
Estimating A Reference Standard Segmentation with

Spatially Varying Performance Parameters: Local MAP

STAPLE

Olivier Commowick, Alireza Akhondi-Asl, Simon K. Warfield

To cite this version:

Olivier Commowick, Alireza Akhondi-Asl, Simon K. Warfield. Estimating A Reference Stan-
dard Segmentation with Spatially Varying Performance Parameters: Local MAP STAPLE.
IEEE Transactions on Medical Imaging, Institute of Electrical and Electronics Engineers, 2012,
31 (8), pp.1593-1606. <10.1109/TMI.2012.2197406>. <inserm-00697775>

HAL Id: inserm-00697775

http://www.hal.inserm.fr/inserm-00697775

Submitted on 16 May 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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Abstract—We present a new algorithm, called local

MAP STAPLE, to estimate from a set of multi-label

segmentations both a reference standard segmentation and

spatially varying performance parameters. It is based on a

sliding window technique to estimate the segmentation and

the segmentation performance parameters for each input

segmentation. In order to allow for optimal fusion from the

small amount of data in each local region, and to account

for the possibility of labels not being observed in a local

region of some (or all) input segmentations, we introduce

prior probabilities for the local performance parameters

through a new Maximum A Posteriori formulation of

STAPLE. Further, we propose an expression to compute

confidence intervals in the estimated local performance

parameters.

We carried out several experiments with local MAP

STAPLE to characterize its performance and value for

local segmentation evaluation. First, with simulated seg-

mentations with known reference standard segmentation

and spatially varying performance, we show that local

MAP STAPLE performs better than both STAPLE and

majority voting. Then we present evaluations with data sets

from clinical applications. These experiments demonstrate

that spatial adaptivity in segmentation performance is

an important property to capture. We compared the

local MAP STAPLE segmentations to STAPLE, and to

previously published fusion techniques and demonstrate

the superiority of local MAP STAPLE over other state-of-

the-art algorithms.

Index Terms—STAPLE, segmentation, label fusion, ref-

erence standard, performance evaluation.
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I. INTRODUCTION

Label fusion algorithms have attracted considerable

interest in recent years. First, they may be used to

evaluate inter- and intra-expert manual segmentation

variability, for example to help reaching a consensus for

the manual delineation of structures [1]. Further, they are

also utilized for the evaluation of segmentation or regis-

tration algorithms in comparison to several raters. Such

algorithms allow for the evaluation of one or several au-

tomatic segmentation algorithms against multiple manual

reference segmentations, thereby providing robust eval-

uations of automatic delineation. Popular methods for

segmentation evaluation [2], [3] compute global scores

over the entire image. However, it has been suggested

[4] that evaluating local performance of a segmentation

algorithm is better suited in some cases, as in some

applications the requirements for accuracy vary across

the image: very precise delineations may be needed in

crucial areas while a lower precision may be acceptable

for other areas. New techniques for local performance

estimation are critical for such applications, in order to

facilitate the automatic and quantitative assessment of

segmentation accuracy while incorporating information

from multiple experts.

Label fusion algorithms have also been recently uti-

lized in atlas construction [5] and to fuse multiple atlases

for segmentation [6], [7], [8], showing a significant

improvement over standard single-template based seg-

mentation techniques. As shown in [9], [10], the label

fusion strategy is a crucial aspect of successful multi-

template based segmentation. Among recent works on

label fusion, several have used majority voting [7], i.e.

the segmentation label for a voxel is selected as the most
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common label from all the aligned template segmen-

tations at that voxel. Template selection and majority

voting enable automated segmentation, however they

are limited by the use of a global metric for template

selection, by considering each voxel independently from

the others, and by assuming each template contributes

equally to the final segmentation. Majority voting gen-

erates locally inconsistent segmentations in regions of

high anatomical variability and in regions where poor

registration accuracy is achieved, such as in the cortical

gray matter which has high inter-individual anatomical

variability.

To address these challenges, several groups [10],

[11], [12] proposed weighted majority voting, defining

weights from intensity differences between the images.

In regions of variable registration accuracy, the intensity

differences are able to weight those templates that best

match (smaller local intensity differences) higher than

those that match poorly (larger local intensity differ-

ences). However, such intensity-based weights are also

prone to local errors, noise or artifacts in the images, and

to the strategy used for intensity normalization and image

registration. The most appropriate way to define these

weights or to incorporate intensity information remains

unclear.

A widely used algorithm for label fusion is STAPLE

[13], [3]. It has been evaluated for label fusion and found

superior to several combination rules, including majority

voting [9]. It utilizes the Expectation-Maximization al-

gorithm to compute both a multi-label reference standard

and segmentation performance parameters. These quality

parameters are used to infer optimal weighting for the

estimation of the reference standard segmentation, and

provides a mechanism to determine the quality of input

segmentations in label fusion. This is useful for segmen-

tation evaluation and segmentation variability evaluation.

Further, it may provide an improved multi-atlas based

segmentation by better accounting for error, noise and

artifacts in aligned segmentations.

Again, one disadvantage of global parameters is that

performance may vary from one point to another depend-

ing, for example, on the ability of an expert to delineate

some part of a structure, or on fatigue involved in a

manual delineation task. Further, in the case of template

fusion, spatially varying performance may occur due to

anatomical variability between templates, and to registra-

tion errors, such as boundary mislocalization. This may

explain why the STAPLE algorithm has been reported to

give mixed results in some previous studies, depending

on the region segmented and on the quantitative measure

of segmentation accuracy. While Rohlfing et al. [9] found

that STAPLE outperforms other approaches, Klein et al.

[14] found no significant difference between STAPLE

initialized with a prior from voting and majority voting,

suggesting that either all input images were equally

well aligned to the target and thus equal weighting is

appropriate, or that the weight of the prior was so high

as to overwhelm the weighting of the input images.

Further, both Artaechevarria et al. [10] and Langerak et

al. [15] showed that STAPLE performed worse when

poorly initialized with a uniform global prior that was

not representative of the expected segmentation, a finding

previously recognized in [3].

These observations suggest that performance of the

STAPLE algorithm could be significantly improved by

computing spatially varying performance parameters for

each input segmentation. Moreover, such local perfor-

mance estimates would greatly benefit segmentation

evaluation, thereby helping in the development of con-

sensus for manual segmentations and improving our

understanding of the expert segmentation process. How-

ever, developing a STAPLE algorithm with spatially

varying parameters is not trivial and requires that three

main questions be answered. First, one needs to define

how local computations are performed to ensure that

the obtained reference standard and local performance

estimates vary appropriately over the image. Secondly,

performing local operations may lead to cases where

some structures are not present for some experts in a

local region. The regular STAPLE algorithm requires ob-

servations of each label in order to estimate performance.

In the absence of observations for a label, an estimate

of performance for that label cannot be computed with

STAPLE. This can lead to erroneous fusion results.

Thirdly, since the computations are local, the size of the

local regions considered for computation is crucial. Too

small or too large a region may lead to erroneous perfor-

mance estimates and reference standard estimation. It is

therefore critical to be able to characterize the inferential

uncertainty in the estimated performance parameters for

each voxel, so as to quantitatively assess the confidence

interval for each of the local estimates.

