Comparison of mechanical ventilatory constraints between continuous and intermittent exercises in healthy prepubescent children.

Benoit Borel, Erwan Leclair, Delphine Thevenet, Laurent Beghin, Frédéric Gottrand, Claudine Fabre

To cite this version:

Benoit Borel, Erwan Leclair, Delphine Thevenet, Laurent Beghin, Frédéric Gottrand, et al., Comparison of mechanical ventilatory constraints between continuous and intermittent exercises in healthy prepubescent children., Pediatric Pulmonology, Wiley, 2011, 46 (8), pp.785. <10.1002/ppul.21418>. <hal-00615128>

HAL Id: hal-00615128
https://hal.archives-ouvertes.fr/hal-00615128
Submitted on 18 Aug 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Comparison of mechanical ventilatory constraints between continuous and intermittent exercises in healthy prepubescent children.

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Pediatric Pulmonology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>PPUL-09-0314.R3</td>
</tr>
<tr>
<td>Wiley - Manuscript type:</td>
<td>Original Article</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>16-Nov-2010</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Borel, Benoit; Univ Lille Nord de France, F-59000 Lille, UDSL, EA 3608, Faculté des Sciences du Sport et de l’Education Physique Leclair, Erwan; Univ Lille Nord de France, F-59000 Lille, UDSL, EA 3608, Faculté des Sciences du Sport et de l’Education Physique Thevenet, Delphine; ENS Cachan – Antenne de Bretagne, Campus de Ker-Lann, Laboratoire Mouvement, Sport, Santé BEGHIN, Laurent; CHRU de Lille, Centre d’Investigation Clinique Gottrand, Frédéric; Univ Lille Nord de France, F-59000 Lille, EA 3925, CHRU de Lille Fabre, Claudine; Univ Lille Nord de France, F-59000 Lille, UDSL, EA 3608, Faculté des Sciences du Sport et de l’Education Physique</td>
</tr>
<tr>
<td>Keywords:</td>
<td>children, exercise modality, ventilatory response, flow/volume loop</td>
</tr>
</tbody>
</table>
Title Page

Title: Comparison of mechanical ventilatory constraints between continuous and intermittent exercises in healthy prepubescent children.

Benoit BOREL1-2; Erwan LECLAIR1-2; Delphine THEVENET3; Laurent BEGHIN4-5, Frédéric GOTTRAND 5 and Claudine FABRE1-2.

1 : Univ Lille Nord de France, F-59000 Lille, France.

3 : M2S, ENS Cachan – Antenne de Bretagne, Campus de Ker-Lann, France.

4 : Centre d’Investigation Clinique, CIC-9301-CHRU-INSERM de Lille IFR 114; Institut de Médecine Prédictive et Thérapeutique de Lille, Lille - France.

5 : Interrelations nutrition, inflammation, et infection au cours des maladies respiratoires chroniques de l’enfant (EA 3925), Université de Lille 2 Droit et Santé, Faculté de médecine, Lille - France.

Corresponding author :
Claudine Fabre, EA 3608, Faculté des Sciences du Sport et de l’Education Physique, 9 rue de l’université 59790 RONCHIN - FRANCE
Tel : +33 (0)3 20 88 73 76 / Fax : +33 (0)3 20 88 73 63 /
Email : benoit.borel-2@univ-lille2.fr /

Running title: Mechanical ventilatory constraints in children
Abstract

Background: The aim of this study was to evaluate the occurrence and severity of mechanical ventilatory constraints in healthy prepubescent children during continuous and intermittent exercise.

Methods: Twelve prepubescent children (7 – 11 years old) performed 7 exercises on a treadmill: one graded test for the determination of maximal aerobic speed (MAS), three continuous exercises (CE) at 60, 70 and 80% of MAS and three intermittent exercises (IE), alternating 15s of exercise with 15s of passive recovery, at 90, 100 and 110% of MAS. During each CE and IE, tidal flow/volume loops were plotted within a maximal flow/volume loop (MFVL) measured at rest before each exercise. Expiratory flow limitation (expFL expressed in %Vt) was defined as the part of exercise tidal volume (Vt) meeting the boundary of MFVL. Breathing strategy was estimated by measuring inspiratory capacity relative to forced vital capacity and tidal volume relative to inspiratory capacity. Other breathing pattern parameters (ventilation VE, Vt, respiratory frequency f) were continuously recorded during exercise.

Results: An "intensity" effect was found for VE during CE (p<0.001) but not during IE (p=0.08). The increase in VE was predominantly assumed by an increase in f for both exercise modalities. During each exercise, several children heterogeneously experienced expFL ranging between 10 – 90%Vt. For all exercises, Vt was predominantly regulated by an increase in Vt/IC with no change in IC/FVC from rest to exercise. Finally, no significant "modality" effect was found for mechanical ventilatory constraint parameters (expFL, VT/IC and IV/FVC).

Discussion: We could conclude that neither of the modalities studied induced more mechanical ventilatory constraints than the other, but that exercise intensities specific to each modality might be greater sources of exacerbation for mechanical ventilatory constraints.

Keywords: children, exercise modality, ventilatory response, flow/volume loop
Introduction

In the literature, it has been reported that children show specific ventilatory adaptations in comparison with adults during exercise. In fact, children present a phenomenon of hyperventilation for a similar level of relative intensity in comparison with adults. This phenomenon of hyperventilation in children is characterized by a higher respiratory equivalent in oxygen (VE/VO₂) in children than in adults and could result from a specific breathing pattern. The latter is characterized by rapid and shallow breathing in children, defined by higher values of respiratory frequency and lower values of tidal volume than in adults.

Moreover, as already shown in adults during incremental exercise, mechanical ventilatory constraints were also highlighted in children during exercise. Such constraints represented the balance between ventilatory demand and ventilatory capacity and could easily be identified by estimating breathing reserve (BR). However, BR provides no information on breathing pattern, or on the source and type of ventilatory constraints. This type of information could be obtained by using the exercise flow/volume loops method, consisting in plotting tidal flow/volume loops within maximal flow/volume loops during exercise. By using this method, some studies have assessed mechanical ventilatory constraints in children during incremental exercise and reported several cases of expiratory flow limitation during high intensities of the incremental exercise. Thus, Nourry et al reported an "intensity" effect for mechanical ventilatory constraint occurrence and severity during a maximal graded test in trained or untrained prepubescent children. From these results, we have hypothesized that intermittent exercise could induce higher mechanical ventilatory constraints than continuous exercise, as the exercise intensities prescribed for intermittent exercises are higher than those prescribed for continuous exercises. The answers to this question could enlighten us on specific ventilatory adaptations in children during two exercise modalities frequently encountered.
during everyday life, contrary to current data from the literature, which is only based on incremental
exercise.

The aim of this study was 1) to evaluate and compare breathing pattern and tidal flow/volume loops
between continuous and intermittent exercises in healthy prepubescent children, so as to determine
if both exercise modalities could induce mechanical ventilatory constraints and 2) to determine the
effects of the exercise modality on the severity of potential ventilatory constraints, in order to
determine if one exercise modality was more restrictive than the other on the children’s ventilatory
system.
Methods

Population

Twelve 7 – 11 year old healthy prepubescent children volunteered to participate in this study, which had previously received approval from the local ethics committee. Parents and children were informed as to the modalities of the study and then gave their written, informed consent prior to any involvement in it. All the children were free of respiratory or cardiac diseases and of orthopedic counter indications for physical exercise, performed less than 3h/week of extra academic physical activity and their sum of pubertal stages was lower than 3. Sexual maturity was evaluated from pubertal stages, according to Tanner’s method: indices of breast, pubic hair and genital development. The same physician made all the observations for all the children.

Study design

All the children came to the laboratory three times within a one-month period, with at least 48 hours between two evaluation days. At the beginning of each visit, a resting ECG and a clinical examination were performed. During the first visit, spirometry and sexual maturity were evaluated, followed by a period of familiarization and realization of a maximal graded test on a treadmill. Measurement of pulmonary gas exchanges allowed the determination of peak oxygen uptake (\(\dot{V}O_2 \text{peak} \)) and maximal aerobic speed (MAS). During the last two visits, the children performed three continuous (continuous visit) and three intermittent (intermittent visit) exercises on the treadmill in a random order. Prior to the exercises, spirometry was performed and, subsequent to them, measurements of pulmonary gas exchanges, heart rate and exercise flow/volume curves were carried out.

Spirometry
At each visit, the children underwent spirometry before each of the exercises performed (Vmax Encore, Sensormedics, Viasys Healthcare, USA). Each child was seated on a chair and fitted with a noseclip. All the lung tests were carried out by the same physician respecting American Thoracic Society recommendations16. For each child, three measurements of maximal flow/volume loops (MFVL) were carried out, allowing the determination of forced vital capacity (FVC) and forced expiratory volume in 1 second (FEV\textsubscript{1}). Among the registered measurements, the MFVL with the greatest combination of FVC and FEV\textsubscript{1} was retained.

