
Efficient support for MPI-IO atomicity based on

versioning

Viet-Trung Tran, Bogdan Nicolae, Gabriel Antoniu, Luc Bougé

To cite this version:

Viet-Trung Tran, Bogdan Nicolae, Gabriel Antoniu, Luc Bougé. Efficient support for MPI-
IO atomicity based on versioning. [Research Report] RR-7487, INRIA. 2010, pp.24. <inria-
00546956>

HAL Id: inria-00546956

https://hal.inria.fr/inria-00546956

Submitted on 15 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by HAL-Rennes 1

https://core.ac.uk/display/48237028?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/inria-00546956

ap por t
d e r echerch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
74

87
--

FR
+E

N
G

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Efficient support for MPI-IO atomicity based on
versioning

Viet-Trung Tran, Bogdan Nicolae, Gabriel Antoniu, Luc Bougé

N° 7487

Novembre 2010

Centre de recherche INRIA Rennes – Bretagne Atlantique
IRISA, Campus universitaire de Beaulieu, 35042 Rennes Cedex

Téléphone : +33 2 99 84 71 00 — Télécopie : +33 2 99 84 71 71

Efficient support for MPI-IO atomicity based on
versioning

Viet-Trung Tran∗, Bogdan Nicolae†, Gabriel Antoniu‡, Luc Bougé∗

Thème : Calcul distribué et applications à très haute performance
Équipe-Projet KerData

Rapport de recherche n° 7487 — Novembre 2010 — 21 pages

Abstract:
We consider the challenge of building data management systems that meet an

important requirement of today’s data-intensive HPC applications: to provide a
high I/O throughput while supporting highly concurrent data accesses. In this
context, many applications rely on MPI-IO and require atomic, non-contiguous
I/O operations that concurrently access shared data. In most existing implemen-
tations the atomicity requirement is often implemented through locking-based
schemes, which have proven inefficient, especially for non-contiguous I/O. We
claim that using a versioning-enabled storage backend has the potential to avoid
expensive synchronization as exhibited by locking-based schemes, which is much
more efficient. We describe a prototype implementation on top of ROMIO along
this idea, and report on promising experimental results with standard MPI-IO
benchmarks specifically designed to evaluate the performance of non-contiguous,
overlapped I/O accesses under MPI atomicity guarantees.

Key-words: large scale; storage; MPI-IO atomicity; non-contiguous I/O;
versioning;

∗ ENS Cachan, IRISA, France.
† University Rennes 1, IRISA, France.
‡ INRIA Rennes-Bretagne Atlantique, IRISA.

Un support efficace basé sur le versioning pour
l’atomicité de MPI-IO

Résumé : Nous considérons le défi de la construction des systèmes de gestion
des données qui répondent a l’éxigence importante des applications de calcul
haut performance: fournir un haut débit d’E/S tout en assurant des accès simul-
tanées aux données. Dans ce contexte, de nombreuses applications s’appuient
sur MPI-IO et nécessitent l’atomicité des opérations non contigus opérations
d’E/S pour manipuler l’accès aux données partagées. Dans la plupart des exis-
tants implémentations, l’atomicité de l’opération est souvent mis en oeuvre en
se basant sur les schémas de verrouillage, qui se sont avérées inefficaces, surtout
pour les E/S non contigus. Nous affirmons que l’usage d’un versioning compat-
ible stockage permet d’éviter la synchronisation présentée dans les techniques
basées sur les verrouillages, donc il est beaucoup plus efficace. Nous décrivons
un prototype d’un versioning compatible stockage qui est intégré à ROMIO, et
en montrant les résultats des expérimentes avec des repères standard MPI-IO
spécialement conçu pour évaluer les performances des accès d’E/S non contigus
qui chevauchent sous la garantie d’atomicité de MPI.

Mots-clés : Grande échelle; stockage; l’atomicité de MPI-IO; E/S non-
contigus; versioning;

Efficient support for MPI-IO atomicity based on versioning 3

Contents
1 Introduction 3

2 Problem description 4

3 Related work 6

4 Design principles 7

5 Implementation 8
5.1 BlobSeer: towards a storage backend optimized for non-contiguous,

MPI-atomic writes . 9
5.2 Proposal for a non-contiguous, versioning-oriented access interface 10
5.3 Adding support for MPI-atomicity 11

5.3.1 Structure of metadata . 11
5.3.2 Non-contiguous writes . 12
5.3.3 Non-contiguous reads . 12
5.3.4 Guaranteeing MPI atomicity efficiently under concurrency 12

5.4 Leveraging our versioning-oriented interface at the level of the
MPI-IO layer . 13

6 Experimental evaluation 14
6.1 Overview . 14
6.2 Platform description . 15
6.3 Increasing number of non-contiguous regions 15
6.4 Scalability under concurrency: our approach vs. locking-based . . 15
6.5 MPI-tile-IO benchmark results 17

7 Conclusions 19

1 Introduction
Scientific applications are becoming increasingly data-intensive: high-resolution
simulations of natural phenomenons, climate modeling, large-scale image anal-
ysis, etc. Such applications currently manipulate data volumes in the petabyte
scale and with the growing trend of data sizes we are rapidly advancing towards
the exabyte scale. In this context, I/O performance has been repeatedly pointed
out as a source of bottleneck that negatively impacts the performance of the
applications.

Rapid advances in other system components are partly responsible for poor
I/O performance, however, another problem that is causing this I/O bottleneck
is the fact that the I/O access patterns generated by such scientific applications
do not match the I/O access interfaces exposed by the file systems that are used
as the underlying storage backends.

One particularly difficult challenge in this context is the need to efficiently
address the I/O needs of scientific applications [1, 2, 3, 4] that partition multi-
dimensional domains into overlapping subdomains that need to be processed in
parallel and then stored in a globally shared file. Since the file is a flat sequence
of bytes, subdomains map to non-contiguous regions in the file. Because the

RR n° 7487

4 V.T. Tran, B. Nicolae, G. Antoniu and L. Bougé

subdomains overlap, under concurrent accesses such non-contiguous regions may
interleave in an inconsistent fashion if they are not grouped together as a single
atomic transaction. Therefore, atomicity of non-contiguous, overlapping reads
and writes of data from a shared file is a crucial issue.

In an effort to abridge the gap between what is needed at application level
and what is offered at the level of storage system, several standardization at-
tempts have been made. MPI-IO [5] provides a standard interface for MPI
programs to access the storage in a coordinated manner. However, MPI-IO im-
plementations currently in circulation, such as ROMIO [5], have limited poten-
tial to be leveraged to their maximal potential. This happens because storage
backends use less capable access models in practice, such as POSIX [6], that
force the MPI-IO implementations to use inefficient locking-based schemes in
order to guarantee atomicity for non-contiguous, overlapping accesses.