We propose here an algorithm that solves all of the

challenges described above. We present a new local

Maximum a Posteriori STAPLE algorithm, hereafter

denoted local MAP STAPLE, which estimates spatially

varying local performance parameters and a reference

standard segmentation from a set of input segmentations.

The formulation of this algorithm provides three major

advances:

• First, we introduce the local MAP STAPLE com-

putation based on a sliding window technique,

• Second, to account for the possibility of unob-

served labels, and to model information regarding
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segmentation performance known ahead of time,

we formulate a Maximum A Posteriori estimator

by defining a prior probability distribution for the

expert performance parameters,

• Third, confidence intervals for the estimated per-

formance parameters are calculated by computation

of the observed Information Matrix, enabling the

local assessment of the inferential uncertainty in the

parameter values.

We describe in Section III several experiments with

the local MAP STAPLE algorithm to characterize its

performance and its value for the local evaluation of

intra- and inter-expert segmentation variability. First,

with simulated segmentations with known reference stan-

dard segmentation and spatially varying performance,

showing that local MAP STAPLE performs better than

both STAPLE and majority voting. We then present

evaluations with brain MRI. We evaluated brain segmen-

tation by label fusion from inter-subject registration of

template segmentations from a commonly used database

of brain segmentations. We compared the local MAP

STAPLE segmentations to STAPLE, and previously pub-

lished fusion techniques and found that local MAP

STAPLE has superior performance to that of other state-

of-the-art fusion and segmentation algorithms.

II. METHODS

A. Notations and Regular STAPLE Algorithm

The STAPLE algorithm estimates a hidden reference

standard segmentation and rater performance parameters

from a collection of delineations. It takes as an input a

set of segmentations from J experts (either manual or

automatic segmentations). These may be either binary

or multi-category segmentations, i.e. several structures

are delineated with each structure represented by one

specific label [3]. The labeling of each voxel, in an image

of I voxels, provided by the segmentation generators is

referred to as segmentation decision dij , indicating the

label given by expert j for voxel i, i ∈ [1 . . . I]. The

goal of STAPLE is then to estimate both a reference

standard segmentation T , and performance parameters

θ = {θ1, . . . , θj , . . . , θJ} describing the agreement over

the whole image between the experts and the reference

standard. Each θj is represented by an L × L matrix,

where L is the number of labels in the segmentation

(including the background), and θjs′s is the probability

that expert j gave the label s′ to a voxel i when the

reference standard label is s: θjs′s = P (dij = s′|Ti = s).
As the reference standard T is unknown, an

Expectation-Maximization approach [16], [17] is used

to estimate T and θ through the maximization of

the expected value of the complete data log-likelihood

Q(θ|θ(k)):

Q(θ|θ(k)) =
∑

i

∑

j

∑

s

Wsi log(θjdijs) (1)

where Wsi denotes the posterior probability of T for

label s: P (Ti = s|D, θ(k)). The EM algorithm proceeds

to identify the optimal estimate θ̂ by iterating two steps:

• E-Step: Compute Q(θ|θ(k)), the expected value of

the complete data log-likelihood given the estimate

of the expert parameters at the preceding iteration:

θ(k). Evaluating this expression requires the poste-

rior probability of T :

P (T = s|D, θ(k)) =
∏

i

Wsi

=
∏

i

P (Ti = s)
∏

j θ
(k)
jdijs

∑

s′ P (Ti = s′)
∏

j θ
(k)
jdijs′

(2)

which is straightforward to estimate, and is easily

extended to account for spatial homogeneity via a

Markov Random Field [3].

• M-Step: Estimate new performance parameters at

iteration k + 1, θ(k+1), by maximizing Q(θ|θ(k)).

B. Algorithm Overview

We describe here our new algorithm that estimates a

reference standard with spatially varying expert perfor-

mance parameters. The new algorithm is a generalization

of the STAPLE algorithm [3], and is executed on local

regions of the input images. We first need to define the

patches from which to compute the reference standard

segmentation. Note that some regions will not require

any computation: these are the regions for which at every

voxel all experts agree on the label. In such regions, all

experts are consistent with each other and the most likely

true label is undoubtedly the label assigned by the ex-

perts. Therefore, the estimation of the reference standard

and the local performance parameters is performed only

in regions where the experts do not agree.

We shall call the set of voxels in which the experts

are not in 100% consensus agreement the undecided

region U . In this region U , we have considered several

ways of defining subset regions. A solution that split U

into a set of independent non-overlapping patches would

be computationally efficient, as the number of voxels

involved in each computation is then matched to the size

of the region U . However, this would restrict changes

in performance to specific local regions, with potential

discontinuities at region boundaries. We suggest instead

to use a sliding window strategy, considering a locally
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defined regions around each voxel. Our approach is

summarized in Algorithm 1.

Using this approach, each voxel x is considered in

turn to be the center of a local region B(x) in which

the estimation is performed. This ensures a smooth

transition across the voxels by considering overlapping

neighborhoods for each computation. In the following,

we describe the main steps of the algorithm (lines 3

and 4 of Algorithm 1). First, we address challenges that

may arise when considering small regions of interest

(Section II-C). We then present in Section II-D an

approach to estimate confidence intervals for the local

performance parameters, which allows us to evaluate the

inferential uncertainty of the parameter values due to the

consideration of a small neighborhood.

C. Accounting for Missing Labels in Local Regions: a

Maximum A Posterior Formulation

For each voxel x located in the undecided region U ,

we define around it a cubic block B(x) of predefined

half window size V . For the voxels of this block, the

STAPLE EM algorithm is executed to estimate the local

reference standard and the local performance parameters.

However, when considering small blocks, some labels

may be unobserved in some of the segmentations. This

can occur in both binary and multi-category segmenta-

tions. It has not been possible in previous work [3] to

estimate segmentation performance for labels for which

no segmentation decisions are observed. This absence of

observation of some structures may lead the algorithm

into undesirable maxima coupled with poor label fusion,

as illustrated in Fig. 1. The absence of some structures

must therefore be taken into account in order to have a

consistent and accurate estimation of the local reference

standard.

We propose to account for missing labels by intro-

ducing a prior probability for segmentation performance.

This enables computation of the reference standard even

in the absence of observed segmentation labels for

each input segmentation. This leads to a Maximum A

Posteriori (MAP) formulation of the STAPLE algorithm,

referred to as MAP STAPLE [18], allowing the algorithm

to converge to the correct local optimum, even in the

absence of segmentation labels (see Fig. 1.g). The MAP

estimate is equivalent to augmenting the expected value

of the complete data log-likelihood Q(θ|θ(k)) with a term

log(P (θ)) corresponding to the prior probability of the

performance parameters:

QMAP (θ|θ
(k)) = Q(θ|θ(k)) + γ log(P (θ)) (3)

where γ is a parameter that models the relative weight

of the data term and of the prior. As the performance pa-

rameters for each expert and each label are independent,

P (θ) can be expressed as a product of the independent

probabilities of each performance parameter: P (θjs′s).
We choose a Beta distribution Bα,β(x) = 1

Z
xα−1(1 −

x)β−1 as the model for the prior probability of each

performance parameter. This distribution allows us to

model a wide variety of differently shaped performance

characteristics, by varying the two shape parameters α

and β. Furthermore, a uniform distribution is represented

by α = β = 1. This MAP formulation leads to simple

update scheme that can be efficiently solved.