\section*{Cardio-respiratory parameters}

At each visit and during all exercise tests, the children wore a mouthpiece connected to a breath-by-breath gas analyzer (V max Encore laboratory system, Sensormedics, Viasys Healthcare, USA), allowing the measurement of oxygen uptake (\(\dot{V}O_2\)), carbon dioxide output (\(\dot{V}CO_2\)), ventilation (\(\dot{V}E\)), tidal volume (Vt) and respiratory frequency (f). In order to ensure accurate measurements, \(O_2\) and \(CO_2\) analyzers were calibrated before each exercise test, using ambient air and two gases of known \(O_2\) concentration (16\% and 26\%) and \(CO_2\) concentration (4\% and 0\%). The calibration of the pneumotachograph was performed using a 3-liter syringe following the manufacturer's recommended procedures.

Heart rate (HR) was continuously monitored with a heart rate monitor (Polar S810, Polar Electro Oy, Kempele, Finland). The data acquisition frequency for HR was set at 5 sec.

Borg's CR-10 scale17 (ranging from 0 to 10) was used during all the exercises in order to evaluate dyspnea. This scale was explained to the children at the beginning of each visit and was shown to them at the end of each exercise.

\section*{Maximal graded test}
A period of familiarization on the treadmill was proposed for all the children, consisting in explaining the security procedures and letting them walk and run on it. After explaining the exercise to the children, the test began with a resting period of three minutes in a standing position on the treadmill. Subsequently, a warm-up period of 3 minutes at 3 km.h\(^{-1}\) was performed. The exercise began with one minute at 4 km.h\(^{-1}\), then the speed was increased by 0.5 km.h\(^{-1}\) every minute. During the whole exercise, pulmonary gas exchanges and heart rate were continuously recorded and the values were averaged every 30 seconds. The exercise ended when the children were no longer able to maintain the imposed running speed. It was judged that they had performed a maximal exercise when 3 or more of the following criteria were obtained: visible exhaustion (excessive hyperpnea, facial flushing, sweating, discomfort)\(^{18}\), maximal heart rate >90% of predicted maximal heart rate (208-0.7 x age)\(^{19}\), a plateau in VO\(_2\) despite increasing running speed or a final respiratory exchange ratio (RER) higher than 1.0\(^{20}\). The maximal aerobic speed (MAS), corresponding to the speed at the last completed stage\(^{21}\), was used as a reference value for the calculation of the individualized speeds of the continuous and intermittent exercises.

Continuous and intermittent visits

At each of the two other visits, the children performed 3 continuous (CE) or 3 intermittent exercises (IE). Figure 1 shows the design for each exercise-testing visit. First, children rested for three minutes. Then, a 6-minute exercise period was carried out, immediately followed by a 4-minute period of passive recovery, with measurement of gas exchanges. After that, the mouthpiece of the pulmonary gas exchange apparatus was removed until the next exercise. Between two exercises, a 30-minute rest period was observed, without taking any measurements. For the continuous exercises, the 6-minute exercise period was performed at an individualized and constant speed. For intermittent exercises, the exercise period was divided into periods of 15s of running followed by 15s of passive recovery, except for the last minute of each intermittent exercise which was divided into one 30s
period of running and one 30s period of passive recovery, so as to perform exercise tidal flow/volume loop measurement. In order to avoid the inertia of the treadmill for the two exercise modalities, the treadmill belt was set in motion at the adequate running speed before the beginning of the exercise period. The children were instructed to put their feet on both sides of the belt of the treadmill and to get on the belt at the beginning of the exercise period. For intermittent exercises, as the treadmill was not stopped at the end of each 15-second running period, the children were instructed to get on or off the treadmill after each 15-second period of running or passive recovery. Leaving the treadmill consisted in putting their feet on both sides of it. Hence, the children were familiarized with getting on or off the treadmill before the intermittent exercises and were helped by an adult.

Continuous exercises intensities corresponded to 60% (CE60), 70% (CE70) and 80% (CE80) of MAS. These intensities were always performed in this order. The intermittent exercise intensities corresponded to 90% (IE90), 100% (IE100) and 110% (IE110) of MAS and here also, this order was kept for all the subjects. These MAS intensity percentages were chosen as they are frequently used for continuous and intermittent exercises respectively. Three intensity levels could be described: low (CE60 vs. IE90), middle (CE70 vs. IE100) and high (CE80 vs. IE110).

For all the continuous and intermittent exercises performed by the children, the mean values of $\dot{V}O_2$, $\dot{V}E$, $\dot{V}E/\dot{V}O_2$, $\dot{V}E/\dot{V}CO_2$ and HR, reported in the "Results" section, were obtained by averaging raw data during the first 30 seconds of the last minute of each exercise. This period of measurement corresponded to the time of exercise flow/volume loop measurement.

Determination of ventilatory constraints

For each continuous and intermittent exercise, ventilatory constraints were firstly determined with the calculation of breathing reserve (BR). BR was calculated based on maximal $\dot{V}E$ reached during the exercise and the estimated maximal voluntary ventilation (MVV). It corresponded to how closely
the maximal $\dot{V}E$ achieved during exercise approached MVV. The BR calculation equation was the following:

$$BR (\%) = \left[\frac{MVV - \dot{V}E_{\text{max}}}{MVV}\right] \times 100$$

where MVV was determined according to the following equation 6,23: $MVV = FEV_1 \times 35$ and $\dot{V}E_{\text{max}}$ corresponded to the maximal value of $\dot{V}E$ reached during each continuous or intermittent exercise.

The MVV was estimated for each exercise performed, with the FEV_1 measured just before the exercise.

In order to evaluate mechanical ventilatory constraints and breathing strategy during the exercise, exercise tidal flow/volume loops (tidal F/V loops) were recorded just once, at the end of the first 30 seconds of the last minute of each exercise using a pneumotachograph. Tidal F/V loops corresponded to a mean of ten tidal breaths recorded and were computer averaged before a maximal inspiratory capacity (IC) maneuver. This maneuver allows correction of drift phenomena, as described by Johnson et al. 6 During exercise, a drift phenomenon could appear in the volume signal due to electrical or physiological changes over time. This drift must be corrected in order to obtain correctly placed tidal F/V loops within MFVL. Thus, the maximal inspiratory capacity maneuver was performed immediately after tidal F/V loop measurement. This maximal IC maneuver was compared to the maximal IC determined at rest. After the maneuver, the computer could correctly plot tidal F/V loops within the MFVL determined before the exercise. For each tidal F/V loop measurement, the mean values of $\dot{V}O_2, \dot{V}E, V_t, f, \dot{V}E/\dot{V}O_2, \dot{V}E/\dot{V}CO_2$ and HR were calculated at the moment of measurement (corresponding to the mean of the first 30 seconds of the last minute of exercise).

Expiratory flow limitation (expFL) corresponds to the part of tidal F/V loop that meets or exceeds the expiratory boundary of the MFVL and is expressed as a % of tidal volume (%Vt). In order to determine breathing strategy, the evolution of different ratios was analyzed. Hence, inspiratory
capacity (IC) relative to forced vital capacity (IC/FVC), expiratory reserve volume relative to vital capacity (ERV/FVC), tidal volume relative to inspiratory capacity (Vt/IC) and inspiratory reserve volume relative to vital capacity (IRV/FVC) were computed (Figure 2).

Statistical analysis

All the values were expressed as means ± standard deviation (mean ± SD). For each parameter, data normality was verified with a Kolmogorov-Smirnov test.

In order to determine the effect of exercise modality, a two-way repeated measure analysis of variance (ANOVA) was performed for all the parameters. The factors were "exercise intensity" and "exercise modality". When the ANOVA F ratio was significant, the mean values were compared by using pairwise multiple comparison procedures (Bonferroni post-hoc test).

For intra-modality comparison, a one-way repeated measure analysis of variance (ANOVA) was performed for all the parameters. The factor was "exercise intensity". When the ANOVA F ratio was significant, the mean values were compared by using pairwise multiple comparison procedures (Bonferroni post-hoc test).

For rest versus exercise values comparison within the same modality, a "paired t-test" was carried out.

For all the tests, significance was set at the 0.05 level.
Results

Anthropometric, spirometric and maximal values at incremental exercise

Respiratory data from one subject were unworkable. Thus, anthropometric, spirometric and maximal exercise values of the eleven children were analyzed (8 boys and 3 girls; Table 1). For each child, 3 criteria of maximality at least were fulfilled, showing that the graded exercise was maximal.

Mean cardiorespiratory values ($\dot{V}O_2$, HR, RER) measured during continuous and intermittent exercises for the whole population are shown in Table 2. For $\dot{V}O_2$ only, a significant "intensity x modality" interaction and an "intensity" effect were highlighted. However post-hoc tests revealed no significant difference between continuous and intermittent exercises within the three different intensity levels (ie. CE60 vs. IE90, CE70 vs. IE100 and CE80 vs. IE110), allowing the comparison of the ventilatory data obtained during each exercise modality. For HR, an significant intensity effect was highlighted for both modalities, without "modality" effect. Finally, no effect of the exercise modality and intensity was found for Respiratory Exchange Ratio (RER).

