
Facets of the set theoretic representation of categorical

data

Israël-César Lerman

To cite this version:
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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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Facets of the set theoretic representation of categorical data

Israël-César LERMAN*

Abstract: There are three basic notions in Data Analysis : object, category and descriptive attribute. Two description cases
are of concern ; describing an object set O or describing a category set C. For the former case the set theoretic representation
of a given attribute is defined with respect to O and for the latter, it is defined within each category of C. For these
representations a given descriptive attribute is interpreted in terms of a relation with a given arity defined on the described
set. We propose in this work a unique principle for the set theoretic representation of a descriptive attribute of different
types : boolean, numerical, nominal categorical, ordinal categorical, preordonance categorical, taxonomic categorical and
taxonomic preordonance categorical. The formal representations of these different types are explicited and compared in both
cases : for an object set description and for a category set description. Then these representations are applied in interesting
real examples.

Key-words: Categorical attribute, Relational description, Category set, Preordonances and Taxonomies

Aspects de la représentation ensembliste des données catégorielles

Résumé : Trois notions basiques interviennent en Analyse des Données : la notion d’objet, celle de catégorie et celle
d’attribut descriptif (on dit encore variable descriptive). La description peut concerner un ensemble d’objets ou un ensemble
de catégories. Dans le premier cas, l’attribut est représenté par rapport à l’ensemble des objets qu’il décrit et dans le second cas,
il est représenté au sein de chacune des catégorie. L’attribut est interprété dans les termes d’une relation d’arité donnée sur
l’ensemble des objets qu’il décrit. Nous proposons dans ce travail de synthèse un principe unique de représentation ensembliste
des attributs de description de différents types : booléen, numérique, catégoriel (on dit aussi qualitatif) nominal, catégoriel
ordinal, catégoriel préordonnance, catégoriel taxonomique et catégoriel préordonnance taxonomique. Nous explicitons et nous
comparons les représentations formelles de ces différents types d’attributs ; d’une part, dans le cas de la description d’un
ensemble d’objets et d’autre part, dans le cas de la description d’un ensemble de catégories.

Mots clés : Attribut catégoriel, Description relationnelle, Ensemble de catégories, Préordonnances et Taxonomies
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2 Israël César Lerman

1 Introduction

We show in this report how the set theoretic representation of descriptive attributes allows to cover a very large scope of
data description in Data Analysis. For this representation the attributes are interpreted in terms of relations on the described
object set. For a given descriptive attribute, the arity of the associated relation is defined by the structure endowing the value
set of this attribute. A typology of the descriptive attributes based on the mentioned structure is proposed. In this typology the
following types are defined : boolean, numerical, nominal categorical, ordinal categorical, preordonance categorical, taxonomic
categorical and taxonomic preordonance categorical. We will study below these different types and we will mutually compare
them. The categorical attributes will play a very important part in our analysis. A value of a categorical attribute is called
“category”. Conditions of exclusivity and exhaustivity are required for the different categories of a categorical attribute (see
Section 3.1). A category is determined by the intuitive notion of “concept”.

Formal definition, mathematically expressed, of a “concept” in real life is very difficult Sutcliffe (1992) [45]. It depends
on a knowledge domain and on recognition techniques. For example, let us consider the cirrhosis concept defined in the
hepatho-biliary pathology. For this pathology, we assume a universe U of liver ill persons. U is a real or hypothetical finite
set and each of its elements defines an elementary and indivisible object interesting the domain studied. On a given element
of U , the concept may be TRUE or FALSE. A series of clinical tests are necessary in order to recognize if a given person
is a cirrhosis ill. A concept is defined in “intension” (one can say in “comprehension”) from a precise description using
primitive concepts. It is detected by the domain expert for two reasons : first, its frequency is not negligible ; and second, its
consequences are globally comparable on all the objects where it is observed.

Let us denote by γ such a concept, for example the “liver cirrhosis”. γ is defined with respect to the universe U of the
ill liver persons. γ is represented by the subset of U , that we denote by U(γ), whose disease is cirrhosis. Equivalently, a
boolean attribute corresponds bijectively to the concept γ. This attribute, denoted by aγ , is a mapping of U onto the set
{0, 1} comprising two codes 0 and 1 :

aγ : U → {0, 1} (1)

For a given u in U , aγ(u) = 1 (resp., 0) if γ is TRUE (resp., FALSE) on u. In these conditions, the above subset U(γ)
of U can be expressed as follows :

U(γ) = a−1
γ (1) (2)

where a−1
γ (1) is the reciprocal image of 1.

U(γ) is called “extension” of the concept γ at the level of U .
The introduced concept notion is boolean. However, its definition may require non-boolean attributes. Consider the

following example taken in the framework of an epidemiological survey concerning a male adult population living in a given
area and aged 18-60 years. The concept “smoking more than 20 cigarettes a day” is a boolean concept. Nevertheless, its
definition requires a non-boolean attribute defined by “counting”. The scale value of this attribute is the set of integer
numbers.

The notion of a value scale associated with a descriptive attribute is preliminary to define descriptions in Data Analysis
Suppes and Zinnes (1963) [44]. A given descriptive attribute a is defined at the level of a universe U of objects concerned
by a set of concepts (see the above example where the concepts are those of the hepatho-biliary pathology). By denoting E
the value scale of a, a is mathematically interpreted as a mapping of U in E , associating with each element u of U , a unique
value in E denoted by a(u).

a : U → E

u 7→ a(u) (3)

Generally, in Data Analysis and in Machine Learning the whole set U is not available. We only dispose a finite set O
of objects representing U . Mostly, O is a subset of U , O ⊂ U . The observed results of a data analysis at the level of O are
infered at the level of U . For this purpose, O has to be a statistical representative sample of U . Usually, this condition is
statisfied, and specially in Data Mining where the size of O is generally very large (many millions or even more) Therefore,
for the following, our reference object set will be O. Thus, the above attribute a will be regarded as a mapping of O into E :
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Set theoretic representation of data 3

a : O → E

u 7→ a(u) (4)

Now, let us define the scale E under the form E = {e1, e2, ..., eh, ..., ek} where eh is one possible value of the attribute
a, 1 ≤ h ≤ k. The meaning of the studied field enables to define a structure on the value set E . This structure induces a
mathematical relation on O. In Sections 2 and 3 we shall detail the different types of descriptive attributes and their formal
representations at the level of the object set O. The main type of a descriptive attribute is defined from the arity of the
relation on O, induced by the structure of the value set E . We distinguish three main types I, II and III. For I the induced
relation on O is unary. It comprises the boolean attribute and the numerical one (Sections 2.1 and 2.2). For II, the relation is
binary, non-valuated or valuated. This type includes the nominal categorical attribute (Section 3.1), the ordinal categorical
attribute (Section 3.2), the ranking attribute (Section 3.3) and the categorical attribute valuated by a numerical similarity
(Section 3.4). These two types (I and II) cover a large range of formal descriptions in combinatorial data analysis (see Sections
2, 3, 5 and 6). Type III is defined when the attribute scale induces a binary relation - generally defined by a ranking - on the
set P2(O) (resp., O ×O) of unordered (resp., ordered) pairs of elements of O. Then, the preordonance categorical attribute,
the taxonomic attribute and the taxonomic preordonance attribute are presented in Sections 4.1, 4.2 and 4.3, respectively. In
Section 4.4 preordonance representations of the different types of descriptive attributes are proposed. Section 4 is devoted for
defining the representation of the different types of attributes when describing a set of categories instead of a set of objects.

Relational representation of descriptive attributes is clearly emphasized in our work. One of its specificities consists in
highlighting the set theoretic representation sustaining the relational one Lerman (1970) [17], (1973) [18], (1981) [19], (1992)
[21], [22] and (2009) [27]. In our work we were very influenced by the M.G. Kendall work Kendall (1948) [12]. Several authors
in Combinatorial Data Analysis interpret, implicitly or explicitly, the representation of a descriptive attribute of an object
set O in terms of of a binary relation on O. This is generally done for a given type of descriptive attribute [e.g. nominal
(resp., ordinal) categorical attribute], in relation with a specific method to be developed Guénoche and Monjardet (1987)
[10], Hubert (1987) [11], Marcotorchino and Michaud (1979) [36], Marcotorchino (2009) [35], Giakoumakis and Monjardet
(1987) [8], Régnier (1965) [40]. In the following, we wish to present a general framework independent of a given methodology,
in which the different types of decriptive attributes and their formal representations will be expressed.

2 Representation of the attributes of type I

As mentioned above, an attribute of type I induces a unary relation on O. Such an attribute can be called an “incidence”
attribute. For this type we distinguish exactly the “boolean” attribute and the “numerical” one.

2.1 The boolean attribute

This attribute is also called a “presence-absence” attribute. It has been already considered above in Section 1. As
previously, let us denote it by a. Formally, a is a mapping of O onto the set {FALSE, TRUE}. Mostly, in Data Analysis,
FALSE and TRUE are coded by the integer numbers 0 and 1, respectively. For the following mapping diagram, also
considered above in a different context,

a : O → {0, 1}

x 7→ a(x) (5)

a(x) denotes the value of a on x, a(x) = 1(resp., 0) if a is TRUE (resp., FALSE) for x.
a is represented by the subset O(a) of O constituted by the objects for which a is TRUE :

O(a) = a−1(1) (6)

where a−1 denotes the reciprocal mapping of a.
Now, let us introduce the cardinalities of O and O(a) that we denote by n and n(a) : n = card(O) and n(a) = card(O(a)).

Thus, the proportion or relative frequency p(a) of objects for which a is TRUE is defined by p(a) = n(a)/n.
The negated boolean attribute ā is defined by
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4 Israël César Lerman

(∀x ∈ O), ā(x) = TRUE if and only if a(x) = FALSE (7)

Clearly, with ā, is associated O(ā), which is the complementary subset of O(a) in O. We can also define n(ā) = card(O(ā))
and
p(ā) = n(ā)/n. Trivially, we have p(a) + p(ā) = 1.

The couple {a, ā} is the value set of a binary catégorical attribute. Let us denote this attribute by α. The empirical
distribution of α is defined by the ordered pair [p(a), p(ā)].

Thus, with logically independent boolean attributes 1, binary categorical attributes can be associated. Conversely, with
categorical binary attributes, boolean attributes can be associated by retaining for each binary categorical attribute, one of
its two possible values. Generally and for significance statistical reasons, the retained value is the least frequent among the
both values.

Boolean attributes occur very frequently in database descriptions. For the above example in Section 1 where O is defined
by a sample of liver ill persons, the concept of liver cirrhosis specifies a boolean attribute.

2.2 The numerical attribute

The value scale of a numerical attribute is the set R of real numbers. Mostly, in Data Analysis, numerical descriptions
are considered for measuring quantities (e.g. weight, size, ...). In these conditions, we shall assume a positive scale including
0 for the numerical attribute. In any case, this does not restrict the generality. Indeed, by representing geometrically R with
an horizontal axis directed from left to right, the scale origin can be moved to left in order to make positive the observed
values of the numerical attribute on the object set O. Let us denote by v the numerical attribute. v is a mapping of O on
the set that we denots by R+ of real positive numbers

v : O → R+ (8)

associating with each object o of O, a positive real number v(o)

(∀o ∈ O) o 7→ v(o) (9)

v is interpreted as a valuated unary relation :

{v(o)|o ∈ O} (10)

Thereby, boolean attribute and numerical attribute are considered at the same relational level. Indeed, their extensions
are represented in a set theoretic way at the level of the object set O : a subset of O for the boolean attribute, and a numerical
valuation on O for the numerical attribute.

Taking into account the accuracy of measurement, the scale of decimal positive numbers is largely sufficient for defining
a numerical attribute in data analysis. Therefore, by denoting D+ the latter scale, D+ can be substituted for R+ in the right
member of 8.

As mentioned above, generally and more specially in Data Mining the size of the object set O is very large. Consequently,
the size of the reached values by v on O is much smaller than the cardinality of O. Let us designate by

[x(1), x(2), ..., x(l), ..., x(m)] (11)

the increasing ordered sequence of the reached values by v on O (m < n) and introduce the subset Ol = v−1(x(l))
constituted by all objects whose v value is x(l), 1 ≤ l ≤ m. Denote nl = card[Ol], 1 ≤ l ≤ m. The empirical distribution of v
on O is defined by the sequence

1(i.e. any attribute can be derived from the others)
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Set theoretic representation of data 5

{

(x(l), fl)
}

(12)

where fl = nl/n, fl defines the relative frequency (proportion) of objects whose v value is xl, 1 ≤ l ≤ m.
As an example, let us consider the following increasing sequence of a numerical attribute v on a set of 10 objects

(1.5, 2.3, 3.4, 3.4, 3.4, 5.1, 7.2, 7.2, 8.5, 9.0)

We suppose from the accuracy measurement of v, only one decimal after the point. The above distribution (12) becomes

[(1.5, 0.1), (2.3, 0.1), (3.4, 0.3), (5.1, 0.1), (7.2, 0.2), (8.5, 0.1), (9.0, 0.1)] (13)

Thus, there are m = 7 distinct values.
In the geometrical methods of data analysis, a numerical attribute is represented by a linear form. This gives the projection

measurement on a linear axis endowed with an origin and a unit vector. To fix idea, we can assume an horizontal axis. In
these conditions, a given object o is represented by a point of the axis whose abscissa is v(o). By considering the sequence (11)
of the v values, nl distinct objects are represented by the same point that we denote by Ml, whose abscissa is xl, 1 ≤ l ≤ m.
A graphical representation, called “histogram” is obtained by drawing from each point Ml, 1 ≤ l ≤ m, an ascendant vertical
segment whose length is proportional to the relative frequency fl, 1 ≤ l ≤ m. Thus we obtain for the distribution (13) (see
Figure 2.1)

0.1

0.2

0.3

0.0 1.5 2.3 3.4 5.1 7.2 8.5 9

Fig. 1 – Histogram

In terms of factorial analysis the sequence

{

(Ml, fl)
}

(14)
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6 Israël César Lerman

defines one dimensional cloud of points where the point Ml is endowed with the positive numerical value fl, the latter
being interpreted as a weight, 1 ≤ l ≤ m.

