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Background: Atrial remodeling, vagal tone, and atrial ectopic triggers are suggested to contrib-

ute to increased incidence of atrial fibrillation (AF) in endurance athletes. How these parameters

change with increased lifetime training hours is debated.

Hypothesis.: Atrial remodeling occurs in proportion to total training history, thus contributing to

elevated risk of AF.

Methods: We recruited 99 recreational endurance athletes, subsequently grouped according to

lifetime training hours, to undergo evaluation of atrial size, autonomic modulation, and atrial

ectopy. Athletes were grouped by self-reported lifetime training hours: low (<3000 h), medium

(3000–6000 h), and high (>6000 h). Left atrial (LA) volume, left ventricular (LV) dimensions, and

LV systolic and diastolic function were assessed by echocardiography. We used 48-hour ambu-

latory electrocardiographic monitoring to determine heart rate, heart rate variability, premature

atrial contractions, and premature ventricular contractions.

Results: LA volume was significantly greater in the high (+5.1 mL/m2, 95% CI: 1.3–8.9) and

medium (+4.2 mL/m2, 95% CI: 0.2–8.1) groups, compared with the low group. LA dilation was

observed in 19.4%, 12.9%, and 0% of the high, medium, and low groups, respectively (P = 0.05).

No differences were observed between groups for measures of LV dimensions or function. Min-

imum heart rate, parasympathetic tone expressed using heart rate variability indices, and prema-

ture atrial contraction and premature ventricular contraction frequencies did not differ between

groups.

Conclusions: In recreational endurance athletes, increased lifetime training is associated with LA

dilation in the absence of increased vagal parameters or atrial ectopy, which may promote inci-

dence of AF in this cohort.
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1 | INTRODUCTION

There are well-documented benefits of exercise for the maintenance

of cardiovascular health, such that even the long-term practice of

endurance exercise reduces all-cause mortality.1 However, a height-

ened risk of atrial arrhythmias (eg, atrial fibrillation [AF]) associated

with long-term endurance training has been described in a number of

independent cohorts.2–4

Endurance exercise induces a series of structural, functional, and

electrophysiological adaptations within the heart, including biatrial

enlargement and eccentric hypertrophy of the ventricles with little to

no change in systolic function.5 Ventricular compliance is improved
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likely contributing to an improvement in ventricular filling.6 In trained

individuals, enhanced parasympathetic activity7 with sinus bradycardia

is one of the more established cardiovascular adaptations. In addition

there is evidence for an alteration in the intrinsic electrophysiological

properties of the heart.8

Despite the performance improvement that accompanies the

“athlete's heart,” certain maladaptations may mediate the increased

AF risk in this cohort.9,10 Increased occurrence of premature atrial

contractions (PACs) has been reported in athletes with greater accu-

mulated training hours,11 which may represent a potential trigger for

the onset of atrial arrhythmias.12 This trigger can initiate a sustained

AF episode dependent on the presence of an arrhythmogenic atrial

substrate.13 The atrial substrate for AF is characterized by atrial dilata-

tion and fibrosis predisposing to atrial reentry, whereas increased

vagal tone shortens the atrial refractory period, thus facilitating reen-

try and potentially maintaining AF.14

Although numerous studies have examined the electrocardio-

graphic (ECG) and echocardiographic characteristics of highly trained

athletes,15,16 few have examined the dose–response of endurance

exercise and the potential pathophysiological mechanisms underlying

an increased risk of AF in a cohort of recreational endurance-sport

participants. In >50 000 endurance-race participants, the risk of AF

was highest in those with the most previously completed races,2 thus

indicating a role of training history in mediating AF risk. Importantly,

the excess of AF among those who engage in endurance training is

not typically confined to those in elite sports.17 Therefore, we hypoth-

esize that atrial remodeling may occur more profoundly in endurance-

sports participants, thus lending to an elevated AF risk in this cohort.

2 | METHODS

We recruited 99 participants from the local sporting community. The

inclusion criteria were endurance-sports participants age 18 to

80 years, engaging in ≥5 hours per week of endurance exercise for at

least the past 12 months, and free of known cardiovascular disease.