Ventilatory response to exercise

Breathing pattern

The mean values of ventilation are shown in Table 3. Two-way ANOVA analysis highlights “intensity” and “modality x intensity” interaction effects for ventilation (p<0.05). An "intensity" effect (p<0.001) was found for $\dot{V}E$ in continuous exercise (p<0.001) but not in intermittent exercise (p=0.08). Following post-hoc tests, for each level of exercise intensity (CE60 vs. IE90, CE70 vs. IE100 and CE80 vs. IE110), ventilation and dyspnea scores were not significantly different between continuous and intermittent exercises. For tidal volume (Vt), no "intensity" or "modality" effects were found for
either CE or IE modalities. Concerning respiratory frequency (f), an "intensity" effect was found for IE
(p<0.05) and a tendency towards significant effect for CE (p=0.06). No "modality" effect was found
for this parameter.

Mechanical ventilatory constraints

- Expiratory flow limitation

Expiratory flow limitation (expFL) was experienced by 1 child during CE60, 6 children during CE70 and
6 children during CE80. Concerning intermittent exercise, expFL was observed for 3, 4 and 6 children
during IE90, IE100 and IE110 respectively (Figure 3.b). Individual values of ExpFL ranged between 10
– 90% of Vt. Only one child showed expFL during all the continuous and intermittent exercises. Mean
values of expFL for the whole population ranged from 5% to 29% of Vt and from 13% to 23% of Vt for
the continuous and intermittent exercises respectively (Figure 3.a).

- Flow-limited (FL) vs. non flow-limited (NFL) comparison

Within each exercise, the population was divided into two groups according to the presence or
absence of an expiratory flow limitation (expFL) during exercise. The children who presented expFL
made up the flow-limited group (FL group). The non flow-limited group (NFL) was composed of the
other children.

For continuous exercise at 60% of MAS, only one child experienced an expFL versus 10 children
making up the NFL group, which made comparison impossible.

No significant difference was highlighted between the two groups for breathing pattern (Vt and f) in
any of the exercises.

Breathing reserve was significantly lower in the FL than the NFL group during continuous exercise, for
CE70 (30.8 ± 11.6 for FL and 48.8 ± 10.2 for NFL; p=0.02) and CE80 (21.8 ± 10.1 for FL and 42.1 ± 10.9
for NFL; p=0.01). During all intermittent exercises, no significant difference for BR was found.
between FL and NFL groups for IE90 (38.8 ± 1.2 for FL and 50.9 ± 10.2 for NFL), IE100 (33.9 ± 7.9 for FL and 45.2 ± 12.2 for NFL) and IE110 (24.2 ± 22.2 for FL and 46.7 ± 13.9 for NFL).

3 - Flow volume loops and tidal volume regulation.

The mean values of resting and exercise pulmonary parameters are recapitulated in Table 4. IRV decreased significantly from rest to exercise for all continuous or intermittent exercises (p<0.05). ERV increased significantly from rest to exercise for CE70, IE100 and IE110 (p<0.05). For IC, a significant difference was observed between rest and exercise for CE70, IE100 and IE110 (p<0.05). No significant differences were found for IC/FVC and ERV/FVC between rest and exercise values, except for IE110 (p<0.05). IRV/FVC decreased significantly between rest and exercise for all the exercises. In the same way, Vt/IC was significantly higher than at rest for all the exercises except for CE70 and IE100 (p<0.05).

For all the parameters of mechanical ventilatory constraints (expFL, Vt/IC, IC/FVC, IRV/FVC and ERV/FVC), there were no significant "modality" and "intensity" effects (Table 4 and Figure 3.a). However, an "intensity" effect tended to be significant for expFL during continuous exercise (p=0.065).
Discussion

The purpose of the study was to evaluate the ventilatory response during continuous and intermittent exercises and to determine if one of these two exercise modalities could induce greater mechanical ventilatory constraints than the other. Our results showed that both exercise modalities (continuous and intermittent) could induce mechanical ventilatory constraints in healthy prepubescent children, as several children presented expiratory flow limitation (expFL) during continuous and intermittent exercises with no influence due to exercise modality.

Some limits should be considered for this study, mainly concerning recorded exercise flow/volume loops. As mentioned by some authors, expFL assessment is highly dependent on the placement of exercise flow/volume loop within maximal flow/volume loop. This limit has been taken in account with the realization of inspiratory capacity (IC) maneuvers after exercise flow/volume loop measurement, allowing drift correction. The IC maneuver has already been used to enhance reproducibility of the flow/volume loop method.

As described above, the aim of the study was to compare mechanical ventilatory constraints (expiratory flow limitation and dynamic hyperinflation) and breathing pattern (ventilation, tidal volume and breathing frequency) during continuous and intermittent exercises with exercise intensities inducing similar metabolic demand. Even if a significant interaction for oxygen uptake was highlighted, it appears that, within the different levels of exercise intensity (low, medium and high), the metabolic demand ($\dot{V}O_2$) was matching for the pair of tasks concerning the two exercise modalities. In other words, no significant difference was highlighted for $\dot{V}O_2$ between CE60 vs. IE90, CE70 vs. IE100 and CE80 vs. IE110, allowing the comparison of the breathing pattern data and mechanical ventilatory constraints data obtained during each exercise.
Effects of exercise intensity on breathing pattern

As expected, ventilation for the continuous exercise modality increased with greater exercise intensity. However, during intermittent exercises, ventilation increased slightly, but not significantly, with the increase in exercise intensity. These specific ventilation evolutions according to exercise modality could be due to the fact that, during 15s – 15s intermittent exercises performed by the children in this study, the time of running was rather short. Hence, the ventilatory system would not seem to have enough time to adapt to the ventilatory demand induced by the exercise intensity. However, within the three intensity levels (i.e. low, medium or high), no significant difference was highlighted between continuous and intermittent exercises. These results could logically be explained since the intensities of intermittent exercises were specifically chosen in order to be matched with continuous exercise intensities in terms of energy expenditure (i.e. oxygen uptake), as already reported by Berthoin et al. The absence of significant difference for ventilation between both exercise modalities was also required in order to compare breathing pattern components (Vt and f) correctly. In fact, several studies have reported that for a particular subject, the regulation of the breathing pattern at a given level of ventilation is largely independent of the cause of the increased ventilation.

During all the continuous and the intermittent exercises, our results showed that the increase in ventilation was mainly due to an increase in respiratory frequency. This result supports the findings in the literature and revealed that, whatever the exercise modality, children presented rapid and shallow breathing. However, differences in ventilatory regulation according to exercise modality seemed to exist, as a "modality" effect was found for ventilatory equivalent in carbon dioxide (VE/\text{\textit{V}}\text{CO}_2). Post-hoc analysis revealed that, in general, intermittent exercise modality induced higher \text{\textit{VE}}/\text{\textit{V}}\text{CO}_2 values than continuous exercise modality. This could be explained firstly, by a chemical regulation due to a higher acidosis level during intermittent exercise and, secondly, by a
movement frequency encountered during intermittent exercise which could induce a greater ventilatory response.

Effects of exercise intensity on mechanical ventilatory constraints

As described by Johnson et al., the assessment of breathing reserve (BR) could be an indicator of the occurrence of mechanical ventilatory constraints during exercise. In all the previous studies reporting BR values in children, the exercise performed has been incremental. This difference in protocols makes it impossible to compare our results with the previous studies, which is normal, since this is the originality of our study. In our study, BR significantly decreased during CE and IE whereas there was no “intensity” effect for VE during IE. This result is surprising and reinforces the work of Johnson et al. asserting that breathing reserve is a general and inappropriate parameter for the study of mechanical ventilatory constraints during exercise.

The study of mechanical ventilatory constraints with exercise flow/volume loops brings more information on the adaptation of the ventilatory system during exercise.

In our study, the number of expiratory flow limitation cases increased with exercise intensity in both exercise modalities. For the highest intensity exercises, more than 50% of the whole population (6 of the 11 children studied) showed an expiratory flow limitation. Individual expiratory flow limitation ranged between 10 – 90% of Vt. These values are in accordance with values of expFL found in the literature. In fact, Nourry et al. reported an increase in the number of observations of expFL in non-athlete prepubescent children (8 children out of the 18 studied) with the increase in intensity during the maximal graded test, ranging between 16 – 78% of Vt. The occurrence of expFL during sub-maximal (CE60, CE70, CE80 and IE90) and supra-maximal (IE100, IE110) exercises is not surprising, since a previous study has reported the case of expFL from 30% of maximal aerobic power and intensities prescribed in our study were all higher than this threshold value. As with ventilatory response during exercise, the occurrence of expFL in our population was heterogeneous as some
children experienced expFL during IE90 and IE110 but not during IE100 for example. The heterogeneity of expFL occurrence has also previously been described in children and could be explained by the different levels of ventilatory system maturation.

