
Physical aggregated objects and dependability

Fabien Allard, Michel Banâtre, Fabrice Ben Hamouda, Paul Couderc,

Jean-François Verdonck

To cite this version:

Fabien Allard, Michel Banâtre, Fabrice Ben Hamouda, Paul Couderc, Jean-François Verdonck.
Physical aggregated objects and dependability. [Research Report] RR-7512, INRIA. 2011,
pp.33. <inria-00556951>

HAL Id: inria-00556951

https://hal.inria.fr/inria-00556951

Submitted on 18 Jan 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-Rennes 1

https://core.ac.uk/display/48236012?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/inria-00556951


appor t  


de  r ech er ch e

IS
S

N
0

2
4

9
-6

3
9

9
IS

R
N

IN
R

IA
/R

R
--

7
5

1
2

--
F

R
+

E
N

G

Networks, Systems and Services, Distributed Computing

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Physical aggregated objects and dependability

Fabien Allard — Michel Banâtre — Fabrice Ben Hamouda — Paul Couderc — Jean-François

Verdonck

N° 7512

January 2011





Centre de recherche INRIA Rennes – Bretagne Atlantique
IRISA, Campus universitaire de Beaulieu, 35042 Rennes Cedex

Téléphone : +33 2 99 84 71 00 — Télécopie : +33 2 99 84 71 71

Physical aggregated objects and dependability

Fabien Allard✯, Michel Banâtre❸, Fabrice Ben Hamouda❹, Paul

Couderc➜ , Jean-François Verdonck➯

Domain : Networks, Systems and Services, Distributed Computing
Équipe-Projet ACES

Rapport de recherche n➦ 7512 — January 2011 — 30 pages

Abstract: This documents deals with dependability issues of aggregated ob-
jects and RFID-based systems. It analyses the different categories of issues
raised by these objects and proposes some measures to face them. It also pro-
vides a state of the art of actual implementations of those solutions with multiple
comparisons.

Key-words: ubiquity, dependability, RFID, security, cryptography, physical
objects, aggregation, coupling, signature, authentication

✯ Fabien Allard — SenseYou — Immeuble Gallium 80 Avenue des Buttes de Coesmes 35
700 RENNES CEDEX FRANCE - France — Email: fabien.allard@senseyou.fr

❸ Michel Banâtre — INRIA Rennes — Campus Universitaire de Beaulieu 35042 Rennes
Cedex - France — Email: banatre@irisa.fr

❹ Fabrice Ben Hamouda — Stagiaire ACES (Elève Normalien ENS ULM) — Email:
fabrice.ben.hamouda@ens.fr

➜ Paul Couderc — INRIA Rennes — Campus Universitaire de Beaulieu 35042 Rennes
Cedex - France — Email: paul.couderc@inria.fr

➯ Jean-François Verdonck — INRIA Rennes — Campus Universitaire de Beaulieu 35042
Rennes Cedex - France — Email: jean.francois.verdonck@inria.fr

mailto:fabien.allard@senseyou.fr
mailto:banatre@irisa.fr
mailto:fabrice.ben.hamouda@ens.fr
mailto:paul.couderc@inria.fr
mailto:jean.francois.verdonck@inria.fr


Objets physiques agrégés et sûreté de

fonctionnement

Résumé : Ce document expose les différents aspects liés à la sûreté de fonc-
tionnement d’applications s’appuyant sur les objets physiques aggrégés et la
technologie RFID. Il expose les différentes catégories de problèmes susceptibles
de compromettre le service et propose des solutions adaptées.

Mots-clés : ubiquité, sûreté de fonctionnement, RFID, sécurité, cryptogra-
phie, objets physiques, agrégation, couplage, signature, authentification, non
authenticité



Physical aggregated objects and dependability 3

Introduction

Checking for integrity of a set of objects is often needed in various activities,
both in the real world and in the information society. The basic principle is to
verify that a set of objects, parts, components, people remains the same along
some activity or process, or remains consistent against a given property (such
as a part count).

While there are very few automatic solutions to improve the situation in the
real world, integrity checking in the computing world is a basic and widely used
mechanism: magnetic and optical storage devices, network communications are
all using checksums or other error checking codes to detect information corrup-
tion, to name a few.

The emergence of Ubiquitous computing and the rapid penetration of RFID
(Radio Frequency IDentification) led to development of security solutions bring-
ing those techniques to the physical world. They can provide services such as
theft detection, alarm triggering, access control... As an example, plane trav-
ellers could get warned if any of their piece of luggage is missing or got swapped
with an other traveller when passing through a checking portal.

It appeared that integrity checking systems based on RFID tags could face
various security issues. However, RFID tags are highly exposed to various at-
tacks which could compromise the service.

The aim of this paper is to focus on how such security applications can be
strengthened in order to resist those attacks.

1 Aggregated objects and basic concepts

1.1 Basic aggregated objects

Basic aggregated objects are sets of mobile and/or physically independent
objects, called fragments.

First, fragments can be aggregated by an aggregating system using an
aggregating algorithm.

Then, integrity of the resulting aggregated object can be tested at any time
thanks to a verifying system using a verifying algorithm, inside a verifying
area.

Basically, a verifying system computes the integrity information of a set of
fragments brought in its verifying area and then uses it as an action trigger.
For example, it could open a door when a complete set of fragments forming an
aggregate is found, or trigger an alarm otherwise.

1.2 Example of uses

This section illustrates how aggregate-based systems can solve several concrete
security issues.

Two examples are to be depicted: Ubi-Check and Ubi-Park. Both projects
are direct application of the described basic aggregating mechanisms and im-
prove security.

RR n➦ 7512



Physical aggregated objects and dependability 4

1.2.1 Ubi-Check

Ubi-Check helps travellers not forgetting one of their items, or mistakenly ex-
changing a similar one with someone else. During the check-in, each passenger
is aggregated with all his items (cell phone, passport and suitcase for instance)
using RFID stickers. After leaving the plane, passengers get their luggage in-
tegrity checked when passing through a portal. If an item is missing, an alarm
can be triggered or a message displayed. More information about Ubi-Check
can be found in [16].

1.2.2 Ubi-Park

Ubi-Park is a standalone system aiming at providing access control and moni-
toring to a bike shed (see Figure 1). It grants access to any user coupled with
his bike. Users are equipped with a unique tag and their bike has to carry
one aggregated object (at least one tag). The minimum equipment is an RFID
portal next to the door that is able to communicate with a user’s and his bike’s
tags.

Figure 1: Ubi-Park

The key enabling to access the shed is the coupled object. People can only
enter the shed with their bike, or alone if their bike is already inside it. The
same way, they cannot exit with somebody else’s bike as it would not be coupled
with them.

1.3 Analogy with packet switching

One can compare this mechanism with packet switching. When a sender wants
to send a file to a receiver through a network, it cuts the file into packets and
send these independent packets through the network. The receiver receives the
packets, put them together and verify the integrity of the result.

Packets correspond to fragments, the files to aggregated objects and the areas
to receivers. Outside verifying areas, packets are completely independent, free
to move and can even use different ways to go from the sender to the receiver.
In Ubi-Check, passengers and their luggage could travel separately.

RR n➦ 7512



Physical aggregated objects and dependability 5

Another important special feature is that information needed to reconstruct
the file is in packets themselves. This is also the case with aggregated objects:
data needed to know which fragments are part of aggregated objects are stored
on fragments themselves (there is no need for an external database).

1.4 Typical architecture

A typical application can be segmented in 5 main layers shown in Figure 2.

