a linear programming problem simultaneously solves all
the non-convex (and generally hard combinatorial) problems of sparsest representation
of the signal w.r.t. arbitrary admissible sparseness measures.

1. Introduction

Given a redundant signal (or image) dictionary, every signal or image y has infinitely
many possible representations, and it is common to choose one according to some sparse-
ness measure. When the dictionary is indeed a (Schauder) basis of the underlying Banach
space, each signal has a unique representation and it does not matter which sparseness
measure is used. However, in the redundant case, it is not clear when the sparsest repre-
sentation is unique and how it is influenced by the choice of the sparseness measure.

A dictionary for a separable Banach space X is a family of unit vectors {gk}k∈K with
dense span in X (K is a finite or countable index set). In the finite dimensional case,
when X = RN or X = CN , we can think of gk as the k-th column of the N ×K matrix
D, and any vector y ∈ X has at least one representation y = Dx with coefficient vector
x ∈ RK (resp. x ∈ CK), and whenever D is redundant (K > N), y has infinitely many
such representations. Among this infinite number of possible representations, it is often
desirable to choose one with the sparseness property, however there are several notions
of sparseness such as the ℓ0 and ℓ1 sparseness measures ‖x‖0 and ‖x‖1. If ‖x‖f denotes
some other “sparseness measure” (we will define and study several sparseness measures
in this paper), one can consider the “f-sparsest representation” optimization problem

(1) Minimize ‖x‖f subject to y =
∑

k

xkgk.

Key words and phrases. Sparse representation, redundant dictionary, sparseness measure, localized
frame, incoherent dictionary, linear programming, non-convex optimization.
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For this class of optimization problems, two rather natural questions arise

1/ when is the f -sparsest representation of y unique?
2/ if it is unique, how much does it depend on the choice of the sparseness measure

f?

The main purpose of this paper is to show that when a signal y has a very sparse rep-
resentation (in the sense of the ℓ0 “norm” which measures the total number of nonzero
coefficients) then this representation is the simultaneous unique sparsest representation
with any sparseness measure in a fairly large class M which we define in Section 2. In
particular, the standard ℓ1 sparseness measure belongs to this class and we show that,
when y has a very sparse representation, solving the ℓ1 minimization problem indeed solves
simultaneously all the nonlinear/combinatorial optimization problems corresponding to
sparseness measures in this class.

One of the most common criteria to select a representation is the energy i.e., the represen-
tation which is often chosen is the one with the smallest ℓ2 norm. When the dictionary is a
frame in a Hilbert space, the minimum energy representation is nicely expressed in terms
of analysis coefficients, i.e., inner products of the signal with the canonical dual frame.
For localized frames (such as wavelet frames or Gabor frames), the canonical frame coeffi-
cients provide a representation which, in addition to being generally easy to compute, is
nearly the sparsest one for many sparseness measures besides the ℓ2 norm. However, for
incoherent frames (such as the union of a wavelet basis and a Wilson basis, or perhaps
more simply, the union of the Dirac and the Fourier systems), the representation of min-
imum energy can be highly sub-optimal, and one has to consider alternate strategies to
select a “good” representation.

In the early 1990’s, the Matching Pursuit and Basis Pursuit strategies were introduced
with the purpose of getting good representations of signals with dictionaries where the
frame representation was not satisfying. Soon, it was experimentally noticed that, when
y has a sufficiently sparse expansions (in the sense of the ℓ0 “norm”) in the Dirac/Fourier
dictionary, Basis Pursuit can exactly recover it. In a series of recent results [18, 19, 20, 13,
14, 16, 26, 12, 24], the experimental observation was turned into a theorem and extended
to unions of “incoherent” bases as well as to more general “incoherent” dictionaries. The-
orems in the same spirit were also recently proved, under slightly stronger assumptions,
for exact recovery with Matching Pursuits [21, 22, 43, 27]. The Basis Pursuit results
have essentially the following flavor : if y has a sufficiently sparse expansion x (in the
sense of the ℓ0 “norm”), then x is simultaneously the unique ℓ0-sparsest and ℓ1-sparsest
representation of y, thus it can be recovered through linear programming [3, 39], which
solves the ℓ1-minimization problem.

In between the ℓ0 and the ℓ1 sparseness measures lie the ℓτ “norms” and it seemed only
natural that by some sort of “interpolation”, the Basis Pursuit results should extend to
simultaneous uniqueness of the ℓτ -sparsest representations for y with a sufficiently sparse
representation. It turns out that the interpolation can be done and extends to a much
larger setting. The main result of our paper is the following theorem, which generalizes
naturally the recent series of Basis Pursuit results [18, 19, 20, 13, 14, 16, 26, 12, 24].

Theorem 1. Let D be an arbitrary dictionary in a separable finite or infinite dimensional
Banach space. Assume m is an integer such that for any x and y with y = Dx and
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‖x‖0 ≤ m, x is the unique ℓ1-sparsest representation of y. Then, for any x and y such
that y = Dx and ‖x‖0 ≤ m, x is indeed the unique f -sparsest representation of y for
any sparseness measure f ∈ M. In particular it is the ℓτ -sparsest representation for
0 ≤ τ ≤ 1.

Thus, if y has a highly sparse representation x (with at most m elements from the dic-
tionary, where m is small enough to ensure that x is indeed the minimizer of the ℓ1

norm), this representation must indeed be the f -sparsest representation for all sparseness
measures. The interesting consequence is that the combinatorial/highly nonlinear search
for the highly sparse representation of such vectors y can be replaced with a polynomial
time computation based on linear programming [3, 39], which solves the ℓ1-optimization
problem.

The structure of the paper is as follows. In Section 2, we define and study some properties
of a fairly large class M of admissible sparseness measures which include the ℓτ “norms”
(0 ≤ τ ≤ 1) as a special case. In Section 3 we consider frames in infinite dimensional
Hilbert space. We compare the ℓτ sparseness of the sparsest synthesis coefficients with
that of the frame representation obtained through the canonical analysis coefficients. For
localized frames, the two are shown to be equivalent up to constants. But for incoherent
frames we illustrate the fact that the canonical analysis coefficients do not provide sparse
representations. At the end of the section, we briefly discuss the proper definition of sparse
representations in arbitrary dictionaries which may not be frames. In Section 4 we give
some general conditions under which any expansion y = DIx from a given sub-dictionary
DI := {gk, k ∈ I} is bound to be the unique f -sparsest representation of y in the whole
dictionary. The general conditions depend on the sparseness measure f ∈ M as well
as the index set I ⊂ K which corresponds to the sub-dictionary. We illustrate with an
example the fact that for a given I, the conditions may be satisfied for some sparseness
measure f ∈ M and violated for some other one g ∈ M. In Section 5 we prove our
main theorems and obtain necessary and sufficient conditions card(I) ≤ mf (D) on the
cardinality of the sub-dictionary DI which ensure that for all sparseness measures g ∈ M
“between” a given f ∈ M and the ℓ0 sparseness measure, the representation is unique
and independent of g. We conclude this paper in Section 6 with a focus on dictionaries
in Hilbert spaces, for which we discuss concrete estimates of the numbers mf (D) which
appear in the “highly sparse” conditions. The estimates depend on the structure of the
dictionary and are essentially based on properties of its Gram matrix.

2. Sparseness measures and sparse representations

In this section, we introduce the class M of admissible sparseness measures which will
be used throughout this paper and study some of its important properties which we will
need later on. Let us immediately introduce the class M, we will discuss a bit later the
motivation for its definition. At the end of the section, we will show that the notion
of a f -sparse representation y = Dx is well defined even when X is a separable infinite
dimensional Banach space, provided that f ∈ M.

2.1. A class of sparseness measures.
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Definition 1. We let M the set of all non-decreasing functions f : [0,∞) → [0,∞), not
identically zero, with f(0) = 0 and such that t 7→ f(t)/t is non-increasing on (0,∞).

Examples of f in this class include the power functions fτ (t) = tτ , 0 ≤ τ ≤ 1 (we use the
convention that t0 = 0 if t = 0 and t0 = 1, t > 0), and it is not difficult to check that
every other non-identically zero, non-decreasing, concave function f with f(0) = 0 is in
M too. However, as it is straightforward to check that M is

• convex,
• stable by composition (if f, g ∈ M then f ◦ g ∈ M),
• stable when taking the minimum (if f, g ∈ M then min(f, g) ∈ M),
• stable when taking the maximum (if f, g ∈ M then max(f, g) ∈ M),

it must also contains non-concave functions such as

(2) f(t) := max(t/2,min(t, t0)) =





t, 0 ≤ t ≤ 1
1, 1 ≤ t ≤ 2
t/2, 2 ≤ t <∞

.