Participants with known hypertension, type 2 diabetes mellitus, or

hypercholesterolemia were excluded. Each participant completed a

health questionnaire declaring known medical issues or medications

known to alter heart rhythm. All participants were further screened

regarding their lifetime exercise training history, where they were

asked to declare the number of years they have been training and the

average number of training hours per week during this time. Lifetime

training hours were subsequently calculated according to the follow-

ing formula: Lifetime training hours = (52 × training hours per

week) × number of years training. Using this data, participants were

subsequently separated into 3 groups: low, 0 to 2999 hours; medium,

3000 to 5999 hours; and high, >6000 hours. The study was approved

by the Human Research Ethics Committee at the University of

Adelaide.

All patients were reviewed in the ambulatory cardiac clinic. After

completing study questionnaires, participants undertook ambulatory

Holter monitoring for a 48-hour period and within 7 days a standard-

ized echocardiographic examination. Three-lead Holter monitoring

(leads I, II, and III; sample rate: 256 Hz) was performed over a 48-hour

period using Medilog AR12 monitors (Schiller AG; Baar, Switzerland).

The recording was imported into Medilog Darwin analysis software

(Schiller AG) and analyzed by 2 investigators blinded to training his-

tory. R-R intervals were used as a surrogate for atrial coupling, as they

closely reflect atrial coupling during ectopy.18 ECG periods with signif-

icant movement/muscle artifact were removed. Premature atrial con-

tractions (PACs) were detected automatically as a minimum 25%

reduction in the R-R interval compared with the previous normal R-R

coupling. All automatically detected PACs were manually verified for

inappropriate beat annotation. Following the establishment of an

ectopic beat, classification of the beat as atrial or ventricular in origin

was based on the visible presence of atrial activity preceding the ven-

tricular activation and/or the absence of a change in the QRS duration

and morphology to sinus rhythm. In the presence of a change in QRS

duration or morphology the beat was classified as ventricular in origin.

Mean, minimum, and maximum heart rates were determined for each

recording in addition to time-based heart rate variability (HRV) param-

eters, including the standard deviation of normal-to-normal intervals

and root mean square of successive differences. All PACs and PVCs,

as well as the following normal beat, were excluded from HRV ana-

lyses. All participants were asked to refrain from exercise in the

12 hours preceding and during each monitoring period.

All participants underwent a transthoracic echocardiography

using a Vivid 7 Dimension echocardiograph (GE Vingmed Ultrasound,

Horten, Norway) according to most recent American Society of Echo-

cardiography (ASE) guidelines.19 An experienced sonographer, blinded

to training group, performed all echocardiograms. Left ventricular

(LV) dimensions and ejection fraction were obtained using

2-dimensional and M-mode echocardiography. Peak early (E) and late

diastolic filling (A) velocities were obtained using pulsed-wave Dopp-

ler from samples at the tips of the mitral valve. Mitral annular tissue

velocities were sampled using tissue Doppler imaging of the septal

and lateral walls, respectively. Interventricular septum diameter was

assessed using 2-dimensional scans taken from the parasternal long-

axis view. LV mass was calculated according to Devereux formula.20

Left atrial (LA) volume was assessed and averaged from the apical

2-chamber and 4-chamber views, respectively. Where applicable, all

cardiac dimensions were indexed to body surface area.

All data were analyzed with SPSS 22 (SPSS Inc., Chicago, IL). Data

are presented as mean �SD unless otherwise stated. For normally dis-

tributed continuous variables, differences between the 3 training

groups were compared by analysis of variance with Sidak-adjusted

pairwise comparisons. Non–normally distributed data were compared

between the 3 groups using the Kruskal-Wallis test, followed by pair-

wise Mann–Whitney U tests when required. Categorical data were

compared using the χ2 statistic. Multivariate regression analysis was

used to determine the independent predictors of LA volume that dif-

fered between the 3 groups. A P value of <0.05 was considered statis-

tically significant.

