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Mention : Informatique
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préparée à l’INRIA Rennes - Bretagne Atlantique

Institut National de Recherche en Informatique et en Automatique

Nouvelles méthodes
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Chapter 1

Résumé en Français

1.1 Introduction

L’analyse et la synthèse de texture sont des domaines de recherches importants pour de

nombreuses applications dans la communauté traitement d’image (computer graphics),

vision par ordinateur (computer vision), imagerie numérique et traitement vidéo. En

ce qui concerne le computer graphics, la synthèse de texture est utilisée pour repro-

duire en détails l’apparence d’une surface en plaquant une texture synthétisée réaliste.

Généralement, le plaquage d’une texture sur une surface convexe s’effectue en déformant

cette texture ou en synthétisant une autre texture adaptée à la surface. En vision par

ordinateur, le but de l’analyse et la synthèse de texture est d’abord de comprendre, de

modéliser puis de traiter la texture. Concernant le domaine du traitement d’images et

de la vidéo, la synthèse de texture est une méthode pour générer des textures. Plus

précisément, connaissant un petit échantillon de texture, l’idée est synthétiser une tex-

ture de très grande taille réaliste présentant des caractéristiques similaires à l’échantillon

et sans artefact visible.

Avec l’émergence de nouvelles techniques de calcul rapides et efficaces, les algo-

rithmes d’analyse et de synthèse de texture peuvent être appliqués à de nombreuses

applications dans le domaine du traitement d’images et de la vidéo telles que l’édition

d’images et vidéo (suppression d’objet dans une scène, dissimulation d’erreurs, etc),

l’amélioration (applications liées à la super-résolution) et le débruitage d’images, pour
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1. RÉSUMÉ EN FRANÇAIS

la compression d’images et de vidéo (prédiction intra et inter images).

Dans ce manuscrit, nous nous intéressons essentiellement aux méthodes de synthèse

de texture dans un contexte de prédiction intra image et dans un contexte d’inpainting

pour de l’édition d’images (suppression d’objet) et de l’amélioration d’images.

1.1.1 Prédiction et compression d’images de vidéo

Depuis le théorème de Shannon [1], le domaine de la compression de données reste un

domaine de recherche très actif dans lequel de nombreuses avancées ont été effectuées.

Le but de la compression est de réduire la redondance spatiale et temporelle de données

afin d’être capable de transmettre ou d’archiver de grandes quantités d’information.

Bien qu’il existe aujourd’hui de nombreux outils mathématiques (allant de simples

heuristiques à des approches sophistiquées) offrant des solutions rapides et efficaces

de compression, le besoin de compression reste fondamental du fait de la demande

croissante de transmission et d’archivage de données.

Deux types de compression sont possibles: l’une dite sans perte et l’autre avec perte.

La compression sans perte permet de préserver l’intégrité des données compressées, ainsi

il est possible de retrouver les données exactes. Ce type de compression est utilisée dans

de nombreuses applications telles que l’imagerie médicale, le format d’archivage ZIP

et même comme étape de codage dans un schéma de compression image et vidéo avec

pertes. Contrairement au codage sans perte, la compression avec pertes ne permet

pas de retrouver les données originales. Elle fournit seulement une approximation des

données à compresser au profit d’un meilleur taux de compression. Dans ce type de

compression, les informations jugées non nécessaires sont simplement supprimées de

façon irréversible. La plupart des applications de compression cherchent à compresser

les données avec pertes en optimisant le compromis débit-distorsion.

Un schéma de codage typique de compression avec pertes est composé d’un ensemble

d’outils mathématiques suivi d’une transformation des données à compresser en un

train binaire. La première étape d’un schéma de compression cherche à décorréler les

données à coder. Cette étape peut être perçue comment un traitement réduisant la

redondance dans le signal. Les techniques utilisées pour décorréler les données sont

des transformations telles que la transformée en cosinus discrète. Les transformées

projettent les données dans un autre domaine de représentation afin d’obtenir une

représentation compacte de l’information. En effet, l’énergie des données transformées
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est souvent concentrée sur un nombre limité de coefficients. Par ailleurs, le fait de

transformer les données permet d’identifier plus aisément les informations visuellement

importantes des informations moins importantes. Le procédé suivant la transformée

consiste à éliminer les informations les moins importantes préservant la qualité des

données visuellement importantes. Il s’agit de l’étape de quantification des données.

Les données transformées sont donc quantifiées afin d’être représentées sur moins de

bits. Cette perte d’information est irréversible. Finalement, les données transformées

quantifiées sont converties en train binaire et transmises au décodeur.

Dans cette étude, nous nous intéressons à une méthode de réduction d’information

appelée codage prédictif. Le codage prédictif est utilisé pour estimer la valeur d’un pixel

à partir de son contexte, c’est-à-dire en utilisant les pixels déjà reconstruits du voisi-

nage causal. L’estimation des valeurs des pixels inconnus (pixels d’un bloc à encoder

par exemple) s’effectue à partir des pixels voisins connus, et une erreur de prédiction

est mesurée en calculant la différence (pixel par pixel) entre les pixels estimés et les

pixels originaux. Cette erreur de prédiction est ensuite transformée, encodée et trans-

mise. L’utilisation d’un codage prédictif permet de réduire significativement la quan-

tité d’information à transmettre. Bien évidement, la réduction d’information dépend

de la qualité de l’opérateur de prédiction, c’est-à-dire de la méthode de synthèse ou

de prédiction. Cette étape de prédiction diffère peu de la synthèse de texture. La

différence concerne essentiellement l’utilisation d’une erreur de prédiction permettant

de compenser les défauts de la prédiction.

Le codage prédictif a été très étudié dans la littérature; les opérateurs de prédiction

sont nombreux et plus ou moins complexes allant d’une simple interpolation (ou ex-

trapolation) à des techniques bien plus complexes. A titre d’exemple, neuf modes de

prédiction intra (pour des blocs de tailles 4 × 4) sont disponibles dans la norme de

codage H.264/AVC. Ces prédicteurs propagent suivant une direction donnée les pix-

els précédemment décodés. L’encodeur détermine le meilleur mode en fonction d’un

critère débit-distorsion. Pour la prédiction intra H.264/AVC, les coefficients des fil-

tres d’interpolation pour chaque direction de prédiction sont précalculés et permettent

d’obtenir de bonnes performances sur des textures simples. Cependant, lorsque les

textures sont plus complexes, la prédiction est moins efficace du fait que les coefficients

des filtres d’interpolation sont fixes.
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Une alternative à ce type de méthode pour la prédiction est basée sur les champs

aléatoires de Markov, aussi appelés template matching. Un template est supposé être

composé de pixels connus localisés dans un voisinage proche du bloc à prédire. La

recherche de la meilleure correspondance entre le template et les textures situées dans

un large voisinage causal permet de prédire par une simple opération de “copier-coller”

les pixels à encoder. Le procédé de template matching peut être considéré comme

une extension de synthèse de texture basé sur l’exemple. La recherche de la meilleure

correspondance texture se fait dans un voisinage causal du bloc à prédire dans la même

image au lieu d’utiliser un petit échantillon de texture.

Une extension du template matching consiste à combiner linéairement plusieurs can-

didats. L’idée sous-jacente repose sur le théorème de la limite centrale stipulant que

pour des échantillons linérairement indépendants, la moyenne de plusieurs candidats

tend vers une distribution Gaussienne caractérisée par une variance inversement propor-

tionnelle au nombre de candidats utilisés. Ainsi, statistiquement, l’erreur de prédiction

peut être inférieure à celle obtenue avec un template matching simple. L’approche la

plus simple pour combiner les candidats est de leur affecter une pondération uniforme.

Cette méthode est appelée template matching moyen. Plus récemment, une approche

appelée moyennes non locales (non-local means) a été proposée pour effectuer de la

synthèse de texture. De façon analogue au template matching moyen, l’approche des

moyennes non locales combine linéairement les différents candidats. Cependant, les

poids de la combinaison sont dépendants de la similarité entre les pixels du template et

ceux des candidats se traduisant par une importance plus forte donnée aux candidats

proches du template.

Les approches brièvement décrites ci-dessus, combinant plusieurs candidats, sont

plus robustes et donnent globalement de meilleurs résultats que les approches utilisant

un seul candidat. Cependant, ces approches ne cherchent pas à minimiser l’erreur

d’approximation du template. Elles se basent plutôt sur des heuristiques de calcul

afin de déterminer des coefficients de pondération pertinents. L’idée principale de ce

mémoire de thèse est d’utiliser des techniques d’optimisations formulant le problème

comme un problème aux moindres carrés avec différents types de contraintes. Les coef-

ficients de pondération des candidats sont alors le résultat de l’optimisation. La moti-

vation sous-jacente peut être exprimée de la façon suivante: “Une bonne approximation
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des pixels connus du template doit permettre également d’avoir une bonne approxima-

tion des pixels inconnus de bloc à prédire.” De cette façon, nous croyons que l’on peut

améliorer la qualité de la prédiction et les performances globales de compression avec

certaines techniques d’optimisation supplémentaires telles que la sélection du nombre

de candidats de texture à être utilisés pour la prédiction, ou l’adaptation des modes de

prédictions supplémentaires, et ainsi de suite.

Pour cela, dans le chapitre 3, nous plaçons le problème de prédiction dans un

contexte de prédiction parcimonieuse, c’est-à-dire que l’optimisation sera réalisée avec

des contraintes de parcimonie. Le terme parcimonie convient particulièrement bien

au problème posé puisqu’une sélection de plusieurs candidats parmi un grand nombre

de candidats potentiels est effectuée. Ensuite dans le chapitre 4, nous utilisons des

méthodes d’apprentissage (pour des représentations parcimonieuses de données) pour

définir un dictionnaire adapté au problème de prédiction. La version simplifiée de la

méthode proposée peut être considérée comme un problème aux moindres carrés sans

contrainte. Finalement, dans le chapitre 5, le problème de prédiction est placé dans

un contexte de neigbor embedding en adaptant deux méthodes de réduction de dimen-

sionnalité appelé “locally linear embedding” et “factorisation de matrice non négative”.

Ces deux méthodes sont deux problèmes aux moindres carrés avec deux contraintes

différentes, l’une de non négativité et l’autre une contrainte sur la somme des coeffi-

cients qui doit valoir 1.

1.1.2 Inpainting d’images fixes

L’inpainting d’images (aussi connu sous le nom d’interpolation d’images ou de vidéo)

est une application des méthodes de synthèse de texture utilisée pour remplacer (ou

reproduire) les zones perdues ou corrompues d’une image (ce sont principalement des

régions ou des défauts de faibles tailles). Les techniques d’inpainting sont utilisées dans

de nombreuses applications et plus particulièrement pour les applications d’édition

d’images (suppression d’objets, dissimulation d’erreurs, amélioration, etc).

Pour les algorithmes d’inpainting basés sur l’exemple, les valeurs inconnues de la

zone à reconstruire sont obtenues en cherchant dans l’image source un candidat pour

lequel la similarité entre pixels connus est maximale. Comme précédemment, ce procédé

repose sur une approche template matching. Nous faisons remarquer que les extensions

du template matching décrites précédemment sont également utilisées en inpainting. En
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effet, il y a une forte similarité entre les problèmes d’inpainting et de prédiction. Les

méthodes d’inpainting utilisent donc les approches template matching et également des

techniques plus récentes basées sur des approximations parcimonieuses. Cependant, il

existe une importante différence puisque, pour l’inpainting, les échantillons pouvant être

utilisés ne sont pas contraints spatialement et peuvent ne pas appartenir au voisinage

causal. Les zones inconnues peuvent donc être remplies en parcourant l’image de gauche

à droite et de haut en bas ou non. L’inpainting basé sur l’exemple définit une priorité

de remplissage de façon à propager d’abord les structures importantes de l’image. En

prédiction, cela n’est pas possible puisque l’ordre de traitement est en “raster scan”.

Les candidats possibles pour la prédiction appartiennent donc forcément au voisinage

causal du bloc à prédire. La priorité, telle que définie pour les algorithmes d’inpainting,

ne peut être utilisée facilement en prédiction. D’un autre côté, pour l’inpainting, il n’y a

pas de notion d’erreur de prédiction et de codage. De ce fait, les erreurs de remplissage

sont critiques d’autant plus qu’elles risquent de se propager.

Dans le chapitre 6, nous proposons un algorithme d’inpainting basé sur l’exemple

utilisant les techniques de neighbor embedding. Le problème d’inpainting est formulé

comme un problème aux moindres carrées avec différents types de contraintes, de façon

analogue aux problèmes de prédiction décrits dans le chapitre 5. Par ailleurs, le calcul

de la priorité a été revisité notamment en y incluant une information de densité de

contours de la zone à remplir.

1.2 Contributions et Organisation du Manuscrit

1.2.1 Chapitre 2: synthèse de texture et prédiction d’images

Dans le chapitre 2, nous introduisons les définitions et notations relative aux méthodes

de synthèse de texture basées sur l’exemple. Après avoir défini brièvement les ter-

mes texture et synthèse de texture, un état de l’art des méthodes de synthèse de tex-

ture basées sur l’exemple est présenté. Il inclut les méthodes basées pixels ainsi que

les méthodes basées “patch”, lesquelles sont largement influencées par les méthodes

basées sur les champs aléatoires de Markov. On effectue dans ce chapitre un lien en-

tre le problème de synthèse de texture et la prédiction d’images dans un contexte de

compression en considérant d’abord la prédiction intra de la norme de compression

H.264/AVC et ensuite les approches basées template matching. Une présentation brève
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de la prédiction intra H.264/AVC et de ses extensions avec les méthodes de synthèse

de texture est effectuée. Finalement, les motivations de cette thèse ainsi que les con-

tributions sont résumées.

1.2.2 Chapitre 3: prédiction d’images utilisant des représentations

parcimonieuses

Dans le chapitre 3, nous commençons par présenter l’utilisation des représentations

parcimonieuses pour un problème de prédiction d’images. Les algorithmes d’approxima-

tion parcimonieuse conviennent bien au problème de prédiction puisque seulement

quelques candidates de texture (“patchs”) extraits de l’image sont utilisés. Afin de

calculer les coefficients de pondération des différents candidats retenus, un problème

aux moindres carrés est formulé avec une contrainte de parcimonie sur l’approximation

du template. Supposons que les pixels du template soient rangés dans un vecteur colonne

bc et sachant que la matrice Ac, on essaie de résoudre

arg min
x

‖bc −Acx‖22 sous contrainte ‖x‖0 6 K (1.1)

avec x le vecteur la représentation parcimonieuse de bc et ‖x‖0 la norme `0 de x, c’est-

à-dire le nombre de valeurs non nulles de x. K est la valeur maximale de valeurs non

nulle autorisée.

Les algorithmes heuristiques gloutons (communément appelé en anglais “heuristic

greedy algorithm”) tels que les algorithmes de matching pursuit et basis pursuit ont

été développés pour trouver une solution, qui n’est pas systématiquement optimale

mais présentant une erreur d’approximation acceptable. Nous proposons d’utiliser un

algorithme matching pursuit pour approximer le template. Cette approximation fournit

un vecteur parcimonieux x contenant les coefficients de pondération associés aux patchs

candidats. Notre seconde proposition est de remplacer les dictionnaires classiques (tels

que la transformée en cosinus discrète (TCD) ou la transformée de Fourier discrète

(TFD)) avec un nouveau dictionnaire adapté localement: les atomes du dictionnaire

sont construits à partir de la texture locale sélectionnée dans une fenêtre de recherche

causale. On appellera A le dictionnaire qui est supposé être composé de deux sous-

matrices Ac et At,
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A =

[
Ac

At

]
(1.2)

avec Ac le sous-dictionnaire correspondant aux pixels du template et At un sous-

dictionnaire spatial correspondant aux pixels du bloc inconnu à prédire. Cette procédure

par conséquent peut être assimilée à une extension du template matching dans un con-

texte parcimonieux. De plus, nous proposons une optimisation itérative pour déterminer

les vecteurs parcimonieux avec différents voisinages d’approximation afin de rendre

l’approche plus flexible et plus adaptée aux irrégularités locales d’une image. Pour

calculer le vecteur parcimonieux optimal xopt, le nombre d’itération ainsi que le sup-

port d’approximation doivent être encodés et transmis au décodeur. Finalement, la

prédiction des pixels inconnus peut être réalisée en multipliant le vecteur parcimonieux

optimal (contenant les coefficients de pondération) avec le sous-dictionnaire At.

Une évaluation de la qualité de prédiction et des courbes débit-distorsion a été menée

avec des dictionnaires localement adaptés. Les expérimentations montrent que la so-

lution proposée offre une meilleure efficacité de codage comparativement à l’utilisation

d’un dictionnaire TCD redondant. L’utilisation de différents supports choisis locale-

ment permet également d’améliorer les performances. En outre, des études compar-

atives impliquant une version simplifiée de cette méthode et un template matching,

ainsi qu’une comparaison à la méthode template matching moyen et aux méthodes de

moyennes non-locales ont été menées. Les avantages et inconvénients de la méthode de

prédiction intra proposée sont finalement discutés. De possibles améliorations et des

perspectives concluent ce chapitre.

1.2.3 Chapitre 4: apprentissage de dictionnaire pour la prédiction

d’images

Dans le chapitre 4, nous plaçons le problème de prédiction dans un contexte d’apprentis-

sage de dictionnaires en effectuant l’apprentissage des deux sous-dictionnaires, Ac et At.

En d’autres termes, un schéma conventionnel d’apprentissage de dictionnaire (pour des

représentations parcimonieuses) composé de ses deux étapes classiques, codage parci-

monieux et mise à jour du dictionnaire, travaillant sur deux ensembles d’apprentissage

distincts notés Tc and Tt, est étudié. La première contribution est d’utiliser les patchs

de texture dans un voisinage causal (une fenêtre de recherche) du bloc à prédire comme
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échantillons d’apprentissage. Cette approche se différencie de l’approche présentée

dans le chapitre 3 puisque, dans l’approche précédente, les patchs de texture étaient

directement utilisés comme les éléments (atomes) du dictionnaire. La justification sous-

jacente est de développer une méthode simple d’apprentissage de dictionnaire au fil de

l’eau, qui apprendra ces deux sous-dictionnaries connexes en offrant une prédiction

des moindres carrés optimisée des pixels du bloc à prédire. Pour atteindre cet objec-

tif, l’apprentissage du sous-dictionnaire Ac (utilisant l’ensemble des échantillons Tc) est

effectué conduisant à une approximation parcimonieuse des échantillons connus du tem-

plate. Par ailleurs, l’autre sous-dictionnaire At a été optimisé (utilisant l’ensemble des

échantillons Tt) au moindre carré (avec deux méthodes différentes), pour être certain

que le vecteur d’approximation parcimonieux obtenu pour l’approximation du template

donnera effectivement une bonne approximation du bloc à prédire. C’est le point impor-

tant de la méthode que nous proposons et qui à notre connaissance est une contribution

nouvelle au regard des techniques d’apprentissage classique de dictionnaires.

Supposons que le sous-dictionnaire Ac ait été appris en utilisant l’ensemble d’appren-

tissage Tc, alors l’ensemble des vecteurs d’approximation parcimonieuse (regroupé dans

la matrice Y) de Tc a été utilisé pour optimiser le sous-dictionnaire At (en ayant utilisé

les échantillons d’apprentissage Tt) via une approche aux moindres carrés

arg min
At

‖Tt −AtY‖2F (1.3)

en utilisant deux méthodes différentes, l’une basée sur la solution exacte aux moin-

dres carrés et l’autre basée sur block-coordinate descent. Finalement, la prédiction des

valeurs des pixels inconnus est obtenue en calculant la représentation parcimonieuse du

vecteur x du template bc à partir du sous-dictionnaire Ac appris, et en multipliant ce

vecteur (contenant les coefficients de pondération optimaux) par le sous-dictionnaire

optimisé At. Nous avons également proposé une sélection optimisée des différents

voisinages, comme dans le chapitre 3, de façon à s’adapter aux irrégularités locales des

images.

Suite à l’analyse de l’impact de la contrainte de parcimonie sur la qualité de la

prédiction, une approche simplifiée de la méthode proposée est décrite. Par ailleurs,

une méthode basée sur une classification des patchs a également été développée. Des

études comparatives sur la qualité de la prédiction et sur le compromis débit-distorsion

9
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montrent la pertinence de l’approche développée comparativement à des méthodes de

prédiction parcimonieuse et des prédictions intra de type H.264/AVC. La classification

des patchs donne également des performances débit-distorsion comparables avec des

besoins de calculs moindres.

1.2.4 Chapitre 5: prédiction d’images en utilisant les méthodes de

neighbor embedding

Dans le chapitre 5, le problème de la prédiction est abordé en utilisant des méthodes

appelées neighbor embedding. Nous proposons de nouveau deux autres formulations

du problème faisant toujours référence aux moindres carrés pour l’approximation du

template bc et cela en utilisant deux méthodes issues des techniques de réduction de di-

mensionnalités: locally linear embedding (LLE) et factorisation de matrice non négative

(FMN). L’idée principale est d’explorer de nouveau comment combiner linéairement les

différents candidats issus d’un voisinage causal afin d’approximer les valeurs connues du

template et ainsi d’utiliser les mêmes facteurs de pondération pour prédire les valeurs

des pixels inconnues.

Pour les approches LLE et FMN, une contrainte de parcimonie a été adapté via

l’utilisation d’un nombre limité d’atomes du dictionnaire. Le dictionnaire A est con-

struit avec des patchs de texture présents dans la fenêtre de recherche, d’une façon

similaire à ce qui est utilisé dans le chapitre 3. Egalement, le dictionnaire est composé

de deux sous-dictionnaire Ac et At. Une méthode itérative est décrite en utilisant

les k, k = 1...K, plus proches patchs voisins du template. Une optimisation itérative

avec différents supports (voisinages d’approximation) est proposée de façon similaire

aux approches parcimonieuses utilisées dans un contexte de prédiction d’images. Le

meilleur nombre de patchs utilisés et le support sélectionné nécessitent d’être encodés

et transmis au décodeur comme information complémentaire.

Dans l’approche FMN, les pondérations du vecteur d’approximation sont forcément

non négatives afin d’approximer un patch à valeurs positives. Puisque les valeurs dans

le domaine spatial sont toutes non négatives, le signal reconstruit sera également non

négatif et situé sur le même sous-espace que ses plus proches voisins. Cette contrainte

d’optimisation peut être formulée de la façon suivante

arg min
x

[
1

2
‖bc −Acx‖22

]
sous contrainte x > 0 (1.4)

10



1.2 Contributions et Organisation du Manuscrit

où x est un vecteur parcimonieux contenant les facteurs de pondération associés aux k

patchs de texture sélectionnés dans Ac. Soulignons ici que la matrice Ac est supposée

constante et qu’elle n’est pas adaptée contrairement à l’approche classique FMN. Seuls

les coefficients du vecteur x sont ajustés jusqu’à convergence ou en fonction d’un nombre

maximum d’itérations.

Il y a également une contrainte sur les coefficients calculés avec l’approche LLE:

leur somme doit être unitaire, de façon à ce que les patches reconstruits se situent dans

le même sous-espace défini par ses plus proches voisins. Ainsi, on peut formuler le

problème de la façon suivante

arg min
x

‖bc −Acx‖22 sous contrainte 1Tx = 1, (1.5)

avec x le vecteur parcimonieux contenant des valeurs non nulles associées aux k plus

proches voisins sélectionnés.

Une analyse détaillée de l’impact des contraintes de parcimonies (nombre de can-

didats utilisés), du bruit de quantification, de la non-négativité et de la contrainte sur

la somme des coefficients a été réalisée en fonction de la qualité de prédiction et des

performances débit-distorsion. Les résultats expérimentaux indiquent que les méthodes

proposées donnent une meilleure qualité de prédiction ainsi qu’une meilleure efficacité

de codage comparativement au template matching simple, au template matching moyen,

aux approches de moyennes non-locales, aux approches de prédiction parcimonieuses

et aux modes de prédiction H.264/AVC intra.

1.2.5 Chapitre 6: inpainting d’images fixes en utilisant les approches

neighbor embedding

Dans le chapitre 6, nous avons élargi notre étude sur les méthodes neighbor embedding

aux méthodes d’inpainting basées sur l’exemple en posant le problème d’inpainting

comme un problème aux moindres carrés, de façon similaire à ce qui est proposé au

chapitre 5 pour la prédiction d’images. Nous introduisons tout d’abord une nouvelle

méthode de calcul de la priorité de remplissage, en utilisant les informations de contours.

Associée aux classiques mesures de confiance (“confidence term”) et de données (“data

term”), la nouvelle méthode de calcul de la priorité prend en compte les informations

de contours afin de favoriser la propagation des patchs contenant de fortes structures.

11
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Les pixels inconnus du patch à remplir sont estimés à partir d’une combinaison linéaire

des K plus proches voisins. Ces voisins sont déterminés à partir de l’image source et

des pixels connus dans le template du patch à remplir. Une méthode pour choisir le

nombre K de voisins à utiliser est décrite.

Les méthodes d’inpainting proposées ont été évaluées pour deux types d’applications:

la suppression d’objets dans un contexte d’édition et le remplissage de zones man-

quantes dans un contexte de dissimulation d’erreurs. Les expérimentations montrent

la pertinence des méthodes. Elles permettent en effet de remplir les zones de façon

naturelle avec moins d’artefacts visuels comparativement aux méthodes d’inpainting

basées sur l’exemple utilisant un template matching simple et moyen ou des approches

basées sur moyennes non-locales. Les résultats des méthodes proposées ont également

été comparés à d’autres algorithmes de l’état de l’art (basées sur l’exemple ou sur des

équations aux dérivées partielles).

1.2.6 Chapitre 7: conclusion et perspectives

Dans le chapitre 7, nous effectuons une conclusion du travail réalisé en résumant les

idées principales étudiées et en donnant des perspectives sur la prédiction d’images et

sur les problèmes d’inpainting.

1.3 Conclusion

La prédiction et l’inpainting d’images peuvent être abordés comme deux applications

différentes de synthèse de texture avec des contraintes spécifiques telles que l’ordre

de traitement des informations. Ces deux problèmes sont très importants pour de

nombreuses applications traitant de l’image ou de la vidéo. Les motivations de cette

thèse portent sur l’amélioration de techniques d’extrapolation aux moindres carrés.

Elles sont appliquées à la prédiction d’images et à l’inpainting. Dans l’état de l’art, la

synthèse de texture basée sur l’exemple utilisent principalement des techniques basées

sur le template matching et sur des heuristiques. Nos contributions principales portent

sur l’amélioration du template matching simple. Cependant, elles s’inscrivent dans un

contexte d’optimisation bien formalisé sous différentes contraintes. Nous pensons que

les méthodes et idées proposées dans cette thèse ouvrent de nouvelles perspectives pour
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les applications des méthodes de synthèse de texture telles que la compression via la

prédiction d’images et l’inpainting d’images.
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Chapter 2

Texture Synthesis and Image

Prediction

Texture synthesis algorithms have recently found wide range of application areas in

digital signal processing such as image and video editing (e.g., object removal, miss-

ing region recovery, error concealment, post production of movies, etc.), enhancement

applications (e.g., denoising, restoration, super-resolution, etc.), and also compression

(i.e., intra image and inter frame prediction).

Existing texture synthesis methods can be grouped into two main categories. The

fist group of methods relies on either the use of higher order partial differential equations

or variational approaches. Ideas presented in this type basically try to propagate, via

diffusion, both geometric and photometric information that hits the border of the region

to be synthesized (predicted or filled-in). These methods are known to work relatively

well for synthesizing small regions in an image. However, they tend to introduce some

blur for large regions, and the results are generally dependent on the input parameters.

The second group of texture synthesis concerns exemplar-based methods. This type of

methods sample texture patches (from an other image, or from the image itself) in order

to synthesize new textures. Because of their simplicity and efficiency in synthesizing

textures, exemplar-based methods have been used in a large variety of applications,

hence in this study we focus particularly on these methods and their adaptations to

different image processing problems.

In this chapter, we first review the fundamental concepts and methodologies of the

exemplar-based texture synthesis problem. The aim of this first chapter is to construct
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2. TEXTURE SYNTHESIS AND IMAGE PREDICTION

Figure 2.1: Spectrum of texture patterns - Examples ranging from stochastic to reg-

ular patterns. This image is taken from http://en.wikipedia.org/wiki/Texture synthesis.

a basis which leads to a better understanding of the main objective of this manuscript:

image prediction (or predictive coding). We then describe the image prediction problem

with its state-of-the-art applications to intra image compression. Finally we conclude

this chapter by drawing a summary of the basic contributions of this study.

2.1 Exemplar-based Texture Synthesis

2.1.1 What is texture?

In common definition, the word “texture” is usually referred to as “surface structure”.

In computer graphics, a texture is a synthetic or digital image which is mapped onto

a 3-D object surface by texture mapping [2, 3] to achieve a more realistic appearance.

In image processing and computer vision communities, textures are usually referred to

as visual or tactile surfaces composed of repeating patterns [4]. In this manuscript,

we focus on the latter definition of textures as images composed of repeated structures

since natural images contain large varieties of textural patterns at different scales.

Textures can be classified into several groups, e.g., stochastic, irregular, regular, or

a mixture of them, depending on the randomness over their repeating patterns. Reg-

ular textures usually contain regular tilings of elements organized into strong periodic

patterns. On the other side, stochastic textures contain less noticeable elements and

relatively random patterns, i.e., generally look like noise. Stochastic textures can be

characterized with a stochastic process which generates the underlying texture. Fig 2.1
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2.1 Exemplar-based Texture Synthesis

Figure 2.2: Texture synthesis - Given (left) an input sample texture, the objective is

to produce (right) a new arbitrary size texture that looks like the input.

shows some visual examples of textures along a spectrum from stochastic to regular

ones. For more information on the classification of texture patterns, please refer to [5].

2.1.2 What is texture synthesis?

In terms of image processing definition, texture synthesis is a way of creating textures.

Formally, given a small texture sample, i.e., exemplar, the aim is to synthesize an

arbitrarily large texture which visually appears to be generated by the same underlying

process, i.e., the new texture should be perceived as identical to the exemplar in terms

of textural characteristics and should not contain any artifacts (please see Fig 2.2).

The texture synthesis process can be divided into two major components as analysis

and synthesis [4]. The analysis part mainly consists of modeling the texture generating

process of the given exemplar, and the synthesis step contains the development of an

efficient texture generation (sampling) procedure in order to construct the new texture

from the given analysis model. Both the analysis and the synthesis components play

an important role on a successful texture synthesis process.

2.1.3 Exemplar-based texture synthesis methods

Before going into details of exemplar-based texture synthesis methods, let us start by

providing two important key definitions:

• A texture image is regarded as local if (a) each pixel of the image can be predicted

from a small set of spatially neighboring pixels independently from the rest of the

image, and (b) this characterization is the same for all pixels.

17



2. TEXTURE SYNTHESIS AND IMAGE PREDICTION

• A texture image is regarded as stationary if, given a movable proper size window,

the observed portion of the image in this small moving window always appears

to be similar to the viewer.

Although there exists a large variety of texture synthesis algorithms developed by

various researchers, the most successful application so far is Markov Random Field

(MRF) [6, 7]. MRF models texture patterns as a realization of a local and stationary

random process [4]. In terms of MRF, a texture synthesis problem can be defined as

follows: Given an input texture, an output texture can successfully be synthesized by the

assumption that, for each output pixel, its spatial neighborhood is similar to at least one

neighborhood at the input texture. The similarity between input and output neighbors

guarantees a perceptual similarity between input and output texture images as well.

There are several MRF methodologies relying on probability sampling, e.g., [8,

9, 10], which are often complex algorithms with heavy computational requirements.

Instead, here we focus particularly on relatively simple MRF influenced methods which

are not only efficient but also easy to understand and use.

2.1.3.1 Pixel-based texture synthesis

Pixel-based texture synthesis methods synthesize the new texture pixel by pixel. At

each step of the algorithm, the value of an unknown pixel p is determined according

to its local neighboring pixels N(p). The neighborhood N(p) of a pixel p is generally

modeled as a square window centered around that pixel. The size of the window is a

parameter, which can be tuned by the user, that specifies a measure on the randomness

over the repeating patterns of the texture. When the selected neighborhood is too small,

the output texture would be too random. On the other hand, when the neighborhood

is too large, the output might become a regular pattern or contain meaningless results.