Thus, for both exercise modalities, the increase in ventilation was generally associated with a significant decrease in IRV and IRV/FVC and an increase in Vt/IC from rest to exercise without significant modification of ERV/FVC and IC/FVC ratios, whatever the exercise performed. These results attested to the absence of dynamic hyperinflation. The absence of significant modification of ERV/FVC and IC/FVC ratios during exercise attested to a specific breathing pattern for children, whatever the exercise modality, in comparison with an adult population.

Effects of exercise modality on mechanical ventilatory constraints

The exercise modality had no effect on breathing reserve, as similar values were found during continuous and intermittent exercises for the three intensity levels. Tidal volume regulation was not influenced by a "modality" effect either. Following statistical analysis, exercise modality was noted to have no effect on the occurrence and/or the severity of expFL. This absence of "modality" effect invalidated our hypothesis. In fact, as higher intensities are frequently used during intermittent exercises, we had hypothesized that the higher ventilatory demand induced by the high-intensity intermittent exercises would induce greater mechanical ventilatory constraints. The absence of a "modality" effect for ventilation could be an explanation for the absence of a "modality" effect on mechanical ventilatory constraints.

In the present study, the assessment of the ventilatory response corresponded to an intermittent exercise design comprising 15s of exercise followed by 15s of passive recovery. However many modalities of intermittent exercises exist, such as 30s – 30s, with passive or active recovery. Our results may only be relevant for this intermittent exercise design. In fact, any change in parameters...
defining intermittent exercises could modify the ventilatory response values and so alter the
breathing pattern, breathing strategy and the occurrence of mechanical ventilatory constraints
during intermittent exercises. Yet, on the other hand, the 15s – 15s design was chosen as this
intermittent exercise design has previously been used quite often in the literature and has generally
been well accepted by children.24,31

In conclusion, exercise modality does not seem to be a predominant factor in mechanical ventilatory
constraint occurrence during exercise. Nevertheless, the exercise intensity seems to be an important
factor in inducing mechanical ventilatory constraints, as the number of occurrences and the severity
increased with intensity increased. We could conclude that neither of the modalities studied induced
more or greater mechanical ventilatory constraints than the other, but exercise intensities specific to
each modality might be greater sources of exacerbation for mechanical ventilatory constraints.

Acknowledgements

We thank all the children and their parents who took part in this study for their participation and
their devotion. Data quality assurance was assumed by Clinical Investigation Center of Lille (CIC-9301-
Inserm-CHRU). Regulatory aspects were performed by the designed “Good Clinical Practices
sponsor” as University Regional Centre Hospital (CHRU). Financial support was assumed by a grant
from the French Ministry of Health (regional PHRC n° 1904 – 2005).
References

Figure legends

Figure 1: Design of continuous and intermittent exercise tests.

With MAS: maximal aerobic speed. For intermittent modality, each vertical band corresponds to a 15 sec exercise period.

Figure 2: Exercise tidal volume plotted within maximal flow/volume loop

With MFVL: maximal flow/volume loop determined at rest; ExpFL: expiratory flow limitation corresponding to the part of tidal flow/volume loop that meets or exceeds MFVL; EELV: end-expiratory lung volume determined by inspiratory capacity relative to forced vital capacity; EILV: end-inspiratory lung volume determined by tidal volume relative to inspiratory capacity; Vt: tidal volume; IRV: inspiratory reserve volume; ERV: expiratory reserve volume; FVC: forced vital capacity; IC: inspiratory capacity.

Figure 3: Expiratory flow limitation during the six performed exercises.

Values are expressed as mean ± SD. Graph 3.a: mean expiratory flow limitation for the whole population. Graph 3.b: mean expiratory flow limitation for the flow-limited group. ExpFL corresponds to expiratory flow limitation expressed in percentage of tidal volume that meets or exceeds maximal flow/volume loop. Thus, the flow limit group was composed of the children who showed an ExpFL during exercise.

CE60, CE70 and CE80 correspond to continuous exercise at 60%, 70% and 80% of maximal aerobic speed; IE90, IE100 and IE110 to intermittent exercise at 90%, 100% and 110% of maximal aerobic speed.
Title Page

Title: Comparison of mechanical ventilatory constraints between continuous and intermittent exercises in healthy prepubescent children.

Benoit BOREL1-2; Erwan LECLAIR1-2; Delphine THEVENET3; Laurent BEGHIN4-5, Frédéric GOTTRAND 5 and Claudine FABRE1-2.

1 : Univ Lille Nord de France, F-59000 Lille, France.
3 : M2S, ENS Cachan – Antenne de Bretagne, Campus de Ker-Lann, France.
4 : Centre d’Investigation Clinique, CIC-9301-CHRU-INSERM de Lille IFR 114 ; Institut de Médecine Prédictive et Thérapeutique de Lille, Lille - France.
5 : Interrelations nutrition, inflammation, et infection au cours des maladies respiratoires chroniques de l’enfant (EA 3925), Université de Lille 2 Droit et Santé, Faculté de médecine, Lille - France.

Corresponding author :
Claudine Fabre, EA 3608,Faculté des Sciences du Sport et de l’Education Physique, 9 rue de l’université 59790 RONCHIN - FRANCE
Tel : +33 (0)3 20 88 73 76 / Fax : +33 (0)3 20 88 73 63 /
Email : benoit.borel-2@univ-lille2.fr /

Running title: Mechanical ventilatory constraints in children
Abstract

Background: The aim of this study was to evaluate the occurrence and severity of mechanical ventilatory constraints in healthy prepubescent children during continuous and intermittent exercise.

Methods: Twelve prepubescent children (7 – 11 years old) performed 7 exercises on a treadmill: one graded test for the determination of maximal aerobic speed (MAS), three continuous exercises (CE) at 60, 70 and 80% of MAS and three intermittent exercises (IE), alternating 15s of exercise with 15s of passive recovery, at 90, 100 and 110% of MAS. During each CE and IE, tidal flow/volume loops were plotted within a maximal flow/volume loop (MFVL) measured at rest before each exercise. Expiratory flow limitation (expFL expressed in %Vt) was defined as the part of exercise tidal volume (Vt) meeting the boundary of MFVL. Breathing strategy was estimated by measuring inspiratory capacity relative to forced vital capacity and tidal volume relative to inspiratory capacity. Other breathing pattern parameters (ventilation VE, Vt, respiratory frequency f) were continuously recorded during exercise.

Results: An "intensity" effect was found for VE during CE (p<0.001) but not during IE (p=0.08). The increase in VE was predominantly assumed by an increase in f for both exercise modalities. During each exercise, several children heterogeneously experienced expFL ranging between 10 – 90%Vt. For all exercises, Vt was predominantly regulated by an increase in Vt/IC with no change in IC/FVC from rest to exercise. Finally, no significant "modality" effect was found for mechanical ventilatory constraint parameters (expFL, VT/IC and IV/FVC).

Discussion: We could conclude that neither of the modalities studied induced more mechanical ventilatory constraints than the other, but that exercise intensities specific to each modality might be greater sources of exacerbation for mechanical ventilatory constraints.

Keywords: children, exercise modality, ventilatory response, flow/volume loop
Introduction

In the literature, it has been reported that children show specific ventilatory adaptations in comparison with adults during exercise. In fact, children present a phenomenon of hyperventilation for a similar level of relative intensity in comparison with adults. This phenomenon of hyperventilation in children is characterized by a higher respiratory equivalent in oxygen ($\dot{V}E/\dot{V}O_2$) in children than in adults 1-4 and could result from a specific breathing pattern. The latter is characterized by rapid and shallow breathing in children, defined by higher values of respiratory frequency and lower values of tidal volume than in adults 5.

Moreover, as already shown in adults during incremental exercise, mechanical ventilatory constraints were also highlighted in children during exercise 6-12. Such constraints represented the balance between ventilatory demand and ventilatory capacity 6 and could easily be identified by estimating breathing reserve (BR) 6. However, BR provides no information on breathing pattern, or on the source and type of ventilatory constraints. This type of information could be obtained by using the exercise flow/volume loops method, consisting in plotting tidal flow/volume loops within maximal flow/volume loops during exercise 6. By using this method, some studies have assessed mechanical ventilatory constraints in children during incremental exercise and reported several cases of expiratory flow limitation during high intensities of the incremental exercise 13,14. Thus, Nourry et al reported an "intensity" effect for mechanical ventilatory constraint occurrence and severity during a maximal graded test in trained or untrained prepubescent children 13,14. From these results, we have hypothesized that intermittent exercise could induce higher mechanical ventilatory constraints than continuous exercise, as the exercise intensities prescribed for intermittent exercises are higher than those prescribed for continuous exercises. The answers to this question could enlighten us on specific ventilatory adaptations in children during two exercise modalities frequently encountered...
during everyday life, contrary to current data from the literature, which is only based on incremental
exercise.