This structure was exploited in image scalar quantization Ghazzali (1992) [7], Ghazzali, Léger and Lerman (1994) [6].In
this application the concerned numerical attribute v is the luminance for which a scale of 256 grey levels, from 0 to 255,
is established : 0 for the black and 255 for the blank. Here, the object set O is defined by the image pixels. Thus, for a
squared image comprising 512 rows and 512 columns, the object set O includes n = 512× 512 = 262144 elements. The one
dimensional cloud (14) has at most 256 points. It can be put in the following form :

{(l, fl)|0 ≤ l ≤ 255} (15)

where fl = nl/n is the proportion of image pixels whose luminance is l, 0 ≤ l ≤ 255.

2.3 Defining a categorical attribute from a numerical one

As seen above, in the framework of the attributes of general type I, corresponding to a unary relation on the object set
O, we distinguish two cases (see Sections 1 and 2). The first one is defined by the boolean attribute. The scale value of the
latter is the poorest one. The second one is defined by the numerical attribute. Its scale value is the richest one.

There are several reasons for transforming a numerical attribute into a categorical one. One important reason may be
to make homogeneous the description of the object set O. Indeed, imagine that the vast majority of the description is
provided by categorical attributes. To fix idea, we assume a small number of categories by categorical attribute. In addition,
suppose that few descriptive attributes are numerical. In these conditions it might be appropriate to transform the numerical
attributes into categorical ones (see the following Sections 3.1 and 3.2). Another important reason related to the above first
one, consists in retaining from the numerical value v(o) of v on the object o, what can be significant in this value. In fact,
knowing the exact value v(o) might be less interesting than knowing that v(o) is located inside a given interval. Indeed, in
order to categorize a numerical attribute, its interval variation is divided into subintervals.

Precisely, regarding the sequence [x(1), x(2), ..., x(l), ..., x(m)] (see equation (11)), let us denote here by a, x(1) and by b,
x(m) + ǫ, where ǫ is an arbitrary small positive number. Therefore, the attribute v takes its values in the interval [a, b[=
{x|x ∈ R+, a ≤ x < b, where, as above, R+ denotes the real positive numbers. An increasing sequence, denoted by σ :

σ = (y0 = a, y1, ..., yk, yk+1, ..., yl = b) (16)

defines a subdivision of the interval [a, b[ into a sequence of l subintervals

{

[yk, yk+1[|0 ≤ k ≤ l − 1
}

(17)

With each subinterval [yk, yk+1[, 0 ≤ k ≤ l − 1, is associated a category of a categorical attribute (see Section 3). By
denoting ck the category representing the interval [yk, yk+1[, 0 ≤ k ≤ l − 1, ck is defined by the following boolean attribute

(∀o ∈ O), ck(o) = 1(resp. 0) iff v(o) ∈ [yk, yk+1[(resp. v(o) /∈ [yk, yk+1[) (18)

Now, the fundamental question is

“How to define the subdivision σ ?”

There are a large variety of methods depending each on a given type of purpose. The simplest and the most direct one
consists in defining σ by dividing the entire interval [a, b[ into subintervals with the same length. By denoting L the length
of the interval [a, b[ : L = b− a, we have

yk+1 = yk +
L

l
(19)
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Set theoretic representation of data 7

0 ≤ k ≤ l − 1. Notice that for a given practical application this technique requires an adequate value of l. On the other
hand, for this technique, the statistical distribution of the attribute v on the object set O is not taken into account at all.

Another simple technique consists in interval division with as equal frequencies as possible. A given interval will be written
[xi, xi′ [ where i′ > i and where ni + ...+ni′ is adjusted to be as close as possible the ratio n/l. For this solution, in order to be
consistent with the statistical distribution of the attribute v, we have also to determine in a non-arbitrary way an adequate
value of l.

None of both previous techniques respect intimately the heterogeneity of the statistical distribution of v. Nevertheless, it
might exist subintervals of [a, b[ such that two consecutive and near values of these, have comparable and high frequencies.
Discovering such subintervals leads to the definition of “significant” categorical attribute (see equation (18)). Thus in Figure
2 we recognize intuitively five subintervals.

[x(1) [ [ [ [ x(m)[

Fig. 2 – Histogram-2

These subintervals correspond to high concentration zones. Precisely, clustering methods enable the discovering of such
subintervals. In these latter methods an objective criterion is optimized, locally or globally.

The interest of the well known Fisher method Fisher(1958) [5] is to maximize globally the inter-cluster inertia in case
where the number of clusters is fixed. Each cluster is represented by an interval of the sought subdivision. The method is
based on a dynamic programming algorithm.

Lafaye (1979) [14] analyzed and made effective a graphical method that we suggested the general idea. Let us consider the
number of observations in a small interval window having a fixed length. This number defines a kind of “local density”. By
moving the window from left to right along the variation range of v, we can determine the stable minima of this local density.
This stability is obtained by varying in a suitable fashion the length of the window interval. The stable local minima define
the cut points of the sought subdivision. For this method the number of the subdivision intervals is not fixed. It is a resulting
of the employed algorithm. This method shown to be particularily effective for the treatment of small samples Kerjean(1978)
[13]. In his paper [14] Lafaye gives a brief and interesting synthesis on the dicretization of numerical attributes, With this
respect, see also Rabaseda et al. (1995) [39].

In vector quantization (see the above example at the end of Section 2, considered in scalar quantization) Ghazzali (1992)
[7], Ghazzali, Léger and Lerman (1994) [6] hierarchical ascendant (or agglomerative) clustering was applied. Two methods
were employed : the Likelihood Linkage Analysis method Lerman (1993) [23] and the classical Ward method Ward (1963) [49].
In this case and for coding compression purpose the order of the number of clusters is given (for example 16). Preliminary,
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8 Israël César Lerman

it is established that each step of the agregation algorithm joins two consecutive intervals of (11) obtained previously as
clusters in the hierarchical process. A method of detecting the most consistent levels of a classification tree (see Chapters 4
of [19] and [23]) allows to obtain the wished subdivision.

A non-hierarchical dynamic and adaptative clustering method in the spirit of the K-means one, can also be applied in
order to determine a subdivision σ. The method built by A. Schroeder (1976) [41] is based on a statistical criterion having
a probabilistic nature : the likelihood classifying criterion.

For this criterion the observed cloud of points - one dimensional in our case - is considered as provided from a mixing
of probability laws, having distinct modes and distinct probability occurences, respectively, Symons (1981) [46]. Celeux and
Govaert (1993) [3] employ a stochastic algorithm for separating the entire cloud into subclouds corresponding each to one
of the probability laws. This separation enables to detect an ordered sequence of intervals dominated each by one of the
probability laws. And then, a subdivision σ of the variation range of v can be deduced. This approach may lead to fine
and sophisticated techniques. However, these assume probabilistic conditions on the shapes of the probability laws, difficult
to validate in general. On the other hand, these methods may seem conceptually too heavy for the submitted problem of
discretization of an observed numerical attribute.

3 Representation of the attributes of type II

As mentioned in Section 1, an attribute of type II induces a binary relation on O. In this section we shall consider three
sub-types of attributes. The nominal categorical attribute, the ordinal categorical attribute and the categorical attribute
valuated by a numerical similarity.

3.1 The nominal categorical attribute

Let C = {c1, c2, ..., ch, ..., ck} be the value set of a categorical attribute c. No structure is assumed on C. The attribute c
is defined by a mapping

c : O → {c1, c2, ..., ch, ..., ck} (20)

of O on C, such that for x in O, c(x) = ch if and only if x possesses the value ch, 1 ≤ h ≤ k. c1, c2, ..., ch, ... and ck are
called the categories of the categorical attribute c. The value set C is assumed exclusive and exhaustive. That is to say : each
object possesses necessarily and exactly one and only one categorical value. The attribute c induces a partition on O that
we denote by

π = {O1,O2, ...,Oh, ...,Ok} (21)

where Oh is defined by c−1(ch) that is the reciprocal image of ch, 1 ≤ h ≤ k. It is easier and without loss of generality
to assume this partition defined with labelled classes. Different expressions will be used for expressing Oh : Oh is the set of
objects where ch is TRUE, having the category ch, belonging to the category ch, ..., 1 ≤ h ≤ k.

With the partition π we associate the sequence (n1, n2, ..., nh, ..., nk) of its cardinality classes ; nh = card(Oh), 1 ≤ h ≤ k.
This sequence defines the type of the partition π. We also associate the sequence of proportions or relative frequencies
(f1, f2, ..., fh, ..., fk), where
fh = nh/n. This sequence defines the statistical distribution of c on O.

The mapping (20) can be viewed as the representation of the nominal categorical attribute c at the level of the object setO.
It assigns to each elementary object o its value c(o), which is a nominal code. It is important to realize that this representation
does not allow to compare directly two different nominal categorical attributes by comparing directly their respective values.
Indeed, given two nominal categorical attributes c and c′ we cannot compare directly the statistical distributions of c and c′

on O. This comparison requires to cross the two respective partitions induced by c and c′.
There are different alternatives to carry out this comparison (see Chapter 4 of [1] and Chapter 2 of [19]). That we adopt

requires a higher representation level. By noticing that representing a categorical attribute c is equivalent to represent the
associated partition π, we define the following binary relation Pπ :

(∀(x, y) ∈ O ×O), xPπy iff ∃h, 1 ≤ h ≤ k, s.t. x ∈ Oh and y ∈ Oh (22)
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Set theoretic representation of data 9

This binary relation is an equivalence relation (reflexive, symmetrical and transitive relation). Its symmetry and reflexive
properties allow a representation at the level of the set, that we designate by P

P = {{x, y}|x ∈ O, y ∈ O, x 6= y} (23)

of unordered object pairs. P is exactly the set P2(O) of all subsets with 2 elements of O. Another notation we consider
for P2(O) is O{2}. Two related representations denoted by R(π) and S(π) can be considered :

R(π) =
{

{x, y} ∈ P2(O)|∃h, 1 ≤ h ≤ k, x ∈ Oh and y ∈ Oh

}

(24)

and

S(π) =
{

{x, y} ∈ P2(O)|∃g 6= h, 1 ≤ g, h ≤ k, x ∈ Og and y ∈ Oh

}

(25)

With R(π) and S(π) are naturally associated their indicator functions that we denote by ρπ and σπ, respectively :

(∀{x, y} ∈ P ), ρπ({x, y}) = 1(resp., 0) iff {x, y} ∈ R(π)(resp., /∈ R(π)) (26)

and

(∀{x, y} ∈ P ), σπ({x, y}) = 1(resp., 0) iff {x, y} ∈ S(π)(resp., /∈ S(π)) (27)

The 1 and 0 values represent the logical values TRUE and FALSE respectively. The interpretation where 1 and 0 are
integer values can also be considered. In the latter case

(∀{x, y} ∈ P ), ρπ({x, y}) + σπ({x, y}) = 1 (28)

Indeed, {R(π), S(π)} defines a bi-partition of P , that is to say a partition of P into two classes. R(π) [resp.,S(π) ] is the
set of joined (resp. separated) distinct object pairs, by π.

The expressions of R(π) and S(π) with respect to the partition classes (see equation (21)) are respectively

R(π) =
∑

1≤h≤k

P2(Oh)

and

S(π) =
∑

1≤g<h≤k

Og ⋆Oh (29)

In these expressions the sign Σ means a union of disjoint subsets. P2(Oh) is the set of unordered pairs of elements of Oh,
or equivalently, the set of all 2-subsets of Oh, 1 ≤ h ≤ k. Og ⋆Oh designates the set of all unordered pairs {x, y} such that
x ∈ Og and y ∈ Oh, 1 ≤ g 6= h ≤ k. We have

card[R(π)] =
∑

1≤h≤k

nh × (nh − 1)/2

and

card[S(π)] =
∑

1≤g<h≤k

ng × nh (30)

The following formula can be verified
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10 Israël César Lerman

card[R(π)] + card[S(π)] = n× (n− 1)/2 (31)

where the left member is the cardinality of P = P2(O) (see equation (23)).
Now, let us consider an example given in Goodman and Kruskal (1954) [9] and where the origin of the data is specified.

The population is defined by white Protestant married couples living in Indianapolis, married in 1927, 1928, or 1929. Thus,
each elementary element u of our universe U is defined by such a married couple. The data sampling leads to an object set
O comprising 1438 elements. One categorical attribute c defined is the “highest level of formal education of wife”. Three
categorical values are considered. We take them as following

– c1 = “less than three years high school” ;
– c2 = “3 or 4 years high school” ;
– c3 = “one year college or more”.
The partition π (see equation (21)) includes here three classes O1, O2 and O3, where O1, O2 and O3 are the subsets of

married couples whose formal education of wife are c1, c2 and c3, respectively. We have according to the above notations,
n1 = card[O1] = 591, n2 = card[O2] = 608 and n3 = card[O3] = 239.