A very simple and efficient non-parametric method based on the MRF model has

been introduced by Efros and Leung [11]. Their method “grows” texture pixel by pixel,

in layers outward from an initial seed, e.g., a 3 × 3 patch, which has been randomly

taken from a portion of the input exemplar. To generate a new pixel p, all previously

synthesized pixels in the neighborhood N(p) are used as the context, and they are

searched in the input texture to find the most similar candidates. In order to emphasize

local structure, the pixels in the neighborhood are weighted with a two-dimensional
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2.1 Exemplar-based Texture Synthesis

Figure 2.3: Texture synthesis by non-parametric sampling - Algorithm overview.

Given (left) a sample texture image, (right) a new image is being synthesized one pixel at a

time. To synthesize a pixel, the algorithm first finds all neighborhoods in the sample image

(boxes on the left) that are similar to the pixel’s neighborhood (box on the right) and then

randomly chooses one neighborhood and takes its center to be the newly synthesized pixel.

This image is taken from [11].

Gaussian kernel, i.e., in order to give large weighting values for nearby pixels and small

weights for far away pixels. The algorithm finally chooses one random neighborhood

among the most similar candidates and takes its center as the newly synthesized pixel.

This process is repeated until the entire output texture has been synthesized. A brief

overview of this algorithm has been shown in Fig. 2.3.

The method in [11] is indeed very simple to implement and works well for a variety

of textures. However it suffers from the exhaustive search of variable size neighbor-

hoods, and the spiral like ordering of synthesis makes it slow. Wei and Levoy [12] have

addressed these drawbacks and proposed a faster pixel-based algorithm with fixed size

neighborhoods and a raster scan ordering through a deterministic synthesis process.

The basic idea of this method is illustrated in Fig. 2.4 and it proceeds as follows. After

initializing the output texture with random values (i.e., randomly copying pixels from

the input texture), each pixel is synthesized one by one in a scanline order. For each

output pixel p, a best matching spatial neighborhood is searched in the input texture,

and the corresponding pixel from the input is then copied to the output. This method

differs from [11] in the sense of the use of a fixed size neighborhood (which leads to an

acceleration in the search process by various methods [13, 14]), a raster scan ordering,

and a completely deterministic sampling rather than a random sampling.

Ashikhmin [15] has later extended the algorithm in [12] by considering input texture

pixels (as candidates) with neighborhoods which are similar to shifted versions of the

current neighborhood N(p) in the output texture.
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Figure 2.4: Fast texture synthesis - (a) The input texture and (b)-(d) different syn-

thesis stages of the output texture. Pixels in the output image are assigned in a raster

scan ordering. The value of each output pixel p is determined by comparing its spatial

neighborhood N(p) with all neighborhoods in the input texture. The input pixel with the

most similar neighborhood is assigned to the corresponding output pixel. Neighborhoods

crossing the output image boundaries are handled toroidally. Although the output image

starts as a random noise, only the last few rows and columns of the noise are actually used.

For clarity, the unused noise pixels are shown as black. This illustration is taken from [12].

2.1.3.2 Patch-based texture synthesis

Synthesizing texture using patches rather than pixels can improve the speed as well as

the quality of pixel-based methods. Patch-based methods can therefore be regarded

as an extension of pixel-based synthesis where, instead of copying pixels, one copies

patches. Similar to pixel-based methods, the patch to be copied is selected according

to its neighborhood in order to ensure the consistency with already synthesized pixels.

Fig. 2.5 shows the main idea of patch-based texture synthesis in comparison to pixel-

based methods.

Since the output texture is synthesized with patches rather than pixels taken from

the input exemplar, one can expect a quality improvement at the output at least in the

patch level. However, a patch is larger than a pixel, and usually it overlaps with the

already synthesized portion of the output texture. Here the problem arises with the uti-

lized synthesis technique –that copies the selected patches to the output– which should

be capable of handling the conflicting texture regions in order to keep the continuity

of patterns through patch boundaries.
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Figure 2.5: Comparison of pixel-based and patch-based texture synthesis -

The gray region in the output indicates already synthesized portion. This figure is taken

from [4].

A simple synthesis procedure can be just overwriting the new patches over exist-

ing regions as proposed in [16], or simply blending the overlapped areas [17]. Even

though these simple methods are fast and memory efficient, they may introduce visible

seams or blurry artifacts to the final output (see Fig. 2.6). Efros and Freeman [18]

proposed instead a synthesis process, which is called image quilting, by stitching the

image patches optimally (through a minimum cost path) using dynamic programming.

This idea has then been further extended and improved by using a graph-cut technique

in Kwatra et al. [19]. Fig. 2.6 illustrates the results of different synthesis approaches.

There are more synthesis approaches in the literature, such as the Chaos Mosaic [20]

relying on tilings of input textures, or an optimization method [21] as a mixture of pixel

and patch based schemes, as well as the multiresolution based methods [22, 23, 24, 25].

2.1.4 Inverse texture synthesis

The inverse texture synthesis problem has been addressed in [26]. Contrary to conven-

tional forward synthesis, the method here runs an optimization in the opposite direction

such that it automatically produces a small texture compaction that best summarizes the

given (original) arbitrarily large and globally variant texture. The original texture can

then be reconstructed, or new textures can be synthesized, using this small compaction.

Some examples of compaction and resynthesis textures are shown in Fig. 2.7.

The texture compaction, which is the output of inverse texture synthesis, needs less

storage due to the reduced size, hence could be used for texture compression purposes.

Moreover, this method can easily be adapted for compressing texture regions in natural

images by taking advantage of the spatial repetition nature of textures.
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Figure 2.6: Methods for handling adjacent patches during synthesis - Square

patches (blocks) from the input texture are patched together to synthesize a new texture:

(a) blocks are chosen randomly (similar to [16]), (b) blocks overlap and each new block is

chosen so as to “agree” with its neighbors in the region of overlap (similar to [17]), (c) to

reduce the blockiness, the boundary between blocks is computed as a minimum cost path

through the error surface at the overlap [18, 19]. This figure is taken from [18].

2.2 Image Prediction

Most of the natural images are often composed of various textural regions which are

generally separated by object contours or edges. Thus an image can be regarded as a

combination of several types of textures interacting among themselves, and with the

other structures and objects in the image. Fig. 2.8 shows an example of a natural image

which has different local textural characteristics.

Observing the fact that natural images exhibit local textural characteristics, one

can rely on MRF models for local image processing. Therefore, under the assumption

of local stationarity, the texture synthesis methodologies described above are also appli-

cable to natural images. For example, image prediction and image inpainting problems

can be formularized in this context, and very efficient solutions can be obtained by

extending already proposed texture synthesis methods.

In this section, we mainly focus on closed-loop intra prediction which is a key

component of image and video compression algorithms. The term “intra prediction”

refers to the fact that the prediction technique is performed using only the information

22



2.2 Image Prediction

Figure 2.7: Inverse texture synthesis - Examples of two stationary textures with

inverse synthesis and resynthesis. Images are taken from [26].

Figure 2.8: An example natural image which is composed of several textural

regions - (Left) The “beach” image, and (right) the texture segmented image. Different

textural regions have been shown with different colors.

that is contained within an image or an intra frame (I-frame) in a video sequence. The

underlying basic idea is to first predict or synthesis a patch in the image (or in the intra

frame), and then encode the prediction residue signal, instead of the patch itself, in

order to minimize the encoded information. Similar to patch-based texture synthesis,

most of the image prediction algorithms operate on square patches, i.e., blocks of size

n × n, in a raster scan ordering. The blocks usually do not overlap so that residue

signals are transformed, quantized, and entropy encoded disjointly. The reconstructed

block is finally obtained by adding the quantized residue to the prediction. A general

block diagram of block-based intra image compression has been shown in Fig. 2.9.

We next briefly review state-of-the-art spatial image prediction methods including

the directional modes in H.264/AVC intra coding, and the template matching method

with its extensions.
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Figure 2.9: Block diagram of block-based intra image compression - The com-

pression process starts with prediction. After predicting a block, the residue signal is

transformed, quantized, and entropy encoded.

Figure 2.10: Nine prediction modes of H.264/AVC Intra–4 × 4 type - Unknown

pixels are predicted using pixels A-M. The prediction is done by simply propagating (or

interpolating) the pixel values along the specified direction.

2.2.1 H.264/AVC intra prediction

In H.264/AVC, there are mainly two intra prediction types called Intra–16× 16 and

Intra–4× 4 [27]. There is also Intra–8× 8 type in H.264/AVC FRExt (Fidelity Range

Extension) [28], however most H.264/AVC profiles do not support this prediction type.

The Intra–4× 4 type supports nine modes as shown in Fig. 2.10. Each 4× 4 block

is predicted from prior encoded pixels from spatially neighboring blocks. In addition

to the so-called “DC” mode which consists in predicting the entire 4×4 block from the

mean of neighboring pixels, eight directional prediction modes are specified (Fig. 2.10).

The prediction is done by simply propagating (or interpolating) the pixel values along

the specified direction. A visual illustration of prediction of a 4 × 4 block with nine

modes has been shown in Fig. 2.11. In the experiments reported in this manuscript,

Intra–4× 4 has been used as defined in the standard (please refer to [29]).

The Intra–16× 16 type supports only four prediction modes including vertical (i.e.,

extrapolation from upper samples), horizontal (i.e., extrapolation from left samples),

DC (i.e., mean of upper and left samples), and plane (i.e., with a linear function which
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Figure 2.11: A visual illustration of H.264/AVC Intra–4 × 4 prediction - Nine

prediction modes calculated for a 4× 4 block.

uses upper and left samples) modes. This type is actually suitable for smooth image

regions, hence chroma samples prediction has been designed very similar to it. Fig. 2.12

illustrates four prediction modes of Intra–16× 16.

In H.264/AVC intra prediction, a macroblock of size 16 × 16 pixels is divided into

sixteen 4×4 blocks. The encoder uses a tool which is called Lagrangian rate-distortion

optimization (RDO) to select the best prediction type (either Intra–4 × 4 or Intra–

16× 16) and also the best mode (out of nine modes in Intra–4× 4 or of four modes in

Intra–16× 16). Different prediction modes can be selected for each of the sixteen 4× 4

blocks in a macroblock. The selected prediction type and the mode(s) information have
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Figure 2.12: Four prediction modes of H.264/AVC Intra–16×16 type - Unknown

pixels are predicted using pixels in H and V.

to be then transmitted to the decoder (in addition to residue signals).

The H.264/AVC intra prediction approach (as briefly described above) is suitable

in the presence of contours when the directional mode chosen corresponds to the orien-

tation of the contour. However, it fails in more complex textured areas. Thus there is

still research going on for intra prediction in the existing H.264/AVC codec to achieve

better performance in compression.

Wien [30] proposed a concept for variable-block size transform coding in H.264/AVC.

The modes defined for the Intra–4×4 prediction type are extended to block sizes similar

to ones used for inter prediction [27], i.e., this is done by partitioning a macroblock into

8× 8, 8× 4, and 4× 8 pixels of blocks in addition to 4× 4 blocks. In this way, the gap

between Intra–4×4 and Intra–16×16 has been filled. Experimental observations show

an average bit-rate savings of about 8% and PSNR gains of 0.49 dB for intra coding.

A similar approach based on geometry-adaptive block partitioning for intra predic-

tion has been presented in [31]. In this method, geometric partitions of blocks (of size

8× 8 or 16× 16 pixels) are calculated by means of an implicit parametric linear model

which classifies pixels within blocks to one of the partitions, or to a line boundary.

Although adaptive block partitioning is very costly to apply, the experimental results

show significantly improved rate-distortion performance (up to 11.19% in the average)

when compared to standard H.264/AVC intra coding.

An interesting approach based on block oriented transforms has been introduced

in [32]. The idea of this study is to perform pre-defined rotations (with simple circular

shifts rather than classical rotation schemes) on the residue blocks in order to straighten

them out towards horizontal and vertical axes, i.e., in order to be able to transform

residue blocks efficiently with discrete cosine transform (DCT). Here the encoder needs

26



2.2 Image Prediction

to transmit also the rotation information to the decoder. This method can be seen as a

post-processing step after prediction, leading up to 1 dB gain compared to the standard

intra prediction modes of H.264/AVC.

There are various other research papers in the literature, e.g., [33, 34, 35, 36, 37, 38],

which propose extensions as well as novel methodologies aiming at improving currently

available H.264/AVC intra prediction and coding. As a final remark, a successor to

H.264/AVC, High Efficiency Video Coding (HEVC) is currently under development.

In HEVC, there will be up to 34 intra prediction directions with quadtree partitioned

blocks of size from 4× 4 to 32× 32 samples.

2.2.2 Template matching based intra prediction

An alternative method based on template matching has been widely considered for

intra image prediction [35, 39, 40, 41, 42]. A so-called template is formed by previ-

ously encoded and decoded pixels in a close neighborhood of the unknown block to

be predicted. The best match between the template and the candidate texture patch

neighborhood (of the same shape as template), within a causal search window, allows

finding the predictor of the unknown block (please see Chapter 3 for more information).

This method can indeed be regarded as an extension of patch-based texture synthesis,

where patches to be copied are selected according to their neighborhood (template).

In contrary to texture synthesis methods, the candidate patch is searched in a causal

search window in the reconstructed image instead of using an exemplar image.

In [35], a prediction scheme has been proposed by replacing the H.264/AVC (Intra–

4×4) DC mode with template matching. This simple replacement results in an overall

performance gain of 0.1-0.4 dB in intra coding. In a similar spirit, another template

matching based algorithm has been described in [39]. In this approach, the block

to be predicted of size 4 × 4 is further divided into four 2 × 2 subblocks. Template

matching prediction is then conducted for each subblock accordingly. The four best

match candidate subblocks finally constitute the prediction of the block to be predicted.

This method has been included into H.264/AVC Intra–4×4 as an additional prediction

mode leading to more than 11% bit-rate savings. It has later been improved in [40] by

averaging multiple template matching predictors, also including larger and directional

templates, as a result of more than 15% coding efficiency in H.264/AVC.
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There are various extensions of template matching based image prediction in the

literature, e.g., a priority-based approach as proposed in [42], and an adaptive illumi-

nation compansation based method [41]. Note also that there are other applications to

image inpainting [43, 44] and inter frame prediction [45].

2.3 Motivation

Exemplar-based texture synthesis methods usually copy a single patch (or a pixel) from

the input exemplar to the output texture. The template matching algorithm operates

as an extension to exemplar-based texture synthesis for the image prediction problem.

The experimental results show a general improvement in H.264/AVC intra prediction

with template matching integration. This fact motivates us to give more attention to

template matching based methods for image prediction.

We consider here weighted linear combinations of several image patches, taken from

a search window in the image, instead of using a single “best” patch as most MRF based

methods. The simplest way of combining several patches is to assign uniform weights

for each patch. This method is the same with average of multiple template matching

predictors proposed in [40]. Recently, non-local means based approaches [46, 47, 48, 49,

50] have also been proposed for different texture synthesis problems. These methods

which combine several patches have been proven to be more robust in estimating the

unknown values and producing better synthesis results. However these approaches do

not search to minimize an approximation error on the template signal. They are rather

heuristic methods to calculate weighting coefficients.

The main idea of the work in this manuscript is to use some optimization techniques

to formulate the prediction problem as a least-squares texture synthesis problem possi-

bly with different types of constraints, hence calculating the weighting coefficients with

an optimization for approximating the template information. The underlying motiva-

tion can be thought of as: “A good approximation of the known pixel values in the

template would lead also a good approximation of the unknown values in the block to be

predicted.” In this sense, we believe that one can improve the overall prediction and

coding performance with some additional optimization techniques such as on selecting

the number of patches to be used for prediction, or selecting and/or adapting additional

prediction modes (i.e., different shapes of templates), and so on.
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2.4 Conclusion

In this chapter, we reviewed underlying basic principles of exemplar-based texture syn-

thesis methods. We considered applications which build a bridge between the texture

synthesis problem and the image prediction problem. The rest of this manuscript

consists of detailed descriptions of our contributions for image prediction, as well as

an extension to image inpainting, together with an extensive literature survey of the

conventional algorithms in different research frameworks, in which we have placed our

image prediction and inpainting problems.

Briefly, in Chapter 3 the image prediction problem has been formularized in sparse

representations framework, hence a least-squares optimization is run for approximating

the template signal under some sparsity constraints for selecting image patches to be

used and for calculating the corresponding weighting coefficients. In Chapter 4, the

prediction problem has been put into a dictionary learning framework by optimizing the

prediction of the unknown block of pixels in a least-squares sense through training image

patches which have been collected from a search window in the image. In Chapter 5,

we have placed the image prediction problem into a neighbor embedding framework

by adapting two different dimensionality reduction methods: locally linear embedding

and non-negative matrix factorization. These neighbor embedding methods provide

also two least-squares problems with different constraints, one with non-negativity and

the other with sum-to-one constraints, on the weighting coefficients for approximating

the template signal. Finally in Chapter 6, the proposed neighbor embedding methods

in Chapter 5 have been extended to an image inpainting application by formulating the

inpainting problem also as a least-squares optimization.

The contributions of this thesis could be seen as extensions to template matching

based methods, however rather than using heuristic approaches, the problems here are

well formularized in several optimization frameworks with different constraints. We

believe that the algorithms proposed in this study will open new doors in texture

synthesis applications by offering new directions for image prediction (i.e., predictive

coding), and also for image inpainting.
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Chapter 3

Image Prediction based on

Sparse Representations

One of the features of well-known transforms, such as the Fourier transform and the

wavelet transform, is to reveal certain structures of a signal and to represent these

structures in a compact, in other words sparse, manner. Sparse representations have

therefore become a very active research topic as they provide high performance in a

large diversity of signal processing applications.

In this chapter1, we first explain the basic principles of sparse representations by

formulating the underlying optimization problem and then present various greedy (pur-

suit) algorithms used for solving this problem. Next we introduce the concept of “dic-

tionaries” generally used in sparse representations. We then describe how sparse rep-

resentations can be adapted and applied to the image prediction problem by defining

dynamic and locally adaptive dictionaries. Finally we conclude this chapter by

presenting the experimental results obtained for the proposed framework for image

prediction, which we refer to as sparse prediction (SP).

3.1 Sparse Representations

Sparse representations have become an important topic with numerous applications

in signal and image processing, e.g., image denoising [54, 55], texture modeling [56],

1The content of this chapter is related to our publications in [51, 52]. [52] is the recipient of the

Huawei Best Student Paper Award in 2010 IEEE Int. Conf. on Image Process. (ICIP’10), Sept. 2010.

A related joint publication, which is not included into this chapter, is available in [53].
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3. IMAGE PREDICTION BASED ON SPARSE REPRESENTATIONS

image restoration [57, 58], image compression [59, 60], and more [61, 62, 63]. Sparse

representations consist in representing most or all information contained in a signal

with a linear combination of a small number of elements or atoms adequately chosen

from an overcomplete or redundant basis or dictionary. Formally, such a dictionary is a

collection of atoms whose number is much larger than the dimension of the signal space,

i.e., than the number of components of the vector representing the signal. Any signal

admits then an infinite number of representations and the sparsest such representation

happens to have interesting properties for a number of image processing tasks.

3.1.1 Problem formulation

The objective of sparse representations is to find a sparse approximation of a given

input signal b. In theory, given A ∈ RN×M and b ∈ RN with N 6 M and A is of full

rank, one seeks the solution of

b = Ax subject to min ‖x‖0 (3.1)

where the vector x ∈ RM denotes the sparse representation of the signal b and ‖x‖0 is

the `0–norm of x, i.e., the number of non-zero components in x. The matrix A is known

as the dictionary and its columns am,m = 1...M, are the atoms, they are assumed to

be normalized in the `2–norm, i.e., ‖am‖2 = 1 ∀m.

There are infinitely many solutions x to b = Ax and the problem is to find the

sparsest, i.e., the one for which x has the fewest non-zero components. In practice,

depending on the application, one actually seeks an approximate and thus even sparser

solution which satisfies

‖b−Ax‖p 6 ρ subject to min ‖x‖0 (3.2)

for some ρ > 0 characterizing an admissible approximation error, or

‖x‖0 6 K subject to min ‖b−Ax‖p (3.3)

for some integer K > 0 representing the maximum number of allowed non-zero compo-

nents in x. The norm p is usually 2, but could be 1 or ∞ as well.1

1Given a vector b ∈ RN, the p–norm is defined as ‖b‖p =

(
N∑
n=1

|bn|p
)1/p

for p > 1,

and ‖b‖∞ = max (|b1| , ..., |bN|).
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Except for the exhaustive combinatorial approach, there is no known method to

find the exact solution under general conditions on the dictionary A. Searching for this

sparsest representation is hence unfeasible, and the problems defined in (3.1)–(3.3) are

computationally intractable [64].

3.1.2 Sparse decomposition algorithms

A wide variety of pursuit algorithms [65, 66, 67, 68, 69, 70, 71] have been introduced

as heuristic greedy methods which aim at finding approximate solutions to the above

problems with tractable complexity.

The matching pursuit (MP) [66] algorithm yields an approximation error which

decreases with each iteration. However, it is sub-optimal. At any iteration, the newly

obtained residual signal is orthogonal only to the immediately selected atom, but it

may not be orthogonal to all the atoms selected at the previous iterations. As a

result, some atoms selected at an earlier iteration may get selected again. This causes

slow convergence. The orthogonal matching pursuit (OMP) [67] algorithm removes

this drawback by updating the weighting coefficients of all previously selected atoms so

that the newly derived residual signal is orthogonal to not only the immediately selected

atom but also to all the atoms selected at previous iterations. As a consequence, once

an atom is selected, it is never selected again in subsequent iterations. In OMP, the

approximation error at any iteration is minimized only for the immediately selected

atom, however, this error may not be the minimum over all previously selected atoms.

The optimized OMP (OOMP) [68] algorithm has then been introduced to improve on

this sub-optimality in OMP by performing a more computationally demanding search.

The difficulty in solving the problems in (3.1)–(3.3) exactly lies in the `0–norm

minimization. An easy way to get an approximate solution to this problem is to replace

the `0–norm by the `1–norm. The advantage of using the `1–norm is that these problems

are easily transformed into linear programs whose solutions are straightforward. This

approach is known in the literature as basis pursuit (BP) [65]. Clearly, the two problems

are different, however solving the `1 minimization problem results in an approximate

solution for the `0 minimization problem. In BP, the atoms are selected simultaneously

instead of choosing them one by one, but at the expense of increased complexity.
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Recently, complementary matching pursuit (CMP) [71] algorithms, e.g., orthogo-

nal CMP (OCMP) and optimized OCMP (OOCMP), have been introduced into the

literature aiming at improving currently available pursuit algorithms.

3.1.2.1 Matching pursuit (MP)

The MP algorithm offers a sub-optimal solution via an iterative algorithm. It gen-

erates a sequence of M dimensional vectors xk having an increasing number of non-

zero components in the following way. Initially x0 = 0 and an initial residual vector

r0 = b −Ax0 = b is computed. At the kth iteration, the algorithm selects the basis

function (atom) amk having the highest correlation with the current residual vector

rk−1 = b−Axk−1, that is, such that

mk = arg max
m

∣∣aT
mrk−1

∣∣ , m = 1...M. (3.4)

The weighting coefficient αmk of this new atom amk is then calculated as

αmk = aT
mk

rk−1 (3.5)

to minimize the energy of the new residual vector which thus becomes equal to

rk = rk−1 − αmkamk . (3.6)

The new optimal weight αmk is introduced into xk−1 to yield xk. Note that the

same atom may be chosen several times by MP. In this case, the value of the coefficient

αmk is added to the previous one. The algorithm proceeds until a stopping criterion

(‖b−Axk‖22 6 ρ or ‖xk‖0 > K) is satisfied, where ρ and K are the parameters which

control the sparseness of the representation.

3.1.2.2 Orthogonal matching pursuit (OMP)

OMP removes the drawback of MP by updating the weighting coefficients of all pre-

viously selected atoms so that the newly derived residual signal is orthogonal to both

immediately selected atom and all the atoms selected at previous iterations. As a result,

once an atom is selected, it is never selected again.

Like in MP, initially x0 = 0 and an initial residual vector r0 = b − Ax0 = b is

computed. At the kth iteration, the algorithm first identifies the atom amk having the
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3.1 Sparse Representations

maximum correlation with the current residual vector rk−1 = b −Axk−1. Let Ak−1

denote the matrix containing all the atoms selected in the previous iterations, and Ak

be defined as Ak = Ak−1 ∪ {amk}. One then projects the signal b onto the subspace

spanned by the columns of Ak, i.e., one solves

min
αk

∥∥∥b−Akαk

∥∥∥
2

2
, (3.7)

and the optimum solution vector αk is given as

αk =
(
AkT

Ak
)−1

AkT
b = Ak+

b (3.8)

where αk = [αm1 ... αmk ]T contains the weighting coefficients of all the atoms selected

up to the kth iteration, and Ak+
is the Moore-Penrose pseudo-inverse of Ak.

The optimal weights calculated in αk are introduced into xk−1 to yield xk by up-

dating (i.e., replacing) the coefficients with the previous ones. The new residual vector

can then be calculated as rk = b −Axk. Notice that here xk is the sparse vector of

coefficients at the kth iteration and all the coefficients assigned to the selected atoms

are recomputed at each iteration, unlike in the case of MP.

An alternative approach, stagewise OMP (StOMP) [69] has later been introduced.

At any iteration (stage) s, instead of simply selecting the maximum correlated atom

with the residual vector rs−1, StOMP selects a set of atoms in which all the correlation

values are above a specified threshold. It then solves the least-squares problem as in

OMP in order to calculate the optimum weights, and calculates the new residual signal

rs. Please see [69] for more information on StOMP and its thresholding strategy.

3.1.2.3 Optimized orthogonal matching pursuit (OOMP)

Although OMP achieves the best approximation of a given signal b that one can obtain

by using the selected atoms, it is not optimum since the atoms are selected with the MP

criterion. MP minimizes the energy of the residual signal at the current iteration but

it does not guarantee that the energy of the residual signal of the OMP decomposition

is minimized.

The OOMP algorithm has been introduced in order to achieve the optimality on

selecting the dictionary atom, at each iteration k, which minimizes the residual signal

energy of the orthogonal projection approximation of the signal b. At the kth iteration,
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3. IMAGE PREDICTION BASED ON SPARSE REPRESENTATIONS

OOMP aims at selecting the optimum atom amk by minimizing the energy of a residual

signal, that is, such that

rk = b− Pkb (3.9)

where the operator Pk is the orthogonal projector onto the subspace spanned by the

columns of Ak = Ak−1 ∪ {amk}. The optimum atom amk minimizing ‖rk‖22 can be

selected by maximizing the value of the functionals em as given by [68]

em =
bm
dm

=

∣∣aT
mrk−1

∣∣2

1− aT
m (Pk−1am)

, m = 1...M, (3.10)

where the selection is restricted to bm > 0, i.e., excluding the atoms with bm = 0 which

have a linear dependence with the previously selected atoms,

mk =

{
m : arg max

m
(em) , bm > 0

}
, (3.11)

in order to guarantee that all the selected atoms in Ak are linearly independent.

3.1.2.4 Basis pursuit (BP)

BP is also known as the Lasso [72] with a similar problem formulation. It is yet an-

other approach to obtain a simplified and approximate solution for the aforementioned

problems which consists in replacing the `0–norm constraint by an `1–norm constraint,

b = Ax subject to min ‖x‖1. (3.12)

The formulation in (3.12) can easily be transformed into a linear program and thus

solved with standard linear programming routines. BP can also be thought of as a least-

squares problem with an `1–norm regularizer. It can be reformulated in a Lagrangian

form as

min
x

[
‖b−Ax‖22 + λ̄‖x‖1

]
(3.13)

where λ̄ is a regularization parameter.

36



3.1 Sparse Representations

3.1.3 Sparse representation dictionaries

One crucial question in sparse representations is the choice of the dictionary A. One

can use a variety of pre-defined sets of functions (or waveforms), e.g., wavelets [73],

curvelets [74], contourlets [75], shearlets [76], bandelets [77], wedgelets [78]. However,

both the sparsity and the quality of the representation depend on how well the used

dictionary is adapted to the data at hand. The problem of dictionary learning, or even

simply finding adaptive ways to construct/select relevant dictionaries, for sparse repre-

sentations —that goes beyond the concatenation of a few off-the-shelf bases (like DCT,

discrete Fourier transform (DFT), wavelets, or the others)— has therefore become a

key issue for further progress in this area.

Note here that when we talk about a “dictionary”, we refer to an overcomplete

or redundant set of functions (atoms) stored in the columns of a full rank matrix

A ∈ RN×M, N 6 M, where M = ηN and η > 1 being defined as the redundancy factor

of the dictionary.

3.1.3.1 Static dictionaries

A simple and fast way to obtain a sparse representation dictionary is to choose a

pre-specified transform matrix. This is indeed the case for overcomplete DFT, DCT,

wavelets, and so on. The success of such a dictionary depends on how well the set of

analysed signals can be represented sparsely in that domain. Generally, these kinds

of dictionaries are particularly well suited for representing periodic texture patterns.

However, they fail for more complex and non-periodic structures. We will consider a

dictionary as static, if its atoms are generated by means of a pre-defined set of analytic

functions.

DFT dictionary

DFT decomposes a discrete time-domain function into components of different fre-

quencies, i.e., harmonics. It is known to be efficient in representing uniformly smooth

signals and patterns. However, its strong smoothing property makes it difficult to

represent complex structures and discontinuities.

Formally, given a one-dimensional signal b ∈ RN, the DFT coefficients vector B ∈
RM, N 6 M, can be obtained by the following formula
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Figure 3.1: An overcomplete real-DFT dictionary - The dictionary is constructed

with atom size 8× 8 and redundancy factor η = 4.

Bm =
N−1∑

n=0

bnφm,n (3.14)

where φm,n = exp
(
−j 2π

Mmn
)

for m = 0...M− 1 and n = 0...N− 1.1 A one-dimensional

overcomplete DFT dictionary can be constructed using the basis functions φm,n.

Now we turn our attention to two-dimensional signals where the atoms can be

generated by an extended function

φ̂m1,m2,n1,n2
= φm1,n1

φm2,n2
(3.15)

for m1 = 0...M1 − 1, m2 = 0...M2 − 1, n1 = 0...N1 − 1, and n2 = 0...N2 − 1. In

this case, the columns of the dictionary A correspond to the vectorized and then `2–

normalized forms of the generated atoms.

Note here that DFT signals are complex-valued. A general procedure consist in

using only the real-part of the dictionary. An overcomplete real-DFT dictionary with

atom size 8× 8, i.e., N = 64, and η = 4, i.e., M = 256, is shown in Fig. 3.1.

1When dealing with a sequence, let us say of length N, it is assumed that the individual elements of

the sequence are indexed in the range [1...N], however, here because of the definition of DFT, without

loss of generality, the elements are indexed in the range [0...N− 1].
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Figure 3.2: An overcomplete DCT dictionary - The dictionary is constructed with

atom size 8× 8 and redundancy factor η = 4.

DCT dictionary

DCT is also a Fourier related transformation (i.e., similar to DFT) which expresses

a discrete time-domain function in terms of a sum of “cosine” basis functions oscillating

at different frequencies. It assumes an anti-symmetric extension of the signal resulting

in a more efficient signal representation when compared to DFT. Furthermore, DCT has

a great advantage of producing real-valued coefficients which makes it to be preferred

in many practical applications.

In theory, given a one-dimensional signal b ∈ RN, the DCT coefficients vector

B ∈ RM, N 6 M, can be obtained by

Bm =
N−1∑

n=0

bnϕm,n (3.16)

where ϕm,n = cos
[
π
M

(
n+ 1

2

)
m
]

for m = 0...M− 1 and n = 0...N− 1.

Here again two-dimensional atoms can be generated by an extended function

ϕ̂m1,m2,n1,n2
= ϕm1,n1

ϕm2,n2
(3.17)

where m1 = 0...M1 − 1, m2 = 0...M2 − 1, n1 = 0...N1 − 1, and n2 = 0...N2 − 1. The

columns am of the dictionary A correspond to the vector forms of the generated atoms
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where ‖am‖2 = 1 ∀m. An overcomplete DCT dictionary with atom size 8 × 8, i.e.,

N = 64, and η = 4, i.e., M = 256, is shown in Fig. 3.2.