By analogy with the ℓτ ‘norms’ we define for f ∈ M and any sequence x = (xk)k∈K

(where K is a finite or countable index set) the “f -norm”

(3) ‖x‖f :=
∑

k

f(|xk|).

By abuse of notation we will denote ‖x‖τ = ‖x‖fτ
=
∑

k |xk|τ , 0 ≤ τ ≤ 1, and similar
abuses of notation will be made throughout this paper with other quantities which depend
on f .

In the definition of the class M of admissible sparseness measures, we require several
properties on f . Most of them are rather natural, because we want the f -sparsest repre-
sentation of any signal y, in the sense of Eq. (1), to have few large components and most
components concentrated around zero. In order to favor small components rather than
large ones, it is only natural to impose that f be non-decreasing, and we need f(0) = 0
to ensure that the series

∑
k f(|xk|) is summable for some sequences (xk) with an infinite

number of entries. The condition t 7→ f(t)/t non-increasing is perhaps less intuitive.
Besides being technically necessary to get the most important results of this paper (see
Section 5), it also implies that d(x, y) := ‖x − y‖f defines a metric on the underlying
vector space1. To see that, we merely have to check the triangle inequality (we let the
reader check that the other axioms of metrics are trivially satisfied), which is given by
the following proposition.

Proposition 1. M is strictly contained in the set S of non-decreasing functions f :
[0,∞) → [0,∞), not identically zero, with f(0) = 0 which are sub-additive.

Proof. Let us first show that for any f ∈ M we have a triangle inequality

(4) f(|u+ v|) ≤ f(|u| + |v|) ≤ f(|u|) + f(|v|).
1Note that ‖x‖f can be a norm only if we have f(λx) = λf(x), which implies f(t) ∝ t, in which case

we get a multiple of the ℓ1 norm.
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It will follow that we have the claimed inclusion, and we will show later that it is strict.
The leftmost inequality comes from the fact that |u+ v| ≤ |u| + |v| and that f is non-
decreasing. Because f(t)/t is non-increasing, we easily derive f(|u|) ≥ f(|u| + |v|) ·
|u| /(|u| + |v|) and f(|v|) ≥ f(|u| + |v|) · |v| /(|u| + |v|), and we obtain the rightmost
inequality by summation. To see that the inclusion is strict, we will consider a simple
example, which was kindly pointed out to us by G. Gribonval. Denoting ⌊t⌋ the largest
integer such that ⌊t⌋ < t ≤ ⌊t⌋ + 1, we consider

(5) f(t) :=

{
0, t = 0

1 + ⌊t⌋, t > 0
.

For u, v > 0 we have ⌊u+ v⌋ ≤ ⌊u⌋ + ⌊v⌋ + 1 and it follows that f(u+ v) ≤ f(u) + f(v).
The same inequality is trivial if u and/or v is zero, hence f ∈ S. However, because f has
strictly positive jumps at the positive integers, so does f(t)/t, hence f /∈ M. �

Remark 1. Though it will not be used in this paper, it is interesting to notice that any
sparseness measure f ∈ M is continuous on (0,∞). To see that, simply notice that since
f(t) it non-decreasing, f(t−) and f(t+) are well defined and satisfy f(t−) ≤ f(t+) for
every t > 0. But since f(t)/t is non-increasing, we also have f(t−) ≥ f(t+).

Remark 2 (Statistical interpretation). In finite dimension, the f -sparsest representation
problem (1) is related to the statistical problem of Bayesian estimation of unknown param-
eters (xk) given the noiseless observation y = Dx and the prior probability density function
Ph(x) = 1

Zh
exp (−h(‖x‖f )), where Zh is a normalizing constant and h : [0,∞) → [0,∞)

is an increasing function such that Ph(x) is a well-defined probability on RK (resp. CK).
In the Bayesian interpretation, the fact that f(t)/t is non-increasing is related to the
marginals densities P (xk) being sharply “peaked” at zero: this is satisfied, e.g., for the
generalized Gaussians P (xk) ∝ exp(− |xk|τ ), 0 < τ ≤ 1, which include the Laplacian
(τ = 1). However, smoothed versions of the Laplacian such as f(t) = t − log(1 + t)
–which are sometimes used to make numerical optimization algorithms more robust, see
e.g. [44] – do not generally satisfy this property around zero.

2.2. Sparse representations in infinite dimension. When X is a separable infinite
dimensional Banach space, it is not always clear when the notion of representation y = Dx
makes sense, because the convergence of the series

∑
k xkgk might not be unconditional.

When X is a Hilbert space and D is actually a frame for X, we know the series is
unconditionally convergent as soon as x ∈ ℓ2, but for general dictionaries and Banach
spaces it is not necessarily the case. Nevertheless, thanks to properties of the sparseness
class defined above, sparse representations (with ‖x‖f < ∞) are well defined even when
the dictionary has no special structure. We have the following result for elements y ∈ X
which have an f -sparse representation from D for some sparseness measure f ∈ M.

Lemma 1. Let y ∈ X and assume there exists x ∈ ℓ∞ with ‖x‖f <∞, for some f ∈ M
such that, for some enumeration φ(k) of the infinite index set K,

‖y −
n∑

k=1

xφ(k)gφ(k)‖ → 0.

Then ‖x‖1 <∞ and y = Dx =
∑

k xkgk where the series is unconditionally convergent.
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Proof. Since f ∈ M, f(t)/t is non-increasing and we have, for all k,

f(|xk|)/ |xk| ≥ f(‖x‖∞)/‖x‖∞ = c(x) > 0.

Hence ∑

k

|xk| ≤
1

c(x)

∑

k

f(|xk|) <∞

and, because ‖gk‖ = 1, we can conclude that the series
∑

k xkgk is absolutely convergent.
�

It follows that if y admits at least one representation x with ‖x‖f < ∞, we can consider
the f -sparsest representation problem (1) just as in the finite dimensional case, and the
same natural questions arise. Is the representation unique? Does it depend on the choice
of the sparseness measure?

3. Sparseness of frame representations

Frames are perhaps the most widely studied family of signal or image dictionaries. A
dictionary D = {gk}k in a Hilbert space H is called a frame if there exist two constants
0 < A,B < ∞ such that, for any y ∈ H, A‖y‖2 ≤∑k |〈y, gk〉|2 ≤ B‖y‖2. If A = B then
D is called a tight frame. Equivalently, D is a frame if the synthesis operator

(6)
D : ℓ2 → H

x 7→ Dx :=
∑

k xkgk

is bounded and onto. To every frame corresponds a canonical dual frame D̃ = {g̃k}k

which is also a frame such that for every y ∈ H :

(7) y =
∑

k

〈y, gk〉 g̃k =
∑

k

〈y, g̃k〉 gk = DD̃⋆y.

The sequence {〈y, g̃k〉}k = D̃⋆y (where (·)⋆ denotes the adjoint of an operator) is called the
(canonical) frame representation of y and is obtained through the (canonical) analysis

operator D̃⋆. For tight frames we have D̃ = 1
A
D. Among all possible representations

y = Dx, the canonical frame representation is the one with minimum energy, i.e.,

(8) D̃⋆y = arg min
x|Dx=y

‖x‖2.

However, in many signal and image processing applications, it is known that the energy
‖x‖2 of a representation might not be the most appropriate criterion to select a “good”
representation. It is now well understood that “sparse” representations [36] might do a
much better job for applications as diverse as compression [10] , feature extraction [17, 32]
or blind source separation [44, 23]. Whether the frame representation provides a “sparse
enough” representation or not, where the “sparseness” is measured, e.g., with some ℓτ

norm for τ < 2, is thus a theoretical problem which has a practical impact. In this
section we try to address this problem. With this aim, we start by recalling/defining two
families of sparseness classes defined respectively in terms of sparseness of the optimal
synthesis coefficients and of the canonical frame representation. We study the conditions
which ensure equality of these two families and discuss some simple frames where the
conditions are not satisfied.
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3.1. Sparseness classes.