3 | RESULTS

At baseline, groups were well matched with regard to height and body

mass (Table 1). Participants in the lower-training-hours group were
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younger than those in the medium and high groups (P < 0.001;

Table 1). Participants in the high-training-hours group engaged in a

greater number of training years vs those in the medium and low

groups, respectively (24.3 �10.5 vs 15.2 �7.2 vs 6.4 �3.2 years,

P < 0.001; Table 1).

There was a significantly greater LA volume (Figure 1) in both the

high (34.3 �7.3 mL/m2) and medium (33.4 �6.1 mL/m2) training

groups when compared with the low training group (29.3 �4.7 mL/

m2). The percentage of athletes meeting the definition of moderate to

severe atrial dilation19 (>42 mL/m2) was 19.4% and 12.9% in the high

and medium training groups, respectively, with no athletes in the low

training group meeting the atrial dilation criteria (P = 0.05). Lifetime

training hours was a significant predictor of LA size, even after adjust-

ment of baseline differences in age (P = 0.006). There was no differ-

ence in the P-wave duration between groups, even after age

adjustment (P = 0.87).

There were no significant differences between groups for LV

dimensions, wall thickness, or mass (Table 2). As expected, LV systolic

function was normal in all participants with no between-group differ-

ences. There was a trend toward a significantly greater E/A ratio in

the high training group, although this did not reach statistical signifi-

cance (P = 0.08). There were no between-group differences for

E/e' (P = 0.58).

The mean heart rate (HR) across the entire 48-hour recordings

tended to be lower in the high training group, although this did not

reach statistical significance (P = 0.07). The minimum HR, expressed

as the lowest HR throughout nighttime hours, did not differ between

groups, although the lowest hourly average HR was seen for the high

training group (53 �7, 52 �5, and 49 �5 bpm for the low, medium,

and high groups, respectively; P = 0.05). No such episodes were

recorded in any other athlete. To determine autonomic contributions,

we compared 3 time-based measures of HRV between groups. There

were no significant differences with regard to standard deviation of

normal-to-normal intervals, root mean square of successive differ-

ences, or pNN50 measures recorded over the 24-hour period

(Table 2).

There was no significant difference between the PAC or PVC

counts for each group (Table 2). Likewise, the number of athletes with

>100 PACs or PVCs per 24-hour recording period was similar

between groups (P = 0.2).

Of all athletes, there were 3 significant clinical findings. One ath-

lete was detected to have asymptomatic nocturnal bradycardia (HR,

23 bpm) and an asymptomatic nocturnal sinus pause of 8 seconds. A

short period of detraining resolved these observations without need

for further intervention, perhaps suggestive of a reversible vagal

involvement. One athlete had significant ventricular ectopy burden

TABLE 1 Baseline characteristics of groups according to lifetime training history

Low Group, <3000 h Medium Group, 3000–6000 h High Group, >6000 h P Value

No. 30 31 35

Age, y 45 � 9 51 �9 54 � 10 0.001

Height, cm 174 �9 173 �9 173 �9 0.97

Body mass, kg 73 �10 73 �11 70 �10 0.47

BMI, kg/m2 24.2 �2.4 24.1 �2.5 23.3 �2.5 0.33

Mean lifetime training hours 1684 (560–2912) 4533 (3000–5850) 12 696 (6240–37 000) <0.001

Lifetime training years 6 �3 15 �7 24 �10 <0.001

Abbreviations: BMI, body mass index; IQR, interquartile range; SD, standard deviation Data are presented as mean � SD or median (IQR).

FIGURE 1 (A) LA indexed volume and (B) PAC frequency classified according to lifetime training hours. Abbreviations: LA, left atrial; PAC,

premature atrial contraction
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(17 000 PVCs per 24 hours), and subsequently underwent PVC abla-

tion. In this case, the PVCs were of a right-sided origin and were ter-

minated by ablation in the posterior papillary muscle region. There

were no features of adverse RV or LV remodeling on cardiac magnetic

resonance imaging. One athlete had a single 2-minute asymptomatic

episode of AF detected on Holter monitoring and was referred for fur-

ther management. All 3 athletes were in the high training group.

