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Abstract
Purpose

No methods for the generation and comparison of statistical mean  surgical patient treatments are available. Such models might be‘ ’
beneficial for the advanced assessment and evaluation of surgical strategies, surgical instruments, devices and assist systems,

optimization protocols, and for educational purposes. The availability of mean  surgical intervention courses of a patient population‘ ’
would also offer a new methodological quality. This may be applicable in more technical research fields, as well, such as the

development of surgical workflow management systems for the operating room of the future.

Methods

Based on several measurements of individual patient surgical treatments, we calculated a mean  intervention model, called generic‘ ’
Surgical Process Model (gSPM), for a population of interventions with certain characteristics. Methods for the acquisition,

registration of individual patient intervention descriptions, and the calculation of mean  treatment models are presented in this‘ ’
article.

Example application

The approach was applied to an example application from eye surgery. Protocols of 102 cataract interventions were divided into two

populations: ambulatory and inpatient treatments. For each of the populations it was shown, how differences of gSPMs were assessed

and quantified. Additionally, it was possible to identify a statistically most probable intervention course by using the presented

methods.

Conclusions

This article introduces the computation and use of statistical mean  surgical interventions, termed generic Surgical Process Models‘ ’
(gSPMs). It will show, that differences over larger intervention populations might be identified and quantified. This gives the

opportunity to increase evidence for clinical, technical, and administrative decision making, e.g. for the application of alternative

surgical strategies or investments for surgical assist systems.

MESH Keywords Aged ; Cataract Extraction ; Decision Making, Organizational ; Female ; Humans ; Male ; Models, Organizational ; Technology Assessment, Biomedical

Author Keywords Observation ; Surgical Procedures, Operative

Introduction

Surgical Process Models (SPMs) are models of surgical patient treatments. In a previous work, we have drawn attention to the fact that

there exists no explicit methodology that can be used to objectively model surgical strategies at a detailed level .[1 ]

SPMs make the knowledge about Surgical Processes explicit that was previously inaccessible. It facilitates, for example, evaluation

studies or requirements studies, and may encourage discussions among clinicians and technicians.

Recently, the work on SPMs has resulted in a new layer of interest: since the previous generation of SPMs was able to represent only a

single individual surgical intervention course, what new or additional possibilities would a generic SPM provide? A more comprehensive

model could include and combine multiple individual courses into a statistically mean  model that exhibits a more generic character. Such‘ ’
a generic model could be valuable for the quantification, statistical assessment, and visualization of surgical knowledge and techniques.
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Specific application cases could include a comparison of two generic Surgical Process Models to elucidate differences in surgical

strategies or to clarify the use of certain instruments or devices. The approach may be useful to assess skill levels, or it could serve as the

basis of a detailed extrapolation of intervention costs. Further application cases, e.g. the comparison of patient individual Surgical Process

Models (iSPMs) with generic Surgical Process Models (gSPMs), may include an investigation of the reasons why a single surgical

intervention course may have deviated from the mean procedure course.

Currently, very few approaches have been proposed to evaluate individual patient or generic models of surgical processes. Recently,

the use of SPMs in Medical Engineering and Medical Informatics has been discussed by several authors.

Jannin et al. ,  introduced a method for acquiring patient-individual SPMs using an ontological approach. They applied data[2 3 ]
mining-based methods to a database of 159 iSPMs, describing surgical procedures on the brain in order to predict certain features of these

procedures (called ) from characteristics of the patient and the associated pathology (called ). Theypredicted variables predictive variables 

used the same methods to classify the data into main families based on the predictive variables and they manually allocated the values of

the predicted variables to each family. Although computing gSPMs was one objective of their work, they failed to compute such models.

Other authors have modeled surgical processes in the context of medical engineering for several purposes, such as the automatic

identification of interventional phases , , control of surgical robots , and instrument assessments . Clinical work has also[4 5 ] [6 ] [7 ]
focused on surgical processes for reengineering , assessing human reliability , comparing substitutive surgical strategies , and[8 ] [9 ] [10 ]
analyzing requirements for Surgical Assist Systems .[11 ]

However, all of these approaches either do not deal with the generation of a generic SPM or provide information only at the level of

interventional phases rather than at the level of stepwise work elements.

