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Abstract: We present a mathematical model and exact algorithm for protein structure align-
ment using DALI scoring, which is an NP-hard problem. DALI scoring is based on comparing the
inter-residue distance matrices of proteins and is the scoring model of the widely used heuristic
DALI program. Our model and algorithm extend an integer linear programming approach previ-
ously used for the related contact map overlap problem. To this end, we introduce a novel type
of constraint that handles negative structure scores and relax it in a Lagrangian fashion. We also
review options that allow to consider less pairs of inter-residue distances explicitly, because their
large number makes it difficult to optimize DALI scoring optimally. We use our exact algorithm
DALIX to compute many provably score-optimal DALI alignments for the first time, using four
data sets of varying structural similarity. Further, using our exact DALIX alignments, it is for the
very first time possible to qualitatively benchmark the heuristic DALI program in sound mathemat-
ical terms. The results indicate that DALI often computes optimal or close to optimal alignments,
but also that in cases of aligning small proteins it tends to fail generating any significant alignment
although such an alignment exists.
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DALI optimal : Alignement optimal de structures

protéiques

Résumé : L’article présente le modèle mathématique et un algorithme exacte pour aligner des
structures protéiques à la base du score DALI.

Mots-clés : matrice de distances entre résidus, algorithme exact, programme en nombres
entiers, relaxation Lagrangienne
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1 Introduction

Protein structure alignment, the assignment of structurally equivalent amino acids between pro-
tein structures, is an important problem in structural bioinformatics. Detecting and evaluating
structural similarities is a standard task that lies at the basis of many applications like, for ex-
ample, homology detection, fold recognition, protein classification, and functional annotation.
For proteins with low sequence similarity, structure alignments improve upon sequence align-
ments and are successfully applied for detecting functional similarities or distinct evolutionary
relationships. Due to the exponential increase in available protein structures, as for example in
the protein data bank (PDB) (Berman et al., 2000), the problem will receive even more interest
in the future.

The structural alignment problem is NP-hard for biologically meaningful scoring schemes
used in practice (Lathrop, 1994). As a result, almost all algorithms for structure alignment are
heuristics; they aim at optimizing a given scoring scheme, but have no notion how much better
their computed alignments could be with respect to that scoring scheme. dali (distance matrix
alignment) is one of the most widely used structural alignment heuristics (Holm and Sander,
1993). It is available via the EBI structural analysis tool box, a dedicated server processes about
1500 pairwise alignment user requests a month, and the first dali paper has been cited almost
3000 times, more often than any other structure alignment program1.

We present an exact dali algorithm, which we call dalix. It returns either the optimal
alignment according to dali scoring, if found within a predefined time limit, or an alignment
together with an upper bound on the optimal score. Our algorithm uses techniques from com-
binatorial optimization. First, we cast the problem into an integer linear program (ILP) whose
objective function maximizes the dali score and whose constraints denote that the solution rep-
resents a structure alignment. We then relax a few constraints, move them to the objective
function and penalize their violation by multiplying them with Lagrangian multipliers. The
relaxed problem can then be solved by double dynamic programming, which is a method that
is also used in other structure alignment algorithms like ssap (Taylor and Orengo, 1989) or
matras (Kawabata and Nishikawa, 2000). Iteratively, multipliers are adjusted and the double
dynamic programming is repeated. After a specified number of iterations, the problem is split
into subproblems within a branch-and-bound algorithm.

Our mathematical model and algorithm are applicable to any distance matrix-based scoring
scheme, e.g. those of ssap (Taylor and Orengo, 1989), contact map overlap (cmo) (Godzik and Skolnick,
1994), matras (Kawabata and Nishikawa, 2000) or paul (Wohlers et al., 2010); for the general
framework see (Wohlers et al., 2011). Here, we focus on dali because it is a popular structural
alignment method that performs well in many benchmarks (for example, Mayr et al., 2007).
Provably maximizing the dali scoring is especially difficult, because it uses inter-residue dis-
tances between any pair of residues. Our exact algorithm thus needs to explicitly consider O(n4)
distance pairs. This has great influence on performance and memory requirements.