5: aggregated-object based applications

4: aggregation service

elements
aggregation

aggregates
destruction

aggregates
verification

3: context management

filtering parsing encryption data
authentication

2: raw data providing

air protocol interrogators interrogator
interfaces

1: embedded memories (tags)

ID
aggregation data

(+ authentication data)

re
al

w
or
ld

so
ft
w
ar
e

ev
en
ts

re
q
u
es
ts

Figure 2: Global architecture layers

In the proposed architecture, reads of fresh data are propagated using an
event-driven model, from the first to the last layer. Raw data that are physically
written on the tag memory (layer 1) are read by the raw data providing layer
(layer 2). Layer 3 is in charge of filtering, parsing, decrypting and authenticating
those data. It builds a virtual context upon those data and notifies the upper
layer (layer 4: aggregation service) of any of its changes. Every time a context
notification is sent, the aggregation service (layer 4) searches for aggregates
structures in the context and notifies aggregate-based applications (layer 5) of
any structure change. Each level can also ask for lower level operations to the
previous layers. As an example, a checking algorithm from layer 4 can ask for
tag data authentication to layer 3 before notifying layer 5.

RR n➦ 7512



Physical aggregated objects and dependability 6

2 Dependability threats

This section deals with dependability threats of aggregate-based systems (like
UbiCheck — section 1.2.1 — or UbiPark — section 1.2.2). Any obstacle to
availability, reliability, safety, confidentiality, integrity or maintainability will
be considered as a threat to the system dependability. Threats are faults, errors
and failures. Faults may lead to errors, and errors to failures (see figure 3).
More details can be found in [11].

Figure 3: Fault-Error-Failure chain

This study will focus on intentional attacks against RFID implementations,
starting the analysis from the failures to the faults. Dependability impairments
may vary according to application designs, but most of the failures, faults and
errors are common to almost all aggregate-based systems. Given examples will
be based on UbiCheck and UbiPark. Next section will deal with possible solu-
tions.

2.1 Failures

Failures are deviation of the system from specified results. Some of the objectives
are common to all applications, some are specific. Here is a description of the
main failures.

2.1.1 Unauthorized use of a service

This failure occurs when the verifying system provides a service to an unautho-
rized person. In UbiPark, it would occur if the system allows a user who did
not subscribed to use it and secure his bike for free. Moreover, this failure may
lead to more critical failures as an attacker could get its job eased inside the
shed. The main dependability attribute affected by this failure is safety.

2.1.2 Denial of service to authorized persons

This failure occurs when the verifying system denies its service to an authorized
person. In UbiPark, this would happen if a user in order could not enter or
exit the shed. Most of the time, it has no catastrophic consequences. The main
dependability attribute affected it affects is availability.

2.1.3 Privacy leaks

Privacy leaks occur when an attacker is able to retrieve personal information
about users from the system. Obviously, the main dependability attribute af-
fected by this failure would be confidentiality.

A verifying algorithm does not need nominative user information nor database
connexion to perform aggregates checking, so aggregate-based system do not
expose a lot of private data. Anyway, it is really easy to identify the tags IDs
corresponding to a specific user and start tracking his tags. More information

RR n➦ 7512



Physical aggregated objects and dependability 7

about privacy threats can be found in [4]. Moreover, if aggregating data1 are
not encrypted, it may be possible for an attacker to find all the fragments of an
aggregate. In Ubipark, this would enable to find somebody’s bike thanks to the
user badge.

2.1.4 Specific application failure (substitution, theft, vandalism...)

As applications use action triggers of verifying systems to control specific pro-
cesses, a wrong behaviour of this system could cause an application specific
failure. As an example, UbiCheck was designed to bring a protection against
theft and accidental substitution. Thus, main failures would be theft and sub-
stitution. The main dependability attribute affected by this failure is reliability.

2.2 Errors

An error corresponds to an unexpected state of the system due to the activation
of a fault. In aggregate-based applications, most of the errors can be considered
as inconsistencies between reality (real aggregated objects created by autho-
rized systems) and the state (set of aggregated objects) detected by a verifying
algorithm. Most of them lead to failures. Some of them can be detected by the
system, enabling exception throwing, while some cannot.

2.2.1 Illegal appearance or disappearance of a tag

In some contexts, there is no good reason for tags to appear or disappear from
a defined area or read point.

If aggregated objects appear where they should not, they would compromise
the integrity of the whole system and could lead to application specific failures.
In UbiPark, a complete aggregate is a key to the exit. A key that would suddenly
pop up inside the shed while the door is closed (as an example, it could be thrown
through a grating) would be suspicious and could enable theft.

The same way, the disappearance of a tag would produce an inconsistency
as one of the item sets would no longer be seen as integral even if no physical
object is missing. This could lead to a denial of service (DoS).

Both situations can be detected using a reader that would monitor the whole
area of the shed.

2.2.2 Tag swapping

Swapping tags from two different objects would introduce an inconsistency be-
tween objects and aggregate structure. An attacker could cause this error in
UbiPark to steal a bike, leading to a substitution failure, without any RFID
knowledge. There is no easy way to detect this error.

2.2.3 Forged fragment tags

Genuine tags, are tags that are meant to be used with the service and produced
by an authorised aggregating authority. If genuine tag are cloned, modified or

1 Aggregating data are produced by aggregating algorithms and carried by the tags. They
store the structure which is given to the physical objects tags are attached to.

RR n➦ 7512



Physical aggregated objects and dependability 8

illegally built from scratch, the service could be used without authorisation,
deny its service, or be compromised (specific application failure).

This error can be detected if there is a way to authenticate fragments (see
section 3.2 and 3.4).

2.2.4 Presence of parasite tags

In some applications, the presence of an additional incomplete aggregated object
in the control area may cause trouble. As an example, UbiPark allows one and
only one bike/user couple to cross the door so the user cannot exit with his bike
and another. This could lead to a denial of service: if an UbiPark tag is stuck
near the door, the system would not allow anybody to enter or exit the shed.

A parasite tag can be genuine or not. Non genuine tags may be detected (see
previous error). If the parasite tag is genuine, they are some situations where
it can be detected. In Ubipark, a tag staying for too long at the read point of
the door could be declared as parasite.

2.2.5 Unavailable communication

Unavailable communication between readers and tags would not enable to check
aggregates and so would directly lead to denials of service.

This error could be detected by sticking an RFID tag near the read point in a
way it should be in the same radio conditions than a user tag. A communication
loss with the tag would indicate bad radio conditions.

2.2.6 Partial user localisation

Localisation of users could be a threat to their privacy. People could be directly
observed or threatened. This would lead to a privacy leak failure. There is no
way to detect this error.

2.2.7 Personal user data leak

If the system uses unprotected personal data, an attacker could retrieve theses
data putting the user privacy in jeopardy. This would lead to a privacy failure.
There is no way to detect this error. Hopefully, developed applications are not
exposed to this issue as they do not involve any personal data.

2.3 Faults

Faults are inherent weaknesses of an application design that could make it be-
have in an unintended or unanticipated manner and might result in errors and
failures. The cause could be an incorrect step, process, or data definition in
a computer program. This section focuses on intentional human-made faults,
another name for attacks, that could lead to the errors that were previously
described.

2.3.1 RF media faults

❼ An attacker can prevent a tag from receiving waves from a reader by
putting it inside a Faraday cage (reversible) thus making communication
impossible.

RR n➦ 7512



Physical aggregated objects and dependability 9

❼ He could also destroy the tag (irreversible) or send high power HF noise.

Those faults may cause illegal appearance and disappearance errors. RF noise
could also lead to communication errors with tags.

2.3.2 Physical weaknesses

❼ If tags can be unstuck without breaking, an attacker can physically move
a tag from a fragment to another. As it is not possible to detect a tag
move (no tag localisation available), it could lead a to tag swapping error.