Some authors have presented approaches for computing gSPMs , , . These methods, however, do not consider variations of[12 13 14 ]
several relevant procedures , they were applied only at the conceptual level of intervention modeling without quantification of[12 ]
measurement parameters , or they featured a less detailed level of granularity , .[13 ] [14 15 ]

The notion of in business informatics is closely related to our presented approach. In 1995, Cook et al. Workflow Mining [16 ]
published the first algorithms to determine process models from software event logs. The preparatory work, namely the use of process

mining to explore business process models, was initiated by Agrawal et al. . The process mining community has been actively[17 ]
working over the past five years to formalize the discovery of process models based on event logs, e.g. , . For a survey of this area,[18 19 ]
see van der Aalst et al. . Methods described herein are not applicable to the computation of gSPMs and comparisons between[20 ]
intervention populations, because they do not include multiple perspectives or concurrencies, such as parallel left- and right-handed

surgical work steps.

Furthermore, existing sources of information related to surgical procedures, such as clinical guidelines ,  or surgical textbooks,[21 22 ]
describe surgeries at a very general level; their goals are not to describe interventions in detail, but rather to give treatment

recommendations. However, this general level cannot be used for quantification. With the methods utilized in the present work, it becomes

possible to base such measurement parameters, such as most probable intervention courses, on real clinical data.

In this paper, we introduce methods for computing . It is shown, that it is feasible to usegeneric Surgical Process Models (gSPMs) 

gSPMs to quantify differences in surgical workflows of two intervention populations retrospectively. Clinical-use case data from 102

cataract interventions were divided into two populations, according to the application of different treatment strategies. gSPMs were then

calculated as mean  treatments for each of the populations and the results were subsequently compared across the entire data set.‘ ’

The research questions addressed in this article include: How can generic Surgical Process Models be generated from a population of

and individual Surgical Process Models? How can two gSPMs be utilized to compare two different intervention populations?

Methods

This section introduces methods for generating generic Surgical Process Models (gSPMs) from a population of individual Surgical

Process Models (iSPMs). Pertinent terms will be introduced, and an overview of the model development process will be given.

To compute a generic SPM, several stages must be processed (cf. ). Mandatory stages include: data acquisition for iSPMs,Figure 1 

Inter-iSPM registration, and computation of the gSPM. Optionally, additional stages involving feature selection, segmentation, and

filtering can be employed to decrease the visual complexity of the resulting models.

Terms
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Essential in this context is the definitions of terms and concepts related to this approach (cf. ): the surgical treatment performed on[1 ]
one specific patient is denoted a (SP), and a model of the Surgical Process, e.g. in an information system, is called a Surgical Process 

(SPM). SPMs appear in two forms: and . The term Surgical Process Model patient individual SPMs generic SPMs patient individual SPM 

(iSPM) is used to refer to an SPM of a Surgical Process that was performed on one patient and thus represents one surgical case. The term 

(gSPM) is used to represent the mean  surgical treatment of a theoretical patient. Generic SPMs are computed from differentgeneric SPM ‘ ’
populations of iSPMs.

Data Acquisition for iSPMs

Data acquisition deals with the mapping of the surgical procedure from a Surgical Process (SP) to a Surgical Process Model (SPM).

To store and process iSPMs, an appropriate data model is required. This data model describes, how entities of the Surgical Process are

structured and presented within a given information system.

In this study, surgical work steps during the SP are represented as . Each iSPM consisted of a number of activities thatactivities 

corresponds to the surgical work steps performed on the patient. Each activity is comprised of information about the work steps, termed 

. Examples of perspectives include: actions performed (e.g. , ); the surgical tool used (e. g. , );perspectives suctioning cutting scalpel hook 

anatomical regions treated during the current work step; and start/stop times. An activity, therefore, describes is doing , withwho what 

what , , and during the surgical intervention. Activity examples are shown in .instrument where when Table V 

symbolize status information and define the context in which activities were performed. Examples of states might be theStates 

different intervention phases of a procedure. A system of states acquired concurrently to activities implicitly relates activities to the

interventional phases. An example that associates activities A, B, and C with intervention phase 1 is shown in .# Figure 2 

Before gathering iSPM data, we had to define our terminology, especially for interventional phases or work steps. The former is

crucial to segment the intervention into parts and thereby reduce the complexity of the resulting gSPM. The latter ensures a consistent

naming of information entities across all relevant surgical cases. and show examples of the interventional phases,Table III Table IV 

surgical instruments, actions, and treated structures as used for the clinical case example in the next section.

