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Abstract: It is now well known that sparse or compressible vectors can be stably recovered
from their low-dimensional projection, provided the projection matrix satisfies a Restricted
Isometry Property (RIP). We establish new implications of the RIP with respect to nonlinear
approximation in a Hilbert space with a redundant frame. The main ingredients of our ap-
proach are: a) Jackson and Bernstein inequalities, associated to the characterization of certain
approximation spaces with interpolation spaces; b) a new proof that for overcomplete frames
which satisfy a Bernstein inequality, these interpolation spaces are nothing but the collection of
vectors admitting a representation in the dictionary with compressible coefficients; c) the proof
that the RIP implies Bernstein inequalities. As a result, we obtain that in most overcomplete
random Gaussian dictionaries with fixed aspect ratio, just as in any orthonormal basis, the er-
ror of best m-term approximation of a vector decays at a certain rate if, and only if, the vector
admits a compressible expansion in the dictionary. Yet, for mildly overcomplete dictionaries
with a one-dimensional kernel, we give examples where the Bernstein inequality holds, but
the same inequality fails for even the smallest perturbation of the dictionary.
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∗ Rémi Gribonval is with INRIA, Centre Inria Rennes - Bretagne Atlantique, Campus de Beaulieu, F-35042 Rennes
Cedex, Rennes, France. Phone: +33 2 99 84 25 06. Fax: +33 2 99 84 71 71. Email: remi.gribonval@inria.fr.

† Morten Nielsen is with the Department of Mathematical Sciences, Aalborg University, Frederik Bajersvej 7G,
DK - 9220 Aalborg East, Denmark. Email: mnielsen@math.aau.dk



Sur la propriété d’isométrie restreinte et l’approximation

non-linéaire avec un dictionnaire redondant

Résumé : Il est maintenant bien établi que les vecteurs parcimonieux ou compressibles peu-
vent être estimés de façon stable à partir de leur projection en petite dimension, dès que la
matrice de projection satisfait une Propriété d’Isométrie Restreinte (RIP). Nous établissons de
nouvelles conséquences de la RIP vis à vis de l’approximation non-linéaire dans un espace
de Hilbert avec un repére oblique (ou frame) redondant. Les principaux ingrédients de notre
approche sont : a) des inégalités de Jackson et de Bernstein, associées à des caractérisations
de certains espaces d’approximation en termes d’espaces d’interpolation ; b) la preuve que
pour des repères obliques satisfaisant ladite inégalité de Bernstein, les espaces d’interpolation
en question ne sont rien d’autres que l’ensemble des vecteurs ayant une représentation à co-
efficients compressibles dans le dictionnaire ; c) la preuve que la RIP implique des inégalités
de Bernstein. Une conséquence de ces résultats est que la plupart des dictionnaires Gaussiens
aléatoires de facteur de redondance fixé se comportent comme une base orthogonale du point
de vue des espaces d’approximation : l’erreur optimale d’approximation à m termes d’un
vecteur décroı̂t à une certaine vitesse en fonction de m si, et seulement si, le vecteur admet une
représentation compressible dans le dictionnaire. Toutefois, nous montrons qu’il existe aussi
des dictionnaires de redondance minimale, dont le noyau est de dimension un, pour lesquels
l’inégalité de Bernstein, bien que vérifiée, peut être mise en défaut lorsque le dictionnaire subit
une perturbation arbitrairement petite.

Mots-clés : Inégalité de Bernstein, dictionnaire aléatoire, condition d’isométrie restreinte
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1 Introduction

Data approximation using sparse linear expansions from overcomplete dictionaries has become
a central theme in signal and image processing with applications ranging from data acquisition
(compressed sensing) to denoising and compression. Dictionaries can be seen as collections
of vectors {ϕj} from a Banach space X equipped with a norm ‖ · ‖X , and one wishes to
approximate data vectors f using k-term expansions ∑j∈I cj ϕj where I is an index set of size k.

Formally, using the matrix notation Φc = ∑j cj ϕj and denoting ‖c‖0 = ♯{j, cj 6= 0} the number
of nonzero components in the vector c , we can define the (nonlinear) set of all such k-term
expansions

Σk(Φ) := {Φc, ‖c‖0 ≤ k} .

1.1 Best k-term approximation

A first question we may want to answer, for each data vector f , is: how well can we approximate
it using elements of Σk(Φ)? The error of best k-term approximation is a quantitative answer for
a fixed k:

σk( f , Φ) := inf
y∈Σk(Φ)

‖ f − y‖X .

A more global view is given by the largest approximation rate s > 0 such that1

σk( f , Φ) . k−s, ∀k ≥ 1.

To measure more finely the rate of approximation, one defines for 0 < q < ∞ [8, Chapter 7,
Section 9]

| f |As
q(Φ) :=

(

∑
k≥1

[ksσk( f , Φ)]q k−1

)1/q

≍
(

∑
j≥0

[

2jsσ2j( f , Φ)
]q
)1/q

. (1.1)

and the associated approximation spaces

As
q(Φ) := { f ∈ H, | f |As

q(Φ) < ∞} (1.2)

1.2 Sparse or compressible representations

Alternatively, we may be interested in sparse / compressible representations of f in the dictionary.
Suppose the vectors forming Φ are quasi-normalized in X: for all j, 0 < c ≤ ‖ϕj‖X ≤ C < ∞.

Then using ℓτ (quasi)-norms (in particular, 0 < τ ≤ 1) one defines2

‖ f‖ℓτ (Φ) := inf
c|Φc= f

‖c‖τ (1.3)

and the associated sparsity spaces (also called smoothness spaces, for when Φ is, e.g., a wavelet
frame, they indeed characterize smoothness on the Besov scale)

ℓτ(Φ) := { f , ‖ f‖ℓτ (Φ) < ∞}.

1 The notation a . b indicates the existence of a finite constant C such that a ≤ C · b. The notation a ≍ b means that
we have both a . b and b . a. As usual, C will denote a generic finite constant, independent from the other quantities
of interest. Different occurences of this notation in the paper may correspond to different values of the constant.