1) Solution of the MAP STAPLE Estimator in the

Multi-Category Case: In the multi-category case, we

define a prior probability distribution for each expert

performance parameter θjs′s, using a Beta distribution

with parameters αjs′s and βjs′s . This leads to the

following expected value of the complete data log-

likelihood function:

Q′
MAP (θj |θ

(k)) = γ
∑

s′

∑

s

(

(αjs′s − 1) log(θjs′s)+

(βjs′s − 1) log(1− θjs′s)
)

+
∑

i

∑

s

Wsi log(θjdijs)

(4)

By design, this formulation does not modify the

expression of the reference standard label probabilities

Wsi. The E-step indeed only requires the computation

of P (T |D, θ(k)) which depends only on the current

estimates θ(k) and not on the prior on these parameters.

Wsi is therefore expressed as:

Wsi =
P (Ti = s)

∏

j θjdijs
∑

s′ P (Ti = s′)
∏

j θjdijs′
(5)

Further, equating the derivatives of Q′
MAP to 0 for

each expert j leads to the following system of equations

in the general case:

θjs′s =
γAs′s +

∑

i:dij=s′ Wsi

∑

n′

(

γAn′s +
∑

i:dij=n′ Wsi

) ,

where An′s = αjn′s + βjn′s +
βjn′s − 1

θjn′s − 1
− 2

(6)

This system is a continuous mapping of the form

θj = f(θj), with f : ]0, 1[N→]0, 1[N (where N is the

number of parameters to compute for expert j). This

system always has a unique solution (called a fixed

point). A closed form solution is available when all βjs′s
parameters are equal to 1, and also when the prior is a
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Algorithm 1 Overview of the Local MAP STAPLE Algorithm

1: for all voxels x ∈ U do

2: Define a block B(x) of a predefined half window size V , centered in x.

3: Compute a MAP STAPLE estimate of the reference standard and performance parameters for the region

B(x) (Section II-C).

4: Compute confidence intervals of the estimated parameters (Section II-D).

5: Store performance parameter estimates and reference standard probabilities for the voxel x.

(a) (b) (c) (d)

(e) (f) (g)

Fig. 1. Illustration of Label Fusion with Missing Data. Individual manual segmentations (a,c): original segmentations, (b,d): segmentations

with 4 missing structures. Legend: red, blue, green: cortical, sub-cortical and cerebellar grey matter, yellow: white matter, pink: CSF, cyan:

cerebellar white matter and brainstem. (e): reference label fusion (all structures used), (f): label fusion without accounting for missing

structures, (g): label fusion utilizing prior information with a MAP STAPLE formulation.

uniform distribution. Furthermore, the fixed point solu-

tion can be readily identified through iterative application

of the above equation [18]. This scheme consists in

applying the f mapping to the current estimate. That is,

computing the sequence {xn}n≥1 where xn+1 = f(xn)
until convergence.

2) Exact Solution for Solving the MAP Formulation

in the Binary Case: When considering binary segmen-

tations as an input, several simplifications can be made

which lead to an analytical closed form solution of the

MAP STAPLE formulation. First, the expert parameters

can be reduced to only two parameters for each ex-

pert: sensitivity pj = θj11, and specificity qj = θj00.

To simplify as much as possible the notation for the

following equations, we will keep the general notation

θjs′s for the performance parameters, keeping in mind

that only pj and qj are meaningful parameters (as θj01
and θj10 are completely determined by θj01 = 1 − pj

and θj10 = 1 − qj). Therefore a prior probability is

needed only for the pj and qj parameters. This leads

to the following expected value of the complete data

log-likelihood function:

Q′
MAP (θj |θ

(k)) =
∑

i

∑

s

Wsi log(θjdijs)+

γ
∑

s

[

(αjss − 1) log(θjss) + (βjss − 1) log(1− θjss)
]

(7)

As for the multi-category case, the form of P (T |θ,D)
is not modified by the introduction of priors on the per-

formance parameters. It remains the same as described in

[3]. The solution of the optimal θ parameters is altered by

the prior, and leads to a closed form analytical solution

for pj (θj11) and qj (θj00):
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θjss =

∑

i:dij=sWsi + γ(αjss − 1)
∑

iWsi + γ(αjss + βjss − 2)
(8)

D. Estimating Inferential Uncertainty of Local Perfor-

mance Parameters: Confidence Intervals

Estimation of segmentation performance from local

regions may vary in the quality of the estimates, due

to changes in the segmentation performance and due

to changes in the amount of data for each label in

each region. The effect of these changes can be char-

acterized by estimating the inferential uncertainty in the

performance parameters. That is, we may estimate the

certainty with which each point estimate of performance

is known. Reliable estimation of the reference standard

occurs when the performance parameters are sufficiently

certain.

The inferential uncertainty of the expert performance

parameters is computed through the evaluation of the

information matrix I(θ). The confidence intervals are

then computed from the parameter covariance matrix,

which is obtained by inverting the information matrix

Σ(θ) = I−1(θ) [19]. If the complete data was known,

then the computation of the information matrix would

be straightforward (as it is the matrix of the second

derivatives of the log-likelihood function). However,

for an EM algorithm such as local MAP STAPLE,

the complete data is unknown. The hidden variables

(the reference standard segmentation) are estimated and

the confidence intervals are then computed from the

observed information matrix, which accounts for the

uncertainty due to the estimates of the hidden variables.

The observed information matrix I(θ) is obtained by

subtracting the missing-data information matrix from the

complete-data information matrix:

I(θ) = Ic(θ)− Im(θ) (9)

The complete-data information matrix Ic(θ) is computed

using the expected value of the complete data log-

likelihood QMAP (θ|θ
(k)). The missing-data information

matrix Im(θ) is readily computed as described below.

We presented in [20] the derivation of the expressions

of Ic and Im for the STAPLE algorithm, both for the

multi-category and binary case. Interestingly, the MAP

STAPLE formulation leads to a new expression only

for the complete-data information matrix, whereas the

missing-data information matrix remains the same as

derived in [20]. Here, we provide the expressions of Ic
for the MAP STAPLE algorithm.

1) The Multi-Category Segmentation Information Ma-

trix: For multi-category segmentations, Ic is computed

by the following expression:

Ic;θjs′s(θ) = γ

[

αjs′s − 1

θ2js′s
+

βjs′s − 1

(1− θjs′s)2

]

+
∑

i:dij=s′

W
(k)
si

θ2js′s

(10)

This expression incorporates two new terms that de-

pend on the Beta distribution parameters, as compared

to Eq. (13) in [20]. The missing-data information matrix

remains the same as expressed in Eqs. (14-17) in [20].

2) The Binary Segmentation Information Matrix: In

the case of binary segmentations, the off-diagonal perfor-

mance parameters are completely determined by the on-

diagonal performance parameters, and the expression for

the information matrix can be simplified. This enables

computation of the exact observed information matrix.