The aim of this study was 1) to evaluate and compare breathing pattern and tidal flow/volume loops
between continuous and intermittent exercises in healthy prepubescent children, so as to determine
if both exercise modalities could induce mechanical ventilatory constraints and 2) to determine the
effects of the exercise modality on the severity of potential ventilatory constraints, in order to
determine if one exercise modality was more restrictive than the other on the children’s ventilatory
system.
Methods

Population
Twelve 7 – 11 year old healthy prepubescent children volunteered to participate in this study, which had previously received approval from the local ethics committee. Parents and children were informed as to the modalities of the study and then gave their written, informed consent prior to any involvement in it. All the children were free of respiratory or cardiac diseases and of orthopedic counter indications for physical exercise, performed less than 3h/week of extra academic physical activity and their sum of pubertal stages was lower than 3. Sexual maturity was evaluated from pubertal stages, according to Tanner's method: indices of breast, pubic hair and genital development. The same physician made all the observations for all the children.

Study design
All the children came to the laboratory three times within a one-month period, with at least 48 hours between two evaluation days. At the beginning of each visit, a resting ECG and a clinical examination were performed. During the first visit, spirometry and sexual maturity were evaluated, followed by a period of familiarization and realization of a maximal graded test on a treadmill. Measurement of pulmonary gas exchanges allowed the determination of peak oxygen uptake (\(\dot{V}O_2 \text{peak} \)) and maximal aerobic speed (MAS). During the last two visits, the children performed three continuous (continuous visit) and three intermittent (intermittent visit) exercises on the treadmill in a random order. Prior to the exercises, spirometry was performed and, subsequent to them, measurements of pulmonary gas exchanges, heart rate and exercise flow/volume curves were carried out.

Spirometry
At each visit, the children underwent spirometry before each of the exercises performed (Vmax Encore, Sensormedics, Viasys Healthcare, USA). Each child was seated on a chair and fitted with a noseclip. All the lung tests were carried out by the same physician respecting American Thoracic Society recommendations. For each child, three measurements of maximal flow/volume loops (MFVL) were carried out, allowing the determination of forced vital capacity (FVC) and forced expiratory volume in 1 second (FEV₁). Among the registered measurements, the MFVL with the greatest combination of FVC and FEV₁ was retained.

Cardio-respiratory parameters

At each visit and during all exercise tests, the children wore a mouthpiece connected to a breath-by-breath gas analyzer (V max Encore laboratory system, Sensormedics, Viasys Healthcare, USA), allowing the measurement of oxygen uptake (\(\dot{V}O_2\)), carbon dioxide output (\(\dot{V}CO_2\)), ventilation (\(VE\)), tidal volume (Vt) and respiratory frequency (f). In order to ensure accurate measurements, \(O_2\) and \(CO_2\) analyzers were calibrated before each exercise test, using ambient air and two gases of known \(O_2\) concentration (16% and 26%) and \(CO_2\) concentration (4% and 0%). The calibration of the pneumotachograph was performed using a 3-liter syringe following the manufacturer's recommended procedures.

Heart rate (HR) was continuously monitored with a heart rate monitor (Polar S810, Polar Electro Oy, Kempele, Finland). The data acquisition frequency for HR was set at 5 sec.

Borg's CR-10 scale \(^{17}\) (ranging from 0 to 10) was used during all the exercises in order to evaluate dyspnea. This scale was explained to the children at the beginning of each visit and was shown to them at the end of each exercise.

Maximal graded test
A period of familiarization on the treadmill was proposed for all the children, consisting in explaining the security procedures and letting them walk and run on it. After explaining the exercise to the children, the test began with a resting period of three minutes in a standing position on the treadmill. Subsequently, a warm-up period of 3 minutes at 3km.h\(^{-1}\) was performed. The exercise began with one minute at 4 km.h\(^{-1}\), then the speed was increased by 0.5 km.h\(^{-1}\) every minute. During the whole exercise, pulmonary gas exchanges and heart rate were continuously recorded and the values were averaged every 30 seconds. The exercise ended when the children were no longer able to maintain the imposed running speed. It was judged that they had performed a maximal exercise when 3 or more of the following criteria were obtained: visible exhaustion (excessive hyperpnea, facial flushing, sweating, discomfort)\(^{18}\), maximal heart rate >90% of predicted maximal heart rate (208-0.7 x age)\(^{19}\), a plateau in VO\(_2\) despite increasing running speed or a final respiratory exchange ratio (RER) higher than 1.0 \(^{20}\). The maximal aerobic speed (MAS), corresponding to the speed at the last completed stage \(^{21}\), was used as a reference value for the calculation of the individualized speeds of the continuous and intermittent exercises.

Continuous and intermittent visits

At each of the two other visits, the children performed 3 continuous (CE) or 3 intermittent exercises (IE). Figure 1 shows the design for each exercise-testing visit. A resting period of three minutes was firstly observed. First, children rested for three minutes. Then, a 6-minute exercise period was carried out, immediately followed by a 4-minute period of passive recovery, with measurement of gas exchanges. After that, the mouthpiece of the pulmonary gas exchange apparatus was removed until the next exercise. Between two exercises, a 30-minute rest period was observed, without taking any measurements. For the continuous exercises, the 6-minute exercise period was performed at an individualized and constant speed. For intermittent exercises, the exercise period was divided into periods of 15s of running followed by 15s of passive recovery, except for the last minute of each.
intermittent exercise which was divided into one 30s period of running and one 30s period of passive recovery, so as to perform exercise tidal flow/volume loop measurement. In order to avoid the inertia of the treadmill for the two exercise modalities, the treadmill belt was set in motion at the adequate running speed before the beginning of the exercise period. The children were instructed to put their feet on both sides of the belt of the treadmill and to get on the belt at the beginning of the exercise period. For intermittent exercises, as the treadmill was not stopped at the end of each 15-second running period, the children were instructed to get on or off the treadmill after each 15-second period of running or passive recovery. Leaving the treadmill consisted in putting their feet on both sides of it. Hence, the children were familiarized with getting on or off the treadmill before the intermittent exercises and were helped by an adult.

Continuous exercises intensities corresponded to 60% (CE60), 70% (CE70) and 80% (CE80) of MAS. These intensities were always performed in this order. The intermittent exercise intensities corresponded to 90% (IE90), 100% (IE100) and 110% (IE110) of MAS and here also, this order was kept for all the subjects. These MAS intensity percentages were chosen as they are frequently used for continuous and intermittent exercises respectively. Three intensity levels could be described: low (CE60 vs. IE90), middle (CE70 vs. IE100) and high (CE80 vs. IE110).

For all the continuous and intermittent exercises performed by the children, the mean values of ventilation rate ($\dot{V}O_2$, $\dot{V}E$, Vt, f, $\dot{V}E/\dot{V}O_2$, $\dot{V}E/\dot{V}CO_2$ and HR, reported in the "Results" section, were obtained by averaging raw data during the first 30 seconds of the last minute of each exercise. This period of measurement corresponded to the time of exercise flow/volume loop measurement.

Determination of ventilatory constraints

For each continuous and intermittent exercise, ventilatory constraints were firstly determined with the calculation of breathing reserve (BR). BR was calculated based on maximal $\dot{V}E$ reached during the exercise and the estimated maximal voluntary ventilation (MVV). It corresponded to how closely
maximal $\dot{V}E$ achieved during exercise approached MVV. The BR calculation equation was the following:

$$BR \, (\%) = \frac{[MVV - \dot{V}E_{max}]}{MVV} \times 100$$

where MVV was determined according to the following equation 6,23: $MVV = FEV_1 \times 35$ and $\dot{V}E_{max}$ corresponded to the maximal value of $\dot{V}E$ reached during each continuous or intermittent exercise. The MVV was estimated for each exercise performed, with the FEV_1 measured just before the exercise.

In order to evaluate mechanical ventilatory constraints and breathing strategy during the exercise, exercise tidal flow/volume loops (tidal F/V loops) were recorded just once, at the end of the first 30 seconds of the last minute of each exercise using a pneumotachograph. Tidal F/V loops corresponded to a mean of ten tidal breaths recorded and were computer averaged before a maximal inspiratory capacity (IC) maneuver. This maneuver allows correction of drift phenomena, as described by Johnson et al 6. During exercise, a drift phenomenon could appear in the volume signal due to electrical or physiological changes over time. This drift must be corrected in order to obtain correctly placed tidal F/V loops within MFVL. Thus, the maximal inspiratory capacity maneuver was performed immediately after tidal F/V loop measurement. This maximal IC maneuver was compared to the maximal IC determined at rest. After the maneuver, the computer could correctly plot tidal F/V loops within the MFVL determined before the exercise. For each tidal F/V loop measurement, the mean values of $\dot{VO}_2, \dot{VE}, Vt, f, \dot{VE}/\dot{VO}_2, \dot{VE}/\dot{VCO}_2$ and HR were calculated at the moment of measurement (corresponding to the mean of the first 30 seconds of the last minute of exercise).