Using our algorithm dalix, we are able to compute many dali alignments for the first time
to provable optimality and thereby to assess the quality of the dali heuristic. For this purpose
we use (i) alignments of SCOPCath domains (Csaba et al., 2009) with lengths between 30 and
50 who share family, superfamily or fold, (ii) alignments from SKOLNICK (Caprara et al., 2004)
of proteins from the same family, and alignments from (iii) the SISY and (iv) RIPC collections
(Mayr et al., 2007; Berbalk et al., 2009). We find that dali is very reliable in returning a good
alignment according to dali scoring. Although we find many cases where the dali alignment
is not optimal, the difference in score between the heuristic and the optimal alignment is often
negligible. When aligning short protein domains, dali’s deficiency is that it misses to detect quite

1Including closely related and follow up papers, dali was cited more than 5000 times.
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4 Wohlers & Andonov & Klau

a few significant similarities and wrongly reports that no such similarity exists. We also evaluate
the weak points of our exact algorithm dalix, which are large proteins and subtle structural
similarities. In these cases, the (then suboptimal) alignment returned by dalix is often worse
than the heuristic alignment returned by dali.

2 Mathematical Model and Algorithm

In this section we introduce the alignment graph representation of the structural alignment prob-
lem. Based on this representation, we formulate an integer linear program (ILP) that models the
problem of finding the alignment of maximum dali score. We devise a Lagrangian relaxation
that has been used before for contact map alignment (Andonov et al., 2011) and extend it by
relaxing an additional, new type of constraint that is needed for pairs of distances with negative
score. We focus in the entire description of the algorithm on these novel constraints, because
except for them, model and algorithm are analogous to (Andonov et al., 2011). In the last sub-
section we suggest algorithm engineering techniques to improve the performance of our method
in practice.

2.1 Alignment Graph Representation

We denote the inter-residue distance matrix of a protein A by (Aij). It is a symmetric square
matrix of size nA×nA, where nA is the length of the protein. A matrix entry Aij is the Euclidean
distance between the Cα atoms of residues i and j.

We represent the structural alignment problem using an alignment graph. For two proteins
of length nA and nB , the alignment graph is a nA × nB product or grid graph as displayed in
Figure 1e). Rows represent the residues of protein A and columns the residues of protein B. A
node i.k in the alignment graph indicates the alignment of residue i from protein A with residue
k from protein B. Directed edges (i.k, j.l) exist between any pair of nodes for which i < j and
k < l. Edges are thus south-west to north-east bound, and we refer to nodes i.k and j.l as the
tail and head of edge (i.k, j.l), respectively. An edge denotes the matching of distance Aij with
distance Bkl, see also Figure 1c) and d). An alignment of length n is represented by a set of
nodes i1.k1, i2.k2, . . . , in.kn for which i1 < i2 < . . . < in and k1 < k2 < . . . < kn. We call such a
set an increasing path. A structural alignment comprises additionally all induced edges.

2.2 Mathematical Model

We assign binary variables xik to alignment graph nodes. They indicate whether residue i is
aligned with residue k, in which case xik = 1. An alignment graph edge between nodes i.k and
j.l is described by a binary variable yikjl which denotes whether distance Aij from protein A is
aligned with distance Bkl in protein B, in which case yikjl = 1.

We define rowik(j) and colik(l) as sets of nodes that are either tails of edges with head at i.k
or heads of edges with tail at i.k and that mutually contradict because no two of them lie on
an increasing path. There are many ways of constructing them, the one we use is introduced in
(Andonov et al., 2011) and illustrated in Figure 2. The dalix ILP is then given by

Inria



Optimal DALI protein structure alignment 5

Figure 1: Different protein and alignment representations of protein A with nA = 4 residues
and protein B with nB = 3 residues. a) The amino acid sequence representation. Instead
of the amino acid, the corresponding residue number is given. The alignment on the right
denotes which residues structurally match. The second residue of protein A is unaligned. b) The
corresponding superposition. Given the alignment of residue 1 with 1, 3 with 2 and 4 with 3,
protein B is translated and rotated such that the superposition minimizes RMSD. c) The residues
are arranged on a horizontal line and the inter-residue distances displayed. The alignment on
the right highlights three pairs of aligned inter-residue distances. d) The inter-residue distance
matrices. The super-imposed and collapsed distance matrices denote the alignment and highlight
three pairs of aligned residues. e) The alignment graph. On the right, the activated nodes and
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6 Wohlers & Andonov & Klau