P2(O) is the set of unordered pairs of distinct married couples. card[P2(O)] = 1438× 1437/2 = 1033203.
P2(Oh) is the set of unordered pairs of distinct married couples whose formal education of wife is ch, 1 ≤ h ≤ 3.
– card[P2(O1)] = 591× 590/2 = 174345 ;
– card[P2(O2)] = 608× 607/2 = 184528 ;
– card[P2(O3)] = 239× 238/2 = 28441.
Equations (29) and (30) give

card[R(π)] = 174345 + 184528 + 28441 = 387314

Og ⋆ Oh is the set of unordered pairs of married couples whose formal education of wives are cg and ch, respectively,
1 ≤ g < h ≤ 3.

– card[O1 ⋆O2] = card(O1)× card(O2) = 591× 608 = 359328 ;
– card[O1 ⋆O3] = card(O1)× card(O3) = 591× 239 = 141249 ;
– card[O2 ⋆O3] = card(O2)× card(O3) = 608× 239 = 145312.
Equations (29) and (30) give

card[S(π)] = 359328 + 141249 + 145312 = 645889

We immediatly verify the equation (31) :

387314 + 645889 = 1033203

3.2 The ordinal categorical attribute

As in Goodman and Kruskal (1954) [9], we assume in the above example a total (i.e ; linear) order on the category set
{c1, c2, c3} for the categorical attribute c defined by the “Highest level of formal education of wife”. We adopt the total
order :

c1 < c2 < c3

More generally, by considering the formalism introduced in Section 3.1 (see equation (20)), for an ordinal version of the
categorical attribute c, the category set C is provided by a strict total order ; that is to say, a ranking on C. By supposing h
the rank of the category ch, 1 ≤ h ≤ k, the latter total order is defined by

c1 < c2 < ... < ch < ... < ck (32)

This structure induces a total preorder on the object set O that we denote by ω. By defining, as in Section 3.1, Oh =
c−1(ch), 1 ≤ h ≤ k, we have

O1 < O2 < ... < Oh < ... < Ok (33)
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and that means : for any (x, y) in the cartesian product Og × Oh, c(x) < c(y) if and only if g < h, 1 ≤ g < h ≤ k.
The above total order on the set of classes O1,O2, ...,Oh, ...,Ok is called the quotient order associated with ω. Given a total
preorder on O consists of given a partition on O and, additionally, a total order on its classes. This mathematical expression
formalizes the notion of a “ranking with ties” given in Kendall (1948) [12]. Now, the ordered sequence of the cardinal classes
(n1, n2, ..., nh, ..., nk), denoted as in Section 3.1, is called here composition of the total preorder ω. The statistical distribution
of c on O has the same meaning as for the nominal case (Section 3.1). It is defined by (f1, f2, ..., fh, ..., fk), where fh = nh/n,
1 ≤ h ≤ k. Nevertheless, the labelling of the different classes satisfies here the linear order (33).

As for the nominal categorical attribute and in spite of the linear order defined on the category set C = {c1, c2, ..., ch, ..., ck}
the formal valuation on O defined by (20) does not allow the comparison between ordinal categorical attributes (see Sections
2.3.2, 2.3.4 and 2.4). As discussed in Section 3.3 a ranking attribute defining a linear order on the object set can be interpreted
as a very specific case of an ordinal categorical attribute. However, the ranking function has a clear numerical interpretation
and this enables one version of the comparison between two ranking attributes defining respectively two specific numerical
valuations on the object set O.

In order to make possible the comparison between two ordinal categorical attributes in the most general case (see Chapter
2 of [19]) let us define the following binary relation Rω associated with the ordinal categorical attribute c :

(∀((x, y) ∈ O ×O)), xRωy iff c(x) < c(y) (34)

Because of no symmetry and no reflexivity of Rω, we consider the following representation set

C = {(x, y)|x ∈ O, y ∈ O, x 6= y} (35)

In other words, C is the set of all ordered pairs of distinct objects from O. Another notation we consider for C is C [2].
In C, Rω is represented by the following subset

Rω = {(x, y) ∈ C|xRωy} (36)

More explicitly Rω can be put in the following form

R(ω) =
∑

1≤g<h≤k

Og ×Oh (37)

where Σ designates a union of disjoint subsets and where Og ×Oh is the cartesian product of Og and Oh.
C can be decomposed as follows

C = R(ω) + E(ω) + S(ω) (38)

where

E(ω) =
∑

1≤h≤k

O
[2]
h

and S(ω) =
∑

1≤g<h≤k

Oh ×Og (39)

The cardinalities of the three components of c (see equation (38)) are, respectively
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12 Israël César Lerman

card[R(ω)] =
∑

1≤g<h≤k

ng × nh

card(E(ω)) =
∑

1≤h≤k

nh × (nh − 1)

card(S(ω)) =
∑

1≤g<h≤k

nh × ng (40)

Clearly,

card[R(ω)] = card(S(ω)) (41)

on the other hand, we can verify the formula

card[R(ω)] + card(E(ω)) + card(S(ω)) = n× (n− 1) (42)

Let us retake the above example in its ordinal version : c1 < c2 < c3. We have

card[R(ω)] = 591× 608 + 591× 239 + 608× 239

= 359328 + 141249 + 145312 = 645889

card(E(ω)) = 591× 590 + 608× 607 + 239× 238

= 348690 + 369056 + 56882 = 774628

In these conditions, we verify the equation (42) where the right member is equal to 1438× 1437 = 2066406.
With R(ω) is naturally associated its boolean indicator function that we denote by ρω :

(∀(x, y) ∈ C), ρω(x, y) = 1(resp., 0) iff (x, y) ∈ R(ω)(resp., /∈ R(ω)) (43)

As above (see what follows the equations (26) and (27)), 1 and 0 are interpreted as the logical values TRUE and FALSE,
respectively. However, the interpretation where 1 and 0 are numerical scorings can be taken into account. In his work Kendall
(1948) [12] uses a scoring numerical function with two values +1 and −1 in order to code a total order (ranking) R(ω) on an
object set O, coded itself by means of a given ranking R. More clearly, for the R ordered pair (x, y) such that xRy, the scoring
value is +1 (resp.,−1) if xRωy (resp., yRωx). The value +1 (resp., −1) indicates that (x, y) ∈ R(ω) (rep., (y, x) ∈ R(ω))
(see equation (36)).Thus, our set theoretic representation is equivalent to the Kendall coding of a ranking. However, for our
representation the initial ranking R is useless.

The set representation of the ordinal categorical attribute c by R(ω) (see equation (36)) does not take into account
explicitly the set of ordered pairs (x, y) of distinct objects such that x and y belong to the same class Oh c(x) = c(y) = h,
1 ≤ h ≤ k. This set is denoted by E(ω) in equations (38) and (39). However, due to (38) E(ω) is implicitly taken into
account. Indeed, E(ω) is deduced from R(ω). In order to weight the part of E(ω), the attribute c can be represented by the
following numerical scoring function denoted scoreω :

scoreω(x, y) =







1 if (x, y) ∈ R(ω)
0.5 if (x, y) ∈ E(ω)
0 if (x, y) ∈ S(ω)

(44)
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Set theoretic representation of data 13

Let us now consider the more general case where the category set C = {c1, c2, ..., ch, ..., ck} is provided by a strict partial
order. An instructive exercise we propose to the reader consists in taking up again the above set representation formalism
for this general case. For our part, we reconsider the above example of the categorical attribute “Highest level of formal
education of wife” where we only assume c1 < c2 and c2 < c3 for the categorical values (see above). Therefore, c1 and c2

are considered no comparable. This categorical scale induces a partial preorder on the object set O, defined here by married
couples. As above, denote ω this partial preorder. The expression of R(ω), E(ω) and S(ω) (see equations 37, 38 and 39)
become

R(ω) = O1 ×O3 +O2 ×O3

E(ω) = O
[2]
1 +O

[2]
2 +O

[3]
1 +O1 ×O2 +O2 ×O1

S(ω) = O3 ×O1 +O3 ×O2 (45)

where the sign + indicates a set sum defined by a union of disjoint subsets.
The scoring function defined in (44) is appropriate to code the partial strict order ω.

3.3 The ranking attribute

In his book Kendall (1948) [12] uses the ability in a given subject taught (e.g. mathematics) to rank totally and strictly
the described object set O. Thus, a linear order that we denote by ωl is induced on O. For this two conditions must be
satisfied : (i) the cardinality of O is enough small ; (ii) the scoring function is enough discriminating. The ranking attribute
r is a bijective mapping of O on the set of the first n integer numbers :

r : O → {1, 2, ..., i, ..., n} (46)

associating with a given object x of O, its rank defined as follows :

(∀x ∈ O), x 7→ r(x) = card{y|y ∈ O and y ≤ x for ωl} (47)

By using the rank function r, the representation of the ranking attribute would have been considered in the framework of
descriptive attributes of type I. Indeed, r defines a numerical valuation on the set O, given by the first n integer numbers. In
fact, this coding of a linear order leads to the Spearman coefficient Spearman(1904) [42]. But, as expressed in the preceding
Section 3.2 the originality of the Kendall representation is the level O×O of its definition. In fact, a ranking attribute can be
seen as a very particular case of an ordinal categorical attribute. For this, each class of the induced total order on O becomes
a singleton (i.e. comprises exactly one element) (see equation (33)). The representation set R(ω) (see equation (36)) becomes

R(ωl) = {(x, y)|(x, y) ∈ O ×O and r(x) < r(y)} (48)

where r(x) < r(y) is equivalent to x ≤ y and not y ≤ x for ωl.
We have

card[R(ωl)] =
n× (n− 1)

2
(49)

The “mean rank” function is an extension of the rank function (see equation (47)) employed to code a total preorder
(ranking with ties) on an object set O. For the total preorder ω considered in (33), the mean rank function, denoted rm, is
defined as follows

(∀h, 1 ≤ h ≤ k), (∀x ∈ Oh), rm(x) = n1 + n2 + ... + nh−1 +
1

2
× (nh + 1) (50)

Collection des Publications Internes de l’Irisa c©IRISA



14 Israël César Lerman

where ng = card(Og), 1 ≤ g ≤ h. The expression “mean rank” is explained by the fact that the mean rank of an arbitrary
element x of Oh, over all the linear orders compatible with the total preorder ω, is given by rm(x). The following formula is
easy verify

∑

x∈O

rm(x) =
n× (n + 1)

2
(51)

In these conditions, a total preorder ω on O and then, an ordinal categorical attribute describing O can be represented
as a particular numerical valuation on O, given by the mean rank function rm. However the nature of this representation
is very different from the relational one defined by R(ω) (see equation (36)). Indeed, the latter representation is logical. It
gives for a given ordered pair (x, y) in O ×O, a logical value.

For the above mentioned reasons, a ranking attribute inducing a linear (total and strict) order on O cannot occur in case
of the description of large data sets. However, a realistic case where such a description occurs, concerns the problem of m
rankings Kendall (1948) [12]. Let us imagine a few number of objects : n = card(O) is relatively small. O is for example a
set of manufactured products of a given type. We assume a set of m judges giving each his preferences by ranking (without
ties) the n objects. Thus, each judge defines a ranking attribute on O. In this type of data there is no restriction on the
number m of judges.

3.4 The categorical attribute valuated by a numerical similarity

We consider here the case where the category set C (see equation (20)) is provided by a numerical similarity. The latter
is supposed given a priori, for example, by an expert knowledge. Let us denote it by ξ. ξ is defined by a mapping of the
cartesian product C × C onto the real numbers. Mostly, the set value of ξ is the positive reals that is denoted by R+ :

ξ : C × C → R+

(cg, ch) 7→ ξ(cg, ch) (52)

where ξ(cg, ch) is the numerical similarity value between the categories cg and ch, 1 ≤ g, h ≤ k.
Mostly, ξ is symmetrical :

(∀(g, h), 1 ≤ g, h ≤ k), ξ(cg, ch) = ξ(ch, cg) (53)

However, real important cases of asymmetrical similarity may occur. This point will be mentioned below. On the other
hand we assume

((∀(g, h), 1 ≤ g, h ≤ k)),min[ξ(cg, cg), ξ(ch, ch)] > ξ(cg, ch) (54)

Nevertheless, ξ(ch, ch) is not necessarily invariant with respect to h,
1 ≤ h ≤ k. ξ can be figured by the following square matrix

C c1 · · · ch · · · ck

c1

...
cg ξ(cg, ch)
...
ck

Table 1 : Matrix of ξ

Now, let us consider the above example of the categorical attribute “Highest level of formal education of wife”, having
the three categories denoted c1, c2 and c3 (see Section 3.1). The matrix of ξ might be :
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C c1 c2 c3

c1 5 2 1
c2 2 4 3
c3 1 3 6

Table 2 : Matrix of ξ for the example

In fact, we have determined this matrix of numerical integer numbers from the following similarity ranking on C × C

(c1, c3) < (c1, c2) < (c2, c3) < (c2, c2) < (c1, c1) < (c3, c3) (55)

It may seem surprising that the similarity between a given category with itself is not the same whatever is this category.
This can be justified by taking into account the specificity of the concerned category. In our example, we have considered
that rarer is a category, more specific it is. Thereby, the category c3 (“one year college or more”) is more specific than c2

(“3 or 4 years high school”). Intuitively, the resemblance between two different married couples whose common category is
c3, is stronger than that between two different married couples whose common category is c2.