2It has been shown in [11] that under mild assumptions on the dictionary, such as Eq. (1.4), the definition (1.3) is
fully equivalent to the more general topological definition of ‖ f ‖ℓτ(Φ) introduced in [8].
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1.3 Direct and inverse estimates

Interestingly, the above defined concepts are related. In a Hilbert space X = H, when Φ

satisfies the upper bound

‖Φc‖2
H ≤ B · ‖c‖2

2, ∀c ∈ ℓ2, (1.4)

the sparsity spaces for 0 < τ < 2 are characterized as

ℓτ(Φ) = { f , ∃c, ‖c‖ℓτ < ∞, f = Φc} = Φℓτ ,

and for any s > 0 we have the so-called Jackson inequality

σk( f , Φ) ≤ Cτ(B) · ‖ f‖ℓτ(Φ) · k−s, s =
1

τ
− 1

2
, ∀ f ∈ ℓτ(Φ), ∀k ∈ N (1.5)

where, as indicated by the notation, the constant Cτ(B) only depends on τ and the upper
bound B in (1.4). Note that the upper bound (1.4) holds true whenever the dictionary is a
frame: B is then called the upper frame bound, and we will use this terminology.

When Φ is an orthogonal basis, a converse result is true: if σk( f , Φ) decays as k−s then
‖ f‖ℓτ

w(Φ) < ∞, where ℓτ
w is a weak ℓτ space [8] and s = 1/τ − 1/2. More generally, inverse

estimates are related to a Bernstein inequality [7, 6].

‖ fk‖ℓτ(Φ) ≤ C · kr · ‖ fk‖H, ∀ fk ∈ Σk(Φ), ∀k. (1.6)

The inequality (1.6) is related to the so-called Bernstein-Nikolsky inequality, we refer the reader
to [1, 6] for more information.

1.4 When approximation spaces are sparsity spaces

When a Jackson inequality holds together with a Bernstein inequality with matching exponent
r = 1/τ − 1/2, it is possible to characterize (with equivalent (quasi)-norms) the approximation
spaces As

q(Φ) as real interpolation spaces [6, Chapter 7] between H, denoted (H, ℓτ(Φ))θ,q,
where s = θr, 0 < θ < 1. The definition of real interpolation spaces will be recalled in
Section 2. Let us just mention here that it is based on decay properties of the K-functional

K( f , t;H, ℓp(Φ)) = inf
c∈ℓp

{‖ f − Φc‖H + t‖c‖p
}

. (1.7)

A priori, without a more explicit description of real interpolation spaces, the characterization
of approximation spaces as interpolation spaces may seem just a sterile pedantic rewriting.
Fortunately, we show in Section 2 (Theorem 2.1) that the Bernstein inequality (1.6), together with
the upper frame bound (1.4), allows to directly identify approximation spaces with sparsity
spaces, with equivalent (quasi)-norms, for certain ranges of parameters. In particular, the
following result can be obtained as a consequence of Theorem 2.1.

Theorem 1.1. Suppose that Φ satisfies the upper frame bound (1.4) with constant B as well as the
Bernstein inequality (1.6) with some 0 < τ ≤ 1, with exponent r = 1/τ − 1/2 and constant C. Then
we have

Ar
τ(Φ) = ℓτ(Φ) (1.8)

with equivalent norms, i.e.

c1(B, C) · ‖ f‖ℓτ (Φ) ≤ ‖ f‖Ar
τ(Φ) := ‖ f‖H + | f |Ar

τ(Φ) ≤ c2(B, C) · ‖ f‖ℓτ (Φ)

where the constants only depend on B and C.

RR n° 7548
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In other words, under the assumptions of Theorem 1.1, a data vector f ∈ H can be approx-
imated by k-term expansions at rate k−r (in the sense f ∈ Ar

τ(Φ), where r = 1/τ − 1/2) if, and
only if, f admits a sparse representation f = ∑j cj ϕj with ∑j |cj|τ < ∞.

1.5 Ideal vs practical approximation algorithms

Consider a function f that can be approximated at rate k−r using k-term expansions from Φ:
σk( f , Φ) . k−r , ∀k ≥ 1. Under the assumptions of the above Theorem, we can conclude that
the function f indeed admits a representation f = ∑j cj ϕj with ∑j |cj|τ < ∞. Suppose that we
know how to compute such a representation (e.g., that we can solve the optimization problem
min ‖c‖τ subject to f = Φc). Then, sorting the coefficients in decreasing order of magnitude

|cjm | ≥ |cjm+1
|, one can build a simple sequence of k-term approximants fm := ∑

k
m=1 cjm ϕjm

which converge to f at the rate r: ‖ f − fk‖H . k−r. Note that one may not however be able to
guarantee that ‖ f − fk‖H ≤ Cσk( f , Φ) for a fixed constant C < ∞.

A special case of interest is τ = 1, where the optimization problem

min ‖c‖1 subject to f = Φc

is convex, and the unit ball in ℓ1(Φ) is simply the convex hull of the symmetrized dictionary
{±ϕj}j with ϕj the atoms of the dictionary Φ. Therefore, under the assumptions of the above

Theorem for τ = 1, if a function can be approximated at rate k−1/2 then, after proper rescaling,
it belongs to the convex hull of the symmetrized dictionary, and there exists constructive
algorithms such as Orthonormal Matching Pursuit [13, 14] which are guaranteed to provide
the rate of approximation k−1/2 [8, Theorem 3.7].

1.6 Null Space Properties and fragility of Bernstein inequalities

On the one hand, it is known [11] that Jackson inequalities are always satisfied provided that
the dictionary is a frame, i.e.,

A‖ f‖2
H ≤ ‖Φ

T f‖2
2 ≤ B‖ f‖2

H, ∀ f ∈ H. (1.9)

The upper bound B is actually equivalent to the upper frame bound (1.4) and therefore suffi-
cient for a Jackson inequality to hold.

On the other hand, Bernstein inequalities are known to be much more subtle and seemingly
fragile: they may be satisfied for certain structured dictionaries, but not for arbitrarily small
perturbations thereof [10].

In Section 3, for the sake of simplicity we restrict our attention to the case τ = 1 when
the dictionary Φ forms a frame for a general Hilbert space H. We show that the Bernstein
inequality for ℓ1(Φ),

‖Φc‖ℓ1(Φ) ≤ Cm1/2‖Φc‖H, c : ‖c‖0 ≤ m, ∀m ≥ 1, (1.10)

is closely linked to properties of the kernel of Φ given by

N(Φ) := {z ∈ ℓ2 : Φz = 0}.

The seemingly simple case where we have a one dimensional null space for the dictionary,
N(Φ) = span{z} for some fixed sequence z, is particularly useful to demonstrate the fragility
of the Bernstein estimates as the following example shows.

