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Chapter 1

Introduction

Many researches in robotics aim at the involvement of exteroceptive additional sensors which
is strongly contributing to the ever growing demand to improve autonomy, robustness, flexi-
bility and precision. Nevertheless good sensing abilities are essential to gain a higher flexibil-
ity and autonomy of robots. When robots operate in unstructured environments, the sensory
information is included in the control loop. Many different sensors have been developed
over the past years to fit the requirements of different but very specific tasks. Measurements
gained by employing these sensors, that reflect variation in some phenomena, are used in the
control loop to adapt the task execution to these variations. The most common sensors in
robotics are force/torque sensors, laser range finders, ultrasonic sensors and camera sensors.
Among all sensors, vision is the most complementary one with respect to the sensory infor-
mation it provides to be included in the control loop since visual sensors are powerful means
for a robot to perceive its environment. In particular, the use of visual feedback from sensor
camera, when it is used in a correct manner, guarantees accurate positioning, robustness to
calibration uncertainties, and reactivity to environmental changes.

Visual servoing is a viable method for robotic control based on the utilization of visual
information extracted from images to close the robot control loop. Various areas are in-
volved in visual servoing as shown in Fig. 1.1. Visual information obtained from the image
processing can be used to extracting 2D features. It can also be used to estimating pose
parameters by employing a pose estimation algorithm from computer vision. The estimated
pose is transformed into the 3D features. These 2D and/or 3D features are then used in the
control scheme. Optimization techniques, robot dynamic and/or robot kinematics are used
in the modeling phase of the control schemes. Advances in the power and availability of
image processing have made possible the computing required at frame rate. This makes that
the use of real time video information for robotic guidance is increasingly becoming a more
attractive proposition and is the subject of much research. It enables visual servoing with
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Figure 1.1 — Visual servoing related areas

sufficient accuracy and many useful tasks can be accomplished. This makes visual servo-
ing, that is the closed loop control of motion on the basis of image analysis, more and more
recognized as an important tool in modern robotics control. Two types of digital imaging
sensors are usually used in computer vision and can be used for visual servoing. First type
encodes light intensity to give intensity images acquired by cameras while the second type
encodes shape and distance to give range images acquired by laser or sonar scanners.

With a vision sensor, which provides 2D measurements, the nature of the potential visual
features is extremely rich, since it is possible to design visual servoing using both 2D fea-
tures, such as the coordinates of characteristic points in the image, and 3D features, provided
by localization module operating on the extracted 2D measurements. The wide range of pos-
sibilities is the reason behind the major difficulty in visual servoing, that is to build, select
and design as best as possible the visual data needed and the control scheme used for obtain-
ing a suitable behavior of the system, based on all the available measurements.

Using vision in robot control makes it possible to solve different problems, that can be han-
dled safely based on the sensory visual data without any contact with the environment, for
example the obstacle avoidance problem when the 3D models of the obstacles are known.
However, some issues should be considered when vision sensors are used within robot sys-
tem. These issues include local or global stability, robustness behavior, suitable trajectories
for the robot and for the measurement in the image, a maximum decoupling between the
visual information and the controlled degrees of freedom, avoiding singularity and local
minima for the control (interaction) matrix, keeping features in the camera field of view,
occlusion avoidance and avoiding robot joint limits.
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1.1 Motivations

Solving critical problems in sensor-based robot control
= |
el ¢ I ! I 7 |
*& Mobile Space Aerial Robot Medical Humanoid
| @ ) robot robot robot manipulator robot robot
) | | | | | ]
8| . :
g Image feature Task Image Operationel Joint
| 0 space space space space space
y. - I
== | 1
o ! ! + Occlusion Obstacle . . | | Joint limit
E " [ avoidance avoidance SIngUIa"ty avoidance
K Local Singularity Loosing
5 minima features
=
= 1 1 |
S vy 'y
= Avoidance Several Supplementary
9 [Rohustness] [ tasks ] [task priurity] [ tasks (Grasping)
 — |
—) | | |
w
=
8
2 New | ti
= New 1t order New 2nd order swiargs projection New joint limit
= operator for the o %
° control scheme control scheme avoidance strategy
S redundancy frameworks
. .

Figure 1.2 — Thesis scopes: problem domains and contributions

Visual servoing methods can be employed in almost all robotic systems that perform po-
sitioning and interactions tasks (for example space robot, mobile robot, robot arm, humanoid
robot,..., (see Fig. 1.2). It involves working with different spaces in order to acquire the input
signal in addition to transform a motion from one space to another in order to execute the
required tasks. Visual servoing encounters different sorts of problems like local minima, sin-
gularities and loosing features from the camera field of view that may be avoided either by
changing the feature set or by modeling suitable control schemes. These problems motivate
the research in modeling new visual servoing control schemes. Another type of problem that
requires defining avoidance tasks and selecting a mechanism to ensure its execution is clas-
sified as constrained problems, for example joint limit avoidance, obstacle avoidance, and
occlusion avoidance. Avoiding this kind of problems is usually realized by the utilization of
gradient projection methods. That is why it is important to have a gradient projection method
that allows better performing of these avoidance tasks. These sorts of problems motivated us
to accomplish the present work.
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1.2 Contributions and thesis Outline

The thesis is written in two parts after the introductory chapter (see Fig. 1.3). The first part is
about visual servoing control schemes and contains chapters 2, 3 and 4. It starts by reviewing
the state of the art in visual servoing control schemes, then new control schemes are proposed
and their experimental evaluations are presented. The second part is about redundancy and
joint limits avoidance. It starts by presenting the state of the art in redundancy formalisms
and joint limits avoidance strategies in robot control. A new large projection operator and a
new joint limit avoidance strategy are then proposed. This part contains chapter 5, 6 and 7.
Finally, the conclusions of these two parts are collected in chapter 8.

CE—

Thesis
structure

\_1_/

Chapter 1
Chapter 2 introduction Chapter 5

State of the art [,_| —»| State of the art
in visual servoing in redundancy

| | | |

Chapter 6
New large projection
operator for the
redundancy frameworks

Part |
Visual servoing

Part Il
Redundancy

Chapter 3 Chapter 4
New first order New second order
control schemes control schemes

Chapter 7
New joint limits
avoidance strategy

Chapter 8
Conclusions

Figure 1.3 — Thesis structure

Part one: Visual servoing (chapter 2 to 4)

Chapter 2: State of the art in visual servoing: In this chapter, state of the art in
visual servoing in the light of visual features used, control schemes designed and problems
that could appear is presented.

Chapter 3: New first order control scheme: In this chapter we analyze different
control schemes by considering the most usual and simple features, that are the Cartesian
coordinates of image points. As for the control schemes, we consider three classical control
laws and we propose in this chapter two new ones. The first new control law follows an
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hybrid strategy. It is based on a behavior parameter that can be used to tune the weight of
the current and the desired interaction matrix in the control law. We will see that in some
configurations where all other control schemes fail due to local minima or singularity prob-
lems, this new control law allows the system to converge. The second control law that we
propose is an attempt towards global asymptotic stability (GAS). Unfortunately, if GAS can
be obtained in the space of the chosen task function, we will see that it is not ensured in the
configuration space when redundant image point coordinates are used. This control scheme
is indeed subject to attractive local minima. The analysis of the control laws included in this
chapter is performed with respect to translational motion along and rotational motion around
the optical axis. As we will see, a singularity of the control law proposed in [Malis 04] will
be exhibited thanks to this analysis.

Chapter 4: New second order control schemes: In this chapter, we propose new
control schemes to try to reach a singular configuration. It is based on Halley’s method,
which uses a second order minimization step. After analyzing the behavior of the classi-
cal control schemes in a singular configuration, we present the new control schemes. They
are based on the Hessian matrices of the selected features. We thus determine the Hessian
matrices of the Cartesian coordinates of an image point. Finally, experimental results are
presented.

Part two: Redundancy (chapter 5 to 7)

Chapter 5: State of the art in task redundancy and joint limits constraints:
In this chapter, we present the state of arts of the utilization of gradient projection methods
(GPM) in robot control to cope with injecting constraints and additional tasks to the main
task. The state of arts about avoidance frameworks and joint limits avoidance strategies are
also presented.

Chapter 6: New large projection operator for the redundancy framework:
In this chapter, we propose a new projection operator. Instead of considering all the com-
ponents of the main task, only the norm of this task is used. Considering the norm of the
errors allows the corresponding projection operator to enlarge the permitted motions, at least
when the errors are still large. As we will see, using this new projection operator leads to a
less constrained problem since the task based on the norm is of rank one at maximum. Our
analytical studies show that this operator has to switch to the classical projection operator
when the norm of the total error approaches zero. A switching strategy for the projection
operator has thus been developed. Finally, an adaptive gain is also proposed to slow down
the convergence of the main task. It allows the secondary tasks to be active for longer, which
may be useful in practice when the secondary tasks have really to be taken into account (for
obstacles or joint limits avoidance for instance). The recursive augmented projection oper-
ator for redundancy-based task-priority is presented and its efficiency is compared with the
classical one.
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Chapter 7: New joint limits avoidance strategy: In this chapter, we use the projec-
tion operator proposed in chapter 6 for injecting a joint limits avoidance task into the main
task. We first present a new avoidance technique that uses the gradient projection method.
This avoidance technique is based on three functions proposed: an activation function that
activates the avoidance task and sets its direction; an adaptive gain function that controls
the magnitude of the avoidance task; and a tuning function that ensures the smoothness of
the injection of the avoidance task into the main task. Then, the problem of adding addi-
tional secondary tasks to the main task to be performed simultaneously while ensuring the
joint limits avoidance is solved. These additional tasks could be used for moving the robot
away from the neighborhood of the joint limits, avoiding occlusion and obstacles, perform-
ing emergency needed motion, or keeping object features in the camera field of view. Finally,
the new avoidance strategy is integrated with the iterative approach to ensure the smoothness
of the injecting of the avoidance task into the main task and a solution to the discontinuity
problem of this approach is proposed by performing an inner switching loop inside the visual
servoing loop.
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Visual servoing
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Chapter 2

State of the art of visual servoing

2.1 Visual servoing

Visual servoing is a well known flexible and robust technique to increase the accuracy and
the versatility of a vision-based robotic system [Weiss 87, Feddema 89a, Hutchinson 96,
Chaumette 06, Chaumette 07]. It consists in using vision in the feedback loop of a robotic
system control with fast image processing to provide reactive behavior. Single or multiple
cameras can be used to track visual information in order to control a robot with respect to a
target [Shirai 73, Weiss 87, Hashimoto 93a, Hutchinson 96, Kragic 02]. Robotic task in vi-
sual servoing is specified in terms of image features extracted from a target object and their
use for controlling the robot/camera motion through the scene [Espiau 92, Hashimoto 93a].
The positioning task is expressed as the regulation to zero of a task function. The task func-
tion in visual servoing is defined to control the pose of the robot’s end-effector relative to
either a world coordinate frame or a frame of a manipulated object. Visual features extracted
in real time from the image are used to define a task function that depends on the robot con-
figuration and the time [Samson 91].

Several methods have been developed for controlling the robot using visual information.
Two basic approaches have been proposed namely position-based visual servoing (PBVS)
and image-based visual servoing (IBVS) [Sanderson 80, Weiss 87, Hutchinson 96]. Both
approaches have been used as bases for developing other schemes such as 2 1/2 D visual
servoing [Malis 99]. In position-based visual servoing (PBVS or 3D VS), the image mea-
sures are processed in order to estimate the relative 3D pose between the camera and the
target, which is then used as an error signal for controlling the motion of the robot/camera
system toward its desired goal [Martinet 97] [Wilson 96]. 3D coordinates of points can also
be used [Martinet 96]. In image-based visual servoing (IBVS or 2D VS), the error is directly
computed in terms of features expressed in image [Weiss 87, Feddema 89b, Espiau 92]. Two
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main aspects have a great impact on the behavior of any visual servoing scheme: the selection
of the visual features used as input of the control law and the designed form of the control
scheme. On one hand, the same feature set gives different behavior when employed in dif-
ferent control schemes and on the other hand, the same control law gives different behavior
when it considers different feature sets. The behavior obtained is not always the required
one: selecting a specific feature set or a specific control scheme may lead to some stability
and convergence problems. In the following, a review in visual servoing is presented by
focusing on modeling issues.

2.2 Camera-robot configurations

Two main configurations exist to combine camera(s) and robot for visual servoing applica-
tions. The first configuration called eye-in-hand, consists in camera(s) mounted on the end
effector of the robot. A constant transformation between the camera frame and the end ef-
fector frame is defined and used for transforming the motions from the camera frame into
the end effector frame, the robot frame, or any other reference frame attached to the robot. In
the second configuration, which is called eye-to-hand, one or several cameras are placed in
the workspace to monitor a target, end effector or both. This configuration needs to compute
the transformation between cameras and robot frames at each iteration. The former config-
uration is commonly used in visual servoing since it allows keeping target(s) in the field of
view (for example when a grasping task requires to ensure monitoring the object and a grasp-
ing tool attached to the end effector [Allen 93]). Hybrid configurations can be constructed
when eye-to-hand and eye-in-hand configurations are used, [Flandin 00]. Within the work
presented in this thesis, we use the eye-in-hand camera-robot configuration.

2.2.1 Eye-in-hand configuration

In the eye-in-hand configuration (see Fig. 2.1), the camera is attached to the end-effector of
the robot and visual servoing control schemes are designed such that the velocity vectors v
or q are defined to control the required motion in the camera space or in the robot’s joints
space respectively. This velocity vector is sent to the robot controller in order to perform the
required motion. Thus camera calibration, robot calibration and the end-effector to camera
calibrations are first needed in order to have the set of camera intrinsic parameters, the robot
Jacobian “J, and the transformation matrix “M. between the camera frame F. and the end-
effector frame F. [Tsai 89]. Let us note that visual servoing is robust with respect to the
calibration errors.

2.2.2 Eye-to-hand configuration

In the eye-to-hand configuration, the camera is fixed in the workspace (see Fig. 2.2). Un-
like the eye-in-hand configuration where the image of the target changes based on both the
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Figure 2.1 — Eye-in-hand camera-robot configuration

movement of the target and the movement of the end effector, in eye-to-hand configura-
tion, the image of the target changes based on the movement of the target. The transfor-
mation matrix ‘M, between the camera frame F. and the base coordinate system of the
robot frame F, is constant and is computed one time. The relative position between the
robot end effector frame and the camera frame can be computed using transformations be-
tween different frames. More details concerning camera/robot configurations can be found
in [Hutchinson 96] [Kragic 02] [Chaumette 07].

Figure 2.2 — Eye-to-hand camera-robot configuration
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2.3 Task functions in visual servoing

Tasks in visual servoing are defined to describe how the robot can interact with its envi-
ronment using vision sensors. All attained positions by the robot end effector’s tools are
belonging to a configuration space called task space e. In three dimensional workspace
when translation motions, rotation motions or translation motions combined with rotation
motions are required to be performed respectively by tasks, the corresponding task space is
defined respectively by e € R® where R? is the Cartesian space, e € SO* where SO® is
the spatial orthogonal space or by e € SE5 where SE3; = R? x SO, the special Euclidean
space denoted . In order to apply these motions with respect to a specified reference frame
(for example camera frame, end-effector frame, tool frame, manipulated object frame, or
robot frame), a transformation between different frames is required to transform the motion
from one frame to another [Dombre 07][Spong 06]. In order to perform a task, the object
must exhibit visual features which can be extracted from different points of view depending
on the object appearance.

2.3.1 Camera space control

Typically, when s* is the desired feature vector, s is the current feature vector, and “p(t) is
the relative pose between the camera and the object at instance ¢, the regulation scheme of
task function e is defined as:

e =s("p(t)) —s" 2.1)

When the control variables are defined in the camera frame, the variation of the visual feature
s related to the relative movements between the camera and the scene is given by:

_8sdcp+@_ . +@
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v (2.2)

where % is the variation of s due to the object own motion, Lg € R**™ is the visual features
interaction matrix that represents the differential relationship between the features s and the
camera frame [Hutchinson 96] [Dombre 07] , “v = v, — v, is the relative instantaneous
velocity between the camera frame F. and the object frame F, expressed in the camera
frame F., v. is the instantaneous camera velocity and v, is the instantaneous object velocity.
When the object is motionless, % = 0 and we get:

s = Lgv (2.3)

where v = “v.



2.4 Selection of visual features 17

2.3.2 Joint space control

For an eye-in-hand system, the relation between $ and the velocity of the joint variables ¢
can be obtained as follows [Dombre 07]:

Os Opd°p. OUs . Os
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(2.4)

where “Jq is the Jacobian of the robot expressed in the end effector frame F. and “V. is
the twist transformation matrix between the end effector frame F,. and the camera frame F',
defined by [Dombre 07]:

(2.5)
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where ‘R, and “t, are the rotation matrix and the translation vector from the end effector
frame R, to the camera frame R... The matrix ®V, remains constant for eye-in-hand config-
urations, while it has to be estimated at each iteration for eye-to-hand configurations.

If the object is not moving % = 0, from (2.4)we get:
s =Jsq (2.6)

where Jg = L“V “J4 is the Jacobian of the visual features.

2.4 Selection of visual features

Visual features observed by the vision sensor define the inputs to the control scheme. A
feature can be any property that represents a part of the scene and can be extracted from the
image. Vision sensor can be conventional camera (as usually used in visual servoing), 2-D
ultrasound camera [Mebarki 10] or omni-directional cameras that is motivated in robotics
applications to avoid visibility problems due to the restricted field of view of conventional
camera [OkamotoJr 02] [HadjAbdelkader 07]. Selection of good visual features is a crucial
aspect of visual servoing as it is necessary for achieving optimal speed, accuracy, and reli-
ability of image measurements, consequently, affects performance and robustness of visual
servoing [Feddema 91] [JanabiSharifi 97] [Chaumette 98]. Imaging measurements are ei-
ther used directly in the control loop or used for relative pose estimation of a workpiece with
respect to a camera. The number of degrees of freedom (DOF) to be controlled by the em-
ployed control scheme determines the minimum number of independent features required.
Therefore, it is desirable to choose features which will be highly correlated with movements
of the camera. In the following, we classify image features, that define the input signal to
visual servoing control scheme, into three classes named geometric features, photometric
features, and velocity field features.
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2.4.1 Geometric features

Geometric features are defined to describe geometrically contents involved in a scene (2D
visual features) or to relate a frame attached to a robot system with a frame attached to
an object in a scene (3D visual features). Both 2D and 3D visual features can be used
simultaneously in a hybrid form as we will see in Section 2.5.3.1.

2D visual features

Visual features can be selected in 2D image space as point coordinates, parameters rep-
resenting straight lines or ellipses, region of interest, contours, [Feddema 91] [Espiau 92]
[JanabiSharifi 97] [Corke 01] [Gans 03c]. These features are defined from image measure-
ments. In case of image points, Cartesian coordinates are generally used but it may be also
possible to use their polar and cylindrical coordinates [Iwatsuki 05]. In all cases, the param-
eters defining the internal camera calibration are required.

Image moments can also be used in visual servoing [Chaumette 04] [Tahri 05]. Using image
moments, the improvements with respect to classical visual servoing seem to be significant,
since it allows a generic representation not only able to handle simple geometrical primi-
tives, but also complex objects with unknown shapes. It is shown in [Tahri 05] that moment
invariants can be used to design a decoupled 2D visual servoing scheme and to minimize the
nonlinearity of the interaction matrix related to the selected visual features.

3D visual features

Visual features can also be selected in 3D Cartesian space such as pose or coordinates of 3D
points [Martinet 96] [Wilson 96] [Deng 03]. Usually, object model and image measurements
are used to compute or to estimate the relative pose between object and camera frames in the
Cartesian space or to reconstruct the 3D coordinates. In [Cervera 03], the 3D coordinates of
the points of the object are used as the feature vector. A priori knowledge about the camera
calibration parameters is required. In PBVS, orientation in pose vector can be represented
by the total format, roll-pitch-yaw or axis-angle formats, [Wang 92] or quaternion formulate
[Guogiang 10].

Hybrid visual features

Several combinations between visual feature types can also be considered: for example, a
mixture composed of both kinds of 2D and 3D features is presented in [Malis 99] [Deng 02a]
[Cervera 03] [Marchand 05a], and finally polar and Cartesian parameterizations of image
points coordinates as presented in [Corke 09].

Gaussian mixture features

In [Hafez 08a], an approach that does not require tracking nor matching has been presented.
Collectively features points extracted from the image are modeled as a mixture of Gaussian.
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The error function is defined as the distance between the current and desired Gaussian mix-
ture models. As presented in [Hafez 08a], three degrees of freedom can be controlled using
this approach while six degrees of freedom can be considered under the assumptions that a
depth distribution is available.

Redundant features

Utilizing redundant features can improve the performance of visual servoing control and
increase the positioning accuracy by improving the corresponding minimum singular value
of the extended image Jacobian [Hashimoto 96]. However, processing a large feature set can
sometimes be computationally infeasible, and therefore the focus must be on the selection of
an information-intensive and reliable set that possesses a minimum number of features.

Automatic feature selection

A methodology for automatic visual feature selection among a set of features is presented
in [Feddema 91] [Papanikolopoulos 93] [JanabiSharifi 97]. This approach selects the more
reliable combination from a given feature set depending on some control criteria based on a
weighted criteria function of robustness, completeness, uniqueness and computational time
complexity of the image features.

Interaction matrix

The analytical form of the interaction matrix is based on the type of the used camera (conven-
tional camera, 2D or 3D ultrasound cameras or omni-directional camera) and the projection
model used [Hutchinson 96][TatsambonFomena 09]. The most common geometric model
for usual cameras is the perspective projection model [Horn 86], (see Fig. 2.3). In this
model, the center of projection is considered at the origin of the camera frame F. and the
image plane is at Z = f, where f is the camera focal length. By considering a 3D point with
coordinates X = (XY, Z) in the camera frame and using a perspective projection model
[Forsyth 03], the point X is projected on a 2D point x of coordinates (z,y) in the image

plane such that:
o) - ) - [T e

where x,, = (u, v) is the image point coordinates in pixel unit, ¢ = (c,, ¢,) is the coordinates
of the principle point, f is the focal length of the camera lens and « is the ratio of pixel
dimension.

Interaction matrix of image feature points (2D): As for the interaction matrix Lg of an
image feature point it can be obtained as following: By taking the time derivative of (2.7) we
get:
m - {X /7 — XZ/Z?} 2.8)
y|  |\Y/)Z-YZ|Z? '
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Figure 2.3 — Camera model

If the spatial velocity of the camera is given by v = (v,w) where v = (v,,v,,v,) and

w = (wy,wy,w,) are the instantaneous linear and angular velocities of the origin of the
camera frame both expressed in F ., then the velocity of the 3D point X related to the camera
velocity is defined using the fundamental kinematic equation X = —v — w x X such that:
X Uy — wyZ +wY
V| =|v,—wX+wZ (2.9)
A v, — WY +wy X

By injecting the values of X,Y and Z from (2.9) in (2.8) and grouping for v, and w we get
the classical result [Weiss 87]:

T 20 £ ay —-(1+2>) yllv
— |z Z
[y] { 0 ’71 Z 1+ y? —xy —z| |w (2.10)
which can be written as
x=Lx v (2.11)
where Ly is the interaction matrix related to x. If there is a set of k feature points x =
(x1,...,Xg), the interaction matrix Ly of the set x is obtained by stacking Ly, for all z; € x
to get:
Ly,
L.=|: (2.12)
Ly,

Interaction matrix of fu parameterization (3D): If the rotation matrix “ R. € SO(3)
relating the two views of the camera is defined in #u parameterization, the error function
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is given by e = (“'t., fu) where “'t. € RF is the translation vector. The camera velocity
related to the pose error is given by [Malis 99]:

. “R, 0
e = [ 0 Lw(u,é’)} v (2.13)
where
B Q B sinc(#) 9
Lw<u7 0) - I3 + 2[u]>< + (1 sinc2(§)> [u]x (214)

with [u]y is the skew symmetric matrix associated with u and I3 € R**3 is the identity
matrix.

2.4.2 Photometric features

Recently, different researches focus on the utilization of photometric features computed from
pixel intensities. The utilization of the photometric features does not rely on complex image
processing such as feature extraction, matching, and tracking process, contrary to utilizing
geometric visual features such as points, straight lines, pose, homography, etc. Moreover, it
is not very sensitive to partial occlusions and to coarse approximations of the depths required
to compute the interaction matrix. This approach is employed by considering the whole im-
age as a feature set from which the control input signal is defined. The input to the controller
can belong to eigenspace or kernel of image pixel or can also be defined as the set of all
image pixels itself.

Eigenspace-based photometric features

In [Nayar 96], image intensity is not used directly but an eigenspace decomposition is per-
formed first to reduce the dimensionality of image data. Then the control is performed in the
eigenspace. This method requires off-line computation of this eigenspace and the projection
of the image on this subspace for each new frame. No analytical form is available for the
interaction matrix, indeed it is learned during an off-line step. The learning process has to be
done for each new object and requires the acquisition of many images of the scene at various
camera positions.

Kernel-based photometric features

Another approach that considers the pixels intensity is based on the use of kernel methods.
It is presented in [Kallem 07]. This method, valid for 4 DOFs, leads to a decoupled control
law that decouples translation and rotation around the optical axis.

Pixel-based photometric features

It is also possible to use the luminance of all the pixels in the image as visual feature set. In
that case, s = I(r) where I is a vector of the same size M; x N; as the image, [Collewet 08]
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[Collewet 09b]. In the same manner, instead of using the luminance I(r), color attributes
C = (R G,B) can be used as visual features by selecting the three components R, G or B,
[Collewet 09a]. A combination of different components can also be performed.

2.4.3 Velocity field features

In [Crétual O1], the visual features are specified with dynamic criteria which is homogeneous
to speed in the image and the relation between the variations of velocity field features and the
camera velocity is modeled. The camera motions are controlled so that the current velocity
field in the image becomes equal to motion field in the desired configuration. This approach
is used for positioning a camera parallel to a plane and following trajectory. In [Kelly 04],
the application of the velocity field control is applied to visual servoing of robot manipulator
under fixed camera configuration. In that case, the task to be accomplished by the robot
is coded by means of a smooth desired velocity vector field defined in the image space by
v(x) : R? — R?, where x € R? is an image point and v is assumed to be bounded. This
desired velocity field v defines a tangent vector that represents the desired image feature
velocity x at every point of the image space. The velocity field error e is defined as the
difference between the desired velocity field v(x) and the image feature velocity x. Thus,
instead of requiring the image feature to be at a specific location at each instant time as it is
imposed in trajectory tracking control, in velocity field control the image feature is guided
towards the desired flow defined by the desired velocity field v(x) i.e. the image feature
will match with the flow lines of the desired velocity field. The velocity field is also used in
[Kelly 06], for controlling wheeled nonholonomic mobile robots by a fixed camera.

2.5 Visual servoing control laws

As for the choice of the control law [Espiau 92] [Wilson 96] [Hutchinson 96] [Chaumette 98]
[Deng 02b] [Malis 04] [Chaumette 06] [Chaumette 07], it affects the behavior of the system.
As described in the previous section, the nature of the potential visual features is extremely
rich. In the control design phase, a number of properties should be considered such as
local and global stability, robust behavior with respect to measurement and modeling errors,
local or global exponential decrease, order of convergence, absence of local minima and
singularities, obtaining suitable robot trajectory, and finally the degree of decoupling between
the visual information and the controlled degrees of freedom.