Time-frequency (space-frequency) dictionaries

A better localization is highly required to achieve sparsity [79]. Atoms with fixed

supports, e.g., DFT and DCT, have less flexible representations which can not adapt

to possible irregularities. In order to achieve better sparsity, atoms with concentrated

supports on local signal characteristics should be considered. In this context, the Short

Time Fourier Transform (STFT) [80], which is basically a localized Fourier transform

revealing the time-frequency relation of the signal, has been extended and generalized

leading to a well-known time-frequency decomposition called the Gabor transform [81,

82, 83].

A single window function g(t) can be scaled, translated, and modulated in order

to generate a family of time-frequency atoms [66]. For a given scale s > 0, frequency

modulating ξ, and translation τ , we denote the parameter set γ = {s, ξ, τ} and define

the function gγ(t) as

gγ(t) = κ(γ)g

(
t− τ
s

)
ejξt (3.18)

where κ(γ) is the normalization factor of gγ(t) such that ‖gγ(t)‖2 = 1. If the function

g(t) is even (which is generally the case and typically a Gaussian), gγ(t) has the energy

mostly concentrated in a neighborhood of τ in time domain with size propotional to s,

and of ξ in frequency domain with size propotional to 1/s.

Multi-resolution dictionaries

Most of the natural signals, and also images, show meaningful structural properties

over different resolutions, hence can be analysed efficiently in a multi-resolution frame-

work such as wavelet analysis [73]. A multi-resolution wavelet basis (dictionary atoms)

can be constructed from two localized functions referred to as the scaling function

(which is a low frequency signal) and the mother wavelet (which is a high frequency

signal) [84, 85]. The scaling function covers the wavelet spectrum and approximates

the signal coarsely with its translations, whereas the mother wavelet ψ(t) approximates

the signal details with its various dilations and translations, i.e., ψ
(
t−τ
s

)
.
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3.1.3.2 Adaptive dictionaries

The analytic dictionary construction approaches as defined above fundamentally corre-

spond to the pre-defined implicit description of highly structural dictionaries. Although

these approaches have a fast mathematical description, hence simplicity in numerical

implementation, the choice of the dictionary requires a strong pre-knowledge of the

structure of the data for an efficient signal representation. In practice, for natural im-

age signals, it has already been proven that learning the dictionary from a set of train-

ing samples leads to much better representation results since the learned dictionary has

been well-adapted and fine-tuned to the given set of training data or a particular image.

Thus, various researchers have developed various dictionary learning schemes in order

to provide adapted dictionaries for the data considered. These dictionaries are usually

learned with `0–norm (or `1–norm) constraints so that the data can be represented

efficiently by sparse decomposition algorithms.

The popular dictionary learning algorithms include Method of Optimal Directions

(MOD) [86], unions of orthobases [87, 88], K–SVD [89], and (Generalized) Principle

Component Analysis ((G)PCA) [90, 91], and more. These learning methods are often

conducted as an offline pre-processing step resulting in a significant improvement in

signal representation when compared to off-the-shelf (i.e., static) bases or dictionaries.

Chapter 4 is devoted to the basic principles of these dictionary learning methods and

especially to their adaptation to the image prediction problem.

3.2 Image Prediction based on Sparse Representations

3.2.1 Background work

The first sparse spatial image prediction approach with static dictionaries formed by

DCT and/or real-DFT basis functions has been proposed by Martin et al. [92] in which

image prediction is regarded as a problem of signal extension (extrapolation) from noisy

data taken from a causal neighborhood. The sparse signal approximation method is

run with a set of masked (DCT and/or real-DFT) basis functions, the masked samples

correspond to the spatial location of the pixels to be predicted. The basic principle

of this approach is to first search for a linear combination of masked basis functions

which best approximates known pixel values in the causal neighborhood, and keep the
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Figure 3.3: Sparse image prediction method proposed by Martin et al. - C is

the causal neighborhood and D is the anti-causal neighborhood of the current block to be

predicted B of size n× n.

same linear combination of basis functions to extrapolate the unknown sample values

in the block to be predicted. The stopping criterion (which is the energy of the residual

signal) is computed on the known causal neighborhood. To compute it on the causal

neighborhood would lead to a residue of small energy, however, this residue might take

potentially large values in the block to be predicted. The optimum number of used

atoms (basis functions) is selected in order to minimize a given criterion (i.e., the en-

ergy of the residual signal) on the block to be predicted, and then it is transmitted to

the decoder. The decoder similarly runs the algorithm with the masked basis functions

by taking the previously decoded neighborhood as the known support. The optimum

number of atoms selected by the encoder can thus be used by the decoder as a stopping

criterion.

The algorithm

Let S denote a region in the image containing the block B of n × n pixels to be

predicted, and its causal and anti-causal neighborhoods C and D respectively as shown

in Fig. 3.3. The entire region S contains nine blocks and hence of size 3n × 3n pixels

of DCT or real-DFT dictionary basis functions have been generated with η = 1, i.e., a

complete dictionary A of size 9n2 × 9n2. However, the dictionary A can also be formed

by a concatenation of DCT and real-DFT basis functions, or even can be extended to

include some other basis functions such as Gabor or wavelets.

A column vector b of dimension 9n2 has been formed with the pixel values of the
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entire region S. Note here that there are known values (4 blocks of the causal neigh-

borhood C) and unknown values (the area containing the block B and the anti-causal

neighborhood D) in the region S. Only the known pixel values in the vector b are kept

in a compacted vector bc of size 4n2. Similarly, the dictionary A is modified by masking

its rows corresponding to the spatial location of the pixels which are not in the causal

neighborhood C. A compacted dictionary matrix Ac of size 4n2 × 9n2 is obtained. The

sparse representations algorithm, i.e., MP or global matched filter (GMF) [93], then

proceeds by solving a constrained approximate minimization as

arg min
x

‖bc −Acx‖22 subject to min
x
‖bt −Atx‖22 and ‖x‖0 6 K (3.19)

where the vector bt of size n2 represents the original pixel values of the block to be

predicted B, At is the corresponding spatial dictionary obtained by masking the rows of

A with respect to the spatial location of the pixels which are not in B, and K being the

maximum number of allowed iterations (or similarly the maximum number of allowed

non-zero components in x).

3.2.2 Locally adaptive dictionaries

The dictionaries formed by DCT and/or real-DFT waveforms are particularly well

suited for predicting periodic texture patches. However, the prediction fails for more

complex and non-periodic structures with discontinuities. Instead of considering dic-

tionaries formed by fixed and pre-defined waveforms, the approach here consists in

searching for a solution to the constrained sparse approximation (3.19) of the vector bc

with dynamic and locally adaptive dictionaries which are formed by atoms derived

from possibly smoothed and normalized texture patches present in a larger search

window W in a causal vicinity of the block to be predicted (see Fig. 3.4). The principle

of the approach is thus to first search for a linear combination of image patches (where

the luminance values are stacked as columns in the dictionary matrix A) which best

approximates the causal neighborhood C, and then keep the same linear combination

of co-located pixel values to extrapolate the unknown sample values in the block to be

predicted B.

Notice here that, except for the bordering blocks, every single block B in the image

has its own dictionary matrix A in which the atoms are locally characterized by the
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Figure 3.4: Locally adaptive dictionary construction - C is the causal neighborhood

and D is the anti-causal neighborhood of the current block to be predicted B of size n×n.

W is the search window from which texture patches are taken to construct the dictionary

A to be used for the prediction of B.

spatial location of B and also the size of the search window W. The size of the search

window is a parameter which controls the dimension of the dictionary A, hence of the

CPU time needed to solve the approximation problem and the quality of the approx-

imation. Different methods can be envisaged for selecting the texture patches, which

will be used as atoms, in the search window W. The use of a causal search window

guarantees that the decoder can construct exactly the same dictionary.

3.2.3 Dynamic approximation supports

In the method proposed by [92], there is only one approximation support (i.e., the

causal neighborhood C) which has been fixed. Limiting the image prediction problem

with only one rigid approximation support will obviously lead to less efficient prediction

results since natural images usually contain very complex and non-periodic textural and

structural areas. Instead of considering only one fixed approximation support (which

might not be adaptive to all possible irregularities in the image), the approach here

consists in defining a set of pre-defined dynamic approximation supports. Although

there are limitless ways of obtaining new approximation supports, we have defined

seven modes as shown in Fig. 3.5. Here our aim is to cover, as much as possible, the

directional structures as well as the textural areas in an image, i.e., Modes 1-2-3 are

capable of handling the smooth and periodic textural areas as well as the directional

44



3.2 Image Prediction based on Sparse Representations

Figure 3.5: Seven possible modes for approximation support selection - The

optimum support type is selected according to a given criterion.

structures with low inclinations, whereas Mode 4 and Mode 5 are highly capable of

predicting the directional structures with high inclinations, and Mode 6 and Mode 7

can be efficiently used for the vertical and horizontal structures respectively.

The best approximation support is selected according to a given criterion, e.g.,

minimization of the energy of the residual signal on the block to be predicted B, as

in the case of selecting the optimum number of used atoms or basis functions. The

selected approximation mode type (which is an integer) then needs to be transmitted

to the decoder so that the decoder can use the same approximation support in order

to make the same prediction.

3.2.4 Optimum sparse vector selection

A sparse decomposition algorithm, e.g., MP or OMP, stops when the residue energy

of the analysed signal is under a pre-specified threshold ρ, or the maximum number of

allowed iteration number K is reached. In the prediction point of view, here the set of

coefficients selected by the iterative algorithm leads to a good sparse representation of

the causal neighborhood C, or equivalently of the vector bc. However, the algorithm

itself does not put any constraint on the values of the block to be predicted B. Therefore,

the last iteration may not lead to a best predicted signal, or to a best prediction in a

rate-distortion (RD) sense when the prediction method is included in a complete image

compression algorithm. This is illustrated in Fig. 3.6 which shows that, while the

last iteration of the sparse decomposition algorithm always gives a good representation

of the (approximation) support region, the approximation obtained for the unknown

pixel values may not be the best. In order to optimize the prediction according to
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Figure 3.6: Mean prediction PSNR versus sparsity performance curves of (top)

Foreman and (bottom) Barbara using sparse prediction - (left) The approximation

support, (right) the unknown block. Block size is 4 × 4 pixels, and the approximation

support Mode 1 as illustrated in Fig. 3.5 has been used.

a given criterion, one keeps track of the sparse vectors computed at each iteration of

the algorithm and uses the one which satisfies the chosen criterion. Here the method

proceeds as follows: the sparse representation algorithm is run until the pre-specified

iteration number K is reached, leading to K possible sparse vectors xk, k = 1...K, one

being produced at each iteration of the pursuit algorithm. Then, the optimum vector

of coefficients xkopt is selected according to two different criteria:

• Minimization of the sum of squared error (SSE) on the block to be predicted bt

in order to observe the impact on the prediction quality, i.e.,

kopt = arg min
16k6K

‖bt −Atxk‖22 . (3.20)

• Minimization of an RD cost function of the form J(D,R) = D + λR when the

prediction method is used in a coding scheme in order to observe the impact on
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the encoding efficiency, i.e.,

kopt = arg min
16k6K

Jk(D,R), (3.21)

where D is the total distortion on the block to be predicted, and R is the corre-

sponding prediction residue encoding cost (in bits). Here λ represents a Lagrange

multiplier which relates the distortion D and the rate R.

Note here that the optimization is done in two steps, i.e., first for the selection of

the optimum iteration number k, and then for the selection of the optimum dynamic

approximation support type. The corresponding iteration number and support mode

type then need to be transmitted to the decoder. The decoder similarly uses the

signaled approximation support type by iterating the pursuit algorithm kopt iterations

in order to predict the unknown pixel values in B. The predicted signal b̂t is simply

calculated by multiplying the dictionary matrix At by xkopt as

b̂t = Atxkopt . (3.22)

Note also that the columns (atoms atm) of At are first to be normalized with the

norm of corresponding atoms of Ac, i.e., atm = atm/‖acm‖2 ∀m, and then the atoms

of Ac are normalized in the `2–norm, i.e., ‖acm‖2 = 1 ∀m.

The sparse spatial image prediction algorithm based on sparse representations using

OMP is summarized in Table 3.1. Notice again that the dictionary matrices Ac and At

here are updated adaptively (per block) according to the spatial location of the block

to be predicted B.

3.3 Image Prediction based on Template Matching

Template matching (TM) based algorithms have been widely considered for texture

synthesis problems such as intra image prediction [39, 40, 41, 42], exemplar-based im-

age inpainting [43, 44], and so on. In this section, we give the underlying basic ideas,

and also possible extensions, of the TM approach in the image prediction framework.
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Inputs: Ac, At, bc, bt, K

Output: Predicted values of unknowns b̂t

Initialization: k = 0, x0 = 0, r0 = bc, A0
c = [ ]

repeat until k = K

k = k + 1

mk = arg maxm
∣∣AT

c rk−1

∣∣
Ak
c = Ak−1

c ∪ {acmk}
αk = Ak

c
+

bc → xk

rk = bc −Acxk

pk = Atxk

end repeat

Select the optimum k minimizing the selected criterion

Set b̂t = pkopt

Table 3.1: Image prediction algorithm based on sparse representations using

OMP - The proposed sparse prediction method has been drawn here for one approximation

support, however, its extension to dynamic approximation supports is straightforward.

3.3.1 Simple template matching (TM)

The main idea of TM consists in estimating the unknown (luminance and chrominance)

pixel values using image patches in a local search window where all the pixel values

are known and available for processing. More precisely, the values of each pixel to be

estimated (or predicted) are determined by comparing their spatial neighboring pixels,

so-called the template, with all candidate neighborhoods in the search window, and

assigning the candidate pixel values as a predictor (or synthesizer) for the unknown

sample values by minimizing a distance measure between the template and the candi-

date neighborhood. The distance measures used are usually classical ones such as the

sum of absolute error (SAE), SSE, etc. Fig. 3.7 demonstrates a simple illustration of

the TM algorithm for block-based intra image prediction application.

The TM approach highly relies on the assumption that the estimated (predicted)

texture contains a similar textural and structural characteristics as the template. How-

ever, in natural images, there are more complex and textured structures where template

matching might not be sufficient in terms of visual and statistical quality, and even it

fails completely in some cases. The idea instead is to consider the proposed predic-

tion method based on sparse representations. Notice here that sparse prediction with
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3.3 Image Prediction based on Template Matching

Figure 3.7: Intra image prediction based on template matching - A template

is formed by previously encoded pixels in the close neighborhood of the unknown block.

The best match between the template and the candidate neighborhood, within the search

window W, allows finding the predictor (candidate block) of the unknown block.

locally adaptive dictionaries can be regarded as an extension of the TM method since

the texture prediction process is carried out as a weighted linear combination of more

than one image patch in the search window W. In contrary to simple TM where texture

is generated by only one patch with a weighting coefficient equal to 1, the weighting

coefficients of the sparse prediction (SP) method are calculated iteratively by the sparse

decomposition algorithm OMP.

Below, we first start with formulating the template matching algorithm in terms of

our notation in this manuscript and then adapt our proposed sparse prediction method

in order to have a fair comparison with simple template matching.

Image prediction based on template matching

Let S denote a region in the image containing the unknown block of size n × n

and its template as shown in Fig. 3.7. The region S contains 4 blocks hence of size

N = 2n × 2n pixels for running the TM algorithm. Suppose that the columns am of

a matrix A ∈ RN×M are constructed by stacking the luminance values of all possible

patches, of size 2n× 2n pixels, in a given causal search window W in the reconstructed

image region. Here the matrix A will also be referred as the dictionary, however, the

columns (atoms) will not be normalized in contrary to the SP method. Assume that

the N sample values of the region S are stacked in a column vector b.
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Static template prediction: A static template is considered as the commonly used

conventional template as shown in Fig. 3.7 (also in Fig. 3.5 as Mode 1). Let us suppose

that the static template is used for prediction. For the first step, that is the search

for a best match of the known pixel values in the template, the matrix A is modified

by masking its rows corresponding to the spatial location of the pixels of the unknown

block. A compacted dictionary Ac of size 3n2 ×M is obtained in which actually the

columns acm correspond to the possible candidate neighborhoods in the search window.

The vector b is also compacted in bc with the known pixels in the template of size 3n2

values. The template matching algorithm then proceeds by calculating

mopt = arg min
m∈[1...M]

{dm : dm = DIST (bc,acm)} (3.23)

where the operator DIST denotes a distance metric such as SSE.

The prediction signal b̂t is simply assigned by the sample values of the candidate

block atmopt as b̂t = atmopt . The columns atm of At correspond to the possible candidate

blocks in the search window, where the matrix At is obtained by masking the rows of

the dictionary A corresponding to the spatial location of the pixels of the template.

Optimized dynamic templates: The optimum dynamic template is selected among

seven pre-defined approximation supports as shown in Fig. 3.5. Here also the opti-

mization is conducted according to two criteria, i.e., 1. minimization of the prediction

signal SSE (or MSE); 2. minimization of the RD cost function J(D,R) when the TM

algorithm used in a coding scheme.

Image prediction based on sparse representations

The basic principle of the sparse prediction approach (with locally adaptive dictio-

naries) is to first search for a linear combination of image patches which approximates

well the approximation support (template), and then keep the same linear combination

of co-located pixels to predict the pixel values in the unknown block.

For the sake of a fair comparison with template matching, the sparse prediction

method here is iterated only once. Let the quantity x denote the sparse vector which will

contain the result of the sparse approximation of the current approximation support,

i.e., the coefficient of the expansion of the vector bc on only one atom of the dictionary

matrix Ac. The constrained approximate minimization in (3.19) then becomes
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3.3 Image Prediction based on Template Matching

xopt = arg min
x

‖bc −Acx‖22 subject to ‖x‖0 = 1. (3.24)

The prediction signal b̂t is similarly obtained as b̂t = Atxopt. Note that the columns

of the matrices Ac and At need to be normalized accordingly as defined earlier.

3.3.2 Weighted linear combination of template matching predictors

Starting with the above definition of simple TM, a weighted linear combination of

multiple TM predictors can be seen as a possible extension since there might be more

than one candidate blocks which are equally important, or with a varying degree of

importance but useful to be used in the prediction process.

3.3.2.1 Average template matching (ATM)

A simple consideration is of the weighting coefficients which are all equal to each other,

i.e., all the weights are equal to 1/K if there are K number of patches to be used. We

refer to this special case with uniform weights as average template matching (ATM).

Let the vector b̂t be predicted as a uniform average of the candidate blocks atmk , k =

1...K, where the corresponding candidate neighborhoods acmk , k = 1...K, which are

taken from the search window, are the K nearest neighbors (e.g., in terms of a distance

metric such as SSE) of the template bc. Assuming the columns atm of the dictionary At

are independent and identically distributed (i.i.d.) samples, and they have the same

mean and variance, µ and σ2 respectively, the central limit theorem states that the

average of K candidate blocks tends towards to a Gaussian distribution with a mean

µavg = µ and variance σ2
avg = 1

Kσ
2. As a result, the average of K candidate blocks has

a smaller variance, thus statistically a smaller prediction error can be expected when

compared to the prediction with an individual candidate block, i.e., simple TM.

3.3.2.2 Non-local means (NLM)

Although ATM has an easy and straightforward way of obtaining the weighting coef-

ficients, the weights can be calculated by other means than simply using the average.

Non-local means (NLM) based approaches have already been applied to different image

processing problems such as inpainting [46], restoration [47], and denoising [48, 49, 50].

Here we apply this method to our image prediction problem. Similar to ATM, the NLM
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based method tries to aggregate multiple image patches as a weighted linear combi-

nation, but the weighting coefficients are calculated in a different way. The idea here

is to express the weights in terms of the amount of similarity between the candidate

neighbor patches and the template, i.e., the contribution weights are calculated with a

patch similarity based kernel function (e.g., exponential) in order to give more attention

to the neighboring patches which are more similar to the template than the others.

Assume here also the vector b̂t be predicted as a weighted linear combination of the

candidate blocks atmk , k = 1...K, where the corresponding candidate neighborhoods

acmk , k = 1...K, taken from the search window are the K nearest neighbors of the

template bc. By using an exponential kernel function, the weigthing coefficients vector

α = [α1 ... αK ]T can then be calculated as follows

αk = exp


−

DIST
(
bc,acmk

)

h


 , k = 1...K, (3.25)

where h is a decay coefficient. The calculated weights are finally normalized to sum-to-

one, i.e., α = α/sum(α), in order to avoid a possible overflow in the predicted values

of the pixels.

For the sake of a fair comparison with sparse prediction, the ATM and NLM based

methods here are iterated in a loop of increasing k, k = 1...K, by keeping track of

the SSE or the RD cost function values for the block to be predicted. The optimum

number kopt and dynamic template mode type, which minimize the considered criterion,

are then transmitted to the decoder similar to SP. The ATM and NLM based image

prediction algorithms are summarized in Table 3.2. Please note here that these methods

differ from SP in sense that they do not have an optimization on the approximation of

the template, whereas SP runs an optimization on the approximation support region

(template) for calculating the weighting coefficients.

3.4 Experimental Results

3.4.1 Prediction quality evaluation of adaptive dictionaries

The proposed adaptive dictionary construction method in this chapter has first been

assessed against the overcomplete DCT dictionary in terms of visual prediction quality
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Input: Ac, At, bc, bt, K

Output: Predicted values of unknowns b̂t

Initialization: k = 0, α = [ ], A0
c = [ ], A0

t = [ ]

repeat until k = K

k = k + 1

mk = arg minm ‖bc − acm‖22 where m /∈ {m1, ...,mk−1}
Ak
c = Ak−1

c ∪ {acmk} and Ak
t = Ak−1

t ∪ {atmk}
if ATM: ∀k′ ∈ [1, k] αk′ = 1/k → α

if NLM: ∀k′ ∈ [1, k] αk′ = exp
(
−h−1DIST

(
bc,a

k
ck′

))
→ α

α = α/sum(α)

pk = Ak
tα

end repeat

Select the optimum k minimizing the selected criterion

Set b̂t = pkopt

Table 3.2: Image prediction algorithm based on ATM and NLM - The proposed

prediction method has been drawn here for one template, however, its extension to opti-

mized dynamic templates is straightforward.

and also of peak signal-to-noise ratio (PSNR)1 using both one fixed approximation

support as proposed in [92] and dynamic supports selection (see Fig. 3.5). In order to

observe the impact on the prediction quality, the optimum iteration number k and also

the support mode type (if dynamic selection is enabled) are selected by minimizing the

SSE on the block to be predicted bt in a lossless encoder/decoder structure.

In the experiments reported here, the OMP algorithm has been used with a max-

imum allowed iteration number K = 8. Block size is fixed to 8 × 8 pixels, and both

DCT and adaptive dictionaries are constructed with a redundancy factor η = 4, e.g.,

A is of size 576× 2304 for a region S of size 24× 24 pixels. In the case when dynamic

supports selection is enabled, it is assumed that the region S contains 16 × 16 pixels,

hence A is of size 256× 1024 for both DCT and adaptive dictionaries.

1PSNR (in decibels) is defined as the ratio between the maximum possible power of a signal I and

the power of corrupting noise affecting its representation Ĩ. Formally,

PSNR = 10log10

(
I2max

/
MSE

)
[dB]

where Imax is the maximum possible value of I, i.e., Imax = 255 if the signal is represented with 8

bits/sample, and MSE is the mean square error between the signal I and its noisy representation Ĩ.
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Figure 3.8: Predicted images of (top) Foreman and (bottom) Barbara using

overcomplete DCT and adaptive dictionaries with one approximation support

as in Martin et al. - (left) The original image, (middle) the predicted image with DCT

dictionary, and (right) the predicted image with adaptive dictionaries.

Fixed support [92] Dynamic supports

Image name DCT Adaptive DCT Adaptive

Barbara (512× 512) 21.04 dB 23.18 dB 22.84 dB 25.44 dB

Foreman (CIF) 23.01 dB 27.01 dB 25.31 dB 29.43 dB

Roof (512× 512) 19.80 dB 21.09 dB 20.90 dB 23.31 dB

Cameraman (256× 256) 18.02 dB 18.73 dB 19.88 dB 20.77 dB

Table 3.3: Prediction PSNR results obtained for various images - Prediction

results for Barbara, Foreman, Roof, and Cameraman images. Optimization criterion is the

minimization of the prediction signal SSE.

Fig. 3.8 shows the predicted images of Foreman (CIF) and Barbara (512 × 512)

using only one fixed approximation support with overcomplete DCT and adaptive dic-

tionaries. Fig. 3.9 demonstrates the prediction results of the same test images using

dynamic approximation supports selection.
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Figure 3.9: Predicted images of (top) Foreman and (bottom) Barbara using

overcomplete DCT and adaptive dictionaries with dynamic approximation sup-

ports - (left) The original image, (middle) the predicted image with DCT dictionary, and

(right) the predicted image with adaptive dictionaries.

The adaptive dictionaries allow to better account for more complex structures, in

particular for the areas with contours and discontinuities. The quality of the predicted

signal is significantly improved when compared to the DCT dictionary. This fact can

be observed clearly from the predicted images. Moreover, the usage of dynamic sup-

ports further improves the prediction quality visually and also in terms of PSNR. All

the experimental results obtained for various images, in terms of prediction PSNR in

decibels (dB), are given in Table 3.3.

3.4.2 Rate distortion evaluation of adaptive dictionaries

The proposed adaptive dictionary construction method has also been assessed in a

complete image coding scheme by comparing it to the overcomplete DCT dictionary.

The performance assessment is done both in terms of prediction quality and encoding

PSNR/bit-rate efficiency.
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In order to initialize the prediction/compression process, the top 3 rows and left

3 columns of blocks of size 8× 8 pixels are intra encoded with JPEG algorithm. Image

blocks are processed in a raster scan order. Once a block has been predicted with the re-

spective prediction method (i.e., based on overcomplete DCT or adaptive dictionaries),

the DCT transformed 8× 8 residual block is quantized, zig-zag scanned, and encoded

with an algorithm similar to JPEG. In this coding structure, a uniform quantization

matrix with step size ∆ = 16 is weighted by a quality factor. The quality factor (qf )

is increased from 10 to 90 with a step size of 10, and the corresponding weight wqf is

calculated by means of the following equation

wqf =

{
50/qf if qf ≤ 50

2− 0.02qf if qf > 50
. (3.26)

The reconstructed image is obtained by adding the quantized residue to the prediction.

The adaptive dictionaries are constructed using the texture patches in the reconstructed

image. The redundancy factor η has been kept as 4 and the atoms of the dictionary A

are smoothed with a low-pass filter in the case when adaptive dictionaries are used.

The optimum iteration number and also the optimum approximation support mode

is selected by minimizing either the SSE or the RD cost function on the block to be

predicted. The RD cost function is defined as of the form J(D,R) = D + λR. Here

D is the SSE distortion of the reconstructed block (after adding the quantized residue

to the prediction), and R is the residual signal encoding cost which can be estimated

as R = γ0M
′ for low bit-rate compression [94] with M ′ being defined as the number of

non-zero quantized DCT coefficients, and for a DCT basis γ0 = 6.5. By considering the

uniform scalar quantizer with a quantization step size ∆ (where the deadzone is equal to

2∆), the relation between the optimum Lagrange multiplier λopt and the quantization

step ∆ is given by [77]

λopt =
3∆2

4γ0
. (3.27)

The OMP algorithm is limited to iterate at most K = 8 iterations, i.e., allowing a

maximum 3 bits per block bit-rate cost for signaling the value of kopt. The optimum

iteration number and the approximation support type, when transmitted, are Huffman

encoded. A skip mode (the corresponding flag is arithmetically encoded) has also been
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Figure 3.10: Prediction performance curves of (left) Foreman and (right) Bar-

bara using overcomplete DCT and adaptive dictionaries - PSNR performance

curves with different quality levels in the image coding scheme. Optimization criterion is

the minimization of the prediction signal SSE.

included to the encoder to avoid coding the blocks of prediction residue in which all

the transformed and quantized coefficients are zero.

Fig. 3.10 shows the prediction performance curves of the proposed image prediction

algorithm with adaptive dictionaries in comparison to overcomplete DCT dictionary,

where kopt and approximation support selection criterion is the minimization of the

prediction signal SSE. The quality of the predicted signal, in terms of PSNR, is sig-

nificantly improved even in the presence of different levels of quantization noise. A

prediction gain up to 2.5 dB and 4 dB has been achieved for Barbara and Foreman

images respectively.

Fig. 3.11 demonstrates the encoding PSNR/bit-rate performance curves of the pro-

posed dictionary construction algorithm compared with the overcomplete DCT method

in reference to JPEG standard. Here the optimization criterion is the minimization of

the RD cost function on the prediction signal. The coding cost of the optimum iteration

number, the approximation support type, and the skip mode have been included into

total bit-rate. The encoding RD performance curves also show significant improvement

when compared with the overcomplete DCT dictionary and the JPEG coding standard.

3.4.3 Sparse prediction vs. template matching based prediction

In this section, we assess comparatively the proposed sparse prediction method to

the template matching based prediction techniques (i.e., TM, ATM, and NLM) with
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Figure 3.11: Encoding performance curves of (left) Foreman and (right) Bar-

bara using overcomplete DCT and adaptive dictionaries in reference to JPEG

standard - PSNR/bit-rate performance curves in the image coding scheme. Optimization

criterion is the minimization of the RD cost function on the prediction signal.

a static and optimized dynamic templates (in other words, approximation supports).

We plot the results of the experimental observations with a detailed comparison in

terms of prediction quality (both visually and in terms of PSNR) and also encoding

PSNR/bit-rate efficiency.

3.4.3.1 Sparse prediction vs. simple template matching

In the experiments reported here, block size is fixed to 8× 8 pixels and the dictionary

redundancy factor η = 4. In order to have a fair comparison with simple TM, the OMP

algorithm in SP is iterated only once (see (3.24)), and the same dictionary A has been

used for both of the prediction methods (except the normalization of the atoms in SP).

The distance metric DIST in (3.23) is set to SSE when TM is used.

Fig. 3.12 shows the predicted images of Foreman at qf = 30 where dynamic tem-

plates (supports) selection criterion (if it is enabled) is the minimization of the predic-

tion residue SSE. Fig. 3.13 demonstrates the corresponding prediction PSNR perfor-

mance curves for Foreman and Barbara images. The quality of the predicted signal,

both visually and in terms of PSNR, is significantly improved when compared with the

conventional template matching based prediction. Fig. 3.14 illustrates the encoding

PSNR/bit-rate performance curves of the same test images using both a static and RD

optimized dynamic templates. One can observe here also that the proposed method

with dynamic templates selection significantly improves the encoding performance with
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(a) 26.41 dB (b) 25.69 dB

(c) 24.23 dB (d) 23.97 dB

Figure 3.12: Predicted images of Foreman using sparse prediction (one itera-

tion) in comparison to template matching - (a) Dynamic template OMP, (b) dynamic

template TM, (c) static template OMP, and (d) static template TM.

respect to the conventional static template matching prediction. A gain up to 3 dB has

been achieved in both prediction quality and encoding efficiency.

3.4.3.2 Sparse prediction vs. weighted template matching

Now we turn our attention to a comparison between sparse prediction and the weighted

template matching predictors (i.e., ATM and NLM). The same experimental setup (for

the block size and dictionary construction) as described above has been kept for the

simulations. The algorithms drawn in Table 3.1 and Table 3.2 are limited to iterate at

most K = 8 iterations. The optimum number k, k = 1...K, and the dynamic template

mode type, when transmitted, are Huffman encoded. The nearest neighboring patches

(for ATM and NLM) are selected using the SSE distance measure. When NLM based

method is used, the distance metric DIST in (3.25) has been set to MSE, and the decay

coefficient h = 25.
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Figure 3.13: Prediction performance curves of (left) Foreman and (right) Bar-

bara using sparse prediction (one iteration) in comparison to template match-

ing - PSNR performance curves with different quality levels in the image coding scheme.

Optimization criterion is the minimization of the prediction signal SSE.

Figure 3.14: Encoding performance curves of (left) Foreman and (right) Bar-

bara using using sparse prediction (one iteration) in comparison to template

matching - PSNR/bit-rate performance curves in the image coding scheme. Optimization

criterion is the minimization of the RD cost function on the prediction signal.