RR n° 7548
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Example 1.2. Given any infinite dictionary Φ with N(Φ) = span{z}, where z = (zj)
∞
j=1 ∈ ℓp,

for some 0 < p ≤ 1. Then for each ε > 0, there is a vector z̃ with ‖z − z̃‖p < ε such that the

Bernstein inequality (1.10) fails for any dictionary Φ̃ with N(Φ̃) = span{z̃}.
A specific case is given by Φ = B ∪ {g}, with B the Dirac basis for ℓ2 and g ∈ ℓp for

some 0 < p < 1. Then we can find an arbitrarily small perturbation g̃ of g in ℓp such that the
Bernstein inequality fails for the ”perturbed” dictionary Φ̃ = B ∪ {g̃}.

Notice that in the preceeding example, nothing was asssumed about the Bernstein inequal-
ity for the dictionary Φ itself. Thus, arbitrarily close to any dictionary with a reasonable one
dimensional null space, there is a ”bad” dictionary.

However, it is possible to find good dictionaries with a one dimensional null space for
which (1.6) holds. The following example of such a dictionary.

Example 1.3. Suppose Φ satisfies N(Φ) = span{z}, where z = (zj)
∞
j=1 is such that there is a

constant C < ∞ satisfying

∀k ∈ N :
∞

∑
j=k

|zj| ≤ C|zk|.

Then the Bernstein inequality (1.10) holds true.
An explicit implementation of this example is given by Φ = B ∪ {g}, with B = {ek}k∈N an

orthonormal basis for ℓ2 and g = −∑
∞
k=1 akek for some fixed 0 < a < 1.

Examples 1.2 and 1.3 combined show that one can always perturb a nice dictionary Φ for
which (1.6) holds ever so slightly as to make (1.6) collapse.

We justify the two examples in Section 3 by performing a careful analysis of the Bernstein
inequality (1.10) when Φ is a frame. In Section 3.1 we study the general frame dictionary and
derive a sufficient condition stated in Proposition 3.1 for (1.10) to hold. Then in Section 3.2 we
present a more refined analysis (Proposition 3.2) in the special case where the kernel N(Φ) is
one-dimensional. The proof of Proposition 3.2 is based on an application of the general results
in Section 3.1.

1.7 Incoherence and the Restricted Isometry Property

The above examples illustrate that the Bernstein inequality (and its nice consequences such as
Theorem 1.1) can be fairly fragile. However, this could be misleading, and we will now show
that in a certain sense ”most” dictionaries satisfy the inequality in a robust manner.

In a previous work we showed that incoherent frames [12] satisfy a ”robust” Bernstein
inequality, although with an exponent r = 2(1/τ − 1/2) instead of the exponent s = 1/τ − 1/2
that would match the Jackson inequality. This inequality is then robust, because small enough
perturbations of incoherent dictionaries remain incoherent.

In the last decade, a very intense activity related to Compressed Sensing [9] has lead to the
emergence of the concept of Restricted Isometry Property (RIP) [3, 4], which generalizes the
notion of coherence. A dictionary Φ is said to satisfy the RIP of order k with constant δ if, for
any coefficient sequence c satisfying ‖c‖0 ≤ k, we have

(1 − δ) · ‖c‖2
2 ≤ ‖Φc‖2

H ≤ (1 + δ) · ‖c‖2
2. (1.11)

The RIP has been widely studied for random dictionaries, and used to relate the minimum ℓ1

norm solution c⋆ of an inverse linear problem f = Φc to a ”ground truth” solution c0 which is
assumed to be ideally sparse (or approximately sparse).

RR n° 7548
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In this paper, we are a priori not interested in ”recovering” a coefficient vector c0 from the
observation f = Φc0. Instead, we wish to understand how the rate of ideal (but NP-hard)
k-term approximation of f using Φ is related to the existence of a representation with small ℓτ

norm.
In Section 4, we study finite-dimensional dictionaries, where it turns out that the lower

bound in the RIP (1.11) provides an appropriate tool to obtain Bernstein inequalities with
controlled constant3. Namely, we say that the dictionary Φ satisfies LRIP(k, δ) with a constant
δ < 1 provided that

‖Φc‖2
H ≥ (1 − δ) · ‖c‖2

2, (1.12)

for any sequence c satisfying ‖c‖0 ≤ k. We prove (Lemma 4.1) that in H = R
N the lower frame

bound A > 0 and the LRIP(κN, δ), imply a Bernstein inequality for 0 < τ ≤ 2 with exponent
r = 1/τ − 1/2. As a result we have:

Theorem 1.4. Let Φ be an m × N frame with frame bounds 0 < A ≤ B < ∞. Assume that Φ satisfies
LRIP(κN, δ), where δ < 1 and 0 < κ < 1. Then

• for 0 < τ ≤ 2, the Bernstein inequality (1.6) holds with exponent r = 1/τ − 1/2 and a constant
Cτ(A, δ, κ) < ∞ (cf Eq. (4.1))

• for 0 < τ ≤ 1, 0 < θ < 1, we have, with equivalent norms,

Ar
τ(Φ) = ℓτ(Φ) = (H, ℓp(Φ))θ,τ,

1

τ
=

θ

p
+

1 − θ

2
.

The constant Cτ(A, δ, κ) and the constants in norm equivalences may depend on A, B, δ, and κ, but
they do not depend on the dimension N.

For random Gaussian dictionaries, the typical order of magnitude of A, δ(κ) is known
and governed by the aspect ratio R := N/m of the dictionary, provided that it is sufficiently
high dimensional (its number of rows should be above a threshold m(R) implicitly defined in
Section 4). We obtain the following theorem.

Theorem 1.5. Let Φ be an m × N matrix with i.i.d. Gaussian entries N (0, 1/m). Let R :=
N/m be the redundancy of the dictionary. If m ≥ m(R) then, except with probability at most
10R2 · exp(−γ(R)m), we have for all 0 < τ ≤ 1 the equality

Ar
τ(Φ) = ℓτ(Φ) = (H, ℓp(Φ))θ,τ, r = 1/τ − 1/2 = θ(1/p − 1/2). (1.13)

with equivalent norms.
The constants driving the equivalence of the norms are universal: they only depend on τ and the

redundancy factor R but not on the individual dimensions m and N. Similarly γ(R) and m(R) only
depend on R.

For R ≥ 1.27 we have γ(R) > 7 · 10−6. For large R we have γ(R) ≈ 0.002.

Indeed, for random Gaussian dictionaries in high-dimension, with high probability, the
Bernstein inequality holds for all 0 < τ ≤ 2 with constants driven by the aspect ratio R :=
N/m but otherwise independent of the dimension N.Using the notion of decomposable dictionary
[12, Theorem 3.3], this finite dimensional result can be easily adapted to build arbitrarily
overcomplete dictionaries in infinite dimension that satisfy the equality (1.8).