In this paper, we aim at addressing this shortcoming of existing approaches
by optimizing the storage backend specifically for the access patterns described
above. We propose a novel versioning-based scheme that offers better isolation
and avoids the need to perform expensive synchronization by using multiple
snapshots of the same data. These snapshots offer a consistent view of the
globally shared file through efficient ordering and resolution of overlappings at
metadata level, which enables obtaining high throughputs under concurrency
while guaranteeing atomicity.

The contributions of this paper are summarized as follows:

• We introduce a set of generic design principles that leverage versioning
techniques and data striping to build a storage backend that explicitly op-
timizes for non-contiguous, overlapped I/O accesses that obey MPI atom-
icity guarantees;

• We describe a prototype built along this idea, based on BlobSeer, a versioning-
enabled, concurency-optimized data management service that was inte-
grated with ROMIO;

• We report on a series of experiments performed with both custom as well
as standard MPI-IO benchmarks specifically written for the applications
that we target and show improvements in aggregated throughput under
concurrency between 3.5 to 10 times higer than what state-of-art locking-
based approaches can deliver.

2 Problem description
In a large class of scientific applications, especially large-scale simulations, in-
put and output data represents huge spatial domains made of billions of cells
associated with a set of parameters (e.g., temperature, pressure, etc.). These
spatial domains represent the state of the simulated system at a specific mo-
ment in time. They are iteratively refined by the simulation in order to obtain
an insight into how the system evolves in time. The large size of the spatial
domains triggers the need to parallelize the simulation, by splitting them into
subdomains that are distributed and processed by a large number of compute
elements, typically MPI processes.

In many such simulations, the contents of a cell depends on the contents
of the neighboring cells. Thus, the cells at the border of a subdomain (called

INRIA

Efficient support for MPI-IO atomicity based on versioning 5

“ghost cells”) need to be shared by more than one MPI process. In order to avoid
repeated exchanges of border cells between MPI processes during the simulation,
a large class of applications [1, 2, 3, 4] partition the spatial domain in such way
that the resulting subdomains overlap at their borders. Figure 1(a) depicts an
example of a 2D space partitioned in 3×3 overlapped subdomains, each being
handled by one of the processes P1 . . . P9.

At each iteration, the MPI processes typically dump their subdomains in
parallel in a globally shared file, which is then later used to interpret and/or
visualize the results. Since the spatial domain is a multidimensional structure
which is stored as a single, flat sequence of bytes, the data corresponding to each
subdomain maps to a set of non-contiguous regions within the file. This in turn
translates to a write-intensive access pattern where the MPI processes concur-
rently write a set of non-contiguous regions in the same file. Moreover, because
some subdomains overlap, the non-contiguous regions in the file belonging to
such subdomains may overlap too.

In order to obtain a globally shared file that represents the whole spatial
domain in a consistent way, it is important to write all non-contiguous regions
belonging to the same subdomain in an atomic fashion. This is a non-trivial
issue, because of the poor implementations of storage backends. Either they do
not offer guarantees with respect to atomicity, which means concurrent writes
need to be coordinated at application level. Or they offer limited guarantees,
such as the POSIX atomicity semantics [6], where a write of a contiguous region
is guaranteed to end up as a single sequence of bytes, without interleaving with
other writes. However, in our context, the POSIX atomicity guarantees are not
sufficient, because a single write operation involves a whole set of non-contiguous
regions. Under concurrency, this can lead to an interleaved overlapping that gen-
erates inconsistent states. Such an inconsistent state is depicted on Figure 1(b),
where two MPI processes, P1 and P2, concurrently write their respective sub-
domains. Only two consistent states are possible, where all the non-contiguous
regions of P1 and P2 are atomically written into the file. They only differ by the
order in which this happened, but each of them correspond to some serialized
behavior.

In an effort to standardize such access patterns, the MPI 2.0 standard [5]
defines a specialized I/O interface, called MPI-IO, that enables read and write
primitives to accept complex data types as parameters. These data types can
represent a whole set of non-contiguous regions rather than a single contiguous
region, as is the case of the POSIX primitives.

Under these circumstances, atomicity guarantees for write operations that
involce multiple non-contiguous overlapping regions are needed. This type of
atomicity is referred to as MPI atomicity. More precisely, the MPI atomicity
is defined as a guarantee that in concurrent, overlapping MPI-IO write opera-
tions (which can possibly involve sets of non-contigous regions), the overlapped
regions shall contain data only from one of the MPI processes that participates
in the concurrent writes.

It is now clear that a write support mechanism that achieves high through-
put under concurrency and introduces support for non-contiguous, overlapping
regions while obeying MPI atomicity semantics is a crucial issue. Such a mech-
anism facilitates an efficient implementation of the MPI-IO standard, which in
turn benefits a large class of MPI applications.

RR n° 7487

6 V.T. Tran, B. Nicolae, G. Antoniu and L. Bougé

(a) 2D array partitioning with
overlapping at the border

?P1 P2

non-atomic atomic atomic

X

Y

(b) An example of two concurrent
overlapping writes

Figure 1: Problem description: partitioning of spatial domains into overlapped sub-
domains and the resulting I/O access patterns and consistency issues

3 Related work
Previous work has shown that providing MPI atomicity efficiently enough is
not a trivial task in practice, especially when dealing with concurrent, non-
contiguous I/O, most of which rely on locking-based techniques. Several ap-
proaches have been proposed at various levels: at the level of the MPI-IO layer,
at the level of the file system and at the application level.

A first series of approaches assumes no specific support at the level of the
parallel file system This is typically the case of PVFS [7], a widely-used parallel
file system which makes the choice of enabling high-performance data access
for both contiguous and non-contiguous I/O operations without guaranteeing
atomicity at all for I/O operations. For applications where MPI atomicity re-
quirement needs to satisfied, a solution (e.g. illustrated in [8]) consists in guar-
anteeing MPI atomicity portably at the level of the MPI-IO layer. The lack
of guarantees on the semantics of I/O operations provided by the file system
comes however at a high cost introduced by the use of coarse-grain locking at
a higher level. Typically, the whole file is locked for each I/O request and thus
concurrent accesses are serialized, which is an obvious source of overhead. To
avoid this bottleneck in the case of concurrent non-overlapping accesses to the
same shared file, an alternative approach [9] proposes to introduce a mecha-
nism for automatic detection of overlapping I/O and thus avoid locking in this
case. However, as acknowledged by the authors of this approach, an unnecessary
overhead due to the detection mechanism is then introduced for non-overlapping
concurrent I/O.