Figure 2: The black nodes are an illustration of rowik(j) (left) and colik(l) (right) in the alignment
graph. In the displayed situation, j < i and l < k, in which case the colored nodes are sets of
mutually exclusive tails of contradicting edges with common head i.k. If j > i and l > k (not
displayed), the colored nodes are sets of mutually exclusive heads of contradicting edges with
common tail i.k.

max

nA−1
∑

i=1

nA
∑

j=i+1

nB−1
∑

k=1

nB
∑

l=k+1

2s(Aij , Bkl)yikjl +

nA
∑

i=1

nB
∑

k=1

s(Aii, Bkk)xik (1)

s.t. xik ≥
∑

(r,s)∈rowik(j)

yikrs j ∈ [i+ 1, nA], i ∈ [1, nA − 1], k ∈ [1, nB − 1] (2)

xik ≥
∑

(r,s)∈colik(l)

yikrs l ∈ [k + 1, nB ], i ∈ [1, nA − 1], k ∈ [1, nB − 1] (3)

xik ≥
∑

(r,s)∈rowik(j)

yrsik j ∈ [1, i− 1], i ∈ [2, nA], k ∈ [2, nB ] (4)

xik ≥
∑

(r,s)∈colik(l)

yrsik l ∈ [1, k − 1], i ∈ [2, nA], k ∈ [2, nB ] (5)

xik ≤
∑

(r,s)∈rowik(j)
s(Ari,Bsk)≤0

(yrsik − xrs) + 1 j ∈ [1, i− 1], i ∈ [2, nA], k ∈ [2, nB ] (6)

k
∑

l=1

xil +
i−1
∑

j=1

xjk ≤ 1 i ∈ [1, nA], k ∈ [1, nB ] (7)

x,y binary. (8)

Here, the scoring function s(·, ·) for pairs of inter-residue distances is the dali elastic similarity
function (Holm and Sander, 1993),

s(Ai,j , Bk,l) =

{
(

0.2− |Ai,j−Bk,l|
1

2
(Ai,j+Bk,l)

)

e−(
1

2
(Ai,j+Bk,l)/20)

2

i 6= j and k 6= l

0.2 otherwise .

An alignment that maximizes the objective function of ILP (1)-(8) is thus an alignment of
maximum overall dali score. Based on this overall dali score S(A,B), the dali z-score Z(A,B)

Inria



Optimal DALI protein structure alignment 7

is computed according to the formula given in (Holm and Sander, 1998),

Z(A,B) =
S(A,B)−m(L)

0.5 ·m(L)
.

The term m(L) for L =
√
nA, nB is the approximate mean score and the denominator 0.5 ·

m(L) estimates the average standard deviation. The z-score thus measures the significance of the
detected structural similarity based on an experimentally determined background distribution of
dali scores.

All constraints except (6) are analogous to the constraints established by Andonov et al.
(2011) for the cmo model. Constraints (2) and (3) denote that an edge can only be taken
if its tail node is activated and if the heads of edges with common tail i.k cannot contradict.
Constraints (4) and (5) denote the reverse situation: an edge can only be taken if its head is
activated and the tails of edges with common head i.k do not contradict. Activated nodes have
to lie on an increasing path, which is specified by constraints (7). Different from the model for
cmo, the dalix model has additional constraints (6). These describe that an edge has to be
activated if its head and tail are activated. This is important since according to dali scoring,
edge scores can be negative, in which case the remaining constraints allow to omit these edges.
Constraints (6) are derived from the simple constraints

xik + xjl − yjlik ≤ 1

for all yjlik with score less than or equal to zero. In these simple constraints, the term xjl− yjlik
can be lifted to

∑

(r,s)∈rowik(j)

(xrs − yrsik) ,

since each tail r.s has, according to constraints (2) and (3), no outgoing edges with contradicting
heads i.k.

