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Abstract: The purpose of interoperability testing is to ensure that interconnected protocol implementations communicate
correctly while providing the expected services. To perform interoperability testing, conventional approaches rely on the
active testing method, which stimulates the system under test to accomplish a diagnose. However, the arbitrary stimuli
injected by using active testing method disturb inevitably the normal operation of the system under test. On the contrary,
passive testing is a technique for the veri�cation of behavioral properties of systems by only observing their external behavior.
However, passive testing method often encounters observation problems due to the asynchronous test environment. In fact,
the delay in such environment may in�uence the observation of the real order of the outputs produced by the implementations
under test. Consequently, the verdict emitted by the test system maybe permissive or bias. As passive testing depends only
on observation, issues here are then to keep a high level of observation in the testing activity, ensuring that no biased or
permissive verdict is introduced. To solve the observation problems in passive interoperability testing, this report proposes a
method based on logical clocks. Each output produced by the implementations under test is associated with a time stamp,
which is carried on the �y during its transmission. By analyzing the time stamps, the tester is able to recreate the true
sequence of the observed events so as to give a correct verdict.

Key-words: interoperability testing, time stamps, passive testing

Résolution des Problèmes d'observation Asynchrones dans le Test d'interoperabilité Passif

Résumé : L'objectif du test d'interopérabilité est de s'assurer à la fois que les implémentations interagissent correctement
et qu'elles rendent les services prévus dans leur spéci�cation pendant leur interaction. Pour e�ectuer le test d'interopérabilité,
les approches classiques s'appuient sur la méthode active, dont l�objectif est de tester les implémentations d'un système en
pratiquant une suite de contrôles et d'observations sur celui-ci. Pourtant, les stimuli injectés en utilisant la méthode active
perturbent inévitablement les opérations normales du système à tester. Au contraire, le test passif a pour objectif de détecter
des erreurs dans un système en observant uniquement ses comportements. Cependant, la méthode passive rencontre souvent
des di�cultés d'observation en raison de la nature asynchrone des systèmes distribués. En e�et, les délais d�acquisition
des donnés dans l�environnement du test peuvent perturber l'ordre réel des messages envoyés par les implémentations. En
conséquence, les verdicts émis par le système de test peuvent être biaisés. Pour résoudre les problèmes d'observation, ce
rapport propose une méthode basée sur l�estampillage logique: chaque sortie produite par les implémentations est associée à
une horloge logique. En analysant l�étiquette temporelle associée à chaque sortie, le testeur est capable de recréer la séquence
réelle des événements observés a�n de donner un verdict correct.

Mots clés : test d'interoperabilité, test passif, estampillage logique
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2 N. Chen

1 Introduction

Modern networks are becoming heterogeneous and complex. As they are composed of equipments based on new technologies
from a variety of vendors, it is frequent that errors would be introduced by di�erences in protocol implementations. Correct
coordination and communication of di�erent protocol implementations is essential to guarantee customer expectations.

To increase the con�dence that network products conform to international standards, conformance testing methodologies
have been standardized and deployed. Conformance testing [2] veri�es whether a network component conforms to its
speci�cation. Although ISO-9646 standard mentions that conformance testing increases the probability of interoperability, it
cannot be guaranteed. Conforming products may not interoperate due to several reasons: ambiguity in protocol standards,
poorly speci�ed protocol options, incompleteness of speci�cations, etc. Therefore, interoperability testing is indispensable to
guarantee the correct operation of network products from di�erent product lines and provide expected services.

To perform interoperability testing, the conventional method is the active testing approach [9, 5, 4]. Active testing is
done by building a test system (TS) that is able to stimulate the implementations under test (IUT) and verify whether the
outputs obtained for each stimulus are as expected. Generally, the test system tests the IUTs in a speci�c test environment.
It sends carefully designed messages to the IUTs, receives what it responds and makes a conclusion. Although widely used,
active testing has some limitations: Test can be di�cult or even impossible to perform if the tester is not provided with a
direct interface to stimulate the IUTs, or in operational environment where the normal operation of IUTs cannot be shutdown
or interrupted for a long period of time.

Current trend in network components deployment is to shorten time-to-market and test their interoperability in opera-
tional environment. In this sense, active testing is not a suitable testing method especially for operational networks, where
arbitrary inputs in�uences networks environment, sometimes may even provoke the crash of services.