❼ If it is possible to buy aggregated tags not attached to an object (for
example, if it is possible to buy UbiPark tags on the Internet that can be
put on a bike), there are more possible attacks. For instance, in UbiPark,
an attacker can destroy tags of the bike he wants to steal and put on it
the bought tags.

❼ As applications of pervasive computing, aggregate-based services gives free
access to read points. Thus, any attacker could place parasite tags that
could lead to a parasite tag error. Moreover, as tags are based on public
IDs broadcasting, an attacker could get a basic localisation of a tag by
detecting its presence in a read point mesh. This could help to a track a
user and cause a ”user located” error.

❼ Obviously other physical faults can be committed against specific applica-
tions. For instance, in UbiPark, an attacker could simply break the door to
steal a bike. This example shows that it is often useful to add alternative
protection (like video surveillance) to an aggregate-based system.

2.3.3 Data attacks

The following attacks require some specific hardware and knowledge in RFID.
But, since RFID will be more and more used, anyone may have a tag interrogator
installed on their mobile phones (for example) in a few years.

Using this tag interrogator, an attacker could:

❼ prevent access to tag data (password change, kill operation)

❼ alter data in a genuine aggregated tag. It would lead to a non genuine
data error.

❼ write data in a new tag “from scratch” (without cloning). It could have
the same consequences.

❼ clone a tag. It would lead to a non genuine tag error.

❼ link a user with tag identifiers by reading tag IDs and visually observing.
This could help to track a user and cause a ”user located” error.

❼ eavesdrop RF traffic or physically attack a chip (for instance proceeding a
silicon die analysis or a power monitoring attack) in order to collect data.
This can lead to two possible errors: the retrieval of private information
and the use of non-genuine tag or data.

RR n➦ 7512



Physical aggregated objects and dependability 10

2.4 Summary

Figure 4 sums up the previously presented dependability threats of RFID aggregate-
based system.

Figure 4: Dependability threats of an RFID implementation of an aggregate-
based system.

RR n➦ 7512



Physical aggregated objects and dependability 11

3 Solutions

Most of the previous faults and errors can be avoided using conventional coun-
termeasures.

❼ Parasite tag errors could be detected, temporarily filtered and a technician
could be asked to remove parasite tags or fragments.

❼ Tag swapping can be solved using destructible tags that would break and
stop working if unstuck. However, this would not solve availability issues.

❼ Destructible tags faults are harder to solve: Tags should be hard to destroy
but should still break if they are removed from their carrying object.

Fragment creation, cloning, alteration and data retrieving faults (section 2.3.3)
require more complex solutions involving cryptographic means. The following
section will focus on theses solutions. Implementations are proposed in section 4.

3.1 Keys and cryptosystems

3.1.1 Symmetric and Asymmetric cryptosystems

There are two main kind of cryptography: symmetric cryptography and asym-
metric cryptography.

With a symmetric cryptosystem, a key is shared by all users2. For encryption
cryptosystem, this key is used for both encryption and decryption. For dynamic
authentication cryptosystem3, the same key would be used by the user who
wants to prove its identity and by the user who wants to verify this identity.
For message authentication code (MAC) mechanism4, the same key would be
used to create and verify MACs when exchanging messages. This would lead
the following issues:

❼ verifying a MAC (or play the role of the verifier in a dynamic authenti-
cation scheme) requires the shared key. Thus, all verifiers become able to
create genuine entities.

❼ it is impossible to distinguish users of a symmetric authentication system
(for example, given the same message, any user using the same key would
issue the same MAC).

❼ if the key gets stolen or if one person gets corrupted (for example by
distributing the key or issues pirate messages MACs), the key has to be
updated for all the users and all previous encrypted or authenticated data
become untrustworthy.

Therefore it is very important to ensure high protection of chips and comput-
ers which carry the shared key in their memory. Indeed if an attacker succeeds in

2Here, a user is a fragment or an aggregating/verifying system.
3A dynamic authentication cryptosystem enables a user to prove to another user that he

knows a particular secret
4A MAC is a piece of information added to a data to authenticate it as a digital signature

would . The main difference however is that anyone who can verify a MAC can also issue one
because he also has knowledge of the secret key.

RR n➦ 7512



Physical aggregated objects and dependability 12

extracting the key from one of the users2 (device theft, side channel attacks...),
the security of the whole system collapses.

To reduce risks, keys can be changed often. However, even if it is possible to
change keys of aggregates verifying systems, rewriting all tags can be sometimes
really painful. A compromise would be to regularly update the encryption key
and to maintain a list of trustworthy keys for decryption or authentication.
This way, users using a revoked key could be ignored without disturbing other
communications. The intrinsic drawback would be tags limited lifetime.

Asymmetric cryptography solves most of these problems as mentionned in
[23]. On the other hand, it is more complex, needs more computing resources
and requires higher data storage. With an asymmetric cryptosystem, each user
generates a private key and a public key. The private key is kept secret whereas
the public key is published. The private key enable its owner to decrypt or sign
messages and dynamically prove to another user that he is the one related to
a given public key. With the public key, any user can encrypt messages, verify
signature or play the role of verifier in dynamic authentications. The private
key is needed to decrypt or sign data and to play the role of prover in dynamic
authentication.

With an asymmetric cryptosystem, if a user gets corrupted or gets his private
key stolen, only his public key has to be revoked. If a private key shall be shared
by a group of users (for example by all aggregating and verifying systems), there
are fewer advantages of using an asymmetric cryptosystem. Thus, symmetric
cryptosystems may be preferred for better performance and smaller memory
footprint.

3.1.2 Digital certificates

A digital certificate enables to bind together a public key with the identity of a
user. In particular, it contains :

❼ the user’s description (for example an email address),

❼ the public key of the user’s key pair (it can be used for exemple to send
cipher text to the owner),

❼ the expiration date of the certificate,

❼ a signature of the previous data issued by a CA (or by another user).

Standard X.509 certificates are signed by a Certification Authority (CA)
which ensures the validity of the certificate (the fact the owner of the certificate
corresponds to the given description). Certificates can also be self-signed. It is
the case for CA’s certificates.

The CA can revoke any certificate it delivered if it becomes corrupted (owner’s
description does not match with real users) by publishing its corrupted public
key in a revocation list.

Certificates may be hierarchical: a CA signs several certificates for users
which can sign other certificates, etc. So the system is very flexible. If the
behaviour of a user, his CA or the user who signed his certificate is becoming
suspect, his certificate will not be trusted anymore. A big advantage of this
solution is that it will not be necessary to rewrite all certificates if one user
turns out to be corrupted.

RR n➦ 7512



Physical aggregated objects and dependability 13

Obviously, the CA shall never be compromised, otherwise all certificates
would become unusable.

3.1.3 Key storage and shared key

Tag memory is often very limited. Storing a certificate (corresponding to a tag’s
signature for example) can be problematic. In most cases, the following solution
can be used: all used public keys are stored in each aggregating/verifying system
and a short identifier is assigned to each public key. Tags memory would store
only their identifier and their private key (which access should be denied).

But this solution is less flexible than certificate: in particular it forces each
verifying system to have a database of all public keys and their associated short
identifier. If each tag shall have a different public key (or private key for sym-
metric cryptosystem), the memory a verifying system would need may be huge.
In this case, certificates (necessarily with asymmetric cryptosystem) may be
stored in the tag.

This idea is also useful when symmetric encryption is used for example: the
identifier of the key used by encryption algorithm is saved (as a plain text). It
makes easier changing shared key.

3.2 Uncloneable tags and authentication

Cloning a tag (and so a fragment) is one of the most critical issue of an aggregate-
based system as it enables the attacker to substitute objects or to use an unau-
thorized service.