Definition 2. Let D be a frame for H and 0 < τ ≤ 2. We define the synthesis
sparseness class

Kτ (D) :=
{
y ∈ H : ∃x ∈ ℓ2, ‖x‖τ <∞, y = Dx

}
(9)

and the analysis sparseness class

Hτ (D) :=
{
y ∈ H : ‖D̃⋆y‖τ <∞

}
.(10)

We define a (quasi)norm on Kτ (D) as follows

|y|Kτ (D) := inf
x|y=Dx

‖x‖τ .(11)

For Hτ (D) we define

|y|Hτ (D) := ‖D̃⋆y‖τ .(12)

Clearly, we have the inclusion Hτ (D) ⊂ Kτ (D) together with the (quasi)norm inequality
|y|Kτ(D) ≤ |y|Hτ(D). However, it is not generally clear if the reversed inclusion and the
corresponding reversed inequality holds: the freedom on the synthesis coefficients –which
comes from the redundancy of the frame– might make it possible for some y to get a much
sparser representation than the canonical frame expansion.

3.2. Conditions for equality between sparseness classes; localized frames. As
Kτ (D) = Dℓτ (see [25]), it is not difficult to see that a necessary and sufficient condition
to get Hτ (D) = Kτ (D) is that the operator

(13)
D̃⋆D : ℓ2 → H

x 7→ D̃⋆Dx

map continuously ℓτ into ℓτ . We know that, since D is a frame, D̃⋆D does map ℓ2

boundedly into ℓ2. If the same holds true when τ = 2 is replaced with τ = 1, then we
get the same result for 1 ≤ τ ≤ 2 by the real or complex method of interpolation [2, 1],
which simply corresponds to applying Schur’s lemma. Fortunately, for 0 ≤ τ ≤ 1, there
is an easy characterization of the operator norm from ℓτ to ℓτ .

Lemma 2. Let T be a doubly infinite matrix which we may write columnwise T = [Tk].
For 0 ≤ τ ≤ 1, we have

(14) |‖T‖|τ := sup
x 6=0

‖Tx‖τ

‖x‖τ

= sup
k

‖Tk‖τ .

Proof. First, remember that in this paper we denote ‖x‖τ :=
∑

k |xk|τ for 0 ≤ τ ≤ 1.
Using the (quasi)triangle inequality in ℓτ , 0 ≤ τ ≤ 1, we obtain the result using the
following inequalities

‖Tx‖τ = ‖
∑

k

xkTk‖τ ≤
∑

k

‖xkTk‖τ

≤
∑

k

|xk|τ ‖Tk‖τ ≤ ‖x‖τ · sup
k

‖Tk‖τ .
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�

As a consequence, we obtain the following characterization.

Lemma 3. Let D be a frame, D̃ its canonical dual frame, and 0 ≤ τ ≤ 1. The synthesis
and analysis sparseness classes Kη(D) and Hη(D) coincide for all η ∈ [τ, 2] if and only if

(15) sup
k

∑

l

|〈gk, g̃l〉|τ <∞.

Closely connected to the above condition are two properties of frames which were recently
defined and studied by K. Gröchenig [29, 30] and seem shared by a number of classical
frames.

Definition 3 (Gröchenig [29]). Let D = {gk}k∈K be a frame for H, and let B = {en}n∈N
be a Riesz basis for H with dual system B̃ = {ẽn}n∈N . Assume that both K and N are
separated index sets in Rd, i.e., infk,l∈K:k 6=l |k− l| ≥ δ > 0, and likewise for N . For s > 0,
we say that D is s-localized with respect to B if

(16) max (|〈gk, en〉| , |〈gk, ẽn〉|) ≤ C(1 + |k − n|)−s

for all k ∈ K and n ∈ N , where | · | denotes any of the equivalent norms on Rd. We say
that D is intrinsically localized with decay s > 0 if

(17) |〈gk, gl〉| ≤ C(1 + |k − l|)−s

for all k, l ∈ K.

Gröchenig proved that any localized frame is intrinsically localized, but it is not known so
far whether the reciprocal is true or not. Many classical frames which come up in signal
and image processing, such as Gabor frames [28] and wavelet frames [6, 33, 38, 37, 7, 5] are
localized in the above sense, with B a Wilson or a wavelet basis. The authors suspect that
curvelet frames [11] also have the localization property. For localized frames, K. Gröchenig
kindly pointed out to us the following property, which somehow nicely extends Lemma 3
(note that Proposition 2 below can be extended to weighted sparseness classes using
Gröchenig’s theory).

Proposition 2. Assume that D is an (s+ d+ ǫ)-localized frame w.r.t. B for some ǫ > 0.

Let D̃ = {g̃k}k∈K be the dual frame to D. We have, for any d/(s+ d+ ǫ) < τ < 2,

Kτ (B) = Kτ (B̃) = Hτ (D) = Kτ (D̃) = Hτ (D̃) = Kτ (D).

Proof. The result is a direct corollary of Gröchenig’s main theorem on localized frames
(see [29, Theorem 3.5]), which in particular implies that the dual frame is also (s+d+ ǫ)-
localized. We will prove the result directly for d/(s + d + ǫ) < τ ≤ 1 and let the reader
check that interpolation (Schur’s test) can be used to extend it to 1 < τ < 2. First we
show that Kτ (B) ⊂ Hτ (D). Let f ∈ Kτ (B). Then f =

∑
cnen with ‖{cn}‖ℓτ < ∞, and

we easily get 〈f, g̃k〉 =
∑

n∈N cn 〈en, g̃k〉. Since we assume (s + d + ǫ)τ > d, we have by
[29, Lemma 2.1]

sup
n

∑

k∈K

(1 + |k − n|)−(s+d+ǫ)τ ≤ C(s+d+ǫ)τ <∞
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and the bi-infinite matrix (〈en, g̃k〉)n∈N ,k∈K is thus bounded from ℓτ (N ) to ℓτ (K). Hence
we have {〈f, g̃k〉}k∈K ∈ ℓτ (K) and the claim follows. We have already noticed the trivial
inclusion Hτ (D) ⊂ Kτ (D), and using the same argument as above we see that Kτ (D) ⊂
Kτ (B). Hence we have the chain Kτ (B) ⊂ Hτ (D) ⊂ Kτ (D) ⊂ Kτ (B). We can repeat

the above chain of arguments with D̃ in place of D, since by Gröchenig’s results it is also

(s + d + ǫ)-localized. We obtain the inclusions Kτ (B) ⊂ Hτ (D̃) ⊂ Kτ (D̃) ⊂ Kτ (B), and

finally we get Kτ (B) = Hτ (D) = Kτ (D̃) = Hτ (D̃) = Kτ (D). To complete the proof, we

just notice that D is (s+d+ ǫ)-localized w.r.t. B̃ and we can repeat the arguments above

for the dual system B̃. �

It is not difficult to modify the above arguments to obtain a similar result for tight
intrisically localized frames.

Proposition 3. Assume that D is a tight, intrinsically localized frame with decay (s +
d+ ǫ) for some ǫ > 0. Then, for any d/(s+ d+ ǫ) < τ < 2, we have Hτ (D) = Kτ (D).

3.3. “Truly” redundant frames and incoherent dictionaries. The above analysis
shows that for classical frames –such as Gabor and wavelet frames– the canonical frame
representation, which has minimum energy among all possible representations, also pro-
vides a “near ℓτ -sparsest” representation for several values of τ 6= 2. For the above
mentioned examples of localized frames, the reason for this good behavior of the frame
representation is simply that by their very design, the frames are “close” to some or-
thonormal basis, so in a sense they are not so redundant.

Recently, there has been an increasing interest in signal and image representations based
on “truly” redundant systems which are not so close to orthonormal bases. Typically, in
order to get sparse representations of signals or images which display features of very dif-
ferent nature, it seems natural to combine several sufficiently different orthonormal bases
into a redundant dictionary and to look for the sparsest representation. The approach
–or variants thereof– has been used successfully with the Gabor multiscale dictionary
[34], the union of a wavelet basis and a local Fourier basis for audio coding [8, 9], as well
as with tight curvelet frames and local Fourier bases for image segmentation and source
separation [40].