During the live observation sessions, iSPMs were recorded by trained medical observers, who were physically present in the operating

room and recorded the performed surgical work steps of the intervention in the iSPM protocol. Data acquisition relied on a specially

developed observation support software package, the Surgical Workflow Editor (cf. , ). The software, running on aFigure 3 [23 ]
conventional tablet PC, presented terminology lists to the observer and asked for a description of the current surgical work step. Temporal

information was added automatically. After each observation, the observer saved the protocol in eXtensible Markup Language (XML)

format. The protocols that represented the iSPMs were then transferred to a database where further calculations were performed.

Feature Selection

Data structures in iSPMs are comprised of various perspectives : organization, function, operation, and space. Each of these[1 ]
perspectives can be used to generate a gSPM with a different focus. The choice of perspective is termed . As features,feature selection 

perspectives can be chosen either exclusively or concurrently. An exclusive perspective choice results in a gSPM that is dedicated to the

perspective in question, e.g. performed surgical actions, while a combination of perspectives results in a gSPM that has relevance for all

chosen perspectives, e.g. the combination of actions performed and surgical instruments used. The more features that are included in

building a gSPM, the more complex the resulting gSPM will be.

Segmentation

Splitting the iSPM into interventional phases is referred to as segmentation. The segmentation step was performed automatically

according to the time stamps of the activities and the interventional phases. Consequently, all activities allocated to one interventional

phase were selected across all iSPMs within a population.

Inter-iSPM Registration

The objective of the registration step was to associate reference points between iSPMs. In preparation of the generation of the gSPM,

the iSPMs of the selected population were registered to each other automatically, based on selected features from subsequent activities (cf. 

). This registration step was performed for each interventional phase. Sequential activities represented transitions, expressed asFigure 4 

predecessor-successor relationships. To include defined start and end nodes, artificial and features were added to each iSPM.START END 

and were included before the first predecessor and after the last iSPM successor respectively.START END 

Computation of gSPMs
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Computation of the gSPM structure

The transitions identified in the registration step were of relevance to the structural representation of the gSPM. For each

interventional phase, all acquired transitions were registered based on the literals and were merged into one transition based on equal

predecessor and successor activities. The result of this merging step was the gSPM structure.

Computation of the gSPM

The gSPM was subsequently annotated with global transition probabilities. The calculation was performed for all outgoing activity

transitions in the iSPMs. The basis for the calculation was the number of sequential activities that each had the same predecessor.

Subsequently, the local transition probability was calculated by normalizing the means of the global transition probabilities. The results

quantify the transitions in the structural gSPM in terms of percentages (cf. ). shows how to compute the gSPMs.Figure 4 Table I 

Filtering for Visual Representation of gSPM

The resulting statistical gSPM can result in complex models that are not amenable to visual representation. For this reason, the

optional step of filtering was included for the example data sets to improve visual accessibility. The filtering consisted of masking all

transitions whose values were lower than a threshold defined by the user. Filtering did not affect the gSPM, but rather aimed to increase

the clarity of the visual representation.

Results of the application example
Objective of the Example Study

Cataract surgeries were chosen as a clinical example for the application of our methods. Based on clinical necessity, two treatment

strategies are available for treating patients suffering from cataracts: ambulatory or inpatient treatments.

The objective of the example study was the retrospective assessment of the ambulatory and inpatient treatment strategies  our goal–
was to investigate differences in the gSPMs of both approaches. In addition to the assessment of more trivial  measures, such as total‘ ’
intervention times or durations of surgical phases, the example study showed how two gSPMs can be utilized to compare intervention

populations.

iSPM-Populations

All cataract interventions were performed between March and September 2006 at the Eye Clinic of the University Hospital in Leipzig

(Germany). The assignment of the patients to their respective treatment strategy was performed according to clinical necessity and

expected complications.