Fig. 3.15 demonstrates the prediction PSNR performance curves for Foreman and

Barbara images, where the optimization criterion is the minimization of the prediction

residue SSE. The quality of the predicted signal, in terms of PSNR, is greatly improved

when compared with the ATM and NLM based prediction methods. It might be worthy

to note here that, in terms of prediction quality, (weighted) average of predictors (i.e.,

SP, ATM, and NLM) definitely work better than using only one simple TM predictor.

Fig. 3.16 illustrates the encoding PSNR/bit-rate performance curves of the same
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Figure 3.15: Prediction performance curves of (left) Foreman and (right) Bar-

bara using sparse prediction in comparison to ATM and NLM - PSNR per-

formance curves with different quality levels in the image coding scheme. Optimization

criterion is the minimization of the prediction signal SSE.

Figure 3.16: Encoding performance curves of (left) Foreman and (right) Bar-

bara using using sparse prediction in comparison to ATM and NLM - PSNR/bit-

rate performance curves in the image coding scheme. Optimization criterion is the mini-

mization of the RD cost function on the prediction signal.

test images with RD optimization. In terms of encoding performance, our proposed

sparse prediction method is outperformed by the ATM and NLM based methods. The

reason is that the iterative sparse decomposition algorithms (e.g., MP and OMP) try

to approximate residue signals at each iteration (except for the first iteration) which

is not actually well suited to the image prediction problem since the residue on the

approximation support (template) is not well correlated to the residue on the block to

be predicted as the algorithm iterates, i.e., the spatial correlation between the approx-
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3. IMAGE PREDICTION BASED ON SPARSE REPRESENTATIONS

Figure 3.17: Prediction residue images of a region in Foreman using sparse

prediction in comparison to ATM and NLM - (left) ATM, (middle) NLM, and

(right) SP.

imation support and the block to be predicted gets weaker and weaker along with the

iterations of OMP. Therefore, the obtained sparse approximation vector, which is very

well suited to the template signal residue, is not likely to be well suited to approximate

the residue of the block to be predicted. This fact is not so observable when one uses

the SSE criterion for optimization, however, RD criterion results show that the calcu-

lated weighting coefficients (except for the first one) on the template introduce high

frequency components to the prediction residue (of the block to be predicted) which

leads to high bit-rate requirements for encoding.

Fig. 3.17 compares the obtained prediction residue images of a region in Foreman

using SP, ATM, and NLM based prediction methods at low bit-rates (qf = 10), where

the RD optimization is enabled. In terms of RD criterion, the predicted image residue

(which needs to be encoded and then sent to the decoder) contains a lot of high fre-

quency components in the case when the SP method is used. As it can also be observed

from Fig. 3.17, the prediction residue images of ATM and NLM are relatively smoother

than that of the SP method.

3.5 Computational complexity analysis

Suppose that for a given dictionary matrix A ∈ RN×M, N 6 M, Ac is of size N1 ×M

and At is of size N2 ×M where N1 + N2 = N. Similarly, the known pixel values in the
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3.5 Computational complexity analysis

Figure 3.18: Online construction of the locally adaptive dictionaries - The gray

shaded area is common for the two successive blocks shown as red and blue. The red

shaded area will be combined with the gray shaded area for the prediction of the red block.

The dictionary for the blue block can then be adapted from the dictionary constructed for

the red block.

approximation support (template) are stored in the column vector bc of size N1. (For

8× 8 block size N2 = 64.)

In the proposed image prediction method, there are K iterations for each approx-

imation support mode. At any given iteration k, k = 1...K, of the OMP algorithm,

one needs to compute MN1 multiply-add (correlation) operations, M comparisons to

select the maximum correlation, and approximately an order of kN1, k2, and kN1 up-

date operations to update the Gram matrix (i.e., AkT
Ak which can be calculated by

updating the one obtained at the (k−1)th iteration), the weighting coefficients, and the

residual signal, respectively [95]. Finally, the prediction of unknown pixel values needs

kN2 multiply-add operations. This complexity can be reduced by placing a conjugate

gradient descent algorithm [96], or simply using MP (instead of OMP) which involves

only N1 update operations. Note here that the value of the parameter N1 varies with

the support type, e.g., for 8× 8 block size N1 = 192 in Mode 1 and N1 = 64 in Mode 7.

In contrary to a static dictionary, the usage of locally adaptive dictionaries requires

an online update step of the dictionary matrix A for each block to be predicted B. In

practice, a local adaptation of the dictionary can be done successively by removing and

introducing some atoms (texture patches) which are not in the overlap area between

the two successive blocks’ causal search windows. Fig. 3.18 illustrates the simple idea

of updating the dictionary for two successive blocks, where the gray shaded area is in

common and the atoms extracted from this area will be used in both dictionaries. The

prediction of the red block will be carried out with the corresponding texture patches

in the red shaded area pixels in addition to the gray shaded area. Once a dictionary
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3. IMAGE PREDICTION BASED ON SPARSE REPRESENTATIONS

has been constructed for the red block, the dictionary for the blue block can easily be

obtained by removing the red shaded area texture patches from and then introducing

the blue shaded area texture patches into the dictionary.

When the proposed image prediction method (SP) is compared with simple TM, the

introduced computational load can be neglected as OMP has been iterated only once

(please see (3.24)). On the other side, when compared with the ATM and NLM based

methods, SP requires more computations since it runs an optimization algorithm for

approximating the template (approximation support) in order to calculate the weighting

coefficients. In the ATM and NLM based methods however, the weighting coefficients

are calculated in a simple way, i.e., they are either uniform, or calculated by means of a

similarity based kernel function (as we used an exponential function in the simulations).

3.6 Conclusion

In this chapter, we proposed an adaptive dictionary construction method for sparse

signal representations which has been placed into a block-based intra image prediction

framework. The proposed method for spatial texture prediction with optimized dy-

namic approximation supports offers new directions for coding of still images (or intra

frames). We have shown that it turns out to be an effective alternative for more com-

plex and non-periodic textural areas in terms of prediction quality and also encoding

efficiency, especially when it is compared to pre-defined static waveform dictionaries

such as DCT.

The proposed method can also be regarded as an extension of the well-known tem-

plate matching based prediction algorithm. Instead of using only one image patch with

a weighting coefficient equal to 1, here more than one patch has been combined lin-

early with the weighting coefficients calculated by a sparse decomposition algorithm

such as OMP. An adapted simple version of the proposed prediction method has also

been assessed comparatively to the conventional template matching technique with a

static and SSE/RD optimized dynamic approximation supports (templates) resulting

in a better prediction and encoding performance. However, extensive simulation re-

sults (in comparison to ATM and NLM) indicate that the prediction method proposed

here suffers from the iterative sparse methods, like MP and OMP. As the OMP algo-

rithm iterates, the residue on the template is not well correlated to the residue of the

64



3.6 Conclusion

block to be predicted. Therefore, the calculated sparse representation vector (on the

template) is in general not well suited to approximate the block to be predicted espe-

cially in the RD sense. This limitation of sparse prediction motivated us to solve the

constrained least squares problem formulated in (3.19) with some other methods than

greedy pursuit algorithms which would in particular avoid the iterative approximation

of residues, but which would “directly” find the best linear combination of the texture

patches to approximate the input signal. The following chapters have been devoted for

this purpose.

Perspectives: In the prediction method described here, the dictionary A is con-

structed by stacking the luminance values of all patches (having the same geometric

shape as the region S) in a given causal search window W in the reconstructed image re-

gion. When using those kinds of methods which are mainly based on the approximation

of a support region (or template), a good representation of the support region does not

necessarily lead to a good approximation of the unknown pixel values as the support

region and the unknown region pixels may have different characteristics. Furthermore,

in an image coding framework, at the decoder side the template information C, as well

as the patches stored in the dictionary A, may not be noise-free depending on the

prediction quality and the residue signal quantization. Therefore, it is very crucial to

analyze and to optimize the prediction quality of the unknown pixel values as a function

of the sparsity constraint and the quantization noise. Up to this point in this chapter,

we briefly introduced the basics of a heuristic method for sparse intra image prediction

with dynamic and locally adaptive dictionaries. In the upcoming chapters, we will

continue analyzing this method in order to observe the effect of the sparsity constraint

in the case when the signals are corrupted by various levels of quantization noise, and

also comparing it with the other image prediction algorithms, e.g., H.264/AVC intra

prediction, or the other image prediction methods proposed by us in these chapters.

Possible future directions: A future work, which might extend this study, would

be dedicated first to adapt an improved contextual dictionary construction method

by classifying the image patches according to the local texture characteristics, i.e.,

whether the image patch is smooth, is highly textured, or contains edge information,

and then to optimize the residue block quantization. Besides, directional transform

based coding can be used for the residue blocks which have directional edges for more

efficient encoding performance. Another interesting application would be the usage of
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3. IMAGE PREDICTION BASED ON SPARSE REPRESENTATIONS

a tree-structured pursuit algorithm [97, 98, 99, 100], instead of MP or OMP, which

could adaptively exploit the atom dependencies of two different dictionaries, i.e., in our

case these dictionaries are Ac and At, not only in the spatial domain but also in the

residue domain at each iteration of the algorithm.
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Chapter 4

Dictionary Learning for Image

Prediction

A very crucial question in sparse signal approximation algorithms is the choice of the

representation dictionary. Although one can use a variety of pre-defined sets of basis

functions (static waveforms), both the sparsity and the quality of the representation

depend on how well the used dictionary is adapted to the data at hand. The problem

of dictionary learning for sparse representations –that also goes far beyond the concate-

nation of a few off-the-shelf bases– has therefore become a key issue for further progress

in this area.

In this chapter1, we first introduce the basic principles of dictionary learning tech-

niques by formulating the underlying optimization problem and then explain various

algorithms used for solving this problem. We then describe how the dictionary learning

problem can be adapted and applied to image prediction leading to a method for “online

learning of prediction dictionaries”. Finally we conclude this chapter by presenting the

experimental results obtained for the proposed framework for image prediction, which

we refer to as on-the-fly dictionaries (OFD).

4.1 Dictionary Learning

In the last decades, the problem of learning redundant and overcomplete dictionar-

ies has gained great importance in sparse signal representations for many basic image

1Some part of this chapter is related to our publication in [101] which is nominated for the Best

Student Paper Award in 2011 IEEE Int. Conf. on Image Process. (ICIP’11), Sept. 2011.
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processing tasks such as image denoising [54, 55], texture modeling [56], image restora-

tion [57, 58], image compression [59, 60], inpainting and zooming [61], and more [62, 63].

The underlying main idea suggests that natural (image) signals can be better approx-

imated sparsely, and therefore compacted more efficiently, as a weighted linear com-

bination of a set of pre-learned dictionary basis functions, so-called the atoms, when

compared to off-the-self overcomplete (e.g., DCT, DFT, wavelets) bases or dictionar-

ies. The sparsity constraint, that is associated with the learning problem, generally

leads to a solution which can fit any practical application (using sparse decomposition

algorithms) in terms of approximation accuracy, compaction rate, and computational

complexity.

4.1.1 Problem formulation

The dictionary learning problem aims at obtaining an explicit matrix A = [a1 | ... |aM ] ∈
RN×M (with N 6 M) which is optimally representative of a given set of training sam-

ples, under strict sparsity constraints. The matrix A is known as the dictionary and

its columns am,m = 1...M, are the atoms. Formally, given a set of J training samples

stored in a matrix T = [t1 | ... |tJ ] ∈ RN×J, in which the columns tj , j = 1...J, represent

the N-dimensional individual training samples, a dictionary learning algorithm searches

for an optimum dictionary A by solving the following constrained minimization

arg min
A,Y

‖T−AY‖2F subject to ‖yj‖0 6 K ∀j and ‖am‖2 = 1 ∀m (4.1)

where Y = [y1 | ... |yJ ] ∈ RM×J is the sparse representation matrix and its columns yj

denote the sparse representation vectors of the corresponding training samples tj ∀j.
Here K represents the targeted sparsity, i.e., the `0–norm of each sparse vector yj , and

‖ . ‖F denotes the Frobenius norm.1

The resulting optimization problem in (4.1) is combinatorial and higly non-convex,

and thus one can expect a local minimum at best [79]. The formulation in (4.1) can

be rewritten as a joint optimization with respect to the dictionary A and the sparse

1The Frobenius norm (or the Hilbert–Schmidt norm) ‖A‖F of a matrix A ∈ RN×M is defined as

the square root of the sum of the squares of all elements in the matrix: ‖A‖F =

√
N∑
n=1

M∑
m=1

|Anm|2.
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representation vectors yj ∀j, which is not jointly convex but convex with respect to

one of its variables when the other one is fixed, as follows

min
A

∑

j∈J

{
min
yj

[
‖tj −Ayj‖22 + χj‖yj‖0

]}
(4.2)

where the sparsity constraint is included in the formulation as a penalty term. Note

here that the constraint on the atoms am of the dictionary A is implicitly assumed to

be valid to obtain unit norm atoms, i.e., ‖am‖2 = 1 ∀m.

The problems formulated in (4.1) and (4.2) are equivalent if the values of the con-

stants χj ∀j are selected accordingly [54]. Actually, transforming (4.1) into (4.2) allows

us to factorize the whole optimization into two approximate convex optimization steps

as: a) sparse coding : optimizing yj ∀j by fixing A; b) dictionary update: optimizing A

by fixing yj ∀j. A solution can be reached by iteratively solving these two optimization

steps.

4.1.1.1 Sparse coding step

Given a fixed dictionary matrix A, the first problem is to obtain the sparse representa-

tion matrix Y of the training samples in T. This optimization is known as the sparse

coding problem, and it corresponds to the inner optimization in (4.2) which can be

reformulated as

yoptj = arg min
yj

[
‖tj −Ayj‖22 + χ‖yj‖0

]
(4.3)

where yoptj represents the optimum sparse representation vector yj of the training sam-

ple tj for the given dictionary A, and χ is the sparsity regularization parameter.

The sparse coding problem is usually solved by greedy pursuit algorithms such as

MP [66], OMP [67], or BP [65] (with `1–norm regularization), as presented in Chapter 3.

4.1.1.2 Dictionary update step

Given the sparse representation vectors yj calculated in the sparse coding step, the

problem is then to optimize/update the dictionary matrix A by minimizing the repre-

sentation error of the training samples. This optimization is known as the dictionary

update problem, and it can be formulated as
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Aopt = arg min
A

∑

j∈J

‖tj −Ayj‖22 (4.4)

where Aopt represents the optimum dictionary A minimizing the representation error

over all training samples with respect to the given sparse vectors stored in Y.

The dictionary update problem can be solved by various update techniques which

have been developed by various researchers, e.g., [86, 87, 88, 89, 102, 103]. One way

of obtaining a solution to (4.4) is to update the whole dictionary matrix at once, by

minimizing the representation error over all training samples, using methods such as

[86, 88]. On the other hand, another way is to update one dictionary atom at a time

by minimizing the representation error for each atom individually while keeping all the

other atoms fixed, e.g., as proposed in [89, 102].

4.1.2 Dictionary learning algorithms

One of the earliest dictionary learning schemes is proposed by Olshausen and Field [104].

In their algorithm, a log-likelihood estimate of the optimal dictionary has been carried

out by performing a gradient descent method for both sparse coding and dictionary

update steps, while assuming a log-prior on the sparse representation coefficients such

as a Cauchy distribution or an exponential distribution.

Various dictionary learning schemes have then been proposed in the literature for

the sparse signal representations problem. The most recent dictionary learning methods

focus on `0 and `1 sparsity measures, which potentially leads to simple formulations,

hence to efficient techniques.

Non-parametric dictionary learning methods, such as Method of Optimal Directions

(MOD) [86] and K–SVD [89], have been developed resulting in non-structural learned

dictionaries. These methods are indeed very effective in practice, however, the compu-

tational complexity required for learning a non-structured dictionary makes their usage

restricted only to low-dimensional problems.

There are also parametric learning structures for such as translation invariant dic-

tionaries [105, 106, 107, 108], multiscale dictionaries [58, 109], and sparse dictionar-

ies [110]. These dictionaries are usually learned by imposing various desired properties

on the dictionary leading typically to a more compact representation, hence to a more

efficient implementation, when compared to regular (non-parametric) dictionaries [79].
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For example, an interesting “shift and scale invariant” approach, which is called image-

signature-dictionary (ISD), has been proposed in [107]. The idea of ISD is that a large

image can be constructed by linearly combining several carefully chosen patches from

a small representative image, i.e., epitome [111, 112]. Here the ISD image has been

assumed to be a periodic extension of conventional epitomes, and has been shown that

it is a promising alternative to the classical dictionary structure.

Unions of orthonormal bases [87, 88] can also be seen as parametric learning meth-

ods resulting in structured dictionaries in tight frames. Although their efficiency in

learning dictionaries with a reduced complexity, these methods suffer from not being

flexible to more complex structures in natural images.

Moreover, online learning algorithms [102, 103], task-driven learning approaches [113],

tree-structured hierarchical [114, 115, 116] methods, and iteration-tuned schemes [117,

118] have been introduced into the literature aiming at improving dictionary learning

methods and their applications to various image processing tasks.

4.1.2.1 Method of optimal directions (MOD)

The MOD method is based on the observation that the sparse coding problem could

be regarded as a generalization of vector quantization [13]. It actually builds upon

the K-means process with a sparse coding step using a pursuit algorithm (i.e., OMP)

followed by an update step of the dictionary. For the dictionary update step, the

quadratic optimization in (4.4) can be rewritten in a compact form as

arg min
A

‖T−AY‖2F (4.5)

which has an analytic solution obtained by forcing its derivative to zero

A = TYT
(
YYT

)−1
, (4.6)

thus, solving the dictionary update problem in one step.

MOD generally converges with a few iterations alternating between sparse coding

and dictionary update, and indeed is a very effective solution. However, it suffers from

the high complexity of the matrix inversion, in particular for large dictionaries.
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4.1.2.2 Sparse orthonormal transforms (SOT)

Learning a union of orthobases dictionary with `1–norm constraints has been initially

proposed by Lesage et al. [87]. SOT [88] can be regarded as an extension of this method,

incorporating `0–norm constraints, as an application for image compression.

The SOT method considers a dictionary A of the form A = [A1 | ... |AI ] as a union

of learned orthonormal bases Ai ∈ RN×N such that AT
i Ai = IN, i = 1...I. The method

initially classifies the training samples using image gradients and obtains the initial

orthonormal transforms via Karhunen–Loeve Transform (KLT) which are optimal for

each class. It then alternates between sparse coding and transform optimization (dic-

tionary update) followed by a reclassification step of the training samples, until a joint

convergence is reached. The sparse coding process has a constraint for each training

sample tj on using only a single transform Ai in A. Let the training sample tj belong

to class–i, the optimization problem in (4.3) can be constrained and rewritten as

arg min
yj

[
‖tj −Aiyj‖22 + χ‖yj‖0

]
subject to AT

i Ai = IN, (4.7)

and the solution of (4.7) can be computed directly by hard-thresholding the components

of the orthonormal projection of tj onto the column space spanned by Ai such that

yj = Υ√χ
[
AT
i tj
]

(4.8)

where Υσ [ . ] represents the hard-thresholding operator1 with a threshold equal to σ.

For the dictionary update step, the minimization in (4.4) can be constrained to the

training samples belonging to the class–i (indexed in the set Ji) as

arg min
Ai

∑

j∈Ji

‖tj −Aiyj‖22 subject to AT
i Ai = IN (4.9)

which has an equivalent maximization problem such that

arg max
Ai

Tr [HiAi] subject to AT
i Ai = IN (4.10)

1Given a vector b ∈ RN and a threshold σ, the elements bn of the vector b can be hard-thresholded

as Υσ [b] =

{
bn = 0 if |bn| < σ

bn = bn if |bn| > σ
for n = 1...N.
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where Hi =
∑
j∈Ji

yjt
T
j and Tr [ . ] denotes the trace operator, i.e., the sum of the elements

on the main diagonal of a matrix. By letting the singular value decomposition (SVD)

of Hi be denoted as UiΛiV
T
i , the optimum solution to (4.10) is given in [88] as

Ai = ViU
T
i . (4.11)

The training samples tj ∀j are reclassified using the cost function as follows

class (tj) = arg min
i

[
min
yij

[∥∥tj −Aiy
i
j

∥∥2

2
+ χ

∥∥yij
∥∥

0

]]
. (4.12)

4.1.2.3 K–SVD dictionary

The K–SVD algorithm also builds upon a generalization of the K-means clustering pro-

cess (similar to MOD). It is an iterative method which alternates between sparse coding

of training samples and dictionary update for an efficient representation of the data.

Formally, after a sparse coding stage which can be solved using any pursuit algorithm,

the dictionary update step proceeds by modifying (updating) one atom at a time while

keeping all the other atoms fixed. The solution leads to a so-called rank–1 approxima-

tion (per atom) which can be solved directly with SVD (i.e., updating the corresponding

atom by the left singular vector associated to the highest singular value of the corre-

sponding representation error matrix), or some other numerical methods (cf. [110]).

In theory, the overall representation error matrix Em, m = 1...M, is computed by

masking one atom am at a time in the dictionary A and the corresponding weights

stored in the rows yrm of the representation matrix Y, i.e.,

Em = T−
M∑

m′=1
m′ 6=m

am′y
r
m′ . (4.13)

The matrix Em represents the error for the training set when the mth atom is removed

from the dictionary. In order to keep the same (or even smaller) support for all repre-

sentations, Em is restricted to obtain a sub-matrix ER
m by choosing the columns which

correspond to the group of training samples those use the atom am. SVD decomposes

ER
m into UΛVT. The rank–1 solution is then defined for the updated atom am as the
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first column of U, i.e., am = u1, and the non-zero coefficients in yrm as the first column

of V multiplied by Λ1,1.

K–SVD is an effective method, and it is less computational demanding than MOD.

However, it also suffers from the high non-convexity of the optimization problem which

might lead to a local minima solution or even saddle points [79]. Moreover, learning an

example-based non-structured dictionary is very costly, and thus these methods, e.g.,

MOD and K–SVD, are suitable for signals of relatively small in size.

4.1.2.4 Sparse dictionaries

A novel, efficient, and flexible dictionary structure has been proposed in [110] for sparse

and redundant signal representations. This method assumes that each atom am of the

dictionary A to be learned can be characterized with a sparsity model over a fixed base

(typically an analytic) dictionary Θ. Hence the dictionary can be expressed of the form

as A = ΘD where D is the atom representation matrix, assumed to be a sparse matrix

having a fixed number of non-zero coefficients per column.

While the choice of the base dictionary Θ has an important effect on the success

of the method, the above sparse dictionary model can be more effectively learned from

the training set of examples in comparison to implicit (analytic) dictionaries, hence it

introduces adaptability by modification of the matrix D. Moreover, when compared

to explicit dictionaries which are adaptable but not efficient and costly to apply, this

method provides compactness and efficiency.

4.1.2.5 Online dictionaries

An appealing approach for online dictionary learning based on stochastic approxima-

tions has been recently proposed in Mairal et al. [102]. This learning algorithm alter-

nates between a sparse coding step with `1–norm regularization and a progressive dic-

tionary update step based on block-coordinate descent (BCD) with warm restarts [119].

The sparse coding problem as formulated in (4.14) is solved by a Cholesky-based imple-

mentation of the LARS-Lasso algorithm, a homotopy method [120, 121], by considering

i.i.d. samples of a random variable t ∼ p(t), i.e., at the jth iteration, an observed

sample tj is coded by solving the following equation
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arg min
yj

[
1

2
‖tj −Ayj‖22 + χ‖yj‖1

]
. (4.14)

Given the sparse representation vector yj , each atom am of the dictionary A is

then updated while keeping all the other ones fixed under the constraint aT
mam 6 1.

This constraint prevents A having arbitrarily large values, and here it amounts to an

orthogonal projection onto the `2–ball. The “past information” (i.e., the information

obtained from the observed set of samples up to tj−1) has also been taken into account

for the currently observed sample tj in two matrices as

Γj =
∑
j

yjy
T
j = Γj−1 + yjy

T
j where Γ0 = 0

Ξj =
∑
j

tjy
T
j = Ξj−1 + tjy

T
j where Ξ0 = 0

(4.15)

in order to solve the following dictionary update problem per sample tj ,

arg min
A

1

j

∑

j

1

2
‖tj −Ayj‖22, (4.16)

which can be rewritten in terms of Γj and Ξj as

arg min
A

1

j

[
1

2
Tr
[
ATAΓj

]
− Tr

[
ATΞj

]]
(4.17)

where Γj = [γ1 | ... |γM ] ∈ RM×M and Ξj = [ξ1 | ... |ξM ] ∈ RN×M.

It is easy to show that (4.17) can be solved with respect to the mth column am ∀m
under the constraint aT

mam 6 1 such that

am =
1

max (‖ϑm‖2, 1)
ϑm where ϑm =

1

Γjmm
(ξm −Aγm) + am. (4.18)

All the atoms are iteratively updated for each observed sample with the update

rule given in (4.18) until it converges, where convergence to a global optimum is guar-

anteed [119]. After a few iterations of the algorithm, the dictionary obtained in the

(j − 1)th iteration can effectively be utilized as a warm restart for the current dictio-

nary at the jth iteration, and in this case a single iteration of (4.18) has been found

to be sufficient to achieve convergence of the dictionary update step. The advantages

of this online scheme include the capability to handle millions of training samples, the
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adaptivity to newly observed signals, and the flexibility to rescale the past information

so that newly processed samples have more weight on the updated dictionary.

Another recent approach for online “recursive least squares” dictionary learning

has been proposed in [103]. With a forgetting factor, it is similar to the recursive least

squares algorithm for adaptive filtering. Although there is still room for research to

be done on this method, the performance analysis shows good representation and con-

vergence properties with easy implementations in comparison to K–SVD and iterative

least squares dictionary learning [108].

4.2 Dictionary Learning for Image Prediction

4.2.1 Motivation

The above described dictionary learning algorithms are not very well suited to the

image prediction problem. These methods are mainly adapted to the learning of basis

functions (atoms) to be used for approximating the input data vectors, but not to

the problem of predicting the unknown pixels from noisy observed samples in a causal

neighborhood (approximation support, or template). Moreover, the complexity, which

results from the number and the dimension of training samples, of these methods

often limits their applicability to low-dimensional data analysis problems, and makes

them fragile to outliers, i.e., to training samples which do not have a sparse enough

representation, like in the case where the training samples are perturbed by noise as

quantization noise in compression applications, as the one considered here.

In order to be usable online while performing the encoding of the prediction residue,

the learning process must be relatively fast, hence done with a limited (small) number

of training samples. In addition, the learned dictionary must be efficient leading to a

good approximation of not only the known samples in the approximation support but

also of the unknown samples of the block to be predicted. With the observed limitations

of SP in the previous chapter, here we present a novel method which, because of its

simplicity and the limited number of training samples it requires, can be used for locally

adaptive online learning of (on-the-fly) dictionaries for spatial texture prediction.

Let A denote the dictionary matrix which is assumed to be composed of two subma-

trices (subdictionaries) as Ac and At. The rationale behind is to develop a simple but

efficient online dictionary learning method which is adapted to the image prediction
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Figure 4.1: Online prediction dictionary learning - C is the approximation support

of the current n× n block to be predicted B. W is the search window from which texture

patches are extracted to collect the training samples for learning the dictionary A to be

used for the prediction of B.

problem, that is which will learn both subdictionaries so that sparse representation

vector obtained by approximating the known samples in the approximation support

using the first subdictionary Ac will lead to a good approximation of the block to be

predicted when used together with the second subdictionary At. In order to reduce the

complexity of the proposed approach, an orthonormality constraint is imposed on the

dictionary Ac which is used for approximating the known samples in the approxima-

tion support. This constraint allows us to use simple projections followed by a standard

hard-thresholding to obtain the sparse representation vectors, instead of using costly

iterative pursuit algorithms such as MP and OMP.

The training samples are collected by extracting all possible previously endoded and

decoded texture patches (blocks of pixels) within a search window W located in a causal

neighborhood of the block to be predicted (see Fig. 4.1). That is done by taking in the

columns of T all possible texture patches (in a vectorized form) with a mask shifted by

one pixel horizontally and vertically in the search window W. Notice the difference that

SP uses these texture patches directly to construct the dictionary A. The size of the

search window controls the number of training samples, hence the complexity of the

approach. The use of a causal search window guarantees that the decoder can collect

exactly the same training samples, thus it can run the same algorithm for learning the

dictionary A.
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4.2.2 Learning prediction dictionaries: Problem statement

Let S denote a region in the image containing both known pixel values (in the approx-

imation support C) and unknown block to be predicted B (which is initially assumed

to be zero of size n× n pixels) as shown in Fig. 4.1. All the values of the region S are

stacked in a column vector b ∈ RN. Then, the rows of b are masked corresponding to

the spatial locations of the unknown pixel values in order to obtain bc ∈ RN1 repre-

senting the subvector for the approximation support C, and let bt ∈ RN2 denote the

original pixel values of the block to be predicted B. N = N1 + N2 and N2 = n2.

Let T = [t1 | ... |tJ ] ∈ RN×J denote a matrix in which J training image patches

(having the same geometric shape as S) extracted from the causal search window W are

stacked as columns, and suppose that T is modified by masking its rows corresponding

to the spatial locations of the (un)known pixel values in order to obtain the submatrices

Tc = [tc1 | ... |tcJ ] ∈ RN1×J and Tt = [tt1 | ... |ttJ ] ∈ RN2×J spatially corresponding to

bc and bt respectively. Note here that the structure of the elements in the matrix T

depends on the spatial location of the area S and the size of the search window W. This

feature introduces a local adaptability by capturing the important spatial contextual

information in the image as training samples.

Let A ∈ RN×M be the dictionary matrix to be learned of the form A = [a1 | ... |aM ],

and its columns am ∀m are the atoms. This matrix is masked in the same manner as T

to obtain Ac ∈ RN1×M and At ∈ RN2×M subdictionaries spatially corresponding to bc

and bt respectively. The columns (atoms) of the submatrix Ac are used for representing

the approximation support bc and the atoms of At are used for approximating the block

to be predicted bt. For simplicity, let us consider an orthonormality constraint on the

dictionary Ac as AT
c Ac = IN1 which will allow us to use simple orthonormal projections

followed by a standard hard-thresholding to calculate the representation vectors of the

training samples. This orthonormality constraint implies that N1 = M, i.e., Ac ∈ RM×M

and At ∈ RN2×M. Starting with this observation, the number of unknown pixels in S is

required to be equal to or less than the number of known samples, i.e., N2 6 M = N1.

Let Y = [y1 | ... |yJ ] ∈ RM×J be the sparse representation matrix of the training

image patches, and x ∈ RM denote the sparse representation vector of the approxi-

mation support bc. The sparsity constraint here is enforced by the ThrK [ . ] operator
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which keeps the K largest representation coefficients (in magnitude) and forces all the

others to be zero, i.e., ‖x‖0 = ‖yj‖0 = K ∀j.
As an important remark, the dictionary A here is considered as a combination of two

subdictionaries, Ac and At. The columns (atoms) of Ac are used for approximating the

support region bc which is supposed to be known to both encoder and decoder. In the

image prediction context, this process refers to the sparse coding problem. On the

other hand, the subdictionary At is the most crucial one since it is used for predicting

the unknown pixel values. The process of calculating the optimum dictionary At refers

to the dictionary update problem. Therefore, in this work for image prediction,

the conventional dictionary learning scheme is divided into its two steps which are

operating on two different datasets.

4.2.2.1 Sparse coding step for prediction

After extracting a number of training image patches from the search window W where

all the pixel values are available, i.e., in the reconstructed image region (see Fig. 4.1),

the subdictionary Ac is initialized with the KLT of the training set Tc which contains

the pixel values located at the same spatial position as the approximation support bc.

KLT has interesting properties: a) It is orthonormal, and b) it is complete. So, the

set of sparse representation vectors yj ∀j in Y of the training set Tc can be calculated

directly with the orthonormal projection of tcj onto the column space of Ac followed by

standard hard-thresholding according to a given sparsity constraint. The sparse coding

problem in (4.3) can be reformulated as

arg min
yj

[∥∥tcj −Acyj
∥∥2

2
+ χ‖yj‖0

]
subject to AT

c Ac = IM, (4.19)

and an “approximate” K–sparse solution can be computed by

yj = ThrK
[
AT
c tcj

]
where Ac = KLT(Tc). (4.20)

4.2.2.2 Dictionary update step for prediction

Among the two subdictionaries, the most crucial one is At since it is the one used

for predicting the unknown pixels in B. At needs to be derived from the set of sparse

vectors stored in Y so that the representation vector computed by approximating the
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support region bc with the dictionary Ac will lead to an optimum approximation (i.e.,

according to the collected training samples) of the block to be predicted bt, when the

same representation vector is used with the dictionary At. Note here the dictionary At

has no constraint on it; it is not forced to be orthonormal, but it is assumed to be

overcomplete.