As for the multi-category case, only the expression of Ic
is modified when working with the MAP formulation.

Im is expressed as in Eqs. (9-11) in [20], while Ic is

computed as:

Ic;θjss = γ

[

αjss − 1

θ2jss
+

βjss − 1

(1− θjss)2

]

+
∑

i

W
(k)
si

θ2j,dij ,s

(11)

III. RESULTS

In order to assess the performance of our new algo-

rithm, we have carried out several experiments. First,

we have performed experiments on simulated data, to

evaluate label fusion and performance parameters with

respect to a known reference standard. In addition, we

have applied our algorithm to MRI scans of the brain,

and we demonstrate the improvements of local MAP

STAPLE compared to STAPLE and other state-of-the

art algorithms.

A. Local MAP STAPLE Implementation Details and

Computation Times

In the following experiments, the local MAP STAPLE

algorithm (as well as the regular STAPLE algorithm)

was executed until convergence. The convergence of the

estimator is detected when the change of the performance

parameters from iteration to iteration is below a user-

defined threshold (10−8 in our experiments) or when a

maximum number of iterations is reached (100 in our ex-

periments). In practice, the algorithm converged always

before reaching the maximum number of iterations.

We utilized the following MAP STAPLE parameters

to model prior information about segmentation perfor-

mance for each input segmentation and for each label.

If an expert did not delineate a given structure on a

specific local block, we assume it does not mean that
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he has a poor segmentation performance in general. In

other words, we assume that the probability for an expert

to delineate the correct structure is a priori high, i.e.

absence of evidence is not evidence of poor estimation.

This is done by setting all diagonal parameters for each

expert to a beta distribution close to 1 (e.g. αjss = 5,

βjss = 1.5) and, in the multi-category case, the non-

diagonal parameters to a beta distribution close to 0 (e.g.

αjs′s = 1.5, βjs′s = 5).

In the following, we ran experiments with varying

Half Window Sizes (HWS) for the local blocks, using a

multi-threaded implementation for both STAPLE and lo-

cal MAP STAPLE. Overall, we found that our algorithm

runs at least as fast as the original STAPLE algorithm.

For example, both algorithms took about 5 minutes

to complete for the simulated data. Moreover, on the

IBSR dataset experiments described in detail below, the

local MAP STAPLE algorithm ran substantially faster:

STAPLE ran in about 9 hours while local MAP STAPLE

took 7 hours (these running times are longer since many

structures are considered for these datasets).

B. Experiments on Simulated Data

To illustrate the capacity of the local MAP STAPLE

algorithm to characterize spatially varying expert perfor-

mance, we generated a synthetic phantom with spatially

varying performance parameters. The true segmentation

is a square image (200×200) with leftmost 100 columns

having value 0 and rightmost columns having value 1.

We used random sampling to generate 32 segmentations

illustrated in Fig. 2: 12 segmentations with sensitivities

and specificities in Fig. 2.a, 6 from those in Fig. 2.b, and

14 from those in Fig. 2.c.

We present in Fig. 3 the results of label fusion of the

32 segmentations using local MAP STAPLE, STAPLE

and majority voting. Fig. 3.a shows the majority voting

result, 3.b the regular STAPLE fusion, and 3.c-e the local

MAP STAPLE results with different HWS: 1,4, and 16,

respectively. These results illustrate visually that local

MAP STAPLE performs better than regular STAPLE

when spatially varying performances are considered.

Moreover, local MAP STAPLE with higher HWS values

seems to perform better than when small HWS values

are used, and both STAPLE and local MAP STAPLE

appear better than majority voting.

To further characterize these results, we present in Fig.

4 the average parameter maps estimated by local MAP

STAPLE together with the confidence intervals derived

from Section II-D averaged for the images of group 1

(Fig. 2.a, 2.d). This figure illustrates why results may be

less good for local MAP STAPLE with an HWS of 1.

(a) (d)

(b) (e)

(c) (f)

Fig. 2. Illustration of Images Simulated with Spatially Varying

Performances. (a,b,c): Local performance values for the various

synthetic images generated (12 generated from (a), 6 from (b), 14

from (c)). (d,e,f): Illustration of the images generated respectively

using (a,b,c) performances.

In this case, the estimated parameters are quite different

from the real parameters. Moreover, the uncertainty on

these estimations is very large (up to 40 % of the

estimated value). This may therefore lead to local errors

in the estimation of the underlying ground truth. When

considering larger HWS values, the parameters maps are

more accurate and the uncertainty in the estimation also

decreases (similarly to what had been shown in [20]).

Overall, these results suggest that both HWS of 4 and 16

are good for this experiment, with a slight preference to

an HWS of 4 which provides accurate smoothly varying

spatial parameter maps, with relatively tight confidence

intervals for the estimated parameters. The range of

HWS for which excellent results are obtained suggests

the estimator is robust to this parameter.

To further verify these observations, we present in
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(a) Majority Voting (b) STAPLE (c) Local MAP STAPLE (HWS=1)

(d) Local MAP STAPLE (HWS=4) (e) Local MAP STAPLE (HWS=16)

Fig. 3. Comparison of Fusion Results on Synthetic Segmentations. Illustration of estimated true segmentations using (a): majority voting,

(b): STAPLE, (c,d,e): local MAP STAPLE with HWS of respectively 1, 4, and 16. Ground truth estimated through local MAP STAPLE is

more accurate than using regular STAPLE or majority voting.

(a) (b) (c) (d)

(e) (f) (g)

Fig. 4. Comparison of Parameter Maps for local MAP STAPLE. Local parameter maps and their relative uncertainty at the 95 % level,

averaged over the first group of 12 images generated from Fig. 3.a. (a): Ground truth parameter map. (b,c,d): local parameter maps for local

MAP STAPLE with HWS of 1, 4 and 16. (e,f,g): corresponding uncertainty in the estimated local parameters (in percentage of the estimated

value). Color bars show the scale of the parameter maps and relative uncertainty maps.
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Table I the quantitative error rates for each method.

We observe that STAPLE (which is computing global

performance parameters) cannot estimate the ground

truth accurately and created 123 misclassified voxels,

because of the variation of the performance of the

experts across the image. However, local MAP STAPLE

estimates local performances for each experts and does

accurately estimate the ground truth for the HWS of 4

and 16, with 7 and 11 misclassifications respectively over

the entire image.

Furthermore, majority voting cannot estimate the

ground truth correctly, despite the use of only local

information. Since it treats each expert equally and

does not estimate the performance of each expert, it

estimates a segmentation with 178 voxels misclassified

in the image. The local MAP STAPLE algorithm exhibits

improved performance over majority voting, which is

based on entirely local information, and STAPLE which

estimates global performance parameters. The capacity

to compute performance parameters at a spatial scale

corresponding to the performance variation observed in

the image provides local MAP STAPLE with superior

fusion performance.

C. Experiments with Brain MRI Segmentations

We obtained segmentations of 18 brain MRI scans

from the Internet Brain Segmentation Repository (IBSR).