The ambulatory, as well as the inpatient interventions, were conducted by three different, experienced surgeons: one surgeon

performed inpatient treatments and two performed the ambulatory treatments.

Only patients with a cataract diagnosis were included in the study. The beginning of the first paracentesis and the end of the Healon

removal were chosen as unique criteria for defining the start and end of the interventional record (cf. ).Table III 

In total, 102 iSPMs of cataract surgery treatments were analyzed, 49 of which were performed as ambulatory and 53 as inpatient

surgeries. The patient characteristics are presented in .Table II 

Cut-suture times were recorded from the Hospital Information System (HIS). One trained medical student was present in the operating

room during the surgical procedures and acquired the data for the iSPMs through live observation with the aid of the Surgical Workflow

Editor . The validation of the accuracy of iSPM data acquisition has been published in a previous in-depth study . In the latter[23 ] [1 ]
publication, observers were shown to acquire iSPMs accurately, robustly, and repeatable in both live and video observations, with a

content accuracy of 92  and a temporal accuracy of <2 s. Examples of the terminologies used for the interventional phases and for%
describing perspective content are shown in to .Table III Table V 

For statistical analyses, Student s t-test was used with a significance level of 0.05. Segmentation, registration, and gSPM calculation’ α=
were performed in a PostgreSQL 8.3 database, and statistics were computed using SPSS.

Analysis and Visualization of gSPMs

This section will compare the ambulatory and the inpatient gSPMs, focusing on the durations of interventional phases and quantifying

one interventional phase as an example with regard to the surgical workflow.
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Cut-suture times measure the overall duration of the surgical interventions. The general assessment of the cut-suture times showed a

significant difference (p<0.001) between ambulatory and inpatient cataract procedures. Mean cut-suture times were 00:16:01 00:04:39 for±
ambulatory interventions and 00:25:16 00:15:34 for inpatient interventions (cf. ).± Table VI 

The interventional phases of , , , and constitute the surgical core ofCapsulorhexis Lens removal Lens implantation Removal of Healon 

the intervention. In a second step, the total duration of these core phases was examined for both populations. The total duration for the

interventional core phases was significantly different (p<0.001) and was 00:09:50 00:03:22 for ambulatory and 00:17:32 00:16:09 for± ±
inpatient interventions.

An investigation of the durations of the phases , , , and showedCapsulorhexis Lens removal Lens implantation Removal of Healon 

significant differences in the mean durations as compared to those of the phases (p<0.001; cf. ) and Capsulorhexis Table VI Lens Removal

(p 0.002).=

Example results are presented for the phase in . The analysis revealed that during this phase in inpatientCapsulorhexis Table VII 

cataract interventions all activity performances took significantly longer than did the same activities in ambulatory interventions. Except

for the activity , the number of occurrences of the respective activities was notLeft hand holding Bulbus oculi with colibri tweezers 

significantly different.

The surgeons  left hand used several different instruments. The micro spatula was not used at all in inpatient interventions.’

Assessing the gSPMs for activity sequences revealed the most frequent transitions consistent with the surgical work sequences. The

generic SPMs computed for the phase, using the example data, are shown for both populations in . Both gSPMsCapsulorhexis Figure 5 

were filtered with a threshold of 5 , and all transitions with a global probability of less than this threshold were deleted from the gSPM%
visualizations. Furthermore, the most probable paths were highlighted in each of the gSPMs (grey shaded activities). Due to the concurrent

behavior of the surgeons  left and right hands, there are two main paths for each population. As a simple criterion, all transitions connected’
to the main path that appeared in more than 50  of the respective iSPM population were highlighted using bold lines. Solid lines%
symbolize the work flow of the surgeons  right hand, while dotted lines symbolize the work flow of the surgeon s left hand.’ ’

In , the significance of transitions between activities during the interventional phase is shown. SampleTable VIII Capsulorhexis 

results are presented for all highlighted transitions along the main path of each hand. Both strategies were significantly different for the

path of the surgeon s right hand for the transition. This results from the existence of the alternative ’ paracentesis  Healon injection →
path that did not occur in ambulatory interventions. Additionally, theparacentesis  Vision blue injection  irrigation  healon injection → → →

use of a different surgical instrument for left-handed is reflected in the gSPMs.holding 

Discussion

To the best of our knowledge, this is the first approach that presents the computation of a generic Surgical Process Model  a statistical–
mean  surgical treatment based on large populations of real clinical data. As this work has shown, it is possible to create realistic gSPMs‘ ’
from real clinical data. The method presented in this paper showed the essential steps for building gSPMs and using them to assess the

surgical work flow of intervention populations.