2.3 Lagrangian Approach

2.3.1 Lagrangian Relaxation.

We relax constraints (4), (5) and (6). This means that now an edge can be taken even if its head is
not activated and even if its tail contradicts with the tail of another edge (constraints (4) and (5))
as well as that an edge can be omitted even if its head and tail are activated (constraints (6)).
Since constraints (2) and (3) are not relaxed, still any edge needs to have an activated tail, and
since constraints (7) dictate that activated nodes lie on an increasing path, the tails of edges can
not contradict in spite of relaxing constraints (4) and (5). The solution of the relaxed problem is
the following: An increasing path of activated nodes, in which each activated node picks outgoing
edges of maximum overall score. The heads of these outgoing edges are not necessarily activated.
See Figure 3 for a visualization. The relaxation can then straightforwardly be strengthened by
constraints

∑

l=s+1,··· ,k

yrsil +
∑

j=r+1,··· ,i−1

yrsjl ≤ 1 (9)

r ∈ [1, nA], s ∈ [1, nB ], i ∈ [r + 1, nA], k ∈ [s+ 1, nB ] ,

which denote that the heads of outgoing edges picked by each node must (although still not
necessarily activated) form an increasing path. The objective function of the relaxed problem is
given by

RR n° 7915



8 Wohlers & Andonov & Klau

Figure 3: Visualization of local profit computation, the solution of the relaxed problem and
the feasible solution. Left: Node 1.1 picks its best set of outgoing edges, which are the edges
maximizing this node’s profit. The corresponding increasing path is colored yellow. Center: The
solution of the relaxed problem. It is composed of the increasing path that is the solution of
the global problem, colored in blue, together with the outgoing edges that these nodes picked
in their respective local problem. The relaxed solution maximizes the sum of profits. For a few
edges in the solution of the relaxed problem, the heads are not activated, e.g. for edge (1.1, 3.2).
Also, for nodes in the solution, the induced edge is missing, e.g. in the relaxed solution, there is
no edge between nodes 3.3 and 6.6. Right: The feasible solution that can be deduced from the
relaxed solution. It is composed of the nodes that are activated in the relaxed solution together
with all induced edges.

LR(λ) = max

nA−1
∑

i=1

nA
∑

j=i+1

nB−1
∑

k=1

nB
∑

l=k+1

2s(Aij , Bkl)yikjl +

nA
∑

i=1

nB
∑

k=1

s(Aii, Bkk)xik

+
∑

i,k
j∈[1,i−1]

λh
ikj



xik −
∑

(r,s)∈rowik(j)

yrsik





+
∑

i,k
l∈[1,k−1]

λv
ikl



xik −
∑

(r,s)∈colik(l)

yrsik





+
∑

i,k
j∈[1,i−1]

λa
ikj









1− xik +
∑

(r,s)∈rowik(j)
s(Ari,Bsk)≤0

(yrsik − xrs)









. (10)

All λ are greater or equal 0. Here, λh
ikj denotes the multipliers for constraints (4), λv

ikl for
constraints (5) and λa

ikj for constraints (6).

2.3.2 Double Dynamic Programming.

The relaxed problem can be solved in time O(n2
An

2
B), where nA and nB are the protein lengths.

This follows from the proof in (Andonov et al., 2011), according to which the complexity is
O(|V | + |E|), with |V | the number of alignment graph nodes and |E| the number of alignment

Inria



Optimal DALI protein structure alignment 9

Figure 4: An example of the redistribution of score between nodes and edges in the case of
violated constraints. Left: Constraints (4) and (5) are violated, since the head of edge (1.1, 3.2)
is not activated and thus x32 � y1132. Lagrangian multipliers will increase the weight of node
3.2 and decrease the weight of edge (1.1, 3.2). Right: Constraint (6) is violated, since the edge
between the activated nodes is not activated and thus x11 + x33 − y1133 � 1. The multipliers
for the activation constraints will decrease the weights of the nodes 1.1 and 3.3 and increase the
weight of the incident edge.

graph edges. In the case of the dali ILP, |V | = nAnB and |E| =
(

nA

2

)(

nB

2

)

, from which the
stated complexity follows.

The relaxed problem can be solved by double dynamic programming, i.e., dynamic program-
ming on two levels. For this purpose we solve for each node a local problem and afterwards one
global problem. In the local problems, we compute for each node i.k the best set of outgoing
edges with their heads on an increasing path by the use of dynamic programming. We call the
sum of the corresponding edge weights the node profit pik. In the global problem, we assign to
each node its profit plus a node score of 0.2 and compute the increasing path of maximum overall
weight, again by the use of dynamic programming.

The edge and node scores are adjusted according to the Lagrangian multiplier coefficients of
x- and y-variables in the objective function (10) of the relaxed problem. How the Lagrangian
multipliers redistribute score between nodes and incident edges in the case of a violated constraint
is visualized in Figure 4. In the local problems, we associate to each edge (j.l, i.k) the weight

cjlik(λ) =

{

2s(Aij , Bkl)− λh
ikj − λv

ikl + λa
ikj if s(Aij , Bkl) ≤ 0

2s(Aij , Bkl)− λh
ikj − λv

ikl otherwise .