2.5.1 Classical approaches

2.5.1.1 Position-based visual servoing

In Position-based visual servoing (PBVS) or 3D visual servoing, the task function is ex-
pressed in the Cartesian space. The translation and the rotation of the camera in Carte-
sian space are explicitly reconstructed using pose estimation, [Hutchinson 96] [Wilson 96]
[Martinet 97] [Basri 99] [Taylor 00] [Deng 03]. PBVS is known to have global asymptotic
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stability referring to the ability of a controller to stabilize the pose of the camera from any
initial condition if 3D estimation is perfect. The analytical proof is evident if the pose is
perfect, otherwise it is impossible. When accurate 3D estimation is employed, decoupling
rotation and translation is obtained. Errors in calibration propagate to errors in the 3D world,
so it is required to ensure robustness of PBVS [Kyrki 04a].

No mechanism in PBVS ensures keeping the features visible within the camera field of view
(FOV) when the translation is defined in the desired fixed end effector frame [Wilson 96].
While, if the translation is expressed in the camera frame, the trajectory in the image plane
is improved under large camera rotation motion and features can be kept in the image plane
for small rotation, [Deng 03]. Several control schemes have been proposed to overcome the
latter problem (for example 2.5 D visual servoing presented in [Malis 02] or nonlinear ap-
proach using a new 3D translation features in the control loop as presented in [Martinet 99]
[Thuilot 02]). In PBVS, the task function to be regulated is usually defined as the error be-
tween current and desired poses. The pose can also be selected as the pose of the camera or
the end effector with respect to the object or any other reference frame in the world space.
When the pose between the camera and the object is considered, the task function is given
by e = ¢ P.. After executing the task, the camera reaches the desired position and the task
function e = “ P = 0.

Pose estimation

One of the central problems in position-based visual servoing is the determination of the
relative position and orientation of the observed object, that is the pose with respect to
the camera. For real time pose estimation of the object, image measurements are com-
bined with the known object CAD description. The pose can be estimated using image
points [Haralick 89] [Dementhon 95][Liu 99] [Ansar 03] [Chesi 09a], using point and line
correspondence [Dornaika 99], using point to region correspondence [Mcinroy 08], using
curves [Safaee-Rad 92], or using other different geometrical features as in virtual visual
servoing [Marchand 02]. For obtaining more accurate pose estimation, different filters are
usually used to estimate its translational and rotational parameters [Myers 76] [Wang 92]
[Ficocelli 01] [Lippiello 04] [Shademan 05] and recently [JanabiSharifi 10b].

Partial pose estimation

Camera translation (up to a scale factor) and camera rotation can be estimated through the
Essential matrix [LonguetHiggins 81][Faugeras 93] [Hartley 97]. However, when the target
is planar or when the motion performed by the camera between the desired and the current
pose is a pure rotation, essential matrix cannot be estimated and it is more appealing to
estimate the pose using a homography matrix [Malis 00]. Indeed, if all points belong to
a plane 7, the partial pose can be extracted from the homography matrix H that relates
homogeneous coordinates of points in the desired and current image planes 7 using the
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relation:

(2.15)

where ¢ R, is the rotation matrix and ¢ t. is the translation vector between the two camera
frames, n* is the unit normal vector of the plane 7 expressed in the desired camera frame,
and d* is the distance from the camera origin at the desired position to the plane 7.

2.5.1.2 Image-based visual servoing

IBVS uses feature extracted directly from the image as input of the control law, without any
supplementary estimation step. Different from PBVS, IBVS does not need to estimate the
pose at each iteration which helps to provide a robust positioning control against calibration
and modeling errors. For example, lens distortions can be neglected when the set of desired
image feature locations is obtained via an off-line teach-by-showing procedure by moving
the robot end-effector to a desired location and storing the camera measurements at this lo-
cation.

IBVS is characterized by several advantages. Firstly, when the set of features is composed
of the Cartesian coordinates of image points, these image points are controlled in the image
plane to move approximately along straight lines. Therefore the target can be constrained
to remain visible during the execution of a task if both the initial and desired image feature
locations are within the camera field of view [Chaumette 98]. Another advantage of IBVS is
that the positioning accuracy is insensitive to camera and target modeling errors [Espiau 93]
[Hutchinson 96] [Hager 97] [Mezouar 02]. It is essentially a model-free method without ex-
plicit requirement of the target model in practical applications when the depths of the feature
points are available. IBVS systems are usually preferred to position-based systems since they
are usually less sensitive to image noise. However, some knowledge of the transformation
between the sensor and the robot frame [Tsai 89] is still required.

IBVS is however subject to some shortcomings. Firstly, it is hard to predict the trajectory of
the end effector and robot may reach its joint limits. Secondly, the end-effector translational
and rotational motions are not directly controlled and the usual coupling existing between
these motion makes it difficult to plan a pure rotation or a pure translation (for example, due
to the camera retreat problem [Chaumette 98]). Also, since the system is usually highly cou-
pled, the analytical domain of system stability is impossible to determine in the presence of
camera modeling errors. Furthermore, usual IBVS is only locally asymptotically stable and
may fail in the presence of large displacement to realize [Chaumette 98] [Cervera 99], which
necessitates a path planning step to split a large displacement up in smaller local movements
[Mezouar 02]. Finally, potential failure occurs when IBVS is subject to image singularities
or local minima [Chaumette 98].
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Depth estimation

In IBVS, providing some information about the depth of the object in the camera frame is
usually necessary for the computations required to obtain the interaction matrix. Since the
stability region for the error in depth estimation is not very large [Malis 10], it is necessary
to accurately estimate the depth. For static objects, this estimation of the depth value can be
obtained from the measurement of the current values of the feature points x and y and their
image motion & and g, and of the camera velocity [Matthies 89] [Marcé 87]. The depth pa-
rameters of planar and volumetric parametric primitives like points, lines, cylinders, spheres,
etc. can be also obtained [Chaumette 96]. Another depth estimation method for static points
without the explicit need for image motion estimation can be found in [DeLuca 08b]. In
[Xie 09], a laser pointer is used and the depth estimation can be achieved through a triangu-
lation method.

In response to the difficulties appearing in IBVS and PBVS, several methods that do not
rely solely on the interaction matrix have been devised to improve the behavior of the visual
servoing controls.

2.5.2 Enhanced visual servoing approaches

In order to overcome drawback of visual servoing control schemes, different modeling ap-
proaches have been considered such as sliding approaches [Zanne 00], partitioning approaches
[Corke O1] [Kyrki 04b] [Pages 06], trajectory planning approaches [Mezouar 02], varying-
feature-set approaches as presented in [Comport 06] [GarciaAracil 05] [Mansard 09b], and
hybrid and switching approaches which will be discussed in a particular section (Section
2.5.3).

Sliding approaches

Sliding mode control theory has been used to design a controller which is robust to bounded
parametric estimation errors (uncertainties) [Zanne 00]. Two sources of error are considered,
the control input error due to uncertainties in the positioning of the camera relative to the
robot end-effector, and the estimation error of the pose reconstruction algorithm used in the
control loop. The formulation of the sliding mode controller is based on the quaternion
representation of rotations. The controller is designed such that the estimated state precisely
tracks the desired trajectory in the presence of uncertainties.

Partitioning approaches

A partitioned approach had been proposed for decoupling the rotation and the translation
around and along the z-axis from the rotation and the translations regarding x-axis and y-axis,
[Corke 01]. This decoupling is used to solve the problem corresponding to a pure rotation by
180 degrees around the camera optical axis which leads to a singularity [Chaumette 98]. In
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[Corke 01], a controller is designed for the motion along and around the optical axis which
can avoid the backward motion of the camera.

§ = Jpyiny + Job, <= By = JF (5 — J.1) (2.16)

where I, = (v, vy, w,,w,) and I, = (v,,w,). Selecting suitable v, and w,, the partitioned
control scheme eliminates the retreat problem. This partitioning approach is also used to
keep the feature points in the camera field of view by establishing a repulsive potential func-
tion at the boundary of the image to enforce the camera to move in the negative direction of
its optical z-axis to keep the feature points within the image plane.

In [Pages 06], a structured light sensor is designed for image-based visual servoing such
that the projected pattern on the object is invariant to depth and the corresponding image
is symmetric. This approach, similar to a position-based approach, decouples the rotational
part from the translational one. Object plane is not required to be reconstructed by using
triangulation or a non-linear minimization algorithm. This method requires a coarse cal-
ibration of camera and lasers location with respect to the robot end effector. To improve
the robustness with respect to misalignment between the camera and the lasers, an image
transformation is defined.

Trajectory planning

In [Mezouar 02], rather than the utilization of direct point-to-point image-based visual ser-
voing when a large displacement has to be realized, a coupling between a path planning
step based on the potential field approach [Khatib 85] and a purely image-based control is
performed to extend the local robustness and stability of image-based control. The required
trajectory of the camera is planned with respect to stationary desired camera end-effector
frame. This ensures the shortest straight line in the Cartesian space in the absence of con-
straints. This method considers the joint limits problems and keeping the features in the field
of view of the camera.

In [Chesi 09b], a new framework solution is presented for avoidance in visual servoing using
homogeneous forms and linear matrix inequality. This method makes it possible to consider
different kind of constraints by imposing them as a positively conditions on homogeneous
form into the proposed general parameterization of the trajectory planned from the initial to
the desired position. Convex optimization is used in this framework in order to determine
the solution and maximize the performance of these path planning constraints.

Origin-shift in cylindrical coordinates

As already said in section 2.4.1, in [Iwatsuki 05], a formulation of visual servoing based on
the cylindrical coordinate system has been proposed to avoid the camera backward motion
when the motion from the initial to the desired poses is a pure rotation of 180 around the
optical axis. In that paper, a decision method of a shifted position of the origin by estimating
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the camera rotational motion is also proposed. Simulations and experimental results have
shown the effectiveness of the proposed approach by comparing the conventional approaches
and the new one.

Varying-feature-set control schemes

In [Comport 06], a weighted error function e,, is used in the control law. It is defined as
e, — We where e = s — s, is the usual error between the current and desired visual features
and W = Diag(wy, ws, ..., wy,) is a diagonal weighting matrix. The corresponding control
scheme is:

v=-\WIJ)"We (2.17)

where (WJ)™ is the Moore-Penrose pseudo inverse of WJ. The values of w; € [0, 1] is
smoothly changing to a value that indicates the level of confidence in the corresponding fea-
ture (w; with 1 refers to the highest confidence level). This removes the outliers from the
feature set s. Errors in feature extraction, tracking and matching are rejected at the low level
control which improves the behavior of the positioning task. In [GarciaAracil 05], to ensure
the continuity of the control law when some features leave the camera field of view, i.e.,
when the number of features changes, a diagonal weighted matrix is also introduced into the
definition of the task function.

In [Mansard 09b], a theoretical study of using the weighted matrix when a classical pseudo
inverse is used shows that the continuity of the control scheme is not ensured when the ac-
tivated feature set is non redundant except when the activated feature is fully decoupled. A
control law based on a new inverse operator that is able to keep the continuity of the control
law regardless the change of the rank of the Jacobian is presented.

2.5.3 Hybrid and switching strategies in visual servoing

To combine the advantages of both image-based (2D) and position-based (3D) visual servo-
ing, numerous approaches have been proposed to model control schemes based on the utiliza-
tion of hybrid and switching strategies. As for the hybrid approaches when both 2D and 3D
features are used simultaneously in the same control scheme, we find 2 1/2 visual servoing
[Malis 99] [Chaumette 00] [Deguchi 98]. Switching approaches between PBVS and IBVS
are used to capture the strength of each one when the other being in a weakness configuration,
[Gans 03a] [Gans 03b] [Gans 07]. Hybrid and switching approaches are used together by in-
tegrating PBVS and IBVS in a switching hybrid scheme, [Deng 05] [Hafez 06] [Hafez 07b]
[Hafez 08b]. A hybrid approach in feature parameterization is presented in [Corke 09]. And
finally, planning step-switching using laser spot is presented in [Xie 09].

2.5.3.1 Hybrid approaches

A 2 1/2 D visual servoing approach developed in [Malis 99] [Chaumette 00] combines vi-
sual features expressed in 2D image and 3D Cartesian spaces. This hybrid controller tries
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to take advantage of both approaches by decoupling rotation and translation and keeping the
features in the field of view. The task function is expressed in both Cartesian space and in
the image space. These approaches make it possible to demonstrate also the global asymp-
tomatically stability and the robustness of the control law when a minimal number of visual
features remain in the camera field of view [Malis 02]. The camera displacement between
two views is estimated using the correspondence between several points in two images to
extract the relative rotation between the two images and the translation up to a scale fac-
tor [Malis 00] [Benhimane 07]. This decoupling between the orientation and the translation
makes it possible to design two task functions: ey for the translation and e, for the rotation
which improves the system behavior in the 3D space. A very interesting aspect in 2 1/2 D
visual servoing is that, thanks to projective reconstruction, the knowledge of the 3D structure
of the considered targets is no more necessary. However, the use of projection reconstruction
implies that the corresponding control laws are more sensitive to image noise than classical
image-based visual servoing.

In [Kyrki 04b], a solution similar to [Chaumette 00] is presented. A hybrid control scheme
between 3D and 2D visual servoing is presented based on controlling the translation using
the estimated 3-D translation between the current and desired poses while the rotation is
controlled using a single feature point that is driven towards its desired location.

Another hybrid system between IBVS and PBVS is presented in [Hafez 07b]. Instead of
partially combining 2D and 3D visual information, a hybrid objective function to be opti-
mized is defined by concatenating both 2D and 3D errors. The solution thus minimizes the
errors in both image space and pose space simultaneously. This is obtained by defining a
cost function as:

Aad A3d

E(s(p)) = “e2(p) ' e2u(p) + = esa(p)  €sa(p) (2.18)

where e24(p) = s24(p) — S24(p*) is the image error vector, €34(p) = S34(P) — S34(p*) is the
pose error vector, and Aoy and A3y are positive scalar factors to define the integration weight
of 2D and 3D spaces. Using the classical approach, the control scheme is given by:

ol Rk e

Lsg(p)| |I'sa| [esa(p)

where Lo, and L, are respectively the interaction matrices to eg; and e3q and I', = diag(\,), * =
2d, 3d. This cost function has common global minima as 2D and 3D approaches. This hybrid
control scheme improves the performance in image and Cartesian spaces by decreasing the
probability of losing image feature and enhances the camera trajectory in the Cartesian space.

In [Hafez 07a], a boosted visual control that considers 2D and 3D control as weak controls
is presented. A linear combination of these two control produce a strong one with satisfac-
tory performance. Weights which are used in the combination are computed based on error
function associated with each control.
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2.5.3.2 Switching approaches

In [Gans 03a, Gans 03b, Gans 07], switching is performed in order to avoid the problems of
loosing feature points using PBVS and reaching robot joint limits when IBVS is considered.
In this switching system, a threshold region is defined as a circle in the image space to start
switching to IBVS if the features nears the image boundaries. Another threshold region is
defined in the robot configuration space in which the object is visible so that the switching to
PBVS starts when the robot nears its joint limits. Two metric functions are defined to decide
when switching should start. Finally, for the position-based and image-based visual servoing
given by viy = —A3gAsgesq and vo; = —AggAgses, (Where A3y and Aoy are positive gains,
esq and ey, are control input signals and A3, and A, are the control matrices), a common
state space is defined by concatenating the state vectors such that:

F?’d} — A, {e?’d} , o €3d,2d (2.20)
€24 €24
where
B I 0 - 0 LgdL;_d
A3d — = |:L2dLgd1 O:| ) AQd - |:0 IG (221)

The hybrid switching system presented in [Gans 03a] [Gans 03b] is defined by a convex
combination:
A, =aAz+ (1 —a)Ay, a€]|0,1] (2.22)

where « is a time-based switching parameter. The system control is thus partitioned along
the time while in [Gans 07] a state-based switching parameter is used. Stability analysis pre-
sented in [Gans 07] shows that under arbitrary switching within a sufficiently small neigh-
borhood of the origin, a hybrid switching visual servo system is asymptotically stable in the
sense of Lyapunov. Moreover, the state based switching local stability is proved using a tech-
nique for establishing the stability of switched control systems [Branicky 97] [Wicks 94].

The switching method proposed in [Gans 07] is used for mobile robots navigation in cor-
ridors in [Toibero 09] to enhance the performance of the navigation system. The switching
helps to deal with adverse initial conditions that could be difficult to handle when only PBVS
or IBVS is considered. The switching helps also to handle the sudden change on the posi-
tion of the features due to disturbances. By considering Multiple Lyapunov Functions, the
stability of the controller used has been proved.

In [Deng 05], a system was designed to resolve the problems of local minima and singu-
larities. This is achieved by performing the switching from IBVS to PBVS as soon as the
end-effector motion nears the neighborhood of image singularity or image local minima con-
figurations. The evaluation of the image singularity is performed by comparing the image
motion perceptibility measure with image singularity threshold values, [Sharma 97]. As for
the local minima, to avoid the exhaustive searching for image local minima, they evaluate
the local minima only on the planned image trajectories.
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In [Xie 09], a switching approach to decouple camera rotation and camera translation mo-
tions is proposed to apply IBVS to a robotic assembly system composed of a 6-DOF robot
with a camera and a laser pointer mounted on the robot end effector. The laser pointer is
used in order to decouple the camera rotation and translation. A required motion to be per-
formed is considered as a composition of two steps, rotation step and translation step. In the
first step, an imaginary image feature defined by laser-spot is used to control the rotational
motion of the end effector to reach the configuration where the laser spot is projected on
the object. In the second step, the interaction matrix constructed from the features of the
object and laser spot is used to control the end-effector translational motion with respect to
the object. This control scheme was used for eye-in-hand robotic manufacturing system to
detect, grasp, and assemble a planar object on a main body.

2.5.3.3 Hybrid switching approaches

An integration between PBVS and IBVS proposed in [Hafez 06] is performed by computing
the weighted sum of the velocity values obtained from each controller individually. The
integrated controller given by this framework is defined by

vV =wvyy + (1 —w)vsy (2.23)

where vy; and vsg are the velocity vectors of the IBVS and PBVS controllers and are given
by vog = —)\gdL; /€24, and vig = — 3L, dlegd, respectively. w is defined as a function of the
constraints in image and Cartesian spaces and the energy of the task function. This function
is designed such that near to image local minima and singularities its value decreases to
switch to PBVS while when one of the image features nears the image boundary, its value
increases to switch to IBVS. A probabilistic general formula can represent this framework
by defining v as:

v =" v(w)p(ailr) (2.24)

&%)

where p(«;|z) is the discrete probability for visual servoing control law parameters ;i =
1, .., k conditioned on the image measurement = and » _ p(a;|z) = 1.

In [Hafez 08b], the same methodology used in [Hafez 06] is used for avoiding joint lim-
its and keeping features in the camera field of view. By considering the hybrid approach as
a boosting which produces a strong algorithm from two weak algorithms represented by the
IBVS and PBVS ones. In that case, the weight w introduced in (2.23) is given by w = %
where the thresholds of joint limits and the threshold representing the nearest image border
are used to compute the weights a4 and s, that give the current importance to each algo-

rithm.
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2.5.3.4 Hybrid and/or switching strategies involving other approaches

Switching approaches previously mentioned combine two different visual servoing approaches.
Now, we address some cases when switching is performed between visual servoing and
other approaches: for example switching between visual servoing and artificial potential
[Hashimoto 00a], hybrid between visual and kinematic measurements [Taylor 04] and fi-
nally switching between PBVS and other selected rotational or translational control as in
[Chesi 04a].

In order to avoid local minima problems in IBVS, in [Hashimoto 00a], a switching method
based on defining artificial potential v* using interpolation between the initial and the de-
sired images is proposed. When a visual servoing system nears a neighborhood of the local
minima, switching from the visual servoing velocity v to v* is performed to reach a local
maximum. Then the system switches again to the original v.

A switching approach between PBVS and some selected rotational or translational motions
is presented in [Chesi 04a] for keeping features in the field of view. It consists of realizing
a visual servoing when all points lie inside the image. When at least one point lies on the
image boundary, system control switches to the other selected controls in order to push such
a point inside the image and to guarantee the final convergence. Only rotational control or
translational control is applied when the corresponding produced motions moves the points
lying on the image boundary inside the image. Otherwise, a backward translational motion
along the optical axis is applied to sent the camera away from the observed object.

To increase the accuracy and robustness of controlling humanoid robot having a grasping
system and working in an unstructured domestic environment, a hybrid approach that com-
bine kinematic measurements and visual measurements is presented in [Taylor 04]. In this
approach, using kinematic measurements increases the robustness to visual distractions and
occlusion while visual measurements increase the positioning accuracy. They introduced
online estimation of the eye-in-hand transformation to enhance the influence of calibration
errors on camera and kinematic models. Iterative extended Kalman filter (IEKF) was used
to fuse the visual and kinematic measurements obtained from the camera-robot system to
overcome the problems of initial pose error in long term operations and to decrease the in-
fluences of the calibration errors.

A hybrid controller for robust mobile manipulation is developed in [Wang 10] by integrating
the classical IBVS controller and a machine-learning approach called reinforcement learning
or Q-learning controller through a rule-based arbitrator which defines the control behavior
policy. This integration autonomously improves its performance by ensuring visibility of
visual features. This is thought to be the first paper that integrates Q-learning with visual
servoing to achieve robust operation. Experimental validation carried out to this approach
shows that the hybrid controller possesses the capabilities of self-learning and fast response,
and provides a balanced performance with respect to robustness and accuracy.
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2.5.4 Visual servoing as a minimization problem

Visual servoing can be viewed as a minimization problem that finds a camera displacement
vector Ap to minimize a cost function E(s(p)) of the error vector s(p) where p € R3 x SO®
is the camera pose [Malis 04] [Hafez 07b]. By considering the problem as a nonlinear least
squares minimization such that E(s(p)) = As’As, where As = (s(p;) — s(pq)) with
p; and py the initial and the desired pose, Taylor expansion performed on the gradient of
E(s(p)), that is on As(p), can be used to obtain first and second order minimizations.

2.5.4.1 Steepest decent minimization method (SDM)

Using first order Taylor expansion of As(p) evaluated at p, around p; we get:

o
s(pa) = s(pi) + % Ap (2.25)

P=pP:

where %;’) = Lg(p) and Ap = pg — p;. In the gradient decent minimization, the movement

is in the opposite direction to the gradient and the change in the pose is given by [Malis 04]:

Ap = —AL! | As (2.26)

s(p)

where ) is a positive gain and Ly = JsP such that p = Pv. The method presented above
is called Jacobian transpose method JTM and has been used in [Hashimoto 93b, Kelly 00,
Hafez 07b]. This method shows linear convergence rate.

2.5.4.2 Newton minimization method (NM)

In order to obtain quadratic convergence rate, second order Taylor expansion is used for
evaluating the cost function at the desired pose py:

Js(p)

B 0”s(p)
s(pa) = s(p:) + “op

P=DP;

1
Ap + §ApT

P=DP;

where the second order derivative is a function of Hessian matrix H(s(p)) given by:

s S
alﬁf’) = L)L + > H, As (2.28)

J=0

By injecting (2.28) in (2.27) and solving for p we get:

n -1
V=) (LST(pi)LS(pi) +) Hi(pi)AsJ) L)) As (2.29)

J=0

Even if the Newton minimization method has a higher convergence rate than Steepest decent
minimization method, convergence problems can appear when Hessian matrix is negative
definite.
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2.5.4.3 Approximation to Newton minimization method (NMM)

The convergence problem mentioned above is avoided by using a positive definite approxi-
mation to replace Hessian matrix. This replacement gives approximations to Newton mini-
mization method such as Gauss-Newton minimization method, Levenberg-Marquardt method
and Quasi-Newton Method.

Gauss-Newton minimization method (GNM)

The first one is Gauss-Newton minimization method (GNM) in which the second order
2 .

derivative a;—p(gp) is set as LST(p)LS(p) by neglecting > 7 Hi(p)As in (2.29). The control

law obtained is:

v = =ML Lsp)) 'L As (2.30)

s(p)

which is the classical control scheme using the pseudo inverse, [Espiau 92].

Levenberg-Marquardt method (LMM)

The second method is Levenberg-Marquardt method (LMM) or Damped Least Squares
method (DLS). It has been firstly proposed in [Wampler 86]. This method is obtained from
Newton method by replacing the Hessian part by yD:

-1
v == (LipLs) +7D) L, As (2.31)

where D is any selected diagonal positive matrix and v is a parameter used to determine
the convergence rate. When -y is large, Levenberg-Marquardt method shows convergence
rate similar to that of Steepest decent minimization method. While when v is small, the
convergence rate obtained approaches the convergence rate of Gauss-Newton minimization
method. Finally, when v = 0, the LMM method is equivalent to GNM method. This method
is usually used to solve the singularity problem in robotics [Deo 92] [Chiaverini 97].

Quasi-Newton Method (QNM)

In this method, an approximation of Hessian matrix is reached by defining a sequence of
symmetric definite matrices A that converges to the Hessian matrix [Shanno 70].

v =ML, As (2.32)
where the initial value of A is set to be I or LST(p)LS(p) to start by coinciding with steepest
method or Gauss-Newton method respectively. This method has been applied for visual
servoing in [Piepmeier 99]. Although using transpose of Lg,) ensures the continuity in
the control scheme even when the rank of Lg,) changes (when some features are lost for

instance), it can lead to non optimal control. That is why it is preferable usually to use the
pseudo inverse of L) [Espiau 92].
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Efficient second order method (ESM)

Classical image-based visual servoing methods can be considered as problems of low conver-
gence rate and their performance can be studied in terms of the rate of convergence of their
minimization problems. However, convergence problems can be obtained when computing
the second order derivatives which is subject to ill-conditions. In [Malis 04], two control
schemes are proposed by formulating the positioning problem as a minimization problem.
The two schemes proposed give higher convergence rate while requiring only computing the
first order derivatives. The first proposed second order approximation is the mean of the
pseudo inverse of Lgp,) and Ly, . It is given by:

v = A (LJr

s T L

)As (2.33)

s(pa)

The second scheme is obtained by computing the pseudo inverse of the mean of Ly, and
Lg(p,)- It is given by:
v = —2A(Lg(p,) + Ls(p,)) " As (2.34)

Using these two control schemes, better results can be obtained even for large displacement
leading to local minima and retreat problem using basic approaches. However, we exhibited
in the next chapter a singularity of control scheme (2.34). Finally, the 3D camera trajectory
is also improved.

Hessian approximation

In [Lapresté 04], a method that approximates the control matrix up to second order is pro-
posed. This approximation is achieved by considering Taylor expansions at first and second
order, and by defining § € RY, where N = %(n + 1), as a function of p;, and finally by
introducing supplementary parameters p;p; where 0 < ¢ < j < n where n is the number of
degrees of freedom. The Jacobian of s as a function of Lg and Hj is given by:

Js = Lyp»)Ap + Ap Hy(p) Ap (2.35)

where J¢ = [L{ . H. )] with ICI;(p) is obtained from the coefficients of the lower triangular
part of Hg, (p) by dividing its diagonal by 2 and putting these terms in a line vector. Finally,
the control law is defined as:

v=KT"As (2.36)

where KT is composed of the first n lines of the pseudo inverse of the Jacobian matrix Js.
This method is used in [Lapresté 04] to overcome the retreat and advance problem in IBVS.