Further optimizations are proposed in [10], where the authors propose a
locking-based scheme for non-contiguous I/O which aims to strictly reduce the
scope of the locked regions to the areas that are actually accessed. Moreover, this
approach cannot avoid serialization for applications which exhibit concurrent
overlapping I/O such as the ones described in Section 2.

In [11], the authors propose to use process handshaking to avoid/reduce in-
terprocess serialization. This approach enables processes to negotiate with each
other who has the right to write to the overlapped regions. However, such an
approach can only be applied when every process is aware of all other concurrent

INRIA

Efficient support for MPI-IO atomicity based on versioning 7

processes accessing the same file. This is not suitable for non-collective concur-
rent I/O operations, where such an assumption does not hold (concurrent I/O
requests are typically not aware of each other in this case).

Another class of approches addresses the case where the underlying parallel
file system supports POSIX atomicity. Atomic contiguous I/O can then seam-
lessly be mapped to atomic read/write primitives provided by the POSIX inter-
face. However, POSIX atomicity alone is not enough to provide the necessary
atomicity guarantees for applications that exhibit concurrent, non-contiguous
I/O operations. It is important to note that, to enable MPI atomicity, both
contiguous and non-contiguous I/O requests need to be considered.

Parallel file systems such as GPFS [12] and Lustre [13] provide POSIX atom-
icity semantics using a distributed locking approach: locks are stored and man-
aged on the storage servers hosting the objects they control. Whereas POSIX
atomicity can simply and directly be leveraged for contiguous I/O operations
using byte range locking, enabling atomic non-contiguous I/O based on POSIX
atomicity is not efficient. In the default scheme, if we consider a set of non-
contiguous byte ranges to be atomically accessed by an individual I/O request,
it is then necessary to lock the smallest contiguous byte range that covers all
elements of the set of ranges to be accessed. This leads to unnecessary synchro-
nization and thus to a potential bottleneck, since this contiguous byte range
also covers unaccessed data that would not need to be locked.

Finally, given the limitations of the approaches described above, an ultimate
solution is to design the parallel application in such a way that MPI atomicity
is not required, e.g. by enabling each process of the parallel application to
write to a separate file at every iteration, then manage this set of files with
custom post-processing tools. The CM1 [14] tornado simulation illustrates this
approach.

In this paper we focus on data-intensive applications that require data par-
titioning schemes that exhibit overlapping concurrent I/O,which need MPI-IO
atomicity to be guaranteed. As explained above, MPI-IO atomicity has mainly
been enabled using locking-based approaches. In this paper, we propose a novel
versioning-based mechanism allowing to handle atomic contiguous and non-
contiguous I/O more efficiently compared to previous lock-based solutions.

4 Design principles
We propose a general approach to solve the issue of enabling a high throughput
under concurrency for writes of non-contiguous, overlapped regions under MPI
atomicity guarantees. This approach relies on three key design principles:

Dedicated API at the level of the storage backend Traditional ap-
proaches address the issue of providing support for MPI atomic, non-contiguous
writes by implementing the MPI-IO access interface as a layer on top of highly
standardized consistency semantics models (e.g. POSIX). The rationale behind
this approach is to be able to easily plug in a different storage backend without
the need to rewrite the MPI-IO layer. However, this advantage comes at a high
price: the MPI-IO layer needs to translate the MPI atomicity into a different
consistency model, which greatly limits the potential to optimize for the access
patterns that are needed in our context. By contrast, we propose to extend the

RR n° 7487

8 V.T. Tran, B. Nicolae, G. Antoniu and L. Bougé

storage backend with a data access interface that provides native support for
non-contiguous, MPI-atomic data accesses. Using this approach circumvents
the need to translate to a different consistency model and enables introduc-
ing optimizations directly at the level of the storage backend, enhancing the
potential to implement a a better concurrency control scheme.

Data striping Simulations are becoming increasingly complex, processing
huge spatial domains that easily reach the petabyte-scale order. This increasing
trend of data sizes reflects not only globally, but also on the data sizes that
need to be handled by each process individually. As a general rule, the compu-
tation to I/O ratio is steadily decreasing, which means that the performance of
the whole application depends more and more on the performance of the I/O.
In this context, a centralized solution clearly does not scale. Data striping a
well-known technique to increase the throughput of data accesses, by splitting
the huge file where the spatial domain is stored into chunks that distributed
among multiple storage elements. Using a load-balancing allocation strategy
that redirects write operations to different storage elements in a round robin
fashion, the I/O workload is distributed by itself, which effectively increases the
overall throughput that can be achieved.

Versioning as a key to enhance data access under concurrency Most
storage backends manipulate a single version of the file at a time under concur-
rency by providing locking-based mechanisms that guarantee exclusive access
to overlapped regions, in order to eliminate inconsistencies. However, in our
context, such an approach does not scale, even if the storage backend is able to
deliver high throughputs. The problem comes from the fact that a locking-based
scheme is expensive, as it enables only one writer at a time to gain exclusive
access to a region. Since there are many overlapped regions, this leads to a
situation where many writers sit idle while waiting for their turn to lock, which
greatly limits the potential to achieve a globally high aggregated throughput.
In order to avoid this issue, we propose a versioning-based access scheme that
avoids the need to lock, effectively eliminating the need of writers to wait for
each other. Our approach is based on shadowing techniques [15], which means
to offer the illusion of creating a new standalone snapshot of the file for each
update to it but to physically store only the differences and manipulate meta-
data in such way that the aforementioned illusion is upheld. Starting from the
principles introduced in [16], we propose to enable concurrent MPI processes to
write their non-contiguous regions in complete isolation, without having to care
about overlappings and synchronization, which is made possible by keeping data
immutable: new differences are added rather than modify an existing snapshot.
It is at the metadata level where the ordering is done and the overlappings are
resolved in such way as to expose a snapshot of the file that looks as if all dif-
ferences were applied in an arbitrary sequential order. A concrete proposal of
how to achieve this in practice is detailed in Section 5.

5 Implementation
Based on the design principles introduced in the previous section, in this section
we present the work we did to extend a versioning-oriented data sharing service

INRIA

Efficient support for MPI-IO atomicity based on versioning 9

such that it efficiently exposes an MPI atomic, non-contiguous versioning access
interface. We then show how to integrate this work with an existing MPI-IO
middleware to obtain a fully functional and efficient storage solution for MPI
applications.