Once profits pik have been computed by solving the local problem for each node i.k, we solve
the global problem. In the global problem, the node weights are given by

cik = pik +
∑

j∈[1,i−1]

λh
ikj +

∑

l∈[1,k−1]

λv
ikl −

∑

j∈[1,i−1]









λa
ikj −

∑

j:r.s∈rowik(j)
∧s(Ari,Bsk)≤0

λa
ikj









.

The solution of (10) subject to (2), (3) and (7) has objective function value LR(λ) which is
an upper bound for the original problem. It comprises the set of nodes that solve the global
problem, x̄, together with the set of edges composing the solutions of the local problems, ȳ, for
those tail nodes that are in the solution of the global problem. Nodes corresponding to x̄ together
with their induced edges represent a feasible solution for the original problem, i.e., a structural

RR n° 7915



10 Wohlers & Andonov & Klau

alignment, with objective function value Zlb , which constitutes a lower bound. This is visualized
in Figure 3.

2.3.3 Updating Lagrangian Multipliers.

Before each iteration t+ 1, the Lagrangian multipliers are adjusted by subgradient descent,

λt+1 = max{0, λt − θtgt},

with step size

θt =
α[LR(λt)− Zlb]

∑

[(gh)t]2 +
∑

[(gv)t]2 +
∑

[(ga)t]2
.

For updating the multipliers, the gradients are computed as follows

ghikj = x̄ik −
∑

(r,s)∈rowik(j)

ȳrsik ∈ {−1, 0, 1} (11)

gvikl = x̄ik −
∑

(r,s)∈colik(l)

ȳrsik ∈ {−1, 0, 1} (12)

gaikj = 1− x̄ik +
∑

(r,s)∈rowik(j)
s(Ari,Bsk)≤0

(ȳrsik − x̄rs) ∈ {−1, 0, 1} . (13)

There are only three situations in which gradient gaikj for the activation constraints is non-
zero. The first situation is gaikj = 1, if

x̄ik = 0,
∑

(r,s)∈rowik(j)
s(Ari,Bsk)≤0

ȳrsik = 0;
∑

(r,s)∈rowik(j)
s(Ari,Bsk)≤0

x̄rs = 0.

In this case λa
ikj is decreased. Since λa

ikj ≥ 0, we have to check for this situation only for
indices i, k and j with non-zero multiplier λa

ikj in the current iteration.
The gradient gaikj is also equal to 1, if

x̄ik = 0,
∑

(r,s)∈rowik(j)
s(Ari,Bsk)≤0

ȳrsik = 1,
∑

(r,s)∈rowik(j)
s(Ari,Bsk)≤0

x̄rs = 1.

This second situation is analogous to the situation detected by identifying violated con-
straints (4): The tail node of an edge is activated, but its head is not. Multiplier λa

ikj is
decreased, as in the first situation, which is only possible if the current multiplier λa

ikj is greater
than zero.

Furthermore, in the third situation gaikj = −1, if

x̄ik = 1,
∑

(r,s)∈rowik(j)
s(Ari,Bsk)≤0

ȳrsik = 0,
∑

(r,s)∈rowik(j)
s(Ari,Bsk)≤0

x̄rs = 1.

Here, we have to identify pairs of nodes that are both activated and are connected by an edge
which is not activated. Since we have to check only pairs of nodes in the solution, this can be
done quickly in time O(n2).

Inria



Optimal DALI protein structure alignment 11

2.3.4 Branch-and-Bound.

After a specified number of Lagrangian iterations, the problem is split into four subproblems.
The entire branch-and-bound framework is described in (Andonov et al., 2011).

2.4 Algorithm Engineering

In most cases preprocessing is beneficial. The idea is to exclude nodes from the alignment graph
if they provably cannot be part of an optimal alignment. In order to do so, a good feasible
solution is needed; it can, for example, be provided by the heuristic dali algorithm. Then, for
each alignment graph node, an overestimation of the the best alignment including this node is
computed. If this upper bound is less than the score of a known feasible solution, the node
cannot be part of the optimal solution and will be discarded. The benefit of preprocessing is
twofold: first, the computation time decreases if only a subset of nodes in the alignment graph
needs to be considered. Second, less memory is needed, because together with a node also all its
incoming and outgoing edges can be discarded. Since each alignment graph node can be handled
one after another, there is no memory issue during preprocessing. As a result, successful filtering
thus allows to compute alignments of protein pairs that otherwise would not fit into memory.