2.5.5 Problems in visual servoing

Selecting a suitable set of visual features and designing good control schemes should be
taken into account for avoiding system failures. Very usual problems in visual servoing that
are directly influenced by this selection and can be enhanced by a good selection are local
minima, singularity and visibility problems.
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Local minima

Generally, local minima problems occur only with very specific configurations [Chaumette 98]
[Gans 03a]. Getting trapped in a local minima, camera velocity is null v = 0, while the fea-
ture errors have not been minimized such that s — s* # ¢ € Ker(L*). This results in
converging to a final pose that is different from the desired one. When s is composed in three
image points and L is full rank, then we have Ker(LJ) = 0, implying that there is no local
minima. However, when three points are used, the same image of the three points can be seen
from four different camera poses, which means four camera poses exist such that s = s*, that
correspond to four global minima. When at least four points are used, unique pose can the-
oretically be obtained. However, dim(Lg) = 8 X 6, implying that dim Ker(L*) = 2. Using
four points, the control law tries to enforces 8 constraints on the image trajectory while the
system has only six degrees of freedom. In that case, due to the existence of unrealizable mo-
tions in the image that may be computed by the control law, a local minima may be reached
[Chaumette 98].

Several control strategies have been used to avoid local minima in visual servoing. For
example, and as already said before, in [Deng 05] and [Gans 07], a hybrid motion control
strategy that considers the local minima problem is presented while in [Mezouar 02] a path
planning strategy is developed.

Singularity

When the interaction matrix is singular causing a task singularity, the velocity tends to infin-
ity and the system is unstable. It may become singular if image points are chosen as visual
features. For instance, when four points are used and the required camera motion is defined
by a pure rotation of 180° around its optical axis, the image trajectory obtained of each point
is such that the points move concurrently in a straight line at the principal point, where the in-
teraction matrix is singular [Chaumette 98]. For the considered motion, the choice of image
points coordinates is really inadequate. Indeed, if the four points in the image are replaced by
cylindrical parameters (p, 6), the singularity can be avoided when the same initial position is
used, showing a pure rotation motion around the optical axis of the camera. Other singular
configurations will be described in Chapter 4.

In PBVS [Wilson 96] [Martinet 96] [Deng 03], most of representations avoid the problems
of local minima and/or singularities of the corresponding interaction matrices depending
on the chosen e, a 3D straight line between the initial and final camera pose is obtained
when e is defined by (2.13). This problem can also be solved by using potential function
[Hashimoto 00b], partitioning approach [Corke 01], switching approach [Deng 05], hybrid
approach [Malis 99], and PBVS [Wilson 96].
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Feature visibility

Using classical 2-D and 3-D visual servoing and assuming a bad calibration and a large initial
camera displacement, the target may leave the camera field of view [Malis 99] [Chesi 04b].
That is why, it is desirable to have servoing controls able to keep features in the camera
field of view to obtain reliable feedback signal during the servoing process. To minimize
the probability that the object leaves the FOV, a repulsive potential field can be adopted
[Chesi 04b], a path planning strategy [Mezouar 02], switching strategies [Gans 07], as well
as using structure light [Xie 09].

2.6 Performance and robustness

A nice dynamic performance of PBVS is presented in [Deng 03]. It considers different
orientation formats in controlling the robot end effector in the desired and in the current end-
effector frames. In [Kyrki 04a], the effect of vision system properties to the performance
of the control system are investigated by analyzing the propagation of image errors through
pose estimation and visual servoing control law.

Quantitative performance metrics for specific tasks can be performed using some metric
measures as in [Gans 03c]. These measures include the number of iterations required to con-
verge, error at termination, maximum feature excursion, maximum camera excursion and
maximum camera rotation. The evaluation and the comparison between different visual ser-
voing approaches can thus be performed for a given task. ( But I will not use these matrices
in the following chapters).

Recently in [Malis 10], the robustness of standard image-based visual servoing control and
efficient second order approximation method (ESM) is studied theoretically with respect to
errors on the 3-D parameters introduced in the interaction matrix when any central catadiop-
tric camera is used as a sensor and when points coordinates are used as input of the control
scheme. It has been noticed that the stability region is similar for all catadioptric cameras
and it is not expected to enlarge it by simply changing the type of central camera used.

In [JanabiSharifi 10a], a comprehensive comparison of IBVS and PBVS is presented by
comparing system stability and dynamic performance in the Cartesian and image spaces on
a common framework using both predefined and taught references . The robustness and sen-
sitivity analyses are investigated with respect to all the camera, target, and robot modeling
errors. Furthermore, other fundamental characteristics of the two methods, such as sensory
task space singularity and local minima are also compared.
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2.7 Conclusion

In this chapter, we presented a review of the state of the art concerning two main components
in visual servoing: features selection and design of the control scheme. This review can be
summarized in two graphs as illustrated in Fig. (2.4) for features selection and in Fig. (2.5)
for visual servoing control schemes. For a chosen combination of both, different behaviors
can be obtained by the robot system. That is why several works have been accomplished
concerning the robustness with respect to selected features, structure of the employed con-
trol scheme, existence of errors and uncertainty in robot or camera calibration, and errors
and uncertainty in input signals and in object model.
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Chapter 3

New first order control scheme

In this chapter, we analyze and compare five image-based visual servoing control laws. Three
of them are classical while two new ones are proposed. The first new control law is based
on a behavior controller to adjust the movement of the camera. It can also be used to switch
between the classical methods. The second control law is designed to try to obtain the global
stability of the system. An analytical study of all control schemes when translational motion
along and rotational motion around the optical axis is also presented. Finally, simulation
and experimental results show that the new control law with a behavior controller has a
wider range of success than the other control schemes and can be used to avoid local min-
ima and singularities. The work described in this chapter leads to the following publications
[Marey 08b][Marey 08a][Marey 08c].

This chapter is organized as follows: In Section 3.1, classical control schemes are recalled.
In Section 3.2, the control law with a behavior controller is proposed while in Section 3.3,
another control law is proposed and it global stability is studied. In Section 3.4, an analysis
of the control laws in the presence of rotation and translation w.r.t. the camera optical axis is
presented. Finally, simulation and experimental results are presented in Section 3.5.

3.1 Classical image-based control matrix

Let s € R¥ be the vector of the selected k visual features, s* their desired value and v € R
the instantaneous velocity of the camera. Most classical control laws have the following
form: .

v=-AL. (s—sY 3.1)

where A is a gainand Lg  is the pseudoinverse of an estimation or an approximation of the in-
teraction matrix related to s. Different forms for Lg have been proposed in the past [Espiau 92,
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Chaumette 06]. For simplicity, we consider that all values can be computed accurately, lead-
ing to the following choices

1):Lg = Lg (3.2)
2):Ly = Ly (3.3)
3): Ly = (Le + Lggy)/2. (3.4)

In the first case, f; = L~ is constant during all the servo since it is the value of the interac-
tion matrix computed at the desired configuration. It is thus not required to estimate the depth
of each feature at each iteration, the interaction matrix is computed off line either by knowing
the 3D model of the object or by computing it from an image acquired at the desired configu-
ration. In the second case, f; = Lg(;) changes at each iteration of the servo since the current
value of the interaction matrix is used. The depth in this case can be estimated using camera
motion measurements [Chaumette 96] or using depth observer [DeLLuca 08b] or from pose
estimation. Finally, in the third case, the average of these two values is used [Malis 04], and
similar to the second case the depth is needed at each iteration. As explained in [Tahri 10],
it is possible to improve the form given in (3.4) by using i\s = (Lg “Te + Lg())/2 where
¢"T. is the spatial motion transform matrix to transform velocities expressed in the desired
camera frame to the current camera frame. However, we will not consider this supplemen-
tary control scheme in the following, since it would be necessary to know the pose between
the current and the desired camera frame. The three usual choices (3.2), (3.3) and (3.4) for
L, when used with (3.1) define three distinct control laws:

1):v = —ALIL(s—s") (3.5)
2):v = —ALj,(s—s") (3.6)
3):v = —2X(Lg + Lgy)) " (s — 7). (3.7

We will denote these control schemes D, C and A (for desired, current and average respec-
tively) in the remainder of this chapter. On one hand, near the desired pose where the error
s — s* is low, the same behavior is obtained whatever the choice of f; since we have in that
case L) & Lg+. On the other hand, as soon as s — s™ is large, it is well known that the
choice of f; induces a particular behavior of the system since we thus have Lgy) # Lg-.
This motivates the current research on the determination of visual features such that the in-
teraction matrix is constant in all the configuration space of the camera, but it is clearly still
an open problem, and it not the subject of this work to determine new visual features.

3.2 New controller with a behavior parameter

In our proposed control law, a hybrid matrix obtained by introducing a behavior controller (3
is used to partially combine the two interaction matrices Lg- and L ):

L, = Ly = (BLs + (1 — ALy (3.8)
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Using (3.8) in (3.1), we obtain a new control law, denoted G in the following (for "general").
v=-\(BLs + (1 —p)Lg)"(s —s¥) (3.9)

Of course, if 7 = 1, we find again control law D; if 3 = 0, we obtain control law C, and
if 5 = 1/2, we obtain control law A. Control law G could thus be used to switch between
the different control schemes during the execution of the task. As described in the previous
chapter, switching strategies have already been proposed in [Gans 07] [Hafez 07b] but, in
these works, switching is performed between image-based and position-based approaches,
that is between different features in order to improve the performance of the visual servoing,
while here the features are the same but their control matrix is different.

More generally, the main interesting property of control law G (3.9) is that the behavior
of the system changes gradually from the behavior using control law C to the behavior using
control law A when [ varies from 0 to 1/2, and similarly, the behavior changes gradually
from the behavior using control law A to the behavior using control law D when [ varies
from 1/2 to 1. Hence, this new control scheme allows us to adapt the behavior of the system
based on the selected value of 5. We will see in Section 3.5 that particular values of 5 indeed
allows the system to converge while the other control schemes fail.

Let us finally note that in case of modeling or calibration errors, the matrices Lg- and Lg)

have to be respectively replaced by approximations Lg- and L), but that does not change the
general properties of the control schemes as long as the approximations are not too coarse.

3.3 Pseudo-Gas control law

Control laws D, C, and A are known to be locally asymptotically stable only [Chaumette 06].
The same is of course true for control law G. In this section, an attempt to obtain a globally
asymptotically stable (GAS) control scheme is presented.

3.3.1 Modeling
Let us choose as task function e € RS the following error
e=LL(s—s") (3.10)

where, as usual, s* is chosen such that Lg- is a full rank matrix. Since Lg- is constant, the
time variation of e is given by & = L.v where L, € R®*¢ is given by

L. = L. L.

We can note that L, is of full rank 6 as soon as Lg is also of full rank 6. To achieve an
exponential decreasing of e (that is, € = —\e), we obtain immediately as control scheme

v=-)\L_"e, (3.1
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which is nothing but
v = —AL&LLy) 'L (s —s%). (3.12)

3.3.2 Stability analysis

To study the stability of the control scheme (3.12), let us consider as candidate Lyapunov
function £ = L{|e(¢)[|*. We have £ = e"é = e Lev. Applying (3.11), we obtain

L = —de'LL;'e=-)\e'e
< 0, Ve #0.

The control scheme (3.12) seems thus to be very promising since it is GAS in the task func-
tion space. Indeed, £ always decrease to O whatever the initial value of e. Furthermore,
e ensures the specified behavior € = —)\e as soon as Lg- and Lg are computed accurately.
Unfortunately, to end the demonstration of the global stability, we should demonstrate that
e = 0 if and only if s = s*. That is usually impossible since, as soon as

(s —s*) € Ker L., (3.13)

we have e = 0, which implies v = 0, and s # s*, which corresponds to a local mini-
mum [Chaumette 98]. In other words, GAS in the task function space does not necessarily
imply GAS in SFj3 or in the visual features space. The task function (3.10) forms a local
diffeomorphism with S E5, but not a global one as soon as a configuration such that (3.13) is
satisfied exists. Control law (3.12) will be denoted PG in the following (for “pseudo-GAS”).

In Section 3.5, we will exhibit some configurations which lead to local minima. We can
thus conclude that, as for all the previous control schemes, only the local asymptotic sta-
bility of PG can be demonstrated when image point coordinates are used as visual features.
In spite of this disappointing result, control scheme PG is still interesting, since it may be
possible in the future to determine visual features such that Ker LY. = 0, leading to GAS.

3.4 Motion along and around the optical axis

This section presents an analytical analysis of all the control laws described previously when
the camera displacement is a combination of a translation ¢, and a rotation r, w.r.t. the
camera optical axis. As usually done in IBVS, we have considered an object composed of
four points forming a square (see Fig. 3.1). The study includes three cases in which the
movement along z-axis is from Z to Z*. In the first case r, = 0°, which means no rotation
around the camera optical axis, while 7, = 90° in the second case and 7, = 180° in the
third case. In all cases, the object plane is parallel to the image plane and the desired pose is
common. Using four points, the initial visual feature vector s and the desired one s* are:

5 = (1‘07I1,I2,J337y073/171/2yy3)
st = (xg, 77,25, 15, Y0, YT Yss Ya) (3.14)

where v; = X;/Z,y; =Y, /Z, 2} = X} /Z* and yj = Y;*/Z* fori =1, .., 4.
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Figure 3.1 — Motions along the camera optical axis

341 Casel:t.=(Z— Z")

We consider in this case a pure translation along the camera optical axis. Let the coordi-
nates of the four points in the camera frame at the initial and the desired configurations
be defined by pi = (—L,L,Z), pn = (L,L, Z), pio = (L,—L,Z), pis = (=L, —L, Z),
pao = (=L, L, Z*), ps1 = (L, L, Z*), pao = (L,—L,Z*) and pg3 = (—L,—L,Z*). Let
| = L/Z and I* = L/Z*. By defining the feature vector as in (3.14), we obtain the ini-
tial feature vector s = (—1, (1,1, —1, 1,1, —I, —I) and the corresponding desired feature vector
s* = (=0, 1%, I, =%, 1*,1*,—1*, —1*) as depicted in Fig. 3.2.

Figure 3.2 — Case 1: Initial and desired image feature points whent, = (Z — Z*)
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Using s* and the analytical form of Ly, the stacked interaction matrix Lg computed at the
desired configuration for s* is given as:

'2_1 0 —Zl: _l*2 _(1 —|—l*2) I*
20 L (1407 0
;—% 0 g—l z;2 —(1+l*z) =
St (1)
E— z* Z: .
0 2 = 1407 -1 -
0 -1 =l 1 +l*2 l*2 —J*
Z* Z*
i 0 2_1 —Zl: 1 + l*2 _l*2 l* |

and in this particular case, the interaction matrix Lg of initial set of visual features is given
by:
Ls = LS*

(—1.2°=2) (3.16)

It is possible to compute the analytical form of L;; by using Z = [*Z* /I and injecting (3.16)
and (3.15) in (3.8). We obtain:

—Cp —C —C —C —C C1 —C C1
—C (&1 —C C1 —Cyp —Chp —C —(C
—C2 Co Co —C2 Co Co —Cg —Co
L; = (ﬁLS* -+ (1 - ﬁ)LS)—i_ = | —C3 C3 —C3 C3 0 0 0 0 (317)
0 0 0 0 c3 —C3 C3 —C3
Cy Cy —C4 —C4 Cy —C4 —C4 Cy
where
D AB - p)
. P21+ 18+ (1L - §))
1 pum—
AL+ =P8+ 1P(1 - §))
xz
C =
T 878+ (1 9)
1
C =
PawB+r-9)
1
Cy =

8(6+1(1 - 5))

Analyzing (3.17) shows that singularities exist for L when {*5 + [(1 — ) = 0 or when
Bl + (1 — 3)I* = 0. These situations occur when 3 = 0 and [ = 0 which corresponding to
initial pose at infinity. Another singularity is obtained when 5 = 1 and [* = 0 corresponding
to setting the desired position at infinity. When 3 = 1/2 singularity is also obtained if either
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[* = 0or!l = 0, corresponding to setting the desired or the initial position at infinity similarly
to controls C and D respectively. Let us note that none of these configurations are realistic
in practice,

The error vector e to be used in the control scheme is given by:
e=s—s" = (=l+0" -0 1-0"1-0"1-0U,—1+10", -1+ (3.18)

If the gain of the control law is A then the values for the initial instantaneous velocity v; of
the camera can be deduced by injecting (3.17) and (3.18) in (3.9) to get:

o —A(I—=1*)*Z*
Vi = <O, 0, mo, O, 0) (319)

As expected, there is only a translational velocity component v, for all control schemes D,
C, M and G. The direction of motion depends on the relative relation between [ and [*. When
Z > Z*, which is equivalent to [ < [*, a forward motion is performed making the camera
move toward the object frame to near its desired position. While, when Z < Z* the direction
of initial motion is to make the camera move backward far from the object. The magnitude
of v, is proportional to the difference between [ and [*. To conclude, there is no particular
difference in that case between the control schemes C, D and A, and all provide a satisfactory
behavior.

342 Case2:r,=90andt, = (Z — Z%)

By considering the coordinates of the four points w.r.t. the camera frame at the desired
pose as in case 1, while the coordinates at the initial pose are now p;y = (—L,—L,Z),
pan = (=L,L,Z),pi» = (L,L,Z) and p;3 = (L, —L, Z), the initial value of s is then s; =
(=0, =01, =111, =) and s; —s* = (=1+1%, — 1= 1" I =1, 1415, =1 —=1" 1= 1" [ +1%, 1F—1)
is the error vector (see Fig. 3.3).

The interaction matrix of the features at the initial configuration is:

:71 0 ?ﬁ 122 —(1+b§) —
- 0 7 = =1+ 1
Zz 0z B -+ 1
<0 £ - -1+ -
Ly=1|0 & 2 1+ =P l (3.20)
0 = - 141 12 l
0 % ; 1+ - -l
0 3 L 142 12 —1
Z Z

Injecting the value of the interaction matrix for the desired features, as given in (3.15), and
the interaction matrix (3.20) we find easily the analytical form of Lg, from which LE is



48

New first order control scheme

Figure 3.3 — Case 2: Initial and desired image feature points when r, = 90° andt, = (Z — Z*)

obtained after computations and simplifications:

L} = (ALs + (1 — B)Ly)* =

where

Co =

Ccl =

C3 =

Cy =

Cry =

Cg =

Cr =

—C —C —C —C —C O
—C1 C1 —C1 (&1 —Cyp —Cp
—Cc3 4 Cs3 —C4 C4 C3
—Cpy Cx —Cpy Cx 0 0
0 0 0 0 Cy —Csy
L Cr Cg —Cg —Cy Cg —Cy
1*z*
4(Bl+(1-p)1)
0 if B = (1 — B)I?
BOAAT?)+(1-6)(1+12)
CO (ﬁl*2_(1—6)l2) CISG.
I Z* (Bl +(1-p)1)
8((1-P)213+3%1+%)
rzr(pr—(1-p)
8((1-0)23+5%1+7)
{ 0 if 1** = (1 — B)1?
-1
e s

B2 +(1-p)12
8((1—p)213+321*3)

BIrP—(1-p)i2
8((1-B)3+4°1%)

Cs

C1

C7

(3.21)
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Using the value of s; — s*, the initial velocity v; is easily deduced from (3.1) as:
Vi = (07077}270707WZ7) (322)

where
CAZEB - (1= B)P) (B + (1))
o 5203 + (1— )23 A 3203 + (1—p)23

As expected, the initial camera motion consists in performing a translation combined with a
rotation whose value only depends on image data and on the chosen value for 5 and A\. We
can note that L is singular if pI** = (1 — B)I2. For instance, such a singularity occurs when
[l =10*(i.e. Z = 2" and = 1/2, which is very surprising. The control law A proposed
in [Malis 04] is thus singular for a pure rotation of 90°, which had not been exhibited before
as far as we know. In fact, the only way to avoid this singularity whatever the value of [
and [* is to select 5 = 0 or § = 1. As can be seen on (3.22), this singularity has no effect
on the computed velocity in perfect conditions, but, as we will see in Section 3.5, a quite
unstable behavior is obtained in the presence of image noise or for configurations near that
singularity (such that for instance the object plane is almost parallel to the image plane).

When Z = Z* then [ = [* and the initial velocity v; becomes

_ AZ*(26-1)
Vi = (07 07 232 —23+1" 07 0

A
) 262-26+1 ) -

In that classical case, the velocity v; contains an unexpected translation whose direction de-
pends on the value of 5 (v, < 0if § < 1/2 and v, > 0if § > 1/2). The only way to
avoid this nonzero translation is to select § = 1/2 as already shown in [Malis 04], but L is
singular in that case...

Coming back to the more general case and setting 5 = 1 in ng, the initial velocity v;
using control law D is given by

vi = (0,0,A2%,0,0,%) . (3.23)

Whatever the value of Z, that is even when Z < Z* in which case the camera has to move
backward, the initial camera motion contains a forward translational term. This surprising
result extends the same property obtained when Z = Z* [Chaumette 06].

Setting = 0, the initial velocity v; using the control law C is now
vi = (0,0, 252,0,0,25) . (3.24)

In that case, the initial camera motion contains a backward translational term whatever the
value of Z, that is even when Z > Z*. We can even note that, more [ is small, i.e. more Z is
large, more the initial backward motion is large, which is even more surprising than the result
obtained for 3 = 1. These results extend thus largely the property exhibited in [Corke 01]
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when Z = Z*. By comparing (3.23) and (3.24), we can also note that the amplitude of the
rotational motion using control laws D and C is surprisingly not the same as long as [ # [*,
that is as soon as Z # Z*.

Setting 5 = 1/2, the velocity v; using control law A is

_ 2)\Z*l*(l*2—l2) 2NU* (14-1%)
Vi = <07 07 l*3+l3 ) 07 07 l3+l*3 .

In that case, a good behavior is obtained since the translational motion is always in the ex-
pected direction (v, < 0 when [* < [, that is when Z < Z*, v, > O when [* > [ (Z > Z%),

and, as already said, v, = 0 when [ = [* (where Z = Z* but where L is singular).

Finally, the velocity v; of the new control law PG is

Vi = (07 07 7/\ll*Z* ) 07 07 /\g*)

that is exactly the same velocity v; given in (3.24) by the control law C.

343 Case3:r,=180°&t, = (Z — Z%)

We now consider the more problematic case where the camera displacement is composed of a
translation and of a rotation of 180° around the camera optical axis (see Fig 3.4). The initial
coordinates of the four points in the camera frame at the initial pose are p,y = (L, L, Z),
pin = (—L,L,Z),pso = (—L,—L,Z) and pi3 = (L, —L, 7).

Figure 3.4 — Case 3: Initial and desired image feature points when r, = 180° andt, = (Z — Z*)
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In that case, s; = (I, —1, —1,1,—I, —[,[,1) and the corresponding interaction matrix is:
(= 0 & = -1+ -]
20 A2 -1+ -
A 0 A = (143
21 ! 2 2
—= 0 = [ —(1+10%) 1
L= |2 - 4 2 2 (3.25)
S N
Z 5 Te g
0 7. 7 1+ l2 [ ) [
10 = - 1+1 — —1]
The control matrix ng is now given by:
-—CQ —Cp —C —C —C C1 —C1 (&1 i
- ¢ - & —C —C —C —C
_ | —¢ ¢3 Cg —C3 C3 €3 —C3 —C3
Cl—cy ey —cy ey 0 0 0 0 (3.26)
0 0 0 0 Cy —Ci4 C4 —C4
| G5 s —C —C; C5 —C3 —C5 C5 |
where
R i A — o B0+ (1412
0= 1@F+(1-p)) ° 0T BT r(1-p)2
{ 0 if BI*? = (1 — B)1?
C3 = l*Z*
8([31* S (B else
€4 = 4(61*2+

if g1 = (1 - B)l

else

{ 0
8Bl —(1—-p)1)

Proceeding as before, using s; —s* = (l—i—l*, —[—1*,
we obtain

S S S Y e SR AR

vi = (0,0,v,0,0,0,)

0 if 12 = (1 — B)1?
where v, = AZ*1*(141%) |
f@l* —1-3)2 clse.

In all cases, no rotational motion is produced while a translational motion is generally ob-
tained, but when 31**> = (1 — $3)I? in which case Ly is singular, leading to a repulsive local
minimum where v, = 0. Such a case occurs for instance when Z = Z* (i.e. [ = [*) and
(8 = 1/2, which corresponds to the control law proposed in [Malis 04]. Another singularity
occurs when (51* = (1 — ), which is also the case when [ = [* and § = 1/2.

Of course, when Z = Z*, we find again the results given in [Chaumette 98]: a pure for-
ward motion is involved when 3 = 1 and a pure backward motion is involved when 3 = 0.
More generally, for 5 = 1 and 3 = 0, the direction of motion is the same (i.e. forward or
backward) whatever the value of [ and [*, that is whatever the value of Z with respect to Z*.
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For any other value of (3, the direction of motion depends on the relative value of Z with
respect to Z*, but unfortunately, there does not exist any value of [ that will give a good
behavior in that case since no rotational motion is computed by the control law. Finally, no
better results are obtained using control law PG since we have in that case

vi = (o,o,%ﬂ“*),o, o,o)

which is the same as the one obtained when 3 = 0.
We will validate the results obtained in this section through experimental results presented
at the end of the next section.

3.5 Results

In this section, simulation and experimental results are given. They have been obtained using
the ViSP library [Marchand 05b] in which the new control schemes have been implemented.

3.5.1 Simulation results: Motion along and around camera optical axis

In this section, the behavior of the camera movement w.r.t. the camera optical axis is studied.
A pose is denoted as p = (t, r) where t is the translation expressed in meter and r the roll,
pitch and yaw angles expressed in degrees. The initial camera pose is (0,0, 1,0,0,r,) and
the desired camera pose is (0,0,0.5,0,0,0). As in the previous section, we have considered
a square and we have set L = 0.1 so that a = 0.2 and b = 0.1. We have also set A = 0.1.

It is important here to mention that the simulation results are not always physically coherent
because the simulation software can accept a very high velocity which can not exist in reality
to be used with most of robotic systems. So, it is necessary to saturate the very high veloc-
ities resulted from the simulation by specifying translational and rotational saturation terms
Trnaz and R,,.... We consider that the real robot acts normally when the velocity sent to the
robot controller is given by 7},,,.. = 0.05 m/s and R,,,, = 5 deg/s. All velocity components
are thus normalized when needed so that the maximal one is 0.05 m/s or 5 deg/s. Implement-
ing these saturation values forbids the application of too high and thus unfeasible velocities
and causes a more realistic behavior of the control law when the system is near to a criti-
cal situation. Such a situation may occur when f; is ill conditioned, that is near a singularity.

A general description of the camera behavior when employing the five control laws with
all possible values of r, is given in the following, as well as the results for three cases:
case A when r, = 120°, case B when r, = 170° and case C when r, = 180°. The results of
the three cases are depicted in Figs. 3.5, 3.6 and 3.7 respectively.

Applying control law D, the camera translates toward the desired pose without any addi-
tional movement as soon as r, < 78°. When r, > 78°, the camera continues its translational
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Figure 3.5 — Results for case A: Desired pose is (0,0,0.5,0,0,0) and initial pose is (0,0, 1, 0,0, 120).
First column: image points trajectories, middle column: camera velocity components (in m/s and
rad/s), last column: visual features error components and global error.
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Figure 3.6 — Results for case B: Desired pose is (0,0,0.5,0,0,0) and initial pose is (0,0, 1, 0,0, 170).
First column: image points trajectories, middle column: camera velocity components (in m/s and
rad/s), last column: visual features error components and global error.
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Figure 3.7 — Results for case C: Desired pose is (0,0,0.5,0,0,0) and initial pose is (0,0,1,0,0,180);
control laws (A and G), 5 = 0.5

motion after reaching Z = Z* and then moves back toward the desired pose as depicted
in Fig. 3.5(a). The translation increases as r, increases. When r, > 155, the control law
fails since the camera reaches the object plane where Z = 0. Finally, as can be seen on
Figs. 3.5(a), v, reaches its maximal value at the first iteration and w, after some iterations of
the control scheme. Both are saturated during few iterations.