The valuation ξ (see equation (52)) induces a complete valuated symmetrical graph, without loops, on the object set O.
Explicitly

(∀(x, y) ∈ O[2]), ξ(x, y) = ξ[c(x), c(y)] (56)

This graph is decomposed according to the partition π (see equation (21)) as following

(∀(x, y) ∈ Og ×Oh), ξ(x, y) = ξ(cg, ch)

and

(∀(x, y) ∈ O
[2]
h , ξ(x, y) = ξ(ch, ch) (57)

1 ≤ g 6= h ≤ k.
Now, let us illustrate this graph in the framework of the above example

(∀(x, y) ∈ O1 ×O2 +O2 ×O1) ξ(x, y) = 2
(∀(x, y) ∈ O1 ×O3 +O3 ×O1) ξ(x, y) = 1
(∀(x, y) ∈ O2 ×O3 +O3 ×O2) ξ(x, y) = 3

(∀(x, y) ∈ O
[2]
1 ) ξ(x, y) = 5

(∀(x, y) ∈ O
[2]
2 ) ξ(x, y) = 4

(∀(x, y) ∈ O
[2]
3 ) ξ(x, y) = 6

Let us end this development by noticing that a nominal categorical attribute can be interpreted in terms of a very
particular similarity categorical attribute as following

(∀h, 1 ≤ h ≤ k), ξ(ch, ch) = 1

(∀(g, h), 1 ≤ g 6= h ≤ k), ξ(cg, ch) = 0 (58)

Now, for an asymmetrical similarity providing the category set of a categorical attribute, equation (53) does not hold.
On the other hand, ξ(ch, ch), 1 ≤ h ≤ k, may not be defined. Besides, equations (56) and (57) are still valid. As an example,
consider the traffic of cellular call phones between the towns of France. “Town of France” defines a categorical attribute. For
a given ordered pair (A,B) of towns of France, let us consider the number, ν(A,B), of cellular call phones emitted from A
to B. The ν function defines an asymmetrical similarity on the set of the towns of France (the category set in our example).
Indeed, generally ν(A,B) 6= ν(B,A). The object set could be the set of antennae of cellular telephone located in the different
towns.
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3.5 The valuated binary relation attribute

The definition of this attribute is directly given at the level of the cartesian product O × O where O is the object set.
Let us denote by B the binary relation defined by a given attribute. B is represented by the following subset of the cartesian
product O ×O :

R(b) = {(x, y)|(x, y) ∈ O ×O and xBy} (59)

Additionally, a valuation v on R(b) is considered. v is a mapping of R(b) on the value scale of v, denoted S in the following
expression

v : R(b)→ S (60)

Generally S is the positive reals. The valuated binary relation can be represented by a valuated graph :

{
(

(x, y), v(x, y)
)

|(x, y) ∈ R(b)} (61)

The valuated binary relation attribute is a generalization of all the above attributes considered in this Section 3. However,
it does not correspond to a categorical attribute. And, the specificity of the categorical structure is very important for
comparing attributes or building similarity indices between described objects or between categories (see Capter 3). The
attribute type considered here occurs frequently in communication problems.

4 Representation of the attributes of type III

As mentioned in the introduction (Section 1) a categorical attribute is of type III if the similarity structure of its category
set
C = {c1, c2, ..., ch, ..., ck} induces a binary relation on the set - denoted above by O{2} (see equation (23)) - of unordered
pairs of distinct objects, or on the set denoted above by O[2] (see equation (35)) of ordered pairs of distinct. Specific ordinal
similarity structures on C occur importantly for describing data Lerman and Peter (1986) [29], Lerman and Peter (2007) [32],
Ouali-Allah (1991) [37] and Peter (1987) [38]. Each of them defines a specific total preorder on O{2} (ranking with ties). We
shall distinguish below three versions of such a categorical attribute : “preordonance attribute”, “taxonomic attribute” and
“taxonomic preordonance attribute”. A set theoretic representation at the level of the cartesian product O{2}×O{2} will be
first given. Next, a representation by means of an adequate numerical valuation on O{2} will be proposed. The latter is easier
and more efficient to handle for comparing data described by such a categorical attribute. As just mentioned, for the below
presented categorical attributes, the induced total preorder is defined at the level of the set O{2} of unordered object pairs.
For this case, the ordinal similarity structure on C is symmetrical with respect to the categories to be compared. Nevertheless,
extension can be envisaged for the case where the induced total preorder is defined at the level of O[2] of ordered object
pairs. For this case the ordinal similarity on C is asymmetrical.

4.1 The preordonance categorical attribute

A “preordonance” categorical attribute is a categorical attribute whose category set C is provided by an ordinal similarity,
called preordonance on C. Formally, as said above, a preordonance on C is a total preorder on a specific set of category pairs
of C. For the categorical attributes to be introduced where the ordinal similarity is symmetrical 2, the C category pairs to be
considered is {(cg, ch)|1 ≤ g ≤ h ≤ k}. By denoting K = {1, 2, ..., h, ..., k} the category codes of the concerned attribute, the
total preorder is defined on the following set

K2 = {(g, h)|1 ≤ g ≤ h ≤ k} (62)

2The ordinal similarity between cg and ch is the same as that between ch and cg, 1 ≤ g ≤ h ≤ k.
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Lerman and Peter (1985) [29], Lerman(1987) [20], Ouali-Allah (1991) [37], Lerman (2000) [25], Lerman and Peter (2003)
[31]. In fact, we have used already and implicitly such a categorical attribute in the above example of “Highest level of formal
education of wife” (see equation (55)).

Let us now give an example concerning the problem of a database management of real estate advertisements Peter (1987)
[38]. One categorical attribute defined in this database is “subject of the transaction”. Its categories are : c1 = house,
c2 = villa, c3 = apartment, c4 = studio apartment, c5 = room, c6 = garage and c7 = piece of land. By denoting gh the
category pair (cg, ch), 1 ≤ g ≤ h ≤ k, the proposed preordonance is :

14 ∼ 15 ∼ 16 ∼ 17 ∼ 24 ∼ 25 ∼ 26 ∼ 27 ∼

35 ∼ 36 ∼ 37 ∼ 46 ∼ 47 ∼ 56 ∼ 57 ∼ 67 <

23 ∼ 34 < 13 < 45 < 12 <

11 ∼ 22 ∼ 33 ∼ 44 ∼ 55 ∼ 66 ∼ 77 (63)

where the symbols ∼ and < mean “equivalent” and “strictly lower than”, respectively.
There are in all k × (k + 1)/2 = 7 × (7 + 1)/2 = 28 pairs. This total preorder comprises 6 classes. Their respective

cardinalities (composition of the total preorder) are 16, 2, 1, 1, 1 and 7.
Generally, the expert establishes the total preorder on K2 (preordonance on C), recursively, by sorting the pairs at each

step the most similar among pairs of K2 not yet sorted.
The preordonance categorical attribute has played an important part in our formalization work of data description (see

the above references). Let us mention that this type of attribute appeared also independently with a different expression and
in a very different context in Chah (1985) [4].

The preordonance categorical attribute concept does not require a notion of metrical difference between categories.
Nevertheless, psychometric researchers consider a numerical scale measurement called “ordered metric scale” in which the
differences between categories are defined and ordered Stevens (1951) [43].

Let us now define the set theoretic representation of a preordonance categorical attribute. Denote by ω(K2) the total
preorder on (K2) (see equation (62)) expressing this preordonance attribute.

(L1, L2, ..., Lq, ..., Lr) (64)

will designate the ordered sequence of the class preorder. L1 (resp., Lr) comprises the most dissimilar (resp., similar)
category pairs. To fix idea and for consistent reasons, we can assume that the last classes are defined on the subset {(h, h)|1 ≤
h ≤ k}. However, this point is out of our representation problem. The basic representation level is the cartesian product
K2 × K2. This representation has the same nature as that given in Section 3.2 for a total preorder on an object set (see
equation(38)). But clearly, the context is different. In the latter, we define the following set sums of cartesian products

R(ω(K2)) =
∑

1≤p<q≤r

Lp × Lq (65)

P (ω(K2)) =
∑

1≤p≤r

Lp × Lp (66)

S(ω(K2)) =
∑

1≤p<q≤r

Lq × Lp (67)

Im(Lp × Lq) = (
∑

(e,f)∈Lp

Oe ⋆Of )(
∑

(g,h)∈Lq

Og ⋆Oh)

Im(Lp × Lp) = (
∑

(g,h)∈Lp

Og ⋆Oh)2 (68)

1 ≤ p < q ≤ r, where as above the sums indicate union of disjoint subsets and where Og ⋆ Oh is defined by the set of
distinct unordered pairs whose components belong to Og and Oh, respectively, 1 ≤ g ≤ h ≤ k.

In order to avoid too big combinatorial complexity we code the total preorder ω(K2) with the “mean rank function” rm

(see equation (50) expressed in another context). Referring to equation (64), denote by lq the cardinality of Lq, 1 ≤ q ≤ r.
Therefore, for a given pair (g, h) belonging to Lq we get
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rm(g, h) =
∑

1≤p<q

lp +
lq + 1

2
(69)

Thus,we can verify the equation

∑

1≤q≤r

lq =
k × (k + 1)

2

For example, for the total preorder (63), the sequence of the values of rm is

16 + 1

2
= 8.5 , 16 +

2 + 1

2
= 17.5 , 19 , 20 , 21 , 21 +

7 + 1

2
= 25

We verify that the sum of the rm ranks is equal to 28× 29/2 = 406.
Thus, a preordonance categorical attribute is coded as a specific categorical attribute valuated by a numerical similarity

(see Section 3.4), given by the mean rank function.
Let us denote by Rq the right member of (69). Rq is the common value of the mean rank function rm on the pairs (g, h)

belonging to the qth preorder class Lq (see (64)). The empirical statistical distribution of Rq on O ⋆O is given by

{(Rq,
∑

(g,h)∈Lq

(ng × nh/n[2]))|1 ≤ q ≤ r} (70)

where n[2] = n× (n− 1)/2.
We have considered above the case of symmetrical ordinal similarity for which the ordinal similarity for the ordered pair

(cg, ch) is the same as that for (ch, cg), 1 ≤ g 6= h ≤ k. As mentioned above, there might be data where the ordinal similarity
is asymmetrical Lerman and Guillaume (2011) [28], Lerman and Kuntz (2011) [16]. In this case the total preorder comparing
categories has to be established on

H2 = {(g, h)|1 ≤ g, h ≤ k} (71)

instead of on K2 (see equation (62)).
In these conditions, an analogous development as above (see equations (62) to (70)) has to be setup. In this, the non-

ordered object pairs O{2} has to be replaced by the ordered object pairs O[2]. We leave this development to the reader.

4.2 The taxonomic categorical attribute

Let us begin with an example taken from data we have processed Lerman and Peter (1988, 2007) [30], [32]. These data are
provided by biological descriptions of phlebotomine sandfly species of French Guiana Lebbe et al. (1987) [15]. Descriptions
are very complex. Relative to a descriptive categorical attribute and for subsets of category values, hierarchical logical
dependencies associated with the mother → daughter relation, have to be taken into account. Consider the attributes 1,
18, 19 and 20 defined in this database [15] and retaken in [30]. We denote them by a1, a21, a31 and a32, respectively. a1 is
the “Sex” attribute, a21 is defined by the “Number of style spines”, a31 indicates the “Distribution of 4 style spines” and
a32, the “Distribution of 5 style spines”. The code category sets of these attributes are : {1 : male 2 : female}, {1, 2, 3, 4, 5},
{1, 2, 3, 4, 5, 6} and {1, 2, 3, 4, 5}, respectively. We obtain the following taxonomic structure organizing the different attributes
according to the mother → daughter relation. Then, with a categorical value of a given attribute a daughter attribute might
be associated. For example, the attribute a21 is associated with the value 1 of the attribute a1 (see Figure 2.3).

Clearly, the attribute a21 is defined only when the a1 value is 1. It is defined on the subset of objects whose a1 value is
1 (male phlebotomine sandflies in our example). On the other hand, the attributes a31 and a32 are defined only when the
values of a21 are 4 or 5. a31 (resp., a32) is defined on the subset of objects where the value of a1 is 1 and where the value of
a21 is 4 (resp., 5). The common mother of the attributes a31 and a32 is a21.

More generally, a taxonomic categorical attribute denoted τ , is defined by an organization of logically dependent attributes.
It consists of a sequence of collections of categorical attributes of the following form :
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a1

1, a21 2, 15

1, 1 2, 2 3, 3 4, a31 5, a32

1, 4 2, 5 3, 6 4, 7 5, 8 6, 9 1, 10 2, 11 3, 12 4, 13 5, 14

1

2

3

4

Fig. 3 – Taxonomic attribute

τ = ({a1}, {a21, a22, ..., a2k2}, ..., {ap1, ap2, ..., apkp},

..., {aq1, aq2, ..., aqkq}) (72)

In the above example τ is instanciated as follows :

τ = ({a1}, {a21}, {a31, a32})

Now, let us imagine two categorical attributes a41 and a42 defined respectively for a31 = 4 and for a32 = 5. By denoting
A41 and A42 the respective category sets of a41 and a42, A41 and A42 will be placed at the same 5th level of the above
hierarchical structure (see Figure 2.3). A41 and A42 will be instanciations of the above {api, ..., api′} (i′ > i) subset of
categories. Two categorical elements of A41 (resp., A42) would have the same mother a41 (resp., a42).