It turns out that with such “truly” redundant dictionaries, the frame representation no
longer provides a near ℓτ -sparsest representation for any τ 6= 2. Let us illustrate this fact
with the example of D = [Ψ,G] the union of a “nice” wavelet frame Ψ = {ψl

j,k} and a
“nice” Gabor frame G = {gn,m} (the proof readily extends to any other pair of systems
which give rise to two different sparseness classes). By nice we mean that they should
be sufficiently localized w.r.t. a smooth wavelet basis with vanishing moments [10] (resp.
w.r.t. a regular Wilson basis [31])) so that we can identify, with equivalent norms

Kτ (Ψ) = Hτ (Ψ) = Bα
τ,τ , α =

1

τ
− 1

2
Kτ (G) = Hτ (G) = M τ,τ
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where Bα
τ,τ is a Besov space [42] and M τ,τ a modulation space [28]. It is quite obvious

that when we consider the union of the two systems, we have

Kτ (D) = Kτ (Ψ) + Kτ (G) = Bα
τ,τ +M τ,τ ,

Hτ (D) = Hτ (Ψ) ∩Hτ (G) = Bα
τ,τ ∩M τ,τ ,

and we conclude using the fact that Bα
τ,τ 6= M τ,τ except for τ = 2 (see, e.g., discussions

on the different behavior of Besov and modulation spaces w.r.t. dilation and modulation
in [15], as well as embeddings of Besov spaces into modulation spaces in [35]).

As we have just seen, in “truly” redundant frames, one cannot hope to simply use the
canonical frame representation in order to get a sparse representation. In the many
applications where it is desirable to get a sparse representation of the data, it is thus
necessary to explicitly look for a sparse representation, which corresponds to numerically
solving an optimization problem such as (1). We have already mentioned that it is not
clear then whether or not the problem has a unique solution and if the solution depends
on the choice of the sparseness measure. In the next sections we try to answer these
questions.

4. General Uniqueness Conditions

In this section we are going to provide some general sufficient conditions on a repre-
sentation y = Dx which ensure that x is the unique f -sparsest representation (resp. a
f -sparsest representation) of y, where f ∈ M is an arbitrary admissible sparseness mea-
sure as defined in Section 3.1. The conditions depend only on the set of elements of the
dictionary which are used in the representation, i.e., they depend on properties of the
support I(x) of the coefficient vector x = (xk) ∈ RK (resp. CK) :

(18) I(x) := {k, xk 6= 0}.
The kernel of the dictionary will play a special role. In finite dimension, it is simply
defined as

(19) Ker(D) := {z,Dz = 0}
but in the infinite dimensional case, so as to avoid problems with convergence of infinite
series, the useful definition will be

(20) Ker(D) := {z, ‖z‖1 <∞,Dz = 0}.
For f ∈ M, I ⊂ K a set of indices and z with 0 < ‖z‖f <∞ we can now define

(21) θf (I, z) :=

∑
k∈I f(|zk|)
‖z‖f

By refining ideas from [13, 26] we have the following two lemmas.

Lemma 4. Let D be an arbitrary dictionary in X a separable Banach space of finite or
infinite dimension, f ∈ M a sparseness measure and I ⊂ K an index set.

(1) If for all z ∈ Ker(D) with 0 < ‖z‖f <∞
(22) θf (I, z) < 1/2,
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then, for all x, y such that ‖x‖f < ∞, y = Dx and I(x) ⊂ I, x is the unique
f -sparsest representation of y.

(2) If for all z ∈ Ker(D) with 0 < ‖z‖f <∞
(23) θf (I, z) ≤ 1/2,

then, for all x, y such that ‖x‖f < ∞ , y = Dx and I(x) ⊂ I, x is an f -sparsest
representation of y.

The conditions given by the Lemma 4 are sharp, which is shown by the next result.

Lemma 5. Let D be an arbitrary dictionary in X a separable Banach space of finite or
infinite dimension, f ∈ M a sparseness measure and I ⊂ K an index set.

(1) If θf (I, z) > 1/2 for some z ∈ Ker(D) with 0 < ‖z‖f < ∞, then there exists x
and x′ such that Dx = Dx′, I(x) ⊂ I and ‖x′‖f < ‖x‖f .

(2) If θf (I, z) = 1/2 for some z ∈ Ker(D) with 0 < ‖z‖f < ∞, then there exists
x 6= x′ such that Dx = Dx′, I(x) ⊂ I and ‖x′‖f = ‖x‖f .

Proof of Lemma 4. (1) By assumption, x is a representation of y with ‖x‖f < ∞. If
x′ is another representation of y with ‖x′‖f < ∞, then by Lemma 1 ‖x‖1 < ∞,
‖x′‖1 < ∞. As Dx = Dx′ we actually have z := x′ − x ∈ Ker(D) and ‖z‖f <∞.
Thus, under the assumption I(x) ⊂ I, what we need to prove is that for all
z ∈ Ker(D) with z 6= 0 and ‖z‖f < ∞,

∑
k f(|xk + zk|) >

∑
k f(|xk|). This is

equivalent to showing

(24)
∑

k/∈I

f(|zk|) +
∑

k∈I

(
f(|xk + zk|) − f(|xk|)

)
> 0.

From the triangle inequality (4), we derive the inequality f(|x+ z|) − f(|x|) ≥
−f(|z|). Thus, we will get (24) if we can prove that for all z ∈ Ker(D) with
0 < ‖z‖f <∞, ∑

k/∈I

f(|zk|) −
∑

k∈I

f(|zk|) > 0,

or equivalently
∑

k∈I

f(|zk|) <
1

2
‖z‖f

which is exactly the assumption θf (I, z) < 1/2.
(2) We copy the above line of arguments and simply replace strict inequalities with

large ones.

�

Remark 3. In finite dimension, one can easily check that the proof only requires that f
be in the class S of non-decreasing sub-additive functions as defined in Proposition 1. In
the infinite dimensional case, however, we need to be sure that the series y =

∑
k xkgk

converges unconditionally, and this is perhaps the main reason for restricting to the class
M of admissible sparseness measures.
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Proof of Lemma 5. (1) Let z ∈ Ker(D) with
∑

k∈I f(|zk|) > 1
2
‖z‖f and consider for

k ∈ I, xk := −zk, x
′
k := 0 and for k /∈ I, xk := 0, x′k := zk. Since x′ − x = z ∈

Ker(D) we have Dx′ = Dx, and obviously I(x) ⊂ I and ‖x′‖f =
∑

k/∈I f(|zk|) <∑
k∈I f(|zk|) = ‖x‖f .

(2) We copy the above line of arguments with z ∈ Ker(D) such that
∑

k∈I f(|zk|) =
1
2
‖z‖f .

�

We can define a function of the index set I which (almost) completely characterizes the
uniqueness of f -sparsest expansions. For f ∈ M, D a dictionary in X a Banach space
and I ⊂ K a set of indices, we define

(25) Θf(I,D) := sup
z∈Ker(D),z 6=0

θf (I, z).

Our previous lemmas have an immediate corollary.

Corollary 1. Let D be a dictionary in X a separable Banach space, f ∈ M a sparseness
measure and I ⊂ K an index set.

(1) If Θf(I,D) < 1/2 then, for all x, y such that y = Dx and I(x) ⊂ I, x is the
unique f -sparsest representation of y.

(2) If Θf (I,D) > 1/2, then there exists x and x′ such that Dx = Dx′, I(x) ⊂ I and
‖x′‖f < ‖x‖f .

For each sparseness measure f ∈ M, the functional Θf (·,D) gives a complete char-
acterization of the uniqueness of the f -sparsest representation of expansions from the
sub-dictionary DI = [gk]k∈I . However, the evaluation of Θf(I,D) for a given index set I
is not trivial in general, and it is not clear when the condition Θf (I,D) < 1/2 is simul-
taneously satisfied for all f ∈ M, i.e., when the unique f -sparsest representation is the
same for all sparseness measures f . The following example shows that f -sparsest repre-
sentations do not necessarily coincide and that estimating Θf(I,D) for some sparseness
measure f ∈ M does not tell much about Θg(I,D) for other measures g ∈ M.

Example 1. Let B = [g1, . . . , gN ] be an orthonormal basis in dimension N , gN+1 :=∑N
k=1

1√
N
gk and D = [B, gN+1]. Clearly, the kernel of D is the line generated by the

vector z = (1, . . . , 1,
√
N). Let us consider I = {1 ≤ k ≤ L} an index set where L ≤ N .

We have

Θ1(I,D) =
L

N +
√
N
<

L

N + 1
= Θ0(I,D)

As a result, we have Θ1(I,D) < 1/2 < Θ0(I,D) when

(N + 1)/2 < L < (N +
√
N)/2.