3The control of constants is the crucial part, since in finite dimension all norms are equivalent, which implies that
the Bernstein inequality is always trivially satisfied.

RR n° 7548
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The result of Theorem 1.5 should be compared to our earlier result for incoherent frames
obtained in [12]. In [12] we found an incoherent dictionary with aspect ratio (approximately)
2 for which the Bernstein inequality (1.6) can be shown to hold only for the exponent r =
2(1/τ − 1/2), i.e., for r twice as large as the Jackson exponent s = 1/τ − 1/2. Theorem 1.5
illustrates that the result in [12] really corresponds to a “worst case” behaviour and there are
indeed many dictionaries (according to the Gaussian measure: the overwhelming majority of
dictionaries) with a much better behaviour with respect to Bernstein estimates. This holds true
even for aspect ratios R that can be arbitrarily large.

1.8 Conclusion and discussion

The restricted isometry property is a concept that has been essentially motivated by the un-
derstanding of sparse regularization for linear inverse problems such as compressed sensing.
Beyond this traditional use of the concept, we have shown new connections between the RIP
and nonlinear approximation.

The main result we obtained is that, from the point of view of nonlinear approximation, a
frame which satisfies a nontrivial restricted property δk < 1 (i.e., in the regime k ∝ N) behaves
like an orthogonal basis: the optimal rate of m-term approximation can be achieved with an
approach that does not involve solving a (potentially) NP-hard problem to compute the best m-
term approximation for each m. In such nice dictionaries, near optimal k-term approximation
can be achieved in two steps, like in an orthonormal basis:

• decompose the data vector f = ∑j cj ϕj, with coefficients as sparse as possible in the sense
of minimum ℓτ norm;

• keep the m largest coefficients to build the approximant fm := ∑j∈Im
cj ϕj.

The second main result is that redundant dictionaries with the above property are not the
exception, but rather the rule. While it is possible to build nasty overcomplete dictionaries
either directly or by arbitrarily small perturbations of some ”nice” dictionaries”, in a certain
sense the vast majority of overcomplete dictionaries are nice.

One should note that several results of this paper are expressed in finite dimension, where
all norms are equivalent. The strength of the results is therefore not the mere existence of
inequalities between norms, but in the fact that the involved constants do not depend on
the dimension. From a numerical perspective, the control of these constants has essentially
an impact in (very) large dimension, and it is not clear whether the constants numerically
computed for random dictionaries are useful for dimensions less than a few millions.

A few key questions remains open. For a given data vector f , it is generally not known in
advance to which ℓτ(Φ) space f belongs: under which conditions is it possible to efficiently
compute a sparse decomposition f = ∑j cj ϕj which is guaranteed to be near optimal in the

sense that ‖c‖τ is almost minimum whenever f ∈ ℓτ(Φ)? Can ℓ1 minimization (which is
convex) be used and provide near best performance under certain conditions ? This is left to
future work.

2 Interpolation spaces

We recall the definition of the K-functional. Let Y be a (quasi-)normed space continuously
embedded in a Hilbert space H. For f ∈ H, the K-functional is defined by

RR n° 7548
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K( f , t) = K( f , t;H, Y) := inf
g∈Y

{‖ f − g‖H + t‖g‖Y}

and the norm defining the interpolation spaces (H, Y)θ,q, 0 < θ < 1, 0 < q < ∞, is given by:

‖ f‖q

(H,Y)θ,q
:=
∫ ∞

0
[t−θK( f , t)]q

dt

t
≍ ∑

j≥0

2jθqK( f , 2−j)q.

The interpolation space (H, Y)θ,q is simply the set of f for which the norm is finite. In our case
we consider a frame dictionary Φ and Y = ℓp(Φ), which is continuously embedded in H for
0 < p ≤ 2. We have the following result.

Theorem 2.1. Suppose Φ is a frame dictionary for a Hilbert space H. Let 0 < τ ≤ 1 and suppose the
Bernstein inequality for ℓτ(Φ) holds with exponent r:

‖ fk‖ℓτ(Φ) ≤ C · kr · ‖ fk‖H, ∀ fk ∈ Σk(Φ), ∀k.

Define β := r/(1/τ − 1/2). Then, for all 0 < θ < 1, we have the embedding

(H, ℓp(Φ))θ,τ →֒ ℓτ(Φ),
1

τ
=

θ/β

p
+

(1 − θ/β)

2
; (2.1)

Moreover, we have
Ar

τ(Φ) →֒ ℓτ(Φ),

and if in addition r = 1/τ − 1/2 (i.e., β = 1), then

Ar
τ(Φ) = ℓτ(Φ)

with equivalent norms. The constants in the norm inequalities depend only on p, on the Bernstein
constant for ℓτ(Φ), and on the upper frame bound for Φ.

Proof. We use the general technique proposed by DeVore and Popov [7], and adapt it to the
special structure of the considered function spaces. One can check that with Y = ℓp(Φ) we
have

K( f , t) = inf
c

{‖ f − Φc‖H + t‖c‖p
}

.

For each j we consider cj an (almost) minimizer of the right hand side above for t = 2−j. Fix

0 < θ < 1 and define s := r/θ and p < 2 such that s = 1/p − 1/2, and set mj = ⌊2j/s⌋ ≍ 2j/s.
Define c̃j to match cj on its mj largest coordinates, and be zero anywhere else. Finally, define
f0 := 0, f j := Φc̃j, j ∈ N . We can observe that

‖ f − f j‖H ≤ ‖ f − Φcj‖H + ‖Φ(cj − c̃j)‖H
(a)

. ‖ f − Φcj‖H + ‖cj − c̃j‖2

. ‖ f − Φcj‖H + ‖cj‖p · m−s
j . ‖ f − Φcj‖H + ‖cj‖p · 2−j

. K( f , 2−j),

where in (a) we used the upper frame bound B of Φ. Accordingly we get

‖ f j+1 − f j‖H ≤ ‖ f − f j‖H + ‖ f − f j+1‖H ≤ C · K( f , 2−j)
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where the constant only depends on p and the upper frame bound B of Φ. Since τ ≤ 1, we
have the quasi-triangle inequality

‖u + v‖τ
ℓτ(Φ) ≤ ‖u‖τ

ℓτ (Φ) + ‖v‖τ
ℓτ(Φ).

Since f = limj→∞ f j = ∑
∞
j=0( f j+1 − f j) we obtain

‖ f‖τ
ℓτ(Φ) ≤ ∑

j≥0

‖ f j+1 − f j‖τ
ℓτ(Φ)

(b)

. ∑
j≥0

[

(2j/s)r‖ f j+1 − f j‖H
]τ

. ∑
j≥0

[

2jθK( f , 2−j)
]τ

≍ ‖ f‖τ
(H,ℓp(Φ))θ,τ

.