The drawbacks of active testing lead to passive testing [7, 8]. Passive testing is a technique based on a high level of
observation in order to establish a diagnostic regarding the implementations' behavior. Compared with active approach, one
of the remarkable features of passive approach is that the test system does not interfere with the normal operation of the
IUTs. Therefore, passive approach can be applied in operational networks, where it is usually di�cult to insert an arbitrary
input. Besides, passive approach makes it possible to carry out tests when the test system does not have direct access to
stimulate the IUTs. In fact, the test can be done by only observing the trace produced by the IUTs with the help of network
protocol analyzing tools such as Wireshark1.

However, when passive interoperability testing is performed in operational environment, observation problems are often
encountered due to the uncontrollable delay introduced by the asynchronous nature of the test environment. In fact, the
observation order of the outputs produced by the implementations may be in�uenced. As a result, passive interoperability
testing in such environment is error-prone: The verdict might be permissive � uncooperative IUTs are determined to be
interoperable, or biased � the IUTs are determined non-interoperable but they are actually interoperable.

In this report, we propose a time-stamp-enabled mechanism that aims at solving the permissiveness and bias problems.
The considered testing context is the passive One-to-One interoperability testing where there are two IUTs in interaction.
The principle of the mechanism is to associate each event on IUTs with a logical time, which is piggybacked by the outputs
sent by the IUTs. An algorithm is proposed to analyze the logical time and to recover the real occurrence order of the
events that happened on each IUT. We prove that both bias and permissiveness of asynchronous interoperability testing
can be suppressed by using this method. Interoperability verdicts remain the same in asynchronous test environment as in
synchronous test environment.

The report is organized as follows: Section 2 represents the preliminaries. Section 3 presents the observation problems in
asynchronous passive interoperability testing. Section 4 de�nes the time-stamp-enabled mechanism to solve the observation
problems. The report is �nished by a conclusion in section 5.

2 Preliminaries

2.1 General Interoperability Testing Architecture

The purpose of interoperability testing (iop for short in the sequel) is to verify n (n > 2) products from di�erent product lines
interoperate correctly and provide expected services. General interoperability testing architecture involves a Test System
(TS) and a System Under Test (SUT) composed of n (n > 2) interconnected Implementations Under Test (IUT) from
di�erent product lines. According to the quantity of the IUTs, interoperability testing can be in either of the following
context: (i) Multi-Component context where SUT has n (n > 2) IUTs. (ii) One-to-One context where SUT is composed
of two IUTs. In practice, One-to-One iop is the most common context, either by testing the interoperability of IUTs in
a pairwise way, or by testing the interoperability between one protocol implementation and a system already in operation
(which may be composed of n IUTs).

1http://www.wireshark.org/
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Exemple de PI 3

In interoperability testing, testing entities communicate with each other through a variety of interfaces:

• Upper Implementation Access Point (UIAPi, i = {1, 2, ...n}) is the interface through which IUTi communicates with
its upper layer. UIi is observable and controllable. Test system connected to UIAPi via Upper Point of Control and
Observation (UPCOi) interface can send test messages to the corresponding IUIi and observe its output responses.

• Lower Implementation Access Point (LIAPi) is the interface through which IUTi communicates with its peer IUT.
Contrary to UIAPi, LIAPi is only observable. Test system connected to LIAPi via Lower Point of Observation
(LPOi) interface can only observe the interaction of IUTi with its peer IUT but must not send any message to it.

2.2 Passive Interoperability Testing

In this report, we focus our work on One-to-One passive interoperability testing (cf. Fig.1): The test between two IUTs
is based only on observing their interaction (at LIAPi interfaces). No test message is allowed to be injected. The testing
procedure consists of the following stages:

1. Interoperability test purpose (ITP) selection. The goal of testing is to �nd errors in SUT. However proving correctness is
elusive as it is generally impossible to validate all possible behavior described in speci�cations. From the methodological
point of view, most tests are carried on by setting test purposes. A test purpose is in general informal, in the form
of an incomplete sequence of actions representing a critical property to be veri�ed. It can be designed by experts or
provided by standards guidelines for test selection [3].