On the other hand, let us now consider J = {1 ≤ k ≤ L} ∪ {N + 1}. As

Θ1(J,D) =
L+

√
N

N +
√
N

Θ0(I,D) =
L+ 1

N + 1
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we obtain Θ0(J,D) < 1/2 < Θ1(J,D) whenever

(N −
√
N)/2 < L < (N − 1)/2.

Remark 4 (Exact recovery with Basis Pursuit vs exact recovery with Matching Pursuit).
When D is a dictionary in a Hilbert space, Tropp [43] proved that if the so-called Exact
Recovery Condition

(26) max
l /∈I

‖D†
Igl‖1 < 1

is satisfied (D†
I denotes the pseudo-inverse of DI = [gk]k∈I), then for any x and y such

that y = Dx and I(x) = I, both Orthogonal Matching Pursuit and Basis Pursuit “exactly
recover” the expansion x. For Basis Pursuit, “exact recovery” means that x must be the
unique ℓ1-sparsest representation of y, hence we know by Corollary 1 that, in finite dimen-
sion, the Exact Recovery Condition (26) implies Θ1(I,D) < 1/2. However, Example 1
shows that the converse is not true. Indeed, for I defined as above and l = N + 1 /∈ I
we have ‖D+

I gl‖1 =
∑L

k=1
1√
N

= L√
N

. Hence for
√
N ≤ L < (N +

√
N)/2 we have

Θ1(I,D) < 1/2 and maxl /∈I ‖D+
I gl‖1 ≥ 1.

5. Uniqueness of highly sparse expansions

Example 1 shows that, for arbitrary index sets I, not much can be said about the simul-
taneity of the f -sparsest representation for different sparseness measures. In this section,
we will show that the picture completely changes when we look for conditions on the
cardinal of I so that θf (I, z) < 1/2 for any z ∈ Ker(D) with 0 < ‖z‖f < ∞. Let us
immediately state the main results of this section. The first result gives the theorem
advertised in the introduction, which is the natural generalization to a series of recent
results [18, 19, 20, 13, 14, 16, 26, 12, 24].

Theorem 2. Let D be an arbitrary dictionary in X a separable Banach space of finite or
infinite dimension, and f ∈ M a sparseness measure.

(1) Let m be an integer such that whenever y = Dx with ‖x‖0 ≤ m, x is an ℓ1-sparsest
representation of y. Then, whenever y = Dx with ‖x‖0 ≤ m, x is a simultaneous
f -sparsest representation of y for any f ∈ M.

(2) Let m be an integer such that whenever y = Dx with ‖x‖0 ≤ m, x is the ℓ1-
sparsest representation of y. Then, whenever y = Dx with ‖x‖0 ≤ m, x is the
simultaneous unique f -sparsest representation of y for any f ∈ M.

Thus, if y has a highly sparse representation x –with at most m elements from the dictio-
nary, where m is small enough to ensure that x is indeed a (resp. the) minimizer of the ℓ1

norm– this representation must indeed be a (resp. the) f -sparsest representation for all
sparseness measures. The interesting consequence is that the highly sparse representation
of such vectors y can simply be computed using linear programming, which solves the
ℓ1-optimization problem. Theorem 2 is indeed only a special (but striking) case of a more
general result.

Proposition 4. Let D be an arbitrary dictionary in X a separable Banach space of finite
or infinite dimension, and f ∈ M a sparseness measure.



UNIQUENESS OF HIGHLY SPARSE REPRESENTATIONS 14

(1) Let m be an integer such that whenever y = Dx with ‖x‖0 ≤ m, x is a f -sparsest
representation of y. Then, whenever y = Dx with ‖x‖0 ≤ m, x is a simultaneous
g ◦ f -sparsest representation of y for any g ∈ M.

(2) Let m be an integer such that whenever y = Dx with ‖x‖0 ≤ m, x is the f -sparsest
representation of y. Then, whenever y = Dx with ‖x‖0 ≤ m, x is the simultaneous
unique g ◦ f -sparsest representation of y for any g ∈ M.

Proposition 4 is the core of this paper and the rest of this section is devoted to its
proof. We will study in more details in the next section which integer(s) m satisfy the
assumptions of Proposition 4.

5.1. Some notations. For the sake of shortness of notations, in the rest of this section
we will say that the integer m satisfies (the property) Pf,D and write

Pf,D(m) = 1

if, for all x, y with y = Dx and ‖x‖0 ≤ m, x is the unique f -sparsest representation of y.
Similarly, the Pf,D property is satisfied when “the unique” is replaced by “a”.

For any sequence z = {zk}k∈K we will denote |z|⋆ is a decreasing rearrangement of |z|,
i.e., |z|⋆k = |zφ(k)| where φ is one to one and |z|⋆k ≥ |z|⋆k+1. With a slight abuse of notation,
we define the “growth function”

θf (m, z) := sup
card(I)≤m

θf(I, z)(27)

for any f ∈ M, m ≥ 1 and z with 0 < ‖z‖f <∞. One can easily check that indeed

θf (m, z) = max
card(I)≤m

θf(I, z) =

∑m
k=1 f(|z|⋆k)
‖z‖f

.(28)

5.2. Proofs. From the results of the previous section, we have the lemma.

Lemma 6. (1) The integer m satisfies the property Pf,D if, and only if, for all z ∈
Ker(D) with 0 < ‖z‖f <∞

θf (m, z) < 1/2.

(2) The integer m satisfies the property Pf,D if, and only if, for all z ∈ Ker(D) with
0 < ‖z‖f <∞

θf (m, z) ≤ 1/2.

We leave the easy proof to the reader. Given this lemma we see that all we need in order
to prove Proposition 4 is to prove that if θf (m, z) < 1/2 (resp. θf (m, z) ≤ 1/2) for all
z ∈ Ker(D) with 0 < ‖z‖f < ∞, then θg◦f (m, z) < 1/2 (resp. θg◦f (m, z) ≤ 1/2) for all
z ∈ Ker(D) with 0 < ‖z‖f < ∞, and all g ∈ M. What we will do is prove the following
property of growth functions, which is even stronger than needed.

Lemma 7. Let x 6= 0 be any sequence, and f, g ∈ M. For all integers m we have

(29) θ0(m, x) ≤ θg◦f (m, x) ≤ θf (m, x) ≤ θ1(m, x).

If, for some m, 0 < θg◦f (m, x) = θf (m, x) < 1 then, for all m, θg◦f (m, x) = θf (m, x).
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Proof. First, we notice from the property (28) of growth functions, it is sufficient to prove
the desired inequalities for non-increasing sequences. Let us show that it is also sufficient
to prove that for any h ∈ M, x 6= 0 non-increasing and m ≥ 0

(30) θh(m, x) ≤ θ1(m, x).

Assuming (30) is true for all h, we can write

(31) θg◦f (m, x) = θg(m, f(x)) ≤ θ1(m, f(x)) = θf (m, x)

where we used the fact that since x is a non-increasing sequence and f is a non-decreasing
function, f(x) is also a non-increasing sequence. Now from (31) we get

θ0(m, x) = θf0◦(g◦f)(m, x) ≤ θg◦f (m, x)

and the conclusion is reached.

So let us now prove (30). It will follow from the fact that (
∑m

k=1 h(xk))/(
∑m

k=1 xk) is
a non-decreasing sequence. For a given m and all 1 ≤ k ≤ m, xk ≥ xm+1 implies
h(xk)xm+1 ≤ xkh(xm+1), hence we have

m∑

k=1

h(xk) xm+1 ≤
m∑

k=1

xk h(xm+1)

h(xm+1)∑m
k=1 h(xk)

≥ xm+1∑m
k=1 xk

∑m+1
k=1 h(xk)∑m
k=1 h(xk)

≥
∑m+1

k=1 xk∑m
k=1 xk

∑m+1
k=1 h(xk)∑m+1

k=1 xk

≥
∑m

k=1 h(xk)∑m
k=1 xk

Taking the limit as m → ∞ (in the case where x is finitely supported it is sufficient to
take m+ 1 = ‖x‖0) we get that for all m

(32)
‖x‖h

‖x‖1
≥
∑m+1

k=1 h(xk)∑m+1
k=1 xk

≥
∑m

k=1 h(xk)∑m
k=1 xk

which obviously implies θh(m, x) ≤ θ1(m, x).