If tags contain only memory, cloning a tag is really easy: the attacker just
needs to have a writeable tag and to copy data from the original tag to the new
one. Even if manufacturers do not allow to write some memory banks (as it is
the case with most of the commercial tags), it is possible to emulate a tag using
appropriate hardware.

C1G2 tags enable password authentication of readers: it should prevent an
attacker from directly accessing a tag’s memory. However, the password can be
easily eavesdropped in communications as the standard do not require tags to
use a secure protocol.

Actually even tag authentication with a more complex mechanism (for ex-
ample zero-knowledge proof) is insufficient as soon as the secret (used by au-
thentication) is shared by all tags. Using a real genuine tag and a tag emulator,
an attacker can make any tag (including illegal clones) look like genuine:

❼ if authentication is requested, the tag emulator uses the genuine tag to
correctly answer

❼ if normal data read is performed, the tag emulator sends data of the tags
to be cloned

This kind of attacks is called a man-in-the-middle attack (see figure 5).
Hence we propose several solutions:

❼ Randomized data encryption between tags and readers using random data
provided by the reader (see section 3.2.1).

❼ The tag contains a secret key directly link to its ID and prove it knows it
to the reader without revealing it (see section 3.2.2).

RR n➦ 7512



Physical aggregated objects and dependability 14

Complete tag emulator

G
e
n
u
in
e
T
a
g

R
F
ID

T
ra

n
sp

o
n
d
e
r

Hardware part

Cloned or

fake data

R
F
ID

In
te
rr
o
g
a
to

r

R
F
ID

T
ra

n
sp

o
n
d
e
r

Tag

Reader

R
F
ID

In
te
rr
o
g
a
to

rauthentication

data read

Figure 5: Tag simulator for cloning any tag with authentication support

❼ The tag contains a secret key directly link to its data thanks to an identity-
based cryptography scheme and prove it knows it to the reader without
revealing it (with a zero-knowledge proof for example).

❼ The tag uses a Physical Uncloneable Function (PUF) (see sections 3.2.3
and 3.2.4).

With the second method, tag is not really uncloneable, just a part of the tag
is uncloneable: the ID, but this is often sufficient (see remark 3.4.1). We will
say tag has an uncloneable ID or unique ID.

Remark 3.2.1. Shared secret methods can be used if the required security level
is not very high: password authentication (section 3.6) for example.

The following section only contains advanced solutions for a very high secu-
rity level.

3.2.1 Randomized encryption

If the communications between a reader and a specific tag are always the same,
the latter can be easily cloned, even if all the data is encrypted and incompre-
hensible. The attacker would just need to eavesdrop the communications and
make a device that replays the original tag’s answers.

To face this, data to be sent from tags to readers can be ciphered with added
random data chosen by the reader. Hence, if readers choose a nonce, each time a
reader requests tag data, transmitted answers will be necessarily different. The
random number must not be chosen by the tags because a tag emulator could
always choose the same (the number the original tag used during the eavesdrop).

TLS ([10]) and SSH protocol version 2 ([21]) are two widely used protocols
which use this idea: the server corresponds to the tag and the client corresponds
to the tag interrogator. Notice these two protocols also provide tag authentica-
tion.

RR n➦ 7512



Physical aggregated objects and dependability 15

3.2.2 Unique ID with zero-knowledge proof

Previously presented solutions require either the sharing of a certificate or pri-
vate key between tags, either the registration of all tag’s public keys into all
interrogators. This may not be convenient. In [5, 7, 24], there is a solution
which does not need all tags to share the same secret. Each tag has its own
private / public key-pair enabling zero-knowledge proof5of identity (or just a
signing algorithm like DSA). The public key is the ID of the tag whereas the
private key is stored in the tag such that only its microprocessor can read the
key (more details can be found in section 3.2.4).

The tag can prove its ID is authentic by proving it knows the corresponding
private key without revealing it.

This solution has many advantages over the previous one:

❼ there is no shared key common to all tags,

❼ the protocol between tag and interrogator can be a standard protocol with
an additional command which enables to prove the authenticity of tags,

❼ authenticity verification can be performed only when high level of security
is needed.

However there are also some disadvantages:

❼ ID cannot be chosen (otherwise there is not protection !),

❼ there is no authentication of the fragment’s provider: any provider can
create such tags contrary to previous method,

❼ only ID (public key) is protected.

The two last issues can be solved by adding a signature (or a Message Au-
thentication Code) to the data (ID included) of the tag (see section 3.4.1).

3.2.3 Physical Uncloneable Function (PUF)

According to [9], a Physical Uncloneable Function (PUF) is a function:

❼ that is based on a physical system (common PUFs are embodied in elec-
tronic chips),

❼ that is easy to evaluate (using the physical system),

❼ which plot looks like a random function,

❼ that is unpredictable even for an attacker with physical access to the
component.

5There are two kinds of zero-knowledge proofs: honest verifier zero-knowledge proof (like
Schnorr one [22]) and general zero-knowledge proof (like Okamoto one [20]). With the first
kind, an attacker who eavesdrops communication between a genuine tag and a genuine tag
interrogator cannot learn any information about the private key (except information he can
directly computes from the public key). With the second kind, an attacker who can make
requests to the tag, cannot get any information about the private key. So general zero-
knowledge proof shall be preferred when a high level of security is required.

RR n➦ 7512



Physical aggregated objects and dependability 16

PUFs can be tiny electrical circuit exploiting unavoidable IC fabrication
process variations (for example path delays) to generate secrets.

First part of [6] is an example of use of PUF f for authenticating each
tag. A more general idea could be to save a lot of (c, f(c)) pairs for all tags
(where c is a random entry of the PUF) in each tag interrogator. Then a tag
interrogator ask a tag to give the output of its PUF corresponding to some
randomly chosen inputs c. Output of a PUF may depend a bit on external
condition (like temperature), but this issue can be solved by accepting some
error bits in the answer of the tag.

Unfortunately, (c, f(c)) pairs should be used only once, else an attacker could
use recorded answers. Thus, tag readers should know all recorded challenges of
each tag. This may represent a huge amount of data and would need a connec-
tion to a challenge database, meaning static or online applications. Moreover,
the database could be attacked, enabling the pirate to know all used PUF chal-
lenges and emulate genuine tags without needing to physically clone a PUF.

Nowadays, the only known implementation of this PUF secured tag technol-
ogy is the Vera X512H developped by Verayo ([25]).

3.2.4 Storing cryptographic secrets, physical attacks and PUF

Some of the previously presented cryptographic solutions require tags to store
shared or private secrets. Each secret should be readable only by the tag’s
microprocessor for cryptographic purposes. If a very high level of security is
required, it is not recommended to use memory for storing the secrets because
a physical analysis of the tag’s chip can enable an attacker to retrieve it.

Fortunately, PUFs can provide a solution. Indeed opening a chip with a
PUF will almost always change the PUF behavior. It is difficult to use directly
a PUF because output of a PUF can depend a bit on external conditions, but
there are ways to solve this problem. For example, in [24], the authors present
a tag authentication scheme using a signed private key issued from a PUF. It
uses a helper data and a special function which takes the helper data and the
response of the PUF to compute the private key. The helper data normally leak
very few bits and can be stored in a normal memory. This way, the private key
can be dynamically rebuilt, which avoids its storage.

3.3 Memory write protection

As seen in section 2, if write or kill operations 6 are not locked or disabled, an
attacker can easily make the system unavailable. To avoid this problem while
enabling authorized users to modify aggregates, a possible solution is to have
reader authentication (not tag authentication as in the previous section).
In section 3.6, some advices on ways to use simple password authentication are
given. A better method (if high level of security is required) is to use a symmetric
or asymmetric authentication scheme as those described in section 3.2.1.