Given the set of representation vectors yj in Y calculated in the sparse coding step,

the dictionary update problem here aims at optimizing the dictionary At so that the

representation error of the corresponding training samples ttj in Tt is minimized as

much as possible, i.e.,

arg min
At

∑

j∈J

∥∥ttj −Atyj
∥∥2

2
, (4.21)

or equivalently in the compact form as

arg min
At

‖Tt −AtY‖2F . (4.22)

Below we give two least squares based solutions, which are derived for the optimiza-

tion expressed in (4.21) and (4.22), for obtaining and/or updating the subdictionary At.

The first method is mainly based on the MOD algorithm, and the second one relies on

the BCD method.

MOD Solution

The optimum subdictionary At can be obtained analytically by forcing the deriva-

tive of the quadratic function in (4.22) to zero (i.e., similar to MOD) such that

At = TtY
T
(
YYT

)−1
. (4.23)

Note here that the solution given above can be iterated only once since the sparse

representation matrix Y, which has been obtained using the training set Tc, is fixed.

Thus, one can expect a suboptimal solution at best. However, with the limited (small)

number of training samples as considered here, a reasonably good least squares solution

can be achieved even with one iteration since the MOD algorithm generally converges

with a few iterations for large numbers of training samples.
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BCD Solution

The optimum subdictionary At can also be obtained by the exact block-coordinate

descent, i.e., updating one atom atm at a time while keeping all the other atoms and

all the sparse vectors yj fixed, since the matrix Y is fixed. Notice here the difference

from K–SVD which updates also the sparse representation coefficients while updating

each individual atom. A straightforward solution can directly be adapted from (4.18)

under the constraint aT
tmatm 6 1 ∀m such that

atm =
1

max (‖ϑtm‖2, 1)
ϑtm and ϑtm =

1

Γmm

(
ξtm −Atγm

)
+ atm (4.24)

where Γ = YYT = [γ1 | ... |γM ] ∈ RM×M and Ξt = TtY
T =

[
ξt1 | ... |ξtM

]
∈ RN2×M.

All the atoms are iteratively updated until convergence is reached.

4.2.3 Prediction of unknown pixels

After learning/obtaining the subdictionaries Ac and At from the training sets of image

patches Tc and Tt respectively, the prediction b̂t of the unknown pixel values simply

follows by calculating the linear coefficients vector x by thresholding the projection

coefficients of the support region bc onto the column space of Ac, i.e.,

x = ThrK
[
AT
c bc

]
where Ac = KLT(Tc), (4.25)

and then using the same representation coefficients with the optimized subdictionary

At such that b̂t = Atx. Finally, one can write

[
bc
bt

]
≈
[

Ac

At

]
x. (4.26)

4.2.4 Optimum approximation support selection

In addition to seven different forms of approximation supports as defined in the previous

chapter, here we introduce two new modes, Mode 8 and Mode 9 as shown in Fig. 4.2,

which will be activated depending on the availability of the support region pixels.

The optimum dynamic approximation support is selected according to two criteria:

1. minimization of the prediction signal SSE (i.e., min ‖bt −Atx‖22) in order to observe

the impact on the prediction quality, 2. minimization of the RD cost function J(D,R),
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Figure 4.2: Nine possible modes for approximation support selection - The

optimum support type is selected according to a given criterion.

Inputs: Tc, Tt, bc, bt, K

Output: Predicted values of unknowns b̂t

Ac = KLT(Tc)

yj = ThrK
[
AT
c tcj

]
∀j where Y = [y1 | ... |yJ ]

Γ = YYT and Ξt = TtY
T

At = ΞtΓ
−1

x = ThrK
[
AT
c bc

]

b̂t = Atx

Table 4.1: Image prediction algorithm based on on-the-fly dictionaries using the

MOD solution - The proposed prediction method has been drawn here for one approxima-

tion support, however, its extension to dynamic approximation supports is straightforward.

when the proposed prediction scheme is used in a compression algorithm, in order to

observe the impact on the encoding efficiency.

The proposed image prediction algorithms are summarized in Table 4.1 (using the

MOD solution) and Table 4.2 (using the BCD solution). Note here that the dictionary

submatrices Ac and At are optimized adaptively (per block) according to the spatial

location of the block to be predicted B. Since the same learning and prediction proce-

dure can also be done at the decoder, nothing needs to be stored (except warm restarts

of dictionaries), hence this method is named as on-the-fly dictionaries (OFD).

A similar pixel-wise prediction method which is called “Position Dependent Linear

Intra Prediction (PDLIP)” is presented in [122]. In this approach also, the pixels of the

block to be predicted are estimated using the least squares technique, hence as a linear

combination of spatially neighboring pixels. The weights of the linear combination are
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Inputs: Tc, Tt, bc, bt, K

Output: Predicted values of unknowns b̂t

Initialization: At with warm restart

Ac = KLT(Tc)

yj = ThrK
[
AT
c tcj

]
∀j where Y = [y1 | ... |yJ ]

Γ = YYT = [γ1 | ... |γM ]

Ξt = TtY
T =

[
ξt1 | ... |ξtM

]

repeat until convergence on At = [at1 | ... |atM ]

for m = 1 to M

ϑtm = 1
Γmm

(
ξtm −Atγm

)
+ atm

atm = 1
max(‖ϑtm‖2,1)

ϑtm

end for

end repeat

x = ThrK
[
AT
c bc

]

b̂t = Atx

Table 4.2: Image prediction algorithm based on on-the-fly dictionaries using the

BCD solution - The proposed prediction method has been drawn here for one approxima-

tion support, however, its extension to dynamic approximation supports is straightforward.

derived by online learning with the classified data of the previously decoded frame of

the video sequence, i.e., using temporal information, for the same prediction direction.

The weighting coefficients are calculated for each pixel location (position) and for each

prediction direction in accordance with H.264/AVC intra modes, and they are sent as

side information to the decoder. The proposed approach here differs first in the way the

weighting coefficients are computed block-wise rather than pixel-wise similarly by the

decoder and the encoder. In [122], for each prediction mode the weighting coefficients

are position dependent, which means that each pixel in a block has its own linear

weighting coefficients while pixels located at the same coordinates in all blocks use the

same prediction coefficients. In the proposed method, for each prediction mode the

weighting coefficients are the same for all pixels in a block while each block has its own

prediction coefficients, which can be calculated online (there is no need to send as side

information). In addition, the neighborhood (called the approximation support) used

for the approximation or the search for the weighting coefficients is here optimized in

the SSE or the RD sense.
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4.2.5 Impact of sparsity constraint

One of the strengths of the proposed OFD structure is that only a small number of

training samples can be sufficient for learning. The counterpart is that forcing a strict

sparsity constraint may cause some atoms of Ac to never get used. This may prevent

the corresponding atoms of At from being optimized accordingly. In order to solve this

problem, one could purge the dictionary from unused atoms, or replace the unused ones

by randomly choosing elements in the training set. However, this would decrease the

performance of the proposed approach since the constraints on orthonormality of Ac,

overcompleteness of At, and the learned relation between the atoms of Ac and the

atoms of At will most probably be destroyed.

One can instead relax the sparsity constraint on the training samples Tc so that the

number of atoms used in Ac is increased. In many image compression applications, the

sparsity is usually forced in order to fulfill the bit-rate requirements of the quantized

linear weighting coefficients which are transmitted to the decoder. However, the pro-

posed learning algorithm in this chapter does not require transmitting the coefficients

of the sparse representation vector. Hence, one can safely relax the sparsity constraint.

Fig. 4.3 shows the mean prediction PSNR performance curves obtained for Foreman

and Barbara with varying sparsity constraints in the case where the approximation

support as shown in Fig. 4.1 is not impacted by a quantization noise, i.e., in a lossless

decoder/encoder structure. One can observe that the prediction quality is improved by

relaxing the sparsity constraint. It improves (in terms of mean PSNR) up to a point

where all the atoms in Ac are being used. After that point, further relaxing the sparsity

constraint on the training samples Tc still improves the prediction accuracy but with

a lower slope. In practice, it has been observed that “half sparsity” was leading to the

fact that all the atoms in Ac were used by the training samples, thus At could be safely

optimized.

4.2.6 Simplifying the algorithm

Having observed that the sparsity constraint can be relaxed (or even be neglected), the

schemes summarized in Table 4.1 and Table 4.2 can further be simplified. Without loss

of generality, let us assume that the sparsity constraint hence the thresholding operator

ThrK [ . ] is ignored. Besides, knowing the fact that KLT represents the training data
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Figure 4.3: Mean approximation PSNR versus sparsity performance curves

of (left) Foreman and (right) Barbara for the unknown block using on-the-fly

dictionaries - Block size is 4× 4 pixels, and the approximation support Mode 1 has been

used as illustrated in Fig. 4.2.

Inputs: Tc, Tt, bc, bt

Output: Predicted values of unknowns b̂t

Y = Tc = [y1 | ... |yJ ]

Γ = YYT and Ξt = TtY
T

At = ΞtΓ
−1

x = bc

b̂t = Atx

Table 4.3: Image prediction algorithm based on simplified on-the-fly dictionar-

ies using the MOD solution - The proposed prediction method has been drawn here

for one approximation support, however, its extension to dynamic approximation supports

is straightforward.

in a complete manner, it might be replaced with some other orthonormal and complete

basis which is simple and fast to implement. Although any frame spanning the signal

space (e.g., DCT basis) would work for this purpose, a trivial replacement can be the

standard (canonical) basis where the training data can perfectly be represented. In

this case, the linear weighting coefficients are simply the pixel values of the training

samples. Thus, Eqn. (4.26) can be rewritten as

[
bc
b̂t

]
=

[
IN1

At

]
bc, (4.27)

and the simplified versions of the OFD learning algorithm are shown in Table 4.3 and
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Inputs: Tc, Tt, bc, bt

Output: Predicted values of unknowns b̂t

Initialization: At with warm restart

Y = Tc = [y1 | ... |yJ ]

Γ = YYT = [γ1 | ... |γM ]

Ξt = TtY
T =

[
ξt1 | ... |ξtM

]

repeat until convergence on At = [at1 | ... |atM ]

for m = 1 to M

ϑtm = 1
Γmm

(
ξtm −Atγm

)
+ atm

atm = 1
max(‖ϑtm‖2,1)

ϑtm

end for

end repeat

x = bc

b̂t = Atx

Table 4.4: Image prediction algorithm based on simplified on-the-fly dictionar-

ies using the BCD solution - The proposed prediction method has been drawn here for

one approximation support, however, its extension to dynamic approximation supports is

straightforward.

Table 4.4. Note that the subdictionary At still needs to be updated as in the com-

plete method so that, given the representation vector calculated on the approximation

support bc, it will lead to a good approximation of the unknown block to be predicted

when used with the same representation vector. Note also that the update equation for

the subdictionary At amounts to a block-wise quadratic linear regression for the MOD

solution, and to an approximate least squares solution for the BCD solution.

4.2.7 Learning based on patch clustering

The OFD structure described above is indeed a very effective method in approximating

the unknown values of the block to be predicted, when compared especially to SP. The

initial observations show that the imposed sparsity constraint is actually not required

particularly for the proposed prediction framework. However, both complete and sim-

plified (MOD and BCD) solutions suffer from the computational complexity introduced

by the size of the search window W. The size of W is a parameter which controls the

number of training samples, hence the complexity of the approach. In order to reduce
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the computational load while keeping the size of W as large as possible, one can use

instead a small subset of atoms (image patches) which are carefully chosen from W. For

this purpose, we propose below a patch clustering based approach which selects and/or

uses a small subset of image patches present in W. A brief performance analysis with

advantages and disadvantages will be discussed in the upcoming sections.

Patch clustering and optimum cluster selection

We propose here an initialization phase, that performs a heuristic classification of

image blocks in the training set T, which uses image gradients to obtain the class

labels of training samples tj ∀j. Assuming that there are I clusters, the training set

T has been divided into I subsets Ti, i = 1...I, consisting of image blocks which have

dominant orientations in a given directional range defined as

θi =

[
π (i− 1)

I
,
πi

I

]
∀i (4.28)

where θi (in radians) denotes the orientation range of the patches in cluster–i.

After clustering training image patches into I subsets, one can test each individual

subset Ti for a best predicted block b̂t by applying the OFD method as described above.

In this case, the optimum class number iopt needs to be encoded and then transmitted

in order to ensure that the decoder can do the same prediction using the subset Tiopt .

The optimum class can be selected (as in the approximation support selection scheme)

according to two criteria by minimizing either the prediction signal SSE or the RD cost

function on the block to be predicted.

On the other hand, an automatic cluster selection scheme could be employed in

order to prevent transmitting an extra side information to the decoder. Since the

only information available to both encoder and decoder is the approximation support

(template) bc, one can assume that a good representing class–i of the support region bc

would lead to an “unsupervised” selection of the subset Ti, however at the expense of

a possible performance decrease on the prediction quality when compared to the above

optimized case. For example, the selection can be done by minimizing the following

cost function:

arg min
i∈[1,I]

∥∥∥bc −Ti
cT

i
c
+

bc

∥∥∥
2

2
(4.29)
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Input: Tc, Tt, bc, bt, I

Output: Predicted values of unknowns b̂t

Initialization: Cluster T into I subsets Ti using block gradients

iopt = arg mini∈[1,I]

∥∥∥bc −Ti
cT

i
c
+

bc

∥∥∥
2

2

Y = T
iopt
c

Γ = YYT and Ξt = T
iopt
t YT

At = ΞtΓ
−1

b̂t = Atbc

Table 4.5: Image prediction algorithm based on simplified on-the-fly dictionar-

ies with patch clustering and automatic cluster selection - The proposed prediction

method has been drawn here for one approximation support, however, its extension to dy-

namic approximation supports is straightforward.

when the simplified OFD method has been taken into consideration whereas its exten-

sion to the complete OFD algorithm is straightforward. The clustering based simplified

OFD prediction scheme (using the MOD solution) with automatic cluster selection has

been summarized in Table 4.5.

4.3 Application to Image Compression

The proposed OFD algorithm has first been assessed comparatively to H.264/AVC intra

prediction and also to SP. It has then been assessed in a complete image compression

scheme where the prediction residue is transform encoded. In the experiments reported

here, both complete and simplified OFD structures have been evaluated together with

an extension to training set clustering method. The results obtained show a significant

improvement in terms of the quality of the predicted image (up to 3 dB) compared to

H.264/AVC intra modes. Moreover, significant RD gains have been achieved on the

reconstructed image, after encoding and decoding the prediction residue, up to 2 dB

compared with H.264/AVC intra modes and to the SP approach.

4.3.1 Encoder structure

In order to be able to initialize the prediction/compression process, the top 4 rows and

left 4 columns of blocks of size 4×4 are intra predicted with H.264/AVC. Once a block

has been predicted with the respective prediction method (e.g., SP, OFD, or H.264/AVC
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Figure 4.4: The configuration of the search window used in the simulations -

The configuration of the search window for 4× 4 block size. All possible image patches are

extracted from the search window in order to construct the training matrix T.

intra), the DCT transformed 4× 4 residual block is encoded with an algorithm similar

to JPEG, in which a uniform quantization matrix with ∆ = 16 is weighted by wqf

where qf = 10, 20, ..., 90 (please see (3.26)). Image blocks are processed in a raster scan

order, and the reconstructed image is obtained by adding the quantized residue to the

prediction. A skip mode has also been included into the encoder to avoid coding the

blocks of prediction residue in which all the transformed and quantized coefficients are

zero. The skip mode flag, which is binary, is arithmetically encoded.

In conventional methods, usually clean (noise-free) training signals –extracted from

some other natural images– are used for dictionary learning. However, this is not suit-

able for the prediction problem in an image coding context since at the decoder side the

approximation support (template) may not be noise-free depending on the prediction

quality and the residue signal quantization. In this case, learning a locally adaptive

dictionary –as a function of quality factor– with a limited number of contextual train-

ing samples extracted from a search window in the reconstructed image region would

give more reasonable prediction and also compression results than using a fixed size

dictionary learned offline with noise-free samples. With this motivation, the training

samples (image patches) in the matrix T are collected from the previously decoded and

encoded region (i.e., search window) which is located in a causal neighborhood of the

block to be predicted B. All possible image patches in the search window are extracted

to construct the matrix T. Fig. 4.4 shows the configuration of the search window for
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Figure 4.5: Mean prediction PSNR versus sparsity performance curves of noise

corrupted (top) Foreman and (bottom) Barbara for the unknown block using

on-the-fly dictionaries - With (left) low (qf = 70), (middle) medium (qf = 50), and

(right) high (qf = 10) level of quantization noise corruption. Block size is 4× 4 pixels, and

the approximation support Mode 1 has been used as shown in Fig 4.2.

4× 4 block size that is used in the experimentations reported here.

The other advantage of this online structure is that it provides flexibility in adapting

the size of dictionaries to varying numbers of pixels, i.e., offering a full compatibility to

the possibly varying number of known pixels in the approximation support as well as in

the unknown area to be predicted. As here allowing us to optimize the prediction using

nine different modes of approximation supports (with different dimensions) as shown

in Fig. 4.2. The SSE/RD optimized support mode type is signaled to the decoder using

Huffman codes.

In the SP method, OMP is limited to K = 8 iterations, the best iteration number

kopt is Huffman encoded when transmitted to the decoder, and the same configuration

of the search window (see Fig. 4.4) is used for constructing the dictionary A.

4.3.2 Impact of sparsity constraint with quantization noise

Fig. 4.5 illustrates the mean prediction PSNR performance curves obtained for Foreman

and Barbara with varying sparsity constraints in the case where image signals (i.e.,
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Figure 4.6: Prediction performance curves of Barbara and Roof using on-the-

fly dictionaries: (left) MOD and (right) BCD with various sparsity constraints

- PSNR performance curves with different quality levels in the image coding scheme. Op-

timization criterion is the minimization of the prediction signal SSE.

image blocks) are corrupted by a low, a medium, and a high level of quantization noise,

i.e., image residue blocks are encoded in a lossy manner with the quantization scheme

as defined previously. The observed prediction performance behavior is very similar to

the lossless encoding case which is shown in Fig. 4.3. The prediction quality improves

by relaxing the sparsity constraint, even in the presence of the high level of noise. Note

here that the proposed OFD structures with two different solutions, MOD and BCD,

have almost the same performance under low and medium noise corruption. However,

the BCD based method works relatively better when there exists a high level of noise

corruption in the image. So, it can be an effective alternative to the MOD based method

for low bit-rate prediction/compression.

4.3.3 Experimental results

4.3.3.1 Prediction performance with SSE criterion

Fig. 4.6 shows the prediction PSNR performance curves obtained for Barbara and Roof

using the complete OFD algorithm with various quantization levels (in the complete

coding scheme) as well as with the simplified method. The sparsity here is enforced

by keeping a number (a ratio to the length of the representation vector) of significant

coefficients and forcing the others to be zero. For example, in 1/4–sparse case, one-

fourth of the (large valued) coefficients have been kept and the others are made zero.

Relaxing the sparsity constraint (up to half sparsity) leads to better prediction in most
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(a) (b)

(c)

Figure 4.7: Prediction performance curves of (a) Foreman, (b) Barbara, and

(c) Roof using on-the-fly dictionaries in comparison to H.264/AVC intra and

SP - PSNR performance curves with different quality levels in the image coding scheme.

Optimization criterion is the minimization of the prediction signal SSE.

of the cases. One can observe that the complete OFD method with sparsity constraints

leads to better prediction especially at low quality factors (low bit-rates), but that in

some cases, the simplified version gives very close performance results.

Fig. 4.7 compares the prediction PSNR performance of (half sparsity constrained)

OFD with H.264/AVC intra and SP, where the optimization criterion is the minimiza-

tion of the prediction signal SSE in the complete coding scheme. The quality of the

predicted signal, both visually (see Fig. 4.8) and in terms of PSNR, is significantly im-

proved when compared to H.264/AVC intra prediction especially for the images which

contain textural regions. A gain more than 3 dB has been achieved for Barbara. Since

H.264/AVC intra modes are highly aligned with the orientation of the contours in the

Foreman image, it works slightly better than OFD in terms of prediction quality. Note

here that SP outperforms all the other methods since the optimization is done in two
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(a) (b)

(c) (d) (e)

Figure 4.8: Predicted images of a textural region in Barbara at low bit-rates

(qf = 20) - (a) Original image, (b) H.264 intra modes, (c) SP, (d) OFD–MOD, and (e)

OFD–BCD based prediction methods with the SSE criterion.

steps, i.e., first for the selection of iteration number, and then for the selection of the

approximation support type. In terms of encoding, one needs to add the coding cost

of the extra side information, i.e., here of the best iteration number kopt of OMP.

Note that in Fig. 4.8, the prediction residue has been encoded with a quality factor

qf = 20. Thus, the approximation support of the block to be predicted as well as the

collected training patches (or the elements in the dictionary for SP) contain quantization

noise which is similar for all prediction methods tested here. However, these methods

do not lead to same overall bit-rate since the residue obtained and the side information

to be transmitted are not the same with all methods. Fig. 4.6 and Fig. 4.7 also show

prediction performance curves for different quality levels of qf in the same setup.
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(a) (b)

(c)

Figure 4.9: Encoding performance curves of (a) Foreman, (b) Barbara, and (c)

Roof using on-the-fly dictionaries in comparison to H.264/AVC intra and SP -

PSNR/bit-rate performance curves in the image coding scheme. Optimization criterion is

the minimization of the RD cost function on the predicted signal.

4.3.3.2 Encoding performance with RD criterion

Fig. 4.9 demonstrates the total encoding PSNR/bit-rate performance curves for the

test images where the optimization criterion is the minimization of the RD cost func-

tion. The coding cost of the optimum iteration number (for SP), the selected prediction

mode (for H.264/AVC intra), the approximation support type (for SP and OFD), and

the skip mode have been included into total bit-rate. One can observe that the pro-

posed learning based prediction methods (using both MOD and BCD solutions) lead to

comparable compression results and improve the encoding performance of the images

containing more complex and textural regions. A gain up to 2 dB has been achieved

when compared to H.264/AVC intra and the sparse prediction method. Although

SP outperforms all the other methods in terms of prediction, encoding cost of an ex-
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(a) 31.60 dB/0.81 bpp (b) 31.96 dB/0.70 bpp

(c) 31.97 dB/0.61 bpp (d) 31.99 dB/0.61 bpp

Figure 4.10: Reconstructed images of a textural region in Barbara - (a) H.264

intra modes, (b) SP, (c) OFD–MOD, and (d) OFD–BCD based prediction methods with

the RD criterion.

tra side information, i.e., the best iteration number of OMP, decreases drastically the

PSNR/bit-rate performance in some images (e.g., like Foreman) even below H.264/AVC

intra prediction. Fig. 4.10 shows the reconstructed textural region of Barbara image

(corresponding to Fig. 4.8) in comparison to H.264/AVC intra and SP.

4.3.3.3 Performance analysis of patch clustering

Here we will briefly analyse the effect of image gradients based training set clustering

on prediction quality as well as encoding performance. To begin with, we classify the

training image patches into I = 6 clusters in which the elements (image blocks) of the

subsets Ti, i = 1...6, have similar directional orientations in a given range defined as

θi = [30o (i− 1) , 30oi] ∀i (in degrees). Two sets of tests have then been carried out.
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Figure 4.11: Prediction performance curves of (left) Foreman, (middle) Bar-

bara, and (right) Roof using on-the-fly dictionaries with different clustering

methods in comparison to H.264/AVC intra and SP - PSNR performance curves

with different quality levels in the image coding scheme. Optimization criterion is the

minimization of the prediction signal SSE.

The first one makes use of an optimization scheme for selecting the best subset Ti in

terms of the SSE/RD value of the block to be predicted. In this setup, in addition to the

optimum approximation support mode, the selected optimal cluster number iopt needs

to be transmitted to the decoder. This information is signaled using Huffman codes.

The second set of experiments prevents transmitting this extra information hence a

cluster has been automatically selected by means of (4.29) using the approximation

support information. All the experimentations given here are based on the simplified

OFD algorithm using the MOD solution. Note here that we implicitly assume a union

of canonical bases (for the subdictionary Ac) whereas its extension is straightforward

for the complete method (i.e., a union of KLT bases which is very similar to [88], or

even a union of directional DCT bases can be used).

Fig. 4.11 compares the prediction PSNR performance of the different cluster selec-

tion methods with simplified OFD as well as the H.264/AVC intra prediction modes

and SP. The optimization criterion here is the minimization of the prediction signal

SSE. In terms of prediction quality, as one can expect, the optimized cluster selection

improves the performance up to 1 dB (note here that the coding cost of iopt has to be

taken into account for encoding). However, the automatic cluster selection process de-

grades the prediction performance since cluster selection has been done by minimizing

the support region (or template) approximation error.

Fig. 4.12 shows the encoding PSNR/bit-rate performance curves for the same test

images where the optimization criterion is the minimization of the RD cost function (in
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(a) (b)

(c)

Figure 4.12: Encoding performance curves of (a) Foreman, (b) Barbara, and

(c) Roof using on-the-fly dictionaries with different clustering methods in com-

parison to H.264/AVC intra and SP - PSNR/bit-rate performance curves in the image

coding scheme. Optimization criterion is the minimization of the RD cost function on the

predicted signal.

the complete encoding scheme). One can observe that the proposed clustering based

methods lead to comparable compression results. Although there is a little performance

decrease, the overall encoding performance still outperforms H.264/AVC intra and also

SP for Barbara and Roof images. Note here that the clustering scheme has been applied

on the training samples which are effected by the quantization noise, hence a perfect

clustering is almost impossible to obtain.

4.3.3.4 A hybrid encoder/decoder model

Fig. 4.13 demonstrates the selected blocks by the OFD algorithm in a hybrid prediction

and encoding model which is a combination of the simplified OFD and H.264/AVC

prediction modes. Here the criteria of selecting the prediction method (either OFD
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Figure 4.13: Competitive RD selection of the hybrid model at qf = 20 - (Left)

Foreman, (middle) Barbara, and (right) Roof. The blocks shown are selected by the

(simplified) OFD algorithm: 45.50%, 58.81%, and 55.95% for Foreman, Barbara, and Roof

respectively.

or H.264/AVC intra) and the prediction mode (out of nine modes for each) is the

minimization of the RD cost function (at qf = 20) as described earlier in this chapter.

The blocks which are shown in Fig. 4.13 are selected competitively by the proposed

OFD algorithm in the hybrid model. The selection percentages are 45.50%, 58.81%, and

55.95% for Foreman, Barbara, and Roof respectively. One can see that the proposed

method works better for more complex, non-periodic and highly textural regions.

4.4 Computational complexity analysis

In H.264/AVC intra prediction, the prediction of each pixel within an unknown block

to be predicted is obtained as a linear weighted summation (i.e., interpolation, extrap-

olation) of the surrounding spatial neighboring pixels. The prediction coefficients of

each pixel for each prediction direction is calculated in advance and fixed, which are

supposed to be known both at the encoder and decoder. In this case, the computa-

tional load required for prediction is very low, however, this kind of fixed extrapolation

technique can achieve good results for only simple textures, and it can not adapt to

the variational content and the complex structures in the image. Observing this trade-

off between computational complexity and prediction/encoding performance, adaptive

prediction techniques, as defined in this chapter, inevitably have more complexity and

require more computational load for prediction. For all the methods described here,
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the encoder is more complex than the decoder since some side information is encoded

and sent to the decoder, e.g., the best prediction mode, etc.

Suppose that for a given training samples matrix T ∈ RN×J, Tc is of size N1 × J

and Tt is of size N2 × J where N1 + N2 = N. Similarly, the known pixel values in the

approximation support are stored in the column vector bc of size N1, and for 4 × 4

block size N2 = 16. The complexity of the OFD method is directly related with the

configuration of the search window W, hence the number J, and the dimension N of

training samples stored in the columns of the matrix T. The first step of the method

is the calculation of the KLT basis of the training samples stored in the matrix Tc.

KLT here has an approximate complexity of O(N4
1), however, it might be replaced with

a trivial canonical basis as proposed in the simplified version, or even with an other

static basis such as DCT or DFT. The calculation of the subdictionary At requires

JN2
1 + JN1N2 + N2

1N2 multiply-add operations with an N1 × N1 matrix inversion (for

the MOD solution).

An interesting property of the proposed prediction method here is that it can be

initialized with warm restarts [102] since any two successive blocks have a large com-

mon search region in which the training samples are the same (please see Fig. 3.18).

E.g., after predicting one block in the algorithm, the obtained subdictionary At for

that block can effectively be used as an initial dictionary for the next block, and so

on. Here the dictionary update problem reduces to a relatively simple problem of in-

troducing new training samples while forgetting old ones gradually. In this case, a few

iterations of (4.24) could be sufficient for convergence in the BCD solution. Moreover,

adapting a recursive least squares method as in [103] will prevent explicit inversion and

multiplication of large matrices for the MOD solution.

The complexity can further be reduced by using less number of training samples

either by restricting the configuration of the search window W, or by selecting a subset

of image patches from the search window, or even by selecting a fixed number of patches

from the search window (e.g., a limited number of closest patches in Euclidean space).

In the experiments reported in this chapter, all image patches (or a selected subset

with patch clustering) in the search window are tested for learning.
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4.5 Conclusion

In this chapter, a novel spatial texture prediction method based on online learning of

dictionaries has been introduced. The image prediction problem has been put into

a dictionary learning framework by learning two “related” subdictionaries, Ac and

At. In other words, a convential dictionary learning scheme has been divided into

its two main steps (sparse coding and dictionary update) which are operating on two

“related” training datasets, Tc and Tt. The learning of Ac is done to lead to a sparse

approximation of the known samples in the approximation support. At the same time,

the goal is to make sure that the sparse vectors computed in the approximation with Ac

of the known samples will also lead to a good approximation of the block to be predicted

but this time using At, hence the need for optimizing At given the corresponding

samples of the set of training patches. This is the key point behind the proposed

method and this, to our knowledge is a novel contribution with respect to classical

dictionary learning methods. It has been shown that the proposed prediction method

offers a powerful and efficient tool leading to very good performance both in terms

of prediction quality and in terms of RD performance when integrated in a complete

image compression algorithm. For more complex and non-periodic texture areas, it

turns out to be an effective alternative to H.264/AVC and sparse approximation based

prediction methods.

The computational complexity is always an issue for learning methods, hence most

of the dictionary learning schemes are generally evaluated offline. In order to reduce

the computational load, here Ac has been fixed and constrained to be orthonormal

in order to be able use simple orthonormal projections followed by a thresholding to

calculate the sparse representation vectors of the training samples, which is much more

simple than using iterative greedy methods like MP or OMP. This is why this constraint

has been used even if it is indeed more restrictive. Alternatively, a classical dictionary

learning algorithm can be employed for Ac, however at the expense of the required

computational load. In the proposed method, At is the crucial subdictionary for the

prediction problem since it is one used for predicting the unknown values in the block to

be predicted. Hence At is not restricted and it is optimized using different least squares

approaches. The nature of the problem allows reducing the dictionary update problem
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to a relatively simple problem of introducing new training samples while forgetting old

ones gradually, which leads to further reduce the computational requirements.

As a final remark, because of its simplicity, the OFD structure can easily be extended

to any other texture synthesis problems such as image denoising and image inpainting.
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Chapter 5

Image Prediction based on

Neighbor Embedding Methods

With the recent developments in computer technology, most of the machine learning and

pattern recognition applications need to deal with increasing quantities of data signals

which are described by large numbers of features. One of the crucial problems in dealing

with high-dimensional data is that, not all the collected measurements are perfect

because of the noise corruption and other degradations. Therefore, dimensionality

reduction methods are applied to investigate the underlying exact characteristics of the

data of interest. These methods are usually applied as a pre-processing step or a part

of the data analysis tools in order to simplify the high-dimensional data into a lower

dimension. The common aspects of these approaches include computational efficiency,

noise removal, data and text mining, and so on. Unfortunately, there is not any record

in the literature analyzing the potential power of some of these methods in terms of

signal extrapolation, i.e., synthesizing/predicting unknown pixel values from observed

samples in a neighborhood (approximation support, or template).