Now, assume 0 < θh(m, x) = θ1(m, x) < 1 for some m. Then the inequalities in Eq. (32)
are indeed equalities, so for all p ≥ 1,

(33)
‖x‖h

‖x‖1
=

∑m+p
k=1 h(xk)∑m+p

k=1 xk

=

∑m
k=1 h(xk)∑m

k=1 xk

and it follows that θh(m+ p, x) = θ1(m+ p, x), p ≥ 1. Moreover, because the inequalities
in (32) are indeed equalities, the equality can be carried over all inequalities in the proof
of (32) to get

h(xk)xm+1 = xkh(xm+1), 1 ≤ k ≤ m

Because θ1(m, x) < 1 we must have xm+1 6= 0, thus for l ≤ m we obtain
∑l

k=1 h(xk)∑l
k=1 xk

=
h(xm+1)

xm+1
.
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which, combined with (33) shows that indeed
∑l

k=1 h(xk)∑l
k=1 xk

=
‖x‖h

‖x‖1
, ∀l.

We have proved that if 0 < θh(m, x) = θ1(m, x) < 1, then θh(m, x) = θ1(m, x) for all
m. To conclude, we notice that θg◦f (m, x) = θf (m, x) is equivalent to θg(m, f(x)) =
θ1(m, f(x)). �

Remark 5. In Lemma 7 the assumption that f ∈ M, and not merely f ∈ S (see Propo-
sition 1), is essential. Indeed, the simple fact that we want to get θf (m, x) ≤ θ1(m, x) for
all m and x implies that, for a < b, we must have f(b)/(f(a) + f(b)) ≤ b/(a + b), i.e.,
1 + f(a)/f(b) ≥ 1 + a/b, and this means exactly that f(t)/t is non-increasing.

5.3. Summary. We have now proved Proposition 4 which can be restated as follows:

Pf,D(m) = 1 =⇒ Pg◦f,D(m) = 1, ∀g ∈ M
Pf,D(m) = 1 =⇒ Pg◦f,D(m) = 1, ∀g ∈ M.

Moreover, it is obvious that

Pf,D(m) = 1 =⇒ Pf,D(m) = 1

Pf,D(m) = 1 =⇒ Pf,D(k) = 1, ∀1 ≤ k ≤ m

Pf,D(m) = 1 =⇒ Pf,D(k) = 1, ∀1 ≤ k ≤ m.

Thus, given a dictionary, the following integers completely characterize which ℓ0 sparseness
should be required to ensure simultaneity of (unique) f -sparse expansions for various
sparseness measures:

mf (D) := max{m,Pf,D(m) = 1}
mf (D) := max{m,Pf,D(m,D) = 1}.

From the results in this section we have the following relations.

Proposition 5. For any f, g ∈ M and any dictionary D

m0(D) ≥ mg◦f (D) ≥ mf (D) ≥ m1(D),(34)

m0(D) ≥ mg◦f (D) ≥ mf (D) ≥ m1(D),(35)

mf (D) ≤ mf (D)(36)

mf (D) ≤ mf (D) + 1.(37)

Proof. The inequalities (34)-(35)-(36) are immediate. Let us prove the last one : from
Lemma 6 we know that for some z ∈ Ker(D) with 0 < ‖z‖f <∞,

θf (mf (D) + 1, z) ≥ 1/2.

If θf(mf (D) + 1, z) > 1/2 we have mf (D) = mf (D). To conclude, let us treat the case
when θf (mf(D) + 1, z) = 1/2. Given the expression of θf (m, z) (see Eq. (28)), we must
have |z|⋆mf (D)+2 > 0 (else θf (mf (D) + 1, z) = 1), hence

θf (mf (D) + 2, z) = θf (mf(D) + 1, z) +
f(|z|⋆mf (D)+2)

‖z‖f
> 1/2,
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and it follows that mf (D) = mf (D) + 1. �

We see that the smallest and the largest of these numbers are respectively m1(D) and
m0(D). They are of particular interest to characterize uniqueness of sparse expansions, so
it seems appropriate to name them : we will call m1(D) the strong sparseness number
while m0(D) is named the weak sparseness number. We devote the next section to
estimating these two sparseness numbers.

6. Explicit sparseness conditions

In this section we want to estimate the numbers mf (D) and mf (D) which provide optimal
ℓ0-sparseness conditions to ensure simultaneity of f -sparsest representations over a range
of different sparseness measures. In particular, we are interested in estimating the strong
and weak sparseness numbers m1(D) and m0(D). The goal is to estimate them based on
computable characteristics of the dictionary.

For some dictionaries, it may happen that Proposition 4 (resp. Theorem 2) is almost
trivial because mf (D) = mf (D) = 1 (resp. m1(D) = m1(D) = 1). However, we will see
that there are many useful dictionaries for which Proposition 4 is not trivial, in the sense
that m1(D) ≫ 2. Thus, non-trivial highly sparse expansions can be recovered using Basis
Pursuit.

In Section 6.1 we will focus on estimates of mf (D) in terms of the so-called spark and
spread of the dictionary. The spread of a given dictionary turns out to give a lower
bound for mf (D), but it is not always easy to compute, so we give several computable
estimates of the spread in Section 6.2 for dictionaries in a Hilbert space. We will see that
the structure of the dictionary determines how good the estimates of Section 6.2 are. In
Section 6.3 we consider estimates of the spark and spread for special dictionaries built
by taking the union of several mutually incoherent bases, very much in the spirit of the
example of the union of a Gabor and a wavelet frame discussed previously in Section 3.3.
Eventually, we discuss in Section 6.4 a few alternative techniques which can be used to
estimate the sparseness numbers.

6.1. Explicit bounds for mf (D) in terms of the spark and spread of D. We begin
by introducing some notation. We will need the following function:

(38) Θf(m,D) := sup
I,card(I)≤m

Θf(I,D) = sup
z∈Ker(D),0<‖z‖f <∞

θf (m, z).

We have the characterization.

Lemma 8. For any dictionary D and sparseness measure f ∈ M we have

(39) mf (D) ≥ max{m,Θf(m,D) < 1/2} ≥ mf(D) − 1

We leave the easy proof to the reader. We now introduce the spark and the spread of a
dictionary. These two quantities will play an important role in estimating mf (D). The
spark Z0(D) of the dictionary D is defined by Z0(D) := 1/Θ0(1,D) and the spread
Z1(D) is defined by Z1(D) := 1/Θ1(1,D). The spark was introduced by Donoho and
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Elad in [12] and the spread was introduced by the authors in [24]. One can easily verify
that

Z0(D) = inf
x∈Ker(D),x 6=0

‖x‖0(40)

and

Z1(D) = inf
x∈Ker(D),‖x‖∞=1

‖x‖1.(41)

Denoting ⌊t⌋ the largest integer such that ⌊t⌋ < t ≤ ⌊t⌋ + 1, we have the following lower
estimate for mf (D).

Lemma 9. For any sparsity measure f ∈ M and any dictionary D

mf (D) ≥
⌊

1

2 · Θf(1,D)

⌋
≥ ⌊Z1(D)/2⌋.(42)

For the particular case of m0(D) we indeed have

m0(D) =
⌊
Z0(D)/2

⌋
.(43)

Proof. It is not difficult to check that Θf is sub-additive, i.e., Θf(k + l,D) ≤ Θf (k,D) +
Θf(l,D), k, l ≥ 1, so in particular

(44) Θf(m,D) ≤ m · Θf(1,D), m ≥ 1

The left hand side inequality in (42) is obvious from (39) and (44), and the right hand side
inequality follows immediately from Lemma 7. The equality (43) was stated in [26, 12],
but let us give the proof for the sake of completeness. Remember that the spark is
Z0(D) = inf

{
‖x‖0, x ∈ Ker(D), x 6= 0

}
. As the infimum of a set of integer numbers,

Z0 is itself an integer and is indeed a minimum, i.e., there exists x ∈ Ker(D) such that
‖x‖0 = Z0. Letting I = I(x) the support of this sequence x we can split I into two
disjoint sets I1 and I2 of same cardinality Z0/2 = ⌊Z0/2⌋ + 1 (if Z0 is even) or with
card(I1) = (Z0 − 1)/2 and card(I2) = (Z0 + 1)/2 = ⌊Z0/2⌋ + 1 (if Z0 is odd). Obviously

θ0(I2,D) = card(I2)
‖x‖0

≥ 1/2 (see Eq. (21)), hence by the very definition of m0(D), we have

m0(D) < card(I2) = ⌊Z0/2⌋ + 1. �

Lemma 9 gives an exact estimate of m0(D) in terms of the spark, but the problem with
the spark is that its numerical computation is generally combinatorial [12]. For some
special dictionaries however, we will see in Section 6.3 that the spark can be estimated
analytically. At the other end of the scale of numbers {mf(D), f ∈ M} is m1(D).
Lemma 9 does not give an exact estimate of m1(D) in terms of Z1(D). There is a good
reason for this as the following example illustrates.
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Example 2. With the dictionary considered in Example 1, it is easy to check that

Z1(D) =
√
N + 1

Z0(D) = N + 1

Θ1(m,D) =
m− 1 +

√
N

N +
√
N

m1(D) = 1 + ⌊N −
√
N

2
⌋.

hence for large N , m1(D) ≈ N/2 ≈
√
N⌊Z1(D)/2⌋ is much larger than its lower estimate

(42).