Expiratory flow limitation (expFL) corresponds to the part of tidal F/V loop that meets or exceeds the expiratory boundary of the MFVL and is expressed as a % of tidal volume (%Vt). In order to determine breathing strategy, the regulation evolution of different ratios was analyzed. Hence,
inspiratory capacity (IC) relative to forced vital capacity (IC/FVC), expiratory reserve volume relative to vital capacity (ERV/FVC), tidal volume relative to inspiratory capacity (Vt/IC) and inspiratory reserve volume relative to vital capacity (IRV/FVC) were estimated (Figure 2).

5 Statistical analysis

All the values were expressed as means ± standard deviation (mean ± SD). For each parameter, data normality was verified with a Kolmogorov-Smirnov test.

In order to determine the effect of exercise modality, a two-way repeated measure analysis of variance (ANOVA) was performed for all the parameters. The factors were "exercise intensity" and "exercise modality". When the ANOVA F ratio was significant, the mean values were compared by using pairwise multiple comparison procedures (Bonferroni post-hoc test).

For intra-modality comparison, a one-way repeated measure analysis of variance (ANOVA) was performed for all the parameters. The factor was "exercise intensity". When the ANOVA F ratio was significant, the mean values were compared by using pairwise multiple comparison procedures (Bonferroni post-hoc test).

For rest versus exercise values comparison within the same modality, a "paired t-test" was carried out.

For all the tests, significance was set at the 0.05 level.
Results

Anthropometric, spirometric and maximal values at incremental exercise

Respiratory data from one subject were unworkable. Thus, anthropometric, spirometric and maximal exercise values of the eleven children were analyzed (8 boys and 3 girls; Table 1). For each child, 3 criteria of maximality at least were fulfilled, showing that the graded exercise was maximal.

Mean cardiorespiratory values (\bar{VO}_2, HR, RER) measured during continuous and intermittent exercises for the whole population are shown in Table 2. For \bar{VO}_2 only, a significant "intensity x modality" interaction and an "intensity" effect were highlighted. However, post-hoc tests revealed no significant difference between continuous and intermittent exercises within the three different intensity levels (IE60 vs. IE90, IE70 vs. IE100 and IE80 vs. IE110), allowing the comparison of the ventilatory data obtained during each exercise modality. For HR, an significant intensity effect was highlighted for both modalities, without "modality" effect. Finally, no effect of the exercise modality and intensity was found for Respiratory Exchange Ratio (RER).

Ventilatory response to exercise

Breathing pattern

The mean values of ventilation are shown in Table 3. Two-way ANOVA analysis highlights “intensity” and “modality x intensity” interaction effects for ventilation (p<0.05). An "intensity" effect (p<0.001) was found for $\bar{V}E$ in continuous exercise (p<0.001) but not in intermittent exercise (p=0.08). Following post-hoc tests, for each level of exercise intensity (CE60 vs. IE90, CE70 vs. IE100 and CE80 vs. IE110), ventilation and dyspnea scores were not significantly different between continuous and intermittent exercises. For tidal volume (Vt), no "intensity" or "modality" effects were found for
either CE or IE modalities. Concerning respiratory frequency (f), an "intensity" effect was found for IE (p<0.05) and a tendency towards significant effect for CE (p=0.06). No "modality" effect was found for this parameter.

Mechanical ventilatory constraints

- Expiratory flow limitation

Expiratory flow limitation (expFL) was experienced by 1 child during CE60, 6 children during CE70 and 6 children during CE80. Concerning intermittent exercise, expFL was observed for 3, 4 and 6 children during IE90, IE100 and IE110 respectively (Figure 3.b). Individual values of ExpFL ranged between 10 – 90% of Vt. Only one child showed expFL during all the continuous and intermittent exercises. Mean values of expFL for the whole population ranged from 5% to 29% of Vt and from 13% to 23% of Vt for the continuous and intermittent exercises respectively (Figure 3.a).

- Flow-limited (FL) vs. non flow-limited (NFL) comparison

Within each exercise, the population was divided into two groups according to the presence or absence of an expiratory flow limitation (expFL) during exercise. The children who presented expFL made up the flow-limited group (FL group). The non flow-limited group (NFL) was composed of the other children.

For continuous exercise at 60% of MAS, only one child experienced an expFL versus 10 children making up the NFL group, which made comparison impossible.

No significant difference was highlighted between the two groups for breathing pattern (Vt and f) in any of the exercises.

Breathing reserve was significantly lower in the FL than the NFL group during continuous exercise, for CE70 (30.8 ± 11.6 for FL and 48.8 ± 10.2 for NFL; p=0.02) and CE80 (21.8 ± 10.1 for FL and 42.1 ± 10.9 for NFL; p=0.01). During all intermittent exercises, no significant difference for BR was found
between FL and NFL groups for IE90 (38.8 ± 1.2 for FL and 50.9 ± 10.2 for NFL), IE100 (33.9 ± 7.9 for FL and 45.2 ± 12.2 for NFL) and IE110 (24.2 ± 22.2 for FL and 46.7 ± 13.9 for NFL).

- Flow volume loops and tidal volume regulation.

The mean values of resting and exercise pulmonary parameters are recapitulated in Table 4. IRV decreased significantly from rest to exercise for all continuous or intermittent exercises (p<0.05). ERV increased significantly from rest to exercise for CE70, IE100 and IE110 (p<0.05). For IC, a significant difference was observed between rest and exercise for CE70, IE100 and IE110 (p<0.05). No significant differences were found for IC/FVC and ERV/FVC between rest and exercise values, except for IE110 (p<0.05). IRV/FVC decreased significantly between rest and exercise for all the exercises. In the same way, Vt/IC was significantly higher than at rest for all the exercises except for CE70 and IE100 (p<0.05).

For all the parameters of mechanical ventilatory constraints (expFL, Vt/IC, IC/FVC, IRV/FVC and ERV/FVC), there were no significant "modality" and "intensity" effects (Table 4 and Figure 3.a).

However, an "intensity" effect tended to be significant for expFL during continuous exercise (p=0.065).

1 **Discussion**

2 The purpose of the study was to evaluate the ventilatory response during continuous and intermittent exercises and to determine if one of these two exercise modalities could induce greater mechanical ventilatory constraints than the other. Our results showed that both exercise modalities (continuous and intermittent) could induce mechanical ventilatory constraints in healthy prepubescent children, as several children presented expiratory flow limitation (expFL) during continuous and intermittent exercises with no influence due to exercise modality.

3 Some limits should be considered for this study, mainly concerning recorded exercise flow/volume loops. As mentioned by some authors \(^6,13\), expFL assessment is highly dependent on the placement of exercise flow/volume loop within maximal flow/volume loop. This limit has been taken in account with the realization of inspiratory capacity (IC) maneuvers after exercise flow/volume loop measurement, allowing drift correction. The IC maneuver has already been used to enhance reproducibility of the flow/volume loop method \(^6\).

4 As described above, the aim of the study was to compare mechanical ventilatory constraints (expiratory flow limitation and dynamic hyperinflation) and breathing pattern (ventilation, tidal volume and breathing frequency) during continuous and intermittent exercises with exercise intensities inducing similar metabolic demand. Even if a significant interaction for oxygen uptake was highlighted, it appears that, within the different levels of exercise intensity (low, medium and high), the metabolic demand (\(\dot{V}O_2\)) was matching between the pair of tasks concerning the two exercise modalities. In other words, no significant difference was highlighted for \(\dot{V}O_2\) between CE60 vs. IE90, CE70 vs. IE100 and CE80 vs. IE110, allowing the comparison of the breathing pattern data and the mechanical ventilatory constraints data obtained during each exercise.
Effects of exercise intensity on breathing pattern

As expected, ventilation for the continuous exercise modality increased with greater exercise intensity. However, during intermittent exercises, ventilation increased slightly, but not significantly, with the increase in exercise intensity. These specific ventilation evolutions according to exercise modality could be due to the fact that, during 15s – 15s intermittent exercises performed by the children in this study, the time of running was rather short. Hence, the ventilatory system would not seem to have enough time to adapt to the ventilatory demand induced by the exercise intensity. However, within the three intensity levels (i.e. low, medium or high), no significant difference was highlighted between continuous and intermittent exercises. These results could logically be explained since the intensities of intermittent exercises were specifically chosen in order to be matched with continuous exercise intensities in terms of energy expenditure (i.e. oxygen uptake), as already reported by Berthoin et al. The absence of significant difference for ventilation between both exercise modalities was also required in order to compare breathing pattern components (Vt and f) correctly. In fact, several studies have reported that for a particular subject, the regulation of the breathing pattern at a given level of ventilation is largely independent of the cause of the increased ventilation.