In (b) we used the fact that f j+1 − f j ∈ Σm(Φ) with m = mj + mj+1 . 2j/s, and the assump-
tion that the Bernstein inequality with exponent r holds for ℓτ(Φ). To summarize we obtain
(H, ℓp(Φ))θ,τ ⊂ ℓτ(Φ), together with the norm inequality

‖ f‖ℓτ(Φ) ≤ C · ‖ f‖(H,ℓp(Φ))θ,τ

where the constant only depends on the Bernstein constant for ℓτ(Φ), on p, and on the upper
frame bound B for Φ. We have 1/τ − 1/2 = r/β = (r/βs)s = (θ/β)(1/p − 1/2), i.e., 1/τ =
(θ/β)/p + (1 − θ/β)/2.

Similarly, we can define f0 = 0 and f j a (near)best mj-term approximation to f with mj =

2j−1, j ≥ 1 and obtain ‖ f j+1 − f j‖H ≤ 2σ2j−1( f , Φ), j ≥ 1. Using the Bernstein inequality and
derivations essentially identical to the previous lines we get

‖ f‖τ
ℓτ (Φ) . ‖ f1‖τ

H + ∑
j≥1

[

2(j−1)rσ2j−1( f , Φ)
]τ

. ‖ f‖τ
Ar

τ(Φ).

The constant only depends on the Bernstein constant for ℓτ(Φ).
Using [11, Theorem 6], the upper frame bound implies the continuous embedding ℓτ(Φ) →֒

As
τ(Φ) with s = 1/τ − 1/2. Hence, when the Berstein exponent is r = 1/τ − 1/2 = s we have

equality that is to say Ar
τ(Φ) = ℓτ(Φ) with equivalent norms.

Remark 2.2. A consequence of Theorem 2.1 is a partial answer to an open question raised
in [12], where ”blockwise incoherent dictionaries” are considered and a Bernstein inequality
is proved, with exponent r = β(1/τ − 1/2), β = 2, for all 0 < τ ≤ 2, yielding the two-sided
embedding [12, Theorem 3.2]:

ℓτ(Φ) →֒ As
q(Φ) →֒ (H, ℓτ(Φ))1/2,q, 0 < τ ≤ 2, τ ≤ q < ∞, s = 1/τ − 1/2.

By Theorem 2.1, for 0 < q ≤ 1, the Bernstein inequality with exponent r = β(1/q − 1/2)
further implies the embedding (H, ℓτ(Φ))1/2,q →֒ ℓq(Φ) where 1/q = 1/(4τ) + 3/8, i.e.,

q = 8τ/(3τ + 2). As a result we have

ℓτ(Φ) →֒ As
q(Φ) →֒ ℓq(Φ), 0 < τ ≤ 2/5, q = 8τ/(3τ + 2), s = 1/τ − 1/2.

We know from [12] an example of blockwise incoherent dictionary where the exponent of the
Berstein inequality cannot be improved, hence the above embedding is also sharp for this class
of dictionaries.

RR n° 7548



The restricted isometry property meets nonlinear approximation with redundant frames 11

3 Bernstein estimates for frame dictionaries

In this section we are interested in the Bernstein inequality (1.10) in the general case where
the dictionary Φ forms a frame for a Hilbert space H. The dimension of H may be finite or
infinite. We will show that the Bernstein inequality is closely linked to properties of the kernel
of Φ given by

N = N(Φ) := {z ∈ ℓ2 : Φz = 0}.

In fact, the frame property ensures that ‖Φc‖H ≍ infz∈N ‖c + z‖2 for any sequence c ∈ ℓ2.
Hence, the Bernstein inequality (1.10) holds if and only if the quantity

C(Φ) := sup
m∈N

sup
c:‖c‖0≤m

sup
z∈N

inf
v∈N

m−1/2 · ‖c + v‖1

‖c + z‖2
(3.1)

is finite.
We split our analysis in two parts. In Section 3.1 we derive an upper bound on C(Φ) that

results in a sufficient condition for (1.10) to hold for a general frame dictionary (Proposition
3.1). In Section 3.2 we specialize to the case where the kernel N(Φ) is one-dimensional.

The analysis in Section 3.2 is used to justify Examples 1.2 and 1.3.

3.1 Bernstein constant for general dictionaries

Here we derive an upper estimate of the quantity C(Φ), given by (3.1), for general frame
dictionaries in a Hilbert space. This estimate leads to the following sufficient condition for a
Bernstein inequality for such dictionaries.

Proposition 3.1. Suppose the dictionary Φ forms a frame for the Hilbert space H, and Φ has kernel
N := N(Φ). Then the Bernstein inequality (1.10) holds provided that

sup
z∈N

sup
m∈N

sup
I:|I|≤m

m−1/2 · ‖zIc‖1

‖zIc‖2
< ∞. (3.2)

Moreover, in the case where N ∩ ℓ1 = {0}, the Bernstein inequality (1.10) holds if and only if

C1(Φ) := sup
z∈N

sup
m∈N

‖zm‖1

m1/2σm(z)2
< ∞, (3.3)

where zm is the vector containing the m largest entries in z.

Proof. We prove the sufficient condition for (1.10) by deriving an upper bound for C(Φ) given
by (3.1). For any m ∈ N,

sup
c:‖c‖0≤m

sup
z∈N

inf
v∈N

‖c + v‖1

m1/2‖c + z‖2
= sup

I:|I|≤m

sup
c:supp(c)⊆I

sup
z∈N

inf
v∈N

‖c + v‖1

m1/2‖c + z‖2

= sup
I:|I|≤m

sup
c:supp(c)⊆I

sup
z∈N

inf
v∈N

‖c + vI‖1 + ‖vIc‖1

m1/2
√

‖c + zI‖2
2 + ‖zIc‖2

2

≤ sup
I:|I|≤m

sup
c:supp(c)⊆I

sup
z∈N

‖c + zI‖1 + ‖zIc‖1

m1/2
√

‖c + zI‖2
2 + ‖zIc‖2

2

. (3.4)
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For a given support I and z ∈ N, we introduce γz
I := ‖zIc‖1/‖zIc‖2. Notice that for |I| ≤ m

and c with supp(c) ⊆ I, we have

‖c + zI‖1 + ‖zIc‖1 ≤ m1/2‖c + zI‖2 + γz
I‖zIc‖2

≤ max{m1/2, γz
I}
(‖c + zI‖2 + ‖zIc‖2

)