In this chapter1, we first describe the main principles of certain dimensionality re-

duction methods by presenting their solutions given in the literature. Next we place

the image prediction problem in the context of data dimensionality reduction. More

precisely, we develop two new intra image prediction methods based on two data dimen-

sionality reduction techniques: non-negative matrix factorization (NMF) and locally

1The content of this chapter is related to our publications in [123, 124]. A related recent submission,

which is not included into this chapter, is available in [125].
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linear embedding (LLE), which we may refer to as neighbor embedding methods.

These two methods aim at approximating a block to be predicted in the image as

a linear combination of K nearest neighbors determined on the known pixels in the

approximation support of the block. The variable K can be seen as a parameter con-

trolling some sort of sparsity constraint of the approximation vector. The impact of

this parameter as well as of the non-negativity (because of NMF) and sum-to-one (be-

cause of LLE) constraints for the addressed prediction problem has been analyzed. The

prediction and rate-distortion performances of these two new image prediction methods

have then been evaluated in a complete image coding and decoding algorithm. Simu-

lation results show gains up to 2 dB in terms of PSNR of the reconstructed signal after

coding and decoding of the prediction residue, when compared to H.264/AVC intra

prediction modes, up to 3 dB when compared with template matching, and up to 1 dB

when compared with the sparse prediction method.

5.1 Data Dimensionality Reduction

A dataset in high-dimensional space can often be transformed into a lower dimension

with a very little or no loss of important information for a better analysis, regression,

presentation, and visualization of the data. The classical and widely utilized method

for linear dimensionality reduction is principle component analysis (PCA) [90], which is

also known as KLT or the Hotelling transform. PCA aims at preserving the covariance

structure (up to rotation) [126]. The high-dimensional data is represented with a

subspace in a lower dimension that is spanned by the components of largest variance

in the dataset. Formally, PCA projects N-dimensional input signals bj , j = 1...J,

onto an M-dimensional subspace which is spanned by the orthonormal basis functions

am, m = 1...M and N > M, by minimizing the reconstruction error given by

∑

j∈J

∥∥∥∥∥bj −
M∑

m=1

(
bT
j am

)
am

∥∥∥∥∥

2

2

. (5.1)

PCA can be calculated by the eigenvalue decomposition of the data covariance matrix1,

or SVD of the data matrix, assuming the mean of the dataset for each attribute is cen-

1Given a dataset B = [b1 | ... |bJ ] ∈ RN×J, the N×N data covariance matrix is defined as Cov (B) =

1
J

J∑
j=1

bjb
T
j , assuming the mean of the dataset for each attribute is centered on the origin,

J∑
j=1

bj = 0.
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tered on the origin. The M-dimensional subspace is defined by the top M-eigenvectors

of the data covariance matrix, and the outputs of PCA are simply the coordinates of

the input signals in this subspace, i.e., orthonormal projection of input signals onto

M-dimensional subspace obtained by PCA. Note in (5.1) that the signal bj is approxi-

mated by a linear combination of basis functions am, where the weighting coefficients

correspond to the orthonormal projection of bj onto the directions defined by am ∀m.

There are several linear and non-linear data dimensionality reduction methods oper-

ating under different constraints. E.g., metric multidimensional scaling (MDS) [127] is a

linear method preserving the inner products between the data points in the dataset. Yet

another linear method which is called non-negative matrix factorization (NMF) [128]

can be regarded as a generalization of PCA with non-negativity constraints, where only

additive linear combinations are allowed in the notion of “combining parts to form a

whole” [129]. In detail, NMF is a subspace approximation algorithm which finds a suit-

able low-rank representation of the high-dimensional data. In many data analysis tasks

the data to be analysed is non-negative, and classical tools, e.g., PCA, independent

component analysis (ICA) [130], can not guarantee to maintain the non-negativity

property of the original data in the low-dimensional space [131]. NMF is a recent

method for obtaining such a non-negative representation, which is indeed helpful for

physical interpretation of the results in many data analysis tools such as dimensionality

reduction, data mining, and noise removal.

When the high-dimensional data is confined to a low-dimensional subspace, linear

dimensionality reduction methods give reliable representations of the data in the lower

dimension. However, if the high-dimensional data lies on or near to a low-dimensional

submanifold, linear methods tend to fail since the data might be highly non-linear.

Most of the linear methods can be extended to a non-linear framework in order to

handle the non-linear characteristics of the data. The generalization is usually done by

applying the so-called kernel trick. Kernel PCA (KPCA) [132] can be seen as a non-

linear generalization of PCA (also of MDS) which replaces the Euclidean dot product

space with a space defined by a kernel function. A kernel function can be viewed as a

non-linear similarity measure [126]. Typically polynomial or Gaussian kernels are used

with KPCA, however, these kernels are not very well adapted for manifold learning.

ISOMAP [133] and locally linear embedding (LLE) [134] are the two recent graph

based manifold learning methods relying on the non-linear generalizations of PCA.

105



5. IMAGE PREDICTION BASED ON NEIGHBOR EMBEDDING
METHODS

These methods can also be seen as an extension of KPCA because their kernels (as

graphs) are derived from the data instead of using a pre-defined kernel function.

ISOMAP tries to represent high-dimensional data in a lower dimension by preserving

the pairwise distances of the data points, whereas the LLE method preserves the local

linear structure of the neighboring data points. More precisely, LLE solves a constrained

optimization problem by obtaining a global transformation of the high-dimensional co-

ordinates into low-dimensional ones by exploiting the locally linear characteristics of the

non-linear data. It aims at preserving the local linear structure of the high-dimensional

data in the lower-dimensional space.

In this section, we mainly focus on the basic principles of NMF and LLE algorithms

by presenting their problem formulations and solutions given in the literature. Our

underlying main motivation of selecting these two methods is that they can be easily

adapted, either completely or partially, to the image prediction problem which was

defined in the previous chapters. Originating from the PCA formulation in (5.1), these

two dimensionality reduction methods operate under different constraints, hence, give

different results. Several dimensionality reduction methods, other than NMF and LLE,

can definitely be envisaged for the image prediction problem. In this study, we restrict

ourselves with these two methods in order to investigate the potential capacity of the

dimensionality reduction algorithms in a signal extrapolation framework since, to the

best of our knowledge, this chapter contains novel approaches for the image prediction

problem. A detailed technical motivation will be given shortly.

5.1.1 Non-negative matrix factorization (NMF)

In theory, given a non-negative matrix B ∈ RN×J and a positive integer M < min {N, J},
the aim is to find non-negative matrix factors A ∈ RN×M and X ∈ RM×J, such that

B ≈ AX where the reconstruction error between B and AX is minimized. In order to

calculate a good approximation of B, two cost functions are defined and optimized for

the quality of the factorization: (i) squared Euclidean distance; (ii) Kullback–Leibler

divergence [135]. The most widely used cost function is the squared Euclidean distance,

i.e.,

min
A,X

[
1

2
‖B−AX‖2F

]
subject to A > 0 and X > 0, (5.2)
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and NMF algorithm is optimized with the multiplicative update equations as

Anm ← Anm

(
BXT

)
nm

(AXXT)nm + ε
, Xmj ← Xmj

(
ATB

)
mj

(ATAX)mj + ε
(5.3)

where ε is a small constant equal to 10−9 to avoid divide by zero in the update equations.

Here Anm (or Xmj) represents the nth (or mth) row and mth (or jth) column elements

of the corresponding matrices, A and X, respectively. In the standard algorithm, the

matrices A and X are initialized with random non-negative values, and the Euclidean

distance ||B − AX||2F is non-increasing under the above alternating update rules as

proven in [128]. The Euclidean distance is invariant under these updates if and only if

A and X are at a stationary point of the distance [128].

The product AX is called an NMF of B, and the underlying features of B are

extracted as basis vectors in A which can then be used in data analysis tools, e.g.,

for classification or identification. The matrix X contains the coordinates of the high-

dimensional data (stored in the columns of B) in a lower dimensional space which is

spanned by the columns of A. Note that B ≈ AX can be rewritten in the vector form

as b ≈ Ax where b and x represent the corresponding columns of B and X respectively.

One can interpret that a column vector b of B is approximated by a linear combination

of the columns of the dictionary A, weighted by the column vector x of X, i.e.,

min
A,x

[
1

2
‖b−Ax‖22

]
subject to A > 0 and x > 0. (5.4)

NMF can also be extended to include some other auxiliary constraints on A and

X, in addition to the non-negativity constraint, depending on the requirements, e.g.,

sparseness constraint [136], in a specific application. A more detailed analysis of NMF

with multiplicative update methods, gradient descent methods, and alternating least

squares methods has been given in [131] by explaining sample applications.

5.1.2 Locally linear embedding (LLE)

LLE supposes that each high-dimensional data point and its neighbors lie on or close

to a locally linear patch of a smooth non-linear manifold, so that the local geometry

of these patches can be characterized linearly with the coefficients that approximate

each data point from its neighbors [134]. Formally, given J high-dimensional data points
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consisting of N-real valued column vectors bj , the LLE method consists of the following

steps:

1. It first identifies K nearest neighbors bjk per data point bj for all j, j 6= jk. The

usual measure is the Euclidean distance.

2. It then searches for the weights Wjk so that each data point bj is approximated

by its neighbors bjk , k = 1...K. The algorithm thus aims at minimizing a cost

function E(W) which is given as

E (W) =
∑

j∈J

∥∥∥∥∥bj −
K∑

k=1

Wjkbjk

∥∥∥∥∥

2

2

. (5.5)

The weights Wjk represent the contribution of the kth neighboring point to the

reconstruction of the jth data point bj , and they are constrained to sum-to-one1,

i.e.,
∑

kWjk = 1 ∀j. Each data point bj can only be reconstructed (approxi-

mated) from its neighbors (i.e., Wjk = 0 if the data point bjk does not belong to

the neighbors of bj). The optimal weights Wjk satisfying these constraints are

obtained by solving the constrained least squares problem per data point bj as

Ej (Wjk) =

∥∥∥∥∥
∑

k

Wjk (bj − bjk)

∥∥∥∥∥

2

2

subject to
∑

k

Wjk = 1 ∀j. (5.6)

Let Bj = [bj1 | ... |bjK ] denote a data matrix in which the columns correspond to

the K nearest neighbors obtained for the data point bj . The optimum weighting

coefficients in wj = [Wj1 | ... |WjK ] can be calculated by

wT
j =

[Covloc(Bj)]
−11

1T[Covloc(Bj)]
−11

(5.7)

where Covloc(Bj) denotes the local covariance matrix 2 of Bj in reference to bj ,

and 1 is the column vector of ones.
1For any data point bj , the “sum-to-one” constraint on weighting coefficients enforces the invariance

to translations of that data point and its neighbors. Note also that the invariance to rotations and

rescalings follows from (5.5). So, with these symmetry properties, the weights characterize the intrinsic

geometric properties of each neighborhood [134].
2Given a data point bj and its K neigbors stored in the matrix Bj = [bj1 | ... |bjK ] ∈ RN×K, the

K×K local covariance matrix is defined as Covloc(Bj) = B̂T
j B̂j where B̂j = [bj1 − bj | ... |bjK − bj ].
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3. Finally, an embedding cost function E(Y) is minimized in order to obtain the

low-dimensional global internal coordinates yj ∈ RM, N > M, as

E (Y) =
∑

j∈J

∥∥∥∥∥yj −
K∑

k=1

Wjkyjk

∥∥∥∥∥

2

2

. (5.8)

The vectors yj ∀j are computed in the sense of a best reconstruction, by fixing

the weights Wjk. The quadratic function in (5.8) is minimized by its bottom

non-zero eigenvectors with respect to two constraints such that

J∑

j=1

yj = 0 and
1

J

J∑

j=1

yjy
T
j = IM (5.9)

in order to remove the freedom on translation and to avoid degenerate solutions

respectively. Please see [134] for more information.

There always exists a local distance preserving LLE for a given high-dimensional

dataset. However, LLE can not guarantee a one-to-one mapping. For more information

on LLE and its variants, please refer to [137, 138, 139].

5.2 Image Prediction based on Neighbor Embedding

5.2.1 Motivation

The use of sparse approximations in various image processing problems is motivated by

the assumption that natural images are composed of only a few structural “primitives”.

One has thus to first learn these primitives and then decompose the image (or its texture

patches) on the set of primitives to extract the representative features of the image.

In Chapter 3, we have considered dynamic and locally adaptive dictionaries formed by

atoms derived from texture patches present in a large causal neighborhood of the block

to be predicted, and this in order to exploit self-similarities within the image. Note

that the self-similarity property has been largely exploited and shown to be beneficial

in a number of image processing tasks such as in the NLM approach used for image

denoising in [140] or for texture synthesis in [11]. Image texture patches are therefore

taken as atoms and stacked as columns in a matrix A called the dictionary.
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The proposed sparse prediction method (in Chapter 3) however suffers from the fact

that iterative sparse approximation methods, like MP and OMP, trying to approximate

residues at each iteration (except for the first one) is not well suited to the chosen

dictionary with positive atoms. In addition, they turn out to be not well suited to our

problem since the residue on the approximation support is not well correlated to the

residue on the block to be predicted, therefore the approximation vectors are likely to be

quite different. The idea instead to consider other approximation methods which would

“directly” find the best combination of the input non-negative “texture primitives” (the

atoms in the dictionary) to approximate the input non-negative patch. This problem

falls naturally within both frameworks of NMF and LLE.

In NMF, the weights of the approximation vector are forced to be non-negative, in

order to construct parts-based representation of objects [129] or texture patches in an

additive manner, and leading to prediction vectors which will also be non-negative to

approximate an input non-negative vector. Similarly, for LLE, the goal is to reconstruct

each input texture patch from its K nearest neighbors. The constraint that the sum

of the weights is equal to “1” forces the reconstruction of each data point (here input

patch) to lie in the subspace spanned by its nearest neighbors.

5.2.2 Problem statement

We now turn our attention to the image prediction problem. Let S denote a region in

the image containing a block B of n× n pixels and its causal neighborhood C used as

the approximation support (template) as shown in Fig. 5.1. In Fig. 5.1 the region S

contains 5 blocks, hence is of size N = 5n2 pixels for running the prediction algorithm.

However, as introduced in the previous chapter(s), different forms of approximation

support C can also be considered (please see Fig. 5.2). In any case, in the region S

there are known pixel values (the support region C) and unknown samples (the values

of the pixels of the block B to be predicted). The principle of the proposed prediction

approach here is to first search for a good approximation for the known pixels in C and

keep the same parameters (e.g., weighting coefficients) to approximate the unknown

pixel values in B using the data dimensionality reduction methods, i.e., NMF and LLE,

as described above.

Let the N sample values of the region S be stacked in a column vector b (assuming

the unknown values in B are equal to zero). The vector b is then compacted in bc of size
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Figure 5.1: Dictionary construction - C is the approximation support of the current

n × n block to be predicted B. W is the search window from which texture patches are

extracted to construct the dictionary A to be used for the prediction of B.

4n2 known (observed) values, thus bc corresponds to the support region (template) C

organized in a vector form, and assume that the vectors bt and b̂t represent the actual

(original) and the predicted values of the block B respectively. Note that the original

pixel values of the block to be predicted B are known at the encoder, but they are not

known at the decoder.

Let A denote the so-called dictionary represented by a matrix of dimension N×M,

where N 6 M. In all prediction methods presented below (TM, SP, NMF, and LLE),

the columns of the “locally adaptive” dictionary A is constructed by stacking the

luminance values of all patches (having the same geometric shape as S) in a given causal

search window W in the reconstructed image region as shown in Fig. 5.1. The use of

the causal window here guarantees that the decoder can construct exactly the same

dictionary. The dictionary matrix A is then assumed to be formed by two submatrices

(subdictionaries) Ac and At as

A =

[
Ac

At

]
(5.10)

where the subdictionary Ac of size 4n2 ×M corresponds to the spatial location of the

pixels of the area C (or equivalently to the vector bc), and the other submatrix At (of

size n2 ×M) as the spatial subdictionary corresponding to the spatial location of the

pixels of the area B to be predicted, or equivalently to the vector bt.
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Figure 5.2: Nine possible forms for approximation support - The optimum support

type is selected according to a given criterion. This selection of the best approximation

support according to either the SSE or an RD criterion allows improving the prediction or

compression performance.

The following part of this section describes how NMF and LLE algorithms can be

adapted and then applied to the image prediction problem with some sort of “sparsity”

constraint as in the sparse prediction case.

5.2.3 Image prediction based on NMF

Given a fixed non-negative dictionary A ∈ RN×M formed by texture patches, as ex-

plained above, and the (non-negative) data vector b ∈ RN, the underlying basic idea is

to first obtain an NMF representation x of the support region C and keep the same rep-

resentation parameters (i.e., weighting coefficients in x) to approximate the unknown

pixel values in the block to be predicted B. The non-negativity constraints are satisfied

for both A and b, similarly for Ac and bc, since the values in the spatial domain range

between 0 and 255.

5.2.3.1 The algorithm

Assuming the dictionary matrix Ac is fixed for the data vector bc, the NMF formulation

for the representation vector x of bc can be written as

xopt = arg min
x

[
1

2
‖bc −Acx‖22

]
subject to x > 0, (5.11)

and the multiplicative update equation for x becomes
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Inputs: Ac, At, bc, bt, T

Output: Predicted values of unknowns b̂t

Initialization: t = 0, x > 0

iterate until t = T , or change in x is small

t = t+ 1

x← x⊗
(
AT
c bc

)
�
(
AT
c Acx + 10−9

)

end iterate

b̂t = Atx

Table 5.1: Image prediction algorithm based on NMF - The proposed prediction

method has been drawn here for one approximation support, however, its extension to

dynamic approximation supports is straightforward.

xm ← xm

(
AT
c bc

)
m

(AT
c Acx)m + ε

, m = 1...M. (5.12)

The representation vector x is initialized with random non-negative values. In order

to obtain the optimum weighting vector xopt, the update equation in (5.12) is iterated

until a pre-defined iteration number T is reached, or the total change in the elements

of the vector x is very small between two consecutive iterations. The prediction signal

b̂t is then calculated by multiplying the dictionary matrix At by xopt as b̂t = Atxopt.

The NMF based image prediction algorithm is summarized in Table 5.1. Note here

that, as in the sparse prediction case, the dictionary matrices Ac and At are updated

adaptively (per block) depending on the spatial location of the block to be predicted B.

The above proposed approach actually leads to a very efficient compression perfor-

mance (a PSNR gain of up to 3 dB when compared with TM and SP, please see the

experimental results section). Furthermore, it does not require sending extra (side)

information to the decoder, e.g., as the optimum iteration number k in the SP method.

On the other hand, it suffers from high computational complexity, because of the size

of the dictionary and the costly update equations since the dictionary is fixed, which

makes difficult the use of several forms of approximation supports. Moreover, aggre-

gating more than a certain number of image patches might lead to blurring effects on

the prediction.
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5.2.3.2 Adapted algorithm with a sparsity constraint

Here we push further the study of NMF based image prediction. To reduce the complex-

ity of this promising approach, in addition to non-negativity, let us now impose some

sort of additional sparsity constraint by limiting the number of used atoms (columns)

in the dictionary. Note that NMF can be solved with strict `0–norm (or `1–norm)

sparsity constraints by using methods such as the local NMF (LNMF) algorithm [141],

or the method based on the projected gradient descent algorithm, which keeps the `2–

norm unchanged and sets the corresponding `1–norm to desired sparsity, as described

in [136]. However, these sparse NMF algorithms, incorporating additional constraints,

are known to require more iterations to converge, compared to the standard NMF algo-

rithm, which is already quite time consuming. Note that here “sparsity” comes instead

from the fact that the input patch will be approximated by a linear combination of K

nearest neighbors. The dictionary is thus kept fixed and the number of atoms used is

limited to K texture patches, hence the parameter K controls the sparsity of the data

approximation. Note here that this constraint exists implicitly in LLE.

The main idea explored here is again to search for a linear combination of K nearest

neighbor texture patches (taken from a causal window in the image) to approximate the

known pixel values in the approximation support C, and then keep the same weighting

coefficients to predict the unknown pixels in B as a linear combination of the co-

located pixels in these K neighbor patches. The K-NN distance is computed between

the approximation support of the block to be predicted and the co-located pixels of the

reference patches in the causal window of the image, so that the decoder can similarly

find the same K neighbors.

The proposed sparsity constraint can directly be imposed into the optimization (5.11)

by limiting the number of non-zero coefficients in x, i.e., that is the same with limiting

the number of used atoms in Ac. The atom selection is done iteratively by choosing

k, k = 1...K, patches which are close to bc in the Euclidean distance. At the kth

iteration the algorithm identifies k atoms
[
acm1

, ...,acmk

]
in Ac, and let Ak

c denote the

compacted matrix containing all the selected atoms. One then solves

min
αk

[
1

2

∥∥∥bc −Ak
cαk

∥∥∥
2

2

]
subject to αk > 0 (5.13)

by updating the randomly initialized non-negative elements of αk as
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Input: Ac, At, bc, bt, K, T

Output: Predicted values of unknowns b̂t

Initialization: k = 0, x0 = 0, A0
c = [ ]

repeat until k = K

k = k + 1

mk = arg minm ‖bc − acm‖22 where m /∈ {m1, ...,mk−1}
Ak
c = Ak−1

c ∪ {acmk}
initialize t = 0, αk > 0

iterate until t = T , or change in αk is small

t = t+ 1

αk ← αk ⊗
(
Ak
c

T
bc

)
�
(
Ak
c

T
Ak
cαk + 10−9

)

end iterate

xk ← αk

pk = Atxk

end repeat

Select the optimum k minimizing the selected criterion

Set b̂t = pkopt

Table 5.2: Image prediction algorithm based on NMF with a sparsity constraint

- The proposed prediction method has been drawn here for one approximation support,

however, its extension to dynamic approximation supports is straightforward.

αka ← αka

(
Ak
c

T
bc

)
a(

Ak
c

T
Ak
cαk

)
a

+ ε
, a = 1...k, (5.14)

where αk contains the weighting coefficients of all the atoms selected in the kth iteration.

Initially x0 = 0, and the optimal weights calculated in αk are introduced into xk−1 to

yield xk. Notice that here xk is the sparse vector of coefficients at the kth iteration and

all the coefficients assigned to the selected atoms are recomputed at each iteration, like

in the case of SP.

The algorithm at the encoder iterates until the number K is reached with an in-

creasing number of k, k = 1...K, by keeping track of the SSE or the RD cost function

values obtained for the block to be predicted bt, and finally selects the optimum num-

ber kopt of atoms (i.e., image patches used) which minimizes the considered criterion,

leading to an “optimum” sparse vector denoted xkopt . The value of the number kopt is
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then transmitted to the decoder which can similarly search for the same NMF approx-

imation of the approximation support with the signaled number of atoms. In order

to obtain the optimum weighting vector αk, the update equation in (5.14) is iterated

until a pre-defined iteration number T is reached, or the total change in the elements

of the vector αk is very small between two consecutive iterations t− 1 and t, t = 1...T .

The predicted signal b̂t is then calculated by multiplying the dictionary At by xkopt as

b̂t = Atxkopt . The complete NMF based image prediction algorithm with the sparsity

constraint is summarized in Table 5.2.

5.2.4 Image prediction based on LLE

The LLE algorithm is here first applied (partially; steps 1 and 2) on the approximation

support C. One thus searches for an approximation of the support region by a linear

combination of its nearest neighbor image patches within the search window W, and

then keeps the same weighting coefficients in the linear combination of the co-located

pixels in order to estimate the unknown values of the block to be predicted B. In terms

of LLE, our prediction problem can be written as

xopt = arg min
x

‖bc −Acx‖22 subject to
∑

m

xm = 1. (5.15)

A sparsity constraint has been imposed (also implicitly by LLE) into the problem by

iteratively choosing k, k = 1...K, closest patches to bc in the Euclidean space, similar

to the NMF based approach. Suppose that Ak
c denotes the submatrix which contains

the selected k atoms (texture patches) from Ac at the kth iteration. The algorithm

then tries to solve the constrained minimization as

min
αk

∥∥∥bc −Ak
cαk

∥∥∥
2

2
subject to

k∑

a=1

αka = 1, (5.16)

and the optimal weighting coefficients in αk are computed as

αk =
D−1
k 1

1TD−1
k 1

(5.17)

where Dk denotes the local covariance matrix of the selected patches in Ak
c in reference

to bc, and 1 is the column vector of ones. In practice, instead of an explicit inversion

of the matrix Dk, the linear system of equations Dkαk = 1 is solved, then the weights
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Input: Ac, At, bc, bt, K

Output: Predicted values of unknowns b̂t

Initialization: k = 0, x0 = 0, A0
c = [ ]

repeat until k = K

k = k + 1

mk = arg minm ‖bc − acm‖22 where m /∈ {m1, ...,mk−1}
Ak
c = Ak−1

c ∪ {acmk}
Dk = Covloc(A

k
c ) in reference to bc

Solve Dkαk = 1 for αk

αk = αk/sum(αk) and xk ← αk

pk = Atxk

end repeat

Select the optimum k minimizing the selected criterion

Set b̂t = pkopt

Table 5.3: Image prediction algorithm based on LLE - The proposed prediction

method has been drawn here for one approximation support, however, its extension to

dynamic approximation supports is straightforward.

are rescaled so that they sum to one. Note that the sum-to-one constraint of weights

forces the reconstruction of each data point (here the input patch) to lie in the subspace

spanned by its neighbors. Since the input texture patch samples are all non-negative,

the predicted block will also be non-negative. However, the calculated weights can be

positive or negative.

Here also x0 is set to 0 initially, and the optimal weights calculated in αk are

introduced into xk−1 to yield xk by replacing the coefficients with the previous ones.

All the coefficients assigned to the selected atoms are recomputed at each iteration.

The algorithm at the encoder keeps track of the SSE or the RD cost function values

obtained for the block to be predicted, and finally selects the number kopt of used patches

which minimizes the considered criterion, leading to an “optimum” sparse vector xkopt .

The value of the optimum number kopt is then transmitted to the decoder which can

similarly search for the same LLE approximation of the approximation support with

the signaled number. The predicted signal b̂t is then calculated by multiplying the

dictionary At by xkopt as b̂t = Atxkopt . The complete LLE based image prediction

algorithm is summarized in Table 5.3.
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5.3 Experimental Results

5.3.1 Primary results with NMF

Our primary setup assesses comparatively the proposed NMF based image prediction

scheme (Table 5.1) to TM and SP methods in terms of prediction quality and encoding

efficiency. In the experiments reported below, only one approximation support as shown

in Fig. 5.1 has been used with blocks of size 8× 8 pixels.

In order to initialize the prediction/compression process, the top 3 rows and left

3 columns of blocks of size 8× 8 are intra encoded with JPEG standard. Once a block

has been predicted with the respective prediction method (i.e., TM, SP, or NMF),

the DCT transformed residual block is quantized, zig-zag scanned, and encoded with

JPEG. The quality factor (qf ) is increased from 10 to 90 with a step size of 10. Image

blocks are processed in a raster scan order, and the reconstructed image is obtained by

adding the quantized residue to the prediction. The redundancy factor of the dictionary

A is set to 1, i.e., η = 1.

The NMF based algorithm is iterated until the residual energy on the approximation

support is very small, or the maximum allowed iteration number T = 500 is reached.

The SP algorithm (using OMP) is limited to iterate at most K = 8 iterations, and

the optimum iteration number kopt, when transmitted to decoder, is Huffman encoded.

The optimization criterion is set to the minimum SSE on the block to be predicted.

Fig. 5.3 shows the predicted and reconstructed images of the NMF based predic-

tion algorithm for Foreman in comparison to TM and SP based methods at qf = 30.

Fig. 5.4 demonstrates the prediction and encoding performance curves for Foreman,

Cameraman, and Barbara images. Both visually and in terms of PSNR/bit-rate, the

quality of the reconstructed image is significantly improved when compared with TM

and SP based methods. A gain of up to 3 dB has been achieved in terms of encoding

efficiency.

It is experimentally observed that although the prediction quality of SP has better

results, the irregularities (non-smoothness) of the residual signals lead to higher bit-

rates with lower PSNR values in the reconstructed images when compared to NMF

prediction. The reason is that, especially in the case of signal prediction with a support

region approximation, the atoms may not approximate (span) residue signals –of the

block to be predicted– very well even though the dictionary has been well adapted in
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TM Prediction (23.30 dB) SP Prediction (26.14 dB) NMF Prediction (24.37 dB)

TM Reconstruction

(31.29 dB/0.56 bpp)

SP Reconstruction

(32.63 dB/0.53 bpp)

NMF Reconstruction

(33.68 dB/0.46 bpp)

Figure 5.3: (Top) Predicted and (bottom) reconstructed images of Foreman

using NMF in comparison to template matching and sparse prediction - (left)

Template matching, (middle) sparse prediction, and (right) non-negative matrix factoriza-

tion methods.

the spatial domain. Furthermore, in terms of encoding, one needs to add the coding

cost of the optimum iteration number kopt. Finally, notice also here that the prediction

of NMF is smooth (and blur) since there is no sparsity constraint on the number of

used atoms (image patches) for the approximation, i.e., the algorithm aggregates all

the patches which are taken from the search window W.

5.3.2 Application to image compression

Let us now turn our attention back to sparsity constrained NMF (Table 5.2) and LLE

(Table 5.3) based image prediction algorithms. The impact of sparsity, non-negativity,

and sum-to-one constraints has first been analyzed on the prediction quality. The pro-

posed methods have then been evaluated in a complete image (or intra frame) coding

scheme with both strict and relaxed sparsity constraints controlled by the parameter
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Figure 5.4: (Left) Prediction and (right) encoding performance curves of (top)

Foreman, (middle) Cameraman, and (bottom) Barbara using NMF in compar-

ison to template matching and sparse prediction - Performance curves with different

quality levels in the image coding scheme. Optimization criterion is the minimization of

the prediction signal SSE.

k ∈ [1,K]. A detailed analysis has been carried out on the prediction quality and the

encoding PSNR/bit-rate efficiency in comparison to TM, SP and also H.264/AVC intra

image prediction modes. The results obtained show a significant improvement in terms

of rate-distortion gain of the reconstructed image, after coding and decoding the pre-

diction residue (up to 2 dB, up to 1 dB, and up to 3 dB) when compared to H.264/AVC

intra prediction modes, to SP, and to TM respectively. Further RD gains have been

achieved with the LLE based prediction method by relaxing the sparsity constraints

and setting the parameter k to 100, at the expense however of extra complexity.
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5.3.2.1 Encoder structure

In order to initialize the prediction/compression process, the top 4 rows and left

4 columns of blocks of size 4 × 4 are predicted with H.264/AVC intra modes. Once

a block has been predicted with the respective prediction method, the 4 × 4 residual

block is encoded with an algorithm similar to JPEG. In this coding structure, a uniform

quantization matrix with ∆ = 16 is weighted by wqf (qf ) (see (3.26)). Image blocks are

processed in the raster scan order, and the reconstructed image is obtained by adding

the quantized residue to the prediction. A skip mode has also been included into the

encoder to avoid coding the blocks of prediction residue in which all the transformed

and quantized coefficients are zero. The corresponding flag is arithmetically encoded.

Nine possible forms of approximation supports are considered as shown in Fig. 5.2.

The optimum support mode, as well as the iteration number k for SP, and the number

of used patches (also referred to here as k) for NMF and LLE, is selected according

to two criteria: 1. minimization of the prediction signal SSE (i.e., min ‖bt −Atx‖22) in

order to observe the impact on the prediction quality; 2. minimization of the RD cost

function J(D,R) in order to observe the impact on the encoding efficiency, when the

proposed prediction scheme is used in the compression algorithm.

Note that the optimization is done in two steps, i.e., first for the selection of iteration

number k in the case of SP, or the optimal number of used patches k in the case of

NMF and LLE based methods, and then for the selection of the optimum support mode

type. In terms of encoding, one needs to add the encoding cost of the side information,

here it is the k value and the support mode type. This information is signaled to the

decoder using Huffman codes.