5.1 BlobSeer: towards a storage backend optimized for
non-contiguous, MPI-atomic writes

We have chosen to build the storage backend on top of BlobSeer, a versioning-
oriented data sharing service specifically designed to meet the requirements of
data-intensive applications that are distributed at large scale: scalable aggre-
gation of storage space from a large number of participating machines with
minimal overhead, support to store huge data objects, efficient fine-grain ac-
cess to data subsets and ability to sustain a high throughput under heavy access
concurrency.

Data is abstracted in BlobSeer as long sequences of bytes called BLOBs (Bi-
nary Large OBject). These BLOBs are manipulated through a simple access
interface that enables creating a blob, reading/writing a range of size bytes
from/to the BLOB starting at a specified offset and appending a sequence of
size bytes to the BLOB. This access interface is designed to support shadow-
ing explicitly: each time a write or append is performed by the client, a new
snapshot of the BLOB is generated that acts as a first class object rather than
overwriting any existing data (but physically stored is only the difference). This
snapshot is labeled with an incremental version and the client is allowed to read
from any past snapshot of the BLOB by specifying its version.

BlobSeer relies on data striping, distributed metadata management and ver-
sioning based concurrency control to distribute the I/O workload at large-scale
and avoid the need for access synchronization both at data and metadata level.
This is crucial in achieving a high aggregated throughput under concurrency, as
demonstrated in [16, 17, 18].

This is achieved by orchestrating a series of distributed communicating pro-
cesses, whose role is detailed below.

• Data (storage) providers physically store the chunks generated by appends
and writes. New data providers may dynamically join and leave the sys-
tem.

• The provider manager keeps information about the available storage space
and schedules the placement of newly generated chunks. It employs a
configurable chunk distribution strategy to maximize the data distribution
benefits with respect to the needs of the application.

• Metadata (storage) providers physically store the metadata that allows
identifying the chunks that make up a snapshot version. A distributed
metadata management scheme is employed to enhance concurrent access
to metadata.

• The version manager is in charge of assigning new snapshot version num-
bers to writers and appenders and to reveal these new snapshots to readers.
It is done so as to offer the illusion of instant snapshot generation, while
guarateeing total ordering and atomicity.

RR n° 7487

10 V.T. Tran, B. Nicolae, G. Antoniu and L. Bougé

Motivation The choice of building the storage backend on top of BlobSeer
was motivated by two factors.

First, BlobSeer supports transparent striping of BLOBs into chunks and
enables fine-grain access to them, which enables to store each spatial domain
directly as a BLOB. This in turn avoids the need to perform data striping
explicitly.

Second, BlobSeer offers out-of-the-box support for shadowing by generating
a new BLOB snapshot for each fine-grain update while physically storing only
the differences. This provides a solid foundation to introduce versioning as a
key principle to support MPI atomicity.

5.2 Proposal for a non-contiguous, versioning-oriented ac-
cess interface

The versioning-oriented access interface as exposed by BlobSeer could not be
leveraged directly because it supports atomic writes and appends of contiguous
regions only, which would imply the need for locking at the level of the MPI-IO
layer in order to support MPI atomicity. As mentioned in Section 4, we want
to avoid locking and introduce optimizations directly at the level of the storage
backend. Therefore, the first step is to extend the access interface of BlobSeer
such that it can describe complex non-contiguous data access in a single call.

In order to closely match the List I/O interface proposal introduced in [19],
we introduce a series of versioning-oriented primitives that facilitate non-contiguous
manipulations of data at the level of BLOBs.

id = CREATE(size)

This primitive creates a new BLOB and associates to it an zero-filled snapshot
whose version number is 0 and is size bytes long. The BLOB will be identified
by its id (the returned value). The id is guaranteed to be globally unique.

vw = NONCONT_WRITE(id, buffers[], offsets[], sizes[])

A NONCONT_WRITE initiates the process of generating a new snapshot of
the BLOB (identified by id) by submitting a list of memory buffers (pointed
at in buffers[]) to be overlapped over the non-contiguous regions defined by the
lists offsets[] and sizes[].

The NONCONT_WRITE does not know in advance which snapshot version
it will generate, as the updates are totally ordered and internally managed by
the storage system. However, after the primitive returns, the caller learns about
its assigned snapshot version by consulting the returned value vw. The update
will eventually be applied to the snapshot vw − 1, thus effectively generating
the snapshot vw. This snapshot version is said to be published when it becomes
available to the readers. Note that the primitive may return before snapshot
version vw is published. The publication time is unknown, but it is guaranteed
that the generated snapshot will obey MPI atomicity.

NONCONT_READ(id, v, buffers[], offsets[], sizes[])

A NONCONT_READ results in replacing the contents of the memory buffers
specified in the list buffers[] with the contents of the non-contiguous regions
defined by the lists offsets[] and sizes[] from snapshot version v of the BLOB id.
If v has not yet been published, the read fails.

INRIA

Efficient support for MPI-IO atomicity based on versioning 11

0,8

0,4 4,4

0,2 2,2 4,2 6,2

0,1 1,1 2,1 3,1 4,1 5,1 6,1 7,1

0,8

0,4

0,2 2,2

1,1 2,1

4,4

4,2

4,1 5,1

0,8

0,4

2,1 3,1 5,1 6,1

2,2 4,2

4,4

6,2

1st Writer

2nd Writer

Figure 2: Metadata segement trees: whole subtrees are shared among snapshot ver-
sions

5.3 Adding support for MPI-atomicity
In Section 4, we proposed a versioning-based approach to ensure MPI atom-
icity efficiently under concurrency. This approach relies on the idea that non-
contiguous regions can be written in parallel as a series of differences that are or-
dered and consolidated into independent snapshots at the level of the metadata,
such that the result is equivalent to the sequential application of all differences
in an arbitrary order.

The key difficulty in this context is to efficiently consolidate the differences
at metadata level such that only consistent snapshots that obey MPI atomicity
are published.

Since each massive BLOB snapshot is striped over a large number of storage
space providers, the metadata serves the role to remember the location of each
chunk in the snapshot, such that it is possible to map non-contiguous regions
of the snapshot to the corresponding chunks.

5.3.1 Structure of metadata

We organize metadata as a distributed segment tree [20]: one such tree is
associated to each snapshot of a given BLOB id. A segment tree is a binary
tree in which each node is associated to a range of the BLOB, delimited by
offset and size. We say that the node covers the range (offset, size). The
root covers the whole BLOB snapshot, while the leaves cover single chunks (i.e.
keep information about the data providers that store the chunk). For each
node that is not a leaf, the left child covers the first half of the range, and the
right child covers the second half. The segment tree itself is distributed at fine
granularity among multiple metadata providers that form a DHT (Distributed
Hash Table). This is done for scalability reasons, as a centralized solution
becomes a bottleneck under concurrent accesses.