However two points shall not be forgotten:

❼ Man-in-the-middle attacks has to be (almost) impossible (see section 3.2).
A genuine tag interrogator must not be helpfull for an attacker device to
pass the authentication in order to write data into tags.

6A lot of tags provide a “kill” feature which enables a tag interrogator to kill the tag, i.e.
to permanently disable the tag.

RR n➦ 7512



Physical aggregated objects and dependability 17

❼ Most of the time, tags cannot embed a public key database of all autho-
rized tag interrogators nor verify any certificate expiration’s date (passive
tags cannot embed a clock as they have no stable power supply). Hence
reader’s authentication is quite complex. More information can be found
in the article [19].

3.4 Aggregating company authentication

If a high level of security is required, one of the presented solutions should be
implemented to avoid cloning. However, instead of cloning tags, an attacker
could try to build pirate tags from scratch or to modify genuine tags. This
section will focus on methods aiming at proving the authenticity of the aggre-
gating data carried by the tags. This way, only aggregated objects issued from
an authorized provider will be taken into consideration.

3.4.1 Fragment authentication

Fragment authentication enables an aggregating company7 to prevent unau-
thorized aggregating systems from creating compatible aggregated fragments or
aggregated objects (related to no aggregated object but looking like a part of an
aggregated object). Notice that a corrupted fragment can be used as a parasite
tag.

The authentication can be dynamic or static.
Static authentication only uses public tag memory: a small amount of data

is added at the end of the aggregating data which proves aggregation was done
by an authorized aggregating system. If the used cryptosystem is symmetric,
these extra-data are called a MAC (Message Authenticatio On the one hand, a
signature mechanism enables to know which aggregating system created an ag-
gregated object. If the latter behaves dishonestly, its public key (see section 3.1)
can be revoked. On the other hand, MAC algorithms are generally significantly
faster and produce a lot shorter message authentication data (regarding memory
space used in the tag) than signature cryptosystems. In addition, MAC algo-
rithms often use either cryptographic hash functions or symmetric block cipher
which could be used by other parts of aggregating and verifying systems (hash
functions are often used in aggregating and verifying algorithms). This could
significantly speed up the system and would free up tag memory. Section 3.4.3
deals with theses perspectives.

Dynamic authentication could also be possible, but it would only attest that
the tag to be authenticated knows a secret (so it should be issued from the right
company). However, it would not guarantee that the aggregating data have
never been modified and is very costly.

Remark 3.4.1. The MAC/signature of cloned data remains the same as the
MAC/signature of original data. So, authenticating only aggregating data does
not prevent from fragment cloning. The only way to avoid it is to add unclone-
able data in the input of the MAC/signing function. If tags have an unique ID
(see section 3.2.2), signature or MAC makes tag indirectly totally uncloneable.

7An aggregating company is a company which is allowed to deliver aggregates. Nowadays,
there is only one aggregating company: SenseYou (http://www.senseyou.fr)

RR n➦ 7512

http://www.senseyou.fr


Physical aggregated objects and dependability 18

Authentication and aggregating digest size

Tag aggregation is based on data hashing. Collision resistance of the hashing
function should be high enough so they will be few chances to find an object
that can be swapped with an other without digitally affecting the integrity of
an aggregate it is part of. Moreover, without additional security mechanisms, it
is necessary to ensure that hashing functions are preimage and second preimage
resistant to avoid preimage attacks.

One benefit of authentication mechanisms is that it indirectly enforces secu-
rity of the aggregating system without requiring theses properties. Indeed, an
attacker cannot swap a tag with a one with an other ID nor change an aggregat-
ing digest by another without corrupting the MAC/signature. So using a tag or
aggregated object authentication enables to reduce the size of digest (without
reducing the security level) and enable using the system without locking write
operations (if an attacker changes the content of a tag, the signature will no
longer be valid). With authentication, the digest size is only determined by the
required probability of collisions.

Remark 3.4.2. If a second preimage resistant hash function is used for building
aggregating data, the authenticity of a fragment or aggregate can be verified only
when a high security level is required8.

3.4.2 Aggregated object authentication

Instead of authenticating each fragment, it is also possible to authenticate only
complete aggregated objects. On the one hand, it may use less tag memory to
store its signature because it can be spread over multiple tags, on the other hand,
an attacker can create fake tags and disturb the system (it is not possible to
reject unauthentic fragments are they are not signed) causing the inauthenticity
of the complete aggregated object.

3.4.3 Using MAC algorithm instead of hash function

There are another complementary way to use MAC: the hash function (used
by aggregating or verifying algorithms) can be replaced by a MAC algorithm.
In this case, the private key must be shared by all the aggregating/verifying
systems of a same service.

There are two main advantages. First, only a genuine aggregating system
can create aggregated objects9. Then, adding or replacing a tag in a read-only
aggregated object becomes a lot more difficult. Indeed, with a perfectly safe
hash function (it may not exist but let suppose currently used hash functions
have this intuitive property) with n bits output, finding a second preimage
needs to try about 2n different inputs. If n is big enough, this computation
is very costly but can be performed on any computer without any access to a
verifying system. But, if a perfectly secure MAC algorithm with n bits output
is used instead of an hash function and if the key cannot be recovered, trying

8There may have several uses of the same aggregated object which may require different
security levels.

9This property is obtained by almost all solutions of the section 3. However using a MAC
algorithm instead of a hash function would be significantly less resource consuming.

RR n➦ 7512



Physical aggregated objects and dependability 19

2n different inputs require to do 2n (or 2n−1 in mean) requests10 to a genuine
verifying system. So if a verifying system does not accept more than 1 request
per second (for instance), a brute force attack against an aggregated object
which uses a MAC algorithm needs at least about 2n seconds whereas such an
attack against an aggregated object which uses an hash function requires only
2n computations of the hash function (and each computation may take only a
few milliseconds — furthermore these computations may be distributed on a
huge number of computers).

Using a MAC enables to reduce the size of the aggregation data (without
reducing the security level).

Remark 3.4.3. It is also possible to use a signature (of the digest) instead of
the digest (or the MAC) itself. Each aggregating system could have a different
private key and all verifying systems could check aggregates using corresponding
public keys. Even if this solution is more flexible (than MAC) for key manage-
ment, it has two disadvantages. Signature size is often much bigger than MAC
size and signature verification is slower than MAC computation. Unfortunately
aggregating systems often need to store two digests (or signature in this case)
and verifying system could require to achieve a lot of computations.

3.5 Encryption

Encryption of the tag data avoids unauthorized readers to parse data of tags
and brings so the following advantages:

❼ only authorized readers can create aggregated objects.

❼ an unauthorized reader cannot say if objects are aggregated or not (privacy
feature).

❼ a company can prevent other companies to sell compatible aggregating or
verifying systems11.

The first point can be performed by a company authentication (see 3.4), but
symmetric encryption is often a lot faster than signature (but not than MAC).

Warning 3.5.1. Generally encryption does not provide authentication. An
attacker can make a fake tag with random data (instead of encrypted data) and
he can so disturb the system (the tag is seen as a part of a aggregated object by
the verifying system although it is just a fake tag).

Asymmetric or symmetric encryption algorithms can be used. However it
does not seem very useful to use asymmetric algorithm because the private
key (used for decryption) shall be shared by all RFID readers anyway and
asymmetric encryption algorithms are often slower than symmetric ones (i.e.

10Request is a very generic term but it cannot be easily specified. Actually, the issue is
to prevent the attacker from verifying more than one MAC in a given unit of time. MAC
verification cannot be normally directly performed but they often can easily be indirectly
performed (for example by putting tags with special data near the tag interrogator and by
watching its reactions).

11It is not only a matter of technological monopoly, it is really important regarding the
security. For instance, another company could interfere with one of the proposed services, or
would not fully implement all security mechanisms.