2. Trace recording. Observable events (trace) produced by SUT are collected during the test execution.

3. Trace veri�cation. The obtained trace is then analyzed against the interaction of IUTs' speci�cations to see whether
the interoperability relation between the IUTs is satis�ed. The execution trace veri�cation returns a verdict : where
verdict ∈ {Pass, Fail, Inconclusive}. Pass means the test purpose is satis�ed with no error detected. Fail means at
least an error is detected. Inconclusive means the behavior of IUTs is correct w.r.t their speci�cations, however does
not correspond to the test purpose.

In this report, we consider the asynchronous communication between testing entities: (i) The communication between two
IUTs are asynchronous. In fact, protocol implementations interact by traversing several protocol layers. As delay is not
controllable, it leads to asynchronous communications. (ii) The environment between the test system and the SUT is
asynchronous too. In practice, passive interoperability testing is often done in a remote way, i.e., the test system reaches the
SUT through a network. Accorindg to [1], asynchronous interaction can be modeled by two FIFO reliable queues, one for
each direction between two testing entities and is denoted ‖A.(The environment between the TS and the SUT is modeled
by two unidirectional FIFO queues as LIAPi interfaces are only observable). Moreover, we assume the black box testing
context: The system has no knowledge of the IUTs inner structure. Only the external behavior of IUTs can be evaluated.

Figure 1: Passive interoperability testing architecture

2.3 Formal Model

In this report, the formal model used to describe speci�cations, implementations, etc is the IOLTS (Input-Output Labeled
Transition System) model [1], which allows di�erentiating input, output and internal events while precisely indicating the
interfaces speci�ed for each event.
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4 N. Chen

De�nition 1 An IOLTS is a tuple M = (QM ,ΣM ,∆M , qM0 ) where QM is the set of states of the system M with qM0 its
initial state. ΣM is the set of observable events at the interfaces of M . ΣM can be partitioned into: ΣM=ΣMU

⋃
ΣML , where

ΣMU (resp. ΣML ) is the set of events at the upper (resp. lower) interfaces. ΣM can also be partitioned to distinguish input
(ΣMI ) and output events (ΣMO ). In IOLTS model, input and output actions are di�erentiated: We note p?a (resp. p!a) for
an input (resp. output) a at interface p. ∆M ⊆ QM × (ΣM ∪ τ) ×QM is the transition relation, where τ /∈ ΣM stands for

an internal action. Transition (q, α, q′) ∈ ∆M can be equally noted q
α−→M q′.

Other notations Let us consider an IOLTS M , and let an observable event α ∈ ΣM with α = p · {?, !} ·m, an executable
event of the system µi ∈ ΣM ∪ τ , a succession of events σ ∈ (ΣM )∗, and q, q′, qi ∈ QM . We de�ne the following notations:

• q µ1...µn−→ M q′ =def ∃q0 = q, q1, . . . , qn = q′.∀i ∈ [1, n], qi−1
µi−→M qi.

• q ε⇒M q′ =def q = q′or q
τ...τ−→M q′.

• Out(q) =def {α ∈ ΣMO |∃q′, q
α−→M q′} is the set of possible outputs at state q. Similarly, In(q) =def {α ∈

ΣMI |∃q′, q
α−→M q′} is the set of possible inputs and Γ(q) =def {α ∈ ΣM |∃q′, q α−→M q′} is the set of all possible

events at the state q.

• q after σ =def {q′ ∈ QM |q
σ⇒M q′} is the set of states which can be reached from q by the sequence of actions σ. By

extension, all the states reached from the initial state of the IOLTSM are (qM0 after σ) and will be noted by(M after σ).

• µ̄ = p!a if µ = p?a and µ̄ = p?a if µ = p!a. For internal events, τ̄ = τ .

2.4 Passive Interoperability Criteria

Passive One-to-One interoperability criteria are de�ned in [9] as follows:

De�nition 2 In passive One-to-One interoperability testing, two IUTs are considered interoperable I1 iop I2=def

1. After a trace during the asynchronous interaction of IUTs, all the outputs observed at the interfaces of IUTs must be
foreseen in the interaction of their speci�cations.
∀ σ ∈ Trace(S1||AS2) ⇒ Out((I1||AI2),σ)⊆Out((S1||AS2), σ).