The repository includes T1-weighted MR images and

their corresponding manual segmentation. The MR brain

datasets and their manual segmentations were provided

by the Center for Morphometric Analysis at Mas-

sachusetts General Hospital. The volumetric images have

been positioned into the Talairach orientation (rotation

only). In addition, bias field correction has been per-

formed on this data. Two sets of manual segmentations

(for a total of 128 structures) are available for each

subject:

• manual segmentation of the 34 main gray and white

matter structures of the brain (3rd Ventricle, 4th

Ventricle, Brain Stem, CSF and, Left and Right:

Accumbens area, Amygdala, Caudate, Cerebellum

Cortex, Cerebral Cortex, Cerebellum White Matter,

Cerebral White Matter, Hippocampus, Inf Lat Vent,

Lateral Ventricle, Pallidum, Putamen, Thalamus

Proper, VentralDC, and vessel)

• parcellation of the left and right cerebral cortex into

96 structures.

With this database, we consider the problem of es-

timating the best segmentation of a target MRI scan.

http://www.cma.mgh.harvard.edu/ibsr/

For each target MRI, we consider the other 17 MRI

scans and their manual segmentations as template scans.

We use non-rigid registration to project each of the

template segmentations onto the target, and then carry

out label fusion to estimate the segmentation of the

target MRI. Based on a recent evaluation of non-rigid

registration [21], we selected SyN [22] for carrying

out the non-rigid registration. We therefore utilized this

registration software, first finding a global affine trans-

formation, followed by SyN with standard parameters

which were selected for this data (greedy SyN algorithm

with a gradient step of 0.5, similarity metric: probability

mapping, Gaussian regularization with σ = 2). We

then compared label fusion algorithms to the manual

segmentation provided for each MRI.

Based on this leave-one-out evaluation framework, we

present a qualitative evaluation of overall segmentation

performance of local MAP STAPLE and show its value

in providing comprehensive maps of local performance

and confidence in the estimated parameters. Then, we

compare local MAP STAPLE quantitatively to other

state-of-the-art label fusion methods.

1) Qualitative Evaluation of Local MAP STAPLE:

For qualitative evaluation, we carried out label fusion

using STAPLE, majority voting and local MAP STA-

PLE. A HWS of 5 was chosen based on the results

from synthetic data described above. Fig. 5 illustrates

segmentation results for two representative slices of one

IBSR image, generated by expert manual segmentation

(first column), STAPLE (second column), local MAP

STAPLE (third column) and majority voting (fourth

column).

In this figure, we can observe that STAPLE tends

to enlarge cortical structures, while local STAPLE and

majority voting do not. This qualitatively demonstrates

the value of using local performance estimation when

fusing these locally variable structures. In addition, local

MAP STAPLE may be utilized to better understand

local variations in anatomy or expert segmentation for

any structure. For example, for the post-central gyrus,

we present in Fig. 6 the performance map for one

of the experts and the associated uncertainty in these

values (represented as a relative value with respect to

the estimated parameter, in percentages), along with the

illustration of the reference standard and the correspond-

ing input segmentation.

These performance maps illustrate where and how

much the expert segmentation differs from the consensus

of all segmentations and how confident we are in these

values. In particular, these maps show why local MAP

STAPLE has the ability to outperform other methods:

the sensitivity of the input segmentation is clearly highly
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Manual (a) ST (b) L-ST (c) MV (d)

Manual (e) ST (f) L-ST (g) MV (h)

Fig. 5. Illustration of IBSR Label Fusion Segmentation. Comparison of segmentations generated by ST: STAPLE (b,f), L-ST: local

MAP STAPLE (c,g), MV: majority voting (d,h), and expert manual segmentation (a,e) in a series of coronal images from a representative

scan. Local MAP STAPLE is superior to STAPLE and majority voting, especially for structures that have high inter-individual variability.

(a) (b) (c)

(d) (e)

Fig. 6. Parameter Maps computed with local MAP STAPLE for one IBSR Segmentation. Local parameter map (sensitivity) and

its relative uncertainty for the right post-central gyrus of one subject projected on a target subject. (a): Anatomical image of the projected

subject, (b): Segmentation of the post-central gyrus for the projected subject, (c): Local MAP STAPLE reference standard obtained from the

17 projected segmentations (including (b)), (d): Local parameter map for local MAP STAPLE. (e): Confidence bounds for the parameters

shown in (d) (in percentage of the estimated value). Color bars show respectively the scale of the parameter map and relative uncertainty

map (in percentage of the estimated parameter value). The local sensitivity map of this representative input segmentation varies widely across

the image. Local variation in segmentation performance is identified by local MAP STAPLE but not by majority voting or STAPLE.
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Fusion Method Majority Voting STAPLE L-ST (HWS 1) L-ST (HWS 4) L-ST (HWS 16)

# Errors 178 123 69 7 11

TABLE I

QUANTITATIVE COMPARISON OF LABEL FUSION METHODS. NUMBER OF CLASSIFICATION ERRORS WHEN ESTIMATING THE

REFERENCE STANDARD FROM EXPERTS WITH SPATIALLY VARYING PERFORMANCES. COMPARISON OF THREE DIFFERENT METHODS:

MAJORITY VOTING, REGULAR STAPLE AND LOCAL MAP STAPLE (L-ST) WITH THREE DIFFERENT HALF WINDOW SIZES (HWS).

variable, which violates the assumptions made both by

regular STAPLE and majority voting. Moreover, such

parameter and confidence maps may have many poten-

tial applications in segmentation evaluation and inter-

expert variability estimation. For example, with further

processing, future work could develop an algorithm that

utilizes these values to drive the registration algorithm

to better handle the high variability in these areas and

obtain better segmentations. In other settings, these maps

may also help to evaluate the local variability in expert

segmentation (by illustrating the regions where experts

disagree when segmenting a particular structure) and

help reaching a consensus in expert segmentation of

some structures.

2) Quantitative Evaluation of Binary Segmentation

Performance: We carried out a quantitative validation

of local MAP STAPLE for the task of label fusion

for segmentation, and compared it to state-of-the-art

label fusion techniques. We report results for 9 different

methods:

• M1: majority voting

• M2: SIMPLE [15]

• M3: COLLATE [23]

• M4: STAPLE

• M5: STAPLE with assigned consensus region

• M6: Local MAP STAPLE

• M7: STAPLER [24]

• M8: Sabuncu et al. algorithm [12]

• M9: Artaechevarria et al. method [10]

In order to enable a fair comparison of these different

techniques we have utilized the same preprocessing steps

and registration parameters for all of the data leading

to the results obtained by each of the 9 label fusion

algorithms. For SIMPLE, COLLATE and STAPLER, we

utilized the implementations available from the MASI-

fusion package. Local MAP STAPLE and STAPLE

implementations as well as the evaluation data utilized

here are available from the Computational Radiology

Laboratory website.

http://www.nitrc.org/projects/masi-fusion/

http://www.crl.med.harvard.edu/software/

The COLLATE algorithm [23] is an extension of the

original STAPLE algorithm, which defines confusion re-

gions based on differences in labelling of aligned images,

and leads to different performance estimates depending

on the degree of consensus in the initial labelling. We

also utilized the global STAPLE algorithm, both with and

without the definition of a consensus region [3], [25].