During all the continuous and the intermittent exercises, our results showed that the increase in ventilation was mainly due to an increase in respiratory frequency. This result supports the findings in the literature and revealed that, whatever the exercise modality, children presented rapid and shallow breathing. However, differences in ventilatory regulation according to exercise modality seemed to exist, as a "modality" effect was found for ventilatory equivalent in carbon dioxide (VE/\(\dot{V}CO_2\)). Post-hoc analysis revealed that, in general, intermittent exercise modality induced higher VE/\(\dot{V}CO_2\) values than continuous exercise modality. This could be explained firstly, by a chemical regulation due to a higher acidosis level during intermittent exercise and, secondly, by a
movement frequency encountered during intermittent exercise which could induce a greater ventilatory response.

Effects of exercise intensity on mechanical ventilatory constraints

As described by Johnson et al., the assessment of breathing reserve (BR) could be an indicator of the occurrence of mechanical ventilatory constraints during exercise. In all the previous studies reporting BR values in children, the exercise performed has been incremental. This difference in protocols makes it impossible to compare our results with the previous studies, which is normal, since this is the originality of our study. In our study, BR significantly decreased during CE and IE whereas there was no “intensity” effect for VE during IE. This result is surprising and reinforces the work of Johnson et al. asserting that breathing reserve is a general and inappropriate parameter for the study of mechanical ventilatory constraints during exercise.

The study of mechanical ventilatory constraints with exercise flow/volume loops brings more information on the adaptation of the ventilatory system during exercise.

In our study, the number of expiratory flow limitation cases increased with exercise intensity in both exercise modalities. For the highest intensity exercises, more than 50% of the whole population (6 of the 11 children studied) showed an expiratory flow limitation. Individual expiratory flow limitation ranged between 10 – 90% of Vt. These values are in accordance with values of expFL found in the literature. In fact, Nourry et al. reported an increase in the number of observations of expFL in non-athlete prepubescent children (8 children out of the 18 studied) with the increase in intensity during the maximal graded test, ranging between 16 – 78% of Vt. The occurrence of expFL during sub-maximal (CE60, CE70, CE80 and IE90) and supra-maximal (IE100, IE110) exercises is not surprising, since a previous study has reported the case of expFL from 30% of maximal aerobic power and intensities prescribed in our study were all higher than this threshold value. As with ventilatory response during exercise, the occurrence of expFL in our population was heterogeneous as some
children experienced expFL during IE90 and IE110 but not during IE100 for example. The
heterogeneity of expFL occurrence has also previously been described in children11 and could be
explained by the different levels of ventilatory system maturation.

Thus, for both exercise modalities, the increase in ventilation was generally associated with a
significant decrease in IRV and IRV/FVC and an increase in Vt/IC from rest to exercise without
significant modification of ERV/FVC and IC/FVC ratios, whatever the exercise performed. These
results attested to the absence of dynamic hyperinflation. The absence of significant modification of
ERV/FVC and IC/FVC ratios during exercise attested to a specific breathing pattern for children,
whatever the exercise modality, in comparison with an adult population.

\textit{Effects of exercise modality on mechanical ventilatory constraints}

The exercise modality had no effect on breathing reserve, as similar values were found during
continuous and intermittent exercises for the three intensity levels. Tidal volume regulation was not
influenced by a "modality" effect either. Following statistical analysis, exercise modality was noted to
have no effect on the occurrence and/or the severity of expFL. This absence of "modality" effect
invalidated our hypothesis. In fact, as higher intensities are frequently used during intermittent
exercises, we had hypothesized that the higher ventilatory demand induced by the high-intensity
intermittent exercises would induce greater mechanical ventilatory constraints. The absence of a
"modality" effect for ventilation could be an explanation for the absence of a "modality" effect on
mechanical ventilatory constraints.

In the present study, the assessment of the ventilatory response corresponded to an intermittent
exercise design comprising 15s of exercise followed by 15s of passive recovery. However many
modalities of intermittent exercises exist, such as 30s – 30s, with passive or active recovery14. Our
results may only be relevant for this intermittent exercise design. In fact, any change in parameters
defining intermittent exercises could modify the ventilatory response values and so alter the
breathing pattern, breathing strategy and the occurrence of mechanical ventilatory constraints
during intermittent exercises. Yet, on the other hand, the 15s – 15s design was chosen as this
intermittent exercise design has previously been used quite often in the literature and has generally
been well accepted by children.24,31

In conclusion, exercise modality does not seem to be a predominant factor in mechanical ventilatory
constraint occurrence during exercise. Nevertheless, the exercise intensity seems to be an important
factor in inducing mechanical ventilatory constraints, as the number of occurrences and the severity
increased with intensity increased. We could conclude that neither of the modalities studied induced
more or greater mechanical ventilatory constraints than the other, but exercise intensities specific to
each modality might be greater sources of exacerbation for mechanical ventilatory constraints.

Acknowledgements

We thank all the children and their parents who took part in this study for their participation and
their devotion. Data quality assurance was assumed by Clinical Investigation Center of Lille (CIC-9301-
Inserm-CHRU). Regulatory aspects were performed by the designed “Good Clinical Practices
sponsor” as University Regional Centre Hospital (CHR). Financial support was assumed by a grant
from the French Ministry of Health (regional PHRC n° 1904 – 2005).
References

Figure legends

Figure 1: Design of continuous and intermittent exercise tests.

With MAS: maximal aerobic speed. For intermittent modality, each vertical band corresponds to a 15 sec exercise period.

Figure 2: Exercise tidal volume plotted within maximal flow/volume loop

With MFVL: maximal flow/volume loop determined at rest; ExpFL: expiratory flow limitation corresponding to the part of tidal flow/volume loop that meets or exceeds MFVL; EELV: end-expiratory lung volume determined by inspiratory capacity relative to forced vital capacity; EILV: end-inspiratory lung volume determined by tidal volume relative to inspiratory capacity; Vt: tidal volume; IRV: inspiratory reserve volume; ERV: expiratory reserve volume; FVC: forced vital capacity; IC: inspiratory capacity.

Figure 3: Expiratory flow limitation during the six performed exercises.

Values are expressed as mean ± SD. Graph 3.a: mean expiratory flow limitation for the whole population. Graph 3.b: mean expiratory flow limitation for the flow-limited group. ExpFL corresponds to expiratory flow limitation expressed in percentage of tidal volume that meets or exceeds maximal flow/volume loop. Thus, the flow limit group was composed of the children who showed an expFL during exercise.

CE60, CE70 and CE80 correspond to continuous exercise at 60%, 70% and 80% of maximal aerobic speed; IE90, IE100 and IE110 to intermittent exercise at 90%, 100% and 110% of maximal aerobic speed.
Table 1: Anthropometric, spirometric and maximal values at incremental exercise.

<table>
<thead>
<tr>
<th>Parameter (units)</th>
<th>Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>8.6 ± 1.4</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>135.2 ± 9.4</td>
</tr>
<tr>
<td>Body mass (kg)</td>
<td>29.0 ± 5.8</td>
</tr>
<tr>
<td>BMI (kg.cm⁻²)</td>
<td>15.7 ± 1.5</td>
</tr>
<tr>
<td>FVC (L)</td>
<td>2.1 ± 0.4</td>
</tr>
<tr>
<td>FVC (% of theoretical value)</td>
<td>99.6 ± 11.5</td>
</tr>
<tr>
<td>FEV₁ (L)</td>
<td>1.8 ± 0.4</td>
</tr>
<tr>
<td>FEV₁ (% of theoretical value)</td>
<td>101.8 ± 12.3</td>
</tr>
<tr>
<td>VO₂ max (L.min⁻¹)</td>
<td>1.5 ± 0.4</td>
</tr>
<tr>
<td>VO₂ max (mL.min⁻¹.kg⁻¹)</td>
<td>50.3 ± 8.2</td>
</tr>
<tr>
<td>HR max (bpm)</td>
<td>186.5 ± 10.6</td>
</tr>
<tr>
<td>RER max</td>
<td>1.0 ± 0.1</td>
</tr>
<tr>
<td>MAS (km.h⁻¹)</td>
<td>10.0 ± 1.6</td>
</tr>
</tbody>
</table>

With BMI : Body Mass Index ; FVC : Forced Vital Capacity ; FEV₁ : Forced Expiratory Volume in 1 Second ; VO₂ peak : peak oxygen uptake ; HRmax : maximal heart rate ; RERmax : maximal respiratory exchange ratio ; MAS : maximal aerobic speed.
Table 2: Cardio-respiratory data during continuous and intermittent exercises

<table>
<thead>
<tr>
<th>Intensity level</th>
<th>Low</th>
<th>Medium</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CE60</td>
<td>IE90</td>
<td>CE70</td>
</tr>
<tr>
<td>VO(_2) (L.min(^{-1}))</td>
<td>0.92 ± 0.27 μ</td>
<td>1.03 ± 0.22 μ</td>
<td>1.10 ± 0.27 μ</td>
</tr>
<tr>
<td>HR (bpm)</td>
<td>135.0 ± 11.9 μ</td>
<td>146.4 ± 17.3 μ</td>
<td>152.1 ± 10.6 μ</td>
</tr>
<tr>
<td>RER</td>
<td>0.94 ± 0.05 μ</td>
<td>0.94 ± 0.07 μ</td>
<td>0.96 ± 0.04 μ</td>
</tr>
</tbody>
</table>

Values are expressed in mean ± SD. CE60, CE70 and CE80 represented continuous exercises at 60%, 70% and 80% of maximal aerobic speed (MAS). IE90, IE100 and IE110 represented intermittent exercises at 90%, 100% and 110% of MAS. VO\(_2\): oxygen uptake; HR: heart rate; RER: Respiratory exchange ratio.