2. And, all messages sent by one IUT to the other IUT must be received by the latter. It should be mentioned that
interoperability testing is a black box testing. The TS is able to observe a message which has been sent by an IUT
to the other IUT via its interface, but not whether the latter has actually processed the message or not. Therefore,
the veri�cation of an input is in fact done by verifying its causal-dependent observable outputs. To con�rm that an
input has been received involves having veri�ed its related outputs that cannot be observed unless the input has been
executed.
∀{i, j} ={1, 2} ,i 6= j; ∀σ ∈ Trace(Si||ASj), σi∈ Traces(Si), σj∈ Traces(Sj), ∀µ ∈ Out(Ii,σi), ∀σ

′ ∈((ΣSi ∪ΣSj )\µ)∗,
σ.µ.σ

′
.µ∈Traces(Si||ASj)⇒ Out(Ij ,σj .σ

′
.µ.σk)⊆Out(Sj , σj.σ

′
, µ) where σk ∈ (ΣSj

I )∗.

3 Observation Issues in Remote Passive Interoperability Testing

As mentioned in Section 2, passive interoperability testing is done by building a test system that observes the interaction
between two IUTs. Within sight of the observations, a verdict (Fail, Pass or Inconclusive) is emitted w.r.t the passive
interoperability criteria (cf. De�nition 2). In fact, the passive interoperability cirteria considers only the asynchronous
interaction of IUTs. In practice however, one cannot always neglect the test environment intercalated between the test
system and the SUT. The most common situation is that the TS reaches the SUT through a network connection (remote
testing). In such case, the delay in network causes asynchronism and should be taken into account as well.

In remote interoperability testing, the asynchronous nature of the environment often results in observation problems:
The delay in environment in�uences the observation order of the events produced by IUTs. There are generally two kinds of
problems: (i) the problem of permissiveness that happens when uncooperative IUTs are judged to be interoperable. (ii) the
problem of bias occurs when network components are determined uncooperative but they are actually interoperable. The
verdict of asynchronous interoperability testing is error-prone.
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Example 1 Let us consider the speci�cations S1 and S2 in Fig.2, which represent a connection protocol: Initially, S1 sends
a request (1!cnr) for connection. After S2 receives the request (2?cnr), it can either accept the connection (2!ack − cnr)
or decline it (2!nack − cnr). If S2 accepts the connection, the connection will be established by an acknowlegement of S1

(1!ACK). Then, both S1 and S2 can terminate the connection by sending Fin request, which should be followed by an
ack − Fin acknowlegement.

Fig.3 illustrates three implementations based on the speci�cations: I1=S1, I2 and I3 are two implementations based
on S2. This example shows that passive interoperability testing carried out in asynchronous test environment introduces
permissiveness and bias observation issues and causes biased verdicts.

We use Ii iopA Ij to denote the interoperability relation of IUTi and IUTj in asynchronous test environment. We show
that Ii iop Ij< Ii iopA Ij .

Figure 2: Speci�cations S1 and S2

Figure 3: Implementation I1, I2 and I3

• Permissiveness: passive interoperability testing in remote asynchronous environment is more permissive. The problem
is brought to light by the interaction between I1 and I3 (cf. Fig.4). According to the passive interoperability criteria
(cf. De�nition 2), I1 and I3 do not satisfy interoperability relation.
We have ¬(I1 iop I3) due to the output 2!ack−Fin produced by I3 after the input 2?Ack speci�ed in S2. However, as
mentioned before, the veri�cation of an input in a black box testing context is based on verifying its causal dependent
observable outputs. Here, the input 2?Ack is done by verifying its causal dependent events 1!Ack→2!Fin. Therefore, as
illustrated in Fig.42, Out(I1||AI3, 1!Ack)⊆Out(S1||AS2, 1!Ack)= 2!Fin, thus the I1 and I3 are determined interoperable.
In fact, the observation of TS does not reveal the real order of the events that happened on each IUT.

2P1?cnr =def PO1 observes output cnr sent by IUT1. The rest may be deduced by analogy.
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6 N. Chen

Figure 4: Permissive verdict

• Bias: This problem can be illustrated by the interaction of I1 and I2 (cf. Fig.5). According to the passive interop-
erability criterion, I1iopI2. However, the delay in asynchronous testing environment intercalated between the TS and
SUT can cause the disorder of the output observation. As a result, the trace 1!Fin, 2!ack − Fin can be observed as
2!ack−Fin, 1!Fin from the point of view of the TS. According to the speci�cations, Out(S1||AS2, 2!ack−Fin)= 1!cnr
but we have here Out(I1||AI2, 2!ack − Fin)= 1!Fin *Out(S1||AS2, 2!ack − Fin). Thus ¬(I1iopAI2).