≤
√

2 max{m1/2, γz
I}
√

‖c + zI‖2
2 + ‖zIc‖2

2. (3.5)

We let γz
m := supI:|I|≤m γz

I . Hence, from (3.4) we deduce that

C(Φ) ≤
√

2 max

{

1, sup
z∈N

sup
m∈N

γz
m

m1/2

}

,

which shows that condition (3.2) implies C(Φ) < ∞.
Let us now consider the case N ∩ ℓ1 = {0}. Notice that the infimum over v ∈ N in (3.1) is

attained for v = 0. Hence, C(Φ) = supz∈N Bz, with

Bz := sup
m∈N

sup
I:|I|≤m

sup
c:supp(c)⊆I

‖c‖1

m1/2
√

‖c + zI‖2
2 + ‖zIc‖2

2

. (3.6)

For a fixed support I, standard estimates show that

‖c‖1

m1/2
√

‖c + zI‖2
2 + ‖zIc‖2

2

is maximal for choices of the type c = −[zI + λsign(z)1I], λ > 0. This choice of c leads to the
corresponding (squared) optimization problem

sup
λ∈R

(λm + ‖zI‖1)
2

m(λ2m2 + ‖zIc‖2
2

) =
1

m

( ‖zI‖2
1

‖zIc‖2
2

+ 1

)

.

Notice that

sup
I:|I|≤m

‖zI‖1

‖zIc‖2
=

‖zm‖1

σm(z)2
,

so we deduce that
C1(Φ) ≤ C(Φ) ≤ C1(Φ) + 1, (3.7)

which completes the proof.

3.2 Dictionaries with one dimensional null-spaces

We now turn to the simplified case where the dictionary Φ has a one-dimensional null-space.
In this case, we derive necessary conditions for the Bernstein inequality (1.10) to hold that is
valid even when N(Φ) ⊂ ℓ1, a case not covered by the necessary condition of Proposition 3.1.
We prove the following:

Proposition 3.2. Suppose the dictionary Φ is a frame for the Hilbert space H and has a one-dimensional
null-space, N(Φ) = span{z}. Also suppose the Bernstein inequality (1.10) holds. Then

C2(z) := sup
m∈N

sup
I:|I|≤m

min

( ‖zI‖1

m1/2‖zIc‖2
,

‖zIc‖1

m1/2‖zIc‖2

)

< ∞. (3.8)
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Moreover, if z ∈ ℓp for some 0 < p < 1, and the Bernstein inequality (1.10) holds for Φ, then

sup
m∈N

σm(z)1

m1/2σm(z)2
< ∞.

Proof of Proposition 3.2. In this setting, the Bernstein inequality (1.10) holds if and only if the
quantity

C(Φ) := sup
m∈N

sup
c:‖c‖0≤m

sup
µ∈R

inf
λ∈R

‖c + λz‖1

m1/2‖c + µz‖2

is finite. By rescaling, we have

C(Φ) = sup
m∈N

sup
c:‖c‖0≤m

sup
µ∈R

inf
λ∈R

‖ λ
µ z + 1

µ c‖1

m1/2‖ 1
µ c + z‖2

= sup
m∈N

sup
c̃:‖c̃‖0≤m

inf
δ∈R

‖δz + c̃‖1

m1/2‖c̃ + z‖2

= sup
m∈N

sup
I:|I|≤m

sup
c:supp(c)⊆I

inf
δ∈R

‖δz + c‖1

m1/2‖c + z‖2

= sup
m∈N

sup
I:|I|≤m

sup
c:supp(c)⊆I

inf
δ∈R

‖δzI + c‖1 + ‖δzIc‖1

m1/2
√

‖c + zI‖2
2 + ‖zIc‖2

2

. (3.9)

To get a lower estimate for C(Φ), we simply chose c = −zI in (3.9) to obtain

C(Φ) ≥ sup
m∈N

sup
I:|I|≤m

inf
δ∈R

|δ − 1|‖zI‖1 + |δ|‖zIc‖1

m1/2‖zIc‖2

= sup
m∈N

sup
I:|I|≤m

min

( ‖zI‖1

m1/2‖zIc‖2
,

‖zIc‖1

m1/2‖zIc‖2

)

≥ sup
m∈N

min

( ‖zm‖1

m1/2σm(z)2
,

σm(z)1

m1/2σm(z)2

)

. (3.10)

Then clearly C(Φ) < ∞ implies condition (3.8).
If, in addition, we have z ∈ ℓp for some 0 < p < 1, then it follows from standard results on

nonlinear approximation with bases in ℓ2, see [8], that m1/2σm(z)2 → 0 as m → ∞. Thus

‖zm‖1

m1/2σm(z)2
→ ∞,

and we conclude from (3.10) that

sup
m∈N

σm(z)1

m1/2σm(z)2
< ∞.

We now turn to a justification of Examples 1.2 and 1.3 using Propositions 3.1 and 3.2.
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3.2.1 Examples 1.2 and 1.3 revisited

We first verify the claim made in Example 1.2. Given any dictionary Φ with N(Φ) = span{z},
where z = (zj)

∞
j=1 ∈ ℓp, for some 0 < p ≤ 1. For any ε > 0, we modify z as follows

1. Choose m0 ≥ 2 such that ∑
∞
j=m0

|zj|p < ε/2.

2. Choose a sequence {mℓ}∞
ℓ=1 satisfying mℓ+1/mℓ → ∞. Notice that the sequence will

necessarily have super-exponential growth.

3. Fix β > 1/p ≥ 1, and choose {γj}∞
j=0 such that γℓ := C(mℓ+1 − mℓ)

−β, with the constant

C defined by the equation ∑
∞
ℓ=0 γ

p
ℓ
[mℓ+1 − mℓ] = ∑

∞
j=m0+1 |zj|p.

4. Now define z̃ = (z̃j)
∞
j=0 by

z̃j :=

{

zj, 0 ≤ j ≤ m0

γℓ, j ∈ [mℓ + 1, mℓ+1], ℓ ∈ N0.

It is easy to verify (using 1. and 3.) that ‖z − z̃‖p
p < ε.

Let us consider the index set I = [1, mℓ], ℓ ≥ 1. We have,

‖z̃Ic‖2
1

‖z̃Ic‖2
2

≥ [(mℓ+1 − mℓ)γℓ]
2

C2 ∑
∞
k=ℓ(mk+1 − mk)

1−2β

≥ (mℓ+1 − mℓ)
2−2β

(mℓ+1 − mℓ)
1−2β

≥ mℓ+1 − mℓ.