Applying control laws C and PG which have exactly the same behavior in the situations con-
sidered here, the camera translates correctly as long as r, < 61°. When r, > 61°, the camera
starts moving backward with maximum v, and then translates forward. The backward trans-
lation increases as r, increases. Maximum r, is reached and saturated when the camera
changes its translation from backward to forward as depicted in Fig. 3.5(b) and 3.5(d). The
number of iterations required to reach the desired pose increases rapidly when r, > 150.
Finally, when r, > 178.6°, the backward translation is so large that the camera is not able to
reach the desired pose.

Applying control law A, there is no additional translation as long as r, < 172°. This
can be checked on Figs. 3.5(c). As discussed before, control law A has a singularity when
r, = 1807, that is why the velocity components are saturated at the beginning of the servo
for large values of r, (see Fig. 3.6(b)). Applying the saturation allows control law A to
converge with a perfect behavior as long as r, < 180°. Indeed as expected from our ana-
lytical demonstration in the previous section, when r, = 1807, only a translational velocity
component v, # 0 is involved, so the camera performs a forward translation until Z = Z*
where a = b. The analytical condition for v, = 0 is then satisfied since we have 5 = 1/2.
That is why v, is damped suddenly to zero as illustrated in Fig. 3.7. Finally, the movement
of the camera after iteration number 34 is due to the accumulated numerical noise during the
previous iterations.

Applying the new control law G, different behaviors are obtained based on the value selected
for 3. When the value of (3 is near to 0, 1 and 1/2, the behavior of the control law approaches
the behavior of control laws D, C and A respectively. Best selection of 3 leads to enhance
the behavior of the control law for a given displacement. For example, in case A where
r, = 120°, control law G allows the camera to reach its desired pose when 3 € [—0.08, 1.19]
with the best behavior obtained when 3 = 0.285 as depicted in Fig. 3.5(e). In that case, the
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rotational velocity w, is saturated after reaching its maximum value at the first iteration. The
error on each point coordinates starts also to decrease at the first iteration. When r, = 170°,
the camera reaches its desired pose as long as 5 € [0.33,0.85] with best behavior obtained
when = 0.4. Nice results are also obtained with 3 = 0.35.

3.5.2 Experimental results: Singularities

The experimental results have been obtained on a six degrees of freedom robot (see Fig. 3.8).
They allow to validate the analysis presented in Section 3.4 about the motion along and
around the optical axis.

Figure 3.8 — Experimental system: Cartesian robot

3.5.2.1 CaseEl

In the first experimental case, the required camera motion is composed of a rotation of 170°
around the optical axis combined with a translation of 0.5 m along the optical axis toward
the object (a square once again). As usual, gain A has been set to 0.1.

As expected unfortunately, control law D makes the points leave the camera field of view
due to a forward motion, while control laws C and PG make the robot reach its joints lim-
its due to a backward motion. As can be seen in Fig. 3.9.a, control law A starts with high
value of v, toward the object, while w, increases until the translational motion is almost
finished. Since the pure rotation r, = 90° corresponds to a singularity of control law A, as
demonstrated in the analytical study, the behavior of the camera is quite unstable near this
configuration, that is during 400 iterations (from iterations 800 to 1200) as can be observed
in the velocity components in Fig. 3.9.a. As can be seen in Fig. 3.9.b, using control law G
with 3 = 0.4 allows to decrease significantly the effect of the singularity near r, = 90°,
while its effect completely disappears for 5 = 0.35 (see Fig. 3.9.c).
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Figure 3.9 — Experimental results for cases E1 and E2: r, = 170° in (a), (b) and (c); for case B:
r, = 180° in (d). First column: image points trajectories, middle column: camera velocity components
(in m/s and rad/s), last column: visual features error components and global error.

3.5.2.2 CaseE2

In this second case, the task is still to perform a translation of 0.5 m toward the object but
combined now with a rotation of 180°. Figure 3.9.d shows the results obtained for control
law A (that is G with 3 = 0.5). The velocity components show that the motion of the camera
starts with a pure translation toward Z*. From the analytical study, no rotational motion
should occur. However, due to small image noise and to the use of a real robot, that is a non
perfectly calibrated system, the robot moves away from the repulsive local minimum and
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starts to rotate. The effect of the singularity at 90° is clearly visible, but after its crossing, the
system converges to the desired pose.

3.5.3 Simulation results: Local minima

First, we consider two difficult configurations and compare the results obtained with the
different control schemes described previously.

3.5.3.1 Casel

The desired camera pose is (0,0, 0.5, 0, 0, 0), which means that the camera has to be at 0.5 m
in front of the square and such that the square appears as a centered square in the image. In
this case, the configurations where (s — s*) € Ker L. correspond to very particular cases
where the four points are aligned in the image [Chaumette 98]. The initial camera pose
is (0,0,0.4, 80,20, 10) and has thus a very different orientation than the desired one. The
simulation results for the control laws D, C, A and PG are depicted on Fig. 3.10. Classical
schemes D, C and A lead the camera to converge to its desired pose while, using the new
control law PG, the camera reaches a configuration where the four points are aligned in the
image. In fact, such local minima are attractive for PG while they are not for all other control
schemes. As expected, the task function e defined in (3.10) converges exponentially to zero
as shown in Fig. 3.12.a, but that is not sufficient to obtain a good behavior of the system...
Finally, we have checked with additional simulations that control law G converges to the
desired configuration for any value of 3 € [—1.9;1.04] (see Fig. 3.10.e where the result for
B = 0.4 is given). It is thus not necessary that 3 € [0; 1] and negative values can even be
chosen. For this configuration, the value of /3 is thus not a crucial issue.

3.5.3.2 Case?2

The desired camera pose is now given by (0,0, 1,45, —30, 30) which means that the desired
position of the image plane is not parallel to the object. The initial camera pose is given by
(0,0, 1,—46, 30, 30). In that case where the desired position of the image plane is not parallel
to the object, the control law D is known to be subject to local minima. As can be seen on
Fig. 3.11.a, using control law D, the camera is first motionless, as in a local minimum, and
then starts to diverge so that the points leave the camera field of view. Even if we do not
consider this constraint (we are here in simulation where an image plane of infinite size can
be assumed), the camera then reaches the object plane where Z = 0, leading of course to a
failure. From the results depicted in Fig. 3.11.c, 3.11.d, and 3.11.e, we can see that control
laws C, A, and PG all fail in a local minimum. For PG, we can note once again that the task
function e converges exponentially to zero as shown in Fig. 3.12.b. As for control law A, it
is the first time, as far as we know, that such a local minimum problem has been exhibited.
Finally, control law G with a behavior controller is the only one to converge to the desired
position as soon as 0.515 < 3 < 0.569 (see Fig. 3.11.e). The oscillations observed in the
camera velocity and in the visual features allow the camera to go out from the workspace
corresponding to the attractive area of the local minimum for the other control schemes.
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Desired pose is (0,0,0.5,0,0,0) and initial pose is

(0,0,0.4,80,20,10). First column: image points trajectories, middle column: camera velocity com-
ponents (in m/s and rad/s), last column: visual features error components and global error.
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Figure 3.11 — Results for case 2. Desired pose is (0,0,1,45,—30,30) and initial pose is

(0,0,1,—-46,30,30). First column: image points trajectories, middle column: camera velocity com-
ponents (in m/s and rad/s), last column: visual features error components and global error.
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Figure 3.12 — Task function e for control law PG for case 1 (on the left) and case 2 (on the right)

3.5.3.3 Case3

The desired camera pose is now given by (0,0, 0.5, —45, 30, 30). The initial camera pose is
given by (0,0,0.5,42, —27,30). Similar to case 2, the desired position of the image plane
is not parallel to the object and the control law C is subject to local minima. The results
are depicted on Fig. 3.13. We can see that all control schemes fail and reach a local min-
imum, but the control law D, which is indeed known to be less subject to this problem
than C [Chaumette 98]. As for A, it is the second time, as far as we know, that such a local
minimum problem is exhibited, (case 2 is the first time). For new control law PG, we can note
once again that the task function e converges exponentially to zero as shown in Fig. 3.12.
Finally, control law G converges to the desired position as soon as 0.75 < 8 < 1.7, which is
coherent to the fact that control law D (where § = 1) converges while control laws C and A
(where 5 = 0 and 1/2) fail.
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Figure 3.13 — Results for case 3. Desired pose is (0,0,0.5,—45,30,30) and initial pose is

(0,0,0.5,42, —27,30). First column: image points trajectories, middle column: camera velocity com-
ponents (in m/s and rad/s), last column: visual features error components and global error.
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3.6 Conclusion

In this chapter, new configurations have been exhibited, for the first time as far as we know:
a local minimum for all classical control schemes, especially for the control law proposed
in [Malis 04]. This configuration has been found by studying a new control scheme built to
try to obtain its global asymptotic stability.

A singularity of the control scheme proposed in [Malis 04] has also been exhibited and its ef-
fects have been emphasized through experiments obtained on a 6 DOF robot. New surprising
results have also been obtained for the other classical control schemes for motion combining
translation along and rotation around the optical axis. Finally, a new control law based on a
behavior controller has also been proposed. Setting 5 = 0, 1, or 1/2 would allow to switch
between the three most classical schemes but we have preferred to analyse the behavior of
the control scheme for all possible values of this parameter. In all considered cases (difficult
configurations subject to local minima for all classical schemes, motion along and around the
optical axis), it has always been possible to determine values of this parameter that provide
a satisfactory behavior of the control scheme.

In this chapter, we also demonstrated the superiority of the proposed control law with a
behavior controller over all other classical control laws. As shown in simulation results, only
control law G is able to avoid the local minima and reach the desired pose while all other
classical control laws fail to avoid this local minima.

The experimental results show that control law G helps to decrease the bad effect due to
a singularity situation and avoid it completely when the behavior controller 5 of the hybrid
interaction matrix is selected perfectly. In fact, the suitable values of the behavior controller
rely on the displacement that the camera has to realize, as illustrated on Fig. 3.14 for the
rotation around the optical axis.
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Figure 3.14 — Behavior for a rotation around the optical axis



Chapter 4

New second order control schemes

Generally, image-based visual servoing has been found to give satisfactory, accurate and
robust results. However, and as established in the previous chapter, singularity and local
minima may appear causing stability and convergence problems. In this chapter, we present
new control schemes based on Halley’s method as a temptative to obtain a robust system
even when the desired configuration is singular. The new control scheme uses the first and
the second order derivatives of the error to be regulated to zero. Hessian matrices of an im-
age point are thus determined to be used in the control schemes. Preliminary experimental
results obtained on a 6 dof eye-in-hand system shows that a more accurate positioning can
be obtained compared with classical methods. The work described in this chapter leads to
the following publication [Marey 09]

This chapter is organized as follow: In Section 4.1, singular configurations are discussed
followed by analysing the classical control schemes in Section 4.2. The new second or-
der control schemes is proposed in Section 4.3 and the Hessian matrices is determined in
Section 4.4. Finally, experimental results are presented in Section 4.5.

4.1 Introduction

Singular configurations correspond to a loss of rank of the Jacobian matrix that relates the
features used as input of the control scheme to the control parameters. The classical control
schemes are known to be unstable and very sensitive to noise and perturbations around sin-
gular configurations. We will discuss in this section different singularity configurations in
IBVS and strategies used for avoiding this situation.
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4.1.1 Different singular configurations in IBVS

Several singular configurations in IBVS have been exhibited in the literature. As explained
in chapter 2, a singularity is encountered by all classical controls schemes for a pure rotation
of 1807 around the camera optical axis, and as exhibited in chapter 3, a singularity also exists
for control A when a pure rotation of 90° around the optical axis has to be performed. In the
following, additional singularity configurations are discussed.

Singularity of three points

The most well known singularity appears for a target composed of three points. Indeed, for
that target, when the camera optical center lies on the surface of a cylinder built from these
three points (see Fig. 4.1), the interaction matrix related to the Cartesian coordinates of the
three image points is singular (with rank 5) [Michel 93], while it is of full rank 6 as soon as
the camera optical center lies outside of this surface. The same singular configurations exist
whatever the image features selected to represent the three points (cylindrical coordinates of
the points, parameters representing the three straight lines that can be defined from the three
points, etc.)

Figure 4.1 — Three point singularity for cylinder configuration

Another singularity of course occurs when the three points are aligned. But we are in that
case in a degenerate configuration whatever the camera pose.

Singularity of a circle

Another singular configuration has been exhibited in [Chaumette 93]: if the target is a circle,
(see Fig. 4.2), then the interaction matrix related to any set of parameters that represents the
image of that circle, which is an ellipse in the general case, is always of rank 5, but when
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Figure 4.2 — Centered circle singularity

the circle appears in the image as a centered circle, in which case the interaction matrix if of
rank 3.

Singularity of the norm

More general singular configurations can be exhibited: whatever the set s of features selected
and its desired value s*, the interaction matrix related to ||s — s*|| is always of full rank 1
but when s = s*, in which case the interaction matrix is null [Fruchard 06]. This case
is extremely problematic since the singularity occurs at the desired configuration where we
would like the system to be stable and robust. As we will see in Chapter 6, this singularity can
be solved by defining a switching strategy when the system nears its desired configuration.

4.1.2 Avoiding singularities in IBVS

Adding feature

Usually, these singular configurations are avoided trivially by selecting features such that
their interaction matrix is always of full rank, that is by considering a fourth point when the
original target is a set of three points, or by considering two circles or a circle and a point
instead of just a circle, or by using s instead of ||s — s*||. This is not completely satisfactory
from a scientific point of view, and may not be always possible in practice, when only three
points can be extracted in the image for instance.

Redundancy

When the redundancy framework can be applied, that is when the main task does not control
all the robot degrees of freedom (dof), a secondary objective can be designed to try to avoid
the singular configurations [Nelson 95, Marchand 96]. Once again, this method can not
always be used, typically when the task constrains all the robot dof. We will see that the
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new projection operator that we propose in the second part of this thesis can be used to solve
this problem.

Damped least square

The previous solution is not efficient if the goal is to reach a singular configuration. To deal
with this problem, a classical approach in robotics is to use the damped-least-squares in-
verse [Wampler 86, Nakamura 86, Egeland 90, Chiaverini 97] instead of the Moore-Penrose
pseudo inverse. This method, which artificially increases the lowest singular values of the
Jacobian matrix, reduces the effect of the singularity in terms of robustness, but decreases
the precision of the control.

Regularization

Finally, a regularization technique has recently been introduced in [Fruchard 06]. It also
allows reducing the effect of the singularity, but with the price of decreasing the convergence
speed, which is inefficient if the task consists in tracking a moving target.

4.2 Analysis of classical control schemes

Again, let s, s* € R” be the vectors of current and desired set of selected % visual features
and v € R® the instantaneous velocity of the camera. As before, the classical form of the
control laws is given by:

v=—\ i:+(s—s*) 4.1)

In this chapter, we are interested in the case where the interaction matrix is singular at the
desired configuration, that is when Lg- is singular. In that case, control law D is of course
inefficient since it is subject to numerous local minima. Indeed, all configurations such that:

(s - %) € N (L)

(where N (A) is the null space of matrix A) correspond to a local minimum, and such con-
figurations are generally numerous since N (L:) is at least of dimension 1. If the initial
error s; — s* is large and Lg, is not singular, control law C can be used at the beginning of
the servo, but, as soon as s — s* will become small, the system will be unstable since it nears
the singularity. The same comment can unfortunately be done for control law A, even if we
could hope for some smoothing effects of the singularity thanks to the use of the constant
matrix Lg« in A. This simple analysis of the behavior of control laws D, C, and A will be
confirmed in Section 4.5 through experimental results.

To avoid the unstability near the singularity of all control schemes based on the interac-
tion matrix only, we could think of using second order schemes, such as the one based on
the classical Newton minimization method. It is given by (see section 2.5.4):

v=-AK/L](s—s" (4.2)
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where

k
Ky =L/Li+ > H,(si—s)
=1

H,, being the Hessian matrix of the ¢-th component of s. Unfortunately, the convergence
domain of this control scheme is generally very limited due to the fact that the Hessian is not
always positive definite (see Section 4.4.2). Furthermore, all configurations such that Ly is
singular and

(s—s") e N(L])
correspond to a local minimum since we have in that case v = L/ (s — s*) = 0. This is also
of course the same for the basic control scheme

v=-AL/(s —s"

based on the steepest descent and usually named gradient method.
All control schemes described above being not satisfactory when trying to reach a singular
configuration, we propose in the next section new control schemes based on Halley’s method.

4.3 New second order control schemes

4.3.1 Halley’s Method for scalar case

Halley’s method is well known in the numerical analysis community to find a root of a
function f(x) (that is to find z, such that f(z,) = 0) [Ortega 00]. As classical gradient and
Newton methods, it is an iterative algorithm that can be applied if function f is continuous
and twice differentiable. It is based on the second order Taylor expansion of f:

F@) = o) + @) = 2) + 5 1) = ) @3

where x,, is the estimate of x,. at iteration n of the algorithm. Let z,,,; be the root of f(z) =
0. It can be written:

f'(xn) + %f”(xn)(xn—f—l - Tp)
This equation can not be used directly since x,, .1 appears both in its left and right sides.

However, using on the right side, the result of the Newton-Raphson step (which is easily
obtained by solving the first order Taylor expansion f(z) = f(x,) + f'(z,)(z — x,,)), that is

n

Tn41 = Tp —

we obtain

2f(xn) f'(2n)
2 [f’(afn)]Q — f(@n) [ (20)

4.4)

LI+l = Tn —
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which is known as the Halley’ rational formula. We can note that, thanks to the term
f(x,)f"(x,), there is no inversion problem when f'(x,) = 0 as long as f(z,) # 0 and
1 () # 0.

We now apply exactly the same reasoning for the case where = and f(x) are not scalar
values but vectors.

4.3.2 Modeling the new control schemes

As before, let p and p* be the parameters that represent the current and the desired camera
poses as before and s : R x SO; — R"™ a mapping function from the camera pose space to
the feature space. The first order Taylor expansion of s(p) is given by

s* =s+ JAp

where s* = s(p*), s = s(p) and Ap represents the displacement between p* and p. As
presented in Chapter 2, we immediately deduce the following control law using the Newton-
Raphson method:

vi =ML (s —s") (4.5)
where Jg and Lg are linked by Ly = J;P, where P is defined such that p = Pv. Note that
control law (4.5) is nothing but the classical control law C.

Let us now consider the second order Taylor expansion of s. It is given by

s"=s+ Ky Ap (4.6)
where matrix K is
Ap'H,,
1 .
ApTHSk
Solving (4.6) for Ap, we obtain
Ap = —-Kj (s —s%) (4.8)

from which we deduce the following control law:
v=-)\K(s —s%) (4.9)
where the output (4.5) of control law C is used to go from K to Kj:

(S o S*>TL:THS1

K,=L,— % (4.10)
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This control law is named K in the following. Let us note that, if Lg is singular, it does
not necessarily imply that K is singular thanks to the Hessian part involved in this control
scheme. Furthermore and contrarily to the control law (4.2) based on the Newton method,
when Ly is singular, the configurations such that

(s—s7) €N (L])

does not generally correspond to a local minimum. That are for the good points of K. Unfor-
tunately, some bad points also exist. First, K may be singular for some configurations where
Ls is not singular. Then, for s = s*, K is singular when Lg- is singular (since Ky = Lg-
in that case). However, since we never have s = s* in practice, due to unavoidable image
noise, we will never have exactly K¢y = Lg-, which makes appealing the use of K when Lg-
is singular. Furthermore, near the singularity, the low conditioning of Ly in the first part of
K is compensated by the high conditioning of Lg in its second part. However, we will see
in Section 4.5 that if the rank of Kg is indeed improved, it increases the sensitivity of the
control scheme to the image noise.

Following the same idea than going from control law C to D, we could think of using:
v=-)K{ (s —s%) (4.11)

where K- is given by:

N TL+T
(s —s") Lg. Hg:

However, that is definitively not a good idea since this control scheme has exactly the same
bad properties of D that all configurations such that

(s—s") e N (LL)

will lead to a local minima (to check that, just note that in that case (s — s*)TL;ZT = 0, which
implies Kg = Lg«).

A last control scheme can be obtained by considering each feature independently in the
second part of K, that is using

instead of (4.5). In that case we obtain

v=-)K; (s —s%) (4.13)
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where .
«\TT +
(s1 —s7) 'Lf Hy,

(sy —sp) L H
This control law will be named Ki in the following. Even if we are currently unable to give

any theoretical explanation, we will see in Section 4.5 that this control law allows improving
the accuracy of the positioning in a singular configuration.

Sk

4.4 Hessian Matrices of an image point

In the experiments presented in the next section, we will compare the behavior of the control
schemes presented in this chapter in the case of a target composed of three points. The ana-
lytical form of the Hessian matrices H,, and H, of the coordinates (z,y) of an image point
are thus needed. Let us note that these matrices have already been used in [Lapresté 04], but
the analytical form given in that paper contains unfortunately few typos errors.

4.4.1 Modeling

We recall that an image point with coordinates (x, y) results from the perspective projection
of a 3D point such that x = X/Z and y = Y/Z where (X, Y, Z) are the coordinates of this
3D point expressed in the camera frame. We also recall that the velocity (&, ) of an image
point is linked to the camera velocity v = (v, vy, U;, Wy, wy, w,) through the well known
equations:

z=Lyv,y=Lyv (4.14)

where the interaction matrices L, and L,, are given by:
L, = [ 0 2 2y —(1+27%) y (4.15)
L, = [0 3 £ (1+y%) —ay —z] (4.16)

The Hessian matrices H, and H, can easily be determined by differentiating (4.14). Indeed,
for any feature s, we have:
§=L+v Hyv (4.17)

where H; is a symetrix matrix. Using (4.14), (4.15) and (4.16), we obtain:

. . 7 iZ — Zx . . . .
A va—l—ﬁvx—i—Tvz—i—(azy—i—xy) Wy — 22T wy + Y W,
.. ; Z yZ—Zy . . ) .
j = Lyv—i-ﬁvy—i-Tvz—l—nywx—(xy—i-xy) Wy — T w,

By substituting (4.14) for = and v, and knowing that:
7 = —V, — YLwy + LW,
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we obtain after simple developments:

r = L,v 31)1}—2—yvu}—1—3—$vu) ivw lvw
T 72 Uz 7 W 7 Wy 7 yWx 7 yWz
2x dxy (1 + 42?) 2y

+ﬁ vzvz+7vzwr—7vzwy+7vzwz

+2(1 4 2y%) wew, — y(1 + 42%) wew, + (1 + 2y — 2%) w,w,

+22(1 + 2°%) wyw, — 37y Wyw, — T W,

o= LV—FEUL«J +lvw —ivv —%vw +2—wi
Yy Z =y Z Tz Z2 y=z Z y=z Z =y
2y 1+ 4y? dxy 2z
+ﬁ V0, + 7 vzwx—7vzwy—7vzwz

+2y(1 + y2) wewy — (1 + 4y2) wewy + y(1 + 2x2) Wy Wy
+(1+ 2% — y2) Wy, — Y Wy,

from which we deduce by identification with (4.17)

—1 - 3x 7]
0 0 3 2 3 0
0 O 0 57 0 57
-1 0 2_x2 2xy —1—4z2 v
Ha: - gz —z Qny z 2 12Z 2 1fxg+2y2
20 g —y(3+22%) 2u(l+2?) S
0 =1 y 1—2242y> —3zy o
L 27 Z 2 2 .
and ) Lo
0 0 % 27, 7 0
Hy = 0 =3y 144y 2u(1 2 (L 192 —3zy
7 oz WAHy)  —a(g+2yt)
T —2x 1— 2x
iz 5 7t —wlz2y’) y(l+2e?) S
1 0 —x —3xy 1—y2 4222 .
(27 Z 2 2 vy

4.4.2 Positiveness of H, and H,

Using the determinant test to study the positiveness of the Hessian matrices H, and H,, we
found that the determinants of the leading principal minor vectors of H, and H, are M, =

(0,0,0, 25, x3(1Zng2) ,0)and M,, = (0,0, 0,0, %, 0) respectively, where M [i] = |H,[1..7,1..4]|.
This means that the necessary and sufficient condition for both H, and H, to be positive
semi-definite is that x and y are positive, which is of course not always achieved. This may
explain the fact that Newton and Halley’s methods based on image point coordinates have a

small convergence domain.
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4.5 Results

The experimental results presented in this section have been obtained on a 6 DOF eye-in-
hand system (see Fig. 3.8). As before, all the control schemes have been easily implemented
thanks to the open source ViSP library [Marchand 05b]. The task consists of positioning the
camera with respect to a target composed of three points (in practice, three white dots on a
black background to avoid any image processing problem) using the Cartesian coordinates
of the perspective projection of these points in the image. The three points form a rectangle
isosceles triangle whose side lengths are equal to 0.06 m, 0.06 m and 0.06 x /2 m. The
interaction matrix is thus of dimension 6 x 6 and of full rank 6 but for the singularities exhib-
ited in [Michel 93] in which case it is of rank 5. We recall that the singularities occur when
the optical center of the camera belongs to the surface of the right circular cylinder whose
basis is defined by the circle to which the three points belong. From this general result, it is
easy to see that if one of the three points appears at the principal point in the image (which
corresponds to the image of the optical axis), then the interaction matrix is singular.

The desired pose between the camera and the triangle has thus been chosen such that they
are parallel (at a distance of 0.5 m) and one point appears at the principal point (see Fig. 4.3).
The initial pose has been chosen very near from the desired one, that is p; = (0.0022, 0.001,
0.501, 0.8, 0.4, 0.6) where the first three components represent the translation expressed in
meter, and the last three ones represent the rotation expressed in degree. We are indeed in-
terested in the behavior near the singularity.

Let us finally note that the depth of the points, which appears in the translational term of
the interaction matrix and in the Hessian matrix, are estimated at each iteration of the control
scheme using a classical pose estimation method. Let us also note that the gain \; involved
in K and Ki has been set to 1, and the gain A involved in all the control schemes has been
set to 0.5. This value has voluntarily been chosen small to show the effects of the singularity
and to avoid any unstability due to a too high value of . The very large number of iterations
in each experiment is thus not significant. As for the singular value decomposition used to
compute the pseudo-inverses involved in the different control schemes, the condition number
threshold has been set to 0.0001. We recall that the condition number is the ratio between the
minimal and the maximal singular values of a matrix, and the threshold is used to compute
its rank and to consider if a singular value is zero or not. This value has been chosen to not
damage the robot by forbidding high values in the outputs of the control scheme.

The results obtained for control laws D, C, M, K and Ki are given on Figs. 4.3, 4.4, 4.5,
4.6 and 4.7 respectively. As expected, control law D is always of rank 5. It is thus not sur-
prising that it reaches a local minimum. Contral law C is of rank 6 at the beginning of the
servo, which allows the system to near the desired position. It is then of rank 5 due to the
high condition number threshold, but for some iterations where it becomes again of rank 6,
due to image noise, producing high robot velocities at these iterations. Control law A has
not a very satisfactory behavior: even if it is of rank 6 at the beginning of the servo, it fails,
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Figure 4.3 — Experimental results of control law D. First line from the left: initial and desired images,
visual features errors and rank of the control matrix; second line: translational (cm/s) and rotational
components (dg/s) components of the control law; third line: translational (in mm) and rotational (in
dg) error components

as D, in a local minimum. As for K, it is almost always of rank 6, as expected, but it reaches
also a local minimum and is quite unstable due to the fact that it is of rank 6. Finally, control
law Ki provides with the best behavior, similar to the one of C, but with a better positioning
accuracy and less noise.