The example use case compared real clinical data from ambulatory and inpatient cataract interventions and demonstrated that

differences between two mean  treatments can be assessed and analyzed in detail. For the clinical example data, reasons for differences in‘ ’
procedure times of both surgical treatment strategies could be traced back to individual work steps in both populations.

Our calculated gSPMs for the clinical use case data demonstrated several differences in treatment strategies, which could be expressed

in terms of temporal information, as well as by workflow transition disparities. Our example use case showed, that these transitional

disparities can be clearly identified, quantified, and analyzed with the help of gSPMs. However, the presented methods work for other

intervention types as well, provided they have been recorded using the same methods as described here.

We have considered the application of the overall method from the technical point of view and neglected possible biases from the

clinical point of view, such as the complexity of the surgical cases and therefore the allocation of the patients to the impatient group, to

show the feasibility of the approach. Furthermore, the cataract interventions in this article have not yet been interpreted from a clinical

viewpoint. The differences between ambulatory and inpatient cataract interventions have been used only to provide a clinical example use

case to present the idea of gSPMs and to illustrate the application of our methods.

It was possible to recover gSPMs that corresponded to recommended surgical treatments for both strategies. The output of the gSPMs

can be adapted to meet a given user s needs. Perspectives and activities can be chosen freely, resulting in models of higher or lower’
complexity. The more perspectives are concurrently selected, the greater the complexity of the resulting gSPM, and vice versa.
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Furthermore, a decrease in complexity, resulting in improved lucidity and a higher granularity, can be achieved by segmenting the iSPMs

into local parts, e.g. based on interventional phases.

Calculating the transitions between activities also had a side effect: the bottom-up identification of a mean  procedure course from the‘ ’
data. By following the transitions with the highest probabilities from the artificial START to the END, a statistical mean  procedure course‘ ’
was identified. Clinical experts checked the resulting mean intervention courses to ensure they corresponded with the recommended

cataract treatments.

The registration step between iSPMs in this study was based on the literal similarity of the features. This was appropriate in the

context of gSPM calculations from the technical point of view, but it does not consider semantic similarities between work step

descriptions. Computing the structural gSPM generated a purely logic-oriented model that only presents sequences of work steps.

To assess the transition probabilities between activities, only binary relations based on predecessor-successor relations were

considered. Here, several other approaches could also be considered, such as data mining strategies , , . Examining the sequence[14 19 20 ]
of transitions before the current predecessor might lead to a shift of probabilities. However, binary relations were chosen so that the

models could be calculated with less complexity.

The objective of this work was to present a method to calculate gSPMs. However, further research is needed to investigate appropriate

models from the clinical point of view, with a focus on the clinically relevant granularity of the gSPMs, the inclusion of several

perspectives as features, and consideration of the history.  The models can also be improved by explicit indication of concurrent activities,‘ ’
a step that was neglected in our example use cases so as not to overload the visual representations.

Several clinical application cases emerge from the new methods. Besides comparing surgical strategies, we could also quantify the use

of different surgical technologies to achieve the same surgical goal. This makes an assessment of the influence of Surgical Assist Systems

possible. Using gSPMs to train residents allows for an assessment of their progress. Furthermore, intervention costs may be calculated in

more detail to improve the hospital s billing efficiency or other financial issues. For instance, operating rooms in hospitals command a vast’
amount of human resources, device resources, and materials. For this reason, they represent one of the most cost-intensive sectors in

hospitals , . The use of these resources for individual patient treatments is usually estimated by measurement parameters such as[24 25 ]
cut-suture times or by derived parameters such as turnover rates . However, cut-suture times do not provide the level of detail of[26 ]
information about the statistical mean  treatment of an intervention population as generic Surgical Process Models. This can be put to a‘ ’
multitude of possible uses such as the estimation of resource needs for surgical interventions or an examination of differences in surgical

work flow, which may ultimately support administrative billing.