$: p<0.05$ for CE60 vs. CE70
μ: p<0.05 for CE60 vs. CE80 or IE90 vs. IE110 comparisons
Table 3: Respiratory parameters for the continuous and intermittent exercises.

<table>
<thead>
<tr>
<th>Intensity level</th>
<th>Exercise</th>
<th>Low</th>
<th>Middle</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CE60</td>
<td>IE90</td>
<td>CE70</td>
</tr>
<tr>
<td>V_e (L.min$^{-1}$)</td>
<td></td>
<td>28.6 ± 7.5</td>
<td>33.1 ± 6.5</td>
<td>33.7 ± 7.8 $§$</td>
</tr>
<tr>
<td>Vt (mL)</td>
<td></td>
<td>616.8 ± 230.4</td>
<td>665.6 ± 224.8</td>
<td>665.5 ± 317.5</td>
</tr>
<tr>
<td>f (cycles.min$^{-1}$)</td>
<td></td>
<td>49.8 ± 16.5</td>
<td>51.8 ± 12.2 $µ$</td>
<td>57.4 ± 19.5</td>
</tr>
<tr>
<td>V_i/VO$_2$</td>
<td></td>
<td>31.8 ± 3.3</td>
<td>32.3 ± 3.0</td>
<td>31.2 ± 2.9</td>
</tr>
<tr>
<td>V_i/VCO$_2$</td>
<td></td>
<td>32.4 ± 2.6</td>
<td>32.9 ± 2.9</td>
<td>32.1 ± 3.1</td>
</tr>
<tr>
<td>BR (%)</td>
<td></td>
<td>51.4 ± 12.4 $§µ$</td>
<td>46.9 ± 9.7 $µ$</td>
<td>39.0 ± 14.0 $§$</td>
</tr>
<tr>
<td>Dyspnea</td>
<td></td>
<td>1.1 ± 1.2 $§$</td>
<td>1.1 ± 1.5 $µ$</td>
<td>3.1 ± 2.4</td>
</tr>
</tbody>
</table>

Values are expressed in mean ± SD. CE60, CE70 and CE80 represented continuous exercises at 60%, 70% and 80% of maximal aerobic speed (MAS). IE90, IE100 and IE110 represented intermittent exercises at 90%, 100% and 110% of MAS. VO$_2$: oxygen uptake; mean VO$_2$: mean oxygen uptake of the last two minutes of exercise; V_e: ventilation at tidal FV loop measurement; Vt: tidal volume; f: respiratory frequency; V_e/VO$_2$ and V_e/VCO$_2$: respiratory equivalent in oxygen and in carbon dioxide; BR: breathing reserve.

$§$: p<0.05 for CE60 vs. CE70 or IE90 vs. IE100 comparisons
$µ$: p<0.05 for CE70 vs. CE80 or IE100 vs. IE110 comparisons
$§$: p<0.05 for CE70 vs. CE80 or IE100 vs. IE110 comparisons

µ: p<0.05 for CE60 vs. CE80 or IE90 vs. IE110 comparisons
Table 4: Ventilatory response at rest and during exercise.

<table>
<thead>
<tr>
<th></th>
<th>CE60</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rest</td>
<td>Exercise</td>
<td>Rest</td>
<td>Exercise</td>
<td>Rest</td>
<td>Exercise</td>
</tr>
</tbody>
</table>
| Vt | 0.49 ± 0.23 | 0.62 ± 0.23 | 0.55 ± 0.29 | 0.67 ± 0.32 | 0.51 ± 0.25 | 0.69 ± 0.35 *
| IRV | 1.00 ± 0.25 | 0.79 ± 0.19 ** | 0.91 ± 0.28 | 0.68 ± 0.25 * | 0.95 ± 0.18 | 0.67 ± 0.17 **
| ERV | 0.65 ± 0.24 | 0.74 ± 0.26 | 0.63 ± 0.22 | 0.74 ± 0.23 * | 0.64 ± 0.25 | 0.74 ± 0.29 *
| IC | 1.49 ± 0.26 | 1.40 ± 0.24 | 1.47 ± 0.31 | 1.35 ± 0.27 * | 1.45 ± 0.30 | 1.35 ± 0.35 *
| Vt/IC | 0.32 ± 0.14 | 0.43 ± 0.11 * | 0.37 ± 0.19 | 0.48 ± 0.16 | 0.34 ± 0.12 | 0.49 ± 0.13 **
| IC/FVC | 0.70 ± 0.08 | 0.66 ± 0.07 | 0.70 ± 0.07 | 0.65 ± 0.07 | 0.70 ± 0.08 | 0.65 ± 0.11 *
| IRV/FVC | 0.47 ± 0.09 | 0.38 ± 0.09 ** | 0.44 ± 0.13 | 0.34 ± 0.13 * | 0.47 ± 0.09 | 0.33 ± 0.12 **
| ERV/FVC | 0.30 ± 0.08 | 0.34 ± 0.07 | 0.30 ± 0.07 | 0.35 ± 0.07 | 0.30 ± 0.08 | 0.35 ± 0.11 |

<table>
<thead>
<tr>
<th></th>
<th>IE90</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rest</td>
<td>Exercise</td>
<td>Rest</td>
<td>Exercise</td>
<td>Rest</td>
<td>Exercise</td>
</tr>
</tbody>
</table>
| Vt | 0.55 ± 0.24 | 0.67 ± 0.23 | 0.58 ± 0.30 | 0.60 ± 0.15 | 0.48 ± 0.16 | 0.59 ± 0.20 *
| IRV | 0.96 ± 0.24 | 0.76 ± 0.20 * | 0.88 ± 0.24 | 0.72 ± 0.23 * | 0.97 ± 0.18 | 0.72 ± 0.11 **
| ERV | 0.61 ± 0.24 | 0.71 ± 0.32 | 0.66 ± 0.18 | 0.80 ± 0.18 * | 0.60 ± 0.22 | 0.74 ± 0.23 *
| IC | 1.51 ± 0.36 | 1.42 ± 0.31 | 1.45 ± 0.33 | 1.32 ± 0.31 * | 1.45 ± 0.20 | 1.31 ± 0.25 *
| Vt/IC | 0.36 ± 0.10 | 0.47 ± 0.10 * | 0.38 ± 0.17 | 0.46 ± 0.08 | 0.33 ± 0.09 | 0.44 ± 0.08 *
| IC/FVC | 0.72 ± 0.09 | 0.68 ± 0.11 | 0.69 ± 0.07 | 0.62 ± 0.07 | 0.72 ± 0.07 | 0.64 ± 0.08 *
| IRV/FVC | 0.46 ± 0.10 | 0.36 ± 0.10 * | 0.42 ± 0.09 | 0.34 ± 0.07 * | 0.48 ± 0.10 | 0.36 ± 0.08 **
| ERV/FVC | 0.28 ± 0.09 | 0.32 ± 0.11 | 0.31 ± 0.07 | 0.38 ± 0.07 | 0.28 ± 0.07 | 0.36 ± 0.08 *

Values are expressed by mean ± SD. CE60, CE70 and CE80 correspond to continuous exercise at 60%, 70% and 80% of maximal aerobic speed; IE90, IE100 and IE110 to intermittent exercise at 90%, 100% and 110% of maximal aerobic. Vt: tidal volume (liters), IRV: inspiratory reserve volume (liters), ERV: expiratory reserve volume (liters), IC: inspiratory capacity (liters), FVC: forced vital capacity (liters). *: p<0.05, **: p<0.01.
Figure 1

32x40mm (300 x 300 DPI)
Figure 2
Values are expressed as mean ± SD. Graph 3.a: mean expiratory flow limitation for the whole population. Graph 3.b: mean expiratory flow limitation for the flow-limited group. ExpFL corresponds to expiratory flow limitation expressed in percentage of tidal volume that meets or exceeds maximal flow/volume loop. Thus, the flow limit group was composed of the children who showed an expFL during exercise.

CE60, CE70 and CE80 correspond to continuous exercise at 60%, 70% and 80% of maximal aerobic speed; IE90, IE100 and IE110 to intermittent exercise at 90%, 100% and 110% of maximal aerobic speed.