Thus,
‖z̃Ic‖2

1

mℓ‖z̃Ic‖2
2

≥ mℓ+1 − mℓ

mℓ
=

mℓ+1

mℓ
− 1 → ∞,

as ℓ → ∞. Also, since β > 1,

‖z̃I‖2
1

mℓ‖z̃Ic‖2
2

≥ C′

C2 ∑
∞
k=ℓ(mk+1 − mk)1−2β

≥ C′

mℓ(mk+1 − mk)
1−2β

≥ mℓ+1 − mℓ

mℓ
→ ∞,

as ℓ → ∞. We conclude that C2(z̃) = ∞, with C2(z̃) given in Proposition 3.2.
To verify the claim made in Example 1.3, suppose Φ satisfies N(Φ) = span{z}, where

z = (zj)
∞
j=1 is such that there is a constant C < ∞ satisfying

∀k ∈ N :
∞

∑
j=k

|zj| ≤ C|zk|.
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Then for any finite index set I ⊂ N, we let mI := min{k : k 6∈ I}, and notice that ‖zIc‖1 ≤
∑

∞
j=mI

|zj| ≤ C|zmI |, while ‖zIc‖2 ≥ |zmI |. Hence,

‖zIc‖1

‖zIc‖2
≤ C

|zmI |
|zmI |

= C,

and

sup
m∈N

sup
I:|I|≤m

‖zIc‖1

m1/2‖zIc‖2
≤ C < ∞,

so (3.2) is satisfied and the Bernstein inequality (1.10) holds by Proposition 3.1.

4 Bernstein inequality and the RIP

For certain incoherent dictionaries studied in [12], the Berstein inequality cannot match the
Jackson inequality, but it still holds with a sharp exponent r = 2(1/τ − 1/2) for any τ ≤ 2,
i.e. the sharp factor that can be used in Theorem 2.1 is β = 2. This result exploits incoherence
[12, Lemma 2.3] to prove that the lower bound in the RIP is satisfied for k of the order of√

N. Below we prove that the lower frame bound (1.9), together with the lower bound in the
RIP (1.12) with k of the order of N, implies the Bernstein inequality (1.6) with controlled constant
and exponent matching that of the Jackson inequality (1.5). This Lemma therefore extends our
previous result based on incoherence [12, Theorem 2.1].

Lemma 4.1. Let Φ be an m × N dictionary. Suppose Φ has lower frame bound A > 0 and satisfies
LRIP(κN, δ), where δ < 1 and 0 < κ < 1. Then for 0 < τ ≤ 2, the Bernstein inequality (1.6) holds
with exponent r = 1/τ − 1/2 and constant

Cτ(A, δ, κ) := max
{

(1 − δ)−1/2, A−1/2κ1/2−1/τ}. (4.1)

Proof. First, suppose 1 ≤ k ≤ κN. Take f ∈ Σk(Φ), and write f = Φc with ‖c‖0 ≤ k. Then, by
the LRIP(κN, δ) condition,

‖ f‖ℓτ(Φ) ≤ ‖c‖τ ≤ k1/τ−1/2‖c‖2 ≤ (1 − δ)−1/2k1/τ−1/2 · ‖Φc‖H.

For κN ≤ k ≤ N, take f ∈ Σk(Φ). We express f in terms of its canonical frame expansion
relative to Φ,

f =
N

∑
j=1

〈 f , ϕ̃j〉ϕj. (4.2)

We recall that the dual frame {ϕ̃j} has an upper frame bound A−1. Hence, we can use the
expansion (4.2) to deduce that

‖ f‖ℓτ (Φ) ≤ ‖{〈 f , ϕ̃j〉}‖τ ≤ N1/τ−1/2‖{〈 f , ϕ̃j〉}‖2

≤ A−1/2N1/τ−1/2 · ‖Φc‖H
≤ [A−1/2κ1/2−1/τ]k1/τ−1/2 · ‖Φc‖H .

The Bernstein inequality and its constant now follow at once from the two separate estimates.

Lemma 4.1 proves half of Theorem 1.4. Let us complete the proof now.
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Proof of Theorem 1.4. As we have seen, the lower frame bound and the LRIP(κN, δ) property
imply the Bernstein inequality for all 0 < τ ≤ 2. Moreover the upper frame bound implies a
Jackson inequality. For 0 < p < τ ≤ 1 both the Jackson and Bernstein inequalities hold for
ℓp(Φ) with exponent 1/p − 1/2, hence [6, Chapter 7] we have with equivalent norms

Ar
τ(Φ) = (H, ℓp(Φ))θ,τ, r = θ(1/p − 1/2), 0 < θ < 1.

The Bernstein inequality also holds for ℓτ(Φ) with exponent r = 1/τ − 1/2, hence by Theo-
rem 1.1 Ar

τ(Φ) = ℓτ(Φ) with equivalent norms.

Next we wish to estimate A, B, δ, κ when Φ is a random Gaussian dictionary. The following
Lemma summarizes well known facts (see e.g. [4, 2]).

Lemma 4.2. Let Φ be an m × N matrix with i.i.d. Gaussian entries N (0, 1/m). For any ε > 0 and
1 ≤ k < m, it satisfies the LRIP(k, δ) with 1 − δ = (1 − η)2, where

η :=

√

k

m
·
(

1 + (1 + ε) ·
√

2 ·
(

1 + log
N

k

)

)

(4.3)

except with probability at most

exp

(

−2εk · (1 + log
N

k
)

)

. (4.4)

Moreover, except with probability at most exp(−ε2m/2), it has the lower frame bound

A ≥ (
√

N/m − 1 − ε)2 (4.5)

and, except with probability at most exp(−ε2m/2), it has the upper frame bound

B ≤ (
√

N/m + 1 + ε)2 (4.6)

Proof. First, for a given index set Λ of cardinality k < m, we observe that the restricted matrix
ΦΛ is m × k with i.i.d. Gaussian entries N (0, 1/m), hence its smallest singular value exceeds
1 −

√
k/m − t except with probability at most exp(−mt2/2) [5, Theorem II.13]. By a union

bound, the smallest singular values among all submatrices ΦΛ associated to the (N
k ) possible

index sets Λ of cardinality k exceeds 1 −
√

k/m − t, except with probability at most p(t) :=

(N
k ) · exp(−mt2/2). Since for all N, k we have (N

k ) ≤ (Ne/k)k = exp
(

k · (1 + log N
k )
)

, it follows

that

p(t) ≤ exp

(

k · (1 + log
N

k
)− mt2/2

)

.