4.6 Conclusion

In this chapter, we have been interested by the difficult problem of reaching a visual singular
configuration. Without any surprise, all classical control schemes have been shown to be
unsatisfactory. Control schemes based on second order minimization Halley’s method have
been proposed to try to improve the behavior of the system near the desired singular position.
The experimental results obtained have shown that it is possible to improve the accuracy of
the positioning using one of these control schemes.
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Chapter 5

State of the art in redundancy

This chapter presents the state of the art of the redundancy framework in robotic. The state
of the art of the most common avoidance strategies used for solving the problem of robot
joint limits avoidance are also detailed.

5.1 Redundancy

Redundant robots attract special attention due to their dexterity and versatility for addressing
sophisticated tasks, particularly for underactuated systems [ShkolnikO7]. There are several
types of redundancy for a robot: Redundancy with respect to the task when the number of
independent parameters required by a task is less than the DOFs of the robot and redundancy
with respect to the end effector when the manipulator has more DOFs than those required to
place its end effector at a given position and orientation within the task space [Samson 91]
[Khatib 96] [Siciliano 91] [Hanafusa 81]. When robots have more DOFs than those required
to execute a given task, the excess DOFs can be profitably used for performing other subtasks
such as singularity and obstacles avoidance, keeping the joints within their limits, torque op-
timization, and energy minimization. However, they pose some difficulty in solving the
inverse kinematics problem because they provide an infinite number of joint values for a
certain end-effector position and orientation.

In robot control, actions are generally operated in the joint space. However, in most practical
applications and as mentioned in Part I, it is desired to design a task space controller and to
allow the robot considering other constraints. The solution of this problem requires the joint
variables to satisfy not only the original task, but also the constraints. This makes interesting
the use of a redundant system [Siciliano 91].

The use of redundancy can be formulated in the framework of task with order of priority.
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When the main task is defined as to following a given trajectory of the end effector while
avoiding joint limits [Euler 89], avoiding singular configurations [Paulin 04], avoiding oc-
clusion [Marchand 98] and/or avoiding obstacles in the workspace [Choi 00] [Perdereau 02],
trajectory following has the first priority while joint limits, singularity and obstacle avoid-
ance are given the second priority [Nakamura 87]. In visual servoing applications, the re-
dundancy has been exploited for example to avoid joint limits or occlusions [Chaumette 01]
[Marchand 96][Mansard 09a].

5.2 Projection operators

5.2.1 Classical projection operator P,

Let e € R* be the main task function where k is the number of its components. The classical
approach that tries to ensure an exponential decrease of all components of e while consider-
ing a secondary task leads to the following control scheme [Liegeois 77]:

q - éle‘i_Peg (51)
= Jo& + (I, - I Je) g (5.2)

where ¢ € R" is the robot joint velocity sent as input of the low level robot controller,
Jo € R¥*" is the task Jacobian defined such that &€ = J.q, n is the number of robot DOFs,
J¢ is the Moore-Penrose pseudoinverse of J, €* is usually set as —\e to have an exponential
decrease of each component of e, g represents the motion induced by the secondary task, and
P. = (I, — J!J.) is a projection operator on the null space of J. so that g is realized at best
under the constraint that it does not perturb the regulation of e to 0 (we have J.Pg = 0,Vg).
This projection operator may be too much constraining: it has no component available when
the error e constrains all the n DOFs of the system (in that case P, = 0), and only n — r
(where 7 is the rank of J,) in the general case.

5.2.2 Bidirectional projection operator P,

A nonlinear projection operator has been recently proposed in [Mansard 09a] to enlarge the
free space on which the gradient is projected. This is achieved by decreasing the error of
the system when the secondary task goes in the same direction than the main task. This
operator is built such that when q = J*&* + {2, where q, = Pg, . respects the condition
VLT J¢z < 0, where V = % and L is the Lyapunov function associated to q = J*¢&* such
that £ = a%é < 0. By considering the singular values decomposition of J = UXV ", where
U is a basis of the task function space, V is a basis of the joint space, 3 = [A, 0], and A,
is the diagonal matrix whose coefficients are the m singular values of J, the condition can be

T ~ — ~
written as VL X, < 0, where VL = UTVL and ¢, = V " 2. This leads to a restricted
condition: N

Vie[l---m],vog, <0 (5.3)
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where £ = (vy, -+, Un).

For a given g, q- that respect the condition (5.3) is built by keeping the components that
respect (5.3) and nullifying the other components. This leads to obtaining the projection
operator as:
p1(9) 0
P, =V \4 (5.4)
0 Pn(9)

where p;(g) is defined by:

1 ifi>mor gg=0
pi(g) =< 1 if g; and 0,0; have opposite signs (5.5)
0 if g; and v;0; have the same sign

where g = Vg. Finally, to realize the task e and respect the condition, the control law is
given by:

q=J"e¢" + Pyg (5.6)
The second term Pgg has a proper sign however it can be arbitrary large when the main task
converges to zero which may introduce oscillation. This problem is corrected by computing
the projection operator from the second-order Taylor expansion which introduces an upper

bound on the value of the secondary term. In this case, when considering the norm of the
error as a Lyapunov function £ = %eTe, the condition to be respected is:

1
VL IAqs + 5AqJJTJAq2 <0 (5.7)

where VLT = (e + Ae*) .

When introducing the SVD bases and performing some simplifications, the condition can
—— — — 9 —

be written as: Vi € [1---m], 2(é; + Ae})oiAg, + 07Aga, < 0, where Aqa is a possible

secondary motion that belongs to the free space of the main task if and only if:

Adz, =0
Vie[l---m]=<X or 0<Aqy < —U%_(éi + Ae) (5.8)

or — 2(é+Ac)) < Adg,

In order to ensure that ¢y, respects condition (5.8), the projection operator is defined by:

P, =V s (5.9)
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where
(G, if i>m or gg=0
Gi if 0<gi—2(&+Ae)
gi if —2(&+ Ae}) < g

pilg) = )< g (5.10)
©) 8 if 5, > 0 and & + Aer < 0
D e i i <0 and @+ At >0

L 0idi else

This projection operator (5.10) obtained by considering the robot as a discrete system allows
to avoid the oscillations that appear when the projection operator (5.5) is used. Finally, let us
note that even if this projection operator improves the performance of the system, the number
of DOF can be insufficient to realize the constraints. We will see in the next chapter that the
new projection operator we propose can be used even if all DOFs are used by the main task.

5.3 Redundancy-based task-priority formalism

Various frameworks were proposed in order to manage the redundancy among two or sev-
eral tasks to control their levels of priority. There are classical and efficient formalisms
[Hanafusa 81], [Baerlocher 98] [Lenarcic 98]; Inverse-based and transpose-based projection
methods [Hanafusa 81] [Chiacchio 91] [Baerlocher 98]; Successive and augmented projec-
tions [Siciliano 91] [Baerlocher 98] [Mansard 04] [Antonelli 09]; and Kinematic and dy-
namic controllers [Siciliano 91] [Hanafusa 81]. In the following we present a review con-
cerning these issues.

5.3.1 Inverse-based projection methods (successive, augmented)

For tasks with order of priority, the problem is formulated using the kinematic relationship
between the joint variable q € R™ and the manipulation variables [Liegeois 77]. As illus-
trated in Fig. 5.1, the final solution is a homogeneous solution belonging to the null space of
Ji.

Successive inverse-based projections

In [Mansard 04], several approaches were discussed to propose suitable ones that enable
stacking n different tasks eq, es, ..., €, using redundancy. In successive inverse-based pro-
jections the last task is projected on the null space of its previous task and then project this
composed task on the null space of their previous tasks to get:

e=e1+Pre;+PiPres+... || Pien (5.11)

The null space projectors are not commutative and the solution obtained by (5.11) may
lead to conservative stability conditions. Since P;...P,_jey is not in the null space of e,
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a1
.‘- Higher priority task e_1 <+ The projection of &_2 on R(J)
@« Lower priority task e_2 + The projection of e_2 on N{J)
.4— Final solution ‘:} Other solutions belong to the N(J)

Figure 5.1 — Two priority level architecture

...en_1, the low level priority task e,, may modify tasks es, ...,e,_1 of higher level prior-
ity. This stability problem can be solved by the augmented or best the intersection methods
[Antonelli 09].

Augmented inverse-based projections

In this approach, the generic task is projected onto the null space of the task achieved by
considering the augmented Jacobian of all the higher priority ones. By assuming that e;_, is
a task that realize the n first tasks while respecting their priorities, the orthogonal projection
operator P, is given by [Baerlocher 98]:

Pin=1-J7,Jin (5.12)
where J;_,, is the Jacobian of e;_, defined by:

Jl_'n _ 0e1..k _ 8(e1 + P1.62 + ...+ Plnnen) (513)
oq oq

The approximation value J; ,, = J; + P1.J2 + ... + Py ,J, is used to compute Py, by
assuming that % = 0 since it is difficult to compute. This approximation however does
not guarantee that the error of the first n tasks remains 0 when the control due to e, is
high.

Intersection inverse-based projections method

To ensure that the motion will be projected if it is in the null space of all n tasks, the new
task e, 1 is projected onto the space N; ,, defined as the intersection of the null spaces for
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all n previous tasks . N; _,, is given by:
Ni.n = [ | Null(Jy) (5.14)
k=1

The null space can be computed by stacking the Jacobian of the n tasks such that:

Ja
Nin=Null | : (5.15)
Jn

5.3.2 Transpose-based projection methods (successive, augmented)

In [Chiacchio 91], instead of using inverse kinematics schemes that use the Jacobian pseudo
inverse, a transpose-based task-priority redundancy resolution has been proposed for the two
tasks in which Jacobian transpose is used such that:

Gg=J"¢"+Pl e, (5.16)

Successive transpose-based projections

In [Antonelli 09], transpose projection approach is generalized by following the same guide-
lines previously mentioned for the inverse-based projection approaches, i.e., by projecting
successively the lower priority tasks onto the null space of higher priority task:

n—1
e=J1é +P1Jjé + PiPy.Jjés + .. [[ PiJ)én (5.17)
=1

Augmented transpose-based projections

The lower priority task is projected onto the null space of the augmented Jacobian obtained
by stacking all the higher priority tasks while the Jacobian transpose is used, [Antonelli 09]:

e=Jé +P1.Jjéy + Py Jzés + Py Tl ey (5.18)

5.3.3 Unified formula for redundancy

In [Antonelli 09], four priority-based approaches have been grouped in an unified formula,
and their stability analysis has been discussed. For n tasks this unified formula is written as:

e=Jlé, + P1.Jféy + PyJfés + PLIte, (5.19)

where for the successive projection Py = PP, ---Py, and for the augmented projection
Py = P;..x, while for transpose-based or for inverse-based method (#) is replaced by (T)
or (+) respectively.
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5.3.4 Efficient task-priority using the classical operator P,

Using the classical approach as given by (5.2) to treat priority among several tasks may
distort tasks of lower priority. In order to execute the lower priority tasks more efficiently, a
nice approach has been proposed in [Siciliano 91] [Baerlocher 98]. We refer this approach
as efficient redundancy-based task-priority.

5.3.4.1 Two tasks

When two tasks e; and ey are considered where e; € R™i,1 = 1,2, J; € R™*™ are their
Jacobian such that &; = J;q; and e; has priority over e». For ¢ = 1,2 we have:

When the robot is controlled using its articular velocity, the general solution of the primary
task is
qg=J7é& +Pig (5.21)

Using (5.21) and €3 = Joq we get:
&y = JoJ7é; + JoPig (5.22)
Solving (5.22) for g and injecting the computed z in (5.21) we get:
q=J7¢é; +P1(J2P1)7 (&5 — J2J7é]) (5.23)
Since P is idempotent and Hermitian then (5.23) becomes:
q=J7¢& + (J2P1) 7 (&5 — J2J7é)) (5.24)
Using (5.20) when ¢ = 1, (5.24) is written as:
4= a+ (J2P1)" (& — J2an) (5.25)

where Jo P is the limited Jacobian of e and (é5 — J2q1) is the secondary control compo-
nent after removing the part of e, already accomplished by e;.

5.3.4.2 Several tasks
Kinematics controller

Now, we consider [ tasks. Let e, € R™1 ... e & R™ be [ tasks where the i*" task
Jacobian J; € R™i*" is defined by &; = J;¢ where 2221 rank(J;) < n. If the i*" task is to
be executed with lower priority than the (i — 1) task, the general control scheme is given
by ¢ = q; where q; is recursively defined by, [Baerlocher 98]:

@+ (BPA)T (6~ Tidi) i i=2,.,1 5
i { Jré;, if i =1 (5-26)
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where PA = 1, — J;’*Jr.];"* is the orthogonal projection operator on the null space of the
augmented Jacobian J& = (J4, ..., J;) and is recursively defined by:

Jh =L T) (5.27)

Using the generalized inverse of partitioned matrix we get [Cline 64] [Baerlocher 04]:

JAT = (A - TuIA) T (5.28)
where
T; = JF + X (I, — J;J7) (5.29)
such that
Ji = Ji(L, — JAL IR ) (5.30)

and X is a complex term. Since P2 is defined by
PA =1, JAJA (5.31)
By injecting (5.28) and (5.27) in (5.31)
PR = L [(J) - TuJJR)) T (IR, 3)
= Lo~ (338, - TIRIE, + Tl
= To— (R8T BT — IR IR ) (5.32)

By injecting (5.29) and (5.30) in (5.32) we get:
P;A = In - (J:A—J;Jfk—l - (jj_ + X<In - jljj_))jl)
= (I, —JAIA ) =TT+ X (3 — 3J7 T (5.33)

By using the property (J; = J;J;"J;) of the pseudoinverse, we get:

Pr = (L, - JMIR ) - 3T
| SR R (5.34)

The recursive formula of the augmented classical projection operator is thus written as:

PA, — (IPA) T (IPA)) if i=2,.,1

PA — i—1 1= i—1 1 i-1 )ty .

! { I-J77J4, if i =1 (5.35)

If the classical projection operator is used to manage several tasks, the higher level priority
tasks eq, ..., ;_1 should leave some DOFs to the lower level priority tasks e;, ..., e;. Usually,
this is ensured by selecting ey, ..., €;_1 such that Rank(J2 |) < n.
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Dynamic controller

In [Siciliano 91], the recursive form is expressed in terms of joint acceleration. Instead
of deriving joint acceleration solutions from the second-order differential kinematics and
then substituting in the robot dynamic model for designing a computed torque control,
which may lead to internal unstable behavior for a redundant manipulator, [Nakamura 87],
it is derived from the joint velocity solution by direct differentiation with respect to time,
[KaBerounian 88] [Siciliano 91]. By taking the derivative of (5.26) we get:

— . ot
oy + P I T ) I . :
(.fli — qi—1 + J.l (el qul—l J1q1—1> + Jl (el qul—l) if ¢ 2a ..,l (536)
Jre; +Jfe;, if i=1
. s
where J = J;P# | and J; is given by:
- -, > — - = =T _
J, =333+ (1-3;3) 3, (33])" (5.37)

These frameworks based on equations (5.26) and (5.36) have been studied in [Siciliano 91]
by simulations on snake-like robot with an obstacle avoidance constraint.

Handling singularities

In [Chiaverini 97], singular configurations in the framework of the redundancy-based task-
priority resolution technique are addressed for two tasks. First singularity, the algorithmic
singularity, appears in the task-priority formulation given by (5.26) that needs to compute
an inverse of J;P; 1 which becomes singular when the secondary task cannot be achieved
without preventing the primary task from being realized. Close to such singularities the
priority levels may even be inverted. Algorithmic singularity is handled by defining the
formulation of q as:

q=q1+P1J7é, (5.38)

Using (5.38), algorithmic singularities are decoupled from the singularities of Jo. On one
hand, when J» is singular, it is replaced by its corresponding damped least square inverse
J, ™2 defined by:

Jo™2 =TT (Jod T + 22D ! (5.39)

where \; € R is the damping factor. On the other hand, when J; has a kinematic singular-
ity, J; can be replaced by the damped least square inverse J; *!. This formulation helps
to avoid the singularity, however, the tracking error for the secondary task increases to be
higher than that of (5.25).

The kinematic singularity can also be be handled by introducing the damping factor \; such
that, [Chiaverini 97]:
q=JNer + (1- I T,) 35 e (5.40)
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In [Baerlocher 04], the algorithmic singularity of the recursive formula (5.26) is handled
by:

. A JrA’L o o . .
i — { Gia + (JPE) T (6 — i) 0P =2, (5.41)
Jl el, if =1

Finally, the expression that considers algorithmic and kinematic singularities corresponding
to (5.25) is given by:

q = JIMel + (J,P1) 2 (6" — Jo(JTMed)) (5.42)

However, additional algorithmic singularity appears when the low priority task can not be
realized when projected onto the null space of J;.

5.3.5 Tasks priority and tasks sequencing

Both task priority and task sequencing have been validated by applying them to a unicycle-
like mobile platform carrying on board a pan-tilt unit [DeLuca 08a]. Both redundancy res-
olution schemes show effectiveness against noise and unmodeled effects present in realistic
conditions, as well as the ability to correctly execute regulation of ill-conditioned tasks. With
the task priority method, it is possible to simultaneously regulate all the task variables. How-
ever, no additional requirements could be specified for the motion execution. On the other
hand, the task sequencing approach allowed such a possibility thanks to the artificial redun-
dancy introduced in the first phase, at the expense of a longer execution time for completing
the original task.

In [Mansard 07], a global architecture is proposed to sequence a stack of tasks in order
to reach a goal taking into account several environment constraints. Redundancy and stack-
ing are involved in a proposed framework which consists in four controller layers. The
first controller is composed of a stack which orders the active subtasks. The subtask at the
bottom level of the stack has higher priority where the priority decreases as the stack level
increases. The second controller ensures that enough DOF remain free to take the constraints
into account and selects the optimal subtask to be removed from the stack. The third con-
troller observes the removed subtasks from the stack and try to put them back in the stack
as soon as possible.Finally, the forth controller ensures the convergence of the global system
by solving the dead locks of the bottom controllers. Several sets of experiments are realized
to validate this architecture. It have been shown that this approach is able to converge to the
desired position despite various kinds of constraints.

5.4 Joint limit avoidance

Almost all robots including robot arms and humanoid robots have physical joint limits.
Avoiding those limits while performing a task is one of the most important problems to
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be solved by redundancy. In the following, we present the state of the art of joint limits
avoidance strategies including potential field approaches [Khatib 85], the gradient projec-
tion method [Liegeois 77], joint position specifications and joint velocity specifications in
task function approaches [Samson 91] [Marchand 96], redundancy-based iterative approach
[Chaumette 01], manipulability measure approach [Nelson 95], weighted least norm solu-
tion approach [Chan 95], general weighted least norm solution approach [Xiang 10], con-
strained quadratic optimization methods [Ellekilde 07], improved damped least square ap-
proach [Na 08], fuzzy logic-based approach [Ahson 96], and neural network-based approach
[Assal 06a] [Assal 06b]. In the following, we denote the value of the i joint j; by ¢; and
the lower and upper limits for each joint j; by ¢™" and ¢™* respectively.

K3 K3

5.4.1 Potential field approach

In [Khatib 85], artificial potential field is used to satisfy robot joint limits constraints. Each

joint j; can be kept within its minimum and maximum boundary ¢/ and ¢/*** by defining

barriers of potential and defining their corresponding potential forces by:

1 1 1 : min min
Topin =4 (mm'" - p;m"w)) gt AEP < p(0) (5.43)
9 0, else
1 1 1 : max max
quaz — { _T] (p;naw - p;VLaL(0)> p'l(na127 lf pz S pz (0> (5'44)
g 0, else

where p""(0) and p"®*(0) represent the distance of the potential field influence and p"*" =

2 7 7

¢ — q"™" and p;"** = ¢"** — g, are the distance limits. This potential field is integrated with

(2
the operational space approach.

5.4.2 Gradient projection method

The most widely used method to consider constraints or some criteria is the Gradient projec-
tion method (GPM). This method has been originally introduced for non-linear optimization
[Rosen 60][Rosen 61], then applied in robotics [Liegeois 77] [Chang 87] [Nakamura 87]
[Dubey 88] [Zghal 90] [Marchand 96] [Luya O1]. It requires defining a function represent-
ing the performance criterion and projecting the gradient of this function using the projection
operator presented in Section 5.2. The self-motions generated allows the robot to perform
the additional task as best as possible.

In GPM, the control law used to solve joint limits avoidance problem is usually given by:

Ohs
dq
where q, is the articular velocity to perform the joint limits avoidance and h, is a cost

function designed to be minimal at safe configuration and maximal in the vicinity of the
joint limits.

q=q1+4a =1 + Pe (5.45)
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Joint position specification

In [Liegeois 77], an active utilization of redundancy of robot manipulator by gradient pro-
jection method is presented and the generalized inverse of the Jacobian matrix is used to
present a general solution of joint velocity problem to keep the physical joint values within
its allowable limits. The cost function used has a quadratic form (see Fig. 5.2) and is given

by:
1 6 qi — qmean 2
hy = — <—) (5.46)
6 ; q;(nean _ q;ma:v
where ¢"“*" = (¢ + ¢/™"™)/2. When the robot is not redundant, the desired end-effector
task becomes impossible to accomplish in addition to the damage that may occur to the ma-
nipulators if the commanded robot joint angles exceed the joint limits.

|

min max

g, o q,

Figure 5.2 — Cost function, [Liegeois 77][Samson 91][Marchand 96]

In [Samson 91], the avoidance task aims to keep the joints of the manipulator at their op-
timal positions. The cost function is designed such that it is minimal when the manipulator
reaches a specified desired joint position ¢;"“*", and is maximal in the vicinity of joint lim-
its. The robot moves the nearest of that position under the constraint that the visual task is
realized. .

1 mean 2
ha =D (0 — /") (5.47)

=1

The cost functions defined by (5.46) and (5.47) are active as long as (¢; — ¢/"**") # 0, even
if the joint is not in the vicinity of its limits as can be seen in Fig. 5.2.

In [Chaumette 01], to solve the problem mentioned above, the configuration q of the robot is
considered safe with respect to its joint limits if for all joints j;, ¢; € | q?;in, g™ | (see Fig.
5.3), where :

= g™+ pAg;

max

Qi = ¢ — pAg (5.48)
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1

define the safe domain of articulation j; with p € [0, 3] is a tuning parameter (typically

72

p=0.1) and Ag; = ¢™> — g™, It is generally defined by:

B AP
hs = = 5.49
PV o
where ) ‘ )
@G — Qs g < g
Ai =1 Gi—qpis ifgpT<aq (5.50)
0, else
Therefore 9k A
= = = B 5.51
95 = Bq, g Ag (5.51)
The classical avoidance task is thus given by:
Z
=
? Safe configuration
~
]
= I
min min max max
g loi Yoi i 4
Figure 5.3 — Cost function, [Chaumette 01]
. Ohss
Qqa = Peg = Pe aq = ﬁPeA (552)

where A = (A1/Aqy, .., A/ AGy).

Joint velocities specification.

In [Marchand 96], the behavior of the manipulator is specified in term of velocities by intro-
ducing more constraints on the performance of the system to ensure an exponential decrease
toward the final joint position g;*“*" such that:

q; (t) — g

q; —q;

4 (t) = - (5.53)

where « is a constant value. The cost function defined for velocity specification is given by:

b= 5l =G 0 554
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and therefore
Oh

o 0
Experimental results showed that velocity specification method allows the robot to reach a
final position closer to the middle of the joint limits faster than the position specification one.

= Blai(t) — q; (t)) (5.55)

Let us finally note that, in these methods, the tuning of 3 is extremely difficult. If too large, it
results in oscillations. If too small, it can not allow avoiding the joint limits. Also, a suitable
value for a given configuration may be either too large or too small for other configurations.

5.4.3 Redundancy-based iterative approach

In [Chaumette 01], a redundancy-based iterative approach is proposed to avoid the robot
joint limits. This method does not affect the main task achievement and ensures the avoid-
ance problem by automatically generating a robot motion compatible with the main task by
iteratively solving a system of linear equations to cut any motion on the axis that are in a
critical situation. In this method, if the robot system has n joints and the main task has m
independent constraints then the global task is given by:

e=J;Te + Z a; B (5.56)
=1

Na

where n, =dimKerJ; =n—m, > ity a; B, define the available motions to avoid the joint
limit or to perform any other secondary task, E is a basis of Ker J; of dimension n X n,.
a is the vector of gain that will be automatically computed. The effect of this gain vector
is to stop any motion of all joints that are in a critical situation. The global velocity vector
obtained using (5.56) for the i*" joint is given by:

qli] = —A <<J1+ e1)ld] + i aj, Eik> (5.57)

In order to stop the motion of the robot joint j; which nears its limits, ¢[é] is set to be zero
then we get:

(4li] = 0) <= (Z ap B, = —(J1* eﬂ[z‘]) (5.58)
k=1
If there are [ joints near their limits then we need to ensure (5.58) for each of these joints. The

common adaptive gain vector that works for all joints is automatically computed by solving
the system of linear equations defined by:

Eio a — —(Jl+ el)[z] =Aa=d (559)
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where a and d are vectors of dimension n, and A is of dimension n X n,. The solution for
(5.59) has the form a* = A*d and the control law is written as:

q=-—2A (Jfr e + Zaz E.k) =q1— A (Z ay, E-k) (5.60)
k=1 k=1

When the number of axis in critical situation ny, is less than n,, other axes may enter in the
critical situation. This problem is handled by choosing a* as:

Ty

a*=Atd+ > by,B., (5.61)

ko=1

where B = I,, — AT A is the basis of Ker A and n, = dim Ker A. Let us note that
225:1 by, Bk, has no effect on the main task. Finally, by injecting (5.61) in (5.60) we get:

Na ny
G=ai—A ) <A+d +> kaB.kg) E.x (5.62)
i=k L

ko=1

This control scheme ensures that the motion of all joints near their limits will stop. However,
a problem of discontinuity appears because each time a new joint has to be considered in the
joint limit avoidance, a sudden stopping for this joint occurs. To deal with this discontinuity
problem, the condition for [i] given in (5.58) is changed as:

Na

> ap By = —y (I7 e)[i] (5.63)

k=1

where the coefficient +; is used to produce a smooth decay of the axis velocity and is given
by: 4

Gy min

=g 1 ™ < i) < Gl

vi=14 0, if g™ < Qi) < Qi (5.64)

e dh” i g < qigany < ¢

4 —ag
The predicted value q;(;41) is used for computing ~; to ensure that the joint j; will not reach
any of its limits ¢™" or ¢™**. In the implementation described in [Chaumette 01], it is
proposed to reduce the range of each joint by 20%. Furthermore, as the control law is dis-

continuous, it also relies on the low level robot controller to smooth the resulting trajectory.

5.4.4 Manipulability measure approach

In [Nelson 95], a global objective function that realizes a compromise between the main task
and secondary tasks is used by exploiting the robot redundant DOFs with respect to the main
task. In this approach, a manipulability measure is determined to compare different manip-
ulator configurations in order to indicate nearness to joint limits. This measure combines a
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penalty function which approaches zero as soon as the joints approach their limits. It is given
by:

—kII7, (g3—a;"*"™)(a]* " —q4
ie

;)
(a0% —qmim) ) (det(J(q)))? (5.65)

w(q) = (1 —e

where k is a constant used to change the envelop of the penalty function. This approach was
used to avoid kinematic singularity and joint limits in a target tracking system by introducing
the manipulability measure into the visual tracking objective function to define a new objec-
tive function. However, important perturbations can be produced by the obtained motions,
which are generally not compatible with the regulation to zero of the main task. Also, the
global task can fail when the same joints are used for the avoidance and for achieving the
main task.