In order to avoid the overhead of rebuilding the whole segment tree for each
new snapshot (which consumes both space and time), entire subtrees are shared
among the snapshots, as shown in Figure 2.

RR n° 7487

12 V.T. Tran, B. Nicolae, G. Antoniu and L. Bougé

5.3.2 Non-contiguous writes

A NONCONT_WRITE operation first stores all chunks that make up the non-
contiguous regions on the data providers, after which it builds the metadata
segment tree that is associated to the snapshot in a bottom up manner: first
the leaves that hold information about where the chunks were stored and then
the inner nodes up towards the root. For example, a write of two non-contiguous
regions delimited by (offset, size) = (1, 2) and (4, 2) on a BLOB whose total size
is 8 leads to the grey segment tree depicted in Figure 2.

5.3.3 Non-contiguous reads

A NONCONT_READ operation first obtains the root of the segement tree that
corresponds to the snapshot version from which it needs to read, after which it
descends in the segment tree towards the leaves that hold information about the
chunks that make up the non-contiguous regions. Once these chunks have been
established, they are fetched from the data providers and stored in the memory
buffers supplied as an argument.

5.3.4 Guaranteeing MPI atomicity efficiently under concurrency

Since an already published snapshot is never modified, readers never have to syn-
chronize with writers. The case of concurrent writers is more delicate and needs
closer consideration. Concurrent writers can independently write their non-
contiguous regions without any need to synchronize, because the non-contiguous
regions are ordered and consolidated into consistent snapshots at metadata level.
In order to perform this efficiently, we propose three important optimizations:

Minimize ordering overhead Since any arbitrary ordering that obeys MPI
atomicity is valid, our goal is to minimize the time taken to establish the order in
which to apply the overlappings. To this end, writers ask for a snapshot version
to be assigned only after they have successfully finished writing the chunks
and need to build their corresponding segment trees. The assignment process,
which is the responsability of the version manager, is very simple and leads to a
minimal overhead: versions are assigned on a first-come, first-served basis and
practically involve only the atomic incrementation of an internal variable on the
version manager. For example, in Figure 2, two concurrent writers, black and
grey, wrote their non-contiguous regions. Assuming grey finished first, it was
assigned version 1, while black was assigned version 2. If black finished first,
the order of version assignment would have been the reverse.

Avoid synchronization for concurrent segment tree generation Once
the writer obtained a new snapshot version number from the version manager, it
needs to build the metadata segment tree such that it is “weaved” in a consistent
fashion with the segment trees of the previous versions (i.e. the correct links to
the nodes of the segment trees of the previous versions are established). We call
such nodes that are linked against by the segment trees of higher versions border
nodes. For example, the border nodes of 1st writer (grey) in Figure 2 are all
belonging to the initial version (white). Under concurrency, it can happen that
the border nodes of a snapshot version v belong to the segment tree of a lower

INRIA

Efficient support for MPI-IO atomicity based on versioning 13

version that is in the process of being generated itself by a concurrent writer
and therefore do not exist yet. For example, the border nodes of the 2nd writer
(black) depend on grey nodes that have not been necesarily generated yet.

In order to avoid waiting for such border nodes to get generated, we main-
tain the list of all concurrent writers on the version manager and feed it as a
hint to writers when they request a new snapshot version. Using this informa-
tion, writers can predict what border nodes will be eventually written by the
other concurrent writers and can build virtual links (which we call metadata
forward references) to them without caring whether they exist or not, under
the assumption that they will be eventually written and the segment tree will
become complete. In our example, when black is assigned version number 2 it
receives the hint about the existance of grey and the non-contiguous regions that
grey intends to write. Using this information, black can establish the metadata
forward references (dotted pattern) without waiting for grey to finish building
the segment tree. When both grey and black finish, the segment trees are in a
consistent state.

Lazy evaluation during border node calculation The scheme presented
above greatly improves the scalability of concurrent segment tree generation,
as it enables clients to independently calculate the border nodes in isolation,
without the need for synchronization.

However, in addition to scalability, we aim at high performance too. To this
end, we optimized the border node calculation on the client-side by introducing
a lazy evaluation scheme. More precisely, we avoid precalulating the border
nodes for each contiguous region individually and rather delay their evaluation
until the moment when the new tree nodes are generated themselves and the
links to their children need to be established. This is particularly important in
the context of non-contiguous accesses, because the union of all border nodes
taken from each region individually is much larger that the set of border nodes
that is effectively needed.

For example, in Figure 2 grey writes two non-contigous regions. If each
region is taken individually, the white node that covers (0, 4) is a border node
for the region delimited by (offset, size) = (4, 2). Similarily, the white node that
covers (4, 8) is a border node for the region delimited by (offset, size) = (1, 2).
However, neither of them are border nodes in the end result, because their grey
counterparts will eventually become the children of the grey root (0, 8).

5.4 Leveraging our versioning-oriented interface at the level
of the MPI-IO layer

Having obtained a storage backend implementation that directly optimizes for
MPI atomicity, the next step is to efficiently leverage this storage backend at
the level of the MPI-IO layer. To this end, we used ROMIO [5], a library that
is part of popular MPICH2 [21] implementation.

The motivation behind this choice is the fact that ROMIO is designed in
a modular fashion, making it easy to plug-in new storage backends. Architec-
turally, ROMIO is broken up into three layers:

RR n° 7487

14 V.T. Tran, B. Nicolae, G. Antoniu and L. Bougé

• a layer that implements the MPI I/O routines in terms of an abstract I/O
device that exposes a generic set of I/O primitives, called Abstract Device
interface for parallel I/O (ADIO);

• a layer that implements common MPI-IO optimizations that are indepen-
dent of the storage backend (such as buffering and collective I/O);

• a layer that partially implements the ADIO device and needs to be ex-
tended for each storage backend explicitly.

These layers provide a complete support for MPI-IO at application level. The
separation between storage backend dependent and independent code enabled
us to build a lightweight ADIO module that maps the interface required by the
first layer almost directly on top of the versioning-oriented access interface we
introduced. More precisely, an ADIO implementation needs to provide support
for both contiguous and non-contiguous writes under MPI atomicity guarantees.
Our interface proposal is generic enough to handle both scenarios efficiently
using a single primitive call.