Figure 5: Biased verdict

To sum up, in remote passive interoperability testing, observation problems maybe encountered due to the delay in
asynchronous testing environment [10], [11]. In the next section, we show that these problems can be avoided by an
appropriate time stamp enabled mechanism.

4 Dealing with Observation Problems in Passive Interoperability Testing

In this section, the main issue is to keep a high level of observation in passive interoperability testing activity, ensuring that
no biased verdict is introduced while executing the test in an asynchronous environment. The principle is to instrument each
IUT by using a logical time enabled mechanism [6], [12] so that each output from IUTs brings additional information about
the order in which each event is produced.

The method is illustrated in Fig.6. The idea is to implement a counting mechanism ST on the synchronous parallel
composition of each IUT. The role of the ST is to code the occurrence of the events that happen on each IUT by time
stamps. Then, each time an output is produced, its corresponding time stamp is piggybacked. A log �le is used to store
all the observed outputs from each IUT as well as their time stamps. At the side of the tester, another system ST is
implemented. The role of ST is to reorder all the events in log by analyzing their associated time stamps. We will show that
ST is able to reconstruct all the events that happen on each IUT with the help of time stamps. Finally, these well ordered
traces will be analyzed by the TS against the speci�cations to give a diagnose.

Figure 6: Time stamp enabled asynchronism management mechanism
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4.1 Counting Mechanism ST

Fig.7 illustrates in detail the logical time mechanism proposed in this report: The counting mechanism ST implements a
counter CTi on the corresponding IUTi (i={1,2}). The start and the end of trace recording are managed by TS at instant t
and t+δ respectively.

Figure 7: Implementation of time stamp mechanism

• Initially at instant t, ∀{i, j} ={1, 2} ,i 6= j; CTi = CTj = 0.

• From t to t+δ

� each time IUTi sends a message α to IUTj , STi increments CTi by 1. Message α and its time stamp, denoted
by a tuple (α,CTi) are then sent to IUTj (cf. Fig.7). During message transmission, (α, CTi) is observed by POi
and put into log.

� Each time STi receives a tuple (α, CTj) from IUTj , STi increments CTi by 1. Then CTj is removed, only message
α will be sent to IUTi.

In fact, CTi is a counter that associates the occurrence of each event on IUTi with a time stamp. Thus, CTi reveals the
sequence number of an event that happens on IUTi.

4.2 Time Stamp Analysis

All the observed outputs from both IUTs as well as their associated time stamps are stored in log. The time stamp information
is then analyzed by the TS.

At the side of TS, an algorithm ST is implemented. We call it ST , the opposition transformation of ST since an output
of IUTi corresponds to an input of POi. The role of ST is to analyze the logical stamps associated to each message recorded
in log when trace registration is �nished, and recovers the occurrence order of the events that happened on each IUT. ST
involves two stages:

1. The construction of MQ (Mirror Event Queue, cf. De�nition 3), which aims at �nding the non-directly observable
inputs on each IUT and helps reconstructing the occurrence order of the events that happened on each IUT.

2. The construction of OQ (Ordering Queue cf. De�nition 4), which intends to recover the occurrence order of the events
that happened on each IUT.

De�nition 3: MQi ( The Mirror Event Queue of IUTi ). MQi is constructed recursively by checking each output in log

one by one. Formally, ∀{i, j} ={1, 2} ,i 6= j; ∀σ ∈ log, α ∈ ΣIUTi

O , β ∈ ΣIUTj

O : MQi(ε)=ε, MQi(σ.α)= MQi(σ), MQi(σ.β)
= MQi(σ).i?β.
In fact, for all the observed outputs α produced by IUTi taken in order from log, their mirror events α will be put into the
mirror event queue MQj of IUTj with respect to their observation order. As the channel between each testing entity is
FIFO reliable, the sequence in MQj will be received in this order by IUTj .
For example, for a trace σ∈log: (1!cnr, 1), (2!ack− cnr, 2), (1!ACK, 3), (1!Fin, 4), (2!ack−Fin). The corresponding Mirror
Event Queues are such that MQ1= 1?ack − cnr, 1?ack − Fin; MQ2= 2?cnr, 2?ACK, 2?Fin.
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8 N. Chen