6.2. Lower estimates for the spread Z1(D). ¿From Lemma 9 and the inequality (34)
we know that the spread Z1(D) can be used to get an “easy” –though sometimes too
pessimistic, see Example 2– lower estimate of mf (D) for any sparseness measure f ∈ M.
The following lemma gives a general estimate for the spread when we have a dictionary
in a Hilbert space.

Lemma 10. For a general dictionary D = {gk} in a Hilbert space, the coherence is
defined [13] as

(45) M(D) := sup
k 6=k′

|〈gk, gk′〉| .

We have the lower estimate

(46) Z1(D) ≥ 1 +
1

M(D)
.

Proof. Consider x ∈ Ker(D). For every k we have xkgk = −∑k′ 6=k xk′gk′ hence, taking

the inner product of both hand sides with gk, |xk| ≤ M(D) ·∑k′ 6=k |xk′ | . It follows that

(1 +M) · |xk| ≤M · ‖x‖1. Taking the supremum over k we get (1 +M)‖x‖∞ ≤M · ‖x‖1

and the result follows. �

Corollary 2. Assume y =
∑

k ckgk where

‖c‖0 ≤ ⌊(1 + 1/M(D))/2⌋.
Then c is the unique and simultaneous f -sparsest representation of y for any f ∈ M. In
particular, it can be computed by linear programming, which solves the ℓ1-problem.

Corollary 2 was in germ in Donoho and Huo’s early paper [13] on exact recovery of sparse
expansion through Basis Pursuit, where it was only used for D a union of two orthonormal
bases and f(t) = tτ , τ ∈ {0, 1}. In [26] and[12] it was extended to arbitrary dictionaries,
and in [24] to f(t) = tτ , τ ∈ [0, 1].

In practice, if one builds a dictionary D with the aim of using Basis Pursuit to recover
highly sparse expansions, it is desirable to guarantee that m1(D) has a large value. If no
other tool is available to estimate m1(D), the above Lemma shows that the dictionary
should be designed so as to have as small a coherence/as large a spread as possible. For
redundant dictionaries which contain an orthonormal basis in finite dimension, Lemma 11
below shows that the coherence cannot be arbitrarily small/the spread cannot be arbi-
trarily large.
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Lemma 11. In a finite dimensional Hilbert space of dimension N , assume D contains
an orthonormal basis and at least one additional vector. Then

(47) 1 +
1

M(D)
≤ Z1(D) ≤ 1 +

√
N.

It follows that

(1) M(D) ≥ 1/
√
N ;

(2) if M(D) = 1/
√
N , then the spread is exactly Z1(D) = 1 +

√
N .

Proof. The lower estimate in (47) simply comes from the general one (46). To get the
upper estimate, without loss of generality, we can assume that the orthonormal basis
corresponds to the first N vectors of D. Take

xk :=





〈gN+1, gk〉 , 1 ≤ k ≤ N
−1, k = N + 1
0, k /∈ {1..N} ∪ {N + 1}

.

Obviously x ∈ Ker(D), ‖x‖∞ = 1 and

‖x‖1 = 1 +

N∑

k=1

|〈gN+1, gk〉|

≤ 1 +
√
N

(
N∑

k=1

|〈gN+1, gk〉|2
)1/2

= 1 +
√
N,

hence, using the characterization (41) of the spread, we obtain the result. �

6.3. Estimates for the spark Z0(D) and for m1(D) in unions of orthonormal
bases. We have already seen with Example 2 that the spread Z1(D) can be a pessimistic
lower estimate for m1(D). To the contrary, we know from Lemma 9 that the spark Z0(D)
provides an exact estimate of m0(D), thus an upper estimate for all numbers mf(D)
including m1(D). For arbitrary general dictionaries, the computation of the spark is
combinatorial [12]. However, when D = [B1, . . . ,BL] is a finite union of orthonormal
bases, it is possible to estimate the spark analytically. As a result we get an estimate of
the common order magnitude of mf (D) for all f ∈ M.

It is perhaps not obvious that one can have a large number of orthonormal bases with small
coherence M(D), but this is possible (for certain values of the dimension N), and we will
use the following theorem to build examples of such dictionaries. The dictionaries from
Theorem 3 are called Grassmannian dictionaries due to the fact that their construction
is closely related to the Grassmannian packing problem. See [4, 41] for details and for a
proof of Theorem 3.

Theorem 3. Let N = 2j+1, j ≥ 0 and consider H = RN . There exists a dictionary D in
H consisting of the union of L = 2j = N/2 orthonormal bases for H, such that for any
pair u, v of distinct vectors belonging to D: |〈u, v〉| ∈ {0, N−1/2}.
For N = 2j, j ≥ 0 and H = C

N , one can find a dictionary D in H consisting of the
union of L = N + 1 orthonormal bases for H, again with the perfect separation property
that for any pair u, v of distinct vectors belonging to D: |〈u, v〉| ∈ {0, N−1/2}.
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For N = 2j+1 the Theorem tells us that we can take a dictionary D consisting of the
union of N +1 orthonormal bases in CN –hence D contains the large number N(N +1)/2
of elements– but we still have coherence M(D) = N−1/2. We can extract from such
a dictionary many examples of unions DL of L bases 2 ≤ L ≤ N + 1 with the same
coherence.

In [26] the authors showed that for D a union of L orthonormal bases with coherence
M(D), the spark satisfies

(48) Z0(D) ≥
(

1 +
1

L− 1

)
1

M(D)
.

In the case of L = 2 bases, the estimate is sharp in the sense that there are examples [13,

14] of pairs of bases with Z0 = 2/M = 2
√
N . The typical examples are the Dirac/Fourier

pair and the Haar/Walsh pair in dimension N = 22j. For unions of three or more bases,
it is not known in general when the estimate is sharp. However, if L > 1 + 1/M , it is
certainly not sharp since it is weaker than the general estimate Z0 ≥ Z1 ≥ 1 + 1/M .

Given an arbitrary orthonormal basis B1 in H = C2j

, it is not difficult to check from
Theorem 3 that it is possible to complete B1 with 2j other bases Bl so that the resulting
dictionary has minimum coherence. However, it does not seem clear whether or not such
a completion is still possible when the first two (or, more generally, the first L) mutually
incoherent bases are fixed. In the case of the Dirac and Fourier bases, the Chirp basis can
be added [24] to get three incoherent bases, but it is not known whether the construction

can go further. If we let 3 ≤ L ≤ 1 +
√
N be an integer for which the answer is yes, then

the corresponding union of orthonormal bases Bl –which extends the Dirac/Fourier pair
[B1,B2]– satisfies

(
1 +

1

L− 1

)√
N ≤ Z0([B1, . . . ,BL])

≤ Z0([B1,B2]) = 2
√
N.

Thus, for any L for which the construction is possible, the lower estimate (48) on the
spark is sharp in the sense of order of magnitude.