Fig. 5.5 shows the configuration of the search window for 4×4 block size that is used

in the simulations reported below. All possible image patches in the search window are

extracted to construct the dictionary matrix A, i.e., that is, by taking in its columns

all possible texture patches (in a vectorized form) with a mask shifted by one pixel

horizontally and vertically in the search window W.

5.3.2.2 Impact of sparsity constraint and quantization noise

In the prediction methods described above, the dictionary A is constructed by stacking

the luminance values of all patches (having the same geometric shape as S) in a given
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Figure 5.5: The configuration of the search window used in the simulations -

The configuration of the search window for 4× 4 block size. All possible image patches are

extracted from the search window in order to construct the dictionary A.

causal search window W in the reconstructed image region. When using those methods

which are mainly based on approximations of a support region, a good approximation of

the support region does not necessarily lead to a good approximation of the unknown

pixel values as the approximation support and the unknown region pixels may have

different characteristics. Furthermore, in an image coding context, at the decoder side

the approximation support C, as well as the image patches stored in the dictionary

A, may not be noise-free depending on the prediction quality and the residue signal

quantization. Therefore, it is crucial to analyse and to optimize the prediction quality

of the unknown pixel values as a function of sparsity and the quantization noise. Here

we briefly analyse the effect of the sparsity constraint on TM, SP, NMF, and LLE based

prediction methods in the case where the image signals (i.e., blocks) are corrupted by

various levels of quantization noise, i.e., both the region C and the columns of A contain

quantization noise.

Fig. 5.6 demonstrates the mean prediction PSNR performance curves obtained for

Barbara and Foreman images with a varying sparsity constraint k ∈ [1, 50] in the case

where image signals are clean (i.e., image residue blocks are encoded with a lossless

encoder/decoder structure), or corrupted by a low, a medium, and a high level of

quantization noise (i.e., image residue blocks are encoded in a lossy manner with the

quantization scheme described in the previous subsection). The quality of the predicted

signal, in terms of average PSNR, is significantly improved (up to 1.3 dB) with the
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NMF based prediction method when compared to TM and SP, even in the presence

of high quantization noise. In the LLE and SP based prediction methods, the mean

prediction PSNR has its maximum when k ∈ [1, 10] whereas NMF based prediction has

its maximum PSNR when k ∈ [1, 20]. Notice here that the mean performance curves

of the NMF based method look noisy because of the randomization of the weighting

coefficients. For each simulation point k, the vector αk is initialized with the same seed

of Mersenne twister random number generator.

Another interesting point might be further relaxing the sparsity constraint k, which

will increase the computational complexity however, for the sake of a complete analysis

of the proposed methods’ global characteristics as a function of sparsity and quantiza-

tion noise. Fig. 5.7 shows the mean prediction PSNR performance curves obtained for

Barbara and Foreman images for k ∈ [51, 100]. The mean prediction performance for

the LLE based method increases with the number k of neighbors used in the algorithm.

In this method, the prediction performance first goes up and then drops (this behavior

is similar to the one of NMF and SP for lower values of k). But it finally goes up

again with increasing values of k. The number k of neighbors is indeed a parameter

which is known to impact significantly the accuracy of the linear data approximation

in LLE. Several methods [142, 143] have been proposed in the literature to find the

optimum value of k for LLE. The authors in [142] show that the reconstruction error

(computed on face images) first decreases with k and then, as k grows, the reconstruc-

tion error increases and then starts to alternate (going up and down). One explanation

of these authors is that the Euclidean distance is not a good measure of proximity of

data points on the underlying manifold. This is even more the case for the prediction

problem, since this measure is used to determine the neighbors of the approximation

support data point, and these neighbors may not be the neighbors of the block to be

predicted.

On the other side, adding more neighbors has negative effect on the performance of

the NMF method. One reason here is that increasing the number of neighbors consid-

ered in the approximation leads to taking neighbors which are not similar to the block

to be predicted and may then degrade the performance. Similar to the SP method, the

best approximation of the template does not necessarily lead to a good approximation

of the block to be predicted. Hence the idea of running the approximation for several

values of k and then keeping the one which leads to the lowest approximation error, or
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Figure 5.6: Mean prediction PSNR versus sparsity performance curves of (left)

Barbara and (right) Foreman for the unknown block using TM, SP, NMF,

and LLE based image prediction algorithms - With (top–row) none, (second–row)

low (qf = 70), (third–row) medium (qf = 50), and (bottom–row) high (qf = 10) level of

quantization noise corruption. Block size is 4×4 pixels, the approximation support Mode 1

has been used as shown in Fig 5.2, and k ∈ [1, 50].
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Figure 5.7: Mean prediction PSNR versus sparsity performance curves of (left)

Barbara and (right) Foreman for the unknown block using TM, SP, NMF,

and LLE based image prediction algorithms - With (top–row) none, (second–row)

low (qf = 70), (third–row) medium (qf = 50), and (bottom–row) high (qf = 10) level of

quantization noise corruption. Block size is 4×4 pixels, the approximation support Mode 1

has been used as shown in Fig 5.2, and k ∈ [51, 100].
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to the best RD value, on the block to be predicted. Note here SP stops iterating for

k > 48 since the template Mode 1 has 48 known pixels in C for 4 × 4 block size. At

iteration k = 48, the OMP algorithm constructs a complete orthogonal basis for the

known values in C and the algorithm stops.

5.3.2.3 Impact of non-negativity and sum-to-one constraints

This subsection aims at analyzing the effect of the non-negativity and sum-to-one con-

straints imposed in the NMF and LLE frameworks respectively. The problems to be

solved as formulated in (5.13) and (5.16) are indeed least squares problems with differ-

ent constraints and which are solved with different optimization methods.

We have first considered comparing the prediction and encoding (RD) performance

of the methods with sum-to-one constraint (with sparsity) when solving this constrained

least squares problem with two approaches: the Lagrangian resolution of the problem

whose solution is given by (5.17) in the LLE based approach, and the resolution of the

problem using quadratic programming [144, 145]. The two corresponding curves given

in Fig. 5.8 and Fig. 5.9, for prediction and RD performance results respectively, show

that the two optimization methods lead to comparable results.

We have then considered the least squares problem with the non-negativity con-

straint (as imposed in the NMF framework) plus the sum-to-one constraint (as imposed

in the LLE approach), with a sparsity constraint controlled via the number k, k = 1...K,

of neighbors considered for the reconstruction of each patch. This problem has then

been solved using quadratic programming. One can see from the plots (Fig. 5.8 and

Fig. 5.9) that adding the non-negativity constraint to the sum-to-one constraint with

sparsity tends to degrade the prediction performance. Actually, as explained in [146],

adding a non-negativity constraint to (5.16), that is having the two constraints (non-

negativity and sum-to-one) forces the reconstruction of each data point (input patch)

within the convex hull of its neighbors. This additional constraint is known to degrade

the reconstruction of data points not belonging to the convex hull of their neighbors.

Since, here the nearest neighbors are determined by computing distances between tem-

plates (approximation supports) but not directly on the block to be approximated,

one can assume that many input patches that we aim at approximating (the blocks

to be predicted) are not belonging to the convex hull defined by the found k nearest

neighbors.
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Figure 5.8: Prediction PSNR evaluation of (left) Barbara and (right) Fore-

man images with different optimization constraints - The sum-to-one constraint

(with sparsity) with two optimization methods (Lagrangian resolution as in LLE and

quadratic programming), and the three constraints (sparsity, sum-to-one, non-negativity)

with quadratic programming. The quality factor for encoding the prediction residue has

been varied form 10 to 90, and the block size is 4× 4.

Figure 5.9: Encoding performance evaluation of (left) Barbara and (right)

Foreman images with different optimization constraints - The sum-to-one con-

straint (with sparsity) with two optimization methods (Lagrangian resolution as in LLE and

quadratic programming), and the three constraints (sparsity, sum-to-one, non-negativity)

with quadratic programming. The quality factor for encoding the prediction residue has

been varied form 10 to 90, and the block size is 4× 4.

5.3.3 Experimental setup

Five test images have been chosen for the simulations as shown in Fig. 5.10. Foreman

can be regarded as the image which has mainly diagonal edges and smooth regions.

Barbara contains a combination of smooth and textural regions as well as edges. Roof
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(a) (b) (c) (d) (e)

Figure 5.10: Test images used in the simulations - (a) Foreman (CIF), (b) Bar-

bara (512×512), (c) Roof (512×512), (d) Bike (512×512), and (e) Flowergarden (704×480).

contains highly textural regions. Bike and Flowergarden can be regarded as the images

composed of different structures and high frequencies. In all tested prediction methods

(TM, SP, NMF, LLE), the dictionary A is constructed by taking in its columns all

possible texture patches (shifted by “1” pixel horizontally and vertically) in the search

window (see Fig. 5.5 for the search window configuration).

Two sets of tests have been carried out. The first one makes use of approximations

with strict sparsity constraints, in the sense that the number of used patches considered

in the k-NN search, or equally the number of iterations k, is varied from 1 to 8, i.e.,

K = 8. The optimal k value kopt in terms of selected criterion (i.e., either the SSE or

the RD) is then signaled to the decoder. The second set of experiments relaxes the

sparsity constraint, and takes k = K = 100. In this case, there is no need to signal the

value of k since it is fixed and assumed to be known also at the decoder.

In the NMF based prediction approach, the maximum allowed iteration number T

is set to 100 (see Table 5.2). However, we have experimentally observed that the total

change in the coefficients of αk, k = 1...K, gets very small for t > 5 in the smooth areas,

and for t > 50 in the edgel areas. In the highly textural areas the algorithm iterates

up to t = T = 100 iterations.

5.3.4 Prediction performance with SSE criterion

Fig. 5.11 and Fig. 5.12 illustrate visually the prediction performance for the test images,

an edgel region in Foreman and a textural region in Barbara images respectively. The

optimization criterion is the minimization of the predicted block SSE. The prediction

residue has been encoded with a quality factor qf = 10 (i.e., at low bit-rates). Therefore,

the template (approximation support) of the block to be predicted as well as the patches
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(a) (b) (c) (d) (e)

Figure 5.11: Predicted images of an edgel region in Foreman at low bit-rates

(qf = 10) - (a) Original image, (b) H.264 intra modes, (c) SP, (d) LLE, and (e) NMF

based prediction methods with the SSE criterion and a strict sparsity constraint k ∈ [1, 8].

(a) (b)

(c) (d) (e)

Figure 5.12: Predicted images of a textural region in Barbara at low bit-rates

(qf = 10) - (a) Original image, (b) H.264 intra modes, (c) SP, (d) LLE, and (e) NMF

based prediction methods with the SSE criterion and a strict sparsity constraint k ∈ [1, 8].
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forming the dictionary contain quantization noise. A sparsity constraint has been used

for these experiments, k is varied from 1 to 8 for the SP, NMF, and LLE based methods.

The predicted signal, in terms of visual quality, is significantly improved by LLE,

and even further by the NMF based method when compared to SP and H.264/AVC

based intra prediction especially for the image regions which contain complex textural

structures and edges. Note here that the quantization noise present in both approxi-

mation support (template) and dictionary elements (patches), which is similar for all

solutions tested since the quality factor, which is fixed for all methods to qf = 10, does

not significantly impact the performance of the prediction algorithms. The prediction

images shown here, as said above, are obtained by encoding the residue with the same

quality factor, however they do not lead to the same overall bit-rate since the residue

obtained is not the same with all methods.

5.3.5 Encoding performance with RD criterion

Fig. 5.13 demonstrates the total encoding PSNR/bit-rate performance curves for the

test images with sparsity constraints where the optimization criterion is the minimiza-

tion of the RD cost function. One can observe that the proposed prediction methods

with NMF and LLE improve the encoding performance of the images especially con-

taining textural regions when compared to TM, SP, and H.264/AVC intra prediction.

A gain up to 2 dB has been achieved by the NMF based method when compared to

H.264/AVC, up to 1 dB in comparison with the SP method, and up to 3 dB in compar-

ison to TM. Furthermore, the LLE based method outperforms the prediction methods

including TM, SP, and H.264/AVC.

Notice that for H.264/AVC intra prediction, only the selected prediction mode (out

of nine intra modes) is signaled to the decoder. For TM, the best template (among

those shown in Fig. 5.2) is signaled to the decoder. For the other methods (i.e., SP,

LLE, and NMF) the optimum number of used patches k (equally the iteration number

in SP) is signaled in addition to the optimal approximation support type. Thus, the

gain in prediction might not compensate the coding cost of an extra side information for

the images (e.g., like Foreman) which contain mostly smooth regions, and especially

directional contours which are highly aligned with the H.264/AVC intra prediction

modes. H.264/AVC intra prediction works relatively well for this particular image but

is outperformed by the other methods for the other test images.
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(a) (b)

(c) (d)

(e)

Figure 5.13: Encoding performance curves of (a) Barbara, (b) Roof, (c) Fore-

man, (d) Bike, and (e) Flowergarden using NMF and LLE with strict sparsity

constraints (searching for the best k) - PSNR/bit-rate performance curves in the

image coding scheme. Optimization criterion is the minimization of the RD cost function

on the predicted signal and a sparsity constraint k ∈ [1, 8]
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(a) 27.56 dB/0.50 bpp (b) 28.69 dB/0.48 bpp

(c) 28.68 dB/0.49 bpp (d) 29.14 dB/0.48 bpp

Figure 5.14: Reconstructed images of a textural region in Barbara with strict

sparsity constraints (searching for the best k) - (a) H.264 intra modes, (b) SP, (c)

LLE, and (d) NMF based image prediction methods with the RD criterion and a sparsity

constraint k ∈ [1, 8].

Fig. 5.14 shows a reconstructed textural region of Barbara image with the H.264/AVC

intra, SP, LLE, and NMF based image prediction methods.

5.3.6 Relaxing the sparsity constraint with RD criterion

In all SP, NMF, and LLE based prediction methods, the sparsity constraint can be

relaxed (or even fixed at the expense of a possible decrease in the prediction quality,

please see Fig. 5.6 and Fig. 5.7) in order to save signalling cost of the number k of used

atoms, i.e., texture patches. Fig. 5.15 shows the total encoding PSNR/bit-rate perfor-

mance curves for the test images where the optimization criterion is the minimization

of the RD cost function with k = K = 100 (which is fixed) for the NMF and LLE
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(a) (b)

(c) (d)

(e)

Figure 5.15: Encoding performance curves of (a) Barbara, (b) Roof, (c) Fore-

man, (d) Bike, and (e) Flowergarden using NMF and LLE with relaxed sparsity

constraints - PSNR/bit-rate performance curves in the image coding scheme. Optimiza-

tion criterion is the minimization of the RD cost function on the predicted signal and a

relaxed sparsity constraint k = K = 100.
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(a) 27.56 dB/0.50 bpp (b) 25.83 dB/0.48 bpp

(c) 28.44 dB/0.35 bpp (d) 27.84 dB/0.44 bpp

Figure 5.16: Reconstructed images of a textural region in Barbara with relaxed

sparsity constraints - (a) H.264 intra modes, (b) SP, (c) LLE, and (d) NMF based image

prediction methods with the RD criterion and a relaxed sparsity constraint k = K = 100.

based methods. In the SP algorithm, the last iteration of OMP is used for prediction

where the stopping criterion is a very low residual energy of the approximation support

signal.

One can observe that the proposed LLE based prediction method has an increasing

RD performance with the number of used image patches (atoms) whereas NMF and SP

performance degrades. In this setup, the method based on LLE outperforms the other

algorithms described in this chapter. Fig. 5.16 demonstrates the reconstructed textural

region of Barbara image with the H.264/AVC intra, SP, LLE, and NMF based image

prediction methods for k = K = 100, and Fig. 5.17 compares the effect of strict and

relaxed sparsity constraints on the proposed NMF and LLE based prediction methods

in reference to H.264/AVC intra prediction performance.
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Figure 5.17: Encoding performance analysis of strict and relaxed sparsity con-

straints - (Left) Barbara and (right) Roof images in reference to the H.264/AVC intra

prediction method.

5.3.7 A comparison with weighted template matching

Here we assess comparatively the proposed NMF and LLE based prediction methods to

the weighted template matching based algorithms, i.e., ATM and NLM (please refer to

Table 3.2), with SSE/RD optimized dynamic approximation supports. Please note here

that the NMF and LLE methods differ from ATM and NLM in the sense that they run

a constrained optimization on the approximation support (template) signal in order to

calculate the weighting coefficients, whereas in the ATM and NLM based methods the

weighting coefficients are calculated in a simple way, for example the coefficients are

uniform in ATM.

We have evaluated the performance both in terms of prediction quality and encoding

PSNR/bit-rate efficiency. The same encoder structure as described above has been

kept with the search window configuration in Fig 5.5 for 4× 4 block size. The nearest

neighboring patches (for all methods) are selected with the SSE distance measure. For

the NLM based method, the distance metric DIST in (3.25) has been set to MSE, and

the decay coefficient h = 25. The parameters for the NMF and LLE methods have

been kept the same with the previous experimentations.

Fig. 5.18 demonstrates the PSNR performance curves for Foreman, Barbara, and

Roof images where the optimization criterion is the minimization of the prediction

signal SSE. Fig. 5.19 shows the corresponding encoding PSNR/bit-rate performance

curves of the same test images using the RD optimization criterion. These simulations

135



5. IMAGE PREDICTION BASED ON NEIGHBOR EMBEDDING
METHODS

Figure 5.18: Prediction performance curves of (left) Foreman, (middle) Bar-

bara, and (right) Roof using NMF and LLE in comparison to ATM and NLM -

PSNR performance curves with different quality levels in the image coding scheme. Opti-

mization criterion is the minimization of the prediction signal SSE and a sparsity constraint

k ∈ [1, 8].

Figure 5.19: Encoding performance curves of (left) Foreman, (middle) Barbara,

and (right) Roof using NMF and LLE in comparison to ATM and NLM -

PSNR/bit-rate performance curves in the image coding scheme. Optimization criterion is

the minimization of the RD cost function on the prediction signal and a sparsity constraint

k ∈ [1, 8].

have been carried out with a sparsity constraint k ∈ [1, 8]. The coding cost of the opti-

mum value of k, as well as the optimal approximation support type, has been included

into total bit-rate. One can clearly observe that the NMF based method outperforms

the other methods both in terms of prediction quality and encoding efficiency.

The second experimental setup consists of relaxing the value of k and fixing it to

K = 100 (it is assumed to be known also at the decoder so that no signaling required).

Fig. 5.20 and Fig. 5.21 show the performance results obtained for the same test images

as above. The first observation one can make is that, as expected, the method based on

LLE outperforms the other methods both in terms of prediction quality and encoding

efficiency. The second observation is the increase in the performance of the NLM based
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Figure 5.20: Prediction performance curves of (left) Foreman, (middle) Bar-

bara, and (right) Roof using NMF and LLE in comparison to ATM and NLM

- PSNR performance curves with different quality levels in the image coding scheme. Op-

timization criterion is the minimization of the prediction signal SSE and a relaxed sparsity

constraint k = K = 100.

Figure 5.21: Encoding performance curves of (left) Foreman, (middle) Barbara,

and (right) Roof using NMF and LLE in comparison to ATM and NLM -

PSNR/bit-rate performance curves in the image coding scheme. Optimization criterion is

the minimization of the RD cost function on the prediction signal and a relaxed sparsity

constraint k = K = 100.

method in reference to ATM. Apparently, with the increasing number of used image

patches, NLM becomes an effective alternative to ATM since the weighting coefficients

have been calculated in a wise manner which prevents over-smoothing effects of simply

averaging k = 100 patches.

5.4 Computational complexity analysis

Suppose that for a given dictionary matrix A ∈ RN×M, N 6 M, Ac is of size N1×M and

At is of size N2×M where N1 + N2 = N. The known pixel values in the approximation

support are stored in the column vector bc of size N1. (For 4× 4 block size N2 = 16.)
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Unlike SP1, in the NMF based prediction method K = 8 patches can be selected

in the beginning, and then be used in a loop of increasing k, k = 1...K. In order

to select K image patches out of M, one needs roughly 2MN1 additions and MN1

multiplications, followed by M comparisons. At any given iteration k, the update of

the weighting vector αk needs t(k2(N1 + 1) + kN1) correlations and t(2k) elementwise

multiplications. Finally, the prediction of unknown pixel values needs kN2 multiply-add

(correlation) operations.

Similarly for the LLE based method, K = 8 patches can be selected in the begin-

ning. Then, at any given iteration k, the calculation of the local covariance matrix Dk

requires kN1 additions and k2N1 multiply-add operations. To solve the linear system of

equations problem Dkαk = 1, one needs O(k3) arithmetic operations (with Gaussian

elimination). Here also the prediction of unknown pixel values needs kN2 multiply-add

operations.

In the proposed NMF and LLE based methods, the prediction algorithm can be run

only for a fixed k value at once, whereas in the sparse prediction method one needs to

iterate until the (k − 1)th iteration in order to obtain the results for the kth iteration

which is dependent on the residual signal rk−1 obtained at the iteration k−1. Therefore,

the proposed methods here offer independency between two consecutive iterations k−1

and k which may allow to set and then fix k to high values (e.g., we have observed that

the LLE based method works better with high k values) without need of k−1 processes.

Moreover, selection of k patches can be done by using sum of absolute distance measure

instead of sum of squared distance in order to further reduce the complexity.

To complete the analysis, Table 5.4 gives the execution times of the different pre-

diction algorithms both on the encoder and decoder sides, measured with our matlab

code on a 3GHz CPU. These values have been averaged per block and then given, in

average, for an image of size 256× 256 pixels.

Note here that the complexity of all above methods is directly related also to the size

of the search window W, hence the number M. So, the search window configuration can

be readjusted to satisfy the computational load requirements, however at the expense

of a possible performance decrease.

1Please refer to previous chapter(s) for the computational complexity analysis of the sparse predic-

tion (SP) method.
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with sparsity relaxed sparsity

Prediction method Encoder Decoder Encoder Decoder

Template matching 4.70 sec 0.62 sec 4.70 sec 0.62 sec

Sparse prediction 44.43 sec 3.26 sec 392.42 sec 34.14 sec

LLE 32.87 sec 1.19 sec 22.22 sec 2.75 sec

NMF 27.40 sec 2.29 sec 24.23 sec 4.29 sec

H.264 Intra 0.94 sec 0.20 sec 0.94 sec 0.20 sec

Table 5.4: A run-time comparison between different prediction methods both

at decoder and encoder - The execution times are measured with a matlab code and

could thus be further optimized in C/C++ implementations. The values have been aver-

aged per 4× 4 block and than given, in average, for an image of size 256× 256 pixels.

5.5 Conclusion

In this chapter, we have introduced two new block-based spatial image prediction meth-

ods based on neighbor embedding algorithms. Experimental results obtained show that

the proposed methods offer better prediction quality and also compression efficiency

when compared to the (weighted) template matching approach(es), the sparse approxi-

mations based method, and H.264/AVC intra prediction modes. For more complex and

non-periodic textural images, they turn out to be an effective alternative to H.264/AVC

prediction modes, however at the expense of complexity increase as shown in this chap-

ter. Note that their complexity largely depends on the size of the search window for

constructing the dictionary and of the number of neighbors k considered for the approx-

imation. The proposed methods can be seen as a generalization of template matching

(TM), in the sense that they search to approximate the template with a linear combina-

tion of co-located pixels in similar patches whereas the template matching approximates

the template with one similar patch and with a weighting coefficient equal to one. How-

ever, the simulation results show significant performance gain of the proposed methods

against template matching (and its simple extensions with ATM and NLM) for intra

prediction.

The proposed methods can be applied in a similar manner as TM has been applied

to inter prediction in [45]. The search window will thus not be limited to a causal intra

window but will consider patches in reference frames for inter prediction. The authors

in [45] have shown that the use of TM in this context can lead to a bit-rate gain of around
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11% when compared with conventional motion compensation based codecs. Given the

superior performances of the proposed methods against TM for intra prediction, it is

reasonable to also expect further gains for inter prediction with the proposed NMF and

LLE based methods. As a last remark, note that these techniques can also be applied

to any other texture synthesis problems such as image inpainting and loss concealment.
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Chapter 6

Image Inpainting via Neighbor

Embedding

This chapter1 describes exemplar-based image inpainting algorithms relying on neigh-

bor embedding methods using locally linear embedding (LLE) and non-negative matrix

factorization (NMF). It first introduces an augmented patch priority which defines the

patch fill-in order. In addition to so-called confidence and data terms, this priority mea-

sure takes into account also an edge term, aiming at giving more priority to patches

containing strong edges in order to prevent possible artifacts in the continuation of

structures. The patch is then filled-in by a weighted linear combination of K closest

patches, instead of using a single “best” patch. The nearest neighbors are taken from

the source image and determined on the known pixel values of the input patch. An

adaptive way of choosing the number K is also described. Finally an extension to the

LLE based method has been proposed by exploiting the neighborhood and local geom-

etry preserving properties of LLE. The proposed methods have been assessed for two

different applications: object removal in a context of image editing and completion of

missing regions in a context of loss concealment. Experiments show the effectiveness

of the proposed approaches in providing natural looking images with less visually an-

noying artifacts in comparison to exemplar-based inpainting methods using template

matching (TM), average template matching (ATM), and non-local means (NLM) ap-

proach. The inpainting results on several natural images are also compared to other

inpainting methods using exemplar- and diffusion-based approaches in the literature.

1The content of this chapter is related to our work in [147].
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6.1 Introduction

Image inpainting refers to methods which consist of filling-in missing regions (holes) in

an image [148]. Inpainting techniques find applications in a number of image processing

problems: image editing (e.g., object removal), image restoration, object disocclusion

in image based rendering, image coding, loss concealment after impaired transmission.

Existing methods can be classified into two main categories. The first category concerns

diffusion-based approaches which propagate level lines or linear structures (so-called

isophotes) via diffusion based on partial differential equations (PDE) [148, 149, 150, 151]

and variational methods [152]. In other words, they tend to prolong isophotes arriving

at the border of the region to be filled. The diffusion-based methods tend to introduce

some blur when the hole to be filled-in is large.

The second type of approach concerns exemplar-based methods which sample and

copy best match texture patches from the known image neighborhood [43, 153, 154,

155, 156, 157, 158, 159]. These methods have been inspired from texture synthesis

techniques [11, 12, 15] and are known to work well in cases of regular textures. The

first attempt to use exemplar-based techniques for object removal has been reported

in [154]. The authors in [155] improve the search for similar patches by introducing

an a priori rough estimate of the inpainted values using a multi-scale approach which

then results in an iterative approximation of the missing regions from coarse to fine

levels. In addition, the candidate patches for the match also include rotated, scaled,

and mirrored version of texture patches taken from the image.

The two types of methods (diffusion- and exemplar-based) can efficiently be com-

bined so that a PDE-based diffusion technique is applied on structural patches and

exemplar-based methods are used for synthesizing texture with finer details. The au-

thors in Criminisi et al. [43] introduce an exemplar-based method in which the filling

order is defined by a priority function which depends on the angle between the isophote

direction and the normal direction of the local filling front. The goal of this priority

function is to ensure that the linear structures are propagated before texture filling.

A sparse approximation method is considered in [160] together with a sparsity-

based priority function. The results obtained with this method show sharp inpainting

results with efficient and consistent inference of structures and textures. As stated in

Chapter 5, the use of sparsity concept in various image processing tasks is motivated by
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the assumption that natural images are composed of only a few structural “primitives”.

After obtaining (or learning) these primitives, one can decompose the image (or its

texture patches) on the set of primitives to extract the representative features. One

can even think of texture patches (present in a large neighborhood of an input patch)

as primitives, and this in order to exploit self-similarities within the image. The self-

similarity property has been largely exploited and shown to be beneficial in a number

of image processing tasks, e.g., for image denoising in [140].

In traditional exemplar-based inpainting techniques, the filled-in values of the in-

put patch are obtained by sampling the “best” match patch from the source image as

Markov Random Field based texture synthesis. This is the same process with template

matching (TM) which is defined for image prediction. One can also linearly combine

several texture patches instead of using a single best patch. The ATM method is hence

applicable to image inpainting. Recently, an NLM based approach [161] has also been

proposed for image inpainting. Notice here that TM and its extensions (ATM and

NLM) have already been used for the image prediction problem in the previous chap-

ters. There is indeed some strong similarity between the inpainting problem and the

prediction problem. Prediction methods also use TM and even more recently methods

based on sparse approximations of the known samples (as described in Chapter 3).

However, there are at the same time important differences, in particular related to the

facts that in inpainting, the known samples are not restricted to be in a causal neigh-

borhood and the texture patches can be treated in a different order than the raster

scan. Exemplar-based inpainting methods actually compute a priority for the different

patches to be filled so that the algorithm can start by first propagating important struc-

tures in the image. This was the key contribution of the approach in [43]. However, in

prediction, the processing order is the raster scan, the known samples are located only

in a causal neighborhood of the block to be predicted. The priority order as used in

inpainting can not be used as such (or not with as much freedom) for the prediction

problem. On the other hand, in inpainting, there is no block-wise computation and

coding of the prediction residue, hence errors in texture filling are very critical and can

propagate easily.

We consider here two methods of data dimensionality reduction for inpainting: lo-

cally linear embedding (LLE) [134] and non-negative matrix factorization (NMF) [128].

The underlying main motivation is to find a best linear combination of a small number
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of non-negative “texture primitives” (texture patches) to approximate the input non-

negative patch using a constrained optimization rather than a heuristic calculation of

weighting coefficients as in ATM and NLM based methods. This problem falls natu-

rally within both frameworks of LLE and NMF. In NMF, the weighting coefficients are

forced to be non-negative in order to construct representations of non-negative texture

patches in an additive manner. Similarly, for LLE, the goal is to reconstruct each input

texture patch from its K nearest neighbors (K-NN). The sum-to-one constraint on the

weighting coefficients forces the reconstruction of each data point (here input patch) to

lie in the subspace spanned by its nearest neighbors.

Each patch in the image can be approximated by a linear combination of its K-NN.

For both LLE and NMF based inpainting methods, the first idea explored here is to

search for this linear combination of K texture patches taken from the source image

to approximate the known part (so-called the template) of the patch to be filled, and

keep the same weights to estimate the unknown pixels as a linear combination of the

colocated pixels in the K-NN patches. The patch selection is carried out by choosing

K number of most similar patches to the template of the input patch (by comparing

the colocated pixels of the reference patches in the source image). Note here that the

main procedure of estimating the unknown pixel values in a patch remains the same as

proposed for image prediction in Chapter 5. The methods proposed here can also be

seen as a generalization of TM. TM is a special case when only a single image patch is

used with a weighting coefficient equal to 1.

The techniques described in this chapter improve upon the exemplar-based inpaint-

ing method described in [43], by introducing the following key contributions:

• A new patch priority term which takes into account the edgeness (the amount of

pixels belonging to an edge) of the patch to be filled-in;

• The use of a linear combination of K candidate patches to fill-in the missing

region, using LLE and NMF based optimization methods instead of using TM,

ATM, or NLM in existing exemplar-based inpainting solutions.

The rest of the chapter is organized as follows. We first introduce the notations

and summarize the main steps of the proposed inpainting method. Then we describe a

new patch priority function which accounts for the edgeness of the patch to be filled-in.
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Figure 6.1: Image inpainting algorithm overview - Given the patch Ψp, np is the

normal to the contour δΩ of the target region Ω and ∇I⊥p is the isophote (direction and

intensity) at point p. This illustration is taken from [43].

Next we recall the main principles of the background sampling approaches (including

TM, ATM, and NLM for inpainting) followed by the proposed NMF and LLE based

neighbor embedding algorithms. We then present experimental results obtained with

the proposed methods in comparison to TM, ATM, and NLM based methods for two

different applications as object removal in a context of image editing and missing region

completion in a context of loss concealment. The methods are also compared to other

state-of-the-art exemplar- and diffusion-based inpainting algorithms in the literature

for object removal. Finally we conclude this work with a brief conclusion.

6.2 Algorithm Overview

Let I be the image and Ω be the region to be filled-in. Let φ = I − Ω be the known

(or source) region in the image and δΩ be the border (or fill front) of the region to be

filled in (see Fig. 6.1). The algorithms based on neighbor embedding methods iterate

the following steps until all missing pixels have been filled:

1. Identification of the fill front δΩ.

2. Computation of the priority

P (p) = C(p)D(p)E(p), ∀p ∈ δΩ,

by taking into account also the edgeness E(p) of the patch (for each patch to be

filled centered on a pixel p located on the fill front δΩ).
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3. Selection of the patch Ψp̂ (centered on a pixel p̂ located on the fill front) with the

highest priority, i.e.,

p̂ = arg max
p∈δΩ

P (p).