For ε > 0 we set

t := (1 + ε) ·
√

2k
m ·
(

1 + log N
k

)

and obtain that, except with probability at most

p(ε) ≤ exp

(

k · (1 + log
N

k
) ·
(

1 − (1 + ε)2
)

)

≤ exp

(

−2εk · (1 + log
N

k
)

)

we have: for all k-sparse vector c with ‖c‖0 = k,

‖Φc‖2 ≥
[

1 −
√

k/m ·
(

1 + (1 + ε) ·
√

2 ·
(

1 + log
N

k

)

)]

· ‖c‖2.

RR n° 7548



The restricted isometry property meets nonlinear approximation with redundant frames 17

To control the frame bounds we consider the random matrix Ψ :=
√

m
N Φ

T . Since Ψ is N × m

with i.i.d. Gaussian entries N (0, 1/N), for any t > 0 all its singular values exceed 1−
√

m/N −
t, except with probability at most exp(−Nt2/2) [5, Theorem II.13]. Setting t = ε ·

√
m/N, since

‖Φ
Tx‖2

2 = N
m‖Ψx‖2

2, we obtain that Φ has lower frame bound

√
A ≥

√

N

m
·
(

1 − (1 + ε) ·
√

m/N
)

=
√

N/m − 1 − ε

except with probability at most exp(−ε2m/2). We proceed identically for the upper frame
bound, using the fact that for any t > 0, no singular value of Ψ exceeds 1 +

√
m/N + t, except

with probability at most exp(−Nt2/2) [5, Theorem II.13].

We now obtain our first main theorem (Theorem 1.1) by controlling the constant δ from
below when k/m is bounded from above, given the redundancy R = N/m of the dictionary
Φ.

Proof of Theorem 1.1. In Appendix A we exhibit a threshold t(R) ∈ (0, 1) such that if N/m = R
and t = k/m ≤ t(R) then

η :=

√

k

m
·
(

1 + 2 ·
√

2 ·
(

1 + log
N

k

)

)

≤ 1/2.

Consider k := ⌊t(R)m⌋. By Lemma 4.2 the dictionary Φ satisfies the LRIP(k, δ) with (1 −
δ)−1/2 = (1 − η)−1 = 2 except with probability at most

p1 = exp

(

−2k ·
(

1 + log
N

k

))

≤ exp (−2 [t(R)m − 1] · (1 + log R))

≤ e2(1+log R) · exp
(− 2t(R)(1+ log R)m

)

Moreover, setting ε := (
√

R − 1)/2, it has lower frame bound
√

A ≥
√

N/m − 1 − ε ≥ (
√

R −
1)/2 except with probability at most p2 = exp(−ε2m/2). For m ≥ m(R) := 2/t(R) we have

κ =
k

N
=

k

m
· m

N
≥ t(R)− 1

m

R
≥ t(R)

2R
.

and by Lemma 4.1, we obtain (except with probability at most p1 + p2) that the Bernstein
inequality holds for each 0 < τ ≤ 2 with constant

Cτ(R) ≤ max

(

2, 2(
√

R − 1)−1 ·
[

t(R)

2R

]1/2−1/τ
)

. (4.7)

Since we also have the upper frame bound
√

B ≤
√

R + 1 + ε′ except with probability at most

p3 = exp(−(ε′)2m/2) we obtain with ε′ = 1 that the upper frame bound
√

R + 2 together
with the Bernstein inequality with constant Cτ(R) jointly hold, except with probability at most
p1 + p2 + p3 ≤ β exp(−γm) where

β = e2+2 log R + 2 = e2R2 + 2 ≤ (e2 + 2)R2 ≤ 10 R2;

γ ≥ min
(

2t(R) · (1 + log R), (
√

R − 1)2/8, 1/2
)

=: γ(R).

As shown in Appendix A, limR→∞ γ(R) ≈ 0.002, and γ(R) ≥ 7 · 10−6 when R ≥ 1.28.
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A

For u ∈ (0, 1) we have u log 1/u ≤ e, hence for u ∈ (0, 1) and 0 < p ≤ 1:

log 1/u = (1/p) log 1/up ≤ (1/p)e/up = (1/u)p(e/p).

Therefore, for a > 1, b ≥ e, 0 < t < 1, using u = t/b, we obtain

η(t) :=
√

t ·
(

1 + a
√

log(b/t)

)

≤
√

t ·
(

1 + a
√

(b/t)p(e/p)

)

≤ t
1
2−

p
2 ·
(

t
p
2 + ae

1
2
√

bp/p
)

≤ t
1
2−

p
2 · 2ae

1
2
√

bp/p

where in the last inequality we used the fact that ae
1
2
√

bp/p > 1 (all the factors exceed one)

and t
1
p < 1. For p = 1/ log b we have bp/p = e log b hence

η(t) ≤ 2ae
√

log b · t
1
2

(

1− 1
log b

)

The definition of η(t) can be identified with (4.3) for ε = 1 with t = k/m, a = 2
√

2 and

b = eN/m = eR ≥ e. Denoting c = 4ae = 8
√

2e, we have just proved

η(t) ≤ (c/2) ·
√

1 + log R · t
1
2

(

log R
1+log R

)

, ∀0 < t < 1.

Defining

t(R) :=
[

c2 · (1 + log R)
]−1− 1

log R ∈ (0, 1), (A.1)

we have the guarantee η
(

t(R)
) ≤ 1/2 as well as the identity

2t(R) · (1 + log R) = 2c−2 ·
[

c2 · (1 + log R)
]− 1

log R
.

The right hand side is an increasing function of R, with limit zero when R → 1 and limit 2c−2

when R → ∞. When R ≥ R0 := (1 + 4/c)2 we have (
√

R − 1)2/8 ≥ 2c−2 hence

γ(R) := min
(

2t(R) · (1 + log R), (
√

R − 1)2/8
)

= 2t(R) · (1 + log R).

Since c = 8
√

2e = 27/2e, we have c2 = 27e2 hence

2c−2 = 2−6e−2 ≈ 0.0021 > 0.002, and R0 = (1 +
1√
8e

)2 ≈ 1.277 > 1.27.

For R ≥ R0,

γ(R) ≥ 2c−2[c2 · (1 + log R0)]
− 1

log R0 ≈ 7.8 · 10−6 > 7 · 10−6.

and limR→∞ γ(R) = 2c−2 > 2 · 10−3. Finally, when R ≥ R0 we have m(R) = 2/t(R) =
4(1 + log R)/γ(R) ≤ 6 · 105 · (1 + log R), and in the limit of large R we obtain m(R) ≍ 2c2(1 +
log R) . 2000 · (1 + log R).
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