5.4.5 Weighted least norm solution approach

In [Chan 95], weighted least-norm solution (WLN) to avoid joint limits for redundant joint
manipulators is presented. Unlike the basic gradient projection method, WLN guarantees
joint limit avoidance as well as minimizes unnecessary self-motion. The weighted norm of
the joint velocity vector is defined by:

[aw| = va"Wq (5.66)

where W € R"*" is a symmetric and positive definite weighting matrix. If the relationship
between the joint velocities ¢ and the end effector velocity v is v = Jd, the weighted least
square solution is given by:

w = W IIT[IW-137]" 1y (5.67)

provided J is full ranked. To avoid joint limits, the weighted norm matrix W assumed to be
diagonal matrix is given by W = diag(wy, ws, ..., w, ), where the i'" element w; is defined
as:

H
w; =1 '8 (@ ‘ (5.68)
9q;
where H(q) is the performance criteria (cost function) and is defined as:
n (qmax o qmzn)2
H(q) = : : . (5.69)
@=2 g™ = a)(a — ¢™")

=1

In order to determine wither the joint is moving away from or toward the limits, the weighting
factors is redefined as follows:

OH(q)
wi:{ 1+‘ g =0
1

; OH(q)

else

(5.70)
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In this case, if the joint is moving away from the limit, no penalization occurs to its motion
and the joint moves freely. This allows the redundancy to be useful for other purposes such
as avoiding obstacles. Finally, let us note that using WLN, the self-motion depends on the
configuration and the end-effector velocity vector v. The magnitudes of qw changes ac-
cording to the magnitude and the direction of the end-effector velocity vector ¢;. When the
end-effector is not moving, WLN scheme does not change its configuration.

5.4.6 General weighted least norm solution approach

In [Xiang 10], a general version of the weighted least norm solution approach is presented. In
this method, the performance criterion is selected to satisfy that Hg(q) > hg, where Hg(q)
is the performance function and hy is a predefined threshold. By regarding Hg(q) as a virtual
joint variable, the solution is to make Hg(q) = 0 when the joint Hg(q) = hg. The veloc-
ity of the virtual joint variable becomes ¢, = T(q)q where T(q) = [VHg(q) Kg(q)]',
VH,(q) being the gradient vector of Hg(q), and K (q) the orthogonal complementary ma-
trix of VHg(q). The kinematic equation relating the end-effector velocity and virtual joint
velocities is given as follows x = J,q, where J, = J T‘l(q) is the Jacobian matrix with
respect to the virtual joint variable. The velocity command of the virtual joints is given by:

qo = W, LI [T, W AT 7 %y (5.71)
The joint-velocity command is then given by:
q=WIIT[IW I 1%, (5.72)

where Wy = T~ (q)W'T~"(¢) and
- 1, ifgi1—hg>eor >0
e { 0, if g1 —hg<eor ¢; <0 (5.73)

This method effectively meets the multiple constraints, whose number might be even larger
than the number of joints while guaranteeing the good performance of the main task [Xiang 10].
However, a drawback of this method is the inability to avoid the singularity configurations
because the transformation on the joint space will change the criterion for avoidance.

5.4.7 Constrained Newton optimization methods

In [Shahamiri 05], the control scheme proposed is based on constrained optimization using
a null space-biased Newton technique. It is shown that, by formulating the control law as an
optimization problem, singularities and obstacles can be detected online, and an avoidance
command can be computed in the null space of the main task. Similar to the GPM, this
approach exploits redundant degrees of freedom to execute a secondary task in the null space
of the main task.
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5.4.8 Constrained quadratic optimization method

In [Craig 86] [Cheng 92] [Cheng 94] [Ellekilde 07], the problem of joint limits avoidance is
addressed using the quadratic optimization method. In this method, it is assumed that the
value ¢; of the joint j; respects position, velocity and acceleration constraints defined by:
g < g < @, oIt < g < o and @ < G < a™, where v and v are
the minimum and maximum velocity and a}"™ and a{"** are the minimum and maximum
acceleration of the joint j; respectively. To determine the feasible joint velocity ¢, the three
constraints are expressed as constraints of g as A < q < B. In order to consider joint limits
when computing ¢;, each joint is treated individually by defining the lower and upper limits
of its velocity. When the joint j; is in an arbitrary position ¢;, to ensure that a motion of j;
toward ¢;"** can be stopped before actually reaching the limit, the velocity of the joint must
be limited when arriving at ¢;. This joint velocity upper bound is defined by the braking
capabilities of the robot as well as the distance from the current joint position to the upper
limit such that.

di = ¢ — g (5.74)
The worst case approximation of the distance traveled while braking with the maximal ac-

celeration ¢™" is given by:

i
d; = h(j + 1)@t — iarindU 1) ; ) (5.75)

where h is the cycle time. By setting ¢¢"? = 0, and ¢ = —ha™", the upper and lower
bound for j can be obtained by solving (5.75) for j,,q. from which the integer between them

can be defined as:
2 ., min -
h*a

1 .
j(d;) = ROUND (5 o S 1) (5.76)

By injecting (5.76) in (5.75) we get:
min J(di)(j(di)+1)
iy = S
h(j(d;) + 1)

(5.77)

The maximal velocity allowable at current time ¢ is Q7"**(d;) = ¢¢"(d;) — j(d;)¢™"h. The
worst-case estimate of the position at time ¢ 4 h is given by di = d; — hQ**(d,), and the
limit velocity needed at time # is ¢%%(d;) = Q7" (d¥) = Q™**(d; — hQ7"**(d;)). The same
steps can be followed to determine the lower velocity limit when moving toward the lower
joint limit. ¢™"(d;) = QM (d*) = Q"™ (d; — hQ7""(d;)). At each control step, 7" (d;)

and ¢"**(d;) are computed and then used in A < ¢ < B in order to use the entire joint
range.

5.4.9 Improved damped least square approach

In [Na 08], an improved damped least square solution is used for joint limits avoidance. In

this method, to ensure that joint limits will not be violated and ¢/ < ¢; < ¢"**, a diagonal

7
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matrix D(\) is introduced to replace the constant damping factor A in the damped least
square approach (remember equation (5.39)):

A
D(\) = diag(\) = (5.78)
An
where o
2 ;— maxr __ min
PP . (5.79)
q4; " — g;

where ¢, p € R are constants and p is an even number.

When the joint value is within its motion range, small value of \; gives accurate solutions;
and when the joint is near or moves away from its limits, large value of \; results in a feasible
solution. Therefore, each \; makes a restriction to each joint value ¢;. The larger the p is, the
flatter the bottom of the curve of damping factor is, which implies the approximate low cost
to the reasonable joint values.

5.4.10 Fuzzy logic-based approach

In [Ahson 96], a fuzzy logic-based method is presented to automatically choose an appropri-
ate magnitude of a self-motion to avoid joint limits in kinematically redundant manipulators.
For a given robot configuration, membership functions and linguistic rules are defined. A
planner articulated arm having four DOFs is considered in simulation test where the limits
of each joint are defined relative to its previous joint. The normalized cost function is defined
as
(¢ — @)

(o = )

h; = (5.80)

where |
a; = ¢i—1+ §(Aq§”i" + Ag™) (5.81)

is the average link position such that Ag™" and Ag™** are the joint limits with respect to
the previous link. This method helps in choosing appropriate joint angles by selecting the
right amount of self-motion using linguistic rules. The effectiveness of this method has been
demonstrated by computer simulation.

5.4.11 Neural network-based approach

Classical methods for avoiding the joint limits using GPM do not guarantee a minimization
of a certain performance criterion for each individual joint, particularly when the number of
degrees of redundancy becomes less than the number of critical axes for a given task. In
[Assal 06a] [Assal 06b], an intelligent control system is proposed which relies on exploiting
the neural network as an advanced nonlinear controller to solve the kinematic inversion to
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avoid the joint limits of a redundant manipulator. The fuzzy-neuro system works as a hint
generator to generate an approximate solution qn, = (qn,, ¢ny, ---qn, ) Of the inverse kine-
matic problem that presents joint angle vector for the next step of the manipulator. All
elements of qj, are within the values required for the avoidance of joint angle limits. Two
input vectors are presented to the fuzzy-neuro system to generate the hint vector qj, namely
Arel = (GrysGrays -y Gr,) € R™and vy, = (vpy,Upy, ...y 0,) € R™, where g, is the relative
position of joint j; to its limits given by:

qt'(t)_qzm . min
_ qrax—gm > if ¢; > q;
qri = { _Qi(t)_qr else (5'82)
q;naxiq:’n )
where ¢" = w, and v,, is the absolute relative velocity of joint j; to its maximum
velocity limit given by:
/l)A
Uy, = i (5.83)
/Uimaa:

where v, 1s the maximum velocity of joint j; and v; is the velocity of joint j; given by:

qi(t)—qi(t—1) : min

) if q; > q;

Ui = { _Qi(ﬁtl)*fh(t) else (584)
At ’

where At is the sampling time.

The general concept of constructing the fuzzy rules for each joint angle is to generate an
approximate value for each joint angle from the current and previous ones for the next step
according to the situation of the relative position of joint j; as:

qn,(t +1) = qi(t) + c(qi(t) — qi(t — 1)) (5.85)

where c is a constant.

The output of the neural network is guided by feeding an additional hint input vector to
the NN, which is an approximate value vector for the required joint angle vector for the next
step. Then, the neural network converges rapidly to the required joint angle vector that is
close to the hint vector. In addition, it solves the redundancy resolution problem since the
hint values are the values that can achieve the joint limits avoidance.

5.4.12 Comparison between different JLA methods

In [Ellekilde 07], a nice comparison is presented among different joint limits avoidance
methods including iterative gradient projection method, weighted least norm method and
quadratic optimization method. This comparison shows that, as the iterative GPM method
reaches its critical area located at 0.8, it could be 0.95, in normalized joint coordinates it stops
any motion of this joint toward the limit. However, the chosen limit may be reached with
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maximum speed using iterative GPM method. The WLN method does not completely block
the joint, but simply increases the cost of moving toward its limit causing the joint approach
the limit slower than when the robot is controlled using the previous iterative GPM method.
The characteristic behaviors of the QP controller, the WLN and the iterative GPM methods
are similar, however, the QP controller exploits the entire joint range without attempting to
break the limit while the basic GPM controller stops any motion of this joint toward the limit
as soon as the critical limit is reached.

The advantage of projecting the gradient of the secondary task onto the null space of the
Jacobian used for the main task is that the joint limit process have no influence on the main
task and hence is executed under the constraint that the main task is realized. Unfortunately, it
turns out that the success of these methods depends on a parameter, which specifies the influ-
ence of the secondary task on the final robot command sequence [Chan 95] [Chaumette 01].
This parameter must be tuned very precisely to ensure the effectiveness of the joint limit pro-
cess. If this parameter is too small, the secondary task will not be able to influence the robot
motions in time to avoid limits or singularities. If, on the other hand, the parameter is too
large, the robot motions will be disturbed by the secondary task which results in undesired
end-effector oscillations [Euler 89]. To make bad even worse, it turns out that a parameter
suitable for a given robot configuration is often either too large or too small for other config-
urations. This effectively renders such basic gradient projection methods unsuitable for most
applications. We will bring a significant contribution to this approach in the next chapter.

5.5 Conclusion

In this chapter, state of the art considering redundancy in robotic control as well as joint
limits avoidance strategies were presented. The main advantage that redundant manipulators
over non-redundant ones is the property of self-motion i.e. the ability to move joints without
moving the end-effector. Self-motion makes redundant manipulators capable of optimizing
various performance criteria in addition to the main task motion [Siciliano 91]. This is not
possible in case of non-redundant manipulators since the joint configuration for any given
end-effector position and orientation is unique except for finite variation. A summarization
of our review of the state of the art is summarized by the two graphs illustrated in Fig. 5.4
and Fig. 5.5 for redundancy and joint limits avoidance respectively.
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Chapter 6

New large projection operator for the
redundancy framework

In this chapter, we propose a new projection operator for the redundancy framework based
on a task function defined as the norm of the usual error. This projection operator allows
performing secondary tasks even when the main task is full rank. To ensure the convergence
of the system, a switching strategy is then defined to switch from the new projection operator
to the classical one before the norm of the total error reaches zero. An adaptive gain is also
defined to slow down the convergence of the main task. It allows the secondary tasks to
be active for longer. Treating priority among several tasks of different priority levels is
also discussed and the recursive formula for the new projection operator is deduced. The
experimental results obtained show the agreement with the analytical study and demonstrate
the effectiveness of the proposed projection operator with respect to the classical one. The
work described in this chapter leads to the following publication [Marey 10a].

6.1 Introduction

The methods presented in the previous chapter and based on the GPM approach require that
the main task does not constrain all the robot DOFs. Indeed, in that case, the main task Jaco-
bian becomes of full rank and no redundancy space is left for projecting any constraint. This
is a limitation of the classical gradient projection method. That is why a proper selection of
the projection operator is required to provide secondary motions of the manipulator that re-
spect the constraints and keep the projected vector from being distorted as much as possible
[Khatib 96], [Yoshikawa 96]. We will see that the method we propose leads to significant
improvements.

This chapter is organized as follow: in Section 6.2, the new projection operator is devel-
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oped and discussed. In Section 6.2.1, different test cases with respect to varying number of
task components and robot DOFs are presented and analytically studied as e nears zero. In
Section 6.2.2, a switching strategy is given to solve the problems exhibited in Sections 6.2
and 6.2.2. In Section 6.3, the recursive formula of the new projection operator is deduced for
several task priorities levels and articular task priority is presented in Section 6.3.3. Finally,
a description of the implementation of the new projection operator followed by experimental
results in visual servoing are given in Section 6.4.

6.2 New projection operator P||e||

The main original idea of this chapter is to consider = ||e||”, where v € R — {0} to

build a new projection operator P,. Since the error norm and the error vector are linked by

le||> = eTe, we have ||e||[|e|| = eTé where ||e]| is the variation of the norm of the total error

||le]|, from which we obtain:

n=lell" llell = vllel" e"e (6.1)
Since € = J.q, we obtain by injecting € in (6.1) :
n=lle]”™ e"Jeq (6.2)
from which we deduce:
Iy =lell™ e"Je (6.3)
Note that J,, € R*™ is at most of rank 1. For all e such that ||e|| # 0, we then obtain
1
Jr = Jle (6.4)
T llel” (eTJed e)
If we want 7 to have an exponential decrease, i.e. 77 = —A\n, then the least square solution

q, of J,, q,, = —A n is given by:

dy = —Allef” J; (6.5)

and the general control law will be:
q=d,+a; =a+Pg (6.6)
where P, = (I, —J,"J,) is a projection operator on the null space of J,, and g is any vector
that can be designed to try to realize secondary tasks. Using (6.3) and (6.4), we directly get:

1

e'J.Jle
We can note that P, does not depend of the value of 7. It is thus denoted P ¢ in the
following. Since J,, is at most of rank 1, P ¢ is at least of rank n — 1, which will thus not
filter a lot the secondary task g. That is the main contribution of this work especially if we
remember that, in the classical approach, the rank of P, is equal ton — r. As soonasr > 1,
supplementary directions of motions are thus available to achieve the secondary tasks. That

is particularly true when J, is of full rank 7, in which case P, = 0 and no secondary task at
all can be considered in that usual case.

P,=Pj =1, Jiee'J, (6.7)
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6.2.1 Analytical study of P

This section presents an analytical analysis of the projection operator P given by (6.7).
On one hand, we can note that, as e — 0, the value of PHeH 1s unstable since the denominator
tends to zero. On the other hand, we would like that P tends to P, when e — 0. Indeed,
when e — 0, no perturbation has to be introduced by the secondary tasks on each component
of e to preserve its convergence and stability. In the following, we illustrate this point by two
examples.

Case when k=2 and n=2

If we consider a system with two DOFs and a task with two components e = (z,y) then
J. € R?*2, By assuming J is full rank and given by:

a1 a2
Je = Lh bJ (6.8)
we get:
X% XY
T TT _
Jeoee Jo = {XY YQ} (6.9)
and
e'JJle=X?4+Y? (6.10)

where X = (a;x 4+ byy) and Y = (aqz + boy).

By injecting (6.9) and (6.10) in (6.7) and assuming for simplicity that x = y then taking
the limit as e — 0 for the upper left entry of P we get:

(a1 + 51)2
(a1 +b1)? + (az + be)

lim Pgy[L, 1] = 1 — S #0 6.11)

while we have P, =1, —J_ 1J, = 0, which implies lim._.q P|c| # Pe. Similarly, the same
result can be obtained for a higher DOFs system when the number of features is equal to the
number of the robot DOFs and the task Jacobian is full rank.

Case when k=2 and n=3

If a system of three DOFs is considered with the same task e = (z, y), whose task Jacobian
J. € R?*3 is now given by:

_|a1r az as
Je = |:b1 by bg:| (6.12)
then we get:
X2 XYy XZ
Jlee'J.= | XY Y2 YZ (6.13)

XZ Yz Z?
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and
e'JJle=2>A+22yC +4*B (6.14)
where X = ayx + by, Y = asx + boy, Z = asz + by, A = Z?:1 a?, B = Zf’zl b,
C = Z?:l azbl
Injecting (6.13) and (6.14) in (6.7) we get:
_ X2 Xy Xz
XYD DY2 xpz
Piey= | &5 1-F & (6.15)
Xz Yz _z
D D D

where D = e'J.J!e. By considering again the particular case z = y and taking the limit
of P when e — 0, then multiplying the first column of the result by J. we get:

a1 X2 as XY, a3XoZ
) B a; — 1DOo + 2D(()) 0 + BD((]) 0
Je (lal_l')I%)PHeH[l, 13] - [bl B le)gg 4 bz)D((())Yo 4 b3)§;ZO
0
£ M (6.16)

where Dy = 327 (a2 + a;b; +02), X = ay + by, Y = ag + by, Z = ag + bs. This result
shows that once again lime_.g P ¢ # Pe since we have of course J.P. = 0.

The previous study directs us to the following conclusion: as soon as the system nears its goal
(that is when e — 0) we have to switch P to the classical projection operator P.. This
switching will ensure the convergence of the system since it allows solving the instability
problem of P as € — 0 due to the singularity of J|| when e = 0.

6.2.2 Switching based projection operator

The switching strategy designed consists in defining a convex combination P between the
classical and the new projection operator such that:

Py =A(llel) Pjej+ (1 =A(llel) Pe (6.17)

where the proposed formula for the switching function A(||e]|) : R — [0, 1] is defined by:

- L ife<]el
Allle) =3 22 if e < fle]| < e (6.18)
0 if |le]| < e

where e; and e, are two threshold values that define the starting and the ending conditions
for the switching period. A(¢) : R — R is a continuous monotonically increasing function,
such that \; = A(e;) &= 1and Ay = A(eg) = 0. The sigmoid function \(¢) = 1+e+ﬂ—ﬂ shows
early exponential growth from zero for negative ¢, which slows to linear growth of slope 1/4
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near ¢t = 0, then approaches one with an exponentially decaying gap for positive ¢ [Pearl 20].

A good selection for the function A(||e]|) is then the sigmoid function given as:
1

1+ exp(—12lel= 4 6)

e]—eq

A(llel]) = (6.19)

where values of ey and e; have to be selected such that the system does not converge too
fast during the interval [eq, e1]. This allows the switching to be performed smoothly during
a sufficient number of iterations. Figure (6.1) shows the shape of the switching function
A(|le||) when eg = 0.1 and e; = (0.3,0.5,0.7,0.9).

-. - ; - : - 1 ' .'
r cp :I 0.1 i l I .I
0.8 : € = 0.9 1
—o0.6 | .
2
< 0.4 .
0.2 :
0 ! l
0o 0.2 = 04 056 = o8 1
llell
Figure 6.1 — Switching function \(|le||).
6.2.3 Stability analysis of q,
Let us now consider q,,. After injecting (6.4) in (6.5) we obtain:
A 2
el 574 (6.20)

Ty (eTJd]e) T

Using control scheme ¢,, given by (6.20), a singular configuration is obtained if e € Ker(J] ).
That is clear from (6.3). This case corresponds to a local minimum of the classical control
scheme ¢ = —A\J{e (see (5.1) and (5.2)), since Ker(J!) = Ker(J}). Another singularity
occurs when e — 0 if the denominator e J.J/ e has a convergence rate to zero faster than
that of the nominator. If the denominator and the nominator have the same convergence rate
to zero when e — 0, then lime_.o q,, is indeterminate and the system will not be stable nor
robust with respect to any perturbation. Of course, we obtain the same results by studying
the stability analysis of the control scheme (6.20). Let us consider the candidate Lyapunov
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function V' (t) = n?. By taking the derivative of V(¢) and injecting (6.2) in the result we
obtain:

V(t) =271 =2y e[ e Jed (6.21)
Injecting (6.20) in (6.21), we get:

' _ 2Mlel ro oy
V(t) = me JeJee

= —2\|le|*” whenJle#0 (6.22)

We have V(t) < 0 as soon as e # 0 and e ¢ Ker(J), thus ensuring the same asymptotic
stability properties of the system as in the classical case [Chaumette 06], but when e = 0. Let
us note that these results are obtained whatever the value of v, for example by considering
the main task functions such as 7 = \/|[e|| when v = 0.5 or = ||e||* when = 2. We will
see how to deal with these problems of singularity and stability in Section 6.2.5.

6.2.4 Studying ¢, and P, ase — 0 (t — )

Now, we study the behavior of g,, and 1'377 when defined as a function of ¢, where ¢ is the time
parameter.

Finding 7 and e as a function of the time t

By injecting (6.20) in € = J.q we get:

oA el? T
SAN o N
© velJeJle e®

If we assume that J.J! = I, (which is a strong assumption), then we get:

. —2e ife#£0
e:{ov o 0 (6.23)

Solving this differential equation, we obtain:
e(t) = e(0)exp(—3t) (6.24)
from which we deduce:

n(t) = lle(®)[|” = [[e(0)[[" exp(=At)

= n(t) — 0 when t— 0 (6.25)
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Studying Vie|ase — 0 (t — 00)

Assuming again that J.J ,j = I, we obtain from (6.20):

B
el — 2 “e
7 llell
A
= —Z Jle when e#£0 (6.26)
Y

Injecting (6.24) and (6.25) in (6.26) gives
A T
Vie(t) = - exp(—At) J. e(0) (6.27)

If J. is constant, then as ¢ — oo we get:

tlirgo V||eH(t) =0 (628)
Studying P ase — 0 ({ — o0)
For the projection operator
1
P =L, — T.07e Jeee'J, (6.29)
If JoJ! = 1;, then:
1
Plej =1, — Tel? Joee'J, (6.30)

Writing P as a function of ¢ by injecting (6.24) and (6.25) in (6.30) and assuming J is
constant, we get:

1
Pi(t) = I, — ———— Jle(0)e' (0)J, 6.31
Jeli (£) EOIE e(0)e’ (0) (6.31)

Since this expression does not depend of the time, we have of course:

1

lim P =1, —+—
Rt el () " le(0)]2

Jle(0)e(0)J, (6.32)

To study the limit of the classical projection operator P, = I,, —JfJ. as t — oo, three cases
arise. These cases are based on the number m of features and the number n of DOF of the
system. For the first case when m > n then J} = (J[J.)~1J/ then we get:

P.(t) = 1,—-J31J,
I, — (J]J)I] T
0 (6.33)
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Similarly, for the second case when m = n then J = J_! and we have:

P.(t) = I,—-J.'J,

e

-0 (6.34)

Finally, for the third case when m < n then J7 = J!(J.J/)~! and since we assumed
JoJ. =1, then we get:

P.(t) = I,-J!J,
= I,-J](JJI) 13,
= I,-JJ, (6.35)

These results show that if JoJ! = I, then the classical and the new projection operators may
have non-zero values as ¢ — oo when m < n which allows secondary tasks to be projected.
If m > nandt — oo then P, = 0. That is why the classical projection operator does not
filter any secondary task as soon as the system nears the desired configuration. While for the
new projection operator P, # 0. This leads to the same conclusion obtained in 6.2.1, i.e.,
when the system approach the desired configuration, the new operator should switch to the
classical one to ensure the convergence of the system.

6.2.5 Main task function

Possible control schemes

As discussed in Section 6.2.3, stability problem and singularity appear when e — 0 if the
control scheme ¢,, defined in (6.20) is used as output of the main task. These problems can
be avoided by performing a switching from ¢,, to the classical ¢ given in (5.2) by defining
as control scheme:

q=q\+Pyg (6.36)

where B B
& =A(lel) @, + (1= Ale])) ¢ (637)

with A(||e||) given by (6.18) for which ¢, is selected such that as long as ||e| > eo, the
singularity effect of ¢ does not appear. Applying this switching strategy ensures that the
main task will avoid the singularity situation when e — 0 since

lim g, = lim go = 0 (6.38)

In order to avoid the indetermination problem when the denominator of ¢ is equal to zero
(that is when e € Ker(J), a direct switching without a transition interval from ¢j¢| to q.
can be employed by setting ey = e, where e is the value of the error norm when the indeter-
mination problem occurs.
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Finally, the classical control scheme ¢, can also be used directly with the new projection
operator P instead of q,, or g,. In that case, the control scheme will be:

q=4e+Psg (6.39)

Starting the task with the classical control scheme ensures an exponential decreasing of each
error component when g = 0, which may be useful in practice as will be seen in Section 6.4.

Adaptive gain 3(||e||)

Usually, the gain A involved in the classical control scheme g, = —AJ7e is tuned so that
the convergence rate of the main task is as fast as possible while preserving the stability
of the system. This leads to increase A as e decreases (for instance could be an equation
A(lle]]) = A min + K exp(—Blle||) where A\min, K and B are constant positive scalar values).
However, having a fast convergence rate for the main task may not be adequate in our case.
Indeed, since P switches to P when e — 0, this switch may occur too early to have
enough time to take the secondary tasks into account. This is especially the case when the
secondary tasks are critical (such as obstacles and joints limits avoidance for example). That
is why it may be useful to slow down the convergence rate of the main task. For that, the norm
of the total error may be introduced in the control gain and we may think to use A = A ||e|
where ) is a constant. However, as soon as ||e|| — 0, the convergence rate of the main task
becomes too slow. To avoid this problem, we define a gain function 3(||e||) which returns
the norm of the total error as long as P\ = P2 and switches smoothly to 1 as soon as
the norm of the error reaches a specified threshold value. The scheme of the adaptive gain
function 3(||e||) can be deduced and written as:

Bllel) =1 = Adlell) + llel Alllell) (6.40)

with the same switching conditions used to switch from P ¢ to P used for ((]|e]|). Setting
A = Xof3(]|e]|), the control scheme (6.39) becomes:

a=—Xp(e]) e+ Prg (6.41)

Using this control scheme increases the time during which the secondary tasks will be active
thanks to the use of P .

Let us finally note that the new projection operator P, does not modify the stability prop-
erties of the system. More precisely, if the control schemes (6.36), (6.39) and (6.41) are
globally or locally stable in the Lyapunov sense using P, they are also with P . This is due
to the fact that, by construction, the variation of the Lyapunov function 7> = ||e||* does not
depend of g, Vg.

6.3 Efficient task-priority using the new operator P

Since the projection operator P, provides a highly redundant system, it is possible to in-
troduce several constraints and to manage the order of priority between them. When using
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the new projection operator P, each subtask is equivalent to a scalar constraint and it is
thus possible to consider a large number of subtasks, whatever their corresponding dimen-
sion and rank are ( rank(J;) < n fori = 1,..,1). This enlarges the applicability domain of
redundancy-based task-priority.

6.3.1 Two tasks
Recalling (5.25), when only two tasks are considered then the general control is given as:
a=du+ (J2Pjeyy) " (&5 — Jadur) (642)

which allows us to use the efficient scheme for task-priority even when the main task uses
all the robot degrees of freedom.