The construction of a taxonomic attribute must be done in a descendant manner, level by level. The first level 1 is assigned
to the root of the taxonomy. Hence, in our example, the root is defined by the categorical attribute “Sex”. Now, consider
a given node ν defined at the lth level (l integer) and corresponding to a value of a preceding categorical attribute. The
categorical attribute aν gives rise to a (l + 1)th level, on which the values of aν are represented by different nodes. Directed
descendant arrows join the node ν to the new nodes. Thus, in the example of Figure 2.3, the node corresponding to the value
1 of a1, where the attribute a21 is defined, gives rise to the level 3 on which the nodes corresponding to the values of a21 are
placed. There are in all 5 values. Moreover, the two sets of nodes associated with the attributes a31 and a32 are placed at
the fourth level,respectively (a31 is defined for the value 4 of a21 and a32 is defined for the value 5 of a21). There are 6 values
for a31 and 5 values for a32.

Each node of the taxonomic tree representing a taxonomic attribute is labelled. There are two alternatives for this labelling
whether the concerned node is terminal or not. For a terminal node - defining a leave of the taxonomic tree - the label is a
value of a categorical attribute taking part in the taxonomy. For a non-terminal node the labelling includes two values : the
first one is defined by a categorical attribute value and the second one specifies the categorical attribute considered at this
node. As an example, consider the level 3 of the taxonomic tree given in Figure 2.3. From left to right, the first three nodes
are terminal nodes and the two last nodes are non-terminal nodes.

A lateral ranking of leaves (terminal nodes) from left to right can be considered in the taxonomic structure. This ranking
is given in the above pictured tree where there are in all 15 terminal nodes. Consider again the level 3 of the taxonomic
tree. The extreme left node is a terminal node. It is labelled by the ordered pair (1, 1). The first component is defined by
the first value of the mother categorical attribute a21. The second component is its lateral rank. The terminal node at the
extreme left of level 4 is labelled (1, 4). It corresponds to the value coded 1 of the categorical attribute a31 involved in its
mother node. It is created directly after the terminal node (3, 3) of level 3. Clearly, the lateral ranking depends on drawing
options. At the 3 level, the terminal nodes are first placed. This could have been done for the level 2. The chosen alternative
is due to legibility reason. Anyway, a precise status could be defined for a consistent and systematic technique of drawing the
taxonomic tree associated with a taxonomic attribute. This is left to the reader as an exercise. In the following each terminal
node (leave of the taxonomic tree) will be coded by its lateral rank. Notice that each terminal node can be identified with
the associated complete chain of the taxonomic tree, starting with the root and ending with it.

Now, we are going to associate bijectively with the taxonomic structure defined by the taxonomic attribute expressed by
equation (72) and its graphical representation as given in Figure 2.3, a level labelled classification tree on the set denoted
T of its terminal nodes. This is mathematically defined by a partition chain on T (see Chapter 0 of [19]). Assume that
k levels are comprised in the taxonomic structure (k = 4 for our example). The level 1 is the root level and the k level
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is determined by the terminal nodes corresponding to attributes introduced at the (k − 1)th level. In our example these
attributes are a31 and a32. Denote (P0, ..., Pj−1, Pj , ..., Pk−1) the partition chain associated with the taxonomic structure. In
order to precise this sequence of partitions, identify each non-terminal node with the subset of terminal nodes deriving from
it. As an example, the node (5, a32) is identified with the subset {10, 11, 12, 13, 14}. Besides, the node (1, a21) is identified
with the subset {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}.

P0 is the finest partition. Each of its classes is a singleton including exactly one single element. In our example P0

comprises 15 classes. Pk−1 is the least fine partition, it includes only one class grouping all the elements. Pj is deduced from
Pj−1 by aggregating nodes (terminal or not) appearing at the the level k − j + 1 of the taxonomic structure and derived
from a same categorical attribute attribute defined for a given node of the level k − j. In our example, the partition P1 is
obtained from the partition P0 by aggregating {4}, {5}, {6}, {7}, {8}, {9} on one side and by aggregating {10}, {11}, {12},
{13}, {14} on the other side. Thus, we have

P1 =
{

{1}, {2}, {3}, {4, 5, 6, 7, 8, 9}, {10, 11, 12, 13, 14}, {15}
}

The partition P2 into two classes is easily obtained

P2 =
{

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11?12, 13, 14}, {15}
}

In Chapter 0 (Section 4.2) of [19] bijective correspondence has been established between a partition chain on a finite set
E and a ultrametric distance on E given by a level notion of the classification tree associated with the partition chain. Here,
equivalently, we shall define a bijective correspondence between a taxonomic structure (see equation (72)) and a ultrametric
proximity on the set that denoted by T of its terminal nodes (see Figure 2.3). Let us recall that this ultrametric proximity
that we denote p is characterized by the following property :

(∀x, y and z ∈ T , x 6= y, x 6= z and y 6= z), p(x, y) ≥ min[p(x, y), p(y, z)] (73)

(see Chapter 0 of [19], Section 0.4.1).
Here, the node level is defined by 1 plus the number of branches joining the root of the taxonomic structure to the

concerned node. As examples in Figure 2.3, level
(

(4, a31)
)

= 3 and level
(

(5, 8)
)

= 4. For u and v belonging to T , p(u, v) is
defined by the highest node level of the taxonomic structure where u and v are aggregated. Thus, as an example relative to
the figured taxonomic tree (see Figure 2.3), p(10, 14) = 3 and p(7, 13) = 2 ; p(10, 14) > p(7, 13).

The proof of the above condition (equation (73)) is analogous to that given for the ultrametric distance associated with a
partition chain (see Chapter 0 of [19], Section 4.2). Indeed, for a subset {x, y, z} of 3 elements of T , suppose p(x, y) > p(y, z) :
the highest aggregating level of x and y is strictly greater than that of y and z. Therefore, x and y belong to the same node
- appearing at the level p(x, y) - excluding z. Otherwise p(y, z) ≤ p(x, y). Now, if p(x, y) = p(y, z), the node highest level
joining x and y is the same as that joining y and z. Hence and necessarily, the first node is identical to the second one,
because both include y. Therefore, p(x, y) = p(y, z) = p(x, z). This ends the proof of (73).

The proximity p function valuates a total preordonance on the set T of the terminal nodes ; that is to say, a total preorder
on the set

T2 = {(x, y)|x ∈ T , y ∈ T , 1 ≤ x ≤ y ≤ |T |} (74)

where |T | is the cardinality of T (|T | = 15 in the above example).
This total preorder (ranking with ties) that we denote by ω(T2) is established as follows

(∀(x, y) and (u, v) ∈ T2), (x, y) ≤ (u, v) iff p(x, y) ≤ p(u, v) (75)

The total preordonance defined on T is ultrametric in the sense given in Chapter 0 of [19], Section 4.3. More explicitly,
if ρ is a ranking function on T2 compatible with p (i.e. strictly increasing with respect to p), we have

(∀x, y, and z ∈ T ), ρ(x, y) ≥ r and ρ(y, z) ≥ r ⇒ ρ(x, z) ≥ r (76)
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where r is an arbitrary positive integer.
We adopt for the ranking function ρ, the mean rank function rm introduced above (see equations (69) and (70)).
Finally, we represent a taxonomic attribute by a ultrametric preordonance on the set T of the terminal nodes of the

associated taxonomic structure. This preordonance is numerically coded with the mean rank function defined on T2 (see
equations (74) and (75)).

Now, let us ilustrate how this represetation is established in the framework of our example. Consider the diagram of
Figure 2.3 from down to top. The root node results from aggregating the two components of all ordered pairs of the form
(i, 15), 1 ≤ i ≤ 14. Then, the first preorder class of ω(T2) includes 14 pairs. Therefore, the common mean rank of each of
them is (14+1)/2=7.5. The node (1, a21) is obtained from three types of pair aggregations. These are :

1. {(i, j)|1 ≤ i < j ≤ 3} ;

2. {(i, j)|1 ≤ i ≤ 3, 10 ≤ j ≤ 14} ;

3. {(i, j)|1 ≤ i ≤ 9, 10 ≤ j ≤ 14}.

There are in all 3 + 3 × 6 + 9 × 5 = 66 pairs. These constitute the second class of ω(T2). In these conditions the mean
rank of each of these pairs is 14 + (66 + 1)/2 = 47.5.

The nodes (4, a31) and (5, a32) are constituted at level 3. The former aggregates the components of the set of pairs
{(i, j)|4 ≤ i < j ≤ 9} and the latter those of {(i, j)|10 ≤ i < j ≤ 14}. There are in all ((6×5)/2)+((5×4)/2) = 25 pairs. They
constitute the third class preorder of ω(T2). Consequently, the common mean rank of these pairs is 14+66+ (25+1)/2 = 93
The fourth class preorder of ω(T2) is defined by all ordered pairs of the form (i, i), 1 ≤ i ≤ 15. The common mean rank
assigned to each of these pairs is 14 + 66 + 25 + (15 + 1)/2 = 113.

The expected value of the mean rank sum is easily obtained :

14× 7.5 + 66× 47.5 + 25× 93 + 15× 113 = 7260

.
ω(T2) induces a total preorder on the set O{2} of unordered object pairs. In order to explicit this total preorder (ranking

with ties), denote O(i) the O subset defined by the value i of the taxonomic attribute, 1 ≤ i ≤ |T |. The set {O(i)|1 ≤ i ≤ |T |}
defines a partition on O. Now, for i < j, 1 ≤ i < |T |, consider the unordered object pairs O(i) ⋆ O(j) (see what follows
equation(29) for its definition) and substitute in ω(T2), O(i) ⋆ O(j) for (i, j). On the other hand, substitute in ω(T2), the
unordered object pairs P2(O(i)) of O(i) for the ordered pair (i, i), 1 ≤ i ≤ |T |.

4.3 The taxonomic preordonance attribute

Let us reconsider here the ordinal similarity structure provided by a taxonomic attribute τ organizing a set of logically
dependent categorical attributes (see equation (72)). We further assume here that the category set denoted C(api) of a given
categorical attribute api is provided by a total preordonance (see Section 4.1), 1 ≤ i ≤ kp, 1 ≤ p ≤ q. These preordonances
are locally defined, attribute by attribute. They have to be integrated in the taxonomic structure. In these conditions, we
have to build a total preordonance on the set of the taxonomy leaves, or, equivalently, on the set of the associated complete
chains going from the root to the leaves. This preordonance must take into account both the preordonance defined by the
taxonomic structure and those we have just mentioned.

Such preordonance is built step by step, decreasingly according to the taxonomic resemblance between terminal nodes
(leaves of the taxonomy). The general principle consists in refining the ultrametric preordonance associated with the taxonomy
(see Section 4.2) by means of the preordonances locally defined on the category sets of the different attributes.

In order to clarify the technique, let us begin by illustrating the refinement process in the framework of our example (see
Figure 2.3). By going from the deepest level (4 in our case) to the root one, each refinement step concerns the terminal nodes
aggregated at the first time at a given level. We begin by ordering the set

∆(T ) = {(x, x)|x ∈ T } (77)

according to the leaf depth in the taxonomy : in other words, the deeper the leaf the higher the ordinal similarity between
the represented category and itself is. Thus, in case of our example (see Figure 2.3) we have

(4, 4) ∼ (5, 5) ∼ (6, 6) ∼ (7, 7) ∼ (8, 8) ∼ (9, 9)
∼ (10, 10) ∼ (11, 11) ∼ (12, 12) ∼ (13, 13) ∼ (14, 14)

> (1, 1) ∼ (2, 2) ∼ (3, 3) > (15, 15)

Collection des Publications Internes de l’Irisa c©IRISA
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By considering this ranking in a reverse manner, according to increasing ordinal similarity, the mean ranks assigned to
the three preorder classes - that we can distinguish - are 106, 108 and 115, respectively. They replace the common rank 113
(see above). The concerned sum rank is preserved. Indeed, 106 + 3× 108 + 11× 115 = 15× 113 = 1695.