RR n➦ 7512



Physical aggregated objects and dependability 20

they need more computing resources) and cipher text are often longer than
plain text (for example, for El Gamal encryption algorithm, cipher text size is
twice plain text size).

If signature (see section 3.4) is also required, signcryption can be a good
alternative to symmetric encryption and asymmetric encryption. Signcryption
is a cryptographic primitive which simultaneously sign and encrypt (in an asym-
metric way) a plain text.

But separated symmetric encryption and signature have the following ad-
vantage: a cheap verifying system can only decrypt the tag without verifying
signature whereas a state of the art one can decrypt tag data and verify signa-
ture.

If MAC (see section 3.4) is also required, authenticated encryption can be
used. Authenticated encryption is a cryptographic primitive which simulta-
neously performs a MAC and encrypts a plain text. There is often only one
private key for these two operations. Authenticated encryption is something
like a symmetric signcryption.

When neither signcryption nor authenticated encryption is chosen, there is
another choice to do: whether the tag is first signed (or authenticated by a MAC)
then encrypted or if the tag is first encrypted and then signed (or authenticated
by a MAC — signature or MAC is not encrypted). The second solution brings
two advantages: it needs to encrypt a smaller amount of data and signature can
be verified without decrypting data. The first solution hides the signature which
may be useful. In particular, it prevents an attacker who knows the signature
public keys (used by each aggregating system) but not the encryption private
one from knowing which system created the aggregated object.

3.6 Use of password

Passwords are the simplest way to do an authentication. But, as explained in
section 3.2, plaintext passwords can be eavesdropped. If an attacker manages
to get a password, he can do the same things as a genuine reader.

So, here are some basic rules that should be applied:

❼ reduce the number of times a password is sent over the air,

❼ when encryption is supported, send the ciphertext of the password and a
nonce ciphered together,

❼ password memory (write or read) lock should be used only when perma-
nent lock cannot be used (when a tag shall be used multiple times),

❼ passwords should not be the same for all tags.

In order not to use the same password for each tag, there are (at least) two
possibilities:

❼ store the password in a secured tag (with real authentication and encryp-
tion). Most aggregate-based applications enable using secure personal
badges (sometimes from another service).

❼ the password of each tag is a MAC of its ID. The key of this MAC shall be
different from the keys of the potential other MACs of the aggregate-based
application.

RR n➦ 7512



Physical aggregated objects and dependability 21

The second possibility enables to do a really simple authentication to the
tag and, if eavesdropping is impossible, it prevents from cloning tags. Indeed
an attacker does not have access to the password and so cannot copy the tag.

In addition, password authentications should only be proceeded in restricted
areas where there must be no eavesdropper.

RR n➦ 7512



Physical aggregated objects and dependability 22

4 State of the art

The section 3 provided only theoretical solutions without any detailed implemen-
tation (except for tag authentication and unclonability). This section focuses on
a possible implementation an aggregate-based system using currently available
low cost tags: Alien Higgs 3 tags.

4.1 Higgs 3 based implementation

The proposed implementation aims to provide a security strength of 80 bits
(that means about 280 operations are needed to break cryptographic primi-
tives). Only NIST approved primitives are used: HMAC, DSA and AES-CFB.
Recommended security strength given in this section comes from this NIST
document: [18].

According to the previous sections, two main points shall be verified by tags
(except if security has strictly no importance):

❼ tags shall be attached to physical objects..

❼ tags shall not be cloneable.

The first point can be provided using destructible tags: when an attacker
tries to remove such a tag, it gets destroyed (see [14]). It seems possible to make
destructible any RFID inlay. Another solution is to use very rugged tags and
very good glue.

Concerning the second point, not all tags provide a real protection against
cloning: for most tags, the protection is only based on the fact that a part of the
memory can not be written by a reader; this is not sufficient, see section 3.2 for
more information. The Alien Higgs 3 tags provide a TID unclonability feature.
This is one reason why it has been chosen.

4.1.1 Alien Technology➤ Higgs 3 tags

Alien Technology➤ Higgs 3 tags are UHF EPC class 1 generation 2 (also called
C1G2 tags — standard [13]) tags with some extra-features.

Memory banks All C1G2 tags have four memory banks:

❼ EPC: (RW) 96 bits for Higgs3 tags + some extra-bits for CRC.

❼ reserved: (private) where passwords are stored

❼ TID: (RO+auth) 96 factory programmed bits, of which 64 bits are called
UID (unique identifier). Alien ensures each produced Higgs 3 tags has a
different UID.

❼ User: (RW) 512 bits for Higgs3 tags.

According to EPC C1G2 standard, EPC ID shall be either as defined in
ISO/IEC 15961 or as defined in the EPC Tag Data Standard ([12]). Anyway,
in this implementation, only User memory is used: EPC ID is not modified (it
is the one programmed by Alien).

RR n➦ 7512



Physical aggregated objects and dependability 23

Unique ID Higgs 3 tags have a very interesting feature: dynamic authentica-
tion. Dynamic authentication enables an Alien interrogator to recognize genuine
Alien tags. For more information see: [1]. This mechanism ensures the UID is
really unique, as soon as dynamic authentication is not flawed. Unfortunately,
we have not had access to the specifications of dynamic authentication and we
cannot see how it works exactly.

Kill and access password Higgs 3 tags, like all C1G2 tags can be killed,
that means can be completely disabled such that tags do not respond anymore
to a tag interrogator. Killing a tag requires knowing the kill password stored in
the tag. If the kill password is 0, the tag cannot be killed (or more precisely,
the kill password must first be changed).

The kill password can also be used (in some tags) to recommission a tag (see
standard for more information).

The access password is another password stored in the tag. It can be used
to enter the secured state. Some features of the tags are only available when
the tag is in the secured state. By default, the tag is in the open state.

Lock When a tag is transitioned to the secured state (using the appropriate
password) it is possible to lock its memory banks or password(s). Locking a
memory bank prevents users from writing on it until they transition the tag to
the secured state. Locking a password prevents users from reading and writing
this password until they transition the tag to the secured state.

A tag interrogator can also request a tag in secure state to permanently write
the lock status of a password or memory bank. If the lock status is “lock”, it is
said the interrogator “perma-locks”the password or the memory bank, otherwise
it“perma-unlocks” it.

Alien Higgs 3 tags can also perma-lock blocks of memory (instead of complete
memory bank).

They also provide read locking features. Each block (64 bits) of user memory
can be read locked. The read lock is effective in open state. If the tag is
transitioned to secured state, memory blocks can still be read.

Important recommendation In aggregate-based application, availabil-
ity is often important and so it is highly recommended to perma-lock the kill
password to 0. This prevents an attacker from killing or recommissioning tags.

4.1.2 Implementation

The used aggregating format uses two 80 bits data fields to store aggregating
data.

As proposed in section 3.4.3, the hash function is replaced by the HMAC-
SHA-1-80 MAC algorithm (80 first bits of HMAC with SHA-1). The key length
might be 160 bits or more.

Only the user memory is used. Its organization is depicted in figure 6.
The header is not encrypted.
The ciphertext part is encrypted by AES-CFB (This ensures protections

against attacks which consists in XORing last part of ciphertext to create an-
other ciphertext whose corresponding plain text has some bits inverted). The
initialization vector is depicted in figure 7.

RR n➦ 7512



Physical aggregated objects and dependability 24

0 3 4 9 10 15 16 21 22 31

App Version Key ID Sig ID Random
}

Header

MAC 1 (80 bits)

MAC 2 (80 bits)

(EC)DSA Signature (320 bits)























































































































































Ciphertext

Figure 6: User data memory of the Higgs 3 implementation

0 31

Header (32 bits)

TID (96 bits)

Figure 7: Initialization Vector

The random number in the header (see figure 6) should be randomly chosen
each time the tag is written. It enables to avoid that the same initialization
vector is used twice (but due to birthday paradox, it works approximatively
only when the tag is written less than 25 = 32 times).