4 | DISCUSSION

A growing body of evidence supports the view that endurance exer-

cise training promotes an increased risk of AF. However, the identifi-

cation of the at-risk athlete remains elusive. This study provides

insight into pathophysiological changes that may predispose to

AF. There are 3 important findings from this study: (1) LA size appears

to increase with lifetime training hours, and this appears somewhat

independent of the degree of LV remodeling; (2) more profound bra-

dycardia occurs in those with greater lifetime training history as com-

pared with lesser amounts. The lack of difference in HRV raises the

possibility that this may be independent of vagal influences; and

(3) exercise history, within the range studied, has minimal impact on

the frequency of atrial or ventricular ectopic burden.

Recent data show an accumulation of risk with more prolonged

exercise training histories,21 whereby a lifetime training history

>2000 hours results in an almost 4-fold elevation in risk of incident

AF. Given that elite endurance athletes achieve annual training vol-

umes >800 hours per year,22 this issue is likely to extend to the more

recreational athlete training at more modest volumes over several

years.

Exercise training is associated with biatrial enlargement23 that can

create an arrhythmogenic substrate potentially contributing to the

maintenance and progression of AF. Our data show that LA enlarge-

ment occurs even with moderate training histories >3000 hours.

Importantly, lifetime training history remained a significant predictor

of LA volume, even after adjustment for age. Our data are consistent

with that reported previously in which runners with more extensive

training histories reported the largest atrial size.11 Likewise, the per-

centage of athletes showing LA enlargement in our study (12%–20%

among the medium and high training groups) closely resembles the

20% reported in a study of >1700 competitive athletes previously.24

Increased LA size has been reported as an important predictor of AF

occurrence among endurance-sports participants.4 Although we did

not observe longer atrial activation times determined by P-wave dura-

tion, additional factors such as the development of atrial fibrosis are

likely to contribute to the arrhythmogenic substrate by atrial local

conduction disturbances in endurance athletes. Indeed, preclinical

data show the development of atrial fibrosis concomitant with

increased AF inducibility in exercise-trained rats.25 Intriguingly, there

was a strong temporal relationship between the development of atrial

fibrosis and the inducibility of AF, suggesting that atrial remodeling

with more extensive fibrosis is necessary for the promotion of AF with

endurance exercise.

One of the hallmark changes associated with endurance training

is sinus bradycardia. We showed evidence of more profound brady-

cardia among the high training group, which may be significant given

the recent interest in bradycardia as an additional independent risk

factor for AF.26 Orthodox teaching would argue that bradycardia in

athletes is attributed to enhanced parasympathetic tone and these

autonomic changes may contribute to the development of AF by

TABLE 2 LV structure and function and ambulatory Holter findings by training group