6.3.2 Several tasks

Similarly as in Section 5.3.4.2, For [ tasks, we define the general control scheme as q = ¢
where ¢; is given by (see 5.26):

+

. A .y . e

éli — qQi—1 + (JiPHei71H> (ei - Jiqi—l) ; if i = 27 ..,l (643)
Jrés, if i =1

where PI?&II is the new projection operator on the null space of the augmented Jacobian J£.

When i = 1 then P, | = P, while if i = 2..[ then P{, | is defined by:

llexl] llel]

1 T T
A _ 1 _ AT A AT 1A
P||eiA|| =1, ATJAJAT oA Jit eje Jj (6.44)

1

where ef* is the augmented task and J#* is the augmented Jacobian::

e = (efty, ), ef = e (6.45)
JA=J2,0), I =T, (6.46)
Equation (6.44) can be written as:
1 T
A _ AT_A
P\Ie{“\l =1, — —aAaAT a; a (6.47)
where a* is defined as:
ah =ep' JA (6.48)
The recursive formula of aiA is obtained by injecting (6.45) and (6.46) in (6.48) to get:
at = [ef) e | (IR T0)

_ AT 1A T
— eiilJiil + ei Ji

= aiA_l + eiTJi (649)
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‘We thus obtain:
a, +elJ;, ifi=2 .1

A _
A = { el Iy, ifi=1 (6.50)
Another recursive formula of Pf?e A can directly be obtained from (5.35) by using the partic-
ular form Jye, = e Ji:
A Pfl*eA 1L if i=2,.,1
— i—1
PHGIAH o I, — m J;rieieiTJei, ifi=1 (651)
where
1 AT A
1= CApAT bi* b; (6.52)
and
b = eiTJiP“ltﬁ N (6.53)

As can be seen, the computational cost required for computing the recursive formula (6.51),
which requires the computation of term 11, is higher compared to the other recursive form
defined by (6.47) and (6.50). That is why we prefer to use (6.47) and (6.50) in practice.
Finally, let us note that a switching from PfeiH to P;* has to be performed as soon as el — 0.
This can be done using the same strategy than the one proposed in Section 6.2.2.

6.3.3 Redundancy-based articular-task-priority

Now, we consider the case when a task e; describes a desired motion in the articular space
given by an articular velocity q;. Instead of replacing the Jacobian J; by the identity matrix
I, as in [Hanafusa 81], we propose to replace J; by a diagonal matrix I,, having zero value in
all components not used by e;. In that case, the control schemes (5.26) and (6.43) are given
by:

— + —
@ =+ (WP ) (& —Tadia), i=2. (6.54)

where Pfi_l 1s Pfeifl‘l or P# . In order to analyses the behavior of (6.54), let us consider

a simple case when e; € R" is to send a motion to a joint j,. The above equation (6.54)
indicates that if the joint j, is not used by the higher level priority tasks, then ¢} [jo] will not
— +
be modified before being projected by (InPQd) . If the joint j; is already used by the first
(i-1) tasks, then ¢;_1[jo] # 0 is subtracted from ¢ [jo| and the difference is then projected by
_ + _
(InPf}iﬂ) . When j # jo and &;_1[j] # 0, then (I,,4i—1)[j] = 0, which ensures that there

is no unrequired motion from §;_1[j] to be projected, while using the identity matrix I,, as

proposed in [Hanafusa 81] we get (i — L,qi—1)[7] = —Qi—1[7]-

Now, if a zero articular value is to be sent to the joint jo, then ¢} [jo] = 0 and L,[j, j] = 1.
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_ +
When (InPfi_l) lets the required movement in the 5 component of (¢ — ¢;_1) to be
projected completely, then we get &;[j] = §f[i].

If two tasks e; and e, are considered while es is defined in the articular space, the con-
trol schemes (5.25) and (6.42) are given by:

_ + _
q=d + (IP;?;I) (é2 — Tdy) (6.55)

where Pfid is Pf?ei_lll or Pg‘H. For a 6 DOFs robot manipulator, if eq is used to change

the first three joints, we set diag(I) = (1,1,1,0,0,0). When it is required to change the last

three joints by e, then diag(I) = (0,0,0,1,1,1).

This analysis shows that task priority based redundancy gives two directions of priority. The
first direction is a task-priority, which ensures the performance of the most significant task
defined as the tasks of higher priorities while using the remaining redundancy to perform the
lower priority tasks if it is possible. The second direction is a behavior-priority of the global
motion obtained by the control scheme which tries to give the motion required to perform
tasks of lower level of priority whenever it is possible, based on the available redundancy.

6.4 Experimental Results

The experimental results presented in this section have been obtained after applying the pro-
posed methods in visual servoing using a six degrees of freedom Gantry robot. The task
function is defined by e = s — s* where s and s* € R* are two vectors representing the cur-
rent and the desired selected visual features. The task Jacobian Jo, = L;MJg, where J is
the robot Jacobian and M is the matrix that relates v to the variation of the camera pose p by
v = Mp. Two different objects are used. The first object (0bj,) is a square of length 0.1 m
composed of four points. The Cartesian coordinates of these points in the image define the
visual features (z1,y1, T2, Y2, T3, Y3, T4, y4) used in the visual servoing system. In that case,
we have a system of six DOFs and eight visual features with a main task of full rank 6. The
second object (0bj) is a cylinder of radius 0.08 m. The visual features are now defined by
parameters (p1, 01, pa, 02) that describe the configuration of the cylinder in the image plane
and the main task is of full rank four. The camera pose is represented by p = (t,r) where t
is a translational vector expressed in meter and r = fu is the rotational vector expressed in
degree using the classical angle axis representation.

Two sets of experiments are presented: Set A in Section 6.4.1 using obj; compares different
control schemes and studies the behavior of the new projection operator by applying simple
secondary tasks; Set B in Section 6.4.2 using obj, compares P, and P, when classical and
efficient redundancy-based task-priority control schemes are employed.
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6.4.1 New Projection operator using obj;

Three different cases have been implemented to validate and investigate the efficiency of the
new projection operator when a full rank main task is considered. The chosen task consists
of positioning the camera with respect to obj;. In all cases, the desired camera pose is (0, 0,
0.5, 0, 0, 0), which means that the camera has to be at 0.5 m in front of the square 0bj; so
that it appears as a centered square in the image.

6.4.1.1 Case Al: Control schemes g and g,

In this case, we study the behavior of ¢ and the effect of the adaptive gain 3(||e||) with
the classical control scheme .. The initial camera pose is 1=(-0.1,0.1,1.0,0,0,0) and no
secondary task is added to the main task. Applying qj||, the initial movement consists of
translations along x-axis and y-axis combined with a small rotation around y-axis till iteration
number 80, as depicted in Fig. 6.2(a). Then the translational movement along z-axis starts
to increase. Figure 6.2(a) shows also that as soon as ||e|| nears zero, the control law ¢¢|| is
completely unstable, as explained in Section 6.2. As expected, the norm of the total error is
exponentially decreasing but during the instability due to the perturbations it induces. If the
switching to ¢, is performed when ||e|| — 0, that is using (6.37), the system converges as
can be seen in Fig. 6.2(b). As shown in Fig. 6.2(c), applying the classical control scheme ¢,
each error component converges exponentially to zero (as can be seen from the image points
trajectories, which are now pure straight lines), as well as the norm of the error. Setting
the gain A = )gl|e||, the convergence rate is extremely slow, as depicted in Fig. 6.2(d).
Finally, using the adaptive gain function 3(||e||) with the classical control law ensures the
convergence of the system as shown in Fig. 6.2(e).

6.4.1.2 Case A2: Secondary task g = (0.1, 0, 0, 0, 0, 0)

Now, we use the new projection operator and apply a simple secondary task consisting of
a translation of 10 cm/s along x-axis. Let us first recall that using P, would not allow any
secondary task to be achieved. As expected, using the projection operator P during all
the servo does not produce a satisfactory behavior (see Fig. 6.3). Indeed, some secondary
motions are produced while the main task tries the robot to reach the desired pose, where it
has then to be motionless. This explains the oscillating behavior on the velocity components
of the global task. In Fig 6.4, the projection operator P is used and the system switches
automatically to the classical projection operator. This allows the secondary task to be taken
into account at the beginning of the servo and ensures the convergence of the system to
the desired position. Fig. 6.5 shows the results obtained when the switching gain function
B(|le]|) is used. It is clear that the secondary task is considered during a longer number of
iterations.
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Figure 6.2 — Results for case A1. Comparison between the different control schemes. Line 1:image
points trajectories, line 2: image point error, line 3: norm of the total error, line 4: translational camera
velocity (cm/s) and rotational camera velocity (deg/s).
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Figure 6.5 — Results for case A2: qe, Px, A = XAof(]le]])-

6.4.1.3 Case A3: Secondary task g = (-0.02,0.04,0.02, 4,4,4)

In this case, a more general secondary task is used with non-zero value in all its components.
Using the new projection operator P, with the classical control scheme, most of the sec-
ondary task components are projected successfully onto the main task (see Fig.6.6). At each
iteration, the main task tries keeping the exponential decrease of each error component while
the projection operator allows keeping the exponential decrease of the norm of the total error,
which leads to a nice behavior of the system. Then, thanks to the switching strategy to the
classical projection operator, the system converges to the desired pose. When the switching
gain function 5(||e||) is used (see Fig. 6.7), the number of iterations where the secondary
task is active increases significantly.
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6.4.2 Comparison between P ) and P, classical and efficient task-priority,
using obj

In these experiments, the robot has to reach a desired position where the optical axis of
the camera is normal to the axis of the cylinder and y-axis of the camera frame is parallel
to this axis (see Fig. 6.8). In that case, the rank of P is two while the rank of P ¢ is
five. Different motions moving the robot with a velocity 0.03 m/s in the camera frame are
specified as secondary tasks. The vector g that produces this motion is defined as g =
(0,0,0.03,0,0,0) when (1 < iter < 100), g = (0,0,—0.03,0,0,0) when (100 < iter <
200), g = (0.03,0,0,0,0,0) when (200 < iter < 300), g = (0,0.03,0,0,0,0) when
(300 < iter < 400), else g = (0,0,0,0,0,0). The two components available in P, are the
translation along y axis and a combination of translation along x axis and rotation around y
axis so that the image of the cylinder is not modified despite these motions.

(a) Initial image (b) Desired image

Figure 6.8 — Initial and desired camera images of objs, (cases B1, B2, B3 and B4)

6.4.2.1 Cases B1 and B2, two tasks, classical task-priority

In this case, the control scheme used is given by:
q=-\fei +\.P.g (6.56)

where P, represents the projection operator used (P, or P)) and the adaptive gain function
A1 1S given by:

|glio]|
|(P..g)[io]|

where i is the axis where the secondary motion projected is the most significant one. Using
P., motions along x-axis and y-axis are projected as depicted in Fig. 6.9 while no redun-
dancy remains for projecting any motion along z-axis. Using P, the vector g is completely
projected into the x, y, and z components of v, as depicted in Fig. 6.10. Results also show
that the classical redundancy-based task-priority control scheme leads to accumulate the mo-
tions needed by the secondary tasks with the motion needed by the main task provided that
the convergence of the main task is ensured.

Al = (6.57)
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Figure 6.10 — Results for case B2: P, and efficient redundancy-based task-priority are considered.
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6.4.2.2 Cases B3 and B4, two tasks, efficient task-priority

In this case, the task e, is defined to produce some motion in the camera frame by &5 = g.
This can be realized using control schemes (5.26) and (6.43) while, instead of replacing the
Jacobian J, by the identity matrix I,, as in [Hanafusa 81], which constrains all DOFs, we
replace J by a diagonal matrix I,, having zero value in all components not used by &} (see
Section 6.3.3). By considering two tasks e; and es, the control schemes (5.26) and (6.43)
are now given by:

d= 1+ Ao (TP (&5 — Tuan) (6.58)
where the adaptive gain A, is given by:
| (€5 — Lnénn) [io]|
((@PA)" (6 — Tucn) ) o]

Defining the adaptive gain A2 by (6.59) ensures producing the required motion on the axis
i of the camera.

A2 = (6.59)

Again, using P., no motion is produced along z-axis as depicted in Fig. 6.11 while us-
ing P lets the three motions X, y, and z to be projected. Figure 6.12 shows that the projected
motions required by the lower level priority task are perfectly performed by the global task
components.

By comparing the results obtained from cases B1 and B2 and the results obtained from cases
B3 and B4, we conclude that, when classical task-priority is enabled, the projected motion
corresponds to the desired one g on vo but not on v, while when the efficient task-priority is
enabled the desired motion g is realized through v.
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Figure 6.11 — Results for case B3:

P. and classical redundancy-based task-priority are considered.
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6.5 Conclusion

In this chapter we have proposed a new large projection operator for the redundancy frame-
work. The new projection operator is obtained by considering the norm of the total error.
A switching strategy has been proposed to ensure that the new projection operator smoothly
switches to the classical projection operator as soon as the error nears zero. An adaptive gain
has also been developed so that the secondary task is effective during a long period. That
may be useful when the secondary tasks have really to be considered (which is the case for
instance for joints limits and obstacle avoidance).

The main interest of the new projection operator is that it is always at least of rank n — 1.
Hence it can be used even if the main task is full rank. The new projection operator has been
employed within two different redundancy-based task-priority approaches. A comparative
study of results obtained using P, and P, shows that P, provides more versatility when
the main task is not full rank. The effectiveness of the new projection operator has been
addressed when the task is defined in the camera space or in the articular space. All experi-
ments have been implemented on a six DOFs robot arm.

These theoretical developments enlarges the applicability domain of the redundancy frame-
work. These enlargements cover all relevant problems solved using the redundancy formal-
ism when it is required to add system constraints (joint limit avoidance, as we will be seen in
the next chapter, obstacle avoidance, occlusion avoidance, etc.), to add supplementary tasks
(trajectory following, etc.) or to manage the levels of priority among several tasks, using for
instance the stack of tasks proposed in [Mansard 07].



Chapter 7

New joint limits avoidance strategy

In this chapter, we present a new redundancy-based strategy for avoiding joint limits of a
robot arm. This strategy is based on defining three functions for each joint: an activation
function; an adaptive gain function ; and a tuning function. These functions allow to deter-
mine automatically the required sign and the suitable magnitude for the avoidance process at
each joint. The problem of adding an additional task with the main task and the avoidance
process is also considered and solved. As for the redundancy framework, the large projec-
tion operator based on the norm of the usual error proposed in the previous chapter is used
to enlarge the redundancy domain for applying our proposed avoidance strategy. The three
functions defining the new avoidance strategy are also used with kernel-based approach in
order to decreasing the discontinuity effect when a new joint is nearing its limits and when
a joint becomes very close to one of its two limits. The experimental results obtained on a
6 DOF robot arm in eye-in hand visual servoing show that the new avoidance strategy gives
smooth joint avoidance behavior without any tuning step. Using the new projection operator
allows a significant improvement of the joint avoidance process, especially in the case of a
full rank task function. The work described in this chapter leads to the following publication
[Marey 10b].

7.1 Introduction

Joints limit avoidance is a classical and crucial issue in robot control. As already described
in Section 5.4, the utilization of redundancy has been widely used for solving this problem.
The general solution by this technique is obtained as a minimum norm solution together with
a homogeneous solution, which is referred to as self-motion.

This chapter is organized as follows: In Section 7.2, the new avoidance strategy is pre-
sented and discussed. In Section 7.2.5, the problem of adding additional secondary tasks to
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the avoiding process is considered. In Section 7.3, the simualtaneous avoidance of several
joints is considered. Finally, the experimental results are presented in Section 7.4.

7.2 New joint limits avoidance strategy

We recall that the classical control law used to solve joint limits avoidance problem is given
by:

q=4q1 +da (7.1)
where ¢; and g, are the velocity vectors of the main task and the avoidance task of the robot

arm. We also recall that a safe robot configuration q is reached when Vj; € {j1, ..., jn},

g € [ g™, ¢ |, where

= g™+ pAg;

Qoiw = ¢ — pAg (7.2)

where p € [0, %] is a tuning parameter and Ag; = ¢"* — g™,

The new proposed scheme for g, is given by:
éIa - Z (.l; - - Z )\seciAEinf (73)
i=1 i=1

where P is either the classical projection operator P, or the new one P, A, is an adaptive
gain function to control the magnitude of the avoidance task, )\, is a tuning function to
ensure the smoothness of injecting the avoidance task into the main task, and g! is a vector
indexing function that controls the activation of the avoidance task and determines its sign.

7.2.1 Activation and sign function

If the configuration is not safe due to the joint j;, a secondary task is activated by the vector
gl = (g[1], /[2]. ..., gf[n]) defined by:

—1, ifg < gpMandi= i
gilio)=14 1, ifqg <gq andi=1i (7.4)

0, else

where iy € {1,2,...,n}. If gf[i] = 0, no avoidance task for the joint j; is activated. The
values 1 and —1 for g¢ determine the sign of the avoidance task. If g¢[i] = 1, the avoidance
task is negative and causes the joint to move away from its maximum limit ¢"®*. If g¢[i] =
—1, the avoidance task is positive and causes the joint to move away from its minimum limit
@™, This can be explained by recalling that the projection operator has its diagonal with
elements of non-negative values. Since the vector g! for the joint j; that nears its limits has
only one non-zero element at its ' component, then the sign of (Pg?)[:] is the sign of the i'"

component of gf since both A, and Ay, have positive sign, as we will see in the following.
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7.2.2 Tuning function

The tuning function A, (¢g;) depicted in Figure 7.1 is used as a scaling parameter for the
secondary task to control its injection onto the main task such that the final behavior of
the system avoids any sudden movement due to the secondary task. For the joint under
consideration j; we define this tuning function based on two sigmoid functions as follows:

L if ¢ <qpi" or ¢ <gqi
A (g, ) — \[pin . :
4 4 .
\ g 4 S 4 S gt .5
. I — 1? Q*
i I 72
)\2&;){_)\%&;( ) qul = ql = (:Zﬂll
0, if g < qi < qpi™

where as previously defined, ¢;" and ¢;??* are the threshold values to start the secondary task
for avoidance. qzl;n = q?;;“ — p1pAg; and i = qpi* + p1pAg; are the threshold values
at which the smoothing function equals one so that the avoidance task is totally injected

into the main task, where p; €]0,1]. A\Pi"(¢g;) : R — R and A\™(¢;) : R — R are two

continuous monotonically increasing functions such that A\j'5* = AE*(gp*) ~ 1, Ap§* =
B (gpa) &= 0, AP = AR (g) &= 1and AP = AP () ~ 0. A good selection for
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Figure 7.1 — Tunning function A, (q;) for the joint j;
the functions A\7**(¢;) and Aj2™™(¢;) can be obtained using a sigmoid function as:
max 1
i (%) = ] 19 G- o (7.6)
exp(—12 5
+ p( Qo5 —9egi + )
min 1
)‘h‘ (ql) = q__qzni_n (7'7)
1 +exp(—12—2e + 6
_'_ p( qzlin_q?(‘;in + )

Introducing q?llin and ¢y gives the following advantage. By selecting these values different

from ¢ and ¢™** respectively, the joint will never reach the joint limit so that there is no

7

need to predict the next joint position in order to avoid passing the joint limit.
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7.2.3 Adaptive gain function

The adaptive gain function \,.., is used to adapt the magnitude of |¢’,[7]| in order to compen-
sate the corresponding component of the main task near a joint limit. For the joint j;, Asc, 1S
defined from the current value of the i*” component of both ¢; and (Pg?). It is defined by:

] ) e i el # 0 7.8)
seci 0, else ’

where \; > 0.

An advantage of using this gain function is that the value of ¢, given by (7.3) is a func-
tion of ¢y, so that at any time step, the value of ¢’ is compatible with ¢; to be sent to
the joint j;. It can be demonstrated that using the adaptive gain function A, allows en-
suring that the i** velocity component of the main task and of the avoidance task satisfy
the inequality | []| > |dui]| before reaching the limit g™ or ¢™". Indeed, since near

a joint limit A\y(q;) = 1 and Mg, = (1 + ;) | (Eglg}[‘i” then by recalling (7.3) we obtain

QL[] = | — (1 + X\)dale]| > |dali]| where \; > 0. Therefore, the gain function A, en-
sures that the joint limit will never be reached, this property being obtained without any gain
tuning step.

7.2.4 Behavior analysis of ¢,

Now, we study more precisely the behavior of ¢, for avoiding the limits of the joint j;. By
injecting (7.30) and (7.5) in (7.3) , we get:

_ N_lafll pe '
| (L4 X) (gt Fgﬁﬁ it
L=< (o i 0 7.9
9a )‘51(%)(1 + )‘z) G100 sza if Cy (7.9)
0, if Cs
where
Ci = (¢ <q or ¢ <gq) (7.10)
Co = (@ <a<qporq: <q¢=<q.;)
Cs = (i <@ <qpi)

By investigating (7.9), we can study the behavior of the i component of the secondary task
|44 [#]| (see Figure 7.2). Within the two intervals [¢)%*, ¢;"2*] and [¢}"}", ¢j"], the value of
|4 [i]| is changing continuously from 0 to |(1 + A;)q1[i]| as the value g; of the joint j; is
changing continuously from g to ¢;77* and from q?;ii“ to ¢j"i" respectively. Within the two
intervals [g;"%*, ¢***] and [¢{™", ¢;""], the value of |q[i]| is greater than or equal to | [4]].
The value of the constant )\; is used to tune the difference in the magnitude between |q[i]|

and |.[4]|. For example, if \; = 0, we get |d.[4]| = |q1[i]| as soon as the value of the joint j;
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reaches ¢;5* or q?lliin. While if A; = 1, as soon as the value of g; approaches ¢;25* or q}?}i-n we
obtain | [4]| = 2|1 [i]|. Figure 7.2 illustrates the relations between i velocity component

of . and the ' velocity component of ¢ for all values of ¢; € [¢", ¢ **]. Red and blue
arrows mean that the corresponding velocity component causes the joint to move away from
its minimum and maximum limit respectively. It is ensured by this investigation that, near to
a limit of a joint j;, | & [7]]| > |qu[i]l.
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Figure 7.2 — Comparison between the magnitudes of 4,[i] and . [i] within the different values for g;
of the joint j; and when \; > 0; lllustration of the relation between the direction of q.[i], &.[i], and

qld].
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7.2.5 Additional secondary tasks

7.2.5.1 Additional secondary tasks having the same priority level

Now, we consider the case when there are three tasks to be performed by the system. The
three tasks consist of the main task; the secondary task for robot joint limits avoidance, and
an additional secondary task. In this case, the control law is defined as:

=01 +4a+q2 (7.11)

where (; is the velocity vector due to the main task, q, is the velocity vector due to the joint
limit avoidance and finally (5 is the velocity vector to produce the required secondary task.
More precisely, we get:

q=—-MJter — > A, A\ Pgl — \Pg, (7.12)
=1

Since the additional secondary task {5 can lead to reach a joint limit, it is necessary to change
the definition of \%,. in (7.30) to consider 2. In that case \?__ is defined by:

sec; sec;

L) e e
geCi _ { é + )|ng[z}| leﬁsegz [Z] >0 (713)

where ¢. = q1+q2. This form for the adaptive gain ensures that the total velocity component
is taken into account by ¢, for joint limit avoidance. The avoidance task in this case is given
by:

_ ) [d]] ¢ .
| (L4 X) fpghyi ?gﬁ E it
da =19 —ei(i ) Adel ¢ 7.14
a i) (1 + i) rpgryg P8 if Ca (7.14)
0, if O

To analyze the behavior of the avoidance task ¢, near a joint limit, it is sufficient to replace
q: by g%, which will lead to the same behavior as studied in 7.2.4.

Finally, when more additional secondary tasks have to be considered, the avoidance task
(7.14) can be used by setting:

kmam

A=) (7.15)
k=1

and the global control scheme is given by:

q=a.+ > d, (7.16)
=1
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7.2.5.2 Additional secondary tasks having several priority levels

When a global task consists of [ tasks having different priorities, the avoidance task ¢’ is
given by:

N _l<nlil| ‘ :
| ~(I+ M) g P8 if €y
Ga= 0 Aala)(1+N) et Pel, i G (7.17)
0, if Cs

where ¢ is the articular velocity to perform the execution of the [ tasks with their required
priority computed using (6.43). The global control scheme is:

q=d+ > d (7.18)
=1

Let us finally note that, as in the classical approaches, when several joints are not in their
safe configuration, a potential problem may occur if motions required to avoid a limit of one
joint move another joint nearer to one of its limits. However, the new avoidance approach is
better than the classical one. Indeed, on one hand, the classical approach induces very high
values for the avoidance task components ¢, when a joint is very close to its limit. On the
other hand, the new approach ensures a smooth behavior and decrease of the velocity qa|i]
when a joint nears its limit, which reduces the amplitude of the motions projected on the
other joints, and thus the possibility that other joints near their limits due to these motions.

7.3 Integrating the new joint limits avoidance with kernel
approach

In this section, we deal with the problem of avoiding several joint limits simultaneously.
For that, we integrate the proposed activation and sign function and the tuning function
previously presented in 7.2 as well as a new adaptive gain function in the method given in
[Chaumette O1]. This ensures the smoothness of the injection of the avoidance task into the
main task with a reasonable magnitude and correct direction. We also propose a method
to consider additional secondary tasks to the proposed avoidance control system so that the
final control scheme ensures that the joint limits will not be reached. Finally, we present a
solution to discontinuity effect in that approach.

7.3.1 Gain vector a

We recall that the i*" component of the control (5.56) can be written as:
qli] = —AI"e)[i] + Y arEyp=duli] + Y _ar Ey (7.19)
k=1 k=1

where value of the gain vector a is computed to ensure that the control stops any motion of
the joint j; toward its limits.
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Here, the value of the gain vector a is computed so that it ensures the same behavior ob-
tained using our avoidance method proposed in Section 7.2. Let us consider that there are
several joints within their critical intervals and near their limits. The global task is given by:

q=q1 + da (7.20)
where q, is the new proposed avoidance scheme. It is defined by:

=~ 8 Mila) Aeec, (7.21)
=1

where gf is to activate the avoidance and to determine its direction, Ay;(g;) is to allow a
smooth behavior as explained in Sections 7.2.1 and 7.2.2 respectively. As.., is a new adaptive
gain function to determine the magnitude of the avoidance task and is defined by:

j\seci = (1 + )\l) |Q1[ZH s )\z Z 0 (722)
Our proposed method to determine a consists in defining the velocity q[i| of the joint j; as:
Ali] = &uli] + dali] (7.23)

To compute the vector a which ensures that the velocity for each joint near its limits is equal
to q[i] given by (7.23) and satisfies (7.19) we set:

Z ar Ei, = a[i] = —gi[i] Mei(q:) (1 + Ni) [ [d]] (7.24)
k=1

If there are several joints near their limits then the gain vector a that ensures (7.24) for all of
those joints is the solution of the system of linear equation defined by:

Bl a— | —g/li] Ma(g)(1+ M) |aulil]| = Aa=b (7.25)

The solution of (7.25) has the form a; = A*b. Finally, the control law will be:
q=d1+ Y aj, Bu (7.26)
k=1

The velocity given in (7.26) ensures a smooth behavior for each joint nears its joint limits
when injecting the avoidance into the main task.
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7.3.2 Gain vector a and additional secondary tasks

In this section we deal with the joint limit avoidance problem when some additional tasks
should be considered. If these secondary tasks are given by e, es, ..., €4 and their velocity
vectors are computed as 2, s, ..., 44,,,, then the global task is given by:

dmaz

q=0qa1+ 4, + Z qa (7.27)
d=2

and the 7*" component of ¢ will be:

dmaz

ali] = @il + > ali] (7.28)

In this case, the required avoidance task is given by:

Qo=—>_8 Milg) N, (7.29)
i=1
where Xf;eq is defined by:
_ dmaz
Mooy = (LX) [ D @alil|, A >0 (7.30)
d=1

max

To compute the vector a and take into account the velocity components 2322 Qq[i] due to
the additional secondary tasks we need to ensure that:

dmaz

> dali]

d=1

D ai B = aufi] = =g Aigi)(1+\) (7.31)
=1

Again, if there are several joints near their limits, the gain vector a is computed by solving a
system of linear equations constructed from (7.31) defined for each joint, so we get:

Eio| a= | —glfi] As(q) (14 X)) |S0mae ('ld[i]‘ =Aa=b (7.32)

The system of linear equations that consider all joints near their limits is solved to obtain a
vector a;. If the solution of (7.32) is a; = A b, then the global control scheme will be:

d'maac

A=+ aj, B+ Y da (7.33)
i=1 d=2



136 New joint limits avoidance strategy

7.3.3 Transition switching inner loop to solve the discontinuity problem

In this section, we propose a solution to solve the discontinuity problem occurring in the it-
erative method when a new joint enters its critical situation or when a joint leaves its critical
situation [Chaumette O1]. This solution consists in introducing a transition switching inner
loop inside the visual servoing control loop.