Rohlfing et al. introduced a consensus region to accel-

erate the STAPLE computation in [25], [9] and noticed

that this also leads to improved label fusion performance.

STAPLER [24] is an extension of STAPLE, designed to

deal with missing and also repeated segmentations. The

algorithm uses training data to improve the estimation of

the ground truth and performance parameters. SIMPLE

[15] is a selective and iterative method which uses

a threshold rule to select the best templates at each

iteration.

Several recent algorithms have attempted to exploit

the local intensity similarity of the target image and

template images beyond that achieved by the nonrigid

registration. Intensity differences are used a second time

after registration to estimate a weight or ranking of the

raters for each decision from each voxel of each tem-

plate. Mean square error based methods and normalized

cross correlation have been proposed as the similarity

metric in these approaches. Among these approaches,

we compared to the algorithms of Sabuncu et al. [12]

and Artaechevarria et al. [10] , as these are excellent

representatives of this class of intensity and label fusion

algorithm.

For the COLLATE algorithm, we were unable to

obtain whole brain multi-category label fusion results

due in part to the challenge of finding parameter settings

that lead to good performance. The authors describe

the setting of appropriate COLLATE parameters in the

following manner [23]:

The optimal number of consensus levels for a

given task largely depends upon the difficulty

of the labeling task. For a straightforward task

where the only confusion about the true label

would exist along the boundary between labels,

then the binary consensus level case would

be appropriate. For a more difficult problem,
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such as estimating the full brain structure in

a multi-atlas multi-label task, more than two

consensus levels may be more appropriate and

would make for an interesting area of future

consideration.

Similarly, the SIMPLE algorithm [15] has been reported

only for binary label fusion applications. Therefore,

we carried out binary label fusion with each structure

independently, and report the results for each structure.

We evaluated 32 structures in 18 subjects, consisting

of the following 16 anatomical regions on the left and

right side of the brain: inferior frontal 3 gyrus pars tri-

angularis (F3t), inferior frontal 3 gyrus pars opercularis

(F3o), precentral gyrus (PRG), middle temporal gyrus

anterior (P2a), middle temporal gyrus temporo-occipital

(TO2), inferior temporal gyrus temporo-occipital (TO3),

post-central gyrus (POG), superior parietal lobule (SPL),

supramarginal gyrus posterior (SGp), angular gyrus

(AG), juxtaparacentral lobule (supplementary motor

cortex) (JPL-SMC), para-hippocampal gyrus posterior

(PHp), occipital fusiform gyrus (OF), Heschl’s gyrus

(Heschl’s) and the accumbens area. We report in Table II

the assessment of segmentation performance of each

algorithm in comparison to the manual segmentation,

averaged over all 18 subjects and the left and right side.

The table reports the relative improvement in perfor-

mance of each fusion algorithm with respect to the Dice

coefficient values obtained by majority voting.

We found that local MAP STAPLE outperforms all

of the other algorithms, with an average performance

improvement over majority voting of 12.1%, with peak

improvement of over 100% for a structure with high

inter-individual variability.

We observed differences in performance between dif-

ferent forms of the regular STAPLE algorithm. In par-

ticular, M4 (global STAPLE) and M5 (global STAPLE

estimation applied only in the region without consensus)

have significantly different performance, simply due to

a change in the region over which estimation is carried

out. M5 first identifies a consensus region, defined by

that region in which all aligned labels from all inputs are

equal [25], [9], [3], and then the voxels in the consensus

region are assigned the consensus label value and are

ignored in all further calculations.

We executed the COLLATE algorithm M3 using the

parameter settings recommended by the authors [23],

which utilizes two consensus levels with weights of 0.99

and 0.01 respectively. The performance of this method

is superior to that of M4 but statistically significantly

worse than that of STAPLE with an assigned consensus

region, and statistically significantly worse than local

MAP STAPLE. Interestingly, it has been observed in [23]

that

COLLATE with binary consensus levels is

essentially equivalent to performing STAPLE

only over the confusion region.

We tested for statistically significant differences in per-

formance between these algorithms using a paired-

samples two-tailed t-test, examining the Dice coefficients

of segmentations of the 32 structures in the 18 subjects

created by each algorithm. We found a significant differ-

ence between the performance of local MAP STAPLE

and STAPLE with an assigned consensus region (t-

score=4.22, p < 0.0001), and we found a significant

difference between the performance of local MAP STA-

PLE and COLLATE (t-score=5.84, p<0.0001), and be-

tween local MAP STAPLE and STAPLE (t-score=26.44,

p<0.0001). In addition, we found a significant differ-

ence between the performance of COLLATE and STA-

PLE with an assigned consensus region (t-score=3.28,

p<0.001).

These experiments demonstrate further the advantage

of accounting for spatially varying performance. Meth-

ods utilizing global performance parameters are not able

to identify the locally varying positions and shapes of

structures that exhibit high inter-individual anatomical

variability. In contrast, local MAP STAPLE provides a

mechanism to estimate local performance, through the

estimation of the segmentation of the target and the

comparison of the aligned structures to the segmentation

of the target. Intensity differences between the template

and target are exploited by nonrigid registration which

provides the alignment. This estimate of local perfor-

mance provides an optimal weighting that in practice

outperforms majority voting, as it allows for but does not

assume equal weighting between the input structures.

The performance advantage of using a consensus

region is especially prominent when binary label com-

parisons are made for multi-category segmentations. The

consideration of a single label versus all others maxi-

mizes the number of voxels that may be in consensus.

The identification of a final multi-category segmentation

from a set of sequential pairwise binary comparisons is

not as efficient as a single multi-category segmentation

[25], [9], [3]. In multi-category segmentations, there are

fewer voxels in complete consensus, the performance

parameters vary spatially, and a larger advantage is

provided by the local MAP STAPLE estimate.

3) Quantitative Evaluation of Multi-Category Seg-

mentation Performance: We performed a quantitative

evaluation of local MAP STAPLE in its multi-category

version, to illustrate its value for label fusion on the IBSR

datasets. Table III illustrates the segmentation quality

achieved by each of three methods with the ability to
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M1 (Dice) M2 (%) M3 (%) M4 (%) M5 (%) M6 (%) M7 (%) M8 (%) M9 (%)