Consequently, the bottom-up identification of the mean  intervention course allows for a further application case: the comparison of an‘ ’
individual Surgical Process Models (iSPMs) and generic Surgical Process Models (gSPMs) that could be advantageous to investigate the

reasons why a single surgical intervention course deviates from the mean procedure course.

In the future, detailed and rigorous analysis of gSPMs may serve as a powerful tool for surgeons to improve their work, for medical

engineers to design support systems, for both to have a common, validated and standardized discussion base, and even for managing

personnel to design better corporate structures, as illustrated in this article. Preclinical requirements analysis, retrospective analyses, or

post-development evaluations of surgical strategies, surgical skill levels, or the use of new surgical instruments or devices are all use cases

that could rely on models obtained from valid gSPMs. From the technical point of view, gSPMs can be also used as a pre-stage in

developing workflow management support for the digital operating room of the future.
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Figure 1
Overview of the model development process for gSPMs

Figure 2
Segmentation of the iSPM according to the relations of activities and states
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Figure 3
Screenshot of the Surgical Workflow Editor user interface

Figure 4
gSPM generation procedure example
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Figure 5
gSPMs for Capsulorhexis phase in ambulatory (left ) and inpatient (right) Cataract interventions ( mean  path of right hand: solid line style; ‘ ’ ‘
mean  path of left hand: dotted line style)’
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Table I
Computational algorithm for gSPM

Calculation of activity values

Grouping of all activities according to iSPM population, interventional phase, and selected perspectives

For the duration of each combination, the mean and the standard deviation is calculated

Calculation of activity transitions

Grouping of all activities according to protocol-ID, interventional phases, and selected perspectives

Computing the global transition probability for each selected transition in each protocol from the predecessor transition

Calculating mean and standard deviations across all protocols of one iSPM population

Joining activity durations with global transition probabilities, calculation of local transition probabilities, and creating the visualization

Table II
Patient Characteristics for the Example Study

Ambulatory Inpatient

Number of cases 49 53
Age 73.7 7.8± 68.0 11.2±

Sex (m/f) 20/29 22/31
Treated eye (right/left) 27/22 23/30

Table III
Interventional phases for the Cataract surgeries example

Phase Definition

Capsulorhexis First paracentesis until end of material excision
Lens Removal Hydrodissection until end of irrigation/aspiration of lens

Lens Implantation Cut widening until beginning of irrigation/aspiration of Healon
Removal of Healon Irrigation/aspiration of Healon

Table IV
Terminology list examples for the use case

WHO WHAT WHEREBY WHERE

surgeon with left hand,
surgeon with right hand

apply, aspirate, capsulorhexis, close, coagulate, cut, disinfect,
hydrodissection, implant, inject, insert, irrigate, place, remove, widen, …

bipo, chopper, circula, colibri tweezers, drape, eye drain,
foil scissors, hooklet, lancet clear cut, monarch, …

bulbus oculi, capsula lentis, capsular sac, caput,
chamber ant, cilia, conjunctiva, cornea, cortex, …
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Table V
Activity examples recorded by observation

Example Activity 1 Example Activity 2 Example Activity 3

WHO surgeon with right hand surgeon with right hand surgeon with left hand
WHAT hydrodissection wash hold
WITH WHICH TOOL sauter cannula sprinkler cannula colibri tweezers
WHERE cortex conjunctiva bulbus oculi
WHEN 00:05:30  00:06:10– 00:02:30  00:02:40– 00:03:35  00:05:05–

Table VI
Phase durations

Ambulatory cataract interventions Inpatient cataract interventions Significance

Cut-suture time 00:16:01 00:04:39± 00:25:16 00:15:34± t(61.91) 4.13, =− p<0.001
Begin Capsulorhexis until end Removal of Healon 00:09:50 00:03:22± 00:17:32 00:16:09± t(56.90) 3.39, =− p 0.001=
Capsulorhexis 00:01:28 00:00:28± 00:02:48 00:01:11± t(68.79) 7.56, =− p<0.001
Lens Removal 00:05:42 00:02:24± 00:10:18 00:09:55± t(58.61) 3.28, =− p 0.002=
Lens Implantation 00:00:42 00:00:58± 00:00:58 00:01:05± t(98) 1.56, p 0.12=− =
Removal of Healon 00:01:37 00:01:18± 00:01:41 00:02:20± t(100) 0.14, p 0.89=− =