Let us assume that the system velocity is given by ¢’*-* during iteration & — 1 of the vi-
sual servoing loop, where t;_; is the starting time of iteration k£ — 1. If the basic method is
applied (see Section 5.4.3) and a new joint j; enters its critical configuration during iteration
k — 1 the discontinuity in the system behavior occurs when the new computed velocity ¢'*
is sent to the robot controller at the beginning of iteration £, i.e. at time ¢, as illustrated in
Fig. 7.3.

Inner switching loop

Time 7, , I,ffr = T Ui
i 2 : :

~~~~~~~~~~ 2

. Proposed solution ! =

RSt de b ‘ E |
7 ?Ic'fk i

i Basic method £2 i
i,:‘fm a :

lteration _ ™. e |

number e ' i ‘ - :

k-1 I k+1

Outer visual servoing loop

Figure 7.3 — Inner switchng loop

Instead of sending ¢'* directly to the robot controller, we apply a transition switching from
g’ to ' using the following convex combination:

& = (1= AMniger) )™ + A(niger) 4 (7.34)

where nj., is the iteration number of the inner loop and the switching function X(niter) can
be defined as: \ A0
Nnge) = ) = A0

A(Niter) - >\(O>

(7.35)
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where
1

1+ exp(—lQ% +6)

A Niter) = (7.36)
To ensure that the switching operation from ¢+~ to ¢* is performed during the iteration i,
of the outer loop, the number of iterations V., of the inner loop can easily be specified such
that N, < %, where At is the time of a visual servoing iteration and At, is the required
time to execute a single velocity commend by the robot.

7.4 Results

Set A: New avoidance strategy

The joint limits avoidance strategy proposed in Section 7.2 has been applied to a six DOF
Cartesian robot, see Fig. 3.8, for a full rank main task using obj,. The values of the lower

and upper limits for each joint are ¢I"™ = —0.7, ¢ = 0.7, ¢&"» = —0.6, ¢5** = 0.63,
g = —0.5, giex = 0.46, ¢ = —156.41, ¢ = 156.0, ¢ = —5.73, ¢ = 142.0,
g = —91.0, and ¢ = 91.0, where ¢;, ¢» and ¢3 are in meter and ¢4, g5 and g are

in degrees. The initial pose between the camera and the object has been chosen such that
the camera is at a distance of 0.5 m from obj; and the optical axis of the camera passes
vertically through the center of obj; such that the initial camera pose is (0,0,0.5,0,0,130) for
cases {Al, A2} and (0,0,0.5,0,0,100) for case A3. The desired camera pose is (0,0,0.5,0,0,0),
which corresponds to a pure rotation of 130 and 100 degrees around the camera optical axis
respectively. These initial and desired configurations have been selected such that the main
task causes the robot to perform a backward motion when Cartesian image points coordi-
nates are selected as visual features. By setting the initial configuration of the robot system
such that the optical axis of the camera is parallel to the joint j5 of the robot, a limit of the
joint j3 is reached.

All limit thresholds q}‘oﬂn and q?ﬁ“ are computed using the parameters p = 0.1 and p; =
0.5 as explained in Section 7.2 except for the lower limit of the 5 joint. Indeed, since
the articular position for the initial configuration of the robot for our experiment is q =
(—0.51,0.09, —0.02, —128.89, 1.46, 0.01), we set ¢;’s* = —2 and ¢;"}" = —5 so that js is not
in a critical situation at the beginning of the experiments. The avoidance and secondary tasks
describing a trajectory to follow in the articular space are projected using the new projection
operator P . Let us recall that it is impossible to consider joint limits avoidance with the
classical projection operator P, in all cases presented here, since P, = 0.

7.4.1 Case Al: Single joint limits avoidance

In this case, the system starts its movement as expected from control (7.1) by a backward
min

motion. When the threshold value q003 is reached, the avoidance is activated for the joint
J3 and the robot avoids reaching ¢™. As depicted in Figure 7.4, ¢, computed using (7.3)
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Figure 7.4 — Results for cases A1; Single joint limit avoidance; Line 1 (a,b,c): image points trajecto-
ries, image point error and articular values and joint limits of robot joint q3;; Line 2 (a,b,c): articular
velocity components in cm/s and deg/s of the general task q, main task ¢y (high level priority) and
secondary task gz (low level priority) respectively.

starts to have a non-zero value in the opposite direction of the main task within the iteration
interval (250,420). During this interval, the velocity component of the global task ¢ for the
joint j3 is approximately equal to zero because of the effect of q,, while the rotation around
the revolute joint j,, which corresponds to the camera optical axis, is performed by the main
task. Then, the direction of ¢ [3] of the main task is inverted near to iteration number 420, so
that it causes the robot to move away from its joint limit, that is why g, stops since it becomes
useless, although the value of ¢3 € [qg;gn, q?r,“in] within the iteration interval (420,500). This
can be seen in Figure 7.4 by noticing the values of the third component of ¢, and ¢s. Finally,
the system converges to its desired position while ensuring the exponential decreasing for
||e|| all along the task.

7.4.2 Case A2: Additional secondary task sent to revolute joint, classi-
cal task-priority

Now, we consider the case when an additional task is considered describing a trajectory to
follow in the articular space inducing an articular velocity g. A sinusoidal motion defined by
f(t) = 72Z(sin(Z5)) on the revolute joint js is chosen as additional secondary task causing
two joints to near their limits simultaneously. Through the first 360 iterations, the vector of
this secondary task is given by g = (0,0,0,0, f(¢),0) where ¢ is the number of iterations.
Control scheme (7.11) is used where d, is given by (7.14) and 2 = g. The obtained results
depicted on Fig. 7.5, in which q2_dot = 4, + g2, show that the system succeeds to avoid two

joint limits simultaneously, a joint limit of j3 at q}}gi; due to the main task and a joint limit
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Figure 7.5 — Results for cases A2; Classical priority; Two joint limits avoidance; Additional secondary
task sent to a revolute joint qs; Line 1 (a,b,c): image points trajectories, image point error and articular
values and joint limits of robot joint qs;; Line 2 (a,b,c): articular velocity components in cm/s and deg/s
of the general task ¢, main task 1 (high level priority) and secondary task q= (low level priority)
respectively; q2_dot = 4, + 42

of j5 at q?(:igl due to the additional task. Again, as illustrated in Fig. 7.5, the system keeps
the exponential decreasing of the norm of the total error while projecting the additional
secondary task g and avoiding the joint limits.

7.4.3 Case A3: Additional secondary task sent to revolute joint, effi-
cient task-priority

We now consider the efficient-task priority approach with the same additional secondary task
as before. The control scheme to manage e; and e is similar to (6.58) except that it is defined
in the articular space. Using I in (6.58) indicates that, if the i, joint j; is not used by g, then
g[io] will not be modified by q; [io] before being projected by (TnP*1)+. This prevents any
unnecessary motions when ¢ [ig] # 0. In this case, the higher level priority task is the visual
servoing task while the lower level priority additional task is given by g = (0,0, 0,0, f(¢),0)

where f(t) = 2% (sin({)). It is activated during the first 360 iterations. The initial camera
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Figure 7.6 — Results for cases A3; Classical priority; Avoidance and additional secondary task sent
to a revolute joint g5, Line 1 (a,b,c): image points trajectories, image point error and articular values
and joint limits of robot joint qs;; Line 2 (a,b,c): articular velocity components in cm/s and deg/s
of the general task ¢, main task q1 (high level priority) and secondary task ¢= (low level priority)
respectively; q2_dot = 4, + 42

pose is (0,0,0.5,0,0,100). A lower joint limit for j3 is virtually considered to be 15 degrees.
Applying (6.58) on ¢y and g gives ¢; which is used in (7.14) to compute the avoidance task.
The obtained results depicted on Fig. 7.6 show that the system succeeds to avoid j3 at qg)‘i:,)n
and to keep the exponential decreasing of ||e|| while projecting the articular velocity task
g using the efficient redundancy-based task-priority approach. As depicted in Fig 7.6, the

motion required by g[4] appears on the corresponding component q[4] of the global task.

7.4.4 Case A4: Additional secondary task sent to prismatic joint, clas-
sical task-priority

In this case, a motion that tries to move the end effector in a square of length 0.03 in xy-
plane of the articular frame is specified as additional secondary task. The vector gs that
produces this motion is defined as g = (0.03,0,0,0,0,0) when (1 < iter < 250), g =
(0,—0.03,0,0,0,0) when (250 < iter < 500), g = (—0.03,0,0,0,0,0) when (500 <
iter < 750), g = (0,0.03,0,0,0,0) when (750 < iter < 1000), else g5 = (0,0,0,0,0,0).
It concerns only the two prismatic joints j; and j,. As depicted in Fig. 7.7, q2_dot represents
the avoidance task combined with the projection of gz. As expected, secondary motions
along x-axis and y-axis are produced during the first 1000 iterations due to the projection of
the vector gg. It is clear that even if the error of each feature lost its exponential decreasing
behavior mainly due to the effect of g, the servo system keeps the exponential decreasing
for the norm of the total error, as expected thanks to P ¢. Again, the visual servoing task is
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Figure 7.7 — Results for case A4: Avoidance and additional secondary task sent to translational
Joints; q2_dot = 45 + qs, Line 1 (a,b,c): image points trajectories, image point error and the norm of
the total error; Line 2 (a,b,c) and Line 3 (a,b,c): articular velocity components for translational and
rotational robot joints respectively in cm/s and deg/s of the general task ¢, main task 4y (high level
priority) and secondary task q2 (low level priority) respectively; Line 4 (a,b,c): articular values for the
Six joints, joint limits of robot joints q; and qs;

performed successfully by avoiding the joint limit of js.

7.4.5 Case AS: Additional secondary task sent to prismatic joint, effi-
cient task-priority

In this case, as in case A3, a lower joint limit for j3 is virtually considered to be 15 degrees.
Secondary task similar to A4 is considered. As depicted in Fig. 7.8, q2_dot represents
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Figure 7.8 — Results for case A5, Avoidance and additional secondary task sent to a revolute joint;
g2_dot = 45 + s where 4= considers task priority

the avoidance task combined with the projection of g. As expected, Fig. 7.8 shows that
secondary motions along x-axis and y-axis are produced during the first 400 iterations due to
considering the priority when projecting the vector g. As expected, the servo system keeps
the exponential decreasing for the norm of the total error. The joint limit of j5 is avoided and
the visual servoing task is performed successfully.
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Set B: New avoidance strategy integrated with kernel approach

In this set of experiments, the new avoidance strategy integrated with the kernel approach
to deal with the problem of avoiding several joint limits simultaneously is implemented to
a six DOFs viper robot arm (see Fig. 7.9). The lower and upper limits for each joint have
the following values: ¢ = —50, ¢"® = 50, " = —135, '™ = —40, ¢i"™ = 40,
g = 215, ¢ = —190, ¢ = 190, ¢ = —110, ¢ = 110, ¢ = —184.125,
and gg"™* = 184.125, where q1, q2, g3, g1, ¢5 and g are in degrees. Similar to set A, we
set p = 0.1 and p; = 0.5 to compute ¢i* and ¢;*". The features considered by the main
task are the image coordinates of a moving point. This means that only two DOFs of the
robot are constrained by the main task. Three experiments are performed and their results
are presented in cases B1, B2, and B3. In all cases, the motion of the point is the same. It
has been designed so that the robot moves toward several of its joint limits.

Figure 7.9 — Experimental system: Robot arm
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Figure 7.10 — Results for case B1; Kernel approach, Basic method; Line 1 (a,b,c): articular velocity
components in rad/s of the main task §, avoidance task 4. and general task § respectively; q_dot =
d1 + qa; Line 2 (a,b,c) and Line 3 (a,b,c) are the normalized articular values and joint limits of the six
robot joints q1, q2, q3, q4, G5, q¢ respectively.

7.4.6 Case B1: Basic kernel approach

In this first case, the basic method described in Section 5.4.3 is used to avoid the joint limits.
We recall that ZZL ay, B, 1s defined by (5.58). As can be seen in Fig. 7.10, as soon as the
values of the joints ¢, g2, g3 and g5 approach their thresholds ¢4 or g2, ¢i’t', ¢j*3 and
Qg5 respectively, the avoidance task is activated causing the corresponding joint to suddenly
stop any motion toward its nearest limits.
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Figure 7.11 — Results for case B2, kernel approach, basic kernel approach with gamma coefficients

7.4.7 Case B2: Basic kernel approach with gamma coefficients

The basic kernel approach uses the coefficients +y; defined in Section 5.4.3. As can be seen
in Fig. 7.11, using ; allows to smooth the initial value of the avoidance task component
Qal?] when a joint j; approaches its threshold limits q?&i“ or gg*. It allows to avoid the
discontinuities appearing in previous case B1. However, a discontinuity is still obtained
when a joint becomes very close to its limits g™ or ¢™**, i.e. when ; ~ 1. As can be seen
in Fig. 7.11, when j, and j5 approach ¢3'** and ¢ respectively, a discontinuity is obtained
in the behavior of the joint 7;.
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Figure 7.12 — Results for case B3, new joint limit avoidance integerated with kernel approach

7.4.8 Case B3: New joint limits avoidance strategy integrated to kernel
approach

In this case, the results of the new avoidance strategy coupled with the kernel approach, as
proposed in Section 7.3, are presented. As can be seen in Fig. 7.12, a smooth behavior
for all joints is obtained when the joints near their limits. The avoidance task component is
smoothly activated as soon as a joint ¢; nears any of its thresholds q?oliin or gp¢*. Using the new
strategy ensures that the magnitudes for each component of the avoidance task compensate
the main task components. This ensures that no joint will reach its limit.
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7.5 Conclusion

A new avoidance scheme for avoiding joint limits has been presented based on three func-
tions proposed: an activation function g/ that activates the avoidance task and sets the di-
rection of its actions; adaptive gain functions A, and A, that controls the magnitude of
the avoidance task; and a tuning function )\, (¢) that ensures the smoothness of the injection
of the avoidance task into the main task. Considering several additional secondary tasks has
also been proposed. The new avoidance strategy has also been integrated with the kernel

approaches to avoid several joint limits simultaneously.

The avoidance method proposed in Section 7.2 has been implemented and validated on a
six DOFs robot arm having three prismatic and three rovolute joints as illustrated in 3.8. The
investigation of the new large projection operator P, has been performed by employing P
to deal with the problem of robot joint limit avoidance and projecting additional secondary
tasks. A nice behavior has been obtained that makes the system avoid the joint limits very
smoothly even when the main task constrains all the robot degrees of freedom and when ad-
ditional secondary tasks are considered. The main advantage of the new avoidance method
over classical gradient projection method is that the magnitude of the self motion is automat-
ically computed without any tuning step.

The integration of the new avoidance strategy with the kernel approach has been imple-
mented on another six DOFs robot platform. This approach allows the system to automati-
cally generate a suitable magnitude for each component of the avoidance task such that it is
greater than the magnitude of the main task near robot joint limits.
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Chapter 8

General conclusions

In this chapter, we present the general conclusions of this work. The research described in
this thesis has been concerned with two main issues in sensor-based robot control. The first
issue, presented in Part I, concerned the domain of visual servoing, while the second issue,
presented in part II, concerned the domain of redundancy and avoidance in robot control.

Contributions

The works presented in Part I and II provide several contributions as illustrated in Fig. 8.1.
For the main tasks, we can employ the new first order control scheme to obtain a better behav-
ior for a selected value of the behavior controller that can avoid local minima configurations
or employ the new second order control schemes to approach a singular configurations and
achieve more accurate positioning tasks in general. The new projection operator can be used
for adding supplementary tasks and/or avoidance tasks. For example, secondary tasks can be
defined as the proposed joint limits avoidance strategies. The contributions are presented in
two parts as to the organization of the dissertation.

Part I: Visual servoing

The control laws used in visual servoing have their respective drawbacks and strengths. In
some cases, a control law is not able to converge while the others succeed. In other cases,
all classical control laws may fail. Different behaviors may explain these failures. For ex-
ample, the camera moves to infinity, the camera moves to be too near to the object, the
system reaches a local minimum or a singular configuration. The first part of this thesis
aimed towards more robust control schemes. This was achieved by introducing two new
control schemes. None of the classical control schemes allow to enhance its behavior against
a given problem of local minima or singularity. The classical solutions for these situations
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as mentioned in Chapter 2 were by utilizing sliding approaches, partitioning approaches,
trajectory planning approaches, or origin-shift approaches. Solutions also were provided
by defining hybrid and/or switching approaches among IBVS, PBVS and other approaches.
Finally, these different solutions allow to obtain a better control behavior for a given config-
uration.

First order control scheme: The first proposed control law is based on introducing a be-
havior controller (3 to the control matrix as presented in Chapter 3. The control matrix is
obtained based on the convex combination between the interaction matrices computed at the
current and the desired configurations after introducing the parameter 3. Setting § = 0, 1,
or 1/2 allows to switch between the three most classical schemes. Another control law has
been introduced to try to obtain the global stability of the system. We presented also an an-
alytical analysis of the new control schemes and of the most common ones in image-based
visual servoing when a required camera displacement is a combination of a translation and a
rotation with respect to the camera optical axis. We perform this analysis for all possible val-
ues of the behavior parameter 3. The analysis exhibited, for the first time as far as we know
a singularity of the control scheme proposed in [Malis 04] when a pure rotation of degrees
90 around the camera optical axis is required. The experimental analysis also exhibited a
local minimum configuration for all classical control schemes. New surprising results have
also been obtained for the other classical control schemes for motion combining translation
along and rotation around the optical axis. In all considered cases (difficult configurations
subject to local minima for all classical schemes, motion along and around the optical axis),
a satisfactory behavior of the control scheme can be obtained for some values of this parame-
ter, which demonstrate the superiority of the proposed control law with a behavior controller
over all other classical control laws.

Second order control schemes: Dealing with singularity configuration is one of the most
critical problems in IBVS. In Chapter 4, we have been interested by the difficult problem of
reaching a visual singular configuration where all classical control schemes have been shown
to be unsatisfactory. To try to improve the behavior of the system near the desired singular
position, we proposed a new second order control schemes based on the second order Taylor
expansion similar to Halley’s method minimization. The experimental results obtained have
shown that it is possible to improve the accuracy of the positioning using one of these control
schemes.

Part II: Redundancy and avoidance

Redundancy formalism: We presented in Chapter 6 theoretical developments of a new
large projection operator for the redundancy framework by considering the norm of the total
error. The redundancy framework proposed is built using this projection operator. The main
contribution here is that the new projection operator enlarges the applicability domain of the
task-redundancy in robot control to all problems that can be solved by adding system con-
straints. It can also be used to manage the levels of priority among several tasks, such as the
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stack of tasks. A switching strategy has been proposed to ensure that the new projection op-
erator smoothly switches to the classical projection operator as soon as the error nears zero.
An adaptive gain has also been developed so that the secondary task is effective during a long
period. That may be useful when the secondary tasks have really to be considered (which is
the case for instance for joints limits and obstacle avoidance). The main interest of the new
projection operator is that it is always at least of rank n — 1. Hence it can be used even if the
main task is full rank. The new projection operator has been employed within two different
redundancy-based task-priority approaches. A comparative study of results obtained using
P, and P, shows that P provides more versatility when the main task is not full rank. The
effectiveness of the new projection operator has been addressed when the task is defined in
the camera space or in the articular space.

Joint limit avoidance strategies: A new avoidance scheme for avoiding joint limits has
been presented in Chapter 7 based on three functions proposed: an activation function g!
that activates the avoidance task and sets the direction of its actions; adaptive gain functions
Asee; and A%, that controls the magnitude of the avoidance task; and a tuning function A, (¢')
that ensures the smoothness of the injection of the avoidance task into the main task. Consid-
ering several additional secondary tasks has also been proposed. The new avoidance strategy
has been integrated with the kernel approach to control the magnitude and ensure smooth-
ness of the avoidance task when several joint limits have to be considered simultaneously.
As for the discontinuity problem of the iterative method that occurs when a new joint enters
its critical situation, a solution proposed is by introducing an inner switching loop inside
the visual servoing loop to ensure smooth transition when needed. The avoidance method
proposed in this work has been implemented and validated on a six DOFs robot manipulator
and the investigation of the new large projection operator P has been performed by em-
ploying it to deal with the problem of robot joint limit avoidance and projecting additional
secondary tasks. A nice behavior has been obtained that makes the system avoid the joint
limits very smoothly even when the main task constrains all the robot degrees of freedom and
when additional secondary tasks are considered. The main advantage of the new avoidance
method over classical gradient projection method is that the magnitude of the self motion
is automatically computed. The problem of avoiding several joint limits simultaneously has
also been validated using the integrated approach presented in Section 7.3 on a six DOFs
robot arm.
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Limitations and future work

The work performed in this thesis and the contributions obtained open several research issues
to be performed in the future concerning visual servoing control schemes, redundancy and
joint limits avoidance.

First order control scheme

The future work for this control scheme will be devoted to determining how to select auto-
matically the value of the behavior controller in order to avoid singularity, local minima or
other problems and to obtain a good behavior in all cases. Modifying on line the value of the
behavior controller during the task execution will be also studied. Let us mention again that
this modeling strategy for visual servoing can be used for switching between the classical
image-based visual servoing control schemes based on specified criteria such as the current
image feature set and robot system configuration. Other future works are expressed on Fig.
8.2.

A control scheme with
a hybrid control matrix and
a behavior parameter controller

Avoiding Enhancing
lecal minima system behavior
New first order
control scheme
Avoiding The hybrid methodology
singularity can be investigated
when different

features are used

More work for Can be used to switch Mrﬁzt::.:r:al::f Tgﬁq‘m’;g‘
automatic tuning the between the classical # P e
behavior controller control schemes for PBVS and a combination

between PBVS and IBVS

Figure 8.2 — First order control scheme

Second order control schemes

It would be interesting as a future work to see for these control schemes if it can improve
the positioning accuracy for other singular configurations, such as the case of the centered
circle for instance or when different kind of visual features such as straight lines or ellipse
are considered. It would also be interesting to see if any improvement can be obtained by
combining Halley’s method with the damped-least-squares method. Although this method is
able to position accurately the robot in the desired configuration, it is sensitive to the noise in
the image. This can be avoided by a preprocessing step for image noise removal to perfectly
tracking the accurate position of the features in the image plane (see Fig. 8.3).
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Figure 8.3 — Second order control scheme

Redundancy formalism and task-priority

The fact that the proposed projection operator has a singularity as the error nears zero has
been solved within this work by designing a switching strategy that make the system switch
to the classical projection operator as the error approaches zero. The theoretical achieve-
ments concerning the proposed redundancy frameworks can be improved by applying the
discretization method to ensure a higher limit for the secondary task such that the main
task is respected. The new redundancy formalism can be used to integrate several actions
when multi-sensors are used in robot control. More experiments by concerning the priorities
among several tasks can be performed by adding supplementary tasks for grasping or trajec-
tory following. The proposed redundancy framework can be used in task planning strategies
to manage levels of priority among stack of tasks for example. This would allow better
system performances especially when not enough degrees of freedom are available. Let us
finally note that, the new redundancy frameworks is applicable to a wide range of position-
ing tasks. It can be employed on mobile platforms such as helicopters, underwater vehicles
[Tang 09] [Antonelli 98], space based robots [Russkow 92] or terrestrial vehicles to guide
the robot to a desired position and orientation with respect to one or more target objects.
These issues are illustrated on Fig. 8.4.

Joint limits avoidance

Finally, the new joint limit avoidance strategy can be integrated with other avoidance ap-
proaches. The proposed joint limit avoidance and its integrated version with the kernel
iterative method can be implemented to other robot configurations including mobile robot
and humanoid robot. It can be possible to use the same avoidance strategies for different
avoidance problems (see Fig. 8.5).
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Résumé

L’asservissement visuel est devenu une approche classique dans le cadre de la commande de
robots exploitant les informations fournies par un capteur de vision dans une boucle de com-
mande. La recherche décrite dans cette these vise a résoudre des problemes d’asservissement
et a améliorer la capacité de gérer plus efficacement les taches supplémentaires. Cette these
présente tout d’abord I’état de 1’art en asservissement visuel, redondance et évitement des
butées articulaires. Elle propose ensuite les contributions suivantes:

Un schéma de commande est obtenu en introduisant un parametre de comportement dans
un contrdle hybride. Il permet un meilleur comportement du systeme lorsque des valeurs
appropriées du parametre sont sélectionnées. Une étude analytique des lois de commandes
les plus courantes et de la nouvelle loi proposée est effectuée dans le cas de mouvements
de translation et de rotation selon I’axe optique. De nouveaux schémas de commande sont
également proposés pour améliorer le comportement du systeme lorsque la configuration
désirée est singuliere.

Les contributions théoriques concernant le formalisme de la redondance reposent sur I’ élabor-
ation d’un opérateur de projection obtenu en ne considérant que la norme de la tache princi-

pale. Cela conduit a un probléme moins contraint et permet d’élargir le domaine d’application.
De nouvelles stratégies d’évitement des butées articulaires du robot fondées sur la redon-

dance sont développées. Le probleme d’ajouter des taches secondaires a la tache principale,

tout en assurant 1’évitement des butées articulaires, est également résolu.

Tous ces travaux ont été validés par des expérimentations dans le cadre d’applications d’asserv-
issement visuel.



Abstract

Visual servoing has become a popular paradigm in robot control by exploiting the informa-
tion provided by a vision sensor in a feedback control loop. The research described in this
dissertation aims mainly to solve problems in visual servoing control and to improve the
ability to consider more effectively additional tasks. This thesis presents the state of art in
visual servoing, redundancy, and joint limits avoidance and the following contributions:

A new first order control scheme obtained by introducing a behavior parameter in a hy-
brid control matrix is first proposed. It allows a better behavior of the system when suitable
values for the behavior parameter are satisfied. An analytical analysis of the most common
control scheme and the new one is performed when the camera displacement is a combina-
tion of a translation along and a rotation around the camera optical axis. New second order
control schemes are also proposed to enhance the behavior of the system when the problem
of reaching a desired singular configuration is considered.

Theoretical contributions regarding redundancy-based task-priority are achieved by develop-
ing a new projection operator obtained by considering only the norm of the main task. This
leads to a less constrained problem and enlarges the applicability domain of redundancy-
based task-priority. New strategies for redundancy-based robot joint limits avoidance are
developed. The problem of adding additional secondary tasks to the main task while ensur-
ing the joint limits avoidance is finally solved.

All these works have been investigated experimentally using an eye-in-hand system and
visual servoing applications.
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