Low Group, <3000 h Medium Group, 3000–6000 h High Group, >6000 h P Value

Echocardiography

LA volume, mL/m2 (indexed) 29.3 � 4.7 33.4 � 6.1 34.3 � 7.3 0.005

LA diameter, cm 3.5 � 0.4 3.7 � 0.4 3.7 � 0.4 0.3

LV dimension, cm/m2 (indexed) 2.7 � 0.3 2.7 � 0.3 2.8 � 0.2 0.13

LV mass, g/m2 (indexed) 86 � 16 93 � 18 95 � 18 0.08

LV IVSd, cm 0.9 � 0.1 1.0 � 0.1 1.0 � 0.1 0.08

LV PWd, cm 0.9 � 0.1 0.9 � 0.1 1.0 � 0.1 0.30

RAA 16.1 � 2.6 16.6 � 2.4 17.6 � 3.3 0.1

E/A 1.5 � 0.5 1.5 � 0.5 1.7 � 0.6 0.09

E/E0 7.4 � 2.3 8.0 � 2.0 7.7 � 2.3 0.58

48-h Ambulatory Holter monitoring

Mean HR, bpm 67 � 8 65 � 8 62 � 7 0.14

Minimum hourly HR, bpm 53 � 7 52 � 5 49 � 5 0.02

PAC burden, per 24 h 14 (6–43) 25(11–219) 34(13–60) 0.1

PVC burden, per 24 h 2 (1–12) 2 (1–79) 3 (1–12) 0.98

SDNN, ms 173 � 38 163 � 35 167 � 34 0.57

RMSSD, ms 49 � 15 46 � 19 42 � 9 0.28

Abbreviations:A, late mitral filling velocity;E, early mitral filling velocity; E0 , early annular motion velocity; HR, heart rate; IQR, interquartile range; IVSd,
interventricular septum diameter end-diastole; LA, left atrial; LV, left ventricular; PAC, premature atrial contraction; PVC, premature ventricular contraction;
PWd, posterior wall diameter end-diastole; RAA, right atrial area; RMSSD, root mean square of successive differences; SD, standard deviation; SDNN, stan-
dard deviation of normal-to-normal intervals.
Data are presented as mean � SD or median (IQR).
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shortening of the atrial refractory period, thus facilitating reentry.14,27

However, some preclinical and human data have challenged the view

that bradycardia is explained by excess vagal tone, raising speculation

that bradycardia may be due to more permanent structural remodeling

of the sinoatrial node and its ion-channel constituents.8,28 Further lon-

gitudinal studies are required to evaluate autonomic shifts and intrin-

sic electrophysiology of athletes throughout extended periods of

endurance training.

PACs have been implicated as a potent trigger for AF. In athletes,

the frequency of PACs is reportedly higher in those with longer train-

ing histories.11 However, we found no group differences with regard

to PAC frequency. Moreover, the overall burden of PACs was low.

Although the presence of high PAC burden in athletes with AF cannot

be ruled out, this evidence suggests that exercise training does not

critically contribute to an excess of PACs. The cause of the disparity

in findings between our study and others published previously with

regard to the training effect on ectopic burden is unclear, although

potentially due to the slightly older participants in our study and the

modestly higher burden of atrial ectopy in our study compared with

that reported previously.11 Future studies in athletes of different age

ranges will be critical in confirming the findings reported here. Fur-

thermore, insights from continuous ECG monitoring of elite endur-

ance athletes may reveal a different burden of atrial ectopy from that

seen in recreational athletes.

Although our aim was to evaluate the effect of lifetime training

history on potential arrhythmogenic risk factors in athleteswe

observed only 1 episode of AF in our training groups. It isthereforenot

possible to directly assess any causal link between the cardiac adapta-

tions observed here and AF risk. Howeverthis data suggest that atrial

enlargement is an early adaptive response to exercise training that

potentially explains the increased risk of AF among recreational

endurance athletes. Interestinglythe atrial adaptations observed here

occurred in isolation with minimal influence of training history on LV

function or structure. Given the strong correlation between LV size

and exercise performance,29 this finding underscores the clinical

observation that training-induced AF is not confined only to elite ath-

letes or those with the highest cardiorespiratory fitness.

4.1 | Study limitations

Several limitations should be considered when interpreting this study.

Our recruitment focused on recreational athletes in the absence of a

control group consisting of age-matched nonathletes. Calculation of

lifetime training hours was performed as per previous studies11 using

recall and estimation of training history. Additionally, we did not

determine training intensity and therefore cannot make any infer-

ences regarding training load and cardiac changes with exercise train-

ing. The study included a small sample size, which may have led to

type II error for some measures. Furthermore, our study population

included predominantly males, which may limit the application of

these findings to a female cohort. We also used echocardiography to

determine cardiac structure, which may produce findings that differ

with other imaging techniques such as cardiac magnetic resonance.

Finally, we indirectly assessed autonomic function using HRV indices,

which may limit the interpretation of the vagal indices described in

this study.

5 | CONCLUSION

In amateur endurance-sports participants, increased lifetime training

hours is associated with atrial dilation in the absence of significant dif-

ferences in vagal tone, atrial ectopic trigger burden, or LV size. Future

prospective studies should examine these measures in response to

chronic training in a long-term follow-up to further elucidate the

mechanisms underlying the increased AF risk in middle-aged endur-

ance athletes.
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