Another attempt to handle the memory requirements of especially large proteins is the exclu-
sion of inter-residue distances between residues that belong to different domains. The orientation
of domains to each other is thus entirely disregarded during alignment. As a result, alignments
are scored on the base of different criteria, and thus the optimal alignments in both cases may
differ. We evaluate empirically the influence of omitting inter-domain distances on the alignment
accuracy.

3 Data Sets and Experimental Setup

The SKOLNICK data set consists of 40 proteins with length between 97 and 255 residues belong-
ing to 5 protein families. This easy dataset has been used extensively for clustering of protein
structures, see for example (Caprara et al., 2004; Xie and Sahinidis, 2007; Malod-Dognin et al.,
2010, 2011; Andonov et al., 2011). We align only protein pairs from the same family, which
amounts to 164 SKOLNICK instances.

SCOPCath (Csaba et al., 2009) is a benchmark containing 6759 domains that are consistently
classified in SCOP (Murzin et al., 1995, version 1.75) and CATH (Greene et al., 2007, version
3.2.0) and that have a pairwise sequence similarity of less than 50%. We align all SCOPCath
domains with 30 up to 50 residues which belong to the same family (386 pairs), to different
families but to the same superfamily (151 pairs), and to different superfamilies but the same fold
(926 pairs). We limited the length to maximally 50 residues to obtain alignments for which our
algorithm can explore multiple branch-and-bound nodes within a few minutes.

SISY and RIPC (Mayr et al., 2007; Berbalk et al., 2009) are datasets of manually curated
structural alignments assembled from the Sisyphus collection (Andreeva et al., 2007), which are
difficult for alignment programs because of repetitions, large indels, circular permutations, confor-
mational variability, etc. The consolidated SISY and RIPC sets consist of 98 and 22 alignments,
respectively. With consolidated we denote the subsets that have been consulted for evaluation
in (Berbalk et al., 2009).

For comparison with dali we use DaliLite version 3.3. dali computes a number of alignments
and ranks them according to z-score of protein unfolding units. Therefore, we parse all alignments
returned by dali and consider the one with largest dali score. Note that maximizing the dali

score will also maximize the z-score of the entire alignment. Nonetheless, in an attempt to
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12 Wohlers & Andonov & Klau

report and rank interesting high local similarities, dali also computes z-scores for parts of the
alignment, the protein unfolding units, in which case a suboptimal alignment can receive the
highest z-score.

We compute pairwise alignments on cluster nodes each equipped with two quad core 2.26
GHz Intel Xeon processors and 24 GB of main memory running 64 bit Linux. In each branch-
and-bound node we compute 1000 Lagrange iterations. For SISY, RIPC and SKOLNICK, a
maximum running time of 30 CPU hours per instance is applied and for the short SCOPCath
instances a time limit of 30 CPU minutes per instance.

4 Results and Discussion

We assess the capability of our algorithm to compute optimal alignments with respect to the
dali scoring function on (i) 164 SKOLNICK alignments, (ii) 1463 SCOPCath alignments, (iii) 98
SISY alignments and (iv) 22 RIPC alignments. On the two later datasets, we also evaluate the
alignment accuracy with respect to the manually curated reference alignment, which is defined
as the percentage of correctly aligned residue pairs. We compare our alignments and their scores
to those determined by the dali program. The results are summarized in Table 1 and Figure 5.

SKOLNICK SCOPCath SISY RIPC

Family Superfamily Fold

Alignments 164 386 151 926 62 11
Positive z-score 164 359 141 302 61 11
dalix optimal 136 143 14 31 11 2
dali optimal 38 50 5 5 3 0
dalix better 123 287 118 258 31 6
dali better 3 16 14 30 27 5

Table 1: Comparison of dalix and dali alignments. The table lists the number alignments
in each dataset in the first row and the number of alignments for which either dalix or dali

detected an alignment with z-score greater 0 in the second row. Given that only alignments with
z-score greater zero are significant and that dali reports only significant alignments, we only
consider those alignments in the following table rows. “dalix optimal” denotes the number of
dalix alignments that have been computed to optimality and “dali optimal” the dali alignments
thereof that are also provably optimal. “dalix better” lists the number of dalix alignments with
higher dali score than the dali alignment. “dali better” denotes the number of dali alignments
that are better than the (not yet optimal) dalix alignment. The dalix computation time limit
for SCOPCath alignments is 30 CPU minutes and for all other data sets 30 CPU hours.