6 Experimental evaluation

6.1 Overview
We conducted three series of experiments:

• An evaluation of the scalability of our approach when the same amount of
data needs to be read/written into an increasing number of non-contiguous
regions by the same client;

• An evaluation of the scalability of our approach when increasing the num-
ber of clients that concurrently write non-contigous regions in the same
file. In this scenario, we considered the extreme case where each of the
clients writes a large set of non-contiguous regions that are intentionally
selected in such way as to generate a large number of overlappings that
need to obey MPI atomicity;

• An evaluation of the performance of our approach using a standard bench-
mark, MPI-tile-IO, that closely simulates the access patterns of real sci-
entific applications that split the input data into overlapped subdomains
that need to be concurrently written in the same file under MPI atomicity
guarantees.

In both the second and the third series of experiments, we compare our
approach to the loking-based approach that leverages a POSIX-compatible file
system at the level of the MPI-IO layer, which is the traditional way of address-
ing MPI atomicity.

In order to perform this comparison, we used two standard building blocks
that are available as open-source projects: (1) the Lustre parallel file system [13],
version 1.6.4.1, in its role as a high-performance, POSIX-compliant file sys-
tem and (2) the default ROMIO ADIO module, which is part of the standard
MPICH2 release and was specifically written for POSIX-compliant file systems.

INRIA

Efficient support for MPI-IO atomicity based on versioning 15

We turned off data sieving in the default ROMIO ADIO module according
to the recommendations in [10], as this greatly improves the performance of
Lustre for MPI-IO. Without data sieving enabled, the ADIO module is able to
take advantage of standard POSIX byte-range file locking to lock the smallest
contiguous region in the file that covers all non-contigous regions that need to
be read/written. Once this is done, the non-contiguous regions are read/written
using a dedicated read/write call for each region individually, after which the
lock is released.

6.2 Platform description
We performed our experiments on the Grid’5000 [22] testbed, a reconfigurable,
controllable and monitor-able experimental Grid platform gathering 9 sites ge-
ographically distributed in France. For these experiments we used the nodes of
the Rennes cluster, which are outfitted with x86_64CPUs and 4 GB of RAM.
All nodes are equipped with Gigabit Ethernet cards (measured throughput:
117.5MB/s for TCP sockets with MTU = 1500 B, with a latency of 0.1 ms).
We invested a significant effort in preparing the experimental setup, by imple-
menting an automated deployment process both for Lustre and BlobSeer.

Our experiments were performed on up to 80 nodes of the Rennes cluster in
the following fashion: Lustre (respectively BlobSeer) is deployed on 44 nodes,
while the remaning 36 nodes are reserved to deploy a MPI ring where the MPI
processes are running (each on a dedicated node).

Lustre was deployed in the following configuration: one metadata server
and 43 object storage servers, each on a dedicated machine. For BlobSeer we
used the following deployment setup: one version manager and one provider
manager deployed on dedicated machines, while the rest of 42 nodes was used
to co-deploy the data and metadata providers in pairs, one pair on each node.

6.3 Increasing number of non-contiguous regions
In the first series of experiments we evaluate the scalability of our approach when
the same amount of data needs to be read/written from/into an increasing the
number of non-contiguous regions by the same client.

To this end, we fix the amount of data that is read/written by the client
(using NONCONT_READ and NONCONT_WRITE respectively) at 1 GB. At
each step, we double the amount of non-contiguous regions into which this data
is split and measure the throughput as observed on the client side. We start
with a single contiguous region and end up with 1024 non-contiguous regions.

The results are shown in Figure 3. As can be observed, both reads and writes
achieve a high throughput that reaches well over 80 MB/s. More importantly,
the throughput drops negligibly when incresing the number of non-contiguous
regions, which demonstrates excellent scalability of our approach.

6.4 Scalability under concurrency: our approach vs. locking-
based

In this scenario we aim at evaluating the scalability of our approach when in-
creasing the number of clients that concurrently write non-contiguous regions
in the same file, as compared to the locking-based approach that uses Lustre.

RR n° 7487

16 V.T. Tran, B. Nicolae, G. Antoniu and L. Bougé

 0

 20

 40

 60

 80

 100

 120

 140

 64 128 256 512 1024

T
hr

ou
gh

pu
t (

M
B

/s
)

Number of non-contiguous regions

Writing
Reading

Figure 3: Scalability when the same amount of data needs to be written into an
increasing number of non-contigous regions: throughput is maintained almost constant

To this end, we setup a synthetic MPI benchmark that enables us to control
the MPI-IO access patterns generated by the application in such way that we
generate a large number of overlappings.

More specifically, the synthetic benchmark corresponds to a special case of
the overlapped subdomains depicted in Figure 1(a): namely when the subdo-
mains (that need to be written under MPI atomicity guarantees) form a single
row. Each subdomain is a matrix of 1024x1024 elements, with each element 1024
bytes large. This amounts to a total of 1 GB worth of data written by each
process into 1024 non-contiguous regions, each of which is 1 MB large. Since the
subdomains are arranged in a row, every MPI process (except the extremities)
share a left and right overlapped subdomain with its left and respectively right
neighbor. The size of the overlapping subdomain is fixed at 128x1024 elements,
such that each region in the set of non-contiguous regions written by a process
overlaps by 128 KB with two other regions belonging to the neighboring pro-
cesses. This choice leads to a scenario that pushes both approaches to their
limits: every single region generates at least one overlapping that needs to be
handled in an MPI-atomic fashion.

We varied the number of MPI processes from 4 to 36 and ran the MPI
benchmark both for our approach and the locking-based approach using on
Lustre. Results are shown in Figure 4, where we measure the completion time
to run the benchmark (i.e. the time taken by the slowest process to finish), as
well as in Figure 5, where we measure the total aggregated throughput achieved
by all processes (i.e. the total amount of data written by all processes divided
by the completion time).

As can be observed, the completion time in the case of Lustre grows almost
linearly. Since the processes are arranged in a row, the non-contiguous regions of
each process are far apart, which leads to the case in which almost the whole file
needs to be locked. Thus, in this extreme scenario, the accesses are practically
serialized by the locking-based approach. This trend is confirmed by the total
aggregated throughput as well: it remains constant at 114 MB, close to the
maximal theoretical limit that can be achieved by a single client.

INRIA

Efficient support for MPI-IO atomicity based on versioning 17

 0

 50

 100

 150

 200

 250

 300

 350

 400

4 9 16 25 36

C
om

pl
et

io
n

tim
e

(S
ec

on
d)

Number of concurrent clients

Lustre
BlobSeer

Figure 4: Our approach vs locking-
based: completion time for increas-
ing number of clients that concurrently
write a large number overlapping, non-
contiguous regions that are far apart
(lower is better)

 0

 500

 1000

 1500

 2000

4 9 16 25 36

A
gg

re
ga

te
d

th
ro

ug
hp

ut
 (

M
B

/s
)

Number of concurrent clients

Lustre
BlobSeer

Figure 5: Our approach vs locking-
based: aggregated throughput
achieved by an increasing number of
clients that concurrently write a large
number overlapping, non-contiguous
regions that are far apart (higher is
better)

By contrast, the completion time in the case of our approach experiences a
negligible growth, thanks to the fact that it completely avoids synchronization.
This trend is confirmed by the total achieved aggregated throughput too: we
can observe an increasing trend from about 300 MB/s to about 1500 MB/s for
36 concurrent clients, which more than 10 times higher that the throughput
obtained by using Lustre and demonstrates excellent scalability.