Now, let us consider the passage from level 4 to level 3. A = {4, 5, 6, 7, 8, 9} and B = {10, 11, 12, 13, 14} code the category
sets of the attributes a31 and a32, respectively. A and B are constituted by terminal nodes. According to above notations
(see Sections 2.4.1 and 2.4.2), the set P2(A) (resp., P2(B)) of unordered element pairs is defined by {(x, y)|4 ≤ x < y ≤ 9}
(resp., {(x, y)|10 ≤ x < y ≤ 14}). P2(A) ∪ P2(B) determines a unique class of the total preorder defined at the level 3 by
the tree structure. This class comprises all the element pairs aggregated at the level 3 of the taxonomy. There are in all
card[P2(A)] + card[P2(B)] = 15 + 25 pairs. Two preordonance structures on the category sets A and B of the attributes a31

and a32 provide total preorders on P2(A) and P2(B), respectively. These two total preorders must be employed consistently
in order to define a unique total preorder on the entire set P2(A) ∪ P2(B). One option for this consists in requiring the
expert knowledge for ranking the category pairs of A with respect to those of B. The option we adopt uses the mean
rank functions, locally defined on P2(A) and P2(B) from the total preordonances on A and on B. These are interpreted as
numerical similarity coefficients on A and on B, respectively. Denote rA and rB these mean rank functions. The value sum
of rA (rep., rB) is (15 × 16)/2 = 120 (rep., (10 × 11)/2 = 55). In these conditions, we define a numerical function rA∪B on
P2(A) ∪ P2(B) directly deduced from rA and rB , as follows

rA∪B : P2(A) ∪ P2(B)→ V al(rA) ∪ V al(rB) (78)

where V al(rA) (resp., V al(rB)) is the value set of rA (resp., rB) and where rA∪B

(

(x, y)
)

is equal to rA

(

(x, y)
)

[resp.,

rB

(

(x, y)
)

] if {x, y} ∈ P2(A) [resp., P2(B)].
Therefore, according to the value scale of rA∪B , a total preorder on P2(A) ∪ P2(B) is established as follows

∀{x, y} and {z, t} ∈ P2(A) ∪ P2(B),

{x, y} ≤ {z, t} iff rA∪B

(

(x, y)
)

≤ rA∪B

(

(z, t)
)

(79)

This total preorder is substituted for the unique class P2(A) ∪ P2(B). A new global mean ranking function refining the
previous one is established on the set defined by this class. Recall that we had one common value 93 for all of its elements
(See Section 4.2). Necessarily the new assigned values belong to the interval [14 + 66 + 1 + 81, 14 + 66 + 25].

The nature of the passage from level 3 to level 2 is somewhat different than the preceding one. All the nodes occupying
the level 3 derive from only one mother node occupying the level 2, this being defined by the categorical attribute a21. Recall
that the unique preorder class of ω(T2) (see equation (74)) associated with the taxonomy is defined by the set of unordered
leave pairs given in equation (77). For this, the mean rank of a given pair of such a preorder class is 47.5. The category set
D of a21 is defined by {1, 2, 3, a31, a32}. A total preordonance on D enables to determine a total preorder on the mentioned
unique preorder class of ω(T2). In order to built the latter, we have to do the following substitutions

(∀x ∈ {1, 2, 3}), (x, 4) ← {(x, y) | y ∈ A}

(∀x ∈ {1, 2, 3}), (x, 5) ← {(x, y) | y ∈ B}

for {4, 5} ← {(x, y) | (x, y) ∈ A×B} (80)

where the different pairs included in a given class substitution are interpreted as equally similar, A and B have been
defined above.

Notice that the new mean rank values in the concerned class of ω(T2) are comprised between 14+1 = 15 and 14+66 = 80.
Now, let us give a general expression of the construction of a taxonomic preordonance attribute. For this purpose, we

start with the definition (72) of a taxonomic attribute τ . {api|1 ≤ i ≤ kp} is the set of the categories introduced at the pth

level in a descendant way from the top to the bottom. Some of these categories define terminal nodes of the τ structure
and some others define categorical attributes which are divided at the next (p + 1)th level (see level p = 3 of the example).
Denote P2[C(a

pi)] the set of unordered pairs of the category set C(api) of api, 1 ≤ i ≤ kp.
⋃

i P2[C(a
pi)] determines a new

unique class - by going from down to top - of the taxonomic preordonance. This unique class is refined by means of the total
preordonances defined on C(api), 1 ≤ i ≤ kp, respectively.

We begin by ordering the set ∆(T ) = {(x, x)|x ∈ T } considered in equation (77), of category pairs of the form (x, x)
where x is a terminal node (leaf) of the taxonomic structure (see above for the given example following (77)). Then and
recursively, for p = q to p = 2, the unique taxonomic class

⋃

i P2[C(a
pi)] is refined. The following steps are needed for this

refinement :

Collection des Publications Internes de l’Irisa c©IRISA



Set theoretic representation of data 23

(i) Compute the local mean rank rank function ri
m for the total preorder P2[C(a

pi)], defined from the preordonance
attribute api ;

(ii) Establish a global total preorder on
⋃

i P2[C(a
pi)] compatible with the respective local mean ranking functions ri

m,
1 ≤ i ≤ kp, that is to say :

(∀(x, y) ∈ P2[C(a
pi)], (z, t) ∈ P2[C(a

pi′)]),

(x, y) ≤ (z, t) iff ri
m(x, y) ≤ ri′

m(z, t) (81)

(iii) Begin by associating with each category set C(api) the category set Ct(api) corresponding to terminal nodes derived
from api and then, for any (x, y) belonging to P2[C(a

pi)] consider the subset A(x) [resp., A(y)] of Ct(api) defined by terminal
nodes issued from x (resp., y). In these conditions, the set leaf pairs A(x)×A(y) is substituted for (x, y) (see (80)). All the
concerned pairs are interpreted as equally similar and the mean rank function value ri

m(x, y) is applied to all of these pairs.
The set

⋃

(x,y) A(x)×A(y) ((x, y) ∈
⋃

i P2[C(a
pi)]) of terminal node pairs constituted a unique class of the total preorder

representing the taxonomic attribute. And now, this class is divided into subclasses depending on the respective preordonances
defined on the category sets C(api) and the local mean rank functions ri

m calculated for the respective total preorders on
P2[C(a

pi)], 1 ≤ i ≤ kp.
When the process ends with p = 2, we obtain a total preorder on the entire set of terminal node pairs, comprising the

pairs of ∆(T ) (see (77)). This global preordonance is valuated by means of rhe mean rank function according to increasing
ordinal similarity (see the above example).

4.4 Coding the different attributes in terms of preordonance or similarity categorical attri-

butes

We have just seen above (Sections 4.2 and 4.3) how the taxonomic categorical attribute can be represented as a specific
preordonance categorical attribute (see Section 4.1). By applying for each of them the mean rank function in order to code
the associated total preorder on the category pairs (see (70)) we obtain categorical attributes whose value sets are evaluated
by specific similarity measures (see Section 3.4), defined by the mean rank functions.

In fact, preordonance coding of the different attributes of types I or II can be considered. And this may contribute to
enrich the scale value of the concerned attribute. Let us make clear this representation for the following cases : (i) boolean
(Section 2.1) ; (ii) numerical (Section 2.2) ; (iii) nominal categorical (Section 3.1) ; (iv) ordinal categorical (Section 3.2) and
(v) ranking (Section 3.3).

4.4.1 Preordonance coding of the boolean attribute

As expressed in Section 2.1, with a boolean attribute a is associated a binary categorical attribute whose value set being
{a, ā}, where ā is the negated boolean attribute of a. Let us index by 1 (resp., 2) the category a (resp., ā) and consider the
following set of ordered pairs

B2 = {(1, 2), (1, 1), (2, 2)} (82)

The preordonance is defined by a total preorder (ranking with ties) on B2, and for this three alternatives can be envisaged :

1. (1, 2) < (1, 1) ∼ (2, 2) ;

2. (1, 2) < (1, 1) < (2, 2) ;

3. (1, 2) < (2, 2) < (1, 1).

There is no enrichment of the scale value in the first case. However, this representation is not equivalent to that given in
Section 2.1 for comparing categorical attributes (see Chapter 2 of [19]).

Between 2 and 3 the chosen preordonance structure depends on the most significant category. If a (resp., ā) is the most
important category according to expert knowledge, then the preordonance 3 (resp., 2) is adopted. For the example given in
Section 1 the category a = cirrhosis is more significant than ā = non-cirrhosis. Therefore, the preordonance 3 is considered.
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4.4.2 Preordonance coding of the numerical attribute

Here we consider the presentation given in Section 2.2 frm which the notations are retaken. In fact, the proposed repre-
sentation is given by a categorical attribute valuated by a numerical similarity. In this case asymmetrical similarity is needed.
Denote by w the categorical attribute associated with the numerical attribute v (see Section 2.2). Consider the category set
of w indexed by {1, 2, ..., i, ...,m}. Then , the ordered category pairs is represented by

C2 = {(i, j)|1 ≤ i, j ≤ m} (83)

it includes m2 elements.
The valuation assigned to the ordered pair (i, j) is

ξ(i, j) = x(j) − x(i), 1 ≤ i, j ≤ m (see Section 2.2). It is asymmetrical and defined by the directed range - from left to right -
of the interval [x(i), x(j)], 1 ≤ i, j ≤ m. The empirical distribution of the defined valuation is

{(ξ(i, j), fi × fj)|1 ≤ i, j ≤ m} (84)

where fi is defined in (12), 1 ≤ i ≤ m.
As an example, consider the distribution given in (13). We have :

(ξ(2, 5), f2 × f5) = ((7.2− 2.3), 0.1× 0.2) = (4.9, 0.02)

.
Notice that generally, a 0 value for ξ(i, j) may occur for i 6= j, 1 ≤ i, j ≤ m. It occurs necessarily for j = i, 1 ≤ i ≤ m.

4.4.3 Preordonance coding of the nominal categorical attribute

The notations of Section 3.1 are retaken here. {1, 2, ..., h, ..., k} indexes the category set of a nominal categorical attribute
c. We consider the ordered pairs of categories K2 = {(g, h)|1 ≤ g ≤ h ≤ k} (see (62)). If g < h, (g, h) designates the unordered
pair of categories {g, h} that we denote by gh (see (63)) ; if g = h, (h, h) denoted hh, is considered for the comparison between
the category h with itself, 1 ≤ g ≤ h ≤ k.

In the established preordonance two distinct categories are considered as equally dissimilar. On the other hand, the
similarity of a given category with itself is the same whatever is the concerned category. Consequently, the preordonance can
be written as follows

12 ∼ 13 ∼ ... ∼ 1k ∼ 23 ∼ 24 ∼ ... ∼ 2k ∼ ... ∼ (k − 1)k <

11 ∼ 22 ∼ ... ∼ kk (85)

There are two classes for this total preorder on K2. The first one comprises k× (k− 1)/2 elements and the second one, k
elements. The corresponding mean ranks are ((k2−k+2)/4) for one element of the first class and (k2 +1)/2, for one element
of the second class. We verify easily that the mean rank sum is equal to [(1/2)× (k × (k + 1)/2)]× [(k × (k + 1)/2) + 1].

Denote by p = n × (n − 1)/2 the cardinality of the set P = O{2} of unordered object pairs from the object set O, the
empirical statistical distribution of the categorical attribute whose value set is K2 can be expressed as follows

{(gh,
ng × nh

p
)|1 ≤ g < h ≤ k} ∪ {hh,

nh × (nh − 1)

2p
|1 ≤ h ≤ k} (86)

(see (21) and following).
By denoting r(π) = card[R(π)] and s(π) = card[S(π)] (see (30)), the empirical statistical distribution of the mean rank

function is given by

{

(
k2 − k + 2

4
,
s(π)

p
), (

k2 + 1

2
,
r(π)

p
)
}

(87)
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Now, we are going to illustrate the above presentation in the framework of the example given in Section 3.1, provided by
Goodman and Kruskal (1954) [9]. Three categories c1, c2 and c3 were defined in Section 3.1. The preordonance (85) becomes

12 ∼ 13 ∼ 23 < 11 ∼ 22 ∼ 33

The two mean rank values associated with the two preorder classes are 2 and 5. By recalling that n1 = 591, n2 = 608,
n3 = 239 and p = 1033203, the empirical statistical distribution (86) is instanciated as follows

{

(12,
591× 608

1033203
= 0.3478) , (13,

591× 239

1033203
= 0.1367),

(23,
608× 239

1033203
= 0.1406) , (11,

591× 590

2066406
= 0.1687),

(22,
608× 607

2066406
= 0.1786) , (33,

239× 238

2066406
= 0.0275)

}

We verify the value 1 for the sum of the relative frequencies. r(π) and s(π) are equal to 387314 and 645889, respectively
(see the end of Section 3.1). Therefore, the empirical statistical distribution (87) of the mean rank function becomes

{

(2, 0.3749), (5, 0.6251)
}

4.4.4 Preordonance coding of the ordinal categorical attribute

Recall the notations of Section 3.2. The category set {ch|1 ≤ h ≤ k} is indexed by {h|1 ≤ h ≤ k}. The preordonance on
the category set is defined by a total preorder on the set H = {(g, h)|1 ≤ g, h ≤ k} (see (71)) of all ordered category pairs.
This will correspond to an asymmetrical ordinal similarity. More precisely, an ordered pair (g, h) is ranked according to the
difference h− g between the two integer codes h and g, 1 ≤ g, h ≤ k. Therefore, a given class of the total preorder is defined
by

De = {(g, h)|1 ≤ g, h ≤ k, h− g = e} (88)

where 1− k ≤ e ≤ k − 1. Its cardinality is

min(k, k + e)−max(1, 1 + e) + 1 (89)

where the first term correspond to g = k and the second one to g = 1. Therefore, the value of the mean rank function
assigned to a current element of De is given by

∑

1−k≤f≤e−1

[min(k, k + f)−max(1, 1 + f) + 1]

+
1

2
[min(k, k + e)−max(1, 1 + e) + 2] (90)

Now, remind that n × (n − 1) is the cardinality of the set O[2] of ordered distinct object pairs. For e 6= 0, the relative
frequency of De is given by

∑

{(g,h)∈De}

ng × nh

n× (n− 1)
(91)

For e = 0, this relative frequency becomes

∑

1≤g≤k

ng × (ng − 1)

n× (n− 1)
(92)

Collection des Publications Internes de l’Irisa c©IRISA
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(91) and (92) define the empirical statistical distribution of h− g, 1 ≤ g, h ≤ k.
In the previous treatment we have represented a given category ch of an ordinal categorical attribute by the integer code

h, 1 ≤ h ≤ k. And this is arbitrary. However, for comparing two ordered category pairs (cg, ch) and (cg′ , ch′) of this type
of attribute, it is intuitively acceptable to consider the ordinal dissimilarity between (cg and ch) strictly greater than that
between (cg′ and ch′), if and only if h− g > h′ − g′. Nevertheless, in case where h− g = h′ − g′ = e 6= 0, assigning the same
ordinal dissimilarity to (cg, ch) and to (cg′ , ch′) may seem difficult to admit. One option might consist in refining the class
De by associating with (g, h) the relative frequency (ng − nh)/n = fg − fh. Thus the ordinal dissimilarity on De becomes an
increasing function of the latter relative frequency.