4.0.1 SKOLNICK.

136 of the 164 SKOLNICK alignments were computed to optimality (83%). For 123 alignments
(75%), the heuristic dali solution was improved, but never more than 3%, and for 38 (23%) the
heuristic solution was proven to be optimal. Only three dali alignments were slightly better
than the corresponding dalix alignment. Results for SKOLNICK indicate that dali computes
optimal or close to optimal alignments in the case of distinct structural similarities on family level.
The results also demonstrate that it is feasible to compute structural alignments to optimality
in the case of considerable structural similarity.
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Figure 5: The barplot bins the percentages of dali score improvement for the cases in which
the dalix alignment has positive z-score and is better than the dali alignment. On family level,
these are 278, on superfamily level 118 and on fold level 258 alignments. The improvement
is computed with respect to the dalix alignment. The dalix computation time limit is 30
CPU minutes. For most alignments, the score improvement is small. The large percentage of
alignments with improvement between 90 and 100% traces back to the large number of protein
pairs for which dali falsely reports that there is no structural similarity.
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4.0.2 SCOPCath.

When aligning the short SCOPCath domains, for 661 (45%) neither dali nor dalix could com-
pute an alignment with positive z-score, especially on fold level. It is likely, but unfortunately not
proven by our upper bounds, that no such alignment exists in many cases. This situation illus-
trates that it is difficult to design a scoring scheme and algorithm that reliably detects structural
similarities on different classification levels and discriminates them from spurious similarities.
An exact algorithm maximizing a “perfect” scoring function is expected to return a significant
alignment for all protein pairs investigated in this paper. Given the dali score and the dali and
dalix algorithms, this is not the case. We thus exclude protein pairs from the analysis for which
no algorithm returns an alignment with positive z-score.

From the 359 short SCOPCath alignments of domains from the same family, 143 (40%) were
solved to optimality within the time limit of 1800 seconds, and most within a few seconds. There
are differences between optimal alignments and heuristic ones computed by the dali program,
which are quantified in Figure 5. First, dali fails to detect 83 significant alignments with z-
scores up to 5 and falsely reports that there are no structural similarities. dalix computes 143
alignments (40%) to optimality. From these cases, in which the provable top-scoring alignment
is known, dali returns 50 optimal and 93 close to optimal alignments. Altogether, our exact
algorithm improves the heuristic solution in 287 cases (80%) by median 7%. In 16 cases, the
solution returned by the exact algorithm after 1800 seconds is worse than the heuristic solution.

Computing exact alignments becomes more difficult when structural similarity gets less pro-
nounced. For the 141 SCOPCath alignments of proteins that share the same superfamily, but
not the same family, only 14 (10%) are computed to optimality within 1800 seconds. Nonethe-
less, the exact algorithm improves the heuristic alignments in 118 cases (84%), as visualized in
Figure 5. In 24 of them, dalix returns a significant alignment that is entirely missed by dali.
In 14 cases, the dali heuristic alignment has larger dali score than the dalix alignment.

On fold level, only 31 of the 302 alignments were computed to optimality. 258 alignments
(85%) returned by the exact algorithm are better than those returned by the heuristic algorithm,
by a median of 27%, see Fig. 5. Also here, the dali score for alignments produced by dali or
dalix is usually very similar, but the exact algorithm detects significant alignments with z-scores
up to 2.5 that are missed by the heuristic. In 123 cases (41%), dalix determines a significant
alignment that is missed by dali. In 30 cases the heuristic alignment is better than the one
returned by our algorithm.

Figure 4.0.2 visualizes the alignment traces of three alignments, from family, superfamily or
fold level, respectively. These are the instances for which the dalix alignment improves the
dali alignment with the largest relative score difference from all alignments of the respective
similarity level.