6.5 MPI-tile-IO benchmark results
As a last series of experiments we evaluate the performance of our approach
using a standard MPI-IO benchmarking application: MPI-tile-IO MPI-tile-IO
closely simulates the access patterns of real scientific applications described in
Section 2: overlapped subdomains that need to be concurrently written in the
same file under MPI atomicity guarantees.

MPI-tile-IO sees the underlying data file as a dense two-dimensional set of
subdomains (referred to in the benchmark as tiles), each of which is assigned to
an MPI process, as shown in Figure 1(a). The benchmark consists in measuring
the total aggregated throughput (total data written by all processes divided
by the total time to complete the benchmark) achieved by all processes when
they concurrently write their subdomains to the globally shared file under MPI
atomicity guarantees.

This benchmark is highly configurable, enabling fine tuning of the following
parameters:

• nr−tile−x: number of subdomains in the X dimension

• nr−tiles−y: number of subdomains in the Y dimension

• sz−tile−x: number of elements in the X dimension of each subdomain

• sz−tile−y: number of elements in the Y dimension of each subdomain

• sz−element: size of an element in bytes

RR n° 7487

18 V.T. Tran, B. Nicolae, G. Antoniu and L. Bougé

 0

 500

 1000

 1500

 2000

 2500

 3000

4 9 16 25 36

A
gg

re
ga

te
d

T
hr

ou
gh

pu
t (

M
B

/s
)

Number of concurrent clients

Lustre
BlobSeer

Figure 6: 1024×1024×1024 tile size

 0

 500

 1000

 1500

 2000

 2500

 3000

4 9 16 25 36

A
gg

re
ga

te
d

th
ro

ug
hp

ut
 (

M
B

/s
)

Number of concurrent clients

Lustre
BlobSeer

Figure 7: 32×32×1MB tile size

• overlap−x: number of elements shared between adjacent subdomains in
the X dimension

• overlap−y: number of elements shared between adjacent subdomains in
the Y dimension

We fixed the parameters of the MPI-tile-IO benchmark in such way as to
resemble the layout of real applications as closely as possbile. More specifically,
each subdomain is a 1024x1024 matrix of elements that are 1024 bytes large
(i.e. sz−tile−x = sz−tile−y = sz−element = 1024). Unlike the previous series
of experiments, where the processes are arranged in a row to obtain an extreme
case that pushes both approaches to their limits, this time we use a realistic
layout where the processes are arranged in such way that they form a square
(i.e. nr−tile−x = nr−tile−y = 2 . . . 6, which corresponds to 4 . . . 36 processes).
The size of the overlappings was fixed at 128x128 (i.e. overlap−x = overlap−y
= 128). Thus, each process writes 1 GB worth of data, out of which 128 MB is
overlapping with each of its neighbors.

We ran the MPI-tile-IO benchmark for both our approach and the locking-
based approach using Lustre. The experiment was repeated 5 times and the
results were averaged. Figure 6 depicts the total aggregated throughput ob-
tained for both approaches.

As can be observed, both approaches scale. Unlike the experiment presented
in Section 6.4, the choice of arranging the subdomains in such way that they
form a square leads to a situation where the non-contiguous regions are closer
to each other, which in turn means that a more compact contigous region needs
to be locked by the Lustre-based approach. Under concurrency, this leads to a
situation where different contiguous regions of the files can be locked simultane-
ously, thus enhancing the degree of parallelism for the locking-based approach.
Nevertheless, even under such circumstances a significant amount of accesses
need to be serialized, which in turn enables our approach to outperform the
locking-based approach by almost 6 times for 36 concurrent processes.

To show that our approach works well even when the size of the individual
regions in the non-contiguous set is large (which is a case that favours the
locking-based approach), we perform another set of experiments with a different
set of parameters for the MPI-tile-IO benchmark: we step up the element size
from 1 KB to 1 MB, while shrinking the size of the subdomain from 1024x1024
to 32x32. This effectively keeps the total size of each subdomain the same
as in the previous set of experiemnts (fixed at 1 GB), which enables a direct
comparison between this scenario and the previous scenario.

INRIA

Efficient support for MPI-IO atomicity based on versioning 19

Increasing the size of the elements proves to be advantageous for both ap-
proaches. In the case of our approach it leads to a coarser granularity for the
data striping, which is the result of using larger chunk sizes. This in turn de-
creases the metadata overhead, which enables achieving a higher aggregated
throughput. In the case of the locking-based approach it decreases the number
of contigous writes that need to be performed for each process while increasing
the size of each such write. This in turn enables achieving a higher aggregated
throughput as well. However, even under these circumstances, as shown in Fig-
ure 7, our approach still outperforms the Lustre-based approach by more than
3.5 times.

7 Conclusions
In this paper, we proposed an original versioning-based mechanism that can be
leveraged to efficiently address the I/O needs of data-intensive MPI applications
involving data-partitioning schemes that exhibit overlapping non-contiguous
I/O where MPI-IO atomicity needs to be guaranteed under concurrency.

Unlike traditional approaches that leverage POSIX-compliant parallel file
systems as storage backends and employ locking schemes at the level of the MPI-
IO layer, we propose to use versioning techniques as a key principle to achieve
high throughputs under concurrency while guaranteeing MPI atomicity. We im-
plemented this idea in practice by extending BlobSeer, an existing versioning-
oriented, distributed data sharing service, with a non-contiguous data access
interface that we directly integrated with ROMIO, a standard MPI-IO imple-
mentation. We compared our BlobSeer-based implementation with a standard
locking-based approach where we used Lustre as the underlying storage back-
end. Our approach demonstrated excellent scalability under concurrency when
compared to the Lustre-based approach. It achieved an aggregated throughput
ranging from 3.5 times to 10 times higher in several experimental setups, in-
cluding highly standardized MPI benchmarks specifically designed to measure
the performance of MPI-IO for non-contiguous overlapped writes that need to
obey MPI-atomicity semantics.