Let us now illustrate this coding in our example considered in Section 3.2. The linear order defined for the three categories
c1, c2 and c3 is c1 < c2 < c3. The total preorder on the set H of all ordered pairs (g, h), 1 ≤ g, h ≤ 3, is defined by

(3, 1) < (2, 1) ∼ (3, 2) < (1, 1) ∼ (2, 2) ∼ (3, 3) < (1, 2) ∼ (2, 3) < (1, 3)

The associated mean rank values are 1, 4.5, 5, 7.5 and 9, respectively.
By recalling that n1 = 591, n2 = 608 and n3 = 239, the second and the fourth classes can be refined as follows

(2, 1) < (3, 2) and (2, 3) < (1, 2)

Indeed, n1 − n2 < n2 − n3

Let us end this formal presentation by indicating that our focus for comparing ordinal categorical attributes is the set
theoretic representation given in Section 3.2 above.

4.4.5 Preordonance coding of the ranking attribute

This coding can be interpreted as a particular case of the previous one. Each category is represented by only one object :
nh = 1, 1 ≤ h ≤ k. For this interpretation k = n = card(O). In these conditions, the above development can be retaken,
except the refinement technique. Indeed, for any element (g, h) of De (see 91), ng = nh = 1. But in this case, it is intuitively
acceptable to consider as equivalent all the ordered pairs of De. Two main approaches for building association coefficients
between ranking attributes are derived from the two codings given in Section 3.3 and in this section, respectively (see Chapter
2 of [19], [?] and [22]).

5 Attribute representations when describing a set C of categories

We have seen in the above sections that the basic data for describing an object set O by an attribute a is an ordered pair
(a, o) where o is an element of O. The value of a on o, denoted by a(o) is unique. In this section the description concerns a
set Γ categories. Let us designate by {C1, C2, ..., Ci, ..., CI} this set of categories :

Γ = {C1, C2, ..., Ci, ..., CI} (93)

We assume Γ obtained from a nominal categorical attribute γ defined on a universe Ω of objects. We designate by Ωi the
subset of Ω constituted by the objects where Ci is TRUE : Ωi = γ−1(Ci), 1 ≤ i ≤ I. For this description by an attribute
a, the basic data is defined here by an ordered pair (a,C), where C belongs to Γ. Relative to a given ordered pair (a,Ci),
1 ≤ i ≤ I, the description of Ci by a has necessarily a global and then, a statistical nature. To fix idea, but also because of
effective reason, a sample (set learning) Oi. provided from Ωi is subtituted for Ci, Oi. ⊂ Ωi, 1 ≤ i ≤ I. Neverthless, cases
may occur where the statistical distribution of a on Ci is directly estimated by the expert knowledge, 1 ≤ i ≤ I, Lebbe et
al. (1987) [15].

For a given pair (a,O) composed by a descriptive attribute a of a fixed type and by an object set O described by a we
have previously (see the above sections) expressed the statistical distribution of a on O. Here, instead of one only pair (a,O),
we have a sequence of such a pair, namely

{

(a,Oi.)|1 ≤ i ≤ I
}

(94)

where the different sets Oi. are mutually disjoint.
Let us denote by Di

a the statistical distribution of a on Oi.. On the other hand, define pi. the relative frequency of the
objects belonging to Oi. with respect to all the objects belonging to the union of the Oi.. Explicitly,
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pi. =
card(Oi.)

card(
⋃

1≤i′≤I Oi.)
(95)

1 ≤ i ≤ I.
Under these conditions the data are defined here by the sequence

{

(Di
a, pi.)|1 ≤ i ≤ I

}

(96)

We have realized previously that the statistical distribution of a descriptive attribute a on an object set O, depends on
the nature of the set theoretic representation of the concerned attribute. Consequently and in order to explicit (96) for the
different data description cases, we are going to remind and to highlight these statistical distributions. The attributes of type
I (boolean and numerical) will be considered in Section 5.2. The nominal and ordinal categorical attributes will be studied
in Section 5.3 and finally, the preordonance attributes, in Section 5.4. In Section 5.5 we shall formalize the data table notion
by means of two relational systems : The Tarski system T and a statistical system that we shall designate by S.

5.1 Attributes of type I

Let us refer to the above Section 2. We retake here the same notations. The considered attributes are the boolean attribute
(Section 2.1) and the numerical attribute (Section 2.2). For the boolean attribute describing an object set O, the relative
frequency (proportion) p(a) = n(a)/n has been defined and then, the sequence of distributions (96) becomes

{

(pi
a, pi.)|1 ≤ i ≤ I)

}

(97)

where pi
a is a proportion defined at the level of the object set Oi.. More precisely, consider the subset Oi.(a) of Oi. where a

is TRUE and denote by ni. the cardinality of Oi. and by ni.(a) the cardinality of Oi.(a), we have pi
a = ni.(a)/ni., 1 ≤ i ≤ I.

Now, let us consider the case of a numerical attribute v whose distribution was expressed in the above equation (12). The
distribution sequence can be written

{

{(xi
(l), f

i
(l))|1 ≤ i ≤ I}

}

(98)

where the distribution (xi
(l), f

i
(l)) is defined at the level of the object set Oi., 1 ≤ i ≤ I.

5.2 Nominal or ordinal categorical attributes

5.2.1 The case of the nominal categorical attribute

This case is particularily instructive. Different representation levels have been considered for this type of attribute (see
Section 3.1). The most basic one is defined by (20). The latter gives a valuation at the level of the object set O. This valuation
assigns to each object o (o ∈ O) a code representing the value c(o) of the categorical attribute c. According to the notations
of Section 3.1, we denote by {f i

h|1 ≤ h ≤ k} the statistical distribution of c on the set Oi., 1 ≤ i ≤ I. In other words,
f i

h = nih/ni. is the relative frequency (proportion) of objects from Oi. possessing the hth category of the attribute c. As just
defined above, ni. = card(Oi.). On the other hand, nih = card(Oi.h) where Oi.h = c−1(h) ∩Oi., 1 ≤ i ≤ I, 1 ≤ h ≤ k. Thus,
the distribution sequence (96) can be put in the following form

{

({f i
h|1 ≤ h ≤ k}, pi.)|1 ≤ i ≤ I

}

(99)

Let us notice here that this data structure is exactly that addressed by Correspondence Analysis and related methods
Benzecri (1973) [2] (see also Chapters 2 and 6 of [19]). Using these techniques have meaning only when k and I are large
enough. Now, let us consider the relational representation given by the equations (22) to (29). According to the notations
of Section 4.4.3, r(π) and s(π) denote the cardinalities of the sets R(π) and S(π), respectively (see (30)). The statistical
distribution of the indicator function ρπ (see (26)) can be put in the following form
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{

(1,
r(π)

p
), (0,

s(π)

p
)
}

(100)

where p = card(P ) = n(n− 1)/2.
Let us denote by πi the partition on Oi. induced by the categorical attribute c, namely

πi =
{

Oi.h = c−1(h) ∩ Oi.|1 ≤ h ≤ k
}

,

1 ≤ i ≤ I.
r(πi) (resp., s(πi)) designates the number of object pairs joined (resp., separated) by πi, 1 ≤ i ≤ I. Also, denote by

pi = ni. × (ni. − 1)/2 the number of object pairs of Oi., 1 ≤ i ≤ I. With these notations, the sequence of the statistical
distributions (96) becomes

{

({(1,
r(πi)

pi
), (0,

s(πi)

pi
)},

pi

sump
)|1 ≤ i ≤ I

}

(101)

where sump =
∑

1≤i′≤I pi′ .

Indeed, the weighting pi/sump associated with the distribution Di
c is obtained in a relative way from the cardinality of

the set Oi. on which Di
c is defined. However, this statistical distribution - defined by the previous equation - is too global

in order to compare finely the different categories of Γ (see (93)), represented, respectively, by the sets Oi., 1 ≤ i ≤ I. A
discriminant representation has to take into account the decomposition of the sets R(π) and S(π) (see equations (29) and
(30)). In these conditions, the sequence of the statistical distributions (96)

{

({{f i
hh|1 ≤ h ≤ k}, {f i

gh|1 ≤ g < h ≤ k}},
pi

sump
)|1 ≤ i ≤ I

}

(102)

where f i
hh = (nih × (nih − 1))/(n× (n−)) and

f i
gh = (nig × nih)/(n× (n− 1)), 1 ≤ h ≤ k, 1 ≤ g < h ≤ k, 1 ≤ i ≤ I. The relative frequencies f i

hh and f i
gh are defined with

respect to the set O
{2}
i. of unordered object pairs.

In Section 4.4.3 a representation in terms of a preordonance attribute was proposed for the nominal categorical attribute.
This preordonance was coded from the mean rank function. The statistical distribution of this function (see (87)) refines
that (101). We obtain

{

{(
k2 − k + 2

4
,
s(πi)

pi
), (

k2 + 1

2
,
r(πi)

pi
)},

pi

sump
|1 ≤ i ≤ I

}

(103)

However, in spite of this refinement, comparing the categories Ci, 1 ≤ i ≤ I of Γ, on the basis of such distributions, remains
not discriminant enough. Finally, two statistical relational representations have to be retained for this comparison (99) and

(102).

5.2.2 The case of the ordinal categorical attribute

The development of this case follows the same rationale as the preceding one. Assigning to each object of O a category (see
(20)) provides a representation of the categorical attribute c at the level of O. This representation is defined by a valuation
on O. In these conditions (99) is retaken exactly. Therefore, the linear order (32) on the category set C = {c1, c2, ..., ch, ..., ck}
cannot be taken into account.

Now, let us consider the relational representation of the categorical attribute c (see equations from (36) to (44)). Denote
by r(ωi) = card[R(ωi)]), e(ωi) = card[E(ωi)]) and s(ωi) = card[S(ωi)]) respectively, the cardinalities defined in (40) and

restricted to the set Oi.. Then, denote ci. the cardinality of O
[2]
i. (set of distinct object pairs from Oi.), ci. = ni. × (ni. − 1).

By considering the scoreω function defined in (44), the sequence of the statistical distribution (96) can be written

{(

{(1,
r(ωi)

ci.

), (0.5,
e(ωi)

ci.

), (0,
s(ωi)

ci.

)},
ci.

sumc

)

|1 ≤ i ≤ I
}

(104)
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where sumc =
∑

1≤i′≤I ci′ .
This distribution sequence extends to the ordinal case that (101) considered previously for the nominal case.
Now, let us consider the extension of the (102) expression in the ordinal case. This expression is written here exactly in

the same manner, namely

{

({{f i
hh|1 ≤ h ≤ k}, {f i

gh|1 ≤ g < h ≤ k}},
ci

sumc
)|1 ≤ i ≤ I

}

(105)

where f i
hh and f i

gh have exactly the same meaning as for the nominal case ; but here they derive from counting ordered
pairs of distinct objects.

As an example and also as an exercise consider the table Table 3 below provided from Goodman and Kruskal (1954)
[9]. These data have been already employed for illustration (see Section 3). Table 3 is a contingency table crossing two
classifications. These are associated with two categorical attributes. In Sections 3.1 and 3.2 we have considered the categorical
attribute c : “Highest level of formal education of wife”. Its values denoted c1, c2 and c3 (see Section 3.1) index the columns
of the contingency table (see table 3). The rows of Table 3 are indexed by the values of the categorical attribute “Fertility
planning status of couple”. These values denoted D, C, B and A, are ranked from the lowest level D to the highest one A.
Here, I = 4. On the other hand, card(O1.) = 379, card(O2.) = 451, (O3.) = 205 and card(O4.) = 403.

F�L c1 c2 c3 Row totals

D 223 122 34 379
C 168 215 68 451
B 90 80 35 205
A 110 191 102 403

Column totals 591 608 239 1438

Table 3 : Crossing between “Fertility planning” and “Highest level of formal education of wife”

Let us now illustrate the above distribution (104). We suppose as in Section 3.2, the linear order c1 < c2 < c3 for the
values of the attribute c. For this illustration we are going to give the contribution of i = 2 to the (104) expression. We have

r(ω2) = card[R(ω2)] = 168× 215 + 168× 68 + 215× 68 = 62164

s(ω2) = card[S(ω2)] = 215× 168 + 68× 168 + 68× 215 = 62164

e(ω2) = card[E(ω2)] = 168× 167 + 215× 214 + 68× 67 = 62164

c2 = card(O
[2]
2. ) = 451× 450 = 202950

sumc = c1 + c2 + c3 = 379× 378 + 451× 450 + 205× 204 = 388032

c2

sumc
= 0.5230

r(ω2)

sumc
= 0.3063,

s(ω2)

sumc
= 0.3063 and

e(ω2)

sumc
= 0.3874.