De�nition 4: OQi: The Ordering Queue of IUTi. OQi stores the events reordered by ST on IUTi .
The construction of OQ is in fact the trace ordering procedure which involves in checking each tuple (α, CTi) taken in

order from the log. It is composed of the following steps:

1. For each tuple (α, CTi) where α ∈ ΣIUTi

O , ST carries out the calculation of X =CTi − 1 − length(OQi), where
length(OQi) is equal to the number of elements in OQi.

Proposition 1 ∀(α ∈ ΣIUTi

O ,CTi), X =CTi−1−length(OQi) is the number of unknown events that happened before α.

Proof: CTi presents the sequence number of the output α on IUTi. Thus CTi−1 states for the number of the
events that happened before α. As OQi stores the events already ordered on IUTi, the number of unknown events
before α is therefore CTi − 1− length(OQi).

Proposition 2 Unknown events on IUTi before an output α are input events.

Proof: As the test environment is modeled as reliable FIFO queues, the observation of the outputs produced by
the same IUT repect the FIFO order as well. Therefore, the unknown events before α on IUTi can only be inputs.

2. According to the value X obtained by step 1, di�erent actions can be taken:

• If X = 0, α is added to the tail of OQi. i.e., there is no unknown event before α on IUTi, α can be directly put into
its ordering queue.

• If X > 0, i.e., there are unknown event(s) before α. According to Proposition 2, these unknown events can only be
inputs. Therefore, ST looks into the Mirror Event Queue of IUTi MQi, as MQi stores the mirror events of observed
outputs sent by IUTj , which will be received by IUTi in a FIFO order.

MQi can be decoupled to two parts: MQi = MQ
′

i. MQ
′′

i where MQ
′

i represents the unknown inputs before α, and

length(MQ
′

i)= X. Then, OQi is updated: MQ
′

i is taken out from MQi and added to the tail of OQi, so as α.

The algorithm ST is written below formally:

Algorithm 1: Algorithm ST

Input: log
Output: OQi, OQj
/*reordered events on both IUTs*/
Initialization: OQi = OQj = MQi = MQj =ε, ∀{i, j} ={1, 2} ,i 6= j;
Begin

/*The construction of MQ*/
for each α∈ log do

if α ∈ ΣIUTi

O then
MQj=MQj .j?α;

end

end

/*The construction of OQ*/
for each α∈ log do

if α ∈ ΣIUTi

O then
X =CTi − 1− length(OQi);
Let MQ

′

i.MQ
′′

i s.t. length (OQi.MQ
′

i)= CTi − 1 and MQi=MQ
′

i.MQ
′′

i

OQi = OQi.MQ
′

i. α;

MQi=MQ
′′

i ;
end

end

Return OQi, OQj
End

Complexity of the algorithm The algorithm is composed of two for loops since log is examined twice for the construc-
tion of MQ and OQ respectively. For the �rst for loop, the complexity is O(n) where n is the size of log. The same, the
second for loop has the complexity of O(n) as well. Therefore, the whole algorithm has the complexity of O(n).
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Exemple de PI 9

Proposition 3: For a trace σ produced on IUTi in asynchronous environment, the application of algorithm ST reconstructs
σ.

Proof: First, the proposed time-stamp-enabled mechanism associates each event that happens on IUTi with a time stamp.
This time stamp information is carried on-the-�y with the outputs and is analyzed by ST . Although asynchronous environ-
ment disturbs the observation order, it preserves the relative order of inputs and outputs on each IUT. Therefore, logical
time can be used to reconstruct σ.

Theorem 1: By using the proposed time-stamp-enabled mechanism, permissive and biased verdicts are avoided.