Such promising results encouraged us to purse interesting future work di-
rections. In particular, one advantage of BlobSeer that we did not develop in
this paper is to expose its versioning interface directly at application level. The
ability to make use of versioning at application level brings several potential ben-
efits, such as the case of producer-consumer workloads where for example the
output of simulations is concurrently used as the input of visualizations. Using
versioning at application level could avoid expensive synchronization schemes,
which is an acknowledged problem of current approaches.

Acknowledgments
The experiments presented in this paper were carried out using the Grid’5000/
ALADDIN-G5K experimental testbed, an initiative from the French Ministry
of Research through the ACI GRID incentive action, INRIA, CNRS and RE-
NATER and other contributing partners (see http://www.grid5000.fr/ for de-
tails).

RR n° 7487

20 V.T. Tran, B. Nicolae, G. Antoniu and L. Bougé

References
[1] E. Smirni, R. Aydt, A. Chien, and D. Reed, “I/O requirements of scientific

applications: An evolutionary view,” in Proceedings of 5th IEEE Interna-
tional Symposium on High Performance Distributed Computing. IEEE,
2002, pp. 49–59.

[2] E. Smirni and D. A. Reed, “Lessons from characterizing the input/out-
put behavior of parallel scientific applications,” Performance Evaluation,
vol. 33, no. 1, pp. 27–44, 1998.

[3] P. E. Crandall, R. A. Aydt, A. A. Chien, and D. A. Reed, “Input/output
characteristics of scalable parallel applications,” in Proceedings of the 1995
ACM/IEEE conference on Supercomputing (CDROM), ser. Supercomput-
ing ’95. New York, NY, USA: ACM, 1995.

[4] N. Nieuwejaar, D. Kotz, A. Purakayastha, C. Sclatter Ellis, and M. Best,
“File-access characteristics of parallel scientific workloads,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 7, no. 10, pp. 1075–1089,
Oct. 1996.

[5] R. Thakur, W. Gropp, and E. Lusk, “On implementing mpi-i/o portably
and with high performance,” in Proceedings of the sixth workshop on I/O in
parallel and distributed systems, ser. IOPADS ’99. New York, NY, USA:
ACM, 1999, pp. 23–32.

[6] Information technology - Portable Operating System Interface (POSIX) Op-
erating System Interface (POSIX). Institute of Electrical & Electronics
Engineers, 2009.

[7] I. F. Haddad, “Pvfs: A parallel virtual file system for linux clusters,” Linux
J., vol. 2000, November 2000.

[8] R. Ross, R. Latham, W. Gropp, R. Thakur, and B. Toonen, “Implementing
mpi-io atomic mode without file system support,” in Proceedings of the
Fifth IEEE International Symposium on Cluster Computing and the Grid
(CCGrid’05), ser. CCGRID ’05, vol. 2. Washington, DC, USA: IEEE
Computer Society, 2005, pp. 1135–1142.

[9] S. Sehrish, J. Wang, and R. Thakur, “Conflict detection algorithm to min-
imize locking for mpi-io atomicity,” in Proceedings of the 16th European
PVM/MPI Users’ Group Meeting on Recent Advances in Parallel Virtual
Machine and Message Passing Interface. Berlin, Heidelberg: Springer-
Verlag, 2009, pp. 143–153.

[10] A. Ching, W.-k. Liao, A. Choudhary, R. Ross, and L. Ward, “Noncontigu-
ous locking techniques for parallel file systems,” in Proceedings of the 2007
ACM/IEEE Conference on Supercomputing, Nov. 2007, pp. 1–12.

[11] W.-K. Liao, A. Choudhary, K. Coloma, G. Thiruvathukal, L. Ward, E. Rus-
sell, and N. Pundit, “Scalable implementations of mpi atomicity for con-
current overlapping i/o,” in Parallel Processing, 2003. Proceedings. 2003
International Conference on, Oct. 2003, pp. 239–246.

INRIA

Efficient support for MPI-IO atomicity based on versioning 21

[12] F. Schmuck and R. Haskin, “Gpfs: A shared-disk file system for large com-
puting clusters,” in Proceedings of the 1st USENIX Conference on File and
Storage Technologies, ser. FAST ’02. Berkeley, CA, USA: USENIX Asso-
ciation, 2002.

[13] P. Schwan, “Lustre: Building a file system for 1000-node clusters,” in Pro-
ceedings of the Linux Symposium, 2003.

[14] G. Bryan, “http://www.mmm.ucar.edu/people/bryan/cm1/.”

[15] O. Rodeh, “B-trees, shadowing, and clones,” Trans. Storage, vol. 3, no. 4,
pp. 1–27, 2008.

[16] B. Nicolae, G. Antoniu, L. Bougé, D. Moise, and A. Carpen-Amarie, “Blob-
seer: Next generation data management for large scale infrastructures,”
Journal of Parallel and Distributed Computing, 2010, in press.

[17] B. Nicolae, G. Antoniu, and L. Bougé, “Enabling high data throughput in
desktop grids through decentralized data and metadata management: The
BlobSeer approach,” Euro-Par 2009 Parallel Processing, pp. 404–416, 2009.

[18] B. Nicolae, D. Moise, G. Antoniu, L. Bougé, and M. Dorier, “BlobSeer:
Bringing high throughput under heavy concurrency to Hadoop Map-Reduce
applications,” in IEEE International Symposium on Parallel & Distributed
Processing (IPDPS). IEEE, 2010, pp. 1–11.

[19] A. Ching, A. Choudhary, W.-k. Liao, R. Ross, and W. Gropp, “Noncontigu-
ous i/o through pvfs,” in Proceedings of the IEEE International Conference
on Cluster Computing, ser. CLUSTER ’02. Washington, DC, USA: IEEE
Computer Society, 2002, pp. 405–.

[20] C. Zheng, G. Shen, S. Li, and S. Shenker, “Distributed segment tree: Sup-
port of range query and cover query over dht,” in The 5th International
Workshop on Peer-to-Peer Systems (IPTPS), 2006.

[21] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel Pro-
gramming with the Message Passing Interface. MIT Press, 1994.

[22] Y. Jégou, S. Lantéri, J. Leduc, M. Noredine, G. Mornet, R. Namyst,
P. Primet, B. Quetier, O. Richard, E.-G. Talbi, and T. Iréa, “Grid’5000: a
large scale and highly reconfigurable experimental grid testbed,” Interna-
tional Journal of High Performance Computing Applications, vol. 20, no. 4,
pp. 481–494, November 2006.

RR n° 7487

Centre de recherche INRIA Rennes – Bretagne Atlantique
IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier

Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq
Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique

615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex
Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex
Centre de recherche INRIA Sophia Antipolis – Méditerranée : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr
ISSN 0249-6399