(106)

Thus, the contribution of i = 2 to (104) is

(

{(1, 0.3036), (0.5, 0.3874), (0, 0.3063)}, 0.5230
)

The statistical distributions (101), (103)or (104) are too global for comparison purpose in case of nominal or ordinal
categorical attributes. The most accurate statistical distributions for comparing the categories of Γ (Γ = {A,B,C,D} in the
above example), are (102) for the nominal case and (105) for the ordinal one. Illustrating these distributions in the framework
of our example is left for the reader.
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5.3 Preordonance or numerical similarity categorical attributes

In Section 4.1 the preordonance categorical attribute was defined. It has been represented from the mean rank function
(see (69)) as a categorical attribute valuated by a specific numerical similarity. This type of attribute was presented in Section
3.4. We have seen that the taxonomic categorical attribute (Section 4.3) is represented as a specific preordonance on the
the set of the leaves of the taxonomic tree. Consequently, it suffices, without any loss of generality, to give the form of the
distribution sequence (96) in case of a categorical attribute valuated by a numerical similarity. By reconsidering the notations
of Section 3.4 with respect to the set of ordered distinct object pairs of Oi., 1 ≤ i ≤ I, we obtain

{

({{f i
hh|1 ≤ h ≤ k}, {f i

gh|1 ≤ g 6= h ≤ k}},
ci

sumc
)|1 ≤ i ≤ I

}

(107)

where f i
hh = (nih × (nih − 1))/(n× (n− 1)) and

f i
gh = (nig × nih)/(n × (n − 1)), 1 ≤ h ≤ k, 1 ≤ g 6= h ≤ k, 1 ≤ i ≤ I. ci and sumc have been defined above. The relative

frequencies are computed for distinct object ordered pairs. More precisely, f i
hh is the relative frequency in O

[2]
i. whose value

is ξ(ch, ch), 1 ≤ h ≤ k, f i
gh is the relative frequency in O

[2]
i. whose value is ξ(cg, ch), 1 ≤ g 6= h ≤ k.

Let us now illustrate the statistical distribution (106) in the case of our example (see Table 2 and Table 3). Consider
i = 2. We have ni. × (ni. − 1) = 451× 450 = 202950.

f2
11 =

168× 167

202950
= 0.1382 , f2

22 =
215× 214

202950
= 0.2267

f2
33 =

68× 67

202950
= 0.0224

f2
12 =

168× 215

202950
= 0.1780 , f2

13 =
168× 68

202950
= 0.0563

f2
21 =

215× 168

202950
= 0.1780 , f2

23 =
215× 68

202950
= 0.0720

f2
31 =

68× 168

202950
= 0.0563 , f2

32 =
68× 215

202950
= 0.0720

(108)

5.4 The data table : a Tarsky system T or a statistical system S

In Sections 2, 3 and 4, the description of a set O of objects by a descriptive attribute a has been defined. Relative to
an ordered pair (a, o) constituted by a descriptive attribute a and by an object o, a(o) designates the value of a on o. a is
represented by a mapping of O onto the value scale E . We assume that E is endowed with a relation ra. This relation is unary
in Section 2 (boolean and numerical attributes), binary in Section 3 (nominal and ordinal categorical attributes, ranking
attribute), binary on the set of object pairs in Section 4 (preordonance and taxonomic attributes). Thus, a very large range
of attribute description in Combinatorial Data Analysis and in Machine Learning is covered. In addition, any arity of this
relation can be handled Lerman (1999) [24], Lerman and Rouxel (2000) [33]. ra induces on O a relation that we denote by
Ra. Thus, the description of O by a can be formalized by the ordered pair (O, Ra).

Generally, for the description of an object set O provided from a universe U of objects (see Section 1) the expert defines
a vast set of descriptive attributes. Let us denote by A = {aj |1 ≤ j ≤ p} this set, where p is the number of attributes. Then,
the very important notion of a data table T crossing an object set O with an attribute set A can be expressed (see Table
4). O that we denote by {oi|1 ≤ i ≤ n} indexes the row set of T whereas, the attribute set A indexes the column set of T ;
A given cell is established at the intersection of the ith row and the jth column, it contains the value aj(oi), 1 ≤ i ≤ n},
1 ≤ j ≤ p.
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O�A a1 · · · aj · · · ap

o1 a1(o1) · · · aj(o1) · · · ap(o1)
...

...
...

...
...

...

oi aj(oi)
... aj(oi)

... ap(oi)
...

...
...

...
...

...
on a1(on) · · · aj(on) · · · ap(on)

Table 4 : Data table T

As said above, each descriptive attribute induces a relation on the object set O. Let us designate by Rj the relation on
O defined by the aj attribute. Let us emphasize once again that this relation is induced from the relation which endows the
value scale of aj , 1 ≤ j ≤ p. Hence, we associate with the data table T the Tarski system Tarski (1954) [48].

T =
(

O;R1, R2, ..., Rj , ..., Rp
)

(109)

where the different relations Rj have not necessarily the same arity, 1 ≤ j ≤ p.
In clustering there are two dual problems. The first one which is the most familiar and mostly the only considered consists

of organizing by proximity into a classification structure the set O of objects. The concerned proximity notion is global with
respect to the different relations Rj , 1 ≤ j ≤ p, by integrating all of them. For a given relation Rj and two objects oi

and oi′ , the higher the proximity between oi and oi′ , the more linked they are with respect to the relation Rj , 1 ≤ j ≤ p,
1 ≤ i < i′ ≤ n.

The second problem is dual of the first one. It consists of organizing by proximity into a classification scheme the set A
of descriptive attributes ; that is to say and according to our formalism, the set {Rj |1 ≤ j ≤ p} of relations on O, associated
with the descriptive attributes, respectively. A fundamental task consists in building a proximity notion between two relations
Rj and Rk on O, 1 ≤ j ≤ p. A numerical version of this gives rise to the notion of association coefficient between descriptive
attributes [21, 22]. A complementary and very instructive clustering analysis consists of organizing the whole set of the
categories taking part in the different categorical attributes [34, 47].

The implicit principle of the Likelihood Linkage Analysis (LLA) ascendant hierarchical clustering approach Lerman (1993)
[23] is to cluster the set A of descriptive attributes before the set O of the described objects [27]. An ultimate stage consists
of interpreting by crossing techniques each clustering with respect to the other one (see Chapter 3 of [19]), [26]. Condition of
same arity for the different relations Rj , 1 ≤ j ≤ p is required in order to cluster them. In practice and mostly, this condition
is brought back Lerman (1992) [21] [22], Ouali-Allah (1991) [37]. Moreover, statistical homogeneity in the description by the
different attributes aj , 1 ≤ j ≤ p, is also an intuitive necessary condition. More explicitly and for example, for a description
by nominal categorical attributes, the number of categories by attribute has to be of the same order.

In the LLA approach the two above requested conditions (same arity of the relations Rj (1 ≤ j ≤ p) and same statistical
homogeneity of the different descriptive attributes) for clustering the set A, are no more required for clustering the object
set O [20, 31].

We have presented above the description of a set Γ = {Ci|1 ≤ i ≤ I} of categories by an attribute interpreted as a
relation on a set of objects. We have associated with the category Ci a learning set Oi. composed of objects belonging to
the category Ci, 1 ≤ i ≤ I. If R denotes the relation endowing the value set of the concerned attribute, we have represented
R by its statistical distribution on Oi., 1 ≤ i ≤ I. Thus Γ is represented by a sequence of statistical distributions whose
general form is defined in (96) (see also (105)). Each distribution is computed for one category. It is weighted according to
the relative frequency of the learning set that represents it.

Now, assume a set A = {a1, a2, ..., aj , ..., ap, } of p relational attributes. As expressed above, these define a sequence of p
relations on each of the sets Oi., 1 ≤ i ≤ I. We denote by {R1

i , R
2
i , ..., R

j
i , ..., R

p
i } this sequence of relations on Oi., 1 ≤ i ≤ I.

Notice that for category description, what is retained from Rj
i is its statistical distribution on Oi., 1 ≤ j ≤ p, 1 ≤ i ≤ I (see

Sections 5.1 to 5.4 when only one set is considered). Thus, we are led to define a system S as follows :

S =
(

Γ;R1, R2, ..., Rj , ..., Rp
)

(110)

where for each pair (Ci, R
j) (Ci ∈ Γ), the statistical distribution of Rj on Ci is estimated on the basis of a learning set

Oi., 1 ≤ i ≤ I, 1 ≤ j ≤ p. In these conditions, the data table takes the following form
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Γ�A a1 · · · aj · · · ap

C1 D1(a1) · · · D1(aj) · · · D1(ap)
...

...
...

...
...

...

Ci Di(aj)
... Di(aj)

... Di(ap)
...

...
...

...
...

...
CI DI(a1) · · · DI(aj) · · · DI(ap)

Table 5 : Data table S

As it was remarked above, the contingency table can be formalized by a system S1 = (Γ, R1) where only one relation
is considered, the latter being defined by a nominal categorical attribute a1. R1 defines a partition on each of the sets
Oi., 1 ≤ i ≤ I. Designate by C1 = {c1

1, ..., c
1
g, ..., c

1
h, ..., c1

k} the category set of a1. As said above, this data structure is the
main matter of Correspodence Analysis Benzecri (1973) [2, 34, 47]. In this approach, basically, the comparison between two
categories γi and γi′ of Γ is evaluated from {|f i

h − f i′

h |1 ≤ h ≤ k} where f i
h ( resp., f i′

h ) is the relative frequency in Oi.

(resp., Oi′.) of objects having the category h, 1 ≤ i < i′ ≤ I. Let us suppose now a structure on the category set C1, given
for example by a valuated binary relation (see Section 3.4). This structure cannot in anyway be taken into account in the
mentioned approach. On the contrary, clustering approach as that given by the LLA method is able to integrate

{

(val1(g, h), f i
g × f i

h)|1 ≤ g < h ≤ k
}

and
{

(val1(g, h), f i′

g × f i′

h )|1 ≤ g < h ≤ k
}

(111)

As for the data defined by a Tarski system, it is matter for the data defined by an S system to organize by clustering the set
Γ of categories and the set A of descriptive attributes. Clustering A consists of clustering the relation set {Rj |1 ≤ j ≤ k} on
the basis of estimated statistical distributions on the different categories of Γ (see above). On the other hand and particularily
for this structure, a fundamental problem for data analysis consists of clustering the whole set of the categories defined by
the different attributes aj , 1 ≤ j ≤ k. Let us notice that we obtain the structure of an horizontal juxtaposition of contingency
tables Lerman and Tallur (1980) [34], Tallur (1988) [47], where the categorical attributes aj , 1 ≤ j ≤ p, are nominal.

To end, let us emphasize the importance of interpreting in a comparative manner a clustering of Γ, a clustering of A and
also, a clustering of the set of categories taking part in the definition of A. For this purpose specific tools are studied in [26].
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[6] A. GHAZZALI, N.and LÉGER and I.C. LERMAN. Rôle de la classification statistique dans la compression du signal
image : panorama et une étude spécifique de cas. La Revue de Modulad, (14) :51–89, Décembre 1994.
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tiple. application à la structuration des phlébotomes de la Guyane Française. Publication Interne 426, IRISA-INRIA,
Septembre 1988.

[31] I.C. LERMAN and Ph. PETER. Indice probabiliste de vraisemblance du lien entre objets quelconques : analyse
comparative entre deux approches. Revue de Statistique Appliquée, (LI(1)) :5–35, 2003.

[32] I.C. LERMAN and Ph. PETER. Representation of concept description by multivalued taxonomic preordonance va-
riables. In G. Cucumel P. Brito, P. Bertrand and F. Carvalho, editors, Selected Contributions in Data Analysis and
Classification, pages 271–284. Springer, 2007.

[33] I.C. LERMAN and F. ROUXEL. Comparing classification tree structures : a special case of comparing q-ary relations
ii. RAIRO-Operations Research, (34) :251–281, july/September 2000.
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(4) :175–191, 1965.

[41] A. SCHROEDER. Analyse d ’ un mélange de distributions de même type. Revue de Statistique Appliquée, (24) :53–62,
1976.

[42] C. SPEARMAN. The proof and measurement of association between two things. The American Journal of Psychology,
(1) :72–101, Vol. 15 1904.

[43] S.S. STEVENS. Mathematics, measurement and psychophysics. In S.S. Stevens, editor, Handbook of experimental
psychology, pages 1–49. New York : Wiley, 1951.

[44] P. SUPPES and J.L. ZINNES. Basic measurement theory. In R.R. Bush R.D. Luce and E.H. Galanter, editors, Handbook
of Mathematical Psychology, Vol. 1, pages 3–76. Wiley, 1951.

[45] J.P. SUTCLIFFE. Concept, class, and category in the tradition of aristotle. In Categories and concepts : Theoretical
news and inductive data analysis, pages 35–65. Academic Press, 1992.

[46] M.J. SYMONS. Clustering criteria and multivariate normal mixture. Biometrics, (37) :35–43, 1981.
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PhD thesis, Université de Rennes 1, 1988.
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