4. Calculation of the number K for the patch Ψp̂ and selection of the K-NN patches

Ψqk , k = 1...K, from the source image φ = I − Ω. These patches are determined

with the known pixel values of Ψp̂.

5. Computation of the weighting coefficients with neighbor embedding methods by

optimizing the approximation of the known pixel values of Ψp̂ using its K-NN.

6. Estimation of the unknown pixel values to be filled-in by a linear combination of

the colocated pixels in the K-NN patches.

7. Update of the confidence term C(p) (and also the edge map for E(p)) used in the

patch priority computation.

Note that the steps above are very similar to the method described in [43] but the

algorithm differs first in computation of the patch priority, and then in estimating the

unknown (fill-in) values of the patch Ψp̂.

6.3 Edge-based Patch Priority

Given a patch Ψp centered at the point p (known pixel) located on the front line (fill

front), the filling order (also called patch priority) is defined as a product of three terms:

P (p) = C(p)D(p)E(p). The first term, so-called confidence term is given by [43],

C(p) =

∑
q∈Ψp∩(I−Ω)C(q)

|Ψp|
, (6.1)

measures the ratio between the number of known pixels with respect to the total number

of pixels in the patch to be filled-in. And the second term D(p), so-called data term, is

given as

D(p) =
|∇I⊥p np|

α
(6.2)

where α is a normalization factor and np is a unit vector orthogonal (⊥) to the filling

front δΩ at the point p as shown in Fig. 6.1. This second term increases the priority
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of the patch having isophotes perpendicular to the filling front. However, it does not

really reflect the predominance of an edge within the patch. Therefore, we introduce

here a third term E(p) which is the ratio of the amount of known pixels of the patch

which belong to an edge with respect to the total number of known pixels in the patch.

Thus E(p) can be defined as

E(p) =

∑
q∈Ψp∩(I−Ω) δ(q ∈ E)

|Ψp ∩ (I − Ω)| (6.3)

where δ() is a binary function which returns 1 when its argument is true and 0 otherwise.

E is the set of binary edge pixels which is determined by using a Canny edge detector.

6.4 Inpainting with Neighbor Embedding

6.4.1 Background approaches

This subsection briefly revises the conventional texture synthesis (sampling) methods

used for the inpainting problem including TM, ATM as well as the NLM based method.

Note that we have already studied these methods for the image prediction problem

in the previous chapters. For the sake of a complete analysis, we reformulate these

methods for image inpainting.

6.4.1.1 Template matching for inpainting

The TM method has basically been influenced by MRF which models the texture

patterns as a realization of a local and stationary random process. A so-called template

is assumed to be formed with the known pixel values in the input patch Ψp̂ to be filled-

in. The best match between the template and the texture patches present in the source

image allows sampling of the unknown fill-in pixel values. Assuming that the current

patch Ψp̂ centered around the pixel p̂ is composed of two regions denoted as Ψo
p̂ and

Ψu
p̂ representing the observed (known) pixel values in the template and the unknown

(to be filled-in) values respectively. One searches for a patch in the source image φ

centered at a point q̂ such that

q̂ = arg min
q∈φ

∥∥Ψo
p̂ −Ψo

q

∥∥2

2
, (6.4)

and the fill-in region has been estimated with the colocated values of Ψq̂ as
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Ψu
p̂ = Ψu

q̂ . (6.5)

6.4.1.2 Average template matching for inpainting

ATM is a simple extension of TM where several patches are combined with uniform

weights. The patch selection process generally proceeds by choosing K number of

most similar patches to the template in the source image. After obtaining K nearest

neighboring patches Ψq̂k , k = 1...K, one uniformly combines colocated pixels of these

patches in order to estimate the fill-in region values as follows

Ψu
p̂ =

1

K

K∑

k=1

Ψu
q̂k
. (6.6)

6.4.1.3 Non-local means for inpainting

The weights can be calculated by other means than simply the average. NLM tries to

aggregate multiple image patches as a weighted linear combination, but the weighting

coefficients are calculated in a different, yet another heuristic, manner. The contribution

weights are calculated with a patch similarity based kernel function (e.g., an exponential

function) in order to give more weights to the patches which are more similar to the

template than the others. After obtaining K nearest neighboring patches Ψq̂k , k =

1...K, determined in the same manner as ATM, the synthesis process follows by

Ψu
p̂ =

K∑

k=1

αkΨ
u
q̂k

(6.7)

where the weighting coefficients αk are calculated by means of

αk = exp


−

∥∥∥Ψo
p̂ −Ψo

q̂k

∥∥∥
2

2

h


 (6.8)

and h is the decay coefficient. The calculated weights are finally normalized to sum-to-

one.

148



6.4 Inpainting with Neighbor Embedding

6.4.2 Neighbor embedding methods for inpainting

The above described methods either copy and paste a single best patch, or calculate

weighting coefficients in a heuristic manner which depends on a distance measure with

the template and the colocated pixel values of the reference patches in the source

image. However, these approaches do not search to minimize an approximation error

on the template signal. Neighbor embedding techniques such as LLE or NMF allow us

to formulate the inpainting problem as a least-squares problem (as in the prediction

problem in Chapter 5) with different types of constraints. For the main principles of

NMF and LLE methods please refer to Chapter 5. Below we give their applications to

the image inpainting problem.

6.4.2.1 Inpainting based on NMF

Here the main idea is to run NMF optimization algorithm for approximating the known

(observed) pixel values of the patch Ψp̂ using K-NN patches Ψq̂k , selected from the

source image. However, unlike the direct application of NMF to these samples, the

matrix A in (5.4) is assumed to be fixed and it is constructed by stacking the colocated

values of these K patches in the columns of the matrix A, such that A = [a1|...|aK ]

where ak represents the vectorized forms of Ψo
q̂k
, ∀k. The NMF method then solves

the following optimization as

min
α

[
1

2
‖b−Aα‖22

]
subject to α ≥ 0 (6.9)

by updating the randomly initialized non-negative elements of αT = [α1|...|αK ] as

αk ← αk

(
ATb

)
k

(ATAα)k + ε
, k = 1...K, (6.10)

where b represents the vectorized form of the template information Ψo
p̂, and ε is a small

constant equal to 10−9 to avoid divide-by-zero in the update equation.

In order to obtain the optimum weighting vector α, the update equation in (6.10)

is iterated until a pre-defined iteration number T is reached, or the total change in the

elements of the vector α is very small between two consecutive iterations t − 1 and t,

t = 1...T . Finally the synthesis process follows by
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Ψu
p̂ =

K∑

k=1

αkΨ
u
q̂k

(6.11)

where the weights αk have been obtained from the last iteration of the NMF optimiza-

tion. Note here the similarity between ATM and NLM based methods in the sense of

using K-NN patches. However, the calculation of coefficients completely differs since an

optimization has been run on the template signal rather than using a heuristic method.

6.4.2.2 Inpainting based on LLE

The LLE method is first applied (partially) on the template Ψo
p̂. One thus searches for

an approximation of the template by a linear combination of its K-NN patches in the

source image and then keeps the same weighting coefficients in the linear combination

of the colocated pixels in order to estimate the unknown values of Ψu
p̂ . In terms of LLE,

the inpainting problem can be written as

min
α
‖b−Aα‖22 subject to

∑

k

αk = 1, (6.12)

where b represents the vectorized form of the template signal Ψo
p̂, and the matrix A

contains the colocated pixel values of K-NN patches in its columns similar to the NMF

based inpainting method. The optimal weighting coefficients αk in α are computed by

α =
D−11

1TD−11
(6.13)

where D denotes the local covariance (Gram) matrix (i.e., in reference to b) of the

selected K-NN patches in A, and 1 is the column vector of ones. Finally the synthesis

process follows by

Ψu
p̂ =

K∑

k=1

αkΨ
u
q̂k
. (6.14)

6.4.2.3 Inpainting based on LLE with subspace mappings

LLE computes low-dimensional neighborhood preserving embeddings of high-dimensio-

nal data points. Each high-dimensional data point and its neighbors are assumed to lie

on or close to locally linear patch of a low-dimensional manifold. Each data point can
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then be approximated by a linear combination of its K-NN. We thus further exploit

the neighborhood and local geometry preserving properties of LLE when embedding

high-dimensional data points into a lower-dimensional manifold. Let N be the total

number of pixels in a patch to be filled-in. A set of image patches taken from the

source image in a given window are used to train parametric functions which map data

points corresponding to vectors of pixels colocated to observed (known) and missing

(unknown) parts of the patch to be filled, into data points in RN. The parametric

mapping functions are computed using a multivariate linear regression. Note that such

training has already been considered in [162] to perform 3D object recognition in a

lower-dimensional space. These parametric mapping functions are then used here to

select the K-NN patches to be considered in the LLE approximation. The goal is,

with the help of the linear mapping from the high-dimensional space of input data to a

low-dimensional space, and vice versa, to find the best K-NN of the known pixels, for

which the corresponding complete patches will also be included in K-NN of the patch

to be filled-in.

Given the highest priority patch Ψp̂, we constitute a training set of M image patches

taken from the source image φ. A training matrix has been constructed by stacking

these patches into the columns of X ∈ RN×M. Each patch Xm ∈ RN,m = 1...M, of

the training set is assumed to be formed by an observed part Xo
m (set of N1 pixels

colocated with the known pixels Ψo
p̂ of Ψp̂) and an unknown part Xu

m (set of N2 pixels

colocated with the unknown pixels Ψu
p̂ of Ψp̂). N = N1 + N2.

Since there will be only the template information (in RN1) available during the

inpainting process, the goal is to learn a transformation which relates the set of data

patches Xo
m in RN1 to the set of data patches Xu

m in RN2 , given that these two signals

Xo
m and Xu

m correspond to the same patch Xm in RN. We thus define the following

“relationships” (mappings) between training patches Xo
m, Xu

m, and Xm for all m such

that

Xo
m

A1−−→ Xu
m

A2−−→ Xm and Xo
m

A3−−→ Xm. (6.15)

The ultimate goal is to guarantee that the selected K-NN of Xo
m will also be K-NN of

Xm and Xu
m.
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The transformation (mapping) matrices A1 between Xo
m ∈ RN1 and Xu

m ∈ RN2 ,

A2 between Xu
m ∈ RN2 and Xm ∈ RN, and A3 between Xo

m ∈ RN1 and Xm ∈ RN are

computed using a multivariate linear regression as follows

A1 = X̄uX̄oT
(
X̄oX̄oT

)−1

A2 = X̄X̄uT
(
X̄uX̄uT

)−1

A3 = X̄X̄oT
(
X̄oX̄oT

)−1

(6.16)

where the training matrix X has been assumed to be composed of two submatrices as

X =

[
Xo

Xu

]
(6.17)

and X̄, X̄o, and X̄u denote the centered data matrices of X, Xo, and Xu respectively.

Let us now consider the patch Ψp̂ to be filled-in. Suppose that the observed values

Ψo
p̂ have been vectorized in b ∈ RN1 . The K-nearest neighbors Xo

k, k = 1...K, of the

signal b are first determined. The obtained K neighbors Xo
k and b are then projected

to the space of dimension N via A3. The projected version of the template vector b,

which will be denoted as b̂, is used as a “reference” point in RN.

b is further projected to another point b̂u via A1 into a subspace of dimension N2,

i.e., b̂u = A1b, and K-nearest neighbors Xu
k , k = 1...K, of b̂u are searched in RN2 . The

obtained K patches Xu
k are also projected to the space of dimension N via A2.

We finally search for the K-NN of the “reference” vector b̂ in RN among the pro-

jected 2K points corresponding to Xo
k and Xu

k , k = 1...K. After determining these K

patches to be used in the LLE method, the weighting coefficients are obtained by (6.13)

to approximate the known pixels of the patch Ψp̂ and then the same weights are used for

inpainting (estimating) the unknown pixels Ψu
p̂ using (6.14). Fig. 6.2 summarizes the

underlying idea behind the overall technique based on LLE with parametric mapping.

6.5 Adaptive selection of the number K

The number K of neighboring patches used is indeed a parameter which impacts signif-

icantly the accuracy of inpainting. Several methods could be envisaged for determining

the value of K. One can use iterative greedy methods based on sparse approximations

(for an approximation to template) such as matching pursuit [66], orthogonal matching
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Figure 6.2: Inpainting with LLE via parametric mapping - Algorithm overview

(courtesy of Dr. Olivier Le Meur).
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6. IMAGE INPAINTING VIA NEIGHBOR EMBEDDING

pursuit [67], or basis pursuit [65], however at the expense of a computational complex-

ity. On the other side, fixing K to a value might not be the optimum, such that a low

value may lead to less accurate results, hence to the propagation of errors; a high K

value may lead to smoothing effects on inpainting which will also propagate. Moreover,

a fixed K value will not be optimum for all blocks in an image because of the local

characteristics of the image. Here we propose a relatively simple method which keeps

K most similar patches (to the template) according to the minimum distance patch.

Let us assume that dmin represents the mean squared distance of the most similar patch

to the template such that

dmin = min
q∈φ

∥∥∥Ψo
p̂ −Ψo

q

∥∥∥
2

2

|Ψo
p̂|

, (6.18)

all the patches which are in a ball centered around Ψo
p̂ having a radius of length γdmin

(γ ≥ 1) are selected to be used in the inpainting process. Hence the number K can

vary from one patch to another depending on the distance of the other patches in the

source image. Note here that as a special case, when γ = 1, all the methods described

above reduce to a simple TM.

6.6 Experimental Results

6.6.1 Effect of edge term on priority function

Fig. 6.3 compares the inpainted (Bungee) images with simple template matching when

using the priority function augmented with the “edge term” with respect to the original

priority function (as in [43]). The proposed priority function with edge term signifi-

cantly changes the filling order by giving more priority to structural blocks containing

edge information. As it can also be seen from Fig. 6.3, after 100 iteration steps, the

shape of the mask is different from the original priority function. Thus, the structures

with strong edges are propagated first to prevent any annoying visible artifacts in the

continuation of the edgel areas in the image. Here the patch size is 9× 9 pixels and γ

is fixed to 1.2.
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Figure 6.3: Effect of the edge term in the priority function - From top-to-bottom

left-to-right: The mask for the inpainting algorithm and the original Bungee image; the

inpainting process after 100 patches with priority function of [43] and the final inpainted

image using TM; the inpainting process after 100 patches with the augmented priority

function and the final inpainted image using TM.

6.6.2 Comparison between neighbor embedding and (weighted) tem-

plate matching

The first set of experiments aims at assessing the performance of the proposed inpaint-

ing algorithms to template matching based methods for an object removal application.

In this case, the missing region to be filled-in can be large (e.g., see Fig. 6.3 (left)) and

the ground truth pixel values of the missing region are unknown. The only possible

way for assessing the results is to check out whether the inpainted image looks natural

or not.
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Figure 6.4: Inpainting results with different synthesis methods - From left-to-right

top-to-bottom: template matching (TM), average template matching (ATM), non-local

means (NLM), NMF, and LLE based methods with the augmented priority function.

In Fig. 6.4 we compare the inpainting results of the proposed NMF and LLE based

neighbor embedding methods with (weighted) template matching (i.e., TM, ATM, and

NLM) using the augmented priority function with E(p). The patch size is 9× 9 pixels

and γ is fixed to 1.2. For NLM, the decay coefficient h is set to 25|Ψo
p̂| in (6.8). One can

observe that the LLE and NMF based neighbor embedding approaches lead to more

realistic inpainted images. In Fig. 6.4, one can see that the bushes are propagated into

the sea with TM, ATM, and NLM whereas the proposed embedding methods prevent

this propagation. Furthermore, the visual quality of the fill-in region is significantly

improved. The results also show, at this point, the importance of the used texture
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synthesis method for filling-in the unknown samples in addition to the priority func-

tion. Since there is no any means of error correction, even small inpainting errors can

propagate easily leading to serious problems for the calculation of subsequent priorities

and texture estimation. Hence, the used texture synthesis algorithm plays a key role

on the inpainting quality as well as on the priority function. For example, in the NLM

method, an irrelevant structure has been produced in the sea (as an extension of the

bushes) which does not look very natural.

6.6.3 Application to missing region completion

This second set of experiments aims at assessing the performance of the proposed

methods in an application where a region (or a block) is missing in the image, e.g., in a

loss concealment application. In this case, the missing region ground truth pixel values

are known, hence the results can be analysed quantitatively.

Fig. 6.5, Fig. 6.6, Fig. 6.7 and Fig. 6.8 show a comparison between proposed NMF

and LLE based neighbor embedding methods with TM, ATM, and NLM for missing

region completion. The effectiveness of neighbor embedding methods can clearly be

observed, both visually and in terms of PSNR, from the inpainted images especially for

transition areas from textures to edges and edges to textural regions. On the other hand,

one can observe that the proposed “edge term” in the priority function fails when there

are inpainting errors in filling-in regions which produce irrelevant structures (leading to

unwanted edges detected with the Canny edge detector) resulting in lower PSNR results.

For example, for the House image in Fig. 6.8, the TM method with augmented priority

leads to lower PSNR results because of the propagation of a catastrophic inpainting

error. This can be prevented by using a more robust texture synthesis method. Here

again one can observe the importance of the fill-in method in addition to the priority

function. The main idea proposed in [43] that is the importance of fill-in order hence

can significantly be improved by using some optimization techniques for missing pixels

estimation when compared to TM, ATM, or NLM based methods. Please note that here

the tested missing regions are larger than a block size conventionally used for image or

video coding, hence one can expect also good results for missing block completion such

as in an error concealment application.
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(a) Ground truth (b) 21.25 dB

(c) 32.89 dB (d) 33.74 dB (e) 33.90 dB

(f) 31.75 dB (g) 34.71 dB (h) 35.06 dB

Figure 6.5: Missing region completion PSNR results for Barbara image (I) -

(a) Ground truth image, (b) inpainting mask, (c) TM with priority of [43], (d) TM with

augmented priority, (e) ATM with augmented priority, (f) NLM with augmented priority,

(g) NMF with augmented priority, and (h) LLE with augmented priority.
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(a) Ground truth (b) 18.62 dB

(c) 33.70 dB (d) 35.76 dB (e) 35.95 dB

(f) 35.87 dB (g) 36.21 dB (h) 36.46 dB

Figure 6.6: Missing region completion PSNR results for Barbara image (II) -

(a) Ground truth image, (b) inpainting mask, (c) TM with priority of [43], (d) TM with

augmented priority, (e) ATM with augmented priority, (f) NLM with augmented priority,

(g) NMF with augmented priority, and (h) LLE with augmented priority.
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(a) Ground truth (b) 21.85 dB

(c) 31.16 dB (d) 31.59 dB (e) 33.41 dB

(f) 33.14 dB (g) 35.05 dB (h) 34.80 dB

Figure 6.7: Missing region completion PSNR results for Lena image - (a) Ground

truth image, (b) inpainting mask, (c) TM with priority of [43], (d) TM with augmented

priority, (e) ATM with augmented priority, (f) NLM with augmented priority, (g) NMF

with augmented priority, and (h) LLE with augmented priority.
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(a) Ground truth (b) 17.43 dB

(c) 32.70 dB (d) 27.77 dB (e) 39.02 dB

(f) 39.00 dB (g) 39.04 dB (h) 38.97 dB

Figure 6.8: Missing region completion PSNR results for House image - (a)

Ground truth image, (b) inpainting mask, (c) TM with priority of [43], (d) TM with

augmented priority, (e) ATM with augmented priority, (f) NLM with augmented priority,

(g) NMF with augmented priority, and (h) LLE with augmented priority.

6.6.4 Comparison with other inpainting methods

In this section, the performance of the proposed neighbor embedding (with LLE and

NMF) based inpainting algorithms using the augmented patch priority computation

have been assessed on several test images, and compared with the state-of-the-art
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diffusion-based approaches in [150, 151] and exemplar-based methods in [43, 159].1

Fig. 6.9, Fig. 6.10, and Fig. 6.11 illustrate some of the results obtained for the test

images: “Sydney”, “Terrasse”, and “Bike” respectively. We selected natural images

with large holes to be filled-in in order to test our proposed inpainting algorithms for

object removal. Since the holes to be filled-in are quite large, the inpainting task is

not so easy and diffusion-based approaches introduce blur into the image. When we

compare our method with the other exemplar-based methods including [43] and [159],

we see comparable results with the natural looking and structure preserving capacity

of the proposed method in this chapter.

6.6.5 Performance analysis of subspace mappings on LLE inpainting

Fig. 6.12 compares the inpainting results of Bungee obtained by using a simple LLE

and LLE with parametric mapping method using the edge term augmented priority

function. In this simple experimentation, K is fixed to 10 and patch size is 9×9 pixels.

One can observe that the LLE algorithm with learned mappings gives comparable (and

even more natural) inpainting result when compared with a simple LLE. The inpainted

patches are relatively better approximated (in the sense of natural looking) by the

learned mappings which helps selecting more appropriate K-NN patches. As a final

illustration, Fig. 6.13 shows the inpainting results obtained for the test images (Sydney,

Terrasse, and Bike) in the same setup.

6.7 Conclusion

In this chapter, we have extended our work in Chapter 5 by describing two new

exemplar-based image inpainting methods based on neighbor embedding algorithms

with an augmented patch priority function. Experimental results show that the pro-

posed methods offer better inpainting quality when compared to other exemplar-based

techniques using template matching, average template matching, and the non-local

means approach. The proposed methods can be seen as a generalization of template

matching, in the sense that they search to approximate the template signal (via a

constrained optimization in contrary to heuristic based methods such as ATM and

1The author would like to thank Dr. Olivier Le Meur for providing the inpainting results of the

methods in [43, 150, 151, 159].
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NLM) with a linear combination of colocated pixels in similar patches, whereas the

template matching approximates the template with one similar patch with a weighting

coefficient equal to one. The simulation results show significant performance gain (in

different applications such as missing region completion in a context of loss concealment

or large object removal in a context of image editing) of the proposed methods against

(weighted) template matching and other exemplar- and diffusion-based inpainting ap-

proaches in the literature. A heuristic extension of the LLE based inpainting method,

which exploits the neighborhood and local geometry preserving properties of LLE, has

finally been proposed through parametric mapping functions. These mapping functions

are learned from a set of training image patches taken from the source image, and they

allow another way of selecting the K patches to be used in the inpainting process, i.e.,

leading relatively better approximated and natural looking inpainted images.
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Figure 6.9: Inpainting results for Sydney image - From left-to-right top-to-bottom:

Original image, inpainting mask; our method with LLE, our method with NMF; method

in [43], method in [159]; method in [150], and method in [151].
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Figure 6.10: Inpainting results for Terrasse image - From left-to-right top-to-

bottom: Original image, inpainting mask; our method with LLE, our method with NMF;

method in [43], method in [159]; method in [150], and method in [151].
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Figure 6.11: Inpainting results for Bike image - From left-to-right top-to-bottom:

Original image, inpainting mask; our method with LLE, our method with NMF; method

in [43], method in [159]; method in [150], and method in [151].
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Figure 6.12: Effect of subspace mappings on LLE inpainting - (left) Inpainting

with LLE with augmented priority, and (right) inpainting with LLE using learned mappings

with augmented priority. (K is fixed to 10.)
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6. IMAGE INPAINTING VIA NEIGHBOR EMBEDDING

Figure 6.13: Inpainting results for the test images using subspace mappings

with LLE - From left-to-right per image: Inpainting mask and the result of inpainting.
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Chapter 7

Conclusion and Perspectives

In this manuscript we have placed the image prediction (i.e., predictive coding) prob-

lem into different frameworks by formulating an optimization on the approximation of

the template signal. The proposed methods in this work can be seen as extensions of

the well-known template matching method. We start with placing the image prediction

problem into sparse representations framework by approximating the template with a

sparsity constraint. The proposed sparse prediction method with locally and adaptive

dictionaries show great performance improvement when compared to a model which

uses static dictionaries (such as DCT or DFT), and also to template matching. On

the other hand, the limitations and drawbacks of the sparse prediction method have

later led us to envisage some other means to solve the same optimization problem with

different techniques and constraints. We have later put the image prediction prob-

lem into a dictionary learning framework by adapting conventional dictionary learning

approaches for image prediction. To the best of our knowledge, the proposed online pre-

diction dictionary learning method is quite novel with respect to traditional dictionary

learning algorithms, and it offers better performance when compared to sparse predic-

tion and H.264/AVC intra. A simple version of this method has also been proposed

which can be regarded as a simple least-squares optimization for prediction through

learning. Finally, we have integrated the image prediction problem into a neighbor em-

bedding framework by adapting two different dimensionality reduction methods. The

experimental results demonstrate the effectiveness of the underlying idea in both image

prediction and inpainting applications.

Regarding to the sparse prediction method in Chapter 3, the proposed method
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7. CONCLUSION AND PERSPECTIVES

here is indeed original but it suffers from the iterative sparse approximation algorithms

such as OMP. As OMP iterates for approximating the template, the residue on the

template gets less correlated with the residue of the block to be predicted, hence the

final calculated weighting coefficients are in general not well optimized for prediction.

Moreover, OMP recomputes all the coefficients assigned to the selected atoms at each

iteration. At any iteration, a simple error on selecting an atom would lead to a complete

change in the previous and also upcoming calculation of the coefficients which will

definetely not be optimum for prediction. One sub-optimal solution could be the use

of the MP method instead of OMP. Inspite the fact that MP also approximates residue

signals at each iteration (the same drawback still holds as in OMP), it does only update

one coefficient at a time. So one might expect relatively better performance. Another

interesting solution would be the use of a tree-structured pursuit algorithm, instead of

MP or OMP, which can handle adaptively the atom dependencies of two different parts

of the dictionary, i.e., corresponding to the template (Ac) and the unknown block (At),

not only in the spatial domain but also in the residual domain at each iteration of the

algorithm.

The sparse prediction algorithm (with OMP) finally turned out to be not really

optimal for the prediction problem. However it has some important aspects and per-

spectives for future study. The locally adaptive dictionary concept indeed is new and

useful, and can be replaced with traditional dictionaries in different applications such

as for image denoising. In a denoising application all the pixel values of a noisy block

needs to be approximated and usually represented in a sparse domain. Thus proposed

dictionary concept suits very well for this purpose. A locally adaptive dictionary can

be constructed for a noisy block to be denoised by extracting either already denoised

texture patches or even the noisy ones from a large neighborhood of that block. The

rest is just a question of adapting the constrained optimization and its parameters for

this special application with locally adaptive dictionaries.

Regarding to the online prediction dictionary learning method in Chapter 4, the

proposed method is novel but it has some underlying issues which should be further

investigated. First of all, the imposed sparsity constraint in sparse coding step has

not really been reflected to the prediction performance, as the simplified method shows

comparable results. This might be caused by fixing the dictionary Ac and constrain-

ing it to be an orthonormal basis, which is indeed too restrictive. It is very crucial
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to increase the effect of sparsity constraint on this method. One solution would be

employing one of the classical dictionary learning algorithms with strict sparsity con-

straints to learn an optimum Ac using the training set Tc, however in exchange for

the computational complexity. In this way, this method could be made more depen-

dent on the sparsity constraint together with a block-coordinate descent update (which

will preserve the sparseness of the learned model for Ac) of the subdictionary At. In

this kind of specific application for prediction, the computational load can be reduced

greatly using recursive learning methods by initializing the dictionaries Ac and At with

warm restarts, i.e., the dictionaries calculated for the previously predicted block.

When we talk about dictionary learning for prediction, the drawbacks of sparse

approximation methods (as in Chapter 3) still hold a problematic place. To overcome

these limitations, a possible future study which might extend this framework would be

the use of an iteration-tuned and tree-structured approach. In this sense, tuning (or

learning) level based dictionaries characterized by each iteration of the sparse approx-

imation method (such as OMP) would help improving the performance. This process

can be seen as a decorrelation process of recursive iterations (and the coefficients) of the

sparse coding step for obtaining optimized prediction dictionaries for residual signals

(such that the kth branch of the tree-structured dictionaries is constructed with Ak
c

and Ak
t for the coefficients of iteration k of the sparse coding step).

Online learning is crucial in many applications. Once the problem is posed and its

formulation is defined, the rest is just a question of collecting relevant training samples.

Extracting local texture patches as training samples is very efficient for capturing the

local content contained in an image. In this way a limited number of samples would

be enough for an efficient dictionary model. The proposed learning technique here can

also be applied for image inpainting. Although we have proposed some sort of simple

learning method for inpainting in Chapter 6, there is still room for research on this

topic for an efficient learning mechanism for improved inpainting results.

Regarding to the neighbor embedding methods in Chapters 5–6, we think that the

ideas as well as the contibutions given in these chapters should open new doors and show

new directions for many image processing applications. Much work has been carried

out especially for image prediction and image inpainting, however there are still a few

remarks which should be analysed carefully. For example, the selection of K nearest

neighbors is carried out using the template signal, and these neighbors may not be the
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neighbors of the block to be predicted, or the pixels to be inpainted. This is a very

important point and one can partially solve this problem by employing some learning

methods using the local context (the texture pathces in a close neighborhood). Another

important point is related with NMF and LLE based methods and their variants in the

literature. For example, the NMF framework has several variants of NMF algorithms

based on multiplicative updates (as utilized in this study), projected gradients, graph

regularization, and so on. Although these variants intend to solve almost the same

optimization problem, either the ways which lead to solutions are quite different or they

have different constraints between a point and its neighbors. Hence one should further

take consideration of these solutions to analyse which solution is better for the applied

texture synthesis problem. As a final remark, the presented neighbor embedding ideas

can further be extended to other texture synthesis based applications such as image

denoising and super-resolution.
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Résumé Cette thèse présente de nouvelles méthodes de synthèse de texture

basées sur l’exemple pour les problèmes de prédiction d’images (c’est à dire, codage

prédictif) et d’inpainting d’images. Les principales contributions de cette étude

peuvent aussi être vues comme des extensions du template matching. Cependant,

le problème de synthèse de texture tel que nous le définissons ici se situe plutôt dans

un contexte d’optimisation formalisée sous différentes contraintes. Le problème de

prédiction d’images est d’abord situé dans un contexte de représentations parci-

monieuses par l’approximation du template sous contraintes de parcimonie. La

méthode de prédiction proposée avec les dictionnaires adaptés localement mon-

trent de meilleures performances par rapport aux dictionnaires classiques (tels que

la transformée en cosinus discrète (TCD)), et à la méthode du template matching.

Le problème de prédiction d’images est ensuite placé dans un cadre d’apprentissage

de dictionnaires en adaptant les méthodes traditionnelles d’apprentissage pour la

prédiction de l’image. Les observations expérimentales montrent une meilleure

performance comparativement à des méthodes de prédiction parcimonieuse et des

prédictions intra de type H.264/AVC. Enfin un cadre neighbor embedding est pro-

posé pour la prédiction de l’image en utilisant deux méthodes de réduction de di-

mensionnalité: la factorisation de matrice non négative (FMN) et le locally linear

embedding (LLE). Ce cadre est ensuite étendu au problème d’inpainting d’images.

Les évaluations expérimentales démontrent l’efficacité des idées sous-jacentes pour

la compression via la prédiction d’images et l’inpainting d’images.

Abstract This thesis presents novel exemplar-based texture synthesis meth-

ods for image prediction (i.e., predictive coding) and image inpainting problems.

The main contributions of this study can also be seen as extensions to simple tem-

plate matching, however the texture synthesis problem here is well-formulated in

an optimization framework with different constraints. The image prediction prob-

lem has first been put into sparse representations framework by approximating the

template with a sparsity constraint. The proposed sparse prediction method with

locally and adaptive dictionaries has been shown to give better performance when

compared to static waveform (such as DCT) dictionaries, and also to the template

matching method. The image prediction problem has later been placed into an

online dictionary learning framework by adapting conventional dictionary learning

approaches for image prediction. The experimental observations show a better

performance when compared to H.264/AVC intra and sparse prediction. Finally a

neighbor embedding framework has been proposed for image prediction using two

data dimensionality reductions methods: non-negative matrix factorization (NMF)

and locally linear embedding (LLE). This framework has then been extended to the

image inpainting problem. The experimental evaluations demonstrate the effective-

ness of the underlying ideas in both image prediction and inpainting applications.