Tag data are signed thanks to a DSA (or ECDSA12) signature of 320 bits.
More precisely, data of figure 8 are signed.

Each aggregating controller should have its own private key to sign tags.
Each verifying controller shall have all public keys corresponding to these private
keys. If an aggregating controller gets corrupt, its public key is removed from
verifying controllers.

There are many ways to deal with access password. It can be:

12ECDSA and DSA are very similar. Depending on the hardware, one may be faster than
the other.

RR n➦ 7512



Physical aggregated objects and dependability 25

TID (96 bits)

EPC (96 bits)

User Data (192 first bits)

Figure 8: Signed data

❼ a MAC of the whole data of the tags (see section 3.6). In this case, an
authentication can be made thanks to this tag specific password. However,
it prevents from locking read operation in open-mode.

❼ a common password. In this case, a read lock can be performed.

❼ a password stored in the user badge. It supposes the user badges is a
cryptographic tag. In this case, a read lock can be performed.

Notice that none of theses propositions faces the password eavesdropping prob-
lem since the password is regularly sent over the air. If data are not perma-locked
but just locked, it enables an attacker to easily write random data in the tag and
cause the system unavailability. In addition, risks are higher when passwords
are shared: if an attacker gets the password from a tag, he can modify all the
tags sharing it.

4.2 Discussion

4.2.1 Advantages and drawbacks of UHF C1G2 tags

UHF C1G2 tags are very common and inexpensive tags. Their read distance
may be up to 10 meters when the read distance of most of other passive tags is
often less than 1.5 meters.

Furthermore, according to [2]: current UHF tags can be used near liquids or
metal.

But UHF tags features are very limited. No UHF tags have classical crypto-
graphic primitives like RSA or AES, contrary to some HF tags. However some
UHF tags have new or private cryptographic primitives (whose security level is
often very low — see article [8]), like Higgs 3 tag for dynamic authentication or
SecureRF Lime tag. The SecureRF Lime tags are battery-assisted C1G2 tags
which provide authentication and encryption. According to their description,
they seem uncloneable. They use the Algebraic Eraser➋ to perform asymmetric
authentication. This algorithm is described in a published article [3] but the
used parameters are proprietary and are not known. There are attacks on this
algorithm: [17] and [15] but it is not sure these attacks work with SecureRF
parameters.

4.2.2 EPC ID

The GID-96 EPC standard proposed by GS1 do not require all the EPC to
be unique but prevents from collision issues with tags from another company
(each company has a different “General Manager Number” — this number is
attributed by GS1).

RR n➦ 7512



Physical aggregated objects and dependability 26

Here is a structure that would not fully respect one of the EPC encodings
but it has a GID-96 header, enables to identify the company the tag is from,
and leaves 60 bits free:

0 3 4 7 8 31

0011 0101 General Manager Number (28 bits)

Aggregation data (60 bits)

Figure 9: EPC data memory

Remark 4.2.1. The free bits from the EPC memory bank could be used to store
a part of the first MAC to detect potential aggregated object without reading the
User bank. It can be advantageous for systems offering better performance at
reading EPC bank data.

4.2.3 Discussion

The Higgs 3 implementation has been chosen because of its flexibility: authen-
tication and signature verifications are not mandatory. Some tags interrogator,
in secure areas for example, can run theses tests, others might not implement
them.

The proposed implementation seems quite very secured, if Alien dynamic
authentication is secured (which is not proved. . . ).

If there were C1G2 tags with a real unique ID feature (such as described in
section 3.2.2), the Higgs 3 solution (applied to these tags) may be sufficient for
almost all applications.

Moreover, most aggregate-based applications require each user to have a
badge (for instance in UbiPark). This badge might be a very secured HF badge
(relying on widely used cryptographic primitives) to ensure a higher level of
security.

The main issue is maybe privacy: tags broadcast their unique ID as soon as
they receive enough power to do it, so they are easy to track. A real authenti-
cation of the tag and a randomized encryption as described in section 3.2.1 is a
partial solution. But according to [4], privacy (and non traceability) is a very
difficult problem with RFID tags.

RR n➦ 7512



Physical aggregated objects and dependability 27

Contents

1 Aggregated objects and basic concepts 3
1.1 Basic aggregated objects . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Example of uses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Ubi-Check . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Ubi-Park . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Analogy with packet switching . . . . . . . . . . . . . . . . . . . 4
1.4 Typical architecture . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Dependability threats 6
2.1 Failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Unauthorized use of a service . . . . . . . . . . . . . . . . 6
2.1.2 Denial of service to authorized persons . . . . . . . . . . . 6
2.1.3 Privacy leaks . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.4 Specific application failure (substitution, theft, vandalism...) 7

2.2 Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Illegal appearance or disappearance of a tag . . . . . . . . 7
2.2.2 Tag swapping . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.3 Forged fragment tags . . . . . . . . . . . . . . . . . . . . . 7
2.2.4 Presence of parasite tags . . . . . . . . . . . . . . . . . . . 8
2.2.5 Unavailable communication . . . . . . . . . . . . . . . . . 8
2.2.6 Partial user localisation . . . . . . . . . . . . . . . . . . . 8
2.2.7 Personal user data leak . . . . . . . . . . . . . . . . . . . 8

2.3 Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.1 RF media faults . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Physical weaknesses . . . . . . . . . . . . . . . . . . . . . 9
2.3.3 Data attacks . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Solutions 11
3.1 Keys and cryptosystems . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 Symmetric and Asymmetric cryptosystems . . . . . . . . 11
3.1.2 Digital certificates . . . . . . . . . . . . . . . . . . . . . . 12
3.1.3 Key storage and shared key . . . . . . . . . . . . . . . . . 13

3.2 Uncloneable tags and authentication . . . . . . . . . . . . . . . . 13
3.2.1 Randomized encryption . . . . . . . . . . . . . . . . . . . 14
3.2.2 Unique ID with zero-knowledge proof . . . . . . . . . . . 15
3.2.3 Physical Uncloneable Function (PUF) . . . . . . . . . . . 15
3.2.4 Storing cryptographic secrets, physical attacks and PUF . 16

3.3 Memory write protection . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Aggregating company authentication . . . . . . . . . . . . . . . . 17

3.4.1 Fragment authentication . . . . . . . . . . . . . . . . . . . 17
3.4.2 Aggregated object authentication . . . . . . . . . . . . . . 18
3.4.3 Using MAC algorithm instead of hash function . . . . . . 18

3.5 Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.6 Use of password . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

RR n➦ 7512



Physical aggregated objects and dependability 28

4 State of the art 22
4.1 Higgs 3 based implementation . . . . . . . . . . . . . . . . . . . . 22

4.1.1 Alien Technology➤ Higgs 3 tags . . . . . . . . . . . . . . 22
4.1.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.1 Advantages and drawbacks of UHF C1G2 tags . . . . . . 25
4.2.2 EPC ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Contents 27

References 29

RR n➦ 7512



Physical aggregated objects and dependability 29

References

[1] Alien Technology➤. Alien Technology➤ Bolsters Higgs-3➋ RFID IC Se-
curity with “Dynamic Authentication”. Sept. 2009. url: http://www.
alientechnology.com/newsevents/2009/press091609.php.

[2] Alien Technology➤. Pharmaceutical Shifts Towards UHF RFID for Sav-
ings. White paper, Alien. url: http://www.alientechnology.com/

docs/WP_UHF_RFIDPharmaceutical.pdf.