Table VII
Example durations of activities of the Capsulorhexis phase (in seconds, right hand activities shaded)

Activity

No. of
occurrences in

ambulatory
population

No. of
occurrences in

inpatient
population

No. of occurrences per
intervention in

ambulant interventions

No. of occurrences per
intervention in

inpatient interventions

Significance No.
of occurrences

per intervention

Average performance
time ambulant cataract
interventions in seconds

Average performance
time inpatient cataract
interventions in seconds

Significance
Average

performance time
per activity

surgeon right hand
paracentesis paracentesis

knife cornea

49 34 1.00 0.00± 1.00 0.00± - 6.06 1.92± 14.56 23.47± t(33) 2.11, =− p 0.04=

surgeon right hand inject
healon chamber ant

47 52 1.09 0.28± 1.27 0.6± p>0.05 4.38 1.24± 6.15 1.26± t(97) 7.03, =−
p<0.001

surgeon right hand
capsulorhexis rhexis

cannula capsula lentis

48 51 1.04 0.2± 1.18 0.56± p>0.05 33.94 8.96± 64.37 23.43± t(65.09) 8.63, =−
p<0.001

surgeon right hand cut
lancet clear cut cornea

48 53 1.04 0.2± 1.02 0.14± p>0.05 3.54 0.99± 4.75 1.25± t(97.20) 5.42, =−
p<0.001

surgeon right hand
excision material utrata s’
tweezers capsula lentis

48 53 1.21 0.41± 1.11 0.32± p>0.05 4.38 1.92± 6.02 3.07± t(88.43) 3.26, =− p=
0.002

surgeon left hand hold
colibri tweezers bulbus

oculi

13 53 1.08 0.28± 1.49 0.75± t(53.75) 3.22, =− p=
0.002

33.92 14.73± 78.02 27.74± t(35.73) 7.89, =−
p<0.001

surgeon left hand hold
micro spatula bulbus

oculi

38 0 1.16 0.37± - - 44.5 16.56± - -
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Table VIII
Differences in Capsulorhexis activity transitions (for activities on the mean  path)‘ ’

Start activity Stop activity
global transition probability in

ambulatory interventions
global transition probability in

inpatient interventions significance

start surgeon right hand paracentesis paracentesis knife
cornea

1.00 0.00± 0.64 0.48± t(52) 5.39, = p<0.001

surgeon right hand paracentesis paracentesis knife
cornea

surgeon right hand inject healon chamber ant 0.94 0.24± 0.49 0.50± t(76) 5.78, = p<0.001

surgeon right hand inject healon chamber ant surgeon right hand capsulorhexis rhexis cannula
capsula lentis

0.81 0.38± 0.83 0.35± p>0.05

surgeon right hand capsulorhexis rhexis cannula
capsula lentis

surgeon right hand cut lancet clear cut cornea 0.92 0.26± 0.84 0.33± p>0.05

surgeon right hand cut lancet clear cut cornea surgeon right hand excision material utrata s’
tweezers capsula lentis

0.94 0.22± 0.99 0.07± p>0.05

surgeon right hand excision material utrata s’
tweezers capsula lentis

end 0.86 0.27± 0.94 0.16± p>0.05

start surgeon left hand hold colibri tweezers bulbus
oculi

0.24 0.43± 0.58 0.50± t(99.689) 3.68, =−
p<0.001

surgeon left hand hold colibri tweezers bulbus
oculi

end 0.23 0.42± 0.80 0.28± t(81.514) 7.944, =−
p<0.001

start surgeon left hand hold micro spatula bulbus oculi 0.65 0.48± 0.00 0.00± t(48) 9.51, = p<0.001
surgeon left hand hold micro spatula bulbus oculi end 0.69 0.43± 0.00 0.00± t(48) 11.28, =

p<0.001