When D is a union of L orthonormal bases, we can also get improved lower estimates
for m1(D) which will shows that the spark, despite not being sharp, also gives the right
order of magnitude. It was proved in [26] that for any expansion y = Dx with

(49) card(I(x)) <

(√
2 − 1 +

1

2(L− 1)

)
1

M(D)
,

x was necessarily the unique ℓ1-sparsest representation of y. In light of the general theory
developed in the previous sections (in particular Theorem 2) we see that this can be
restated as

(50) m1(D) ≥
⌊(√

2 − 1 +
1

2(L− 1)

)
1

M(D)

⌋

and that indeed the sparseness condition (49) is sufficient to ensure that the representation
x is f -sparsest for any sparseness measure f ∈ M. The lower estimate (50) can improve
the general one based on the spread and the coherence (see Eqs. (42) and (46)) only if
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2 ≤ L ≤ 6 and M is small enough (see [26] for more explanations on the upper limit
L ≤ 6).

In [16] it has been shown that for L = 2 and some special pairs of incoherent bases (with

M([B1,B2)] = 1/
√
N) in dimension N = 22j+1, the sufficient condition (49) cannot be

improved, the lower estimate (50) is an equality and indeed m1 =
⌊
(
√

2 − 1/2) 1
M

⌋
=⌊

(
√

2 − 1/2)
√
N
⌋
. The construction of [16] can easily be extended to the Dirac/Fourier

pair and the Haar/Walsh one. Just as for the spread estimate above, it is not known
when/if the lower estimate of m1(D) is sharp, but if the pair [B1,B2] constructed in
[16] (or the Dirac-Fourier pair or the Haar/Walsh one, . . . ) can be extended to a union
of 3 ≤ L ≤ 6 incoherent bases, then the corresponding union of orthonormal bases Bl

satisfies the upper estimate

m1([B1, . . . ,BL]) ≤ m1([B1,B2]) = ⌊(
√

2 − 1/2)
√
N⌋.

Thus, for any L for which the construction is possible, the specific lower estimate (50)

as well as the general one m1(D) ≥ ⌊(1 +
√
N)/2⌋ are sharp in the sense of order of

magnitude.

6.4. Alternative estimates using the Babel function. We conclude this paper by a
brief discussion of some alternate estimates of the strong and weak sparseness numbers
using the so-called Babel function. In some cases, the Babel function indeed gives stronger
estimates of m1(D) than the ones considered so far. The Babel function of a dictionary
D in a Hilbert space –which provides a natural generalization to the notion of coherence–
was formally introduced by Tropp [43]

(51) µ(m,D) := max
k

max
I,card(I)=m,k/∈I

∑

l∈I

|〈gl, gk〉| .

The Babel function is related to the growth function Θ1(m,D) that we have defined above
(see Eq. (38)). Indeed, though they did not explicitly develop either the notion of Babel
function or that of a growth function, Donoho and Elad implicitly used the two notions
and proved the following inequality (see [12, Theorem 8]).

Lemma 12 (Donoho,Elad). For any dictionary D in a Hilbert space and any m ≥ 1,

Θ1(m,D) ≤ µ(m,D).(52)

It follows that

m1(D) ≥ max{m,µ(m,D) < 1/2}.(53)

Let us give Donoho and Elad’s proof for the sake of completeness.

Proof. We take z ∈ Ker(D), 0 < ‖z‖1 < ∞ and I ⊂ K an index set of cardinal at most
m. From Dz = 0 we derive −z = (Γ − Id)z where Γ = (〈gl, gk〉) = D⋆D is the Gram
matrix of D. Denoting H = (Hl,k) the card(I)× card(K) matrix formed from the rows of
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Γ − Id corresponding to indices in the index set I, we have
∑

l∈I |zl| = ‖Hz‖1. Viewing
H as a matrix mapping from ℓ1(K) into ℓ1(I), we know that its operator norm is

|‖H‖|1,1 = sup
u

‖Hu‖1

‖u‖1
= max

k

∑

l∈I

|Hl,k|

= max
k

∑

l∈I

|〈gl, gk〉 − δl,k|

= max
k

∑

l∈I,l 6=k

|〈gl, gk〉| ≤ µ(m,D)

where δl,k is the Kronecker symbol. The result follows readily. �

Using von Neumann series, Tropp [43] obtained a slightly stronger result.

Lemma 13 (Tropp). For any dictionary D in a Hilbert space and any m ≥ 1,

(54) m1(D) ≥ max{m,µ(m− 1,D) + µ(m,D) < 1}.

We refer the reader to Tropp’s enjoyable paper for the proof.

It is easy to verify that for any dictionary, µ(m,D) ≤ m·µ(1,D), where µ(1,D) is nothing
but the coherence M(D) of the dictionary. Using this (sometimes crude) estimate in (54),
we can recover the estimate obtained previously through the use of the spread (namely,
by combining Eqs. (42) and (46)).

Corollary 3. We have,

(55) m1(D) ≥
⌊

1

2

(
1 +

1

M(D)

)⌋
.

for an arbitrary dictionary D in a Hilbert space.

We notice that Tropp’s Babel function estimate (54) may provide a stronger estimate of
m1(D) in the cases where the estimate µ(m,D) ≤ m ·M(D) is not tight. Again, we refer
to the paper of Tropp for examples.

7. Conclusion

We have studied sparse representation of signals using an arbitrary dictionary in a Banach
space. When the dictionary is a localized frame in a Hilbert space, we showed that the
canonical frame representation provides a near sparsest representation for many ℓτ sparse-
ness measures. For more general dictionaries in Banach spaces, we considered sparseness
as measured by a very general sparseness measure ‖ · ‖f . Given a dictionary and a signal
y, we provided sufficient conditions for the minimization problem

(56) minimize ‖x‖f subject to s =
∑

k

xkgk,

to have the same unique solution as the problem

(57) minimize ‖x‖1 subject to s =
∑

k

xkgk,



UNIQUENESS OF HIGHLY SPARSE REPRESENTATIONS 24

and the conditions are independent of the particular sparseness measure f .

The latter minimization problem (57) can be solved using a linear programming technique,
i.e., by a polynomial time algorithm. For a dictionary in a Hilbert space we prove that the
condition ‖x‖0 ≤ 1/2(1 + 1/M), where M is the coherence of the dictionary, is sufficient
for (56) to have the same solution as (57) for any sparseness measure f .

The results generalize previous results by Donoho and Elad [12] and by the authors [26],
where only two types of sparseness measures were considered: the ℓ0-norm and the ℓ1-
norm.
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[31] K. Gröchenig and S. Samarah. Nonlinear approximation with local Fourier bases. Constr. Approx.,
16(3):317–332, 2000.

[32] K. Kreutz-Delgado, B. Rao, K. Engan, T.-W. Lee, and T. Sejnowski. Convex/schur-convex (csc) log-
priors and sparse coding. In 6th Joint Symposium on Neural Computation, pages 65–71, Institute
for Neural Computation, May 1999.

[33] S. Mallat. A Wavelet Tour of Signal Processing. Academic Press, San Diego, CA, 1998.
[34] S. Mallat and Z. Zhang. Matching pursuit with time-frequency dictionaries. IEEE Trans. Signal

Process., 41(12):3397–3415, Dec. 1993.
[35] K. A. Okoudjou. Embeddings of some classical Banach spaces into modulation spaces. Proc. Amer.

Math. Soc., 2003. to appear.
[36] B. D. Rao. Signal processing with the sparseness constraint. In International Conference on Acous-

tics, Speech, and Signal Processing (ICASSP’98), pages 1861–1864, Seattle, may 1998.
[37] A. Ron and Z. Shen. Affine systems in L2(R

d). II. Dual systems. J. Fourier Anal. Appl., 3(5):617–637,
1997. Dedicated to the memory of Richard J. Duffin.

[38] A. Ron and Z. Shen. Affine systems in L2(R
d): the analysis of the analysis operator. J. Funct. Anal.,

148(2):408–447, 1997.
[39] A. Shrijver. Theory of Linear and Integer Programming. John Wiley, 1998.
[40] J.-L. Starck, M. Elad, and D. Donoho. Image decomposition : Separation of textures from piecewise

smooth content. In M. Unser, A. Aldroubi, and A. Laine, editors, Wavelet: Applications in Signal
and Image Processing X, Proc, SPIE ’03, volume 5207, San Diego, CA, aug 2003.



UNIQUENESS OF HIGHLY SPARSE REPRESENTATIONS 26

[41] T. Strohmer and R. Heath. Grassmannian frames with applications to coding and communications.
Appl. Comp. Harm. Anal., 14(3):257–275, 2003.

[42] H. Triebel. Theory of function spaces, volume 78 of Monographs in Mathematics. Birkhäuser Verlag,
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