4.0.3 SISY and RIPC.

If structural similarities are less pronounced or locally confined, determining the optimal align-
ment becomes inordinately more difficult. Furthermore, protein length is a problem for our
algorithm, since the number of distance pairs grows quadratic with protein length. From the
SISY set, whose difficulty is also confirmed by low alignment z-scores, only 62 alignments fit
into memory. From these, 11 were solved to optimality in, on average, about 6000 seconds.
Three of these optimal alignments were also detected by the dali heuristic, and the remaining
8 non-optimal heuristic alignments were less than 3% worse than the optimal ones. Altogether,
our exact algorithm improves the heuristic alignments in 31 cases by a median of 2%. In 27
instances, the heuristic alignment performs by a median of 19% better than the the alignment
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Figure 6: Three SCOPCath examples in which the dalix alignment improves the dali alignment
significantly. Proteins from common family, superfamily and fold are aligned (SCOPCath IDs
d2glia1 vs. d2glia4, d1b9wa2 vs. d1dx5j3, and d1pfwa3 vs. d1ryta2). Each alignment has the
largest percentage of score difference of alignments from the respective level of similarity (45%,
35% and 47%). Residues aligned by dalix are colored blue, residues aligned by dali red and
residues aligned by both methods gray.

returned by our algorithm. The reason is that the instances in the SISY set are large and of
subtle similarity, which is both disadvantageous for our algorithm.

From the 22 RIPC alignments, 11 fit into memory. Of those, two were computed to optimality.
An improvement of median 4% over the dali solution was found in 6 cases. The heuristic solution
is better than the solution of our algorithm for 5 alignments, with a large median dali score
difference of 100%. In 3 cases dalix thus does not detect an existing alignment with positive
z-score.

On SISY and RIPC we observe that, within the given time limit, our exact algorithm fails to
produce good alignments for large or remotely similar protein pairs. Furthermore, we find that
improving the dali score does not necessarily implicate a higher alignment accuracy with respect
to manually curated reference alignments: 13 dalix alignments from SISY have larger dali

score than the dali alignment, but slightly less alignment accuracy with respect to the reference
alignment. Only for three alignments an increased dali score also results in a slightly increased
alignment accuracy. For the RIPC data set, in two cases an improved dali score increased the
alignment accuracy, but in two other cases alignment accuracy decreased. Inspection of a few
of these instances using CSA (Wohlers et al., 2012), our web server for comparative structural
alignment, shows that in dalix alignments with larger dali score but less alignment accuracy
often short, additional gaps have been inserted rendering the alignment more scattered and less
intuitive than the respective dali alignment.

We evaluated the benefit of preprocessing as described in Section 2.4. Four more SISY and
one more RIPC alignments fit into memory. Two of these SISY alignments wer computed to
optimality. In most cases the alignment returned when additional preprocessing is used is better
with respect to dali score than the one obtained without preprocessing. In those instances that
were solved, the overall running time including preprocessing is in most cases significantly smaller
than without preprocessing, although the preprocessing itself takes, depending on protein length,
up to 13 minutes. Similar observations hold for the RIPC alignments. Here, one previously
unsolved protein pair is aligned optimally when preprocessing is used, in as little as 91 seconds.

Large proteins that share only little structural similarity cause memory and performance
problems for our algorithm. It was thus only possible to fit 62 SISY (63%) and 11 RIPC (50%)
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16 Wohlers & Andonov & Klau

alignments into memory. In order to reduce memory consumption while keeping alignments very
close to the ones computed by the dali program, we made another SISY and RIPC evaluation
in which we excluded all inter-domain distances. Now, 92 SISY (94%) and 19 RIPC (86%)
alignments fit into memory. While it allows to compute alignments for larger proteins and
in shorter computing time, omitting inter-domain distances has little influence on alignment
accuracy with respect to the manually curated SISY and RIPC reference alignments.

5 Conclusion

We presented the first exact general algorithm for distance matrix alignment and implemented
and evaluated it for the dali scoring function. We used our implementation dalix to benchmark
the popular dali structural alignment method. We found that computing a dali alignment to
optimality is feasible if the proteins are not too large or if there is a clear structural similarity.
In these cases we noticed that dali alignments are often not optimal, but nonetheless almost
always very close to optimal. Further, for short protein pairs we detected that although dali

rarely returns a poor alignment, it tends to entirely miss structural similarities and wrongly does
not return any alignment. These findings confirm the high quality of heuristic dali alignments
and identify possible improvements.
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