F3t 0.48 6.72 16.64 -4.30 17.65 18.72 7.82 -2.20 2.98

F3o 0.62 -0.93 5.99 -18.57 5.91 6.04 -8.87 -0.26 1.25

PRG 0.73 -3.19 2.54 -10.00 2.71 3.00 -4.52 0.63 1.53

T2a 0.53 2.06 12.73 -7.17 13.80 14.13 2.18 -1.55 2.12

TO2 0.59 -3.06 9.68 -13.85 8.60 9.07 -3.38 -0.14 2.40

TO3 0.59 -1.38 7.50 -10.56 7.03 7.41 -1.50 0.61 2.81

POG 0.71 -3.29 4.59 -10.03 4.25 4.28 -5.09 0.95 2.10

SPL 0.45 17.98 27.34 4.71 27.43 28.15 17.72 2.56 3.58

SGp 0.51 2.33 16.48 -7.74 16.66 17.09 3.57 0.77 4.87

AG 0.22 60.68 76.14 75.18 94.78 101.38 94.35 -5.13 3.24

JPL-SMC 0.57 2.76 9.08 -8.44 10.20 10.74 0.17 1.37 2.93

PHp 0.65 -3.50 3.75 -14.53 3.08 3.27 -5.95 0.94 1.29

OF 0.28 21.51 61.94 42.39 60.09 62.73 61.65 -4.11 15.68

Heschl’s 0.61 -4.56 5.42 -15.73 6.28 6.34 -5.04 -0.21 1.09

Amygdala 0.78 -1.24 1.12 -12.52 0.83 0.91 -9.14 0.46 0.45

Accumbens 0.75 -2.19 0.86 -15.57 0.98 1.12 -7.83 -0.01 0.11

Min range 0.22 -4.56 0.86 -18.57 0.83 0.91 -9.14 -5.13 0.11

Max range 0.78 60.68 76.14 75.18 94.78 101.38 94.35 2.56 15.68

Average 0.57 2.08 11.12 -7.18 11.58 12.11 1.92 0.03 2.41

TABLE II

COMPARISON OF DICE SIMILARITY COEFFICIENTS OBTAINED BY STATE-OF-THE-ART FUSION TECHNIQUES. DICE COEFFICIENTS

ARE SHOWN FOR METHOD M1 , MAJORITY VOTING. OTHER COLUMNS SHOW THE RELATIVE PERFORMANCE IMPROVEMENT WITH

RESPECT TO M1 IS THEN DISPLAYED FOR EACH FUSION TECHNIQUE (IN PERCENTAGES). LOCAL MAP STAPLE HAS BETTER AVERAGE

PERFORMANCE, BETTER PERFORMANCE RANGE, AND BETTER ABSOLUTE PERFORMANCE FOR ALL STRUCTURES CONSIDERED.

perform multi-category fusion (majority voting - MV,

STAPLE and local MAP STAPLE - L-ST), by comparing

the average Dice overlap scores for the 128 structures on

the 18 datasets when each structure is simultaneously

segmented with the other structures.

STAPLE MV L-ST

Average Dice Score 0.76 0.81 0.82

Standard Deviation 0.02 0.02 0.02

TABLE III

COMPARISON OF OVERALL SEGMENTATION PERFORMANCE

ON IBSR DATA. AVERAGE DICE SCORES ON THE SEGMENTATION

OF THE 18 IBSR DATASETS. THESE SCORES ARE STATISTICALLY

SIGNIFICANTLY DIFFERENT AND DEMONSTRATE THAT LOCAL

MAP STAPLE (L-ST) HAS SUPERIOR PERFORMANCE.

In this experiment, local MAP STAPLE performance

was significantly superior to that of STAPLE (paired

t-test, p-value < 10−6) and majority voting (paired t-

test, p-value < 0.001). This demonstrates the advantage

of accounting for spatially varying performance. These

variations can arise in several ways in this setting. First,

the alignment between template and target may cause

errors in some areas (such as close to boundaries) and not

in others. Further, inter-individual anatomical differences

may lead to parts of some structures being well aligned,

and others being less well aligned, leading to a spatially

varying performance. There are also many structures

delineated in the images, and therefore many boundaries

between structures. This fact can lead to spatially varying

boundary localization differences as the segmentation

errors are frequently located in those regions.

IV. DISCUSSION AND CONCLUSION

Label fusion is a powerful strategy for forming a seg-

mentation, as well as for evaluating automatic or manual

delineations with respect to each other. Segmentation

performance may vary across an image for many rea-

sons. For example, when asked to manually delineate a

structure, experts may have responded differently to local

intensity features to identify the structure. Fatigue when

delineating many structures may also lead to variable

error rates in interactive segmentations. For segmenta-

tion by registration algorithms, registration errors when

aligning template images may lead to local performance

variations.
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We have described and evaluated a new algorithm,

called local MAP STAPLE, to account for spatially

varying performance parameters and to compute accu-

rate estimates of the reference standard segmentation.

This algorithm estimates simultaneously, from a set of

input segmentations, a reference standard segmentation

and spatially varying performance parameters. This is

achieved through a dense sliding window strategy. To

account for the possibility of unobserved labels (such

as locally missing or mislabelled structures) in some

regions, we formulated a Maximum A Posteriori esti-

mator, providing a prior probability distribution on each

performance parameter, which allows effective estima-

tion of a reference standard segmentation when there

are no observations of certain labels from which to

estimate rater performance. We derived expressions to

estimate confidence intervals for the local MAP STAPLE

performance estimates, to allow for the characterization

of the uncertainty in the performance parameters which

may vary with the local quality of the segmentations and

the size of the sliding window.

We have demonstrated the excellent performance of

local MAP STAPLE for both label fusion and compar-

ison of expert segmentations. First, we showed a clear

and substantial improvement of the reference standard

estimation with simulated binary segmentation data with

spatially varying performance, when compared to regular

STAPLE or majority voting. Then, we evaluated label

fusion for brain segmentation using the IBSR database.

For these datasets, local MAP STAPLE performs quan-

titatively better than other state-of-the-art label fusion

algorithms reported in the literature, including regular

STAPLE and majority voting.

Majority voting can be understood as a special case

of the local MAP STAPLE algorithm, for which a local

window of one voxel is assumed, and in which a uniform

prior is assumed, i.e. each template is assumed to be

equally effective and no label is prevalent. The same

result can be achieved with local MAP STAPLE if we

make the same assumption for the prior, initialize each

template as equally likely, and run MAP STAPLE for

a half-iteration (Expectation step only) with a window

of one voxel. Selecting the most likely label at each

voxel from this specific setting will then lead to the

majority voting result. Furthermore, if any of these

assumptions are incorrect for a particular label fusion

problem, such as for cortical structures for example,

local MAP STAPLE provides a mechanism to provide

excellent estimation. If the local MAP STAPLE window

size is extended to encompass the entire image, then a

global estimate is obtained as for the STAPLE algorithm.

We evaluated local MAP STAPLE in comparison

to recently published state-of-the-art fusion algorithms,

using a standardized data set and identical nonrigid

registration in each case. In intensity and label fusion

algorithms, intensity differences are used to define a

weight for each decision for each voxel of each template.

Mean square error based methods and normalized cross

correlation have been proposed as the similarity metric,

and these have been used both globally and locally,

or template ranking and to exclude certain templates.

The most recently introduced approaches utilize local

intensity information to weight a majority voting label

fusion [12], [10]. By directly using image intensities,

these algorithms can become very sensitive to the native

signal intensity or to the nature of the intensity normal-

ization that may be carried out, and as demonstrated

in the results that we have obtained, an intensity-based

weighting cannot compensate effectively for some of the

intrinsic weaknesses of the majority voting approach. We

demonstrated that local MAP STAPLE achieved superior

performance to the intensity and label fusion algorithms

of Artaechevarria et al. [10] and Sabuncu et al. [12].