[3] I. Anshel et al. “Key agreement, the Algebraic Eraser➋, and lightweight
cryptography”. In: Algebraic methods in cryptography: AMS/DMV Joint
International Meeting, June 16-19, 2005, Mainz, Germany: International
Workshop on Algebraic Methods in Cryptography, November 17-18, 2005,
Bochum, Germany. Vol. 418. American Mathematical Society. 2006, p. 1.

[4] G. Avoine and P. Oechslin. “RFID traceability: A multilayer problem”.
In: Financial Cryptography and Data Security (2005), pp. 125–140.

[5] L. Batina et al. “An elliptic curve processor suitable for RFID-tags”. In:
Int. Assoc. for Cryptologic Research ePrint Archive (2006).

[6] Leonid Bolotnyy and Gabriel Robins. “Physically Unclonable Function-
Based Security and Privacy in RFID Systems”. In: Pervasive Computing
and Communications, 2007. PerCom ’07. Fifth Annual IEEE Interna-
tional Conference on. 2007, pp. 211 –220. doi: 10.1109/PERCOM.2007.26.

[7] M. Braun, E. Hess, and B. Meyer. “Using elliptic curves on rfid tags”. In:
IJCSNS 8.2 (2008), p. 1.

[8] Nicolas T. Courtois. The Dark Side of Security by Obscurity and Cloning
MiFare Classic Rail and Building Passes Anywhere, Anytime. Cryptology
ePrint Archive, Report 2009/137. 2009. url: http://eprint.iacr.org/.

[9] Srini Devadas. Physical Unclonable Functions and Applications. url:
http : / / people . csail . mit . edu / rudolph / Teaching / Lectures /

Security/Lecture-Security-PUFs-2.pdf.

[10] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol
Version 1.2. RFC 5246 (Proposed Standard). Updated by RFCs 5746,
5878. Internet Engineering Task Force, Aug. 2008. url: http://www.
ietf.org/rfc/rfc5246.txt.

[11] J.C. Laprie (ed). Depdendability Basic concepts and terminology. Springer-
Verlag Wien New York, 1991.

[12] EPCGlobal➋. EPC Tag Data Standard (TDS) v. 1.4. June 2008. url:
http://www.epcglobalinc.org/standards/tds/tds_1_4-standard-

20080611.pdf.

[13] EPCGlobal➋. UHF Class 1 Gen 2 Standard v. 1.2. May 2008. url: http:
//www.epcglobalinc.org/standards/uhfc1g2.

[14] Hanser. Metalcraft introduces destructible option for RFID Windshield
Tag. url: http : / / www . hanser . com / 2009 / news / metalcraft -

introduces-destructible-option-for-rfid-windshield-tag.

[15] A. Kalka, M. Teicher, and B. Tsaban. “Cryptanalysis of the Algebraic
Eraser and short expressions of permutations as products”. In: Arxiv
preprint arXiv:0804.0629 (2008).

RR n➦ 7512

http://www.alientechnology.com/newsevents/2009/press091609.php
http://www.alientechnology.com/newsevents/2009/press091609.php
http://www.alientechnology.com/docs/WP_UHF_RFIDPharmaceutical.pdf
http://www.alientechnology.com/docs/WP_UHF_RFIDPharmaceutical.pdf
http://dx.doi.org/10.1109/PERCOM.2007.26
http://eprint.iacr.org/
http://people.csail.mit.edu/rudolph/Teaching/Lectures/Security/Lecture-Security-PUFs-2.pdf
http://people.csail.mit.edu/rudolph/Teaching/Lectures/Security/Lecture-Security-PUFs-2.pdf
http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc5246.txt
http://www.epcglobalinc.org/standards/tds/tds_1_4-standard-20080611.pdf
http://www.epcglobalinc.org/standards/tds/tds_1_4-standard-20080611.pdf
http://www.epcglobalinc.org/standards/uhfc1g2
http://www.epcglobalinc.org/standards/uhfc1g2
http://www.hanser.com/2009/news/metalcraft-introduces-destructible-option-for-rfid-windshield-tag
http://www.hanser.com/2009/news/metalcraft-introduces-destructible-option-for-rfid-windshield-tag


Physical aggregated objects and dependability 30

[16] Paul Couderc Michel Banâtre Fabien Allard. “A spatial computing ap-
proach for integrity checking of objects groups”. In: (2010).

[17] A.D. Myasnikov and A. Ushakov. “Cryptanalysis of the Anshel-Anshel-
Goldfeld-Lemieux key agreement protocol”. In: Groups-Complexity-
Cryptology 1.1 (2009), pp. 63–75.

[18] NIST. Recommendation for Key Management. Mar. 2007. url: http:
//csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-

revised2_Mar08-2007.pdf.

[19] R. Nithyanand, G. Tsudik, and E. Uzun. Readers behaving badly: Reader
revocation in PKI-based RFID systems. Tech. rep. Cryptology ePrint
Archive, Report 465, 2009.

[20] T. Okamoto. “Provably secure and practical identification schemes
and corresponding signature schemes”. In: Advances in Cryptol-
ogy—CRYPTO’92. Springer. 1993, pp. 31–53.

[21] RFC. RFC 4253 - The Secure Shell (SSH) Transport Layer Protocol. url:
http://www.ietf.org/rfc/rfc4253.txt.

[22] C.P. Schnorr. “Efficient signature generation by smart cards”. In: Journal
of cryptology 4.3 (1991), pp. 161–174.

[23] Douglas R. Stinson. Cryptography: Theory and Practice. CRC-Press, 1995.

[24] P. Tuyls and L. Batina. “RFID-tags for Anti-Counterfeiting”. In: Topics
in Cryptology–CT-RSA 2006 (2006), pp. 115–131.

[25] Verayo. Verayo PUF RFID. url: http://www.verayo.com/product/
pufrfid.html.

RR n➦ 7512

http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007.pdf
http://www.ietf.org/rfc/rfc4253.txt
http://www.verayo.com/product/pufrfid.html
http://www.verayo.com/product/pufrfid.html


Centre de recherche INRIA Rennes – Bretagne Atlantique
IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier

Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq
Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique

615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex
Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex
Centre de recherche INRIA Sophia Antipolis – Méditerranée : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

❤tt♣✿✴✴✇✇✇✳✐♥r✐❛✳❢r

ISSN 0249-6399


	Aggregated objects and basic concepts
	Basic aggregated objects
	Example of uses
	Ubi-Check
	Ubi-Park

	Analogy with packet switching
	Typical architecture

	Dependability threats
	Failures
	Unauthorized use of a service
	Denial of service to authorized persons
	Privacy leaks
	Specific application failure (substitution, theft, vandalism...)

	Errors
	Illegal appearance or disappearance of a tag
	Tag swapping
	Forged fragment tags
	Presence of parasite tags
	Unavailable communication
	Partial user localisation
	Personal user data leak

	Faults
	RF media faults
	Physical weaknesses
	Data attacks

	Summary

	Solutions
	Keys and cryptosystems
	Symmetric and Asymmetric cryptosystems
	Digital certificates
	Key storage and shared key

	Uncloneable tags and authentication
	Randomized encryption
	Unique ID with zero-knowledge proof
	Physical Uncloneable Function (PUF)
	Storing cryptographic secrets, physical attacks and PUF

	Memory write protection
	Aggregating company authentication
	Fragment authentication
	Aggregated object authentication
	Using MAC algorithm instead of hash function

	Encryption
	Use of password

	State of the art
	Higgs 3 based implementation
	Alien Technology® Higgs 3 tags
	Implementation

	Discussion
	Advantages and drawbacks of UHF C1G2 tags
	EPC ID
	Discussion


	Contents
	References