Proof: We �rst prove that I1 iopA I2 ⇒I1 iop I2 by using the proposed time stamp enabled mechanism.
First, the verdict I1 iopA I2 after using the proposed mechanism algorithm ST implies ∃ ST (σ) ∈ Trace(S1||AS2),

Out((I1||AI2), ST (σ))⊆Out((S1||AS2), ST (σ)). As proposition 3 said that ST can reconstruct σ. Therefore, Out((I1||AI2),
σ) ⊆ Out((S1 ||A S2), σ). Moreover, as ST (σ) reconstructs the occurrence order of both inputs and outputs. I1 iopA I2 ⇒
Out(Ij , σj .σ

′
.µ.σk) ⊆ Out (Sj , σj.σ

′
, µ) where σk ∈ (ΣSj

I )∗ Therefore, I1 iopA I2 ⇒I1iopI2.
Then we prove that ¬(I1 iopA I2 )⇒ ¬(I1iopI2). It is trivial since it is the converse of I1 iopA I2 ⇒I1iopI2.
Therefore, passive interoperability verdicts remain non-permissive and unbiased in asynchronous environment by using

the proposed time stamp enabled mechanism.

Let's review the example of Fig.4 and Fig.5 to see how permissiveness and bias issues can be suppressed by using the
proposed time stamp enabled mechanism.

Example 2 : The suppression of permissiveness is illustrated in Fig. 8. Each event is associated with a time stamp. Time
stamps are carried on-the-�y with the outputs sent by each IUT. The process of time stamp decoding performed by ST is
the following:

Figure 8: The Suppression of Permissiveness

1. The construction of MQ from log.

(a) MQ1= 1?ack − cnr, 1?ack − Fin.
(b) MQ2= 2?cnr, 2?ACK, 2?Fin.

2. The construction of OQ by analyzing each event in log.

(a) After analyzing(1!cnr, 1),OQ1 =1!cnr.; MQ1= 1?ack − cnr, 1?ack − Fin.
(b) After analyzing(2!ack − cnr, 2),OQ2 =2?cnr, 2!ack − cnr.; MQ2=2?ACK, 2?Fin.

(c) After analyzing(1!ACK, 3), OQ1 =1!cnr, 1?ack − cnr, 1!ACK.; MQ1=1?ack − Fin.
(d) After analyzing(1!Fin, 4),OQ1 =1!cnr, 1?ack − cnr, 1!ACK, 1!Fin.;MQ1=1?ack − Fin.
(e) After analyzing (2!ack − Fin, 4),OQ2 =2?cnr, 2!ack − cnr, 2?ACK, 2!ack − Fin.; MQ2=2?Fin.

Therefore, by comparing with the speci�cation of S1 and S2, TS detects that IUT3 has chosen a di�erent behavior
from the S2 by sending 2!ack − Fin before receiving 2?Fin. ¬(I1 iopA I3). Permissiveness is avoided.
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Similarly, bias problem can be avoided by using the method.

Figure 9: The Suppression of Bias Problem

After examining log, TS gets

1. OQ1 =1!cnr, 1?ack − cnr, 1!ACK, 1!Fin.

2. OQ2 =2?cnr, 2!ack − cnr, 2?ACK, 2?Fin, 2!ack − Fin.

Which are correct w.r.t the interaction of their speci�cations. Therefore I1 iopAI2 , bias is avoided.

To sum up, to solve the observation problems cause by asynchronous test environment in passive interoperability testing
methods, the idea is to implement a counting mechanism ST on the synchronous parallel composition of each IUT. Then,
from an event trace, a kind of test driver implementing ST can reconstruct the sequence of events which occurred on both
IUTs. These sequences will be checked against the speci�cations to decide whether they satisfy the interoperability relation.

5 Conclusion and Future Work

In this report, a stamped interoperability testing method has been proposed to solve the observation problems in asynchronous
One-to-One passive interoperability testing. By using this method, both permissiveness and bias observation issues can be
avoided. The test system can reconstruct a correct trace without out-of-sequence event produced by the IUTs.

To obtain a correctly ordered trace is essential because no matter which method is used to carry out interoperability, a
correct observation of the interaction of the IUTs is always necessitated. It will help the test system give a correct verdict.
Normally, the trace will be analyzed so as to decide whether the IUTs are interoperable or not.

The solution proposed for One-to-One passive interoperability testing can be extended to other more complex situation
such as multi-components context where more than two IUTs interact. The main di�culty for multi-components context
will be managing the causal relationship between inputs and outputs since several inputs can arrive simultaneously to one
IUT. Future work will focus on researching the asynchronous multi-components context and solving observation issues in
this context.
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