In these intensity and label fusion algorithms, after

completing an intensity-based nonrigid registration, in-

tensity differences are used a second time to estimate a

weight or ranking of the raters. We note that this implies

that after registration there remain unexploited intensity

differences that can be used to further increase the accu-

racy of the correspondence estimation. If there were un-

exploited residual signal intensity differences that were

helpful in identifying true correspondences, it would be

natural to design a registration algorithm that sought to

exploit these. It may be that intensity and label fusion

combination algorithms benefit most from the nonrigid

registration algorithms that achieve alignment with a

substantial residual registration error, and that the benefit

of these approaches is reduced as the residual registration

error is reduced. In practice, the regularization approach

used by most nonrigid registration algorithms provides

a balance between precisely matching intensities, tolera-

tion of noise and contrast in the images, and the desired

smoothness of the registration transformation. It is not

clear how best to infer from these intensity differences

what constitutes uncapturable inter-individual anatomical

variability, and what constitutes imprecise alignment of

anatomical structures that should be brought into closer

alignment, and this will be an interesting direction of

research in future work.

We compared local MAP STAPLE to the algorithm

called SIMPLE [15], which compares the template im-

ages to the estimated reference standard, and excludes

the worst templates at each iteration. However, conver-

gence to a particular optimum is not guaranteed with
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SIMPLE, and in practice it is common to observe cycling

amongst the volumes that are included and excluded,

as the exclusion of some templates leads to a different

reference standard estimate, which then causes different

volumes to be excluded and the initially excluded vol-

umes to be reintroduced. The authors [15] propose to

use an iteration count limit to avoid infinite cycling, and

this forces convergence to a particular result that depends

on the particular setting of the iteration count limit. We

demonstrated that local MAP STAPLE achieved superior

performance to SIMPLE.

Our experimental results indicate that accounting for

spatial variation in performance is an important char-

acteristic to achieve excellent quality label fusion. Our

results demonstrate differences in performance between

different forms of the regular STAPLE algorithm. In

particular, label fusions with STAPLE achieved signif-

icantly different performance with a simple change in

the region over which estimation is carried out. STAPLE

applied with a consensus region, defined by that region in

which all aligned labels from all inputs are equal [25],

[9], [3] had superior performance to STAPLE applied

globally. The voxels in the consensus region are assigned

the consensus label value and are ignored in all further

calculations. We observed here that a consequence of this

is that the performance estimates are focused on those re-

gions that are not in consensus, and this provides spatial

adaptivity in the performance estimates. Those regions in

consensus are regions in which local performance is very

high, as all input segmentations are in complete agree-

ment, whereas the region where there is no consensus has

imperfect performance by some inputs. A global estimate

that combines the performance in the consensus regions

and the non-consensus regions attempts to approximate

these differences in performance with a single parameter,

and this approximation leads to worse label fusion in

practice as seen in the results for STAPLE applied

globally. This difference in region of calculation may

explain in part why previous comparisons to STAPLE

in the literature have reported inconsistent findings for

the relative performance of STAPLE to, for example,

majority voting.

We evaluated the COLLATE algorithm in the setting

of binary segmentation, with two consensus weights.

Experimentally, we observed that performance was de-

creased the further these weights are from 1.0 and

0.0. The reason for this worse performance is that

the COLLATE algorithm does not exploit the available

spatial adaptivity. Instead the selection of weights for

consensus levels inappropriately combines performance

from different regions, the region in complete consensus

where performance is high, and the region in confusion

where performance varies. In the COLLATE algorithm,

performance estimates are combined across these regions

with a combination rule that depends on the selected

weights. Weights are used to emphasize decisions car-

ried out at certain confusion levels, and to create a

balance between the influence of voting and performance

weighting. Indeed, if the COLLATE weights are chosen

to be 0.5 and 0.5, we obtain a final result weighted

towards majority voting, and as the weights become

closer and closer to 1.0 and 0.0, the algorithm becomes

closer to STAPLE with an assigned consensus region

[25], [9], [3]. It is unclear with what principle consen-

sus level weights could be chosen for multi-category

segmentations [23]. The model of COLLATE suggests

that voxels with different selection rates by different

raters should be weighted differently when assessing

performance. However, in a local region over which

performance of each rater is well modeled as constant,

every voxel is helpful in identifying the distinct decisions

that separate good raters from bad raters, and in local

MAP STAPLE comparison to the estimated reference

standard segmentation enables effective assessment of

rater performance without regard to whether or not other

raters are performing well or poorly in a region. We

demonstrated that local MAP STAPLE achieved superior

performance to COLLATE.

Asman et al. [26] described a ‘spatial STAPLE’ algo-

rithm that considers sub-regions of the image over which

STAPLE is run. This work highlights the importance of

accounting for spatially varying performance in expert

fusion and segmentation by label fusion. Although very

promising, this approach did not overcome the chal-

lenges in effectively enabling spatial adaptivity in the

performance estimation and label fusion. Two differ-

ent formulations of a sparse regional confusion matrix

model were proposed. In the first model, every region

was non-overlapping and sparse performance estimates

were obtained with each voxel belonging to only one

region, but the use of large nonoverlapping regions was

observed to poorly model the desired spatial adaptivity

[26]. In a second model, a sparse sliding window region

definition was proposed, in which it was possible for

a voxel to be associated with more than one region,

and where nearest neighbor interpolation was used to

associate performance parameters for a region with each

voxel. As a consequence, it is possible for a voxel

to have a segmentation decision that contributes to a

weight estimate, but for that same weight estimate to

contribute to updating different performance parameters

than were used in estimating the weight. Therefore, in

the proposed sparse sliding window configuration, the

estimation of the probability of the reference standard
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segmentation (‘E-step’) and the estimation of the per-

formance parameters (‘M-step’) utilizes different subsets

of the observations of the segmentations. The resulting

system of equations is not a consistent estimator, and

the iterative procedure suggested for solving them is not

guaranteed to converge. In contrast, local MAP STAPLE

uses a dense sliding window to define the spatial support

of the performance estimation, and is guaranteed to

converge. In recognizing and addressing the challenges

of performance estimation from local information alone,

the work of [26] proposed an ad hoc technique for regu-

larization of the performance parameters using a global

estimate of the performance parameters, and observed

that a problem of ’label inversion’ could arise in which

dramatically incorrect segmentations arise. In this work,

we demonstrate the efficacy of the MAP formulation

at addressing this challenge. Furthermore, [26] provides

only point estimates of performance parameters, whereas

we demonstrate how to construct estimates of confi-

dence intervals that characterize the certainty of the per-

formance parameter estimates, providing a quantitative

measure of the efficacy of the information available from

the input images for providing a label fusion.

Future work may further increase the performance of

label fusion. The current algorithm utilizes only label

information, but it may be possible to achieve further

increases in performance of local MAP STAPLE by

incorporating intensity information. A straightforward

mechanism to do this would be to extend the prior

probability of labels f(Ti = s) to depend on intensity

information. We demonstrated that local MAP STAPLE

provides similar results for a range of local region

sizes, illustrating an insensitivity to region size for

these applications. Further work may also develop new

approaches for identifying the optimal region size for

spatially varying performance estimates. To this end, the

inferential uncertainty presented in Section II-D may

be a valuable criterion to balance the need to have

sufficient data to achieve tight confidence intervals, while

being sufficiently local to adapt to the rate of